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Preface

The Book

In November 2003, | was completing a review of an undergrasiextbook in prob-
ability and statistics. In the enclosed evaluation sheet thha question “Have you
ever considered writing a textbook?” and | suddenly redliteat the answer was
“Yes,” and had been for quite some time. For several yearglldeen teaching a
course on calculus-based probability and statistics mdimlmathematics, science,
and engineering students. Other than the basic probathittyry, my goal was to in-
clude topics from two areas: statistical inference andhsetic processes. For many
students this was the only probability/statistics coutssytwould ever take, and |
found it desirable that they were familiar with confidendeimals and the maximum
likelihood method, as well as Markov chains and queueingrhé/Nhile there were
plenty of books covering one area or the other, it was sungig difficult to find one
that covered both in a satisfying way and on the appropretel lof difficulty. My
solution was to choose one textbook and supplement it wittute notes in the area
that was missing. As | changed texts often, plenty of lechates accumulated and
it seemed like a good idea to organize them into a textbookad pleased to learn
that the good people at Wiley agreed.

It is now more than a year later, and the book has been writfdme first three
chapters develop probability theory and introduce themsiof probability, random
variables, and joint distributions. The following two chieys are shorter and of an
“introduction to” nature: Chapter 4 on limit theorems anda@ter 5 on simulation.
Statistical inference is treated in Chapter 6, which inelid section on Bayesian
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statistics, too often a neglected topic in undergraduats.te=inally, in Chapter 7,
Markov chains in discrete and continuous time are introduc€he reference list
at the end of the book is by no means intended to be comprefeemather, it is a
subjective selection of the useful and the entertaining.

Throughout the text | have tried to convey an intuitive ursteending of concepts
and results, which is why a definition or a proposition is bfpgeceded by a short
discussion or a motivating example. | have also attemptedéake the exposition
entertaining by choosing examples from the rich sourcerméfud thought-provoking
probability problems. The data sets used in the statiskiapter are of three different
kinds: real, fake but realistic, and unrealistic but ilhasive.

The people

Most textbook authors start by thanking their spouses. Wknow that this is far
more than a formality, and | would like to thank\xurjvn not only for patiently
putting up with irregular work hours and an absentmindedgesater than usual but
also for valuable comments on the aesthetics of the mamtiscri

A number of people have commented on various parts and aspetiie book.
First, | would like to thank Olle Haggstrom at Chalmers Wmsity of Technology,
Goteborg, Sweden for valuable comments on all chapters.rétharks are always
accurate and insightful, and never obscured by unnecepsditgness. Second, |
would like to thank Kjell Doksum at the University of Wiscangor a very helpful
review of the statistics chapter. | have also enjoyed theeBiay enthusiasm of Peter
Muller at the University of Texas MD Anderson Cancer Center

Other people who have commented on parts of the book or bbenvatse helpful
are my colleagues Dennis Cox, Kathy Ensor, Rudy Guerra, Meimmel, Rolf
Riedi, Javier Rojo, David W. Scott, and Jim Thompson at Rio&/&lsity; Prof. Dr.
R.W.J. Meester at Vrije Universiteit, Amsterdam, The Neldueds; Timo Seppalainen
at the University of Wisconsin; Tom English at Behrend Cgdle Robert Lund at
Clemson University; and Jared Martin at Shell Exploratiod 8roduction. For help
with solutions to problems, | am grateful to several briglteRgraduate students:
Blair Christian, Julie Cong, Talithia Daniel, Ginger Davis Deng, Gretchen Fix,
Hector Flores, Garrett Fox, Darrin Gershman, Jason GershBfau Han, Shannon
Neeley, Rick Ott, Galen Papkov, Bo Peng, Zhaoxia Yu, andyghang. Thanks to
Mikael Andersson at Stockholm University, Sweden for citmitions to the problem
sections, and to Patrick King at ODS—Petrodata, Inc. fovigding data with a dis-
tinct Texas flavor: oil rig charter rates. At Wiley, | wouldé to thank Steve Quigley,
Susanne Steitz, and Kellsee Chu for always promptly anggeny questions. Fi-
nally, thanks to John Haigh, John Allen Paulos, Jeffrey Eif Sind an anonymous
Dutchman for agreeing to appear and be mildly mocked in fotets

PETER OLOFSSON

Houston, Texas, 2005
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Preface to the Second Edition

The second edition was motivated by comments from seveeatwsd readers that
the chapters on statistical inference and stochastic psesavould benefit from sub-
stantial extensions. To accomplish such extensions, Idddcio bring in Mikael
Andersson, an old friend and colleague from graduate scligmhg five days my ju-
nior, he brought a vigorous and youthful perspective to sisk and | am very pleased
with the outcome. Below, Mikael will outline the major chaasgand additions intro-
duced in the second edition.

Peter Olofsson
San Antonio, Texas, 2011

The chapter on statistical inference has been extenderhjami@aed and split into
two new chapters. Chapter 6 introduces the principles andeqats behind standard
methods of statistical inference in general while the intquairspecial case of normally
distributed samples is treated separately in Chapter 7s i§tda somewhat different
structure compared to most other textbooks in statistitsestommon methods like
tests and linear regression come rather late in the textorang to my experience,
if methods based on normal samples are presented too earlgaarse, they tend to
overshadow other approaches like nonparametric and lmayewthods and students
become less aware that these alternatives exist.

New additions in Chapter 6 include consistency of pointnestors, large sam-
ple theory, bootstrap simulation, multiple hypothesidites Fisher's exact test,
Kolmogorov-Smirnov’s test and nonparametric confidenteruals as well as a dis-
cussion of informative versus non-informative priors anetbility intervals in Sec-
tion 6.8.

Chapter 7 opens with a detailed treatment of sampling Hidinns, like thet,
chi-square ané distributions, derived from the normal distribution. There also
new sections introducing one-way analysis of variance bhadjeneral linear model.

Chapter 8 have been expanded to include three new sectiomadimgales, re-
newal processes and Brownian motion, respectively. Thesesare of great impor-
tance in probability theory and statistics, but since theylmsed on quite extensive
and advanced mathematical theory, we only offer a briebdhiction here.

Ithas been a great privilege, responsibility and pleasuinave had the opportunity
to work with such an esteemed colleague and good friend.lIfzitize joint project
that we dreamed about during graduate school has come tmfrui

| also have a victim of preoccupation and absentmindedmagsheloved Eva
whom | want to thank for her support and all the love and frighrid we have shared
and will continue to share for many days to come.

Mikael Andersson
Stockholm, Sweden, 2011
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Basic Probability Theory

1.1 INTRODUCTION

Probability theory is the mathematics of randomness. Tiaitesient immediately
invites the question “What is randomness?” This is a deetoqrethat we cannot
attempt to answer without invoking the disciplines of pedphy, psychology, math-
ematical complexity theory, and quantum physics, andthiilte would most likely
be no completely satisfactory answer. For our purposesphfamnal definition of
randomness as “what happens in a situation where we canadicpthe outcome
with certainty” is sufficient. In many cases, this might slynmean lack of infor-
mation. For example, if we flip a coin, we might think of the cune as random.
It will be either heads or tails, but we cannot say which, drtié coin is fair, we
believe that both outcomes are equally likely. However,&f kmew the force from
the fingers at the flip, weight and shape of the coin, matenidishape of the table
surface, and several other parameters, we would be abletlcpthe outcome with
certainty, according to the laws of physics. In this case se&randomness as a way
to describe uncertainty due to lack of informatibn.

Next question: “What is probability?” There are two mainergretations of
probability, one that could be termed “objective” and thiesst'subjective.” The first
is the interpretation of a probability adienit of relative frequencieghe second, as
adegree of beliefLet us briefly describe each of these.

1To quote the French mathematician Pierre-Simon Laplace,drihe first to develop a mathematical
theory of probability: “Probability is composed partly aficignorance, partly of our knowledge.”
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For the first interpretation, suppose that we have an exsirwhere we are
interested in a particular outcome. We can repeat the exjgatiover and over and
each time record whether we got the outcome of interest. Apnaeeed, we count
the number of times that we got our outcome and divide thisbrery the number of
times that we performed the experiment. The resulting iatiberelative frequency
of our outcome. As it can be observed empirically that sutdtike frequencies tend
to stabilize as the number of repetitions of the experimenivg, we might think of
the limit of the relative frequencies as the probabilityted butcome. In mathematical
notation, if we considen repetitions of the experiment andsf, of these gave our
outcome, then the relative frequency would fhe= S,,/n, and we might say that
the probability equalim,, ., f,,. Figure 1.1 shows a plot of the relative frequency
of heads in a computer simulation 0 hundred coin flips. Notice how there is
significant variation in the beginning but how the relatikeduency settles in toward
1 quickly.

The second interpretation, probability as a degree of hédieot as easily quan-
tified but has obvious intuitive appeal. In many cases, itlaps with the previous
interpretation, for example, the coin flip. If we are askedjt@antify our degree of
belief that a coin flip gives heads, wheraneans “impossible” andl means “with
certainty,” we would probably settle fcg unless we have some specific reason to
believe that the coin is not fair. In some cases it is not fdess$o repeat the experi-
ment in practice, but we can still imagine a sequence of itmes. For example, in
a weather forecast you will often hear statements like #hea30% chance of rain
tomorrow.” Of course, we cannot repeat the experimentgeeitirains tomorrow or it
does not. Th&80% is the meteorologist’s measure of the chance of rain. Theestli
a connection to the relative frequency approach; we canimeagsequence of days
with similar weather conditions, same time of year, and spamd that in roughly
30% of the cases, it rains the following day.

The “degree of belief” approach becomes less clear for rsiatés such as “the
Riemann hypothesis is true” or “there is life on other platietObviously these
are statements that are either true or false, but we do nat kvtach, and it is not

0 20 40 60 80 100

Fig. 1.1 Consecutive relative frequencies of heads0f coin flips.
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unreasonable to use probabilities to express how strongllyelieve in their truth. Itis
also obvious that different individuals may assign congiledifferent probabilities.

How, then, do we actuallgefinea probability? Instead of trying to use any of
these interpretations, we will state a strict mathematieéihition of probability. The
interpretations are still valid to develop intuition foietlituation at hand, but instead
of, for exampleassumingdhat relative frequencies stabilize, we will be abletove
that they do, within our theory.

1.2 SAMPLE SPACES AND EVENTS

As mentioned in the introduction, probability theory is atheamatical theory to
describe and analyze situations where randomness or aindgrare present. Any
specific such situation will be referred to asamdom experimentWe use the term
“experiment” in a wide sense here; it could mean an actuasighiexperiment such
as flipping a coin or rolling a die, but it could also be a sitoiatwhere we simply
observe something, such as the price of a stock at a giventtim@amount of rain in
Houston in September, or the number of spam emails we receaveay. After the
experimentis over, we call the result antcome For any given experiment, there is
a set of possible outcomes, and we state the following digimit

Definition 1.2.1 The set of all possible outcomes in a random experiment is
called thesample spacelenotedS.

Here are some examples of random experiments and theiriatsbsample spaces.

Examplel.2.1 Roll a die and observe the number.

Here we can get the numbershrough6, and hence the sample space is

S ={1,2,3,4,5,6} 0

Examplel.2.2 Roll a die repeatedly and count the number of rolls it taked tire
first 6 appears.

Since the firs6 may come in the first roll] is a possible outcome. Also, we may fail
to get6 in the first roll and then geft in the second, s is also a possible outcome. If
we continue this argument we realize that any positive etéga possible outcome
and the sample space is

S={1,2,..}
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the set of positive integers. 0

Examplel.2.3 Turn on a lightbulb and measure its lifetime, that is, thectiomtil
it fails.

Here itis notimmediately clear what the sample space sHmyldince it depends on
how accurately we can measure time. The most convenienbagipiis to note that
the lifetime, at least in theory, can assume any nonnegeaalenumber and choose
as the sample space

S =[0,00)

where the outcome 0 means that the lightbulb is broken tbsttr. 0

In these three examples, we have sample spaces of threeedifiends. The first
is finite, meaning that it has a finite number of outcomes, whereasettensl and
third are infinite. Although they are both infinite, they aiéfatent in the sense that
one has its points separatdd, 2, ...} and the other is an entire continuum of points.
We call the first typeountable infinityand the secondncountable infinityWe will
return to these concepts later as they turn out to form an itaptdistinction.

In the examples above, the outcomes are always numbers aod tiee sample
spaces are subsets of the real line. Here are some examplteofypes of sample
spaces.

Examplel.2.4 Flip a coin twice and observe the sequence of heads and tails.

With H denoting heads anfi denoting tails, one possible outcomeHd", which
means that we get heads in the first flip and tails in the secémnguing like this,
there are four possible outcomes and the sample space is

S ={HH,HT,TH, TT}

Examplel.2.5 Throw a dart at random on a dart board of radius

If we think of the board as a disk in the plane with center aittigin, an outcome is
an ordered pair of real numbe(s, ), and we can describe the sample space as

S={(z,y):2® +y* <r?} -
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Once we have described an experiment and its sample spaeentéo be able to
compute probabilities of the various things that may happ®hat is the probability
that we get when we roll a die? That the fir6tdoes not come before the fifth roll?
That the lightbulb works for at leagb00 hours? That our dart hits the bull's eye?
Certainly we need to make further assumptions to be abledwearthese questions,
but before that, we realize that all these questions havetunyg in common. They
all ask for probabilities of either single outcomes or grevpoutcomes. Mathemat-
ically, we can describe these as subsets of the sample space.

Definition 1.2.2 A subset ofS, A C S, is called arevent

Note the choice of words here. The terms “outcome” and “évegitect the fact
that we are describing things that may happen in real life.thdimatically, these
are described as elements and subsets of the sample spasedudlity is typical
for probability theory; there is a verbal description and athematical description
of the same situation. The verbal description is naturalmieal-world phenomena
are described and the mathematical formulation is necgssaevelop a consistent
theory. See Table 1.1 for a list of set operations and thebalalescription.

Examplel.2.6 If we roll a die and observe the number, two possible evemttat
we get an odd outcome and that we get at ldast we view these as subsets of the
sample space we get

A=1{1,3,5} and B ={4,5,6}
If we want to use the verbal description we might write this as

A = {odd outcom¢ and B = {atleastd}

We always use “or” in its nonexclusive meaning; thug,dr B occurs” includes the
possibility that both occur. Note that there are differeay@to express combinations
of events; for exampled \ B = AN B°and(A U B)¢ = A° N B°. The latter is
known as one obe Morgan’s lawsand we state these without proof together with
some other basic set theoretic rules.
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Table 1.1 Basic set operations and their verbal description.

Notation Mathematical description Verbal description
AUB Theunion ofA andB A or B (or both) occurs
AN B Theintersection ofi andB Both A and B occur

A° The complement oft A does not occur

A\ B Thedifference betweeA andB A occurs but noBB

) The empty set Impossible event

Proposition 1.2.1. Let A, B, andC be events. Then
(a) (Distributive Lawg (ANB)UC=(AUC)N(BUCQC)
(AUB)NC=(ANnC)Uu(BNC)
(b) (De Morgan's Lawg (AU B)¢ = A°N B¢

(AN B)¢ = A°U B

As usual when dealing with set theoxenn diagramsre useful. See Figure 1.2 for
an illustration of some of the set operations introducedsab@Ve will later return to
how Venn diagrams can be used to calculate probabilitied. dhd B are such that
AN B = @, they are said to bdisjointor mutually exclusiveln words, this means
that they cannot both occur simultaneously in the expertmen

As we will often deal with unions of more than two or three egewe need more
general versions of the results given above. Let us firsbéhice some notation. If
Ay, Ao, ..., A, is a sequence of events, we denote

UAk:AluAQU---UAn
k=1

the union of all the4,, and

n

(A =A1NnAN---NA,
k=1

the intersection of all thel,.. In words, these are the events thateast oneof the
Ay, occurs and thadll the A, occur, respectively. The distributive and De Morgan’s
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ANB B\A

Fig. 1.2 Venn diagrams of the intersection and the difference beatvesents.

laws extend in the obvious way, for example

(Ua) - A
k=1 k=1

Itis also natural to consider infinite unions and intersetdi For example, in Example
1.2.2, the event that the firstcomes in an odd roll is the infinite unidri } U {3} U
{5} U---and we can use the same type of notation as for finite unionsvatel

{first6 in odd roll} = |_J{2k — 1}
k=1

For infinite unions and intersections, distributive and Derlyan’s laws still extend
in the obvious way.

1.3 THE AXIOMS OF PROBABILITY

In the previous section, we laid the basis for a theory of phility by describing ran-
dom experiments in terms of the sample space, outcomesyantse As mentioned,
we want to be able to compute probabilities of events. Intimduction, we men-
tioned two different interpretations of probability: asimit of relative frequencies
and as a degree of belief. Since our aim is to build a congistathematical theory,
as widely applicable as possible, our definition of proligbdhould not depend on
any particular interpretation. For example, it makes itiaisense to require a prob-
ability to always be less than or equal to one (or equivajetdks than or equal to
100%). You cannot flip a coih0 times and get2 heads. Also, a statement such as I
am 150% sure that it will rain tomorrow” may be used to expedseme pessimism
regarding an upcoming picnic but is certainly not sensibtenfa logical point of
view. Also, a probability should be equal to one (or 100%)ewlthere is absolute
certainty, regardless of any particular interpretation.

Other properties must hold as well. Forexample, if you thiréce is 20% chance
that Bob is in his house, 3% chance that he is in his backyard, an80& chance
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that he is at work, then the chance that he is at hon3®96, the sum 0f20% and
30%. Relative frequencies are aladditivein this sense, and it is natural to demand
that the same rule apply for probabilities.

We now give a mathematical definition of probability, whetrie defined as a real-
valued function of the events, satisfying three propertidsich we refer to as the
axioms of probability In the light of the discussion above, they should be intelyi
reasonable.

Definition 1.3.1 (Axioms of Probability. A probability measureis a
function P, which assigns to each evesAta numberP(A) satisfying

(@ 0<PA)<1
(b) P(S)=1

(c) If Ay, Ao, ... Is a sequence gfairwise disjointevents, that is, if £ 7,
then4; N A; = O, then

(0n) - Sra
k=1 k=1

We readP(A) as “the probability ofA.” Note that a probability in this sense is a
real number between 0 and 1 but we will occasionally also esegmtages so that,
for example, the phrases “The probabilityi®” and “There is 20% chance” mean
the same thing.

The third axiom is the most powerful assumption when it cotn@®ducing prop-
erties and further results. Some texts prefer to state ihe alxiom for finite unions
only, but since infinite unions naturally arise even in simpkamples, we choose
this more general version of the axioms. As it turns out, thidicase follows as
a consequence of the infinite. We next state this in a prdpaosind also that the
empty set has probability zero. Although intuitively obw#& we must prove that it
follows from the axioms. We leave this as an exercise.

2|f the sample space is very large, it may be impossible tqagsiobabilities tall events. The class of
events then needs to be restricted to what is callediald. For a more advanced treatment of probability
theory, this is a necessary restriction, but we can safelsedard this problem.
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Proposition 1.3.1. Let P be a probability measure. Then
@ P@)=0

(b) If Ay, ..., A, are pairwise disjoint events, then

n

P(LnJ Ap) = P(Ay)

In particular, if A and B are disjoint, thenP(A U B) = P(A) + P(B). In general,
unions need not be disjoint and we next show how to computgbleability of
a union in general, as well as prove some other basic pregesfithe probability
measure.

Proposition 1.3.2. Let P be a probability measure on some sample sggace
and let4 and B be events. Then

(@) P(A¢) = 1 — P(A)
(b) P(A\ B) = P(A) — P(AN B)
() P(AUB) = P(A) + P(B) — P(AN B)

(d) If A C B, thenP(A) < P(B)

Proof. We prove (b) and (c), and leave (a) and (d) as exercises. Fandte that
A= (AN B)U(A\ B),which is a disjoint union, and Proposition 1.3.1 gives

P(A) = P(ANB) + P(A\ B)

which proves the assertion. For (c), we writeU B = AU (B \ A), which is a
disjoint union, and we get

P(AUB)=P(A)+ P(B\A)=P(A)+ P(B)— P(ANB)
by part (b). ]

Note how we repeatedly used Proposition 1.3.1(b), the firgtsion of the third ax-
iom. In Proposition 1.3.2(c), for example, the evedtaind B are not necessarily
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disjoint but we can represent their union as a union of othents that are disjoint,
thus allowing us to apply the third axiom.

Examplel.3.1 Mrs Boudreaux and Mrs Thibodeaux are chatting over theicéen
when the new neighbor walks by. He is a man in his sixties witth®y clothes and a
distinct smell of cheap whiskey. Mrs B, who has seen him leefedls Mrs T that he
is a former Louisiana state senator. Mrs T finds this very hattklieve. “Yes,” says
Mrs B, “he is a former state senator who got into a scandal b had to resign
and started drinking.” “Oh,” says Mrs T, “that sounds morelmble.” “No,” says
Mrs B, “I think you mean less probable.”

Actually, Mrs B is right. Consider the following two statente about the shabby
man: “He is a former state senator” and “He is a former statates who got into
a scandal long ago, had to resign, and started drinking$ tnpting to think that
the second is more probable because it gives a more exhaesilanation of the
situation at hand. However, this is precisely why it iessprobable statement. To
explain this with probabilities, consider the experimefloserving a person and the
two events

A {he is a former state senajor
B = {hegotinto a scandal long ago, had to resign and startedidghk

The first statement then corresponds to the evesrtd the second to the evetin B,
andsinceAN B C A, we getP(ANB) < P(A). Of course, what Mrs T meant was
that it was easier to believe that the man was a former stai@@eonce she knew
more about his background.

In their bookJudgment under Uncertaintitahneman et al. [5], show empirically
how people often make similar mistakes when asked to chd@senbst probable
among a set of statements. With a strict application of thesraf probability we get
it right. 0

Examplel.3.2 Consider the following statement: “I heard on the news theittd is
a 50% chance of rain on Saturday and a 50% chance of rain oragumtien there
must be a 100% chance of rain during the weekend.”

This is, of course, not true. However, it may be harder to poirn precisely where
the error lies, but we can address it with probability thedrye events of interest are

A = {rainon Saturday and B = {rain on Sunday

and the event of rain during the weekend is thew B. The percentages are refor-
mulated as probabilities so thB(A) = P(B) = 0.5 and we get
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P(rain during the weekend = P(AU B)
P(A)+ P(B)— P(ANB)
1—P(ANB)

which is less than 1, that is, the chance of rain during thekeneg is less than 100%.
The error in the statement lies in that we can add probadslitinly when the events
are disjoint. In general, we need to subtract the probagffithe intersection, which
in this case is the probability that it rains both Saturdag Sanday. 0

Example1.3.3 A dart board has area dft3 in? (square inches). In the center of
the board, there is the “bulls eye,” which is a disk of area?l ifihe rest of the board
is divided into20 sectors numbered 2, ..., 20. There is also a triple ring that has an
area of10 in2 and a double ring of area 153r{everything rounded to nearest inte-
gers). Suppose that you throw a dart at random on the boardt M/the probability
that you gefa) double14, (b) 14 but not double(c) triple or the bull's eye(d) an
even number or a double?

Introduce the event8' = {14}, D = {doublé, T' = {triple}, B = {bull's eye},
andE = {ever}. We interpret “throw a dart at random” to mean that any region
is hit with a probability that equals the fraction of the foé@aea of the board that
region occupies. For example, each number has@rh— 1)/20 = 7.1 in2 so the
corresponding probability i%.1/143. We get

0.75
P(double14) = P(DNF) = {5 ~ 0.005

P(14butnotdouble = P(F\ D) = P(F)— P(FND)
71 075

= —_—— — ) .044
143 143 0.0

P(tripleorbullseye = P(T'UB) = P(T)+ P(B)

10 1
= 13 + 3 = 0.077
P(evenordouble = P(FUD) = P(E)+ P(D)—-P(END)
71 15 7.5
= + — =~ 0.55

143 " 143 143 0
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Let us say a word here about the interplay between logictdrsiants and events. In
the previous example, consider the evehits= {ever} andF' = {14}. Clearly, if
we getl4, we also get an even number. As a logical relation betwedsarstants, we
would express this as

the number id4 = the number is even

and in terms of events, we would say HAfoccurs, ther must also occur.” But this
means that’ C E and hence

{the numberid4} C {the number is even

and thus the set-theoretic analog ef* is “ C” which is useful to keep in mind.

Venn diagrams turn out to provide a nice and useful integti@h of probabilities.
If we imagine the sample spac¢kto be a rectangle of arelg we can interpret the
probability of an eventl as the area ofl (see Figure 1.3). For example, Proposition
1.3.2(c) saysthaP(A U B) = P(A) + P(B) — P(AN B). With the interpretation
of probabilities as areas, we thus have

P(AUB) = areaofAUB
= areaofA + areaofB — areaofAN B
P(A)+ P(B)— P(ANnB)

since when we add the areas4dfind B, we count the area of N B twice and must
subtract it (think ofA and B as overlapping pancakes where we are interested only
in how much area they cover). Strictly speaking, this is npt@of but the method

can be helpful to find formulas that can then be proved foiyn#tl the case of three
events, consider Figure 1.4 to argue that

Areaof AUBUC = areaofd + areaofB + area ofC
— areaofAN B — areaofANC — areaofBNC
+ areaofANBNC

P(A) =

area ofA

Total area= 1

Fig. 1.3 Probabilities with Venn diagrams.
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Fig. 1.4 Venn diagram of three events.

since the piece in the middle was first addd@mes and then removelitimes, so in
the end we have to add it again. Note that we must draw thealiago that we get
all possible combinations of intersections between thatsveWe have argued for
the following proposition, which we state and prove formall

Proposition 1.3.3. Let A, B, andC be three events. Then
P(AuUBUC) = P(A)+ P(B)+ P(C)
— P(ANnB)—-P(ANnC)—-P(BNC)
+ P(ANBNC)

Proof. By applying Proposition 1.3.2(c) twice — first to the two eteeA U B and
C and secondly to the eventsand B — we obtain

P(AUBUC) = P(AUB)+P(C)-—P((AUB)NC)
= P(A)+P(B)—P(ANB)+P(C)—P((AUB)NC)

The first four terms are what they should be. To deal with tlseterm, note that by
the distributive laws for set operations, we obtain

(AUB)NC=(ANnC)U(BNCOC)
and yet another application of Proposition 1.3.2(c) gives

P((AUB)NC) = P(AnC)u(BNCQ))
P(ANnC)+P(BNC)—PANBNC(C)
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which gives the desired result. ]

Examplel.3.4 Choose a number at random from the numbders, 100. What is
the probability that the chosen number is divisible by eithe, or5?

Introduce the events
Ay = {divisible byk}, fork =1,2, ...

We interpret “at random” to mean that any set of numbers halbability that is
equal to its relative size, that is, the number of elementisldd by 100. We then get

P(Ag) = 0.5, P(Ag) =0.33, andP(A5) =0.2

For the intersection, first note that, for example,N A; is the event that the number
is divisible by both2 and3, which is the same as saying it is divisible byHence
Ao N A3 = Ag and

P(As M Ag) = P(Ag) = 0.16
Similarly, we get
P(Ag n A5) = P(Alo) =0.1, P(A3 n A5) = P(A15) =0.06

and
P(AQ NAzN A5) = P(Ago) =0.03

The event of interest igl; U A3 U As, and Proposition 1.3.3 yields

P(A3U A3 U As) = 0.5+ 0.33 4+ 0.2 — (0.16 4+ 0.1 + 0.06) + 0.03 = 0.74
O

It is now easy to believe that the general formula for a unibn @vents starts by
adding the probabilities of the events, then subtractiegptiobabilities of the pairwise
intersections, adding the probabilities of intersectiofiiples and so on, finishing
with either adding or subtracting the intersection of a# thevents, depending on
whethem is odd or even. We state this in a proposition that is somettireferred to
as theinclusion—exclusion formuldt can, for example, be proved by induction, but
we leave the proof as an exercise.
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Proposition 1.3.4. Let Ay, Ao, ..., A, be a sequence af events. Then
P (U Ak) = ZP(Ak)
k=1 k=1
— Z P(Al n Aj)

1<j

+ ) P(A;NA;NAy)

i<j<k

+ (=1)" T P(A; N AN NAY)

We finish this section with a theoretical result that will beetul from time to time.
A sequence of events is said toibereasingif

Ay C Ay C e

anddecreasingf
A1 DA D

In each case we can define tirait of the sequence. If the sequence is increasing,
we define

lim A, = | A
and if the sequence is decreasing
lim A, = ) A

Note how this is similar to limits of sequences of numbershwi andD correspond-
ing to < and>, respectively, and union and intersection correspondirsgipremum
and infimum. The following proposition states that the plmligy measure is @on-
tinuous set functionThe proof is outlined in Problem 18.

Proposition 1.3.5. If Ay, Ao, ... is either increasing or decreasing, then

P(lim A,)= lim P(A,)

n—oo n—oo
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1.4 FINITE SAMPLE SPACES AND COMBINATORICS

The results in the previous section hold for an arbitraryslerapace. In this section
we will assume that is finite, S = {s1, ..., s, }, say. In this case, we can always
define the probability measure by assigning probabilitebé individual outcomes.

Proposition 1.4.1. Suppose thaty, ..., p, are numbers such that

(a)pk > Oa k= 15"'5”

) p=1
k=1

and for any eventl C S, define

P(A)= Y

k:sx€A

ThenP is a probability measure.

Proof. Clearly, the first two axioms of probability are satisfied r Bee third, note
that in a finite sample space, we cannot have infinitely magjpitit events, so we
only have to check this for a disjoint union of two evertand B. We get

P(AUB)= > pe= ) et Y pe=PA)+P(B)

k:sp€AUB k:sp €A k:sx€B

and we are done. (Why are two events enough?) ]

Hence, when dealing with finite sample spaces, we do not meexlicitly give the
probability of every event, only for each outcome. We retethte numbersg, ..., p,
as aprobability distributionon S.

Examplel.4.1 Consider the experiment of flipping a fair coin twice and cinm
the number of heads. We can take the sample space

S ={HH,HT,TH, TT}

andletp; = ... =py = %. Alternatively, since all we are interested in is the number
of heads and this can lfe1, or 2, we can use the sample space

5={0,1,2}
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andletpg = ,p1 = 1, py = 1. 0

Of particular interest is the case when all outcomes arelbgjikely. If S hasn
equally likely outcomes, thepy = p2 = -+ = p, = % which is called auniform
distributionon S. The formula for the probability of an evertnow simplifies to

P(A) = Y 1_#4

n n
k:sp€A

where# A denotes the number of elementsdn This formula is often referred to as
the classical definition of probabilitysince historically this was the first context in
which probabilities were studied. The outcomes in the eveoan be described as
favorableto A and we get the following formulation.

Corollary 1.4.2. In afinite sample space with uniform probability distrilmurt

_ # favorable outcomes

P4) = # possible outcomes

In daily language, the term “at random” is often used for stirimg that has a uniform
distribution. Although our concept of randomness is momaeggal, this colloquial
notion is so common that we will also use it (and already haVhys, if we say “pick

a number at random from ..., 10,” we mean “pick a number according to a uniform
probability distribution on the sample spafk 2, ..., 10}.”

Examplel.4.2 Roll a fair die3 times. What is the probability that all numbers are
the same?

The sample space is the set of %16 ordered triplesi, j, k), and since the die is fair,
these are all equally probable and we have a uniform probaUiktribution. The
event of interest is

A={(1,1,1),(2,2,2),...,(6,6,6)}

which has six outcomes and probability
_ # favorable outcomes 6 1

P(A) = _ =
(4) # possible outcomes 216 36 O
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Example1.4.3 Consider a randomly chosen family with three children. Whkat
the probability that they have exactly one daughter?

There are eight possible sequences of boys and girls (irr ofdw@rth), and we get
the sample space

S = {bbb, bbg, bgb, bgg, gbb, gbg, ggb, 999}

where, for exampleibg means that the oldest child is a boy, the middle child a boy,
and the youngest child a girl. If we assume that all outcomequally likely, we
get a uniform probability distribution off, and since there are three outcomes with
one girl, we get

3

P(one daughter= 3 O

Examplel.4.4 Consider a randomly chosen girl who has two siblings. Whtités
probability that she has no sisters?

Although this seems like the same problem as in the previxausiple, it is not. If, for
example, the family has three girls, the chosen girl can lye&these three, so there
are three different outcomes and the sample space needteftihisinto account. Let
g* denote the chosen girl to get the sample space

S =1{9"99,999,999",979b, 99'b, g"bg, gbg™, bg”g,bgg™, g"bb, bg’b, bbg™ }

and since3 out of 12 equally likely outcomes have no sisters we get
: 1
P(no sisters = 1

which is smaller than th% we got above. On averag&].5% of families with three
children have a single daughter 2% of girls in three-children families are single
daughters. 0

1.4.1 Combinatorics

Combinatorics, “the mathematics of counting,” gives risatwealth of probability
problems. The typical situation is that we have a set of dbjrom which we draw
repeatedly in such a way that all objects are equally likelpé drawn. It is often
tedious to list the sample space explicitly, but by countambinations we can find
the total number of cases and the number of favorable caseapply the methods
from the previous section.
The first problem is to find general expressions for the totahber of combi-

nations when we draw times from a set of: distinguishable objects. There are



FINITE SAMPLE SPACES AND COMBINATORICS 19

different ways to interpret this. For example, we can dveith or without replace-
ment depending on whether the same object can be drawn more titan e can
also drawwith or without regard to orderdepending on whether it matters in which
order the objects are drawn. With these distinctions, tlaeeefour different cases,
illustrated in the following simple example.

Examplel.4.5 Choose two numbers from the dgt, 2, 3} and list the possible out-
comes.

Let us first choose with regard to order. If we choose withaephent, the possible
outcomes are

(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1), (3,2),(3,3)
and if we choose without replacement
(1,2),(1,3),(2,1),(2,3),(3,1),(3,2)

Next, let us choose without regard to order. This means thagxample, the out-
comes(1,2) and(2, 1) are regarded as the same and we denote {tlbg} to stress
that this is thesetof 1 and2, notthe ordered pair. If we choose with replacement, the
possible cases are

{1,1},{1,2},{1,3},{2,2},{2,3},{3,3}

and if we choose without replacement

{1,2},{1,3},{2,3}

To find expressions in the four cases for arbitrary values andk, we first need the
following result. It is intuitively quite clear, and we sgait without proof.

Proposition 1.4.3. If we are to performr experiments in order, such that
there aren; possible outcomes of the first experimemnt, possible outcome
of the second experiment., n,. possible outcomes of theéh experiment, the
there is a total ofins - - - n,. outcomes of the sequence of thexperiments.

)

This is called thdundamental principle of countingr themultiplication principle
Let us illustrate it by a simple example.
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Examplel1.4.6 A Swedish license plate consists of three letters followgdhbee
digits. How many possible license plates are there?

Although there ares letters in the Swedish alphabet, or2§ are used for license
plates. Hence we have= 6,n; = ny = n3 = 23, andny = n5 = ng = 10. This
gives a total o233 x 10% ~ 12.2 million different license plates. O

We can now address the problem of drawingmes from a set of. objects. It turns
out that choosing with regard to order is the simplest, sadedtart with this and first
consider the case of choosing with replacement. The firgablojan be chosen im
ways, and for each such choice, we hawsays to choose also the second object,
ways to choose the third, and so on. The fundamental precptounting gives

nxnx---xn:nk
ways to choose with replacement and with regard to order.
If we instead choose without replacement, the first objetbeachosen in ways,
the second im — 1 ways, since the first object has been removed, the third-i2
ways and so on. The fundamental principle of counting gives

nn—1)---(n—k+1)
ways to choose without replacement and with regard to ofsl@metimes the notation
ng=nn—-1)-(n—k+1)

will be used for convenience, but this is not standard.

Examplel1.4.7. From a group oR0 students, half of whom are female, a student
council president and vice president are chosen at randohmat W the probability
of getting a female president and a male vice president?

The set of objects is th20 students. Assuming that the president is drawn first, we
need to take order into account, since, for example, (BreBdace) is a favorable
outcome but (Bruce, Brenda) is not. Also, drawing is donéhauit replacement.
Thus, we havé = 2 andn = 20 and there ar20 x 19 = 380 equally likely different
ways to choose a president and a vice president. The sangile iithe set of these
380 combinations and to find the probability, we need the numbtnorable cases.
By the fundamental principle of counting, thisli@ x 10 = 100. The probability of
getting a female president and male vice preside@@%sw 0.26. 0

Example1.4.8 A human gene consists of nucleotide base pairs of four @iffier
kinds, A, C, G, andT'. If a particular region of interest of a gene Hasbase pairs,
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what is the probability that a randomly chosen individua ha base pairs in common
with a particular reference sequence in a database?

The set of objects i§A, C, G, T'}, and we drav20 times with replacement and with
regard to order. Thus = 20 andn = 4, so there are?’ possible outcomes, and
let us, for the sake of this example, assume that they ardlgdjkaly (which would
not be true in reality). For the number of favorable outcomes- 3 instead of 4
since we need to avoid one particular letter in each choi@ncl the probability is
320/420 ~ 0.003. O

Examplel.4.9 (The Birthday Problen). This problem is a favorite in the proba-
bility literature. In a group of 100 people, what is the prbligy that at least two
have the same birthday?

To simplify the solution, we disregard leap years and assamgiform distribution
of birthdays over th&65 days of the year. To assign birthdayslt@0 people, we
choosel 00 out of 365 with replacement and g&65'°° different combinations. The
sample space is the set of those combinations, and the eviatgmrest is

A = {at least two birthdays are equal
and as it turns out, it is easier to deal with its complement
A¢ = {all 100 birthdays are differeht

To find the probability ofA<, note that the number of cases favorabld tas obtained
by choosingl00 days out 08365 withoutreplacement and hence

365 x 364 x --- x 266
B 365100

Yes, that is a sequence of gis followed by a7! Hence, we can be almost certain
that any group ofl00 people has at least two people sharing birthdays. A similar
calculation reveals the probability of a shared birthdagady exceed§ at23 peo-

ple, a quite surprising result. Abo&0% of school classes thus ought to have kids
who share birthdays, something that those with idle timehairthands can check
empirically. 0

P(A)=1-P(A%) =1 ~ 0.9999997

A check of real-life birthday distributions will reveal thhe assumption of birthdays
being uniformly distributed over the yearis not true. Hoeethe already high proba-
bility of shared birthdays only gets higher with a nonunifatistribution. Intuitively,
this is because the less uniform the distribution, the mifiedlt it becomes to avoid
birthdays already taken. For an extreme example, suppasetkrybody was born
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in January, in which case there would be oslydays to choose from instead 265.
Thus, in a group of 00 people, there would be absolute certainty of shared biythda
Generally, it can be shown that the uniform distribution imitzes the probability of
shared birthdays (we return to this in Problems 55 and 56).

Examplel.4.1Q (The Birthday Problem continuell A while ago | was in a group
of exactly100 people and asked for their birthdays. It turned out that gthead the
same birthday as | do. In the light of the previous problemybddhis not be a very
unlikely coincidence?

No, because here we are only considering the case of avadimparticular birthday.
Hence, with

B = {at least one out df9 birthdays is the same as mine

we get
B¢ = {99 birthdays are different from mirje

and the number of cases favorableR6 is obtained by choosing with replacement
from the364 days that do not match my birthday. We get

36499

~ 3659 ~ 0.24

P(B)=1-P(B%) =1
Thus, it is actually quite likely that nobody shares my higly, and it is at the same
time almost certain that at least somebody shares someltssly kirthday. 0

Next we turn to the case of choosing without regard to ordest,Fsuppose that we
choose without replacement and tebe the number of possible ways, in which this
can be done. Now, there argn — 1) ---(n — k + 1) ways to choose with regard
to order and each such ordered set can be obtained by firssiclyathe objects and
then order them. Since there ar@vays to choose the unordered objects Ahdays

to order them, we get the relation

nn—1)---(n—k+1) =z x k!

and hence there are ) i

G )k'(” —k+1) (1.4.1)
ways to choose without replacement, without regard to oraeother words, this is
the number of subsets of sizef a set of size:, called thebinomial coefficientread

“n chooset” and usually denoted and defined as

(1) = 5w
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but we use the expression in Equation (1.4.1) for compuiati®y convention,

(-

and from the definition it follows immediately that

(1) =02

which is useful for computations. For some further progesitsee Problem 24.

Examplel.4.11 In Texas Lotto, you choose five of the numbeérs.., 44 and one
bonus ball number, also fror, ..., 44. Winning numbers are chosen randomly.
Which is more likely: that you match the first five numbers bot the bonus ball or
that you match four of the first five numbers and the bonus ball?

Since we have to match five of our six numbers in each casehatab not equally
likely? Let us compute the probabilities and see. The sebg#ats is{1,2, ..., 44}

and the first five numbers are drawn without replacement atttbwt regard to order.
Hence there aré454) combinations and for each of these there are thepossible

choices of the bonus ball. Thus, there is a tota 8§ x 44 = 47, 784, 352 different
combinations. Introduce the events

A = {match the first five numbers but not the bonus pall
B = {match four of the first five numbers and the bonusall

For A, the number of favorable caseslisk 43 (only one way to match the first five
numbers43 ways to avoid the winning bonus ball). Hence

1 x43
44

( > x 44
5

To find the number of cases favorableBonote that there ar@z) = 5 ways to match

four out of five winning numbers and theﬁi’f) = 39 ways to avoid the fifth winning
number. There is only one choice for the bonus ball and we get

P(A) = ~9x1077

5 x 30 x 1
P(B)= 222770 41070

44
44
(5)~

so B is more thant times as likely asi. 0
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Examplel.4.12 You are dealta poker handl ¢ards out 062 without replacement).
(a) What is the probability that you get no heart® What is the probability that
you get exactly hearts?c) What is the most likely number of hearts?

We will solve this by disregarding order. The number of pblescases is the number
of ways in which we can choosgeout of 52 cards, which equal§52). In (a), to get
a favorable case, we need to choosé a@idrds from the39 that are not hearts. Since
this can be done i) ways, we get

(5)
P(no hearty = A5/ ~ 0.22
52
(5)
In (b), we need to choodecards among th&3 hearts, and for each such choice, the
remainingb — k cards are chosen among the remairiaghat are not hearts. This

gives
(13) ( 39 )
P(khearts)zu k=0,1,...,5

52 ) - ) VAR
5

andfor (c), direct computation gives the most likely nundmsr, which has probability
0.41. 0

The problem in the previous example can also be solved bygalider into account.
Hence, we imagine that we get the cards one by one and listithender and note
that there ar¢52); different cases. There afé3);(39)5— ways to choose so that
we getk hearts and — k£ nonhearts in a particular order. Since there@r)eways to
choose position for thé hearts, we get

() 139351
(52)5

which is the same as we got when we disregarded order abodme#t not matter
to the solution of the problem whether we take order into aotobut we must be
consistent and count the same way for the total and the fal@namber of cases. In
this particular example, it is probably easier to disregamtkr.

P(k hearts =

Example1l.4.13 An urn containsl0 white balls,10 red balls, and 0 black balls.
You draw5 balls at random without replacement. What is the probatitiat you do
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not get all colors?

Introduce the events
R = {noredball§, W = {nowhite ball§, B = {no black ball$

The event of interest is theR U W U B, and we will apply Proposition 1.3.3. First
note that by symmetny?(R) = P(W) = P(B). Also, each intersection of any two
events has the same probability and findliyhn W N B = 0. We get

P(notall colorg =3P(R) —3P(RNW)

In order to get no red balls, tHeballs must be chosen among tieballs that are not

red and hence %0 20
= (5)/(5)

Similarly, to get neither red, nor white balls, theballs must be chosen among the

black balls and 10 30
P(ROAW) = (5)/(5)

pooranoours — (%)~ (4)) /(¥) = oz

Examplel.4.14 0

We get

The final case, choosing with replacement and without retgacader, turns out to
be the trickiest. As we noted above, when we choose withqulacement, each
unordered set of objects corresponds to exaciyordered sets. The relation is not
so simple when we choose with replacement. For example ntbedared sef1,1}
corresponds to one ordered $&f1), whereas the unordered gét, 2} corresponds

to two ordered setél, 2) and(2, 1). To find the general expression, we need to take
a less direct route.

Imagine a row ofn slots, numbered from to n and separated by single walls
where slot numbej represents thgth object.. Whenever objegtis drawn, a ball is
put in slot numbey. After k draws, we will thus havé balls distributed over the
slots (and slots corresponding to objects never drawn apygnirhe question now
reduces to how many ways there are to distriBuballs overn slots. This is equiv-
alent to rearranging the — 1 inner walls and thé balls, which in turn is equivalent
to choosing positions for thk balls from a total ofn — 1 + & positions. But this
can be done ir(”ji*k) ways, and hence this is the number of ways to choose with
replacement and without regard to order.
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Examplel.4.15 The Texas Lottery game “Pick 3" is played by picking three Aum
bers with replacement from the numbéxd, ..., 9. You can play “exact order” or
“any order.” With the “exact order” option, you win when yomumbers match the
winning numbers in the exact order they are drawn. With thg/‘@der” option, you
win whenever your numbers match the winning numbers in adgrorHow many
possible winning combinations are there with the “any ordetion?

We haven = 10, k = 3, and the winning numbers are chosen with replacement and
without regard to order and hence there are

(10—1+3> _ <12> _ 990
3 3

possible winning combinations. 0

Example1.4.16 Draw twice from the se{1,...,9} at random with replacement.
What is the probability that the two drawn numbers are equal?

We haven = 9 andk = 2. Taking order into account, there &fex 9 = 81 possible
cases9 of which are favorable. Hence the probability§§ = % If we disregard
order, we haveg”~1*?) = 45 possible cases and stilifavorable and the probability
is 4% = % Since whether we draw with or without regard to order dodsseem to
matter to the question, why do we get different results?

The problem is that in the second case, when we draw withgatddo order, the
distribution is not uniform For example, the outcomd, 2} corresponds to the two
equally likely ordered outcomed, 2) and(2, 1) and is thus twice as likely as the
outcome{1, 1}, which corresponds to only one ordered outcafhel). Thus, the
first solutions is correct. 0

Thus, when we draw with replacement but without regard tegrde must be careful
when we compute probabilities, since the distribution isurtiform, as it is in the
other three cases. Luckily, this case is far more uncommappiications than are
the other three cases. There is one interesting applicdtiongh, that has to do with
the number of integer solutions to a certain type of equatibwe look again at the
way in which we arrived at the formula and tet denote the number of balls in slot
j, we realize that we must hawe + - - - + z,, = k and get the following observation.

Corollary 1.4.4. There are ("‘,1*’“) non-negative integer solutions

(21, ..., z,) to the equation; + - - - + x,, = k.
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The four different ways of choosingout of n objects are summarized in Table 1.2.
Note that when we choose without replaceméntiust be less than or equal tQ
but when we choose with replacement, there is no such riéstric

We finish with another favorite problem from the probabilitgrature. It com-
bines combinatorics with previous results concerning ttodability of a union.

Example1.4.17 (The Matching Problen). The numberd,2,...,n are listed in
random order. Whenever a number remains in its originaltjpzsin the permuta-
tion, we call this a “match.” For example,if = 5, then there are two matches in the
permutatior82541 and none irk3451. (a) What is the probability that there are no
matches®b) What happens to the probability in (a) @s— co?

Before we solve this, let us try to think about part (b). Ddegeit easier or harder to
avoid matches when is large? It seems possible to argue for both. With so many
choices, it is easy to avoid a match in each particular gositiOn the other hand,
there are many positions to try, so it should not be too hagktat least one match.
Itis not easy to have good intuition for what happens here.

To solve the problem, we first consider the complement of nehes and introduce
the events

A {at least one matgh
Ar = {matchinthethdraw}, k=1,2,...,n

so that .
A= Ak
k=1
We will apply Proposition 1.3.4, so we need to figure out thebabilities of the
events4, as well as all intersections of two events, three events amas

Table 1.2 Choosingk out of n objects

With replacement  Without replacement

With regard to order nk nn—1)--(n—k+1)

Without regard to ordef (n -l k) (Z)
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First note that there are! different permutations of the numbets2,...,n. To
get a match in positioh, there is only one choice for that number and the rest can be
ordered in(n — 1)! different ways. We get the probability

# favorable outcomes  (n —1)!

P(Ag) =

1
# possible outcomes  n! n

which means that the first sum in Proposition 1.3.4 equalg get a match in both
theith andjth positions, we have only one choice for each of these twitipos and
the remaining: — 2 numbers can be ordered jn — 2)! ways and

(n—=2)! 1
nl nmn-1)

P(A;NA)) =

Since there aré;) ways to select two events; andA ;, we get, the following equation
for the second sum in Proposition 1.3.4;

n 1
Z PAin4;) = <2> n(n—1)
_ n(n—1) " 1 _ 1

2! n(n—1) 2!

Proceeding to the third sum, a similar argument gives toafixedi < j < k

n 1 1

i<j<k

and the pattern emerges. Tfth sum in Proposition 1.3.4 equalg;!, and with the
alternating signs we get

(1) (-1
P(at least one matgh= 1 — 2; - =1- Z
j:

which finally gives

n (1)
P(no matchep=» _ ( jl')
=0

This is interesting. First, the probability is not monotdnen, so we cannot say
that it gets easier or harder to avoid matches ascreases. Second, as— oo,
we recognize the limit as the Taylor expansioreof and hence the probability of
no matches convergesto! ~ 0.37 asn — oo. We can also note how rapid the
convergence is; already far = 4, the probability is0.375. Thus, for all practical
purposes, the probability to get no matche8.87 regardless ofi. In Problem 36,
you are asked to find the probability of exacflynatches. 0
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1.5 CONDITIONAL PROBABILITY AND INDEPENDENCE

In this section we introduce the important notiorcohditional probability The idea
behind this concept is that the value of a probability camgleaf we get additional
information. For example, the probability of contractingd cancer is higher among
smokers than nonsmokers and the probability of voting Regaubis higherin Texas
than in Massachusetts.

To arrive at a formal definition of conditional probabilsiewe consider the ex-
ample with the dart board from Example 1.3.3. Suppose yawtldarts repeatedly
at random on a dart board and consider only those darts thitehnumber 14. In
the long run, what proportion of those will also be double&#f*c&the area of 14 is
142/20 = 7.1in2 and the area of the double ring inside 144g20 = 0.75in2, inthe
long run we expect the proportidn75/7.1 = 0.11 of hits of 14 to also be doubles.
To express this as a statement about probabilities, we gathatif we know that
a dart hits 14, the probability that it is also a doubld.is1. Since the probability
of 14is P(F) = 7.1/143 and of both double and 14 B(F N D) = 0.75/143, we
see that the probability that a dart hits a double if we knaoat thhits 14 is the ratio
P(FND)/P(F).

Now consider a sample space in general anddleind B be two events. If we
know thatB occurred in an experiment, what is the probability that alsmccurred?
We can draw a Venn diagram and apply the same reasoning as.al$ince the
fraction of area ofd inside B is P(AN B)/P(B), it seems reasonable that this is the
probability we seek. This is the intuition behind the foliog definition.

Definition 1.5.1 Let B be an event such th&(B) > 0. For any event4,
denote and define thmnditional probability ofA givenB as

P(ANB)

PUAIB) = =5

We think of this as the probability ofl if we know thatB has occurred. Hence, to
compute a conditional probability means to compute a pribbagiven additional
information.

Examplel.5.1 LetusrevisitMrs B and Mrs T from Example 1.3.1. If we intramu

a third event
C = {he is shabby-looking

then one way to interpret Mrs T's comment “that sounds moobable” is that

P(A|BNC) > P(A|C)
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that is, given that more of the background is known, it seerogertlikely that the
person is who Mrs B says he is. 0

Examplel.5.2 Roll a die and observe the number. Let
A = {odd outcom¢ and B = {at least4}
What isP(A|B)?

We solve this in two different ways: (1) by using the definitiand (2) by intuitive
reasoning. Sinc& (AN B) = P({5}) = ¢ andP(B) = 3, the definition gives

P(ANnB) 1/6

1
PAR)==pE) =127 3

If we think about this intuitively, to condition on the eveBt means that we get
the additional information that the outcome is at leastSince one of these three
outcomes is also odd and outcomes are equally likely, thditonal probability of
oddisi.

3 O

There is no general rule for whether it is easier to use thenitiefn or intuitive
reasoning. In the previous example, the “one out of thregsragch works since
outcomes are equally likely but this is not always the case.

Conditional probabilities can make it easier to computebplilities of intersec-
tions. Say that we want to compuf&(A N B) but that it is tricky to do so di-
rectly. However, if we can find®(B) and P(A|B), then the definition tells us that
P(AnN B) = P(A|B)P(B) and we are done. Let us look at some examples of this.

Example1.5.3 In Example 1.3.2, we had the evemts= {rain on Saturdaly and
B = {rain on Sunday, whereP(A) = P(B) = 0.5. Now suppose that a rainy day
is followed by another rainy day with probabiliey7. What is the probability of rain
during the weekend?

We already know that the probability of a rainy weekend is
P(AuB)=1-P(ANB)
where we can now compufé(A N B) as
P(ANB) = P(BJA)P(A) =0.7%x0.5=0.35

and we get
P(AUB)=0.65
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as the probability of rain during the weekend. 0

Examplel.5.4 From a deck of cards, draw four cards at random, without rEpla
ment. If you getj aces, drawj cards from another deck. What is the probability of
getting exactly two aces from each deck?

With
A = {two aces from the first deg¢k
B = {two aces from the second dégck

the event of interestid N B, and itis not that easy to figure out its probability directly
However, if we use conditional probabilities, it is simpl&e get

P(4) = m and P(B|A) = (;1>

(%) (3)

P(AN B) = P(B|A)P(A) = <§> (428) (;L) ~ 0.0001

G .

Example1l.5.5 The online bookseller amazon.com has a feature called tlodd“G
Box.” When you enter this, you are presented withspecial offers to buy various
merchandise, anything from books and DVDs, to kitchenwaitthe “Panasonic
ER411NC nose and ear hair groomer.” The offers are presamtedt a time and
each time you have to decide whether to take it or to pass.utgke it, you are done
and will not get to see the rest of the offers. If you pass, ¢ffar is gone and cannot
be retrieved. Suggest a strategy that gives you at¥&sthance to win the best offer.

and hence

Let us assume that the offers are presented in random orfigout strategy is to
always take the first offer or if you choose at random, youmdesto win is10%.
How can this be improved?

A better strategy is to let five offers pass, remember thetbestfar, and take the
next offer that is better. If this never happens, you areddro take the last offer.
One case in which you will certainly win is if the second bd&tiois among the first
five and the best is among the remaining five. Thus, let

A = {second best offer is among the first five
B = {best offeris among the last fiye
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so that the event of interestisN B, which has probability
P(ANnB)=P(A|B)P(B)

Since the offers are randomly ordered, the best offer is lgglileely to be in any
position and henc®(B) = %. Given that the best is among the last five, the second
best is equally likely to be any of the remaining nine, so thebpbility that it is

among the first five is(A| B) = 2 and we get
P(get the best offgr= g X LI 0.28
g AT R

which is larger thar).25. Note thatA N B is not the only way in which you can get
the best offer, so the true probability is in fact higher tiva2s.
Generally, if there are offers, the same strategy gives a probability to get the best
offer that is at least
n/2  n/2 n

P(ANB) = P(AIB)P(B) = —— x — == 4(n—1)

which is greater thag regardless of: [if n is odd, we can replace/2 by (n+1)/2].

Itis quite surprising that we can do so well and for exampleetat leas25% chance

to find the best 010 million offers. It can be shown that an even better strategp i
first discard roughly:e ! offers and then take the next that is better. The probability
to win is then approximately—! ~ 0.37 (a number that also showed up in Example
1.4.17). 0

The way in which we have defined conditional probability medfeod intuitive sense.
However, remember that a probability is defined as somethiaigsatisfies the three
axiomsin Definition 1.3.1. We must therefore show that wivene/e condition on an
eventB, the definition of conditional probability does not violasy of the axioms.
We state this in a proposition.

Proposition 1.5.1. For fixed B, P(A|B) satisfies the probability axioms:
@0<PAB)<1
(b) P(S|B) =1

(c)If Ay, A, ... Is a sequence of pairwise disjoint events, then

P <G Ay, B) = iP(Akw)
k=1 k=1
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Proof. SinceAN B C B, we get0 < P(AN B) < P(B) and part (a) follows.
For (b), note thaB C S so thatP(S N B) = P(B) and hencé’(S|B) = 1. Finally,

for (c) first note that
<U Ak> NB= U(AkﬂB)

k=1 k=1
and sinced;, A,, ... are pairwise disjoint, so are the evertsN B, A N B, ..., and

we get
P <<U Ak> ﬂB) =Y P(AxNB)
k=1 k=1
Divide both sides withP(B) to conclude the proof. [ |

It is easily realized thaP(B|B) = 1, and with this in mind, we can think of con-
ditioning on B as viewingB as the new sample space. The nice thing about the
proposition is that we now know that conditional probal@bthave all the properties

of probabilities that we stated in Proposition 1.3.2. Weatesthese properties for
conditional probabilities in a corollary.

Corollary 1.5.2. Provided that the conditional probabilities are defineé, th
following properties hold:

(a) P(A¢|B) = 1 — P(A|B)
(b) P(B\ A|C) = P(B|C) — P(AN B|C)
(c) P(AU B|C) = P(A|C) + P(B|C) — P(An B|C)

(d) If A C B, thenP(A|C) < P(B|C)

It is important to keep in mind that properties of probakgkthold for events to the
left of the conditioning bar and that the event to the rigtitied (see Problem 37).

If we think of probability as a measure of degree of belief,aaa think of condi-
tional probability as an update of that degree, in the lightew information. Here
is an example of a logical oddity that philosophers of saéeloge to toss around to
confuse the rest of us.

Examplel.5.6 Considerthe hypothesis “all swans are white.” We can sayeteh
observation of a white swan strengthens our belief ircaroborates the hypothe-
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sis. Also, since the two statements “all swans are white”“afichonwhite objects
are nonswans” are logically equivalent, the hypothesidss aorroborated by the
observation of something that is neither white nor a swarusTbvery sighting of a
yellow dog corroborates the hypothesis that all swans aitewh

Weird, isn't it? A zoologist trying to prove the hypothesigwd certainly decide
to examine swans for whiteness, rather than checking varied, green, and blue
objects to make sure that they are not swans. Still, thererisialy nothing wrong
with the logic, so how can the paradox be resolved? Let ugdrglabilistic approach.
Suppose that we have all examinable objects in a big urn. Ggpihat there are
n such objectsk of which are white, and that the other & are black (representing
“nonwhite”). Suppose further thatof the objects are swans, and call the remaining
objects “ravens,” another favorite bird among philosogharscience. If we do not
know anything about the whiteness of swans, we may assurhéhthaswans are
randomly spread among theobjects. Thus, when we choose a swan, the probability
that it is white is% (if we have very strong belief in the hypothesis to begin witie
can just introduce a lot of white “dummy objects” to make thisbability anything
we want). The probability that the hypothesis is true can bevthought of as the
probability to get only white objects when we draw withouplecement; times
(assign the “swan property” thobjects). Our hypothesis is then the event

H = {all swans are white= {get; white object$

Let us choose with regard to order (which does not matterggtbblem, but expres-
sions get less messy). Thus, the probability that all swamsvhite is

k(k—=1)---(k—j+1)
nn—1)---(n—j5+1)

P(H) =

We now follow two different strategies: (a) to examine swaarsd (b) to examine
black objects. Suppose that we get a corroborating obsenvatiow does this affect
the probability ofH, now pertaining to the remaining— 1 objects? Let’, andC;
be the events to get corroborating observations with thestwaiegies, respectively.
With strategy (a), a corroborating observation means thatwhite swan has been
removed, and the conditional probability Bf becomes

(k—1)(k—=2)---(k—7+1)
m=1)n—=2)---(n—j5+1)

P(H|C,) =

With strategy (b), one black raven has been removed, and tve ge

k(k—1)--(k—j+1)
(n=1)(n—=2)-(n-7j)

P(H|Cy) =

SFor ornithologists: This has nothing to do witygnus atratus
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Both these are larger than the origind( H), so each corroborating observation
indeed strengthens belief in the hypothesis. But do theyodo squal extents? Let
us compare the two conditional probabilities. We get

P(H|Cq) n—j

P(H|Cy) &

If we now assume that the number of swans is less than the mofibkack objects,
certainly a reasonable assumption, we have thatn — k, which givesk < n — j,
and hence
P(H|Ca)
P(H|Cy)

so that the observation of a black raven does corroboratbythethesis buhot as
muchas the sighting of a white swan. The intuition is simple; sitiwere are fewer
swans than black objects, itis easier to check the swansstdadj > n — k, strategy
(b) would be preferable. If we, for example, were to corraierthe hypothesis “All
Volvo drivers live outside the Vatican,” it would be betterask a thousand Vaticanos
what they drive, than to track down Volvo drivers in LondorddParis to check if
they happen to be vacationing Swiss Guardsmen. 0

>1

1.5.1 Independent Events

In the previous section we dealt with conditional probaieidi and learned to interpret
them as probabilities that are computed given additiorfarimation. It is easy to
think of cases when such additional information is irreldvand does not change
the probability. For example, if we are about to flip a fairmothe probability to
get heads i%. Now suppose that we get the additional information thatdbie
was flipped once yesterday and showed heads. Since our upgauwin flip is not
affected by what happened yesterday and we know that theixdéir, the condi-
tional probability given this information is sti%. With A = {heads in next flip
andB = {heads yesterdaywe thus haveP?(A4) = P(A|B); the unconditional and
conditional probabilities are the same. Sidted|B) = P(ANB)/P(B) thismeans
thatP(ANB) = P(A)P(B), and we call two events with this propeitydependent

Definition 1.5.2 If A andB are two events such that
P(ANnB)=P(A)P(B)

then they are said to hedependent

Not surprisingly, events that are not independent are d¢alpendentin the intro-
ductory motivation for the definition, we talked about cdiatial and unconditional
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probabilities being equal. We could take this as the dedinitf independence, but
since conditional probabilities are not always defined, s the definition of inde-
pendence above and get the following consequence.

Corollary 1.5.3. If P(A|B) is defined, then the eventsand B are indepen
dentif and only ifP(A) = P(A|B).

When checking for independence, it might sometimes be es@ndition on the
eventB¢ instead ofB3, thatis, by supposing th&t did not occur. Intuitively, informa-
tion regardingB and information orB¢ are equivalent, since saying that one occurred
is the same as saying that the other one did not occur. Thaéiformally as follows.

Proposition 1.5.4. If A andB are independent, thefiand B¢ are also inde
pendent.

Proof. By Proposition 1.3.2(b), we get
P(AnB¢) =P(A\B)=P(A) — P(ANB)
and if A and B are independent, this equals
P(A) — P(A)P(B) = P(A)(1 — P(B)) = P(A)P(B)

and A and B¢ are independent. [ ]

Examplel.5.7. In Example 1.5.3, suppose that a rainy Saturday and a raing&§u
are independent events. What is the probability of rainrdutihe weekend?

In this case
P(ANnB)=P(A)P(B) =0.25

and hence
P(AUB)=0.75

which we note is higher than tlie65 we obtained if rainy Saturdays are more likely
to be followed by rainy Sundays. The reason is that underabssimption, rainy
Saturdays and Sundays tend to come together more oftentanthhe independence
assumption. 0
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Example1.5.8 A card is chosen at random from a deck of cards. Consider the
events
A ={thecardisanade and H = {the card is a heajt

Are A andH independent?

Let us first solve this by using the definition. We haved) = &, P(H) = 1, and
P(AnN H) = P(ace of hearts= = and hence

P(ANH) = P(A)P(H)

so thatA and H are independent. Intuitively, the events give no informa@bout
each other. The probability of drawing an aceg‘gsz % and if we are given the
information that the chosen card is a heart, the probalifitgn ace is stil%. The
proportion of aces is the same in the deck as within the suieafts. 0

Examplel.5.9 Consider the previous example but suppose that we have smov
the2 of spades from the deck. Are the evedtand H still independent?

At first glance, we might think that the answer is “Yes,” sirtbe 2 of spades has
nothing to do with either hearts or aces. However, the prilitiab are nowP(A) =
=, P(H) = £,andP(An H) = P(ace of hearfs= < and hence

P(ANH)# P(A)P(H)

and A and H are no longer independent. Intuitively, although thef spades has
nothing to do with hearts or aces, its removal changes theagotion of aces in the
deckfromgi2 to % but does not change the proportion within the suit of heaitgre
it remains at%. Formulated as a statement about conditional probalsilitie have
that A .
P(A) = £1 and P(A|H) = 13
which are not equal. 0

Examplel.5.1Q Are disjoint events independent?

It seems that disjoint events have nothing to do with eacleraéimd should thus
be independent. However, this reasoning is faulty. Theepbmeasoning is that if
we condition on one event having occurred, then the othenatahave occurred,
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and hence its conditional probability drops @0 We can also see this from the
definition of independence sincedfand B are disjoint, themd N B = () and hence
P(ANB) = P(®) = 0, which does notequal the produetA) P(B) (assuming that
neither of these probabilities equal 0). Hence, the answgeheral is “absolutely

not. 0

In Example 1.5.9, the evenface: and{heartg are dependent. Computation yields
that P(A) = 0.078 and P(A|H) = 0.077, so the difference is negligible from a
practical point of view. We could say that although the eseare dependent, the
dependence is not strong. Compare this with the case ofinigeents where the
conditional probability drops down to 0, which indicatesaah stronger dependence.
Dependence could also go in different directioR$A| B) could be either larger or
smaller thanP(A). We will later return to the problem of measuring the degree o
dependence in a more general context (see also Problem 42).

The following two examples illustrate how it is not alwaysvaius which event
to condition on and how it is important to find the correct seebnt.

Examplel.5.11 You know that your new neighbors have two children. Giver tha
they have at least one daughter, what is the conditionagfitity that they have two
daughters?

The sample space is

S = {bb,bg, gb, 99}
whereb represents boy; represents girl, and the order is birth order. If we assume
that genders are equally likely and that genders of diffechitdren are independent,
each outcome has probabiligl. Since the outcoméb is out of the question and
one out of the other three outcomes has two girls, the camditiprobability is%.
Formally

Plgg) 1/4 1

Plgglbg, gb.99) = 5= s =55 = 3
(99lbg, gb, g9) P(bg,gb,g9) 3/4 3 .

Example1.5.12 You know that your new neighbors have two children. One day
you see the mother taking a walk with a girl. What is the prdlitgtihat the other
child is also a girl?

This looks like the same problem. On the basis of your obsiervayou rule out the
outcomebb and the conditional probability of another girl %s On the other hand,
since we assume that genders of different children are enlignt, the probability
ought to bel.

Confusing? Let us clear it up. The first solution is incorrectt why? While it is

true that the probability of two girls, given at least ond,ga?%, this isnot the correct
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eventon which to condition in this case. We are not just observiagléast one
girl;” we are observing the mother walking withparticular girl. This distinction is
important but quite subtle, and requires that we extendahgpse space to be able to
also describe how the mother chooses which child to walk fviftius, we split each
outcome into two, and if we denote the child that goes for thékwy an asterisk,
the new sample space is

S = {b', bb*,b%g, bg*, g°b, gb*, 979, 99" }

where, for exampleh*s means that the older child is a boy, and the younger, a girl,
and that the mother takes a walk with the boy. If the mothepsks child at random,
each outcome has probabili@ It is now easy to see that four outcomes have the
mother walking with a girl and that two of these have anothdy gnd we arrive at
the solution% once more (see also Problem 80). 0

We also want to define independence of more than two eventtrive at a reason-
able definition, let us first examine an example that hightigine of the problems
that must be addressed.

Examplel.5.13 Flip two fair coins and consider the events

A = {headsinfirstflig = {HH, HT}
B = {headsinsecond flip= {HH,TH}
C = {differentin first and second flip= {HT,TH}.

Then, for exampleP(A N B) = P(HH) = 1 = P(A)P(B), so A and B are
independent. Similarly, it is easy to show that any two ofdlients are independent.
Hence, these events grairwise independentowever, it does not seem quite right
to say that the three events B, andC are independent since, for exampléis not
independent of the event N B. Indeed,P(C) = 1 but P(C|A N B) = 0, since if
AN B has occurred, both flips showed heads énhid impossible. 0

This example indicates that in order to call three eventsjrethdent, we want each
event to be independent of any combination of the other twaurhs out that the
following definition guarantees this (see Problem 53).

4Ironically, in the first edition of his excellent bodknumeracy: Mathematical llliteracy and Its Conse-
quencesJohn Allen Paulos described this problem a bit obscurédlytis terse formulation was “Consider
now some randomly selected family of four. Given that Myhées a sibling, what is the conditional prob-
ability that her sibling is a brother?” and he went on to cldiat the probability i%. This ambiguity was
clarified in the2001 edition.
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Definition 1.5.3 Three eventsA, B, and C' are called independent if the
following two conditions hold:

(a) They are pairwise independent

(b) P(AN BN C) = P(A)P(B)P(C)

For more than three events, the definition is analogous andisa be extended to
infinitely many events.

Definition 1.5.4 The events4,, A,, ... are called independent if
P(Ail N Aiz n---nN Azk) = P(All)P(Alz) T P(Alk)

for all sequences of integeis < io < -+ < i, k =2,3, ...

Sometimes events satisfying this definition are caitedually independento dis-
tinguish frompairwise independentvhich, as we have seen, is a weaker property.

Example1.5.14 Recall the experiment of rolling a die repeatedly until thetfi
appears. What is the probability that this occurs insitteroll forn = 1,2, ...?

The event of interest is
B, = {first6innthroll}, n=1,2,..
and let us also introduce the events
A ={6inkthroll}, k=1,2,..

Note the difference:B,, is the event that thérst 6 comes in theath roll; A;, the
event that we get in the kth roll but not necessarily for the first time. How do the
events relate to each other? Obvioudly, = A;. Forn = 2, note thatB; is the
event that we do not gétin the first roll and that we do gétin the second roll. In
terms of thed, this isA{ N A,. In general

Bn=ASNASN---NAS_ NA,

To compute the probability aB,,, we make two reasonable assumptions: that the die
is fair and that rolls are independent. The first assumptieams thaf’(Ay) = £ for
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all k£ and the second that probabilities of intersections equalywets of probabilities.
Since independence carries over to complements, we get

P(B,) = PANASN---NAS_1NA,)
= P(A)P(A3)--- P(A;_1)P(An)

n—1

I
ol o
X
SRSy
X
X
SYRSH
X
|

and we conclude that

More generally, consider independent repetitions of dwkere the eventl occurs
with probabilityp > 0 and letE be the event that weeverget A. With

B,, = {first occurrence ol comes after theth trial}
we have -
E= () Bn
n=1
where
P(B,) = P(the firstn trials give A°) = (1 — p)"

by independence. Thg, are clearly decreasing (why?), so by Proposition 1.3.5 we
get
P(E)= lim P(B,)=0

and we summarize in the following corollary.

Corollary 1.5.5. In independent repetitions of a trial, any event with pesiti
probability occurs sooner or later.

From Example 1.4.11, we can compute the probability to wériltexas Lotto jackpot
(match all numbers including bonus ball) 8$47,784,352 = 2.1 x 1078, This
is very small, but if you keep playing, the last result tellsuythat you will win
eventually? It may take some time, though; there are two drawings a weekfgou
play every time fos0 years, the probability that you never win is

(1 —2.1 x 1078)5290 ~ 0.9999

5The subtle difference betweeertain occurrence and occurrenedth probability oneis important in a
more advanced study of probability theory but not for us &t ploint.
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The probability that you win in a drawing is very low, but sinthere are millions of
players in each drawing, the probability tlsamebodyins is much higher. Suppose
that5 million number combinations are played independently andwadom for a
drawing. The probability that somebody wins is

1—(1—2.1x10%)5000:000 ~ 0,10
which is not that low, and it could be you.
Example1.5.15 (Reliability Theory). Consider a system of two electronic com-
ponents connected in series. Each component functionspratbability p and the
components function independently of each other. Whatasptiobability that the

system functions?

If we interpret “functions” as the natural “lets current dluigh,” then the system
functions if and only if both components function. Hencethwhe events

A = {system functions
A; = {first componentfunctiorjs
As = {second component functiops

we getA = A; N A, and by independence
P(A) = P(A)P(43) = p?

If the components are instead connected in parallel, thesyginctions as long as
at least one of the components function, and we have

A=A UA
which gives

P(A) = P(AjUAy) = 1— P(AfN A3)
= 1-(1-P(A1))(1 — P(A)) = 1—(1—p)>

These are simple examples from the disciplinestifibility theorywhere the proba-
bility of functioning is referred to as theliability of a system. Hence we have seen
that the reliability of a series systemyi$ and that of a parallel systemis- (1 —p)2.

An obvious generalization is tocomponents, where the reliability of a series system
is p™ and that of a parallel system Is— (1 — p)™. This does not have to be about
electronic components but applies to any situation whemaptex system is depen-
dent on its individual parts to function. The series systesoimetimes referred to as
aweakest-link model 0
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1.6 THE LAW OF TOTAL PROBABILITY AND BAYES' FORMULA

In this section we will address one of the mostimportant o§esnditional probabil-
ities. The basic idea is that if a probability is hard to coepdirectly, it might help
to break the problem up in special cases, where in each $pasiathe conditional
probability is easier to compute. For example, supposeyatbuy a used car in
a city where street flooding due to heavy rainfall is a commablem. You know
that roughly5% of all used cars have previously been flood-damaged andatstim
that80% of such cars will later develop serious engine problems,redeonlyl 0%

of used cars that are not flood-damaged develop the samespreblWhat is the
probability that your car will later run into this kind of tuble?

Here is a situation where you can compute the probabilitgrheof two different
cases, flood-damaged or not flood-damaged (and no used-aar éerth his salt
would ever let you know which).

Let us first think about this in terms of proportions. Out oégr1000 cars sold,
50 are previously flood-damaged and of tha&&, or 40 cars, will develop serious
engine problems. Among 0 that are not flood-damaged, we exp#&eto, or 95
cars, to develop the same problems. Hence, we get a total-e005 = 135 cars out
of a thousand, and the probability of future problemg.is35.

If we introduce the events' = {flood-damagefandT = {trouble}, we have
argued thatP(T) = 0.135. We also know thatP(F') = 0.05, P(F°¢) = 0.95,
P(T|F) = 0.80, and P(T|F¢) = 0.10 and the probability we computed is in fact
0.80 x 0.05 4+ 0.10 x 0.95 = 0.135. Our probability is a weighted average of the
probability in the two different cases, flood-damaged or aotl the weights are the
corresponding probabilities of the cases. The examplstithtes the idea behind the
following important result.

Theorem 1.6.1(Law of Total Probability) Let By, Bo, ... be a sequence of
events such that

(@) P(Bg) >0fork=1,2,...
(b) B; andB; are disjoint wheneveir # j
©5 =] B

k=1

Then, for any event, we have

P(A) = 3" POAIBP(BY)
k=1
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Condition (a) is atechnical requirementto make sure treattimditional probabilities
are defined, and you may recall that a collection of setsfgatgs(b) and (c) is called
apartition of S.

Proof. First note that
A=AnS=JAnBy)
k=1

by the distributive law for infinite unions. Sincé N By, A N Bo, ... are pairwise
disjoint, we get

P(A) =) P(ANBy) =) P(A|B)P(By)
k=1 k=1
which proves the theorem. ]

By virtue of Proposition 1.3.1, we realize that the law ofalgbrobability is also
true for a finite union of events3y, ..., B,. In particular, if we choose = 2 and
B; equal to some everit, thenB; must equaB©, and we get the following corollary.

Corollary 1.6.2. If 0 < P(B) < 1, then

P(A) = P(A|B)P(B) + P(A|B°)P(B°)

The verbal description of conditions (b) and (c) in Theoref1is that we are able
to find different cases thaxclude each otheandcover all possibilities This way
of thinking about it is often sufficient to solve problems aaVes us the effort to
explicitly find the sample space and the partitioning events

Examplel.6.1 A sign reads HOUSTON. Two letters are removed at random and
then put back together again at random in the empty spaceat ié/the probability
that the sign still reads HOUSTON?

There are two different cases to consider: the case wherelsvare chosen, in
which case the text will always be correct and the case whertlifferent letters are
chosen, in which case the text will be correct when they atéack in their original

order. Clearly these two cases exclude each other and chhyerssibilities and the
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assumptions in the law of total probability are satisfiednéte without spelling out
exactly what the sample space is, we can define the events

A = {the sign still reads HOUSTON
B = {two Os are chosén

and obtain
P(A) = P(A|B)P(B) + P(A|B°)P(B°)

If the two letters are different, they are put back in theigoral order with probability
%. Hence, the conditional probabilities are

1

P(A|B)=1 and P(A|B°) = B

andP(B) is obtained by noting that we are choosing two letters oueeén without

replacement and without regard to order. The total numbewvayfs to do this is
7

() = 21, and since there is only one way to choose the two Os, wé& (B = 2—11

This givesP(B¢) = 2% and we get

1 1 20 11
PA) =1 x — 4 = x = =
() =Tx g +ox57 =5

which is slightly larger thar%, as was to be expected. 0

Examplel1.6.2 In the United States, the overall risk of developing lungasaris
about0.1%. Among the20% of the population who are smokers, the risk is about
0.4%. What is the risk that a nonsmoker will develop lung cancer?

Introduce the event§’ = {cance} andS = {smoket. The percentages above
give P(C) = 0.001, P(S) = 0.20, andP(C|S) = 0.004, and we wish to compute
P(C|S¢). The law of total probability gives

P(C) = P(C|S)P(S) + P(C|S°)P(5°)
which with our numbers becomes
0.001 = 0.004 x 0.20 + P(C|S¢) x 0.80
which we solve forP(C|S¢) to get
P(C|S¢) = 0.00025

in other words, 250 in a million risk. 0
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Examplel.6.3 Here is an example of a simple game of dice that does not seem to
be to your advantage but turns out to be so.

Consider three diced, B, andC, numbered on their six sides as follows:

Died: 1,1,5,5,5,5
DieB: 3,3,3,4,4,4
DieC : 2,2,2,2,6,6

The game now goes as follows. You and your opponent bet a@altdn, and you offer
your opponentto choose any die and rollit. Next, you choossabthe the remaining
dice and roll it, and whoever gets the higher number wins tbeey. It seems that
your opponent will have an edge, since he gets to chooseHimstiever, it turns out
that once you know his choice, you can always choose so thiapyobability to win
is more than one halfl The reason for this is that, when raifeal by two against
each other, these dice are such that on avesageatsB, B beatsC, andC beatsA.
The probabilities are (using andC also to denote the numbers on di¢eandC’)

P(AbeatsB) = P(A=5) =

P(BbeatsC) = P(C=2) =

Wb Wl

For the third case, we need to use the law of total probalaitity get

P(C beatsd) = P(C’beatsA|A:1)><%+P(CbeatsA|A:5)><§
1 2 11 2 5

which is also greater thaél. Although you appear generous to let your opponent
choose first, this is precisely what gives you the advantage. 0

Tree diagrams provide a nice way to illustrate the law oflfmtabability. We represent
each different case with a branch and look at the leaves tovhésh cases are of
interest. We then compute the probability by first multiplyialong each branch,
then adding across the branches. See Figure 1.5 for anaffiest of the situation in

Example 1.6.3, where you roll di€ against dieA.

6A completely deterministic version of this is the game “rpplper, scissors,” in which you would always
win if your opponent were to choose first. Games like thesealted nontransitive
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lose

win

win

Fig. 1.5 Tree diagram when you roll die C against die A in Example 1.6.3

Sometimes we need to condition repeatedly. For examplertpateP (A| B), it may
be necessary to condition further on some evgntSince a conditional probability
is a probability, this is nothing new, but the formula lookemacomplicated. We get

P(A|B) = P(A|B N C)P(C|B) + P(A|B N C°)P(C°|B) (1.6.1)

where we note that every probability has the evirib the right of the conditioning
bar. In Problem 81 you are asked to prove this.

Examplel.6.4 (Simpson’s Paradok In a by now famous study of gender bias at
the University of California, Berkeley, it was noted thatmimeere more likely than
women to be admitted to graduate school. In one year, in sargjest majors45%

of male applicants but onl§0% of the female ones were admitted. To further study
the bias, we divide the majors into two groups “difficult” atehsy,” referring to
whether it is relatively difficult or easy to be admitted, tmthe subjects themselves.
It then turns out that in the “difficult” categorg26% of both men and women were
admitted (actually even slightly abo26% for women and slightly below for men),
so the bias obviously has to be in the other category. Howevitre “easy” category,
80% of women but only62% of men were admitted. Thus, there was no bias for dif-
ficult majors, a bias against men in easy majors, and an dwéaalagainst women!
Clearly there must be an error somewhere?

Consider a randomly chosen applicant. L&tbe the event that the applicant is
admitted, and lef\/ and W be the events that the applicant is a man or a woman
respectively. We then havB(A|M) = 0.45 and P(A|W) = 0.30. Now also
introduce the event® and F, for “difficult” and “easy” majors. By Table 1.3 we
have, for men

334 864



48 BASIC PROBABILITY THEORY

Table 1.3 Numbers of admitted, and total numbers (in parentheses)abé mnd female
applicants in the two categories “easy” and “difficult” at B&rkeley

Male Female

Easy major 864 (1385) | 106 (133)

Difficult major | 334 (1306) | 451 (1702)

and for women
P(A[WND)~0.26 and P(A|W NE)=~0.80
and hence
P(AIMND)=PAWND) and P(AIMNE)< P(AWNE)
but
P(A|M) > P(A|W)

Thus, the conditional probabilities of being admitted agi@a or higher for women
in both categories but the overall probability for a womarbtoadmitted is lower
than that of a man. Apparently there was no error, but it si##ms paradoxical. To
resolve this, recall Equation 1.6.1, by which

P(A|W) = P(A|W N D)P(D|W) + P(A|W N E)P(E|W)

and
P(AIM) =P(AIMND)P(D|M)+ P(A|[M N E)P(E|M)

and we realize that the explanation lies in the conditiomabpbilities P(D|W),
P(E|W), P(D|M), andP(E|M), which reflect how men and women choose their
majors. The probabilities that a man chooses a difficult maja an easy major,
respectively, are

1306
P(D|M) = g2 ~ 049 and P(E|M) ~ 0.51

and the corresponding probabilities for women are

1702
P(D|W) = o35 0.93 and P(E|W) = 0.07

Thus, women almost exclusively applied for difficult majorshereas men applied
equally for difficult and easy majors, and this is the resolubf the paradox. Was it
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harder for women to be admitted? Yes. Was this due to genderiination? No.
The effect on admission rates that was initially attributedender bias was really
due to choice of major, an example of what statisticiansaaifounding of factors
The effect of gender on choice of major is a completely déferissue. 0

The last example is a version of what is knowrSaspson’s paradoxf we formu-
late it as a mathematical problem, it completely loses itrich The question then
becomes ifitis possible to find numbetsa, B, b, p andg, all betweerd and1, such
that

A>a and B >b

and

pA+(1—p)B<qa+ (1—¢)b
No problems here. Lett > a > B > b, and choose sufficiently close td andgq
sufficiently close td. Ask your mathematician friends this question, and aldodfe

is something strange about the Berkeley admissions dadlad@mt be surprised if
you get the answer “Yes” to both questions!

1.6.1 Bayes’ Formula

We next turn to the situation when we know conditional pralités in one direction
but want to compute conditional probabilities “backwaltdBhe following result is
helpful.

Proposition 1.6.3(Bayes’ Formula) Under the same assumptions as in|the
law of total probability and if?(A) > 0, then for any evenB;, we have

P(A|B;)P(By)

> P(A|By)P(By)
k=1

P(B;|A) =

Proof. Note that, by the law of total probability, the denomina®nbthing but
P(A), and hence we must show that

P(B;|A) = %

which is to say that
P(B;|A)P(A) = P(A|B;)P(B;)



50 BASIC PROBABILITY THEORY

which is true since both sides equBl(A N B;), by the definition of conditional
probability. ]

Again, the obvious analog for finitely many conditioning etseholds, and in partic-
ular we state the case of two such everit@nd B¢, as a corollary.

Corollary 1.6.4. 1f 0 < P(B) < 1andP(A) > 0, then

P(A|B)P(B)
(A|B)P(B) + P(A|B¢)P(B°)

P(BIA) =

Examplel1l.6.5 The polygraph is an instrument used to detect physiologigals

of deceptive behavior. Although it is often pointed out tttet polygraph is not a
lie detector, this is probably the way most of us think of ibrEhe purpose of this
example, let us retain this notion. It is debated how aceuwsgiolygraph test is, but
there are several reports of accuracies al#ge (and as a counterweight, a Web site
that gladly claims “Don’t worry, the polygraph can be beatather easily!”). Let
us assume that the polygraph test is indeed very accuratéanid decides “lie” or
“truth” correctly with probability0.95. Now consider a randomly chosen individual
who takes the test and is determined to be lying. What is thbahility that this
person did indeed lie?

First, the probability i10t0.95. Introduce the events

L = {thepersontellsalie
Lp = {the polygraph reading says the person is lying

andletl’ = L¢andTp = L%. We are given the conditional probabiliti®§ L p| L) =
P(Tp|T) = 0.95, but what we want if?(L|Lp). By Bayes’ formula

P(Lp|L)P(L)
P(Lp|L)P(L) + P(Lp[T)P(T)
0.95P(L)
0.95P(L) + 0.05(1 — P(L))

P(LILp) =

and to be able to finish the computation we need to know theghibty that a
randomly selected person would lie on the test. Supposenbatre dealing with a
largely honest population; let us say that one out of a thodiseould tell a lie in the
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given situation. Thet(L) = 0.001, and we get

B 0.95 x 0.001 N
~0.95 x 0.001 + 0.05 x 0.999

and the probability that the person actually lied is om§2. Since lying is so rare,
most detected lies actually stem from errors, not actual I@ne way to understand
this is to imagine that a large number, sagp, 000, people are tested. We then
expect100 liars and of thosed5 will be discovered. Among the remainifg, 900
truthtellers, we expedi%, or 4995 individuals to be misclassified as liars. Hence,
out of a total 0fd5 + 4995 = 5090 individuals who are classified as liars, o6ly, or
2% actually are liars. A truth misclassified as a lie is calledask positive” and in
this case, we say that tffiglse-positive ratés 98%. 0

P(L|Lp) 0.02

In the last example, there are two types of errors we can melkssifying a lie as
truth, and vice versa. The probabilify(Lp|L) to correctly classify a lie as a lie is
called thesensitivityof the procedure. Obviously, we want the sensitivity to tghhi
but with increased sensitivity we may risk to misclassifyrmtruths as lies as well.
Another probability of interest is therefore tispecificity namely, the probability
P(Tp|T) that a truth is correctly classified as truth. For an extremmgilustrative
example, we can achieve maximum sensitivity by classifgthgtatements as lies,
however, the specificity is then 0. Likewise, we can achiea&imum specificity by
classifying all statements as truths but then insteadrgesiensitivity 0. The terms
are borrowed from the field of medical testing for illnessdseve good procedures
should be both sensitive to detecting an illness but alsgbeific for that illness.
For example, using high fever to diagnose measles would hig¥esensitivity (not
many cases of measles will fo undetected) but low specifioiigny other diseases
cause high fever and will be misclassified as measles).

Another probability of interest in any kind of testing sitigen is the false-positive
rate, mentioned above. In the lie-detector example, R(%'|Lp), the probability
that a detected lie is actually a truth. Also, tladse-begative rates P(L|Tp), the
probability that a detected truth is actually a lie. The gy, specificity, false-
positive rate, and false-negative rate are related via 8dgemula where we also
need to know thdase rate namely, the unconditional probabilify(T") of telling a
lie (or having a disease, etc). For typical examples frominatesting, see Problem
92 and subsequent problems.

Example1l.6.6 (The Monty Hall Problen). This problem has become a modern
classic and was hotly discussed after it first appeared inghann “Ask Marilyn” in
Parade Magazine 1991. The problem was inspired by the game show “Let’'s Make
a Deal” with host Monty Hall, and it goes like this. You aregivthe choice of three
doors. Behind one door is a car; behind the others are goatspi¢k a door without
opening it, and the host opens another door that revealstalgedhen gives you the
choice to either open your door and keep what is behind itwmich to the remaining



52 BASIC PROBABILITY THEORY

door and take what is there. Is it to your advantage to switch?

At first glance, it would not seem to make a difference whettoer stay or switch,
since the car is either behind your door, or the remainingr.ddtowever, this is
incorrect, at least if we make some reasonable assumptinsolve the problem,
we assume that the car and goats are placed at random bebinddihs and that
the hostalways opens a door and shows a goaet us further assume that in the
case where you have chosen the car, he chooses which do@r@bmndom. Now
introduce the two events

C {you chose the céar
G = {he shows a goat

so that the probability to win after switchingis— P(C|G). But

P(G|C)P(C) 1
P = s@iepo) + plaicpies PO =3
sinceP(G|C) = P(G|C*¢) = 1. Thus, if you switch, you win the car with probability
%, so switching is to your advantage. Note that the evéhtand C' are in fact
independent.

Intuitively, since you know that the host will always showwya goat, there is no
additional information when he does. Since there are twdsgaad the host will
always show one of them, to choose a door and then switch igagot to choosing
thetwo other doorsand telling the host to open one of them and show you a goat.
Your chance of winning the car is th%n

One variant of the problem that has been suggested to maksiétréo understand
is to assume that there are Bobut 1000 doors. One has a car, affl9 have goats.
Once you have chosen, the host opgdtsdoors and shows ydi98 goats. Given how
unlikely it is that you found the car in the first pick, is it nabvious that you should
now switch to the remaining door? You could also use one ok#veral computer
simulations that are available online, or write your ownill &bt convinced? Ask

Marilyn. 0

Examplel.6.7. (The Monty Hall Problem continuedl Suppose that you are play-
ing “Let’s Make a Deal” and have made your choice when the findtlenly realizes

that he has forgotten where the car is. Since the show must dtedkeeps a straight
face, takes a chance, and opens a door that reveals a gdab your advantage to

switch?

Although the situation looks the same from your perspeciivis actually different
since it could have happened that the host revealed the ¢dr.CAandG as above,
Bayes’ formula now gives

P(GIC)P(C)

PG = F@iep©) + PGIc P
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1x(1/3) 1

Ix (1/3)+(1/2) x (2/3) ~ 2

so it makes no difference whether you stay or switch. In taseg the showing of a
goat behind the open door actually does give some additiofeaination, and~ and
C are no longer independent. 0

Example 1.6.8 (The Island Problen). Probability theory is frequently used in
courts of law, especially when DNA evidence is considereslaAexample, consider
the following situation. A person is murdered on an islamd] the murderer must be
one of then remaining islanders. DNA evidence on the scene revealshbanur-
derer has a particular genotype that is known to exist in pgntionp in the general
population, and we assume that the islanders’ genotypaadependent. Criminal
investigators start screening all islanders for their dgpes. The first one who is
tested is Mr Joe Bloggs, who turns out to have the murderenstype. What is the
probability that he is guilty?

To solve this, we introduce the events

G = {MrBloggs is guilty}
B = {MrBloggs’ genotype is found at the scene of the crjme

so that we are asking for the probabili&(G|B). By Bayes’ formula

P(B|G)P(G)
(BIG)P(G) + P(B|Ge)P(G°)

P(GIB) = 3

Here,P(G) is the probability that Mr Bloggs is guilty before any genpityg has been
done, and if we assume that there is no reason to suspect ety e person more
than anyone else, it is reasonable tol(7) = % If Mr Bloggs is guilty, then his
genotype is certain to show up at the scene of the crime, arttaweP (B|G) = 1.
If Mr Bloggs is innocent, his genotype can still show up by mt® which gives
P(B|G°) = p, the proportion of his genotype in the population. All pugéther, we
get

1x1/n 1
P(G|B) = =
(G1B) I1x1/n+px(n—-1/n 14+nm-=1)p
as the probability that Mr Bloggs is guilty. 0

The last problem is a simple example of the general problehoafto quantify the
weight of evidence in forensic identification. This “islaptbblem” has been ana-
lyzed and discussed by lawyers and probabilists and diffeqgproaches have shown
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to give different results (not all correct)We will return to this in more detail in Sec-
tion 2.5. For now, let us present a simple example that detrages how calculations
can go agley.

Example1.6.9 You know that your new neighbors have two children. One night
you hear a stone thrown at your window and you see a child ngiinom your yard
into the neighbor’s house. Itis dark, and the only thing yan see for certain is that
the child is a boy. The next day you walk over to the neighbloase and ring the
doorbell. A boy opens the door. What is the probability thaihguilty?

We will do this in two different ways. First approach: If theher child is a girl, you
know that the boy is guilty and if the other child is a boy, th@ylwho opened the
door is equally likely to be guilty or not guilty. Thus, with

G = {child who opened door is guilty

we condition on the gender of the other child and recall EXerfis.12 to obtain

P(G) = P(Glboy)P(boy)+ P(G|girl)P(girl)
— l X 1 + 1 X 1 — §
272 2 4

Second approach: Note how the situation is similar to théénprevious example,
with genotype replaced by gender and Mr Bloggs replaced éyltiiid who opened
the door. In that formulation we have= 2 andp = % and we get

. . . 1 2

P(child who opened door is guiljy= TT1x(1/2 3
There we go again; different methods give different results usual, we need to
be very careful with which events we condition on. Let us assthat each child
is equally likely to decide to go out and throw a stone at youndew and that each
child is equally likely to open the door. For each gender cioration of two children,
we thus choose at random who is guilty and who opens the dodras each gender
combination is split up into four equally likely cases. Lstwse the subscriptfor
the child who opened the door and the supersgriforr the child who is guilty. The
sample space consists of th&equally likely outcomes

S = {bb,bab?,b%bg, bb, b%9,bag?, b?ga, by,
gb, gab?, 9%ba, gb, 939, 9497, 9% 9a, 995}

"The island problem is made up (yes, really!), but there isreias real casdeople vs. Collingn which a
couple in Los Angeles was first convicted of a crime, basedronmstantial evidence, and later acquitted
by the California Supreme Court. Both the initial verdicdathe appeal were based on (questionable)
probability arguments.
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and the event that the child who opened the door is guilty is
G = {bb, bb3, b9, 9b7. bgy. 95b. 959, 993}

What event do we condition on? We know two things: that thétguahild is a boy
and that a boy opened the door. These events are

A = {bgba bdbg7 bgbda bbg7 bgga bggd7 gdbga gbg}
B = {bb, bab",b%bq, b6 b9, bag”, g%a, gbS}

and we condition on their intersection
AN B = {bb,bab?,b9bg, bb, big, gb%}
Since four of these six outcomes aredrand the distribution o8 is uniform, we get

P(child who opened door is guilly= P(G|AN B) = ;
in accordance with the previous example.

The first approach gives the wrong solution but why? When wamded the
probabilities P(boy) and P(girl), we implicitly conditioned on evenB above but
forgot to also condition onl. What we need to do is to compulboy) as

P(other child is a boyA N B) = ;

and not%. Note how the conditional probability that the other chgdiboy is higher
now that we also know that the guilty child is a boy. This istqsubtle and resembles
the situation in Example 1.5.12, in the sense that we need taieful to condition
on precisely the information we have, no more and no less. &kenow state the
correct version of the first solution. Everything must be poed conditioned on the
eventA N B, but for ease of notation let us not write this conditioning explicitly.
We get

P(G) = P(Glboy)P(boy)+ P(G|girl)P(qgirl)

ol 212
273 3 3
just as we should. For a variant, see Problem 99. 0

Examplel1.6.1Q0 Consider the previous example and also assume that on ygur wa
over to the neighbor’s, you meet another neighbor who tedis that she saw the
mother of the family take a walk with a boy a few days ago. If § bpens the door,
what is the probability that he is guilty?
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By now you know how to solve this. In the previous sample spsgié each outcome
further into two, marking who the mother took a walk with, gsrdceed. The sample
space now ha82 outcomes, and we will suggest a more convenient approach. We
can view the various sightings of a boy as repeated samplitihgreplacement from
a randomly chosen family. Let us convert this into a problémuwa black and white
balls in urns.

Consider three urns, containing two balls each, such theakttih urn containge
black ballsf = 0, 1, 2. We first choose an urn according to the probabiliﬁe%, and
% (think of the gender combinations above) and then pick batls replacement and
note their colors. If we do thigtimes and get only black balls, what is the probability
that we have chosen the urn with only black balls? Let

B {get only black balls
U, = {thekthurnchoseh, k=0,1,2

and compute?(Us|B). The reversed probabilities are
1
P(B|Uy) =0, P(B|U)) = BYR P(B|Uz) =1
and Bayes’ formula gives
P(B|Usz)P(Us)
P(B|U)P(Ur) + P(B|Us) P(Us)
1x(1/4) 271

(1/29) x (1/2) +1x (1/4)  2i-14+1°

PUz|B) =

In our examples with families and their children, we let uregresent families and
black and white balls represent genders. Consider the piiitigahat the other child
has the same gender as the observed child. In Example 1.8.hawe; = 1, which
gives probabilityl and in Example 1.6.9 we haye= 2, which gives probability2.
Finally, in this example we have= 3 and probability%. The more observations we
have on boys, the stronger our belief that both children agshb 0

1.6.2 Genetics and Probability

Genetics is a science where probability theory is extreraséful. Recall that genes
occur in pairs where one copy is inherited from the motherame from the father.
Suppose that a particular gene has two differdteles (variants) called4 anda.
An individual can then have either of the thrgenotypesd A, Aa, andaa. If the
parents both have genotypie, what is the probability that their child gets the same
genotype?

We assume that each of the two gene copies from each parentafiyelikely to
be passed on to the child and that genes from the father amddtieer are inherited
independently. There are then the four equally likely oates illustrated in Figure
1.6, and the probability that the child also has genotypés % (order has no meaning
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here, sada anda A are the same). Each of the genotygle$ andaa has probability
i. The square in the figure is an example dfennett square

Examplel.6.11 Analleleis said to bescessivéfitis required to existin two copies

to be expressed amtbminantf one copy is enough. For example, the hereditary dis-
easecystic fibrosig(CF) is caused by a recessive allele of a particular geneuset
denote this allel€’ and the healthy allelé/ so that only individuals with genotype
CC get the disease. Individuals with genotypH arecarriers, that is, they have
the disease-causing allele but are healthy. It is estinthtdapproximatelyt in 25
individuals are carriers (among people of central and resrificuropean descent; it
is much less common in other ethnic groups). Given this mftion, what is the
probability that a newborn of healthy parents has CF?

Introduce the events

D = {newbornhas CF
B = {both parents are carrigrs

so that
P(D)= P(D|B)P(B)

since B¢ is the event that at least one parent has genofyfe in which case the
baby will also be healthy. Assuming that the mother’s antides genotypes are
independent, we get

1 1 1
= — X — = ——

25 25 625
and since the child will get the disease only if it inherits@hallele from each parent,
we getP(D|B) = %, which gives

P(B)

1 1 1

P(D) = — x = —
(D) =525 * 1= 2500

In other words, théncidenceof CF among newborns isin 2500, or 0.04%.

From mother:

A a
AA | Aa
From
father:
a | aAd | aa

Fig. 1.6 A Punnett square illustrating possible genotypes.
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Now consider a family with one child where we know that bothgpais are healthy,
that the mother is a carrier of the disease allele and nothikigpwn about the father’'s
genotype. Whatis the probability that the child neitherdaaier nor has the disease?

Let £ be the event we are interested in. The mother’s genotypéfisand we
condition on the father’'s genotype to obtain

P(E) = P(E|CH)P(CH)+ P(E|HH)P(HH)
1 1 1 24
where we figure out the conditional probabilities with Puthrsgjuares. See the

problem section at the end of the chapter for more on genetics 0

1.6.3 Recursive Methods

Certain probability problems can be solved elegantly wéitursive methods, involv-
ing the law of total probability. The general idea is to cdimti on a number of cases
that can either be solved explicitly or lead back to the o@adjiproblem. We will
illustrate this in a number of examples.

Example 1.6.12 In the final scene of the classi®66 Sergio Leone movidhe
Good, the Bad, and the Uglyhe three title characters, also known as “Blondie,”
“Angel Eyes,” and “Tuco,” stand in a cemetery, guns in holsteeady to draw. Let
us interfere slightly with the script and assume that Bleralivays hits his target,
Angel Eyes hits with probability).9, and Tuco with probability).5. Let us also
suppose that they take turns in shooting, that whomevenisaglshoots next (unless
he is hit), and that Tuco starts. What strategy maximizegpiubability of survival?

Introduce the events

S = {Tuco survive}
H = {Tuco hits his targét

Let us first suppose that Tuco tries to kill Blondie. If he $aiBlondie kills Angel
Eyes, and Tuco gets one shot at Blondie. We thus have
1 1

P(S)=P(S|H)P(H)+ P(S|H)P(H®) = P(S|H)§ + 1
where we need to find®(S|H), the probability that Tuco survives a shootout with
Angel Eyes, who gets the first shot. If we assume an infinit@lyupf bullets (hey,
it's a Clint Eastwood movie!), we can solve this recursivélpte how this is repeated
conditioning, as in Equation (1.6.1), but let us ease thatiat and rename the event
that Tuco survives the shootolit Now letp = P(T') and condition on the three
events

A = {Angel Eyes hit}
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B = {Angel Eyes misses, Tuco hjts
C = {Angel Eyes misses, Tuco misges

to obtain
p= P(T|A)P(A) + P(T|B)P(B) + P(T|C)P(C)

where P(A) = 0.9, P(B) = 0.1 x 0.5 = 0.05, P(C) = 0.1 x 0.5 = 0.05,
P(T)A) = 0, and P(T|B) = 1. To find P(T|C), note that if both Angel Eyes
and Tuco have missed their shots, they start over from thénbemy and hence
P(T|C) = p. This gives

p = 0.05+0.05p

which givesp = 0.05/0.95, and with this strategy, Tuco has survival probability

0.05
P(S) = 005 < 0.5+ 0.25~ 0.28

Next, suppose that Tuco tries to kill Angel Eyes. If he sudsgée faces certain
death as Blondie shoots him. If he fails, Angel Eyes will toykill Blondie to
maximize his own probability of survival. If Angel Eyes fajlBlondie kills him for
the same reason and Tuco again gets one last shot at Blong@e. stirviving this
scenario has probability.5 x 0.1 x 0.5 = 0.025. If Angel Eyes succeeds and kills
Blondie, Tuco must again survive a shoot-out with Angel Elyesthis time, Tuco
getsto start. By an argument similar to that stated abos@robability to survive the
shootouti® = 0.5+0.05p which givesp = 0.5/0.95 and Tuco’s survival probability
is

0.5
P(S) = 0.025+ 0.5 x 0.9 x —2 ~ 0.26
() 0.0 x09> 555

not quite as good as with the first strategy.

Notice, however, that Tuco really gains from missing histsletting the two better
shots fight it out first. The smartest thing he can do is to migswpose! If he aims at
Blondie and misses, Blondie kills Angel Eyes and Tuco getslast shot at Blondie.
His survival probability i9).5. An even better strategy is to aim at Angel Eyes, miss
on purpose, and give Angel Eyes a chance to kill Blondie. i§élrEyes fails, he is a
dead man and Tuco gets one last shot at Blondie. If Angel Eyez®eds, Tuco again
needs to survive the shootout which, as we just saw, has pititpa = 0.5/0.95
and his overall survival probability is

0.5
P(S) =01 x 0.5+ 0.9 x —= ~ 0.52
() <00+ 09> 555

When Fredric Mosteller presents a similar problem inl9i85 bookFifty Challenging
Problems in Probability1], he expresses some worry over the possibly unethical
dueling conduct to miss on purpose. In the case of Tuco, weafy disregard any
such ethical considerations. 0
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Example1.6.13 The shootout between Tuco and Angel Eyes in the previous ex-
ample is a special case of the following situation: Conséteexperiment where the
eventsA and B are disjoint and repeat the experiment until eitideor B occurs.
What is the probability thatl occurs beforeB?

First, by Corollary 1.5.5, we will sooner or later get eitbieor B. LetC be the event
that A occurs beforeB, letp = P(C), and condition on the first trial. If we get,
we haveA beforeB for certain and if we geB, we do not. If we get neither, that is,
get(A U B)¢, we start over. The law of total probability now gives

p = P(CJA)P(A)+ P(C|B)P(B) + P(C|(AU B)°)P(AU B)°)
= P(A)+p(1 - P(AUB))
= P(A)+p(1—(P(A)+ P(B)))

and we have established an equationgfo$olving it gives

Example1.6.14 Recall that a singlgamein tennis is won by the first player to
win four points but that it must also be won by a margin of astdao points. If
no player has won after six played points, they ardeiceand the first to get two
points ahead wins the game. Suppose that Ann is the servédraaiobabilityp of
winning a single point against Bob, and suppose that poieteran independently of
each other. Ifthe players are at deuce, what is the probathiit Ann wins the game?

We are waiting for the first player to win two consecutive gsifrom deuce, so let
us introduce the events

A = {Annwins two consecutive points from deygce
B = {Bobwins two consecutive points from dejce

with the remaining possibility that they win a point eachwihich case they are back
at deuce. By independence of consecutive poifits}) = p? andP(B) = (1 —p)?,
and by Example 1.6.13 we get

P(Annwing) = ———
( ) p*+(1-p)? 0

Example 1.6.15 The next sports application is to the game of badminton. The
scoring system is such that you can score a point only whennyoua rally as the
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server. If you win a rally as the receiver, the score is ungeanbut you get to serve
and thus the opportunity to score. Suppose that Ann winslyaaghinst Bob with
probability p, regardless of who serves (a reasonable assumption in heahnrbut
would, of course, not be so in tennis, where the server hag adviantage). What is
the probability that Ann scores the next point if she is theyee

If Ann is the server, the next point is scored either when sims & rally as server or
loses two consecutive rallies starting from being servarthe remaining case, the
players will start over from Ann being the server with no psiscored yet. Hence,
we can apply the formula from Example 1.6.13 to the events

A = {Annwins arally as servér
B = {Annloses two consecutive rallies as sepver

to obtain

P(A) B P

P(Ann scores next poift= =
( PO S+ PB) 5 (L

If the players are equally good, so that % the server thus has%probability to
score the next point. 0

Examplel.6.16 (Gambler’s Ruin). Next, Ann and Bob play a game where a fair
coinis flipped repeatedly. If it shows heads, Ann pays Bobdwnikar, otherwise Bob
pays Ann one dollar. If Ann starts witthdollars and Bob witlb dollars, what is the
probability that Ann ends up winning all the money and Bohlised?

Introduce the event
A = {Ann wins all the money

and letp, be the probability ofd if Ann’s initial fortune isa. A few minutes’ thought
makes us realize that it is quite complicated to computdirectly. Instead, let us
condition on the first flip and note that if it is heads, the gataets over with the new
initial fortunesa — 1 andb + 1, and if it is tails, the new fortunes atet 1 andb — 1.
Introduce the events

H = {headsinfirstflig and T = {tails in first flip}

and apply the law of total probability to get

1 1 1
Pa = P(A|H)§ + P(A|T)§ = §(pa—1 +pa+1)

or equivalently
Dat1l = 2Da — Pa—1
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First note thap, = 0 and leta = 1 to obtain

P2 =2p1
With ¢ = 2 we get
P3 =2p2 —p1 =3p
and we find the general relation

Pa = ap1
Now, p,+» = 1, and hence
1
pP1 = et

which finally gives the solution

a
P(Ann wins all the money=
( Y a+b
By symmetry, the same argument applies to give
b
P(Bob wins all the money=
( W y a+b

Note that this means that the probability teatmebodyvins is1, which excludes the
possibility that the game goes on forever, something we @dmmediately rule out.
Thisgambler’s ruinproblem is an example ofndom walk We may think of a
particle that in each step decides to go up or down (or, if yedigy, left/right), and
does so independently of its previous p&te can view the position aftersteps as
Ann’s total gain, so if the walk starts iy Ann has won the game when it hitsand
she has lost when it hitsa. We refer to—a andb asabsorbing barrierqsee Figure

1.7). 0

Examplel.6.17 Consider the gambler’s ruin problem from the previous exiamp
but suppose that Ann only has one dollar and Bob is infinitedalthy. What is the
probability that Ann eventually goes broke?

Since the range is infinite, we cannot use the technique floore but let us still
condition on the first coin flip. If it shows heads, Ann’s farudrops to zero and she
is ruined. If it shows tails, Ann’s fortune goes up4®, and the game continues. If
Ann is to go broke, her fortune must eventually Gitand before it does so, it must
first hit 1. Now, the probability to eventually hit starting from2 is the same as the
probability to eventually hid starting from1, and once her fortune is back Btthe

8A more romantic allegory is that of a drunken Dutchman whggtas back and forth until he either is
back in his favoriteébruine cafeor falls into the canal.
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Ruin after13 steps

Fig. 1.7 Gambler's ruin as a random walk.

game starts over from the beginning. If we Bt= { Ann goes broke eventualyand
condition on the first flip being heads or tails, we thus get

P(B) = P(B|H)P(H) + P(B|T)P(T) = % 4 P(B|T)%

Now letq = P(B). By the argument abové’(B|T') = ¢*, and we get the equation

1 g2
=373
which we solve for to getq = 1, so Ann will eventually go broke. Since the game
is fair, there is no trend that drags her fortune down towaid,ronly inevitable bad

luck. O

Examplel.6.18 Consider the gambler’s ruin problem but suppose that theegam
unfair, so that Ann wins with probability -~ % in each round. If her initial fortune
is a and Bob’s initial fortune i$, what is the probability that she wins?

The solution method is the same as in the original gamblaifs rto condition on
the first flip and apply the law of total probability. Againt l& be the event that Ann
wins andp, the probability ofA if she starts withz dollars. For ease of notation, let
g = 1 — p, the probability that Ann loses a round. We get

pa = P(A|H)P(H) + P(A|T)P(T) = pa—1q + Pa+1P

which gives

1
Pat1 = ]—?(pa — qPa-1)
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First leta = 1. Sincepy = 0, we get

1
P2 =—-p1
p
which we rewrite as
P2 = (1 + Q) D1
p
Fora = 2, we get
1
b3 = —(p2 - QPl)
p

1 2
= —<1+g—q>p1 = <1+g+(g) )pl
p p p\p

and the general formula emerges as

Pa = <1+%+(%)QJF,,.JF(%)“*)]DI:%I?I

Finally, we usep,, = 1 to obtain

1—(q/p)**?
1—(q/p)

1=

which gives
o= = (4/p)
1—(q/p)**?

and the probability that Ann wins, starting from a fortunexatollars is thus

P (a/p)"
o 1—(q/p)t?
if p # 5. The game is unfair to Ann jf < 1 and to Bob ifp > 1. Itis interesting
to note that the change in winning probabilities can be dtanfier small changes of
p. For example, if the players start wig) dollars each and = % they are equally
likely to win in the end. Now changeto 0.55, so that Ann has a slight edge. Then

~ 1—-(0.45/0.55)*° 0.08
T 1-1(0.45/0.55)%0 ~

D20

so Ann is almost certain to win. See Problem 106 for an interg@@pplication to
roulette. 0
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Examplel.6.19 (Penney-antg@ We finish the section with a game named for Walter
Penney, who in969 describeditin an article idournal of Recreational Mathematics
If a fair coin is flipped3 times, there are eight outcomes

HHH,HHT, HTH, THH, HTT,THT,TTH, TTT

each of which has probabili@/. You now suggest the following game to your friend
John? You bet$1 each, he gets to choose one of the eight patterns, and yos&hoo
another. A coinis flipped repeatedly, and the sequence afsead tails is recorded.
Whoever first sees his sequence come up wins. Since all patiee equally likely

to come up in a sequence of three flips, this game seems faivevdy, it turns out
that after John has chosen his pattern, you can always clsodbkat your chance of
winning is at leasg!

The idea is to always let your sequence end with the two sysnthalt his begins
with. Intuitively, this means that whenever his patternbigat to come up, there is

a good chance that yours has come up already. For example chdosediHH,

you choos& HH, and the only way in which he can win is if the first three flipgegi
heads. Otherwise, the sequer¢HH cannot appear without havingZabefore it,
and thus your patteri HH has appeared. With these choices, your probability to
win is £.

Theggeneral strategy is to let his first two be your last twaj aever choose a
palindrome. Suppose that John chooBeEH so that according to the strategy, you
chooseHHT. Let us calculate your probability of winning.

Let A be the event that you win, and letbe the probability ofA. To find p, we
condition on the first flip. If this ig", the game starts over, and hermReA|T') = p.

If itis H, we condition further on the second flip. If thisis, you win (if we start

with HH, thenHHT must come beforél TH), and if itisT', we condition further on

the third flip. If this isH, the full sequence i8I TH, and you have lost. Ifitig", the

full sequence iHTT and the game starts over. See the tree diagram in Figure 1.8
for an illustration of the possible cases. The law of totalability gives (ignoring

the case in which you lose)

p = P(AT)P(T)+ P(A|HH)P(HH) + P(A|HTT)P(HTT)
= ><1+1><1+ x1*2+5p
- PRy A1TPTR T TR

which we solve fop to getp = % Just as in the dice game in Example 1.6.3, your
apparent generosity to let your opponent choose first isgghbowhat gives you the
advantage. See also Problem 108. 0

9Named after John Haigh, who in his splendid bokgking Chances: Winning with Probabilif3],
describes this game and names the loser Doyle after Doyledgam, victim in thed 973 movie The Sting

| feel that Doyle has now lost enough and in this way let himagginall revenge. Hopefully, John’s book
has sold so well that he is able to take the loss.
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win

lose

T

start over start over

Fig. 1.8 The four possible cases in Penney-Ante wiifii T competes withH TH .

PROBLEMS

Section 1.2. Sample Spaces and Events

1 Suggest sample spaces for the following experimgafst hree dice are rolled and their
sum computed(b) Two real numbers betweedhand1 are chosen(c) An American
is chosen at random and is classified according to gendergmd@ Two different
integers are chosen betweeand10 and are listed in increasing ordée) Two points
are chosen at random on a yardstick and the distance betiveenis measured.

2 Suggest a sample space for Example 1.3.2.

3 Consider the experiment to toss a coin three times and ctyenhttmber of heads.
Which of the following sample spaces can be used to desdrib@xperiment?
() S ={H,T}
(b) S = {HHH,TTT}
(©)5={0,1,2,3}
(d) s ={1,2,3}
(e)S ={HHH,HHT,HTH,THH,HTT,THT,TTH, TTT}

4 Let A, B, andC be three events. Express the following events in term4,aB, and
C' (a) Exactly one of the events occui) None of the events occuréc) At least one
of the events occurgd) All of the events occur.

5 The Stanley Cup final is played in best of seven games. Suppatthe good old days
are brought back and that the final is played between the Bd&&toins and Montreal
Canadiens. LeB;, be the eventthat Boston wins thita game and describe the following
events in terms of thé,.: (a) Boston wins gamé, (b) Boston loses gameand wins
games2 and3, (c) Boston wins the series without losing any gam(@3,Boston wins
the series with one losge) Boston wins the first three games and loses the series.

Section 1.3. The Axioms of Probability
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A certain thick and asymmetric coin is tossed and the prdibattihat it lands on the
edge is 0.1. If it does not land on the edge, it is twice asyikelshow heads as tails.
What is the probability that it shows heads?

Let AandB betwo events suchth&(A) = 0.3, P(AUB) = 0.5andP(ANB) = 0.2.
Find(a) P(B), (b) the probability thatd but notB occurs,(c) P(AN B°), (d) P(A°),
(e)the probability that3 does not occuf(f) the probability that neitheA nor B occurs.

Let A be the event that it rains on Saturday aBdhe event that it rains on Sunday.
Suppose thaP(A) = P(B) = 0.5. Further, letp denote the probability that it rains
on both days. Express the probabilities of the followingreseas functions gb: (a) It
rains on Saturday but not Sunddi) It rains on one day but not the othdc) It does
not rain at all during the weekend.

The probability in Problem 8(b) is a decreasing functiomoExplain this intuitively.

”ou

People are asked to assign probabilities to the events 6rafBaturday,” “rain on Sun-
day,” “rain both days,” and “rain on at least one of the dayé/hich of the following
suggestions are consistent with the probability axiota$70%, 60%, 40%, and80%,
(b) 70%, 60%, 40%, and90%, (c) 70%, 60%, 80%, and50%, (d) 70%, 60%, 50%,
and90%?

Two fish are caught and weighed. Consider the evdnts {the first weighs more than
10 poundg, B = {the second weighs more thaf poundg, andC' = {the sum of the
weights is more thag0 poundg. Argue thatC' C AU B.

Let A, B, andC be three events, such that each eventhas probal‘zailéyich intersection
of two has probabilityt, andP(AN BN C) = . Find the probability thata) exactly
one of the events occurfh) none of the events occur§;) at least one of the events
occurs,(d) all of the events occufg) exactly two of the events occur.

(a)Let A and B be two events. Show that
P(A)+ P(B)—1< P(AUB) < P(A)+ P(B)

(b) Let A4, ..., A, be a sequence of events. Show that

n

iP(Ak) ~(n-1)<P <U Ak> < iP(Ak)
k=1 k=1 k=1

A particular species of fish is known to weigh more th@npounds with probability
0.01. Suppose that0 such fish are caught and weighed. Show that the probabikty th
the total weight of the 0 fish is abovel 00 pounds is at modi.1.

Consider the Venn diagram of four events below. If we use #red method” to find
the probability ofA U B U C U D we get

P(AUBUCUD) = P(A)+P(B)+P(C)+ P(D)
— P(ANnB)—P(AnC)—-P(BND)—-P(CND)
+ P(ANnBNCND)

However, this does not agree with Proposition 1.3.4fet 4. Explain!
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Choose a number at random from the integers 1,...,100. VBhhaeiprobability that it
is divisible by(a) 2, 3, or 4, (b) 4, j, or k?

Consider Example 1.3.3 where you throw a dart at random. #iagrobability that
you get(a) 14 or double,(b) 14, double, or triple(c) even, double, a number higher
than10, or bull's eye.

Prove Proposition 1.3.5 by considering disjoint eveBts B, ... defined byB; =
Al, Bz = A2 \B17 ceey Bk = Ak \kal,

Section 1.4. Finite Sample Spaces and Combinatorics

You are asked to select a password for a Web site. It must stoofsfive lowercase
letters and two digits in any order. How many possible sudswards are there {&)
repetitions are allowedb) repetitions are not allowed?

Consider the Swedish license plate from Example 1.4.6. Hiedorobability that a
randomly selected plate hés) no duplicate lettergb) no duplicate digits(c) all letters
the same(d) only odd digits,(e) no duplicate letters and all digits equal.

“A thousand monkeys, typing on a thousand typewriters widlrgually type the entire
works of William Shakespeare” is a statement often heardni@ farm or another.
Suppose that one monkey presséseys at random. What is the probability that he
types the word HAMLET if he iga) allowed to repeat lettergh) not allowed to repeat
letters?

Four envelopes contain four different amounts of money. af@allowed to open them
one by one, each time deciding whether to keep the amountsoami it and open
another envelope. Once an amount is discarded, you arelowealto go back and get

it later. Compute the probability that you get the largesbant under the following
different strategies{a) You take the first envelope(b) You open the first envelope,
note that it contains the amount discard it and take the next amount which is larger
thanz (if no such amount shows up, you must take the last envel@pgYou open the
first two envelopes, call the amount&ndy, and discard both and take the next amount
that is larger than both andy.

In the early1970s, four talented Scandinavians named Agneta, Annifrid,rigeand
Bjorn put a band together and decided to name it using thisirfame initials(a) How
many possible band names were there? What if a reunion iagdband the reclusive
Agneta is replaced by some guy named Rob€kPA generalization of (a): You are
given n uppercase letters such that the numbersdoB3, ..., Z arena,ng,...,nz,
respectively (these numbers may®e Show that you can create

n!
nalng!---nz!
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different possible words. Compare with your answers in (st

Prove the following identities (rather than using the déifomi, try to give combinatorial
arguments):

w0 (1) () () o) (o)

o ()-3() @3 ;) -

On a chessboar® (x 8 squares, alternating black and white) you place three chess
pieces at random. What is the probability that they argaglin the first row,(b) on
black squaregc) in the same row(d) in the same row and on the same color?

In a regular coordinate system, you star{@t0) and flip a fair coin to decide whether
to go sideways td1, 0) or up to(0, 1). You continue in this way, and afterflips you
have reached the poi(y, k), wherej + k& = n. What is the probability thafg) all the

Jj steps sideways came before theteps up(b) all the j steps sideways came either
before or after thé: steps up(c) all the j steps sideways came in a row?

Anurn contains: red balls;» white balls, andh black balls. You dravk balls at random
without replacement (where < n). Find an expression for the probability that you do
not get all colors.

You are dealt a bridge hand (13 cards). What is the probgltfiét you do not get cards
in all suits?

Recall Texas Lotto from Example 1.4.11, where five numbezshosen among 1,...,44
and one bonus ball number from the same set. Find the prityetbét you matcha)
four of the first five numbers but not the bonus béll) three of the first five numbers
and the bonus ball.

You are dealt a poker hand. What is the probability of gettajgoyal flush,(b) straight
flush, (c) four of a kind,(d) full house,(e) flush, (f) straight,(g) three of a kind(h) two
pairs,(i) one pair? (These are listed in order of descending valuekempaot in order
of difficulty!)

From the integers, ..., 10, three numbers are chosen at random without replacement.
(a) What is the probability that the smallest numbe#s(b) What is the probability
that the smallest number4dsand the largest i8? (c) If you choose three numbers from
1,...,n, what is the probability that the smallest numbeyjiand the largest i& for
possible values of andk?

An urn containg: white andm black balls. You draw repeatedly at random and without
replacement. What is the probability that the first blackd bames in thekth draw,
k=1,2,...,n+1?

In the “Pick 3" game described in Example 1.4.15, supposeytha choose the “any
order” option and play the numbedd 1. Since there are a total @20 cases and
one favorable case, you think that your chance of winning/i220. However, when
playing this repeatedly, you notice that you win far lesgofihan once ever320 times.
Explain!

How many strictly positive, integer-valued solutiofs,, ..., z, ) are there to the equa-
tionzy +---+xn, =k?
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35 Ann and Bob shuffle a deck of cards each. Ann wins if she can foatcthat has the
same position in her deck as in Bob’s. What is the (approxéjnatobability that Ann
wins?

36 Consider the matching problem in Example 1.4.17 anch}ebe the number of per-
mutations with exactlyy matches forj = 0,1, ...,n. (a) Find an expression fon.
Hint: How doesng /n! relate to the probability computed in the examp({ePFind the
probability of exactlyj matches, foj = 0, 1, ..., n and its limit asn — oco. Hint: You
need to findn;. First fix a particular set of numbers, for example1, 2, ..., 7} and
note that the number of ways to match exactly those equalsuimber of ways to have
no matches among the remaining- j numbers, which you can obtain from part (a).

Section 1.5. Conditional Probability and Independence

37 Let A and B be two events. Is it then true th®(A|B) + P(A|B¢) = 1? Give proof
or counterexample.

38 Let A and B be disjoint events. Show that

P(A)

39 Let A, B, andC be three events such th&(B N C') > 0. Show that
P(ANBNC)=P(AIBNC)P(B|C)P(C)
and that
P(AN B|C)
P(B|C)
40 Let A andB be events, wittP(A) = 1 andP(B) = 1. Compute bottP(AU B) and

P(AnN B)if (a) AandB are independen{b) A andB are disjoint,(c) A° and B are
independent(d) A° and B are disjoint.

P(AIBNC) =

41 A politician considers running for election and has decitledjive it two tries. He
figures that the current conditions are favorable and thdiaseabout a 60% chance of
winning this election as opposed to a 50-50 chance in thealegtion. However, if
he does win this election, he estimates that there ought & &% chance of being
reelected(a) Find the probability that he wins both electior{b) Find the probability
that he wins the first election and loses the secofw).If you learn that he won the
second election, what is the probability that he won the élsttion? (d) If he loses
the first election, what is the probability that he wins thecsel?

42 Consider two eventsl and B. We say thatB gives positive informationabout A,
denotedB A, if P(A|B) > P(A), that is if knowing B increases the probability
of A. Similarly, we say thaf3 gives negative information about, denotedB \ A,
if P(A|B) < P(A). Are the following statements true or fals¢&) If B " A, then
A/ B, (b)If A "BandB ~C,thenA ~C, (c)If B /A, thenB\, A¢, (d)
AN AC

43 Show that both® and the sample spac® are independent of any event. Explain
intuitively.
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44 Let S be a sample space withequally likely outcomes where is a prime number.
Show that there are no independent events (unless one ofisher 0).

45 A coin has probabilityp of showing heads. Flip i8 times and consider the events
A = {at most one tailsand B = {all flips are the samje For which values op are A
and B independent?

46 A fair coin is flipped twice. Explain the difference betwed tfollowing: (a) the
probability that both flips give headd) the conditional probability that the second flip
gives heads given that the first flip gave heads.

47 In Decemben 992, a small airplane crashed in a residential area near Brominpaw
outside Stockholm, Sweden. In an attempt to calm the retsdére airport manager
claimed that they should now feel safer than before, sine@tbbability of two crashes
is much smaller than the probability of one crash and henbastnow become less
likely that another crash will occur in the fututé What do you think of his argument?

48 Bob and Joe are working on a project. They each have to coepleir individual tasks
to complete the project and work independently of each otfwren Bob is asked about
the chances of him getting his part done, Joe getting hisipae, and them both getting
the entire project done, he estimates these t635, 90%, and95% respectively. Is
this reasonable?

49 You roll a die and consider the eventls get an even outcome, arigt get at least 2.
Find P(B|A) and P(A|B).

50 Youroll adie twice and record the largest number (if the taltsrgive the same outcome,
this is the largest numberja) Given that the first roll gives 1, what is the conditional
probability that the largest number is 83) Given that the first roll gives 3, what is the
conditional probability that the largest number is 3?

51 Rolltwo fair dice. LetA,, be the event that the first die givksand letB,, be the event
that the sum is.. For which values ofi andk are A, and B,, independent?

52 The distribution of blood types in the United States acanydo the “ABO classification”
is 0:45%, A:40%, B:11%, and AB4%. Blood is also classified according to Rh type,
which can be negative or positive and is independent of th@ Afpe (the corresponding
genes are located on different chromosomes). In the U.Suatpen, abouB4% is Rh-
positive. Sample two individuals at random and find the pbdlign that (2) both are A
negative,(b) one of them is O and Rh positive, while the other is rfo},at least one
of them is O positive(d) one is Rh positive and the other is not A®) they have the
same ABO type(f) they have the same ABO type and different Rh types.

53 Let A, B, andC' be independent events. Show thhis independent of botl N C
andBUC.

54 You are offered to play the following game: A roulette whes$pun 8 times. If any of
the 38 numbers (0,00,1-36) is repeated, you lose $10, otepeu win $10. Should
you accept to play this game? Argue by computing the relgvaniiability.

55 Consider the following simplified version of the birthdayoptem in Example 1.4.9.
Divide the year into “winter half” and “summer half.” Suppothat the probability i
that an individual is born in the winter half. What is the pabiity that two people are
born in the same half of the year? For which valug @ this minimized?

10Trye story!
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Consider the birthday problem with two people and supposkttie probability distri-
bution of birthdays i, ..., pses. () Express the probability that they have the same
birthday as a function of thgx. (b) Show that the probability in (a) is minimized for
Pk = % k=1,2,...,365. If you are familiar with Lagrange multipliers, you can use

these. Alternatively, first show th3€ > (pr — 5i= + 52)2 > 5ie.

A certain text has one third vowels and two thirds consondritg letters are chosen at
random and you are asked to guess the sequence. Find thdititplthat all guesses
are correct if for each letter yo{a) guess vowel or consonant with equal probabilities,
(b) guess vowel with probabilit)}; and consonant with probabilit%, (c) always guess
consonant.

Two eventsA and B are said to beonditionally independergiven the event if
P(AN B|C) = P(A|C)P(B|C)

(a) Give an example of event$, B, andC such thatd and B are independent but not
conditionally independent givefi. (b) Give an example of eventd, B, andC such
that A and B are not independent but conditionally independent giVerfc) Suppose
that A and B are independent events. When are they conditionally inutdg® given
their union A U B? (d) Since the information it andC“ are equivalent (remember
Proposition 1.5.4 and the preceding discussion), we miggpect that ifA and B are
independent giveild', they are also independent givélf. However, this is not true
in general. Give and example of three evertsB, and C such thatA and B are
independent givew’ but not givenC*.

Roll a die twice and consider the events= {first roll gives at least }, B = {second
roll gives atmost } andC = {the sumoftherollsis0 }. (a)FindP(A), P(B), P(C),
andP(AN BNC). (b) Are A, B, andC independent?

Roll adien times and le#;; be the event that thi¢h and;th rolls give the same number,
wherel < i < j < n. Show that the eventd;; are pairwise independent but not
independent.

You throw three darts independently and at random at a darthd-ind the probability
that you get(a) no bull's eye,(b) at least one bull's eygc) only even numberg,d)
exactly one triple and at most one double.

Three fair dice are rolled. Given that there aredsp what is the probability that there
are no5s?

You have three pieces of string and tie together the ends ywb at random. (a)
What is the probability that you get one big loofi¥) Generalize ta: pieces.

Choosen points independently at random on the perimeter of a cirtMhat is the
probability that all points are on the same half-circle?

Do Example 1.4.13 assuming that balls are instead drawnreyittacement.

A fair coin is flippedn times. LetA, = {heads inkth flip},k = 1,2,...,n, and
B = {the total number of heads is ejerShow that4,, ..., A,,, B are not independent
but that if any one of them is removed, the remainingvents are independent (from
StoyanovCounterexamples in Probabilifg]).

Compute the reliability of the two systems below given easimgonent functioning
independently with probability.
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A system is called ak-out-of-n system” if it functions whenever at leaktof then
components function. Suppose that components functicepirdently of each other
with probability p, and find an expression for the reliability of the system.

You play the following game: You béil, a fair die is rolled and if it shows you win
$4, otherwise you lose your dollar. If you must choose the nurobeunds in advance,
how should you choose it to maximize your chance of being é&feaving won more
than you have lost) when you quit, and what is the probahilitshis?

Suppose that there is a one in a million chance that a perssiruisk by lightning and
that there arex people in a city during a thunderstoriga) If » is 2 million, what is the
probability that somebody is struck®) How large must be for the probability that
somebody is struck to be at Iea‘zs’f

A fair die is rolledn times. Once a number has come up, it is cabledupied(e.g., if
n = 5 and we geR, 6, 5,6, 2, the number, 5, and6 are occupied). Letd; be the
event thak numbers are occupied. Find the probabilityAf (easy) andd. (trickier).

Section 1.6. The Law of Total Probability and Bayes’ Formula

In the United States, the overall chance that a baby surdetgery is99.3%. For the
15% that are delivered by Cesarean section, the chance of aliiwi88.7%. If a baby
is not delivered by Cesarean section, what is its survivabability?

You roll a die and flip a fair coin a number of times determingdie number on the
die. What is the probability that you get no heads?

In a blood transfusion, you can always give blood to somelmgypur own ABO type
(see Problem 52). Also, type O can be given to anybody anctivith type AB can
receive from anybody (people with these types are calieédersal donoranduniversal
recipients respectively). Suppose that two individuals are chosearatom. Find the
probability that(a) neither can give blood to the oth€b) one can give to the other but
not vice versa(c) at least one can give to the othéd) both can give to each other.

You have two urns]0 white balls, andL0O black balls. You are asked to distribute the
balls in the urns, choose an urn at random, and then draw abehdom from the
chosen urn. How should you distribute the balls in order taimie the probability to
get a black ball?

A sign reads ARKANSAS. Three letters are removed and thenbpgk into the
three empty spaces again, at random. What is the probathibitythe sign still reads
ARKANSAS?

A sign reads IDAHO. Two letters are removed and put back adaam each equally
likely to be put upside down as in the correct orientation. atMl the probability that
the sign still reads IDAHO?

In the “Pick 3" game from Example 1.4.15, play the “any ordeptions and choose
your three numbers at random. What is the probability thatwm?
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From a deck of cards, draw four cards at random without regpleent. If you gek aces,
drawk cards from another deck. What is the probability to get dydctaices from the
first deck and exactly. aces from the second deck?

Recall Example 1.5.12, where you observe a mother walkirty wigirl. Find the
conditional probability that the other child is also a girlthe following casesfa) The
mother chooses the older child with probability (b) If the children are of different
genders, the mother chooses the girl with probabilityc) When do you get the second
solution in the example, that the probability equéds

Let A, B, andC be three events. Assuming that all conditional probabsitire defined,
show that

P(A|B) = P(A|BN C)P(C|B) + P(A|Bn C°)P(C°|B).

Graduating students from a particular high school are ifladsas “weak” or “strong.”
Among those who apply to college, it turns out thé% of the weak students but only
39% of the strong students are accepted at their first choice s Eros indicate a bias
against strong students?

In Example 1.6.3, if all three dice are rolled at once, whigkhie most likely to win?

Consider the introduction to Section 1.6. If your car depslengine problems, how
likely is it that the dealer sold you a flood-damaged car?

Consider the Monty Hall problem in Example 1.6.&) What is the relevance of the
assumption that Monty opens a door at random in the case wberehose the car?
(b) Suppose that there aredoors andk cars, everything else being the same. What is
your probability of winning a car with the switching strayey

The three prisoners Shadrach, Mesach, and Abednego lesrtwih of them will be
set free but not who. Later, Mesach finds out that he is onesofitlo, and, excited, he
runs to Shadrach to share his good news. When Shadrach fiidseogets upset and
complains “Why did you tell me? Now that there are only me atédnego left, my
chance to be set free is or%y but before it Wa§ .” What do you think of his argument?
What assumptions do you make?

A box contains two regular quarters and one fake two-headedter. (a) You pick a
coin at random. What is the probability that it is the two-theg quarter?b) You pick
a coin at random, flip it, and get heads. What is the probghht it is the two-headed
quarter?

Two cards are chosen at random without replacement from k aed inserted into
another deck. This deck is shuffled, and one card is drawmhidfdard is an ace, what
is the probability that no ace was moved from the first deck?

A transmitter sends Os and 1s to a receiver. Each digit iswvegeorrectly (0 as 0, 1 as
1) with probability0.9. Digits are received correctly independently of each otret
on the average twice as many Os as 1s are being ¢entf the sequencdo is sent,
what is the probability that0 is received?(b) If the sequencéo0 is received, what is
the probability thatl0 was sent?

Consider two urns, one with0 balls numbered through10 and one with100 balls
numberedl through100. You first pick an urn at random, then pick a ball at random,
which has numbe5. (a) What is the probability that it came from the first urrB)
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What is the probability in (a) if the ball was instead chosandomly from all thel 10
balls?

Smoking is reported to be responsible for ab@ff; of all lung cancer. Now consider
the risk that a smoker develops lung cancer. Argue why thii90%. In order to
compute the risk, what more information is needed?

The serious diseasP occurs with a frequency of 0.1% in a certain population. The
disease is diagnosed by a method that gives the correct (esul positive result for
those with the disease, and negative for those without itf) ywiobability 0.99. Mr
Smith goes to test for the disease and the result turns oue feobitive. Since the
method seems very reliable, Mr Smith starts to worry, beifg” sure of actually
having the disease.” Show that this is not the relevant fitibaand that Mr Smith
may actually be quite optimistic.

You test for a disease that about one in 500 people have. Ihygwa the disease, the
test is always positive. If you do not have the disease, #te2895% accurate. If you
test positive, what is the probability that you have the alie®

(a)Ann and Bob each tells the truth with probability3 and lies otherwise, indepen-
dently of each other. If Bob tells you something and Ann tgtla Bob told the truth,
what is the probability Bob told you the truti{B) Add a third person, Carol, who is as
prone to lying as Ann and Bob. If Ann says that Bob claims thatoCtold the truth,
what is the probability Carol told the truth?

A woman witnesses a hit-and-run accident one night and tgpothe police that the
escaping car was black. Since it was dark, the police tesghibty to distinguish black
from dark blue (other colors are ruled out) under similaceinstances and she is found
to be able to pick the correct color ab@i% of the time. One police officer claims that
they can now b&0% certain that the escaping car was black, but his more expmte
colleague says that they need more information. In ordeeterchine the probability
that the car was indeed black, what additional informat®néeded, and how is the
probability computed?

Joe and Bob are about to drive home from a bar. Since Joe is anbd3ob is not, Joe
takes the wheel. Bob has recently read in the paper that ditiviérs are responsible
for 25% of car accidents, that abo5% of drivers are sober, and that the overall risk
of having an accident i$0%. “You sober people caus&% of the accidents,” slurs
Bob, “and there are so many of you too! You should let me dtidee who knows his
probability theory has his answer ready. How does he respond

Consider Example 1.6.8, where the murderer must be oneiodlividuals. Suppose
that Joe Bloggs is initially considered the main suspectthatithe detectives judge
that there is 050 chance that he is guilty. If his DNA matches the DNA found at th
scene of the crime, what is then the probability that he iftygii

Consider a parallel system of two components. The first carapbfunctions with
probabilityp and if it functions, the second also functions with probiapj. If the first
has failed, the second functions with probabitity. p, due to heavier load on the single
component(a) What is the probability that the second component funcfdb$ What

is the reliability of the system#®) If the second component does not function, what is
the probability that the first does?

Recall Example 1.6.9, where you know that the guilty child isoy, a boy opens the
door, and he has one sibling. Compute the probability thatttild who opened the
door is guilty if the guilty child opens the door with probbhtyi p.
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100 Your new neighbors have three childre(a) If you are told about three independent
observations of a boy, what is the probability that they haivee boys?Ab) If you get
two confirmations of an observed boy and one of an observeduiat is the probability
that they have two boys and a gir(®) If you get; > 1 confirmations of an observed
boy andn — j > 1 of an observed girl, what is the probability that they have twys
and a girl?

101 Consider Example 1.6.11 about cystic fibros{g) What is the probability that two
healthy parents have a child who neither is a carrier nor haslisease®b) Given
that a child is healthy, what is the probability that bothguas are carriers (you may
disregard parents with the disease)?

102 Agenetic disease or condition is said todes-linkedf the responsible geneis located on
either of the sex chromosomek,andY” (recall that women have tw& chromosomes
and men have one eachXfandY’). One example is red-green colorblindness for which
the responsible gene is located on tkiechromosome. The allele for colorblindness
is recessive, so that one normal copy of the gene is suffii@mormal vision. (a)
Consider a couple where the woman is colorblind and the mambamal vision. If
they have a daughter, what is the probability that she isrbtifa? If they have a son?
(b) Compute the probabilities in (a) under the assumption tbtit parents have normal
vision and the woman'’s father was color-blin@) It is estimated that abo@f% of men
are color blind but only aboui.5% of women. Explain!

103 Tay-Sachs Diseasie a serious genetic disease that usually leads to deathrlin ea
childhood. The allele for the disease is recessiveandsomalnot located on any of
the sex chromosomesia) In the general population, aboutn 250 is a carrier of the
disease. What incidence among newborns does this dlveCertain subpopulations
are at greater risk for the disease. For example, the incelamong newborns in the
Cajun population of Louisiana isin 3600. What proportion of carriers does this give?
(c) Generally, if a serious recessive disease has a carriardrey of one im and an
incidence among newborns of oney what is the relation betweenand N? (Why
is it relevant that the disease is “serious?”)

104 Consider the game of badminton in Example 1.6.(E).Find the probability that Ann
scores the next point if she is currently the receiyb). Now suppose that Ann wins a
rally as server with probability 4 and let the corresponding probability for Bobhe.

If Ann serves, what is the probability that she is the nexyetao score?

105 In table tennis, a set is won by the first player to reathpoints, unless the score is
10-10, in which case serves are alternated and the player who étstahead by two
points win. Suppose that Ann wins a point as server with dodity p4 and Bob wins
a point as server with probabiligys. If the score isl0-10 and Ann serves, what is the
probability that she wins the set?

106 You are playing roulette, each time betting on “odd,” whidtars with probability%
and gives you even money back. You start wiil®) and decide to play until you have
either doubled your fortune or gone broke. Compute the fritibathat you manage
to double your fortune if in each round you t$810, $5, $2, and$1 dollar, respectively.
After you have found the best strategy, give an intuitivelaxation of why it is the best
and why it is called “bold play.”

107 In Example 1.6.17, suppose that Ann wins each round withaiibity p > % What is
the probability that she eventually goes broke?
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The game of Penney-ante can be played with patterns of agthlenin the case: = 1,

the game is fair (this is trivial); if. = 2, it can be fair or to your advantage, depending
on the patterns chosen, anaif> 3, you can always choose a winning strate@).Let

n = 2, so that the possible patterns &fél, HT, TH, andTT. Suggest a strategy and
compute your winning probability in the different casdb) Let n = 4 and suppose
that your opponent chooséEHHH . Suggest how you should choose your best pattern
and compute the winning probability.

In the game of craps, you roll two dice and add the numbers.olf get7 or 11 (a
natural) you win, if you roll 2, 3, or 12 (crapg you lose. Any other roll establishes your
point You then roll the dice repeatedly until you get eitfiesr your point. If you get
your point first you win, otherwise you lose. Starting a newngeof craps, what is the
probability that you win?






Random Variables

2.1 INTRODUCTION

We saw in the previous chapter that many random experimewes humerical out-
comes. Even ifthe outcome itself is not numerical, suchasdse is Example 1.2.4,
where a coiniis flipped twice, we often consider events thabeadescribed in terms
of numbers, for exampléthe number of heads equa&s. It would be convenient to
have some mathematical notation to avoid the need to spedllbevents in words.
For example, instead of writinfthe number of heads equals and{the number of
heads equalg}, we could start by denoting the number of headstbsind consider
the event{ X = 1} and{X = 2}. The quantityX is then something whose value is
not known before the experiment but becomes known after.

Definition 2.1.1 A random variableis a real-valued variable that gets |i
value from a random experiment.

—

S

There is a more formal definition that defines a random vegias a real-valued
function on the sample space. Xf denotes the number of heads in two coin flips,
we would thus, for example, hav€(HH) = 2. In a more advanced treatment of
probability theory, this formal definition is necessaryt fmr our purposes, Definition
2.1.1is enough.

A random variableX is thus something that does not have a value until after the
experiment. Before the experiment we can only describe¢hefyossible values,

79
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that is, therangeof X and the associated probabilities. Let us look at a simple ex-
ample.

Example2.1.1 Flip a coin twice and lefX denote the number of heads. Th&n
has rangd0, 1, 2} and the associated probabilities are

1 1 1
P(X:O):Z’ P(X:l):g, P(X=2)=-
and we refer to these probabilities as thstributionof X . 0

In the last example, any three numbers betw@amd1 that sum tol is a possible
distribution (recall Section 1.4), and the particular a®oin the example indicates
that the coin is fair. Let us next restate some of the exampdes Section 1.2 in
terms of random variables. In each case, we defirend find its range.

Example2.1.2 Let X be the number of dots when a die is rolled. The rang# of
is{1,2,...,6}. 0

Example2.1.3 Let X be the number of rolls of a die until the firstappears. The
range ofX is {1, 2,...}. 0

Example2.1.4 Let X be the lifetime of a lightbulb. The range &f is [0, o), the
nonnegative real numbers. 0

As noted in Section 1.2, the three sets above are differenatare. The first is
finite, the second is countably infinite, and the third is umgable. The formal
definition of a countably infinite set is one that can be put iona-to-one corre-
spondence with the natural numbers. Examples of such setthamatural num-
bers themselve$l, 2, 3, ...}, the odd natural numbefd, 3,5, ...}, and the integers
{...,—2,-1,0,1,2,...}. Countably infinite sets need not be sets of integers onty; fo
example, the sefl : n =1,2,...} = {1,1, 1, ...} is countably infinite. Hopefully
it is intuitively clear what a countably infinite set is, aneé wvill not discuss the
complications and subtleties that arise in the study ofipafitly of sets.

We use the termountablédo refer to a set that is either finite or countably infinite.
The reason for this is that in the study of random variablesjiportant distinction
turns out to be not between finite and infinite ranges, but bebtwcountable and
uncountable ranges.
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2.2 DISCRETE RANDOM VARIABLES

We distinguish primarily between random variables thatehemuntable range and
those that have uncountable range. Let us examine the fgstarad start with a
definition.

Definition 2.2.1 If the range ofX is countable, theX is called adiscrete
random variable

For a discrete random variahlé, we are interested in computing probabilities of the
type P(X = xy) for various values of;, in the range ofX. As we varyzy, the
probability P(X = z;) changes, so it is natural to vielR( X = z) as a function of
x,. We now formally define and name this function.

Definition 2.2.2 Let X be a discrete random variable with rangs , 5, ...}
(finite or countably infinite). The function

plzg) = P(X =xx), k=1,2,..

is called theprobability mass functiopmf) of X.

Sometimes we also use the notatjoa for the pmf, if it is needed to stress which
the random variable is. When we represent a pmf as a bar ¢thareight of a bar
equals the probability of the corresponding value onitla&is. SinceX cannot take
on values other tham,, z-, ..., we can imagine bars of heightat all other values
and could thus view the pmf as a function on alli®{the real numbers) if we wish.
The numbers, x5, ... do not have to be integers, but they often are.

Example2.2.1 Let X be the number of daughters in a family with three children.
By Example 1.4.3, the range &f is {0, 1, 2, 3} and the values of the pmf apg0) =

£,p(1) = 2,p(2) = £,p(3) = 3. The pmfis illustrated in Figure 2.1. O

Now suppose that we have a discrete random varidblgith pmf p and repeat the
experiment over and over to get a number, saygf outcomes ofX. We then expect
theabsolute frequencgyhat is, the number of times that we get the outcameo be
approximately equal tap(zx). We can plot the absolute frequencies imistogram
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3/8 M M

2/8

1/8

O] S—

Fig. 2.1 Bar chart for the number of daughters in Example 2.2.1. Tlubaoility of 0
daughters ig and so on.

which would then be expected to look similar in shape to thé (ot different in
scale). In otherwords, we can think of the pmf as represgtiia“perfect histogram.”

Example2.2.2 If we roll a die and letX denote the outcome, thex has pmf

which is plotted in Figure 2.2, together with a histogram 660 simulated rolls of
the die. This is an example ofumiform distribution(compare with Section 1.4),
characterized by the pmf having the same value for all thsiptessoutcomes oX.
Note that it is not possible to have a uniform distributioreoninfinite set (why?), so
there is no immediately clear interpretation of a statersanh as “choose an integer
at random.” 0

200
Y6t nonon N onon . - I
150
100

50

Fig. 2.2 Pmfand histogram of the roll of a fair die.
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Example2.2.3 If we roll a die and letX denote the number of rolls until the first
appears, then Example 1.5.14 reveals that the pmxf of

p(k) = P(X = k) = - (g)k_l, k=12, ..

whichis plotted in Figure 2.3 together with a histogram@j0 simulated observations

on X. The pmf has a bar at every positive integer, but the histagraust end
somewhere. In this case, the largest observed valuéwhs44. 0

By the properties of probability measures, we have the fagtig proposition.

Proposition 2.2.1. A function p is a possible pmf of a discrete random
variable on the rangéz,, x2, ...} if and only if

(@) p(zr) >0fork=1,2,...

) > plar) = 1
k=1

If the range ofX is finite, the sum in (b) is finite. So far we have consideredhé&yve
of the type{X = k}, the event thafX equals a particular value. We could also
look at events of the typ€X < k}, the event thaK is less than or equal te. For
example, when we roll a die we might ask for the probabiligttive get at most,
at most2, and so on. This leads to another function to be defined next.

150
0.1
100
0.05 50
00 20 40 60 OO 20 40 60

Fig. 2.3 Pmfand histogram of the number of rolls until the fiésstppears.
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Definition 2.2.3 Let X be any random variable. The function
Flz)=P(X <z), z€R

is called the ¢umulativé distribution function(cdf) of X.

The word “cumulative” appears in parentheses becausestédyrused other than for
the acronym cdf. Note that the cdf is a function on the enéed line. To get an idea
of what it typically looks like, let us return to Example 212.

Example2.2.4 In a family with three children, leX be the number of daughters.
Therange ofX is {0, 1, 2, 3}, so let us start by computing(k) for these values. We
get

1

F(0) = P(X < 0) = p(0) =
since the only way to be less than or equaltis to be equal td). Fork = 1, we
first note that being less than or equalltmeans being equal bor 1. In terms of

events, we have
{(X<1}={X=0}u{X =1}

and since the events are disjoint, we get

F(1) = P(X<1) = P(X=0)+P(X=1)
= p(0)+p(1) = %+g=%

Continuing like this, we also géf(2) = £ andF'(3) = 1. Now we have the values
of F' at the points in the range df. What about other values? Let us, for example,

consider the poind.5. Noting thatX < 0.5 means tha < 0, we get

1

F(0.5) = F(0) =

and we realize that'(z) = F(0) for all pointsz € [0,1). Similarly, all points
€ [1,2) haveF(z) = F(1) and all pointst € [2,3) haveF'(z) = F(2). Finally,
sinceX cannot take on any negative values, we h&ye) = 0 for < 0, and since
X is always at mos3, we haveF'(x) = 1 for z > 3. This gives the final form of",
which is illustrated in Figure 2.4. 0

The graph in Figure 2.4 is typical for the cdf of a discretedam variable. It jumps
at each value thaX can assume, and the size of the jump is the probability of that
value. Between points in the range &f the cdf is constant. Note how it is always
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12 —o

Fig. 2.4 Graph of the cdf of the number of daughters in Example 2.2.4.

nondecreasing and how it ranges frorto 1. Also note in which way the points are
filled whereF' jumps, which can be expressed by saying tHas right-continuous
Some of these observed properties turn out to be true for dipyot only for that of
a discrete random variable. In the next section we shaltmetuthis.

In Example 2.2.4F assumes the valu@sand1. If the range ofX is finite, this is
always the case but not necessarily if the range is couniafihjte, as the following
example shows.

Example2.2.5 WhenX is the number of rolls until the first appears, the range is
{1,2, ...} and the pmf is given in Example 1.5.14. The value of the cdhahteger
nis

k=1 k=1
1 1-(5/6)" 5\"
- = 1—(2 =1,2
6 1-5/6 (6) P eSS
and the cdf approaches but never reaches 0

The cdf and the pmf are related according to the followingppsition, which we
state without proof.
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Proposition 2.2.2. Let X be a discrete random variable with range
{1, 22, ...}, pmfp, and cdfF. Then

@F(@) = Y plax), 7€R

ki <z

(b) p(xx) = F(zx) — lim F(y), k=1,2,...

ylzg

(©ForBC R, P(X€B)= Y plax)
k:xr€B

Note how part (b) says that the probability of a point is theeif the jump ofF in
that point. If £’ does not jump at, the left-hand limitim, 1, F(y) equalsF'(z) and
the probability thatX equalse is 0. Also note that part (a) is a special case of part
(c) with the particular choic® = (—oo, x].

2.3 CONTINUOUS RANDOM VARIABLES

To introduce another type of random variable, Jebe the lifetime of a lightbulb so
that it has rang@, oo). Since this is an uncountable s&t,is not a discrete random
variable. However, we can still imagine computing probitib# of events of the
type {X < z} for different values ofr, and we can define the cdf as previously,
F(z) = P(X < z). Indeed, Definition 2.2.3 is stated for an arbitrary random
variable, not necessarily discrete. What dé&leok like in this case?

Recall the cdf for a discrete random variable. This is a norelesing function,
ranging fromo0 to 1, which jumps precisely at the points th&t can assume. For
our lightbulb, the cdf should be nondecreasing (why?), eafingm0 to 1, and have
F(z) = 0forz < 0. Finally, sinceX can assumeverypositive value, there must
be an “infinitely small jump at every point,” and the only way this to be possible
is if F'is a continuous function. With the definition of cdf remaigithe same as in
the previous section, we define the following.

Definition 2.3.1 [f the cdf F is a continuous function, thek is said to be
continuous random variable

The definitions of discrete and continuous random variadrlegualitatively different.
A discrete random variable is defined through its range; éicoaus random variable,
through its cdf. Although a continuous random variable nhaste an uncountable
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range, this is not the definition and as we will see later, @oamvariable can have
an uncountable range and still have discontinuities indfs ¢

In Example 2.2.4 and Figure 2.4, we observed some prope@tite cdf. These
turn out to hold in general, and we state the following pratms.

Proposition 2.3.1. If F'is the cdf of any random variablé&, has the following
properties:

(a) It is nondecreasing.
(b) It is right-continuous.

(c) It has the limitsF'(—oo) = 0 andF(co) = 1 (where the limits may or
may not be attained at finite).

Since these properties are intuitively reasonable, wethmiechnical proof. Itshould
be noted that'(co) is defined adim, ., F'(z) and isnotthe same a® (X < o)
but ratherP(X < o). This is so because, for any increasing sequéngé of real
numbers that is such that, — oo, we have

{X < oo} = [ J{X <z}

since if X is finite, it must be less thasomez,,. By continuity of probabilities
(Proposition 1.3.5), we get

P(X <) = nILrI;O P(X <uz,)= nILrI;O F(xy,) = F(o0)
by definition (and similarly for-co, using instead decreasing sequences). Right now,
this is no big deal since we do not allow random variables tinfinite and hence
both P(X < o0) andP(X < oo) equall. However, there are situations where it is
natural to let random variables also take on the vatueConsider, for example, the
gambler’s ruin problem from Example 1.6.16, and let the mandariablel” be the
time until Ann is ruined. It is then natural to |18t = co mean that Bob was ruined
first, thatis, Ann’s ruin never occurred. We will see morermaydes of infinite-valued
random variables in Chapter 8.

The properties listed in Proposition 2.3.1 are useful fouik]“sanity check” as
to whether a function is a cdf. If you have attempted to findfaaod your candidate
violates any of (a) through (c) above, you have made an eoroesvhere. For com-
putations, the cdf can be used as follows.
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Proposition 2.3.2. Let X be any random variable with cdf. Then
@Pla<X<b)=F@0b)—F(a), a<b

b)P(X >z)=1—-F(x), € R

Proof. To prove (a), take. < b and first note that
{X<b}={X<a}U{a< X <b}
which is a disjoint union. Hence
P(X <b)=Pla< X <b)+ P(X <a)
which is to say that
Pla < X <b)=P(X <b)— P(X <a)=F(b) — F(a)

by the definition of cdf. For part (b), note that the eveit > =} is the complement of
the even{ X < z}, so this follows from Proposition 1.3.2 together with thé&iéion
of cdf. Alternatively, we can view this as a special case pifth b = co. ]

The cdfis thus defined in the same way for discrete and comtistandom variables.
For discrete random variables we also defined the pifaf,) = P(X = zy), for
valuesz;, in the range ofX wherep(x) measures the size of the jump of the cdf
atz,. In the continuous case, there are no such jumps, so thecedgatt analogy.
However, instead of considering the jump size, let us cardhikslopeof the cdf. A
large jump size in the discrete case then corresponds teasi@pe in the continuous
case. Since the size of the slope of a function is measuredd Ogiivative, we present
the following definition.

Definition 2.3.2 The functionf(xz) = F’(z) is called theprobability density
function(pdf) of X.

For a continuous random variable, the pdf plays the role ifeete random variable’s
pmf. Since the pdfis the derivative of the cdf, the fundaraktiteorem of calculus
gives that we can obtain the cdf from the pdf as

Pla) = /_ "
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Fig.2.5 A pdfand corresponding cdf of a continuous random variaNlete how high values
of the pdf correspond to sharp increases in the cdf.

(see Figure 2.5). Compare with the discrete case where ldtgorebetween cdf and
pmfis

F(z)= > plax)

k:xp <z

We get the following analog of Proposition 2.2.2, statechaiitt proof.

Proposition 2.3.3. Let X be a continuous random variable with pfifand
cdf F. Then

(a)F(z):L f(tydt, z€R

(b) f(z) = F'(z), z€R

(c)ForBC R, P(X € B) = /Bf(:c)d:c

The notationfB means that we compute the integral over the BetOften B is
simply an interval but it could also be a union of intervalspoissibly some more
complicated set. The special case of an intervd?,= (a, b], gives, for a continuous

11t turns out thatB cannot be any set but must be chosen among the so-calledl “Bse” This is a
necessary restriction in a more advanced treatment of pilitgatheory but is of no concern to us. The
sets that are not Borel sets are very bizarre and never aripeatctice. It should also be pointed out
that the existence of a functiof satisfying part (c) of Proposition 2.3.3 is often taken asdhfinition

of a continuous random variable. In fact, our definition imrts of the continuity of the cdf is slightly
more restrictive since there exist continuous functiors #ne not differentiable anywhere. However, such
functions are of no practical use, so we stick with our daéinit
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P(a<X< b)

Fig. 2.6 lllustration of Proposition 2.3.3(c); the probability th& is betweeru andb is the
area under the pdf.

random variable )
Pla< X <b)= / f(x)dx
and combining this with Proposition 2.3.2(a) gives
b
F()—F(a) = / f(z)dx
The probability thafX falls in the interval a, b] is thus the area under the pdf between

a andb (see Figure 2.6).
SinceP(X € R) = 1, we also get the following analog of Proposition 2.2.1.

Proposition 2.3.4. Afunction f is a possible pdf of some continuous random
variable if and only if

@ f(z) >0, xeR

®) [ seyin =1

Since the value of an integral does not change by the inclusiexclusion of a single
point, we realize that we can alter the inequalities betwstgat and nonstrict, and,
for instance, we get

P(angb):/bf(x)dsz(b)—F(a)=P(a<X§b)

and so on. Let us state this important fact as a corollary.
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Corollary 2.3.5. For a continuous random variablé, probabilities do not
change if strict and nonstrict inequalities are interchehig events.

This is not true for discrete random variables. For examiplee roll a die there
is a difference betweeR (X < 6) andP(X < 6). The intuition behind Corollary
2.3.5 is that the probabilities are so “smeared out” overgdmge ofX that it does
not matter if we add or remove single points.

Example2.3.1 Let X be the lifetime (in hours) of a lightbulb and suppose tRKat
has pdf

0 if <0
J(@) = { 0.001e~0001 if 5 >
Verify that this is a possible pdf and firfd) P(X < 1000), (b) P(100 < X < 1000),
(c) a number: such that a lightbulb survives the agevith probability0.5.

First note that the fact that can assume only nonnegative values is reflected in the
pdf being0 for negativer. Clearly f is nonnegative and also

/ flz)dx = / 0.001e™ 001 gy
—oo 0

_ [_6—0.001:5}80 -1

andf is a possible pdf. To compute the probabilities, let us firsl the cdf:

F(z) = / f(tydt = / 0.001¢0-00% gy
— e~0-00lz 1>
For (a) we get
P(X <1000) = P(X <1000) = F(1000)

— 1_670.001><1000 ~ 0.63

and for (b)
P(100 < X < 1000)

F(1000) — F(100)
= l—e!'—-(1-e%) ~ 054
and finally for (c), note that “surviving age’ is the event{ X > «}, and we get

05=P(X >2)=1-F(x) = 00017
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which gives
log 0.5
*= o001~ 0
This number is called thenedianof X. If we have a large number of lightbulbs,
about half of them function longer tha&93 hours. 0

In the example, we formally integrate the pdf frenpo to oo, but the negative part
vanishes sinc¢ equald) there. From now on, we will give the functional expression
for a pdf only where it is positive and understand that it Bverywhere else.

Now let X be a continuous random variable and consider a pointhe range of
X. If X isless than or equal to, then it is either strictly less thanor exactly equal
to x, or in terms of events

{X<z}={X<z}U{X =z}
This union is clearly disjoint and hence
PX<z)=P(X<z)+P(X =1x)

which gives
PX=z)=P(X<z)-P(X <uz)

and by Corollary 2.3.5 this equald The probability that a continuous random
variable equals any particular value is tliyusvhich at first sight may seem surprising
since we must getomevalue ofX inthe experiment. If we think about the underlying
mathematics, this becomes less mysterious since we kndwhiaéntegral over an
interval can be positive even though the interval over eauglespointis 0. We will
not delve any deeper into this; just remember that the rahgecontinuous random
variable is so large that we cannot assign positive probigsito individual points,
only to intervals.

One consequence of the discussion above is that the intatipreof the pdf is
different from its discrete counterpart, the pmf. Recadittli X is discrete and has
pmf p, thenp(z) = P(X = z). If X is continuous, howeveR (X = z) = 0 for all
x and is thus not equal to the pdfz). How, then, should we interprgiz)?

To get some feeling for what a pdf is, consider a continuondoan variableX
with pdf f and take two points;; andzs, in the range o suchthaff (z1) > f(z2).
Now take a smalé > 0 and place symmetric intervals of lengtharoundz; andxz»
(see Figure 2.7). Let us call the intervdlsand,, respectively. We get

z1+€/2
P(XEIl) = / 2 f(t)dt ~ Ef(xl)

and similarly
P(X S IQ) = Ef(SCQ)
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fx,)

f(x,)

Fig. 2.7 Interpretation of the pdf. Sincg(z1) > f(x2), itis more likely thatX is nearx:
than near,.

Now, sincef(z1) > f(z2), the probability thatX belongs tol; is the larger of the
two. This suggests an interpretation of the pdf in a poirit measures how likely it
is that X is in the neighborhood af, not exactly equal ta.. Although not exactly
the same as the pmf, the shape of the pdf still gives infoonain whereX is most
likely to assume its values.

Consider again the lightbulb with the pdf givenin Exampl@ 2above. In Figure
2.8, the pdf and a histogram of one thousand simulated valu&sare plotted. To
construct a histogram for a continuous distribution, wed#ther axis intobinsand
count the number of observations in each bin. The numbenaf épends on how
many observations we have and has to be decided in each ddsek about what
the histogram would look like if we had too many or too few bjnblote how the
shape of the histogram mirrors the shape of the pdf.

Whenever the pdf ok is given, we say that it defines tligstributionof X. By
virtue of Proposition 2.3.3, we realize that the pdf is umipudetermined by the cdf

0 2000 4000 6000 0 2000 4000 6000

Fig.2.8 Pdfof the lifetime of the lightbulb in Example 2.3.1 and bigtam ofL 000 simulated
such lifetimes. Since we are interested only in compariegtiape, the scale on thexis has
been omitted.
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and vice versa, so either of the two specifies the distributibX. The advantage
of stating the pdf is that it has the graphical interpretativzentioned above, and the
advantage of the cdf is that it is directly interpretable asabability.

2.3.1 The Uniform Distribution

Consider the experiment to choose a real number at randomebetO and 1. As
usual, the interpretation of “at random” is that no humbemisre likely than any
other to be chosen. Since the range is an uncountable sepweeed to specify
what this means in terms of probabilities of intervals ratihean single points. Call
the numberX, and consider an intervd), C [0, 1] of lengthh. The interpretation of
“at random” is then that

P(Xel,)=h

regardless of the value @f and where the interval), is located. This means that
the pdf must beonstantbetween 0 and 1 (and 0 otherwise), and since it must also
integrate to one, we realize that the pdfXfis

flz)y=1, 0<z<1
and we say thak has auniform distributionon [0, 1]. To find the cdf ofX, take
x € [0, 1] to obtain

F(x):/_m f@dt=z, 0<zx<1

andF(z) = 0forz < 0, andF(x) = 1 for z > 1. Note that the cdf is a continuous
function, soX is by definition a continuous random variable. With a simédagu-
ment, we can define the uniform distribution on any intefuab] as follows.

Definition 2.3.3 If the pdf of X is

1
= <z<
f(z) . a<xz<b

thenX is said to have aniform distributionon [a, b], written X ~ unif|a, b].

The corresponding cdf is

F(x):/mf(t)dt: P a<z<b

Since this is a continuous distribution, it does not maftess include or exclude the
endpoints of the interval, since these have probatilityhus, a uniform distribution
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on the open intervdk, b) is, from this perspective, the same as a uniform distributio
on the closed intervadk, b]. Also note how the cdF’ is not differentiable at the points
a andb, which for the same reason does not matter.

Recall that we previously talked about the uniform disttiti on a finite set (Sec-
tion 1.4 and Example 2.2.2). This was an example oflikerete uniform distribution
characterized by a constant pmf on a finite set. What we hdimedichere is the con-
tinuous analog, characterized by a constant pdf on a finigzval. It is impossible
to have a uniform distribution on an infinite interval (why®ence, a statement such
as “choose a real number at random” does not have a cleapiiatation.

The uniform distribution o0, 1] is often referred to as thetandarduniform dis-
tribution. There is a simple relation between the generdlthe standard uniform
distribution, which we state next.

Proposition 2.3.6. Let X ~ unif[0, 1] and define the random variabié by
Y =a+ (b—a)X. ThenY ~ unif|a, b].

Proof. Note thatY” has rangé€a, b]. We need to show that the pdf & is of the
form in Definition 2.3.3. To do this, let us first consider thdf of Y, Fy. Take
x € [a, b] to obtain

Fy(z) = Pla+(b—a)X <2x)

r—a Tr—a
< =
rlxsizs) = e (=)
the cdf of the random variabl& evaluated at the poirft: — a)/(b — a). Now we
can use the fact that ~ unif[0, 1] and thusF'x (¢) = ¢, to obtain

r—a

Fy () = b—a’

a<xz<b
from which we get the pdf

fr(@) = F@) = 37—, a<z<d

which we recognize as the pdf of a uniform distribution[arb]. ]

Thus we can transform a standard uniform distribution imtyp @ther uniform distri-
bution. Conversely, ifX ~ unif|a, b], then the random variableX — a)/(b — a) is
standard uniform. As we will see later, the standard unifdistribution is a funda-
mental tool for computer simulation of random variableghiat context, observations
generated from the standard uniform distribution are da@dom numbersand we
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see here that if we are given such random numbers, we caridranghem to ob-
servations from a uniform distribution dn, b] by multiplying each withh — a and
addinga (scaling and translating).

Finally, a word on terminology. The term used for the disitibn may also be
applied directly to the random variable. Hence, we mean &neesthing by saying
“ X is a uniform random variable” andX' has a uniform distribution” and the phrase
“generate a couple of standard uniforms” is a quicker wayaip“generate a couple
of random variables which have the uniform distribution[onl].”

2.3.2 Functions of Random Variables

In Proposition 2.3.6 we started from a random variabland defined a new random
variableY” through the relatio’” = a + (b — a)X. We then managed to find the
distribution of Y from knowledge of the distribution oX. More generally, suppose
that we are given a random variabtewith known distribution and a functiog, and
define a new random variablé = g(X). Can we find the distribution df" on the
basis of our knowledge of the distribution &f?

We need to distinguish between the discrete and the contgtases. The discrete
case is easy and can be treated with methods that we alreagly Kuppose that
X is discrete with rangéx1, zo, ...} and pmfpx and letY = ¢(X). The range
of Y is then{y1, y2, ...}, the possible function values. Note that this range may be
strictly smaller than the range df, in the case thag maps severat values to the
samey value. In the extreme case thais constanty” can only assume one value,
regardless of whak is. Now consider the value of the pmf &f in a pointyy,
py (yx) = P(Y = yi). We can express the evefit’ = y; } as a subset of the range
of X. Thus let

B ={z; : g(z;) = yx}
the set of values that are mapped,toand apply Proposition 2.2.2(c) to obtain

py () = P(Y =yx) =P(X € By) = Y px(z))

jix;€By

The continuous case is more complicated, since a distobugi defined through its
pdf. The trick here is to start with the cdf, and we illustrtiis in a few examples.

Example2.3.2 Suppose thak ~ unif(—7/2,7/2) and letY = sin(X). Find the
pdf of Y.

First note that the range &f is (—1,1). Now take ay in this range and note that
{Y <y} ={X <sin"'(y)} to obtain

Fy(y) = P(Y <y) = P(X <sin"'(y))

= Fx(sin ') = Zsin i)+
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where we have used that the cdf¥fis Fx (z) = (z + 7/2) /7, —7/2 <z < 7/2.
This gives the pdf

1d

fr(y) = Fy(y) = wdy sin” ' (y) =

1
/1= y2
We chose to define the uniform distribution on the open irgkather than the closed

interval to avoid infinite values of the pdf, but as noted jasly, this is merely a
cosmetic issue. 0

-l<y<l1

Example2.3.3 Road salt is spread on a road to melt snow and ice. Suppose that
the resulting water has a temperature¥ofiegrees Celsius, which has pdf

Fx(@) = 55

What is the pdf of the temperature if we convert it to degresgtar€nheit?

10-22), 0<z<5

The relation between Fahrenh®&itand CelsiusX is
Y =1.8X+32
so the range oY is [32, 41]. Start with the cdf’s to obtain
Fy(y) = P(1.8X+32<y)
y— 32 y — 32
= < =
P(X— 1.8 ) FX( 18

which we differentiate to get the pdf

) = B = i ()

These examples illustrate how to arrive at the desired ptiit &ith the cdf of one
random variable, express it in terms of the cdf of the othed finally differentiate

to get the pdf. The last example deals with a linear transétion of the form

Y = aX + b, wherea > 0. By going through the same steps as in the example, we
realize that the pdf oY is

fr(y) = éfx (y — b)

a
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for y in the range oft”. Generally, ifY” = g(X) whereg is a strictly increasing and
differentiable function, the everiy(X) < y} is the same a6X < g~!(y)}, and we
have the relation

Fy(y) = Fx(97(v))

which gives the pdf

d

fr(y) = fx(g‘l(y))d—yg‘l(y)

If g isinstead strictly decreasing and differentiable, thene{g(X) < y} is the same
as{X > g !(y)} and we get

Fy(y)=1-Fx(g'(v))

and

o) = Fx (g~ ) (—d%g-%y))

We summarize in the following proposition.

Proposition 2.3.7. Let X be a continuous random variable with p#f, let
g be a strictly increasing or strictly decreasing, diffefahte function, and let
Y = ¢g(X). ThenY has pdf

Fr(y) = d%g-l(y)\ P~ w)

for y in the range ol

Functions that are not strictly increasing or decreasimgusaally be broken up into
pieces that are. In practice, it is often just as easy to wfi#titthe cdf ofY” and work
through the steps in the examples, as it is to apply the propos

Example2.3.4 Let X ~ unif[—1,1], and letA be the area of a square which has
one corner at the origin and the next at the pdinon thex axis. Find the pdf ofd.

The range ofd is [0, 1] and sinced = X? we get the cdf

Fala) = P(X*<a) = P(—Va< X <a)
= Fx(Va) - Fx(—Va)
va+l —Va+1 _ /i 0<a<1

2 2
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which gives the pdf
1

fa(a) = Fy(a) = a7 0Se<l
It would be more cumbersome to try to apply Proposition 218;€onsidering the
casesX > 0 andX < 0 separately. 0

We finish with an example that shows that applying a funcgioan turn a continuous
random variable into a discrete random variable.

Example2.3.5 LetX ~ unif[0,1] and letY” = [6X]+ 1, where[ - | denotes integer
part. What is the distribution df ?

First note that the range af is {1,2,...,6} soY is a discrete random variable.
Second, fokk in the range o, we obtain

=k = ko< iox] <y = {St < x < g

which gives

P(Y:k):P<%§X<g):— k=1,2,..,6

andY has the discrete uniform distribution dn, 2, ...,6}. Thus, if we generate
random numbers and apply the functigfx) = [6z] + 1 to each, we can simulate
rolls of a fair die. We will return to this in Chapter 5. 0

2.4 EXPECTED VALUE AND VARIANCE

In both daily language and scientific reporting, quantiafiroperties are often de-
scribed in terms of averages. For example, a tourist guide fiavel destination may
state average monthly temperatures. The stock marke&sdie weighted averages
of several individual stock prices. We talk about averagesmwe discuss salaries,
home prices, amounts of rainfall, and so on. Common for alé¢hexamples is that
instead of presenting the entire data set, a single numlggvés to summarize the
data. This is convenient, and if | plan to visit Honolulu ind@enber, the information
that the average daily high temperature is 81°F is enougm#oto plan my trip. It
probably would not give me any extra useful information te e entire data set of
all the temperature measurements from which this numbenmgpeited.

With this in mind, it would be convenientto have a similar waylescribe random
variables. That is, instead of giving the entire distribafiwe could give a single
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number that summarizes it, and gives useful informationwldbould we choose
this number? Let us consider the experiment of rolling a Hiee roll it repeatedly
and denote the consecutive outcomas Xo, ..., we can consider the averag¥, +
-+ X,,)/n of then first rolls. If we further denote the number &% by N, for
k=1,2,...,6,we get

6
X1+ + X, Ni
—:E'k_

n = n

and ifn is large, we expect the relative frequenciés/n to be approximately equal
to the corresponding probabilities, which in this case dir%aBut this means that
we expect

X 4+ X, 1

DE A o Z(142446) = 35

n 6

and we expect the approximation to be better the larger the\ain. Hence 3.5 is
a long-term average of the rolls of a die, and we can give thislver as a summary
of the experiment. Inspired by this we state the followingjrdgon.

Definition 2.4.1 Let X be a discrete random variable with rangs , 5, ...}
(finite or countably infinite) and probability mass functipn The expected
valueof X is defined as

ElX] = Z rp(Tr)
k=1

The expected value is thus a weighted average of the possihles ofX, with the
corresponding probabilities as weights. It can be thoudjlasca theoretical spatial
average over the range df, whereas we can describe the consecutive averages
mentioned above as time-averages. Note that the expedtedsa number computed
from the distribution, whereas time-averages are comgubedexperiments and are
thus random. We will return to this discussion and make ittsin Chapter 4.

The termsxpectatiorandmeanare used as synonyms of expected value, and the
letter . is often used to denote it. Let us look at some examples.

Example2.4.1 An American roulette table has the numbefs6, plus0 and00.
Suppose that you bet $1 on “odd.” What is your expected gain?

If the winning number is odd, you win $1; if it is not, you losé,$vhich we can
describe as a negative gain. HenceXifs your gain, we have

¥ - 1 with probability18/38
"~ | —1 with probability20/38
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and get
18 20 1
S0 on average you lose abdutents for each dollar you bet. 0

Example 2.4.2 In the previous example, consider insteadtaight bet which
means that you bet on a single number. Which payout shouldasieo choose for
you to have the same expected loss as when you bet on odd?

Again denote your gain byX. We have

¥ — a  with probability1/38
~ | —1 with probability37/38

which has expected value

1 37 a—37
E[X] = — 4+ (- x= =
X ax g3+ =X 53 38
which we set equal te% to obtaina = 35. 0

As you have noticed by now, the expected value is not nedsaamlue thatX can
assume, so in this sense, the term “expected” is slightleanitng.

If the random variable is nonnegative, there is an alteveatiay to compute the
expected value according to the following proposition.

Proposition 2.4.1. Let X be a discrete random variable with range 1, ...}.
Then

E[X] = i P(X >n)
n=0

Proof. Note thatt = >-*_, 1, and use the definition of expected value to obtain

[eS) oo k
EX] = Y kP(X=k) =Y > P(X=k)
k=1 =

k=1n=1
= iiP(X:k) = iP(in)
n=1k=n n=1

= Y P(X>n)
n=0
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Example2.4.3 What is the expected number of rolls of a fair die until we dnet t
first6?

If we let the number beX', Example 2.2.5 gives

P(X>n)=1-F(n) = (g)n n=0,1,..

and the expected value is

= = /5\" 1
E[X]:z%P(X>n):ZO<E) :1_5/6:6

S0 on average it takesrolls to get the first. We leave it to the reader to ponder
whether this is intuitively clear. 0

We proceed to the definition of expected value in the contisuzase. Remember
how sums are replaced by integrals, and the following déimghould not come as
a surprise.

Definition 2.4.2 Let X be a continuous random variable with pfif The
expected valuef X is defined as

E[X] = /_(: xf (z)dx

The formal integral limits are-co andoo, but in reality the limits are determined by
the range ofX, which is wheref () is positive.

Example2.4.4 Let X ~ uniffa,b]. Find E[X].

By Definition 2.4.2,

E[X]_/O;xﬂ:c)dx— bia/abl‘dl‘—a;b

which is the midpoint of the intervad, b]. 0
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For nonnegative continuous random variables, there is alogof Proposition 2.4.1.
We leave the proof as an exercise.

Proposition 2.4.2. Let X be a continuous random variable with rarigex-).
Then

BIX] = /O T P(X > 2)de

Example2.4.5 Find the expected lifetime of the lightbulb in Example 2.3.1

The pdfis
f(z) =0.001e="%* 2 >0

so we can find the expected value according to the definition as

E[X] = /000 zf(x)dx

Since the range oX is [0, oo), we can also use Proposition 2.4.2. We know from the
example that
P(X >x)=¢e 20 2 >0

and get
00 0.001 J 670.001m S 1000
X] /0 ¢ v { 0.001 L
which, if done by hand, is a little bit simpler than using thedidition directly, since
it avoids the partial integration. 0

One important property of the expected value is that it isdinin the following sense.

Proposition 2.4.3. Let X be any random variable, and letandb be real

numbers. Then
ElaX +b]=aE[X]|+b
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Proof. We prove this in the continuous case, for- 0. The discrete is analogous,
replacing integrals by sums. LEt= a X + b, and note that” is a continuous random
variable, which by Proposition 2.3.7 has pdf

fr(y) = éfx (y — b)

a
and by definition, the expected valuelofis

ElY] = /OO yfy(y)dy = %/Oo yfx <y7_b) dy

— 00 — 00

where the variable substitution= az + b givesdy = a dx and hence

ElY] = [ (ax +b) fx (z)dz
= a/oo fo(x)d:c—i—b/oo fx(x)dr = aE[X]+b
and we are done. [ |

In the proof we discovered the identity

oo

ElaX +1b] = / (ax +b) fx (z)dz

— 0o

which, as we shall see next, is a special case of a more geasut.

2.4.1 The Expected Value of a Function of a Random Variable

In the previous section we considered the expected valudiogar transformation
aX + b. Itis a natural extension to ask what can be said about theoteg value of
an arbitrary functiory applied toX, F[g(X)]. In Section 2.3.2, we learned how to
find the pdf ofg(X ), at least for strictly monotone functiogsand this can be used
to find the expected value gf X') according to the definition, but there is a quicker
way. Let us start with an example.

Example2.4.6 Let X ~ unif[0,2]. What is the expected area of a square with
sidelengthX ?

The random variable of interest i = X 2. To find E[A], we compute it according
to the definition of expected value. Let us first find the pdfieff4. Since we are
dealing with a continuous random variable, we need to staht the cdf, 4. Note
that the range ofl is [0, 4], and take am in this range to obtain

Vva

FA(a)zp(Aga)zp(Xg\/a)=7, 0<a<4
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sinceX ~ unif|0, 2]. We get the pdf

1

fala) = Fao) = 1=

and expected value

E[AJ—/;afA(a)da—i/;ﬁda—i[gaﬁ]z_g

This example is illuminating in several ways. First, notattthe expected area is
notequal to the square of the expected sidelength. At first ihtrégem paradoxical
that the “typical square has sideand areeg . but the situation clears up if we think
of expected values as averages of large numbers of obgsrgatror the sidelength,
small values (neaf) and large values (ne&) average each other out aroumd
However, when the values are squared, values ety neaf but those neat end
up closer to4. Thus, larger values have more impact when squared, andthash
expected area up.

Second, note that the distribution df is not uniform on its rang€0,4]. To
understand why, consider, for example, the two inter{gl8.25] and[3.75, 4], both
of length0.25. The probability thatA is in the first is the probability thak is in
[v0,+/0.25] = [0,0.5] which is0.25, and the probability thatl is in the second is
the probability thatX is in [v/3.75, v/4] = [1.94, 2], which is only0.03.

Finally, if we make the variable substitutian= /a in the expression foE/[A]
above, we getla = 2x dz, the new integral limitg0, 2], and

E[A]:/04afA(a)da:i/;ﬁda:%/jx?dw

Since the pdf ofX is fx (z) = % 0 <z <2, we have shown that

E[XQ]—/O 2?2 fx(2)dx

that is, in this case, we could have computed the expectee wHlA without first
finding its pdf. Compare the two expressions

E[4] = /0 afa(a)da

2
E[X? = /Oxzfx(x)dx

where the first is according to the definition, and uses thgeand pdf ofA. In
contrast, the second expression uses the range and pdfafgheal random variable
X and plugs in the function? in the integral. It turns out that this is no coincidence,
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and we have the following result.

Proposition 2.4.4. Let X be a random variable with pmfy or pdf fx, and
letg : R — R be any function. Then

Zg(xk)px (zk) if X is discrete with rangéz1, 2, ...}
k=1

Elg(X)] =

/ g(x)fx(x)dz if X is continuous

— 00

Proof. The discrete case is straightforward. We will do the proafydor the
continuous case in the special case wheis strictly increasing. By Proposition
2.3.7,the pdfolt = g(X) is

which gives

el = [ vy = [ v (5a70) £t i

—00 —

where we make the change of variables= ¢~!(y) which givesy = g(z), dz =

g ' (y)dy and

Em:/mm@&mm

— 00

as desired. [ |

The general case of continuofsis more complicated. For instance, depending on
the functiong, g(X) may be discrete even X is continuous (recall Example 2.3.5).
Proposition 2.4.4 is true for any functign but the general proof is more involved
and we skip it here. We are fortunate to have this propositorce it is generally
much easier to computB[g(X )] according to this method than it is to go through
the procedure of first finding the distribution @fX).

In Example 2.4.6, we saw that the expected area did not eheaduare of the
expected sidelength. In other words, witk= E[X], we hadE[X?] # 1. Generally,
if g is a function and. = E[X], it is most often the case that

Elg(X)] # g(n)
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with one important exception: the linear cage:) = ax + b, stated in Proposition
2.4.3.

Example2.4.7. Recall Example 2.3.5, whet® ~ unif[0,1] andY = [6X] + 1.
Find E[Y].

The function applied tdX is g(z) = [6x] + 1 so it has expected value

Elg(X)] = /0 ([6x] + 1) fx (z)dx = /0 [6x]dz + 1

and sincg6z] = kif £ <z < &l fork=0,1,...,5, we get

1
14...
/ [62]da = W — 25
0

which givesE[X ] = 3.5, the mean of a fair die. 0

Example2.4.8 A chemical reaction in a solution in a test tube produces taer
chemical compound. The amoukitin grams thus created has pdf

flz)y=2z, 0<z<1

Amounts below0.5 gram are considered too low, and in that case the solution is
discarded. After the reaction, what is the expected amotiiteocompound that is
kept?

We are looking forE'[¢( X )], whereg is the function

() = 0 ifxz<05
I =Y ¢ ifz>05

and Proposition 2.4.4 gives
1

Elg(X)] = /0 g(x) f(x)dx = 2/05 r?dx ~ 0.58 -

Expected values do not have to be finite, as the following fasrexample shows.

Example2.4.9 (St Petersburg Paradgx Consider the following roulette strategy.
You bet$1 on odd, and if you win, you quit. If you lose, you & on odd, and in
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each subsequent round either quit if you win, or double yetiftyou lose.(a) What
is the expected number of rounds until you win, and what ia frar net gainqb)
What is your expected loss before the first win?

In each round, you win with probabilit%é, and in analogy with Example 2.4.3, the
expected number of rounds until your first Win% ~ 2.1. If you have had: — 1
consecutive losses prior to the first win in thilh round, you have logt+ 2 + - - - +
272 = 27~1 _ 1, and since you be?"~! in the nth round, your net gain is one
dollar. Hence, each time you quit, you have gained a doltat,esmch dollar takes on
average2.1 rounds to gain. This sounds almost too good to be true, doed7t

The problem with the strategy is revealed by solving (b). thettime of your first
win beT'. In analogy with Example 2.2.3, the pmf®fis

18 /20\" "

and your accumulated loss before the first win is the randamabie L = 271 — 1
which has expected value

E[L] = g(w—l —1)P(T =n) = g i <(%>nl - <£)nl> =00

n=1

so your expected loss before the first win is infinite! In pi@gtthis means that
whatever fortune you start with, eventually you will go bedkyou play this strategy.
It was indeed too good to be true, and Donald Trump is stilllthéz than all the
world’s probabilists.

This example is one version of tist Petersburg paradoxhich dates back to the
eighteenth century, and occurs in many variants in the pitibaliterature. 0

There is nothing strange about the random variable the last example. Each
outcome ofT" gives an outcome of, and the range oL is the set{0,1,3,7,...}.
Thus, L itself is always finite but its expected value is infinite. |éwere to get
consecutive observations d@n the consecutive averages would tend to grow beyond
all bounds.

2.4.2 Variance of a Random Variable

We introduced the expected value as a number that summanizesstribution of a
random variableX. Since it gives an idea of wherg is on the average, the expected
value is often referred to ad@cation parameterThe expected value does, however,
not give any information of the variability oX’, as the following example illustrates.

Example2.4.10 Suppose that we are about to weigh a piece of metal,and hauve at
disposal two different scales, one that gives the correihevith an error o&0.01
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gram, and the second with an errorbf.1 gram. If the true weight of the pieceis
grams, we thus assume that the scales give the welghtauniffw — 0.01, w + 0.01]
andY ~ uniffw — 0.1, w + 0.1], respectively. The expected values are

EX]=w and E[Y]=w

thatis, both scales give the correct weight on average. Mewyi¢is clear that the first
scale is preferred because of its better precision. Thistisaflected in the expected
values. 0

If we, together with the expected value, also had a measuvardbility, the two
numbers together would give more information about theiistion than would the
expected value alone. Since the expected valuereasures location, we want to
somehow measure the random variable’s variability redatosthe location, that is,
measure the average behaviotdf- i This is a random quantity, and we would like
to describe it by a single number. We could try to take the etqzbvalue ofX — u,
but this would always give, sinceE[X — u] = E[X]— p = 0. Intuitively, values to
the left of x cancel values to the right. Another attempt would be to thkeskpected
value of| X — |, which would give us a nonnegative number that measurextbate
to which X deviates fromu on average. As it turns out, the following definition gives
a more convenient measure than using the absolute value.

Definition 2.4.3 Let X be a random variable with expected value The
varianceof X is defined as

Var [X] = E [(X — p)?]

The variance is often denoted. Notice that(X — )% > 0, so the variance is a
nonnegative measure of variability where large valuesciaigi thatX tends to fluc-
tuate a lot aroungi. Just like the mean, the variance can be infinite. Since we hav
squared the values, the variance is not on the same scalead.. For example, if

X andy are weights in grams, the unit of measure of[M&ris square grams which
does not have a clear meaning. For this reason, we often esellitwing definition.

Definition 2.4.4 Let X be a random variable with varianeé = Var[X].
Thestandard deviatiomf X is then defined as = /Var[X].
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To compute the variance, we can use Proposition 2.4.44(ith = (x — 1), but it
is often easier to use the following formula.

Corollary 2.4.5.
var[X] = E[X?] — (E[X])2

Proof. We prove the continuous case. The discrete is the obvious@n®y
Proposition 2.4.4, we have

Vaix] = E[(X - = [ (- pPi
= /_Oo (2® = 2zp + pi?) f(x)dz

—00 —

= /OO xzf(:zr)da:—2u/0;xf(:1:)dar+u2 /O; f(z)dz
X))?

= B[X?] - 2uB[X]+p® = B[X?] - (E]

[
Example2.4.11 Let X be the number when a die is rolled. Find .
The pmfisp(k) = %, k=1,2,...,6 which gives expected value
0 1o 7
EX]=) kp(k)=2> k=3
k=1 k=1
and by Proposition 2.4.4,
6 6
1 91
EIX2] = 2 _ = 2 _ 7%
X% =Y k() = £ DK = o
k=1 k=1
which gives
Var(X] = B[X?] - (B[X))* = > .

Example2.4.12 In Example 2.4.1 we calculated the expected gain in roul€iben-
pute the variance of your gain if yqa) bet on odd(b) make straight bets.
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For (a), your gainX has distribution

¥ — 1 with probability18/38
~ | —1 with probability20/38

which has mear’[X] = —J;. For the variance we neell[X?], which equalsl
sinceX? = 1. Hence
2
1 360
_ 2 _ 2 — _ —_— = —— ~ U.
Var[X] = E[X?] — (E[X])? =1 ( 19) oap 0997

For (b) denote the gain by, which has distribution

v — 35  with probability1/38
~ 1 —1 with probability37,/38

which has mea’[Y'] = — 5. Further
1 37 631
ElY?] = 35°x —+ (-1’ x — = —
Y] g T g = g
which gives

1 1\? 11
63 ( >_ 988 _ans

VarlY] = E[Y?] — (E[Y])? = — — [ —— i
¥]=BY? - (BY)? = 25— (-15) = 501
Thus,X andY have the same mean, so on average you lose just as much \wih eit
strategy. The variance af is much larger than the variance &f, which reflects the

fact that you are more likely to lose a round with a straight bat when you win,
you win more. 0

Example2.4.13 Let X ~ unif|a, b]. Find the variance oK.

We already know thak[X] = (a + b)/2. For the variance, we nedd| X ?] and get

b 370 2 2

1 T a“+ab+b

E[X?] = 2f(x)dx = T =TT
[X~] /aa:f(:zr)a: b—a{?)} 3

which gives

Var[X] =

a? + ab + b? a+b 27(b—a)2
3 2 12

after some elementary algebra. 0
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Notice how these expressions for mean and variance aressitoithose of the dis-
crete uniform distribution in Example 2.4.11. Let us stéienh separately.

Proposition 2.4.6. If X ~ unif{a, 8], then

(b—a)
12

BiX]= 2% and vafx] =
2

In mechanical engineering, these can be interpreted astitercof gravity and mo-
ment of inertia, respectively, of a solid bar with endpointg andb. The variance
formulain Corollary 2.4.5 can then be interpreted as St&tleeorem about moment

of inertia.

Example2.4.14 Recall Example 2.4.10 about the two scales, where one gives a
measuremem’ ~ uniffw—0.01, w+0.01] and the othed” ~ uniffw—0.1,w+0.1].
They both have expected value and by the formula given above, the variances are

Var[X] =33 x 107" and VafY]=3.3x10"?

and the first scale’s higher precision is reflected in its lowagiance. The standard
deviations ar®.006 and0.06 respectively, so we could say that the first scaleltas
times better precision than the second. 0

Unlike the expected value, there is no immediate intuitiehibd the value of the vari-
ance. In the previous example, we can use the variances tpaserthe two scales,
but the actual numbers are not immediately interpretablenkf we calculate the
standard deviations, it is not clear what these numbers mf@ame help is given by
the following result.

Proposition 2.4.7(Chebyshev’s Inequality) Let X be any random variable
with meany and variance2. For any constant > 0, we have

1
P(|X_N|ZCU)§C—2
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Proof. Let us prove the continuous case. fiand letB be the sef{x € R :
|x — u| > co}. We get

= X0 = [P

Y

/(x—u)f Ydz > o 2/f Ydr = c*0*P(X € B)
B

which gives the desired inequality. [ ]

Chebyshev’s inequality tells us that the probability iseztstl — 1/c? that a random
variable is withinc standard deviations of its mean, regardless of what thelmision

of X is. For exampleX is within two standard deviations of its mean with prob-
ability at leas.75, and within three standard deviations with probabilityeatdi).89.

Example2.4.15 The IQ of a randomly sampled individual can be viewed as a ran-
dom variableX. It is known that this has mea)0 and standard deviatiorb. The
highest recorded 1Q 28, belonging to Marilyn vos Savant, mentioned in Example
1.6.6. What is the probability that a randomly sampled iidiial has an 1Q that is at
least as high as Marilyn's?

We apply Chebyshev’s inequality wifh= 100, o = 15. Since
{IX —plzco} ={X <p—-co} U{X > p+co}
we get

1
P(X>p+co) < P(|X—M|ZCU)§C—2

Settingu + co = 228 givesc ~ 8.5, which in turn gives
P(X >228) <0.014

In words, at most.4% of the population has an 1Q that is at least as high as Maslyn’
Note that this is only an upper bound, and the true numbeka$yito be smaller. See
also Problem 47. 0

Since Chebyshev’s inequality holds for all random variapleis fairly coarse (as
you can see by plugging in= 1) and we can get much better bounds if we know
the distribution ofX. This is, for example, the case in the 1Q example above, and
we will return to it later (with better news for Marilyn). Chgshev’s inequality is of
mostly theoretical use.
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In the previous section we saw that the expected value iadinEhis is not true
for the variance, but the following proposition holds.

Proposition 2.4.8. Let X be any random variable, and letand b be real
numbers. Then
VaraX + b] = a*Var[X]

Proof. By the definition of variance applied to the random variahlé + b, we
obtain
VaraX +b] = E[(aX +b— E[aX +b))?]
= E[(aX+b-aE[X]-b)*] = E[a*(X — E[X])?]
= @’E[(X - E[X])?] = a*Var[X]

where we have used Proposition 2.4.3 repeatedly. [ ]

Example2.4.16 Consider Example 2.3.3, where the temperafXiii@ degrees Cel-
sius has pdf

10 — 2z
Find the mean and variance &f, and the mean and variance Bf which is the
temperature in degrees Fahrenheit.

0<z<5h

The mean ofX is

IX] 1/5(10 2wz = O~ 1.7
= — x —22r)ar = - =
25 Jo 3
and since .
1 2
E| 2]:—/ x2(10—2:c)d:c:—5
25 Jo 6
we get
2 2 2
Var[X]:—S——S:—le.AL
6 9 18

SinceY = 1.8X + 32, we get
E[Y]=18F[X]+32=35

and
VarY] = 1.8*Var[X] = 4.5 0
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Note how adding the constalhtioes not affect the variance. This is intuitively clear
since adding simply shifts the entire distribution, including the mearynits but
does not affect howX varies around the mean. The following proposition is intu-
itively obvious.

Proposition 2.4.9. Lety = E[X]. Then VafX] = 0ifand only if X = p.

In words, if a random variable has varian@eit must be constartt. The “if” part
follows immediately from the definition of variance; the ‘lgiif” part turns out to be
trickier, and we leave it for Problem 48.

Above we learned how to compute{g(X )] for an arbitrary functiory. To find
the variance ofj(X ), simply use the variance formula applied#oX ), that is

Varlg(X)] = E[g(X)?] - (E[9(X)])*
where E[g(X)] and E[g(X)?] are computed by applying Proposition 2.4.4 to the

functionsg(x) andg(z)?, respectively.

Example2.4.17 Let X ~ unif[0,2], and letA = X2, the area of a square with
sidelengthX . Find VarfA].

We already know thaE'[A] = % and need to find?[A2]. Proposition 2.4.4 gives

2
E[A?] = E[XY] = l/ P
2 Jo 5
which gives
_ B[A?] — »_16 16 _ 64
Varl] = B[A%] - (BIA)® = 2 - 5 = & 0

2.5 SPECIAL DISCRETE DISTRIBUTIONS

In this section we examine some special discrete distobsti First, the term “dis-
crete” may be used to describe the random variable itset§ alistribution. The same
goes for the name of the distribution. For example, if we aadlie, we may say that
“ X has a uniform distribution o, ..., 6" or “ X is uniformoni, ..., 6.”

2Strictly speaking, it must be constamith probability one but this is a subtle distinction that we need not
worry about.
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2.5.1 Indicators

This is the simplest type of discrete random variable. Qiershn experiment where
the eventd may occur.

Definition 2.5.1 Let A be an event. The random variallg defined by

I.— 1 if Aoccurs
A=) 0 otherwise

is called thendicator of the eventA.

This type of random variable is also calle®arnoullirandom variable. If the event
A has probabilityp, the pmf ofl 4 is

s ={ 1, iy
and the mean and variance are
E[I4] = 1xp+0x(1-p) =0p
Var[la] = E[I3] - (B[l4])* = p(1-p)

sincel? = I,. Indicators are much more useful than they may seem at fastel

In more advanced treatments of probability theory they fimmcas “building blocks”

that are used to define random variables and expected valugeater generality
than we have done. We will later see how indicators are alspugeful in problem

solving.

2.5.2 The Binomial Distribution

Consider an experiment where we are interested in somecpkatievent4, where
the probability ofA is p. Suppose that we repeat the experiment independently
times and count how many times we gkt Denote this number by which is then
a discrete random variable with ran@gl, ..., n. What is the pmf ofX ?

Let us call an occurrence of a “success” §) and a nonoccurrence a “failure”
(F). The even{ X = k} then means that we have a sequencé sficcesses and
n — k failures, which can, for example, be

SFSSF...FSF

By independence, this particular sequence has probability

px(A—p)xpxpx(1—=p)x-x(1=p) xpx(l—p) =p"1-p"*
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0.3 0.3 ]

0.2 0.2

O: . ﬁDH 1L nglﬁm O: HHH —‘

0 2 4 6 8 10

Fig. 2.9 The pmf’'s of two binomial distributions with parametets= 10,p = 0.5 and
n = 10, p = 0.8, respectively.

But this is only one possible configuration bfsuccesses and — k failures, and
since the position for thé Ss can be chosen |6Z) ways, we get
P(X =k) = (Z)pk(l ) k=010

and we give this probability distribution a name.

Definition 2.5.2 If X has probability mass function

n _
p(k): (k)pk(l_p)n k? k::()?]‘?""n

it is said to have dinomial distributionwith parameters andp, and we writg
X ~ bin(n, p).

The binomial distribution thus describes the experimerttdont successes in inde-
pendent trials and is defined through its pmf. The parameteroften called the
success probabilityIn Figure 2.9, a binomial pmf witlhh = 10 andp = 0.5 and
another withn = 10 andp = 0.8 are plotted. Note how the pmf with = 0.5 is
symmetric, which for this value gf is the case for any value af

Proposition 2.5.1. If X ~ bin(n, p), then

E[X]=np and VaiX]=np(1l-p)
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Proof. First note that, by Problem 24(b) in Chapter 1

=3~ -

and we get

B[X] =) kp(k)=np) (Z: i)p’“(l —p)"F =np
k=0 k=1

since the terms in the sum are the probabilities in a binodigttibution with param-
etersn — 1, andp and hence the sum equalsThe proof of the variance formula is
left for Problem 65. ]

Example2.5.1 Consider the following two sequences of heads and tailsy Gm
of them was obtained by repeatedly flipping a fair coin. Letab this sequence
“random.” Which one is it? For better readability, we re@masheads by and tails
by O

XOOXXOOXXXOXOOXXOOXXO0OOX0O000O0XX
XXOXOXOOXOXOXOXXOOXOXOXXOXOXXO0O

This is, of course, impossible to answer with certainty. $eeond sequence seems a
little better “mixed,” whereas the first has some suspiciocsurrences of long runs
of tails at the end, but we need to come up with some more fowaglto make a
decision.

Let us try to figure out which sequence is most unlikely to beltan. Since each
particular sequence of heads and tails has the same privjo@ﬂ?’o, this will not
help us. Let us consider the number of heads. The expectetlenisi5, and the
sequences havel and16 heads, respectively, so this does not help us, either. Let
us instead consider the number of changes %o O and vice versa. A count
reveals that the first sequence Hdschanges and the seco28l Which is closer to
the expected?

Since each change has probabi%tywe can denote the number of changestby

and thus have )

which hask[X] = 14.5. Thus, the second sequence has far more changes than what
is expected. But how extreme is it? The probability to getlaesas large a33 or
larger, is

P(X >23) = i (2:) (%)29 ~ 0.001
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which is a very small probability. In other words, only onoelD00 experiments of
30 independent coin flips would we get an outcome this extremewae decide that
this sequence is not random.

So, what is the answer? The first sequence is random, and ¢badsaas ob-
tained by letting the probability of a change ®&. The number of changes is then
bin(29, 0.7), which has expected val®® x 0.7 = 20.3, and our outcome 3 is
not at all extreme.

That the second sequence looks “better mixed” is precisbiywe shoulchotbe-
lieve that it is random. Considerations like these are irtgpdnwhen testing random-
number generators, which use deterministic algorithmsadgce numbers that seem
to be random. It is quite typical that people, when asked ftitevetown a random
sequence, are likely to come up with something similar togbeond rather than
the first sequence. Most human brains are not forgetful eémtu@e good random
number generators. 0

Example2.5.2 Let us revisit Mr Bloggs from Example 1.6.8 and give an aléire
computation of the probability of his guilt.

Suppose that each person on the island has the genotyperolithlylity p, indepen-
dently of other people. We know that Mr Bloggs has the genmtgp if there are a
total of k people with it, he is guilty with probabilit%, fork=1,2,...,n. LetX be
the total number of individuals with the genotype. We algekdow that Mr Bloggs
has the genotype, and among the remaining 1 individuals, the number with the
genotype should thus be binomial with parameters 1 andp. Let G be the event
that Mr Bloggs is guilty and condition on the evedtX’ = k},k = 1,2,....,nt0
obtain

P(G)

zn: P(G|X = k)P(X = k)
k=1

= Z%(Zibpkl(l—p)"’“ U )l

n
k=1 p

after some algebra. In Example 1.6.8, we found that the fitityethat he is guilty
is1/(1+ (n—1)p), which is not the same answer. What is wrong this time? Just as
in the case of the stonethrowing boys from Example 1.6.9 0xgot to condition on
all the information we have. We know not only that Mr Bloggs ltlae genotype but
also that the murderer has it and under these two conditibagroposed binomial
distribution is not correct. What, then, is the distributiof X ?

Initially and unconditionally, the number of people on thland with the genotype
is X ~ bin(n, p). Given the eventi = {both the murderer and Mr Bloggs have the
genotypé, what is the conditional distribution of ? We can think of observations
on genotypes as sampling with replacement, just as we digamiple 1.6.10. Thus,
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if there arek individuals with the genotype, then the conditional prabgtof A is
k?/n?, since we have sampled twice and gotten the genotype boéstiwe can
now apply Bayes’ formula to obtain

P(A|X = k)P(X = k)

> P(AIX = j)P(X =)
j=0

P(X =klA) =

and the probability that Mr Bloggs is guilty becomes

n

P(GlA) = ) P(GIAN{X =k})P(X = k|A)
k=1
sl (3o —nr _ BIX]
ik E[X?] E[X?]

np 1

n?p* +np(l—p) 1+ (n—1)p

where we used the variance formuldX 2] = (E[X])? + Var[X]. Thus we got the
same solution as in Example 1.6.8 once more. The conditidisaibution of X
we computed is an example okae-biasedlistribution; for more on this topic, see
Problem 32. 0

2.5.3 The Geometric Distribution

Consider again the situation of successive independalgwhere the event occurs
with probabilityp. This time letX be the number of trials unti first occurs. Then
X is discrete with rangé, 2, ..., and the even{ X = k} means that we have the
sequence

FF..-FS

of k — 1 failures and success in thi¢h trial. By independence, this has probability

(1—p)(1—p)---(L—pp=p(l—p)!

and we state the following definition.
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Definition 2.5.3 If X has probability mass function

pk)=p(l—p)* ', k=1.2,..

it is said to have geometric distributiorwith parametep, and we write
X ~ geom(p).

The parameteris again called the success probability. If we instead ctheriumber
of trials beforethe first occurrence aft and denote this by, thenY has pmf

The difference is that the range includesVe refer to this as a “geometric distribution
including 0” and note thaf” = X — 1. In Example 2.2.5 we found the cdf of a
geometric distribution withy = % by using the definition of cdf. There is, however,
a quicker way, if we instead consider the probability thais strictly greater tham.
Since this is equivalent to saying that the fitdrials resulted in failure we get

P(X >n) = P(nconsecutive failuregs= (1 —p)"

which gives the cdf
Fn)=1-(1-p)", n=1,2,...

which is also what we got in the special case in the example.

Proposition 2.5.2. If X ~ geon(p), then

E[X]:% and Vafx] — 1p_2p

Proof. By Proposition 2.4.1 we get

EX]=Y P(X>n)=) (1-p"= ]13
n=0 n=0

which s certainly quicker than using the definition dirgctiVe will prove the variance
formulain Section 3.7.4. ]

The expression for the mean makes good sense. In a large nofithels, the pro-
portion p are successes, and hence they come on average (@yenyh trial. The
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mean in the geometric distribution includifgs 1/p — 1 = (1 — p)/p.

Example2.5.3 Ifyou play the Texas Lotto twice a week, how long is your expdc
wait to win the jackpot?

According to Example 1.4.11, the probability to winlig47, 784, 352, so your ex-
pected wait ist7, 784, 352 drawings or about59 thousand years. Good luck.

Example2.5.4 The government of a war-torn country decides that the ptiagpor
of males in the population needs to be increased. It thexafeclares that families
are allowed to keep having children as long as the newboriebalte boys, but as
soon as they have a daughter, they are not allowed any mddeerhi Will the goal
be achieved?

Consider a family that has no children yet, andXebe the number of children they
will have. With the rule to stop after the first daught&r,~ geon(%), and hence the
expected number of childrenis GivenY as the number of sons, we have= X —1
andhenc&[Y] = F[X]—1 = 1, sothe expected number of sons ithe same as the
expected number of daughters. The suggested policy wilthabge the long-term
sex ratio. See also Problem 60. 0

2.5.4 The Poisson Distribution

The distribution we investigate in this section is differrom those discussed previ-
ously, in the sense that it does not primarily describe dqdar experiment. Rather,
it is a distribution that has been observed empirically imyndifferent applications.

Definition 2.5.4 If X has probability mass function

/\k

_ A _
p(k)=e T k=0,1,..
it is said to have @oisson distributiorwith parametet\ > 0, and we writg

X ~ Poi()).

Since we have not derived this expression from any parti@dperiment, let us first
checkthatitis indeed a pmfaccording to the two criteriariog®sition 2.2.1. Clearly
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Fig. 2.10 Histogram of Pacific tropical cyclones988—2003. (Source U.S. National

Oceanic and Atmospheric Administration, www.noaa.govid @mf of a Poisson distribu-
tion with meanl5. Since we are interested only in the shapes, the scales anakes have
been omitted.

it is nonnegative and by Taylor’s theorem

k!
k=0

:e)\

so thep(k) sum to one. The Poisson distribution tends to arise when watdbe
number of occurrences of some unpredictable event overiacpef time. Typical
examples are earthquakes, car accidents, incoming phdsgerssprints in a news-
paper, radioactive decay, and hits of a Web $ihese all have in common the fact
that they are rare on a short timescale but more frequent ifoumt over a longer
period of time. For some real data, consider Figure 2.10¢ckvls a histogram over
the annual numbers of tropical cyclones (tropical storm$aricanes) that were
formed off the U.S. Pacific coast during the ye&988—2003. The average number
is 15, and we also plot the pmf of a Poisson distribution with= 15 (we will soon
see that) is the mean in the distribution). With so few observations, gannot
expect the histogram to look exactly like the pmf, but theredrtainly nothing that
contradicts the assumption of a Poisson distribution. Thath the physical nature
of cyclones (unpredictable, rare on a short timescale) ahthhobservations support
the assumption.

Example2.5.5 Suppose that the annual number of tropical cyclones thébareed
off the U.S. Pacific coast has a Poisson distribution withmmi&a What is the prob-
ability that a given year has at mdstyclones?

31t would be a shame not to also mention Siméon Poisson’inatigse of the distribution that would later

bear his name, the classical application to the number adsfan soldiers annually kicked to death by
their horses in the nineteenth century. The fit to a Poissstilalition is remarkably good (and the term
“success probability” takes on an interesting meaning).
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Let X be the number of cyclones, so thét~ Poi(15). The probability of at mosi
cyclones is

152 15 15* 15
P(X <5)=¢e1? (1+15+—+—+—+—) ~ 0.003

2! 3! 4l 5! U

It should be stressed that the events must be not only ramddmtandom. Compare
the two statements “large asteroids hit Earth every thadigaars” and “a millennium
year occurs every thousand years.” The first statement istdbe average behavior
of a random phenomenon, whereas there is no randomnessgetaisecond. Even
with randomness, we must make sure that there is “enought’ dfdr example, if
buses are supposed to arrive at a bus stop a¥aminutes, there will be some random
variation in their arrival times. However, since the bussdrs attempt to follow a
schedule, there is too much regularity to assume a Poisstibdtion for the number
of arriving buses in a given time interval.

Proposition 2.5.3. If X ~ Poi()), then

E[X]=X and VafX]=A\

Proof. First note that the pmf satisfies the relation
kp(k) = Ap(k — 1)

for k£ > 1, which gives

BIX) =Y kp(k) = 3 kp() = S p(k —1) = A
k=0 k=1 k=1

The proof of the variance expression is left for Problem 65. ]

Example2.5.6 A microliter of normal human blood contains on average alz600
white blood cells and million red blood cells, as well as platelets, plasma, ameot
matter. In a diluted blood sample, distributed in hundrefdest tubes, it was ob-
served that abouit% of the test tubes contained no white blood cells. What is the
mean number of white blood cells per test tube?

Since white blood cells are comparatively rare, we assunoessén distribution (and
here we are describing events in space rather than time).e Becifically, letX
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denote the number of white blood cells in a test tube and asshatX ~ Poi(\),
and the question is what= E[X] equals. That% of the tubes had no white blood
cells at all means that we estimat@) = P(X = 0) to be0.01. Since

p(0) = e
we get
A= —logp(0)
which in our case equalslog0.01 ~ 4.6. Hence, the mean is6 white blood cells
per test tube. 0

The Poisson distribution can be used as an approximatitetoihomial distribution.
To illustrate why, consider a newspaper page witletters and assume that each
letter is misprinted with probability, independently of other letters. The number of
misprints is then binomial with parametetsandp. On the other hand, sinceis
large andp is small, we are dealing with a rare and unpredictable ewamt this fits
the situation for a Poisson distribution. Since the meamébkiinomial distribution

is np, we can argue that the number of misprints is approximately#). Itis also
possible to argue directly that

k
<Z>pk(1 _ p)nfk ~ e P (n]f')
for largen and smallp and in Section 4.4, we will state a limit result that warrants
the use of the approximation.

How good is the approximation? One obvious difference betwide binomial
and the Poisson distributions is that the former has finibged0, 1, ..., n} and the
latter, infinite rang€{0, 1, ...}. This is also reflected in the variances, which for the
binomial distribution isup(1 — p) and for the approximating Poisson distributiop,
slightly larger because of the wider range. There are vanales of thumb for when
approximation is allowed, but since this is really a numanmoblem, depending on
how many correct decimals we are satisfied with, we will natrads it here. Let us,
however, point out that the approximation is good enougtetoftpractical use. In
Figure 2.11, pmf’s are plotted for = 10 andp = 0.1.

2.5.5 The Hypergeometric Distribution

Consider a set aV objects; of which are of a special type. Suppose that we choose
n objects, without replacement and without regard to ordelnats the probability
that we get exactly of the special objects?

Let X denote the number of special objects that we get. This isaelésrandom
variable with rang®, 1, ..., n, and its pmfis easily found by combinatorial methods.
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Fig.2.11 Pmf's of a binomial distribution witlhh = 10, p = 0.1 (left) and the approximating
Poisson distribution withh = 1 (right).

Definition 2.5.5 If X has probability mass function

()60

k)\n—k

p(k) = ~or =k =0,1,
n

it is said to have dypergeometric distributiomwith parametersv, », andn,

written X ~ hypergeoniNV, r, n).

N}

The parameters must be such thak r andn — &k < N — r, which we assume
implicitly without spelling it out. In Example 1.4.12, we tha hypergeometric dis-
tribution with parameter&’ = 52, r = 13, andn = 5. We next state expressions for
the mean and variance and defer the proof to Section 3.6.2.

Proposition 2.5.4. If X ~ hypergeoniN, r,n), then

E[X]:% and Va{X]:nx%:? %( r)

Now suppose thaV is large and- is moderate and let = /N, the proportion of
special objects. If is small relative taV, we would expect that drawing without
replacement would not be very different from drawing witpleeement. For exam-
ple, if the first object drawn is of the special type, the pntijom changes from /N
to (r — 1)/(IN — 1), which is then still approximately equal to But drawing with
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replacement gives a binomial distribution with succesdphility p, and we have

argued that the hypergeometric distribution can be apprated by the binomial dis-
tribution for suitable parameter values. Also compare tleans and variances for
the two distributions.

2.5.6 Describing Data Sets

The concepts of mean, variance, and standard deviatiow#hade to describe random
variables are often used to describe data sets. For exathpleyean and standard
deviation may be given to describe the performance by a $atass on a test or to
summarize a survey of home prices in a neighborhood. Supghasee have a data
set

D ={x1,22,....,Tn}

where ther;, are not necessarily different from each other. We then déffieenean
of this set as the arithmetic average

1 n
r = ﬁ Z T
k=1
and the variance is defined 4s
1 n
2= =3 (on -2

k=1

How does this fit into the framework of random variables? Ifaleose a valug at
random from the data set, thénis a discrete random variable whose rang§,ithe
set of distinct values ih. The pmf of X is precisely the histogram of the data set:

:#{k:xk:x}

n

px () xeS

The expected value is

uszpX(x):ZxW:%Zxszc
k=1

zeS x€S
and the variance
1 n
0’ =Y (e —2)’px(e) =~ (ex — )’ = 5}
x€S k=1

and the standard deviation as usual is the square root ofiti@nee. Thus, we can
describe data sets in a way that is commonly done and vievathisspecial case of

41t is also common to divide by, — 1 rather tham, and we will address the reason for this in detail in
Chapter 6.
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our theory of random variables and their distributions. é\ttatz ands2 change if

we add more data tD, so this corresponds to defining a new random variable. Alter
natively, we could think ofX as an ideal random variable over all possible values that
could belong to the data set, in which casecould be either discrete or continuous
and would have unknown mean and variance. We can then viehigtogram as an
approximation of the true but unknown pmf or pdf, andnds2 as approximations

of the true meam and variance2. We will return to this view in Chapter 6.

Example 2.5.7. A survey of salaries at a company witl employees gave the
following values: D = {30, 30, 30, 30, 30, 40, 40, 60, 70, 150, 220} (1000 dollars
per year). The mean is = (30 4+ 30 + - - - + 220)/11 = 66.4 and the variance

111

2 =\2
sy = ﬁ;(a:k—z) = 3514

which gives standard deviationa 59.3. In this case, there is no more data to be
collected, so the mean and variance are exact. Note thatlmely salaries are above

the mean an@ below, and merely stating the mean as a summary of the data doe
not reveal this fact. We say that the data set is skewed (tieft)e 0

Example2.5.8 A die was rolled7 times and gaveD = {2,2,2,2,4,5,5}. The
mean of this data setis= (2 + 2+ --- + 5)/7 = 3.1, and the variance

3|

2 _
Sy =

7
D (wr—x)? =18

k=1

If we choose at random fro? and call the numbek, the distribution ofX is

In this case it is more natural to think #fands2 as approximations to the true mean
and variance, which if the die is fair age5 and i’—g ~ 2.9 respectively. If the die
is rolled repeatedly to increase the data set, the appraxinsbecome increasingly
more accurate. 0

2.6 THE EXPONENTIAL DISTRIBUTION

We will introduce several named continuous distributiohsanalogy with the dis-
crete case, these are defined in terms of the pdf, and we mdy taggoname to
the distribution or the random variable itself. Also as ie tiscrete case, there are
essentially two different types of distribution: those wdescribe a clearly defined
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experiment or mathematical model from which we can deriegathf and those who
have been empirically determined to fit certain types of data. We have already
seen one distribution of the first category; the uniformribstion describes how to
choose a point at random from an interval. We continue witbtla@r distribution in
this category.

Let X be a continuous random variable that denotes the lifetimgoafething
(e.g., an electronic component) tlthdes not agén the sense that the probability of
functioning yet another time unit does not depend on itsentrage. We can describe
this in a formula as

PX>z+ylX>y) =PX >z (2.6.1)

for x,y > 0. This means that the probability of surviving anothdime units does
not depend on how many time unitshat the component has survived so far. For the
left-hand side we get

PU{X>z4+y}n{X>y}) PX>z+y)
P(X >y) - P(X>y)

PX>z+ylX >y =

where the last equality follows sincE > = +y = X > y that is, the event
{X > z + y}isincluded in the evenrtX > y}. Hence, if we let

Glx)=P(X>z), >0

we get the equation
Gz +y) = G(x)G(y)

for z,y > 0. Note that the functioiiz at a pointx gives the probability that the
component survives the ageand( is therefore called theurvival function Also
note thatG(z) = 1 — F(x) whereF is the cdf ofX. It can be shown (see Problem
75) that the only possible solutions to the equation are

@ G=z)=o0
(b) Gx)=1
(c) G(x) =e ?* where\is any constant

From a practical point of view, (a) and (b) are uninterestifige solutionG(z) =0
would mean that the component has probability O of survigingtime, which means
that it does not function to begin with. The soluti6i{z) = 1, on the other hand,
means that it functions forever. These two solutions alsuredict the assumption
that X is a continuous random variable, and we are left with (c) estily possibility.
The cdf of X is therefore

Fz)=1-G@x)=1-e?*, >0
and by differentiation we get the pdf

fx)=F'(z)=Xe ™, 2>0
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For this to be a possible pdf, the constamust be strictly positive.

Definition 2.6.1 If the pdf of X is
fx)=Xe™", >0

then X is said to have amxponential distributiorwith parameterz > 0,
written X ~ exp(A).

In Example 2.3.1, we thus had an exponential distributiach wi= 0.001. Note how

we started by making one seemingly innocent assumptiotthbee is no aging and
how this forced on us only one possible form of the pdf. Thepprty in Equation
(2.6.1) is called thenemoryless propertyHence we have the following result.

Proposition 2.6.1. A continuous random variable has the memoryless prop-
erty if and only if it has an exponential distribution.

Itis the shape of the pdf that is connected to the memorylegepty, so this property
holds for any value of. To investigate the role of, we note that largek means

that the pdf is higher near 0, which indicates that valueX dénd to be smaller. By
computing the expected value, we can see that this is inteechise.

Proposition 2.6.2. If X ~ exp(A), then

E[X]:% and Va{X]:%

Proof. Direct computation gives
> —A\x 1
E[X] = xAe Ydr = —
0 )\
by partial integration. For the variance we neggX 2|:

e 2
E[X?] = / 22 he M dx = -
0 A
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This gives

Example2.6.1 The technique ofarbon 14 datings based on decay of the isotope
carbon 14 into nitrogen 14. THealf-life, that is, the time required for half of the
atoms in the sample to decay, of carbon 14 is approximatlg years. What is the
expected lifetime of a single carbon 14 atom?

Since lifetimes are random, we need to interpret half-lifeve start with a number
of atoms, the half-lifé: is the time when there are roughly /2 atoms left. Thus, half
of the atoms have “survived?, and half have not, which indicates that the probability
to survive ageh is % Let T be the lifetime of an individual atom and lgtbe the
number that satisfies
P(T>h) = %

and from Example 2.3.1 we recognizes themedianlifetime.

Next, we assume thdt has an exponential distribution. This is certainly reason-
able as an atom decays spontaneously, not as a result of eldragear and tear.
Thus,T ~ exp(\), and we get

5 1
P(T > 5700) = ¢~ °790* = 3

which gives\ = log 2/5700 and the expected lifetime

1 5700
E[T) = X logz 8200 years
We will examine the problem of half-life in radioactive dgeaore closely in Section
3.10.1. 0

The parametex is often referred to as tHailure rateor hazard rateand is a measure
of how likely failure is at any given age. It is a natural exdem to allow the failure
rate to depend on age and thus definefthileire rate function a concept to which
we return in Section 2.10. The exponential distributionharmacterized by having a
constant failure rate function.

The exponential distribution is also used to model timesvbeth random events
such as earthquakes, customer arrivals to a store, or imgpjobs to a computer.
Recall how we previously used the Poisson distribution talehdhe number of
such events in a fixed time period. There is an interestingnection between the
exponential and Poisson distributions, which we descrifflp here and return to
address in detail in Section 3.12.
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Suppose that events occur in such away that the time betweavents isxp(\).
Suppose further that the occurrence of an event is indepeiofiéhe occurrences of
other events. It can then be shown that the number of ocategen a time interval
of lengtht is a random variable that has a Poisson distribution withm¢aSuch a
stream of events is calledRoisson process.

Example2.6.2 According to the U.S. Geological Survey, earthquakes witdlgm
nitude at leas? occur on averagés times a year (worldwide).(a) What is the
probability that two consecutive such earthquakes areast Pemonths apart?Ab)
What is the probability that there are no earthquakes2maonth period?

Suppose that earthquakes occur according to a Poissonsgrodth rate\ = 1.5
earthquakes per month. L&tbe the time between two consecutive earthquakes and
X the number of earthquakes ireamonth period. Then we have ~ exp(1.5) and

X ~ Poi(3) and we get, for (a)

P(T>2)=e 12 x0.05

and for (b)
P(X=0)=e?~0.05

Note that the two eventsI” > 2} and{X = 0} are identical. 0

2.7 THE NORMAL DISTRIBUTION

The next distribution falls into the second category, thelke are motivated primarily
by empirical observations rather than describing a pasdrcexperiment or mathe-
matical model. Let us first define it.

Definition 2.7.1 If X has pdf

1 2 2
- —(z—p)°/20
)= e , TER
fz) = —

it is said to have anormal distributionwith parameterg: and o2, written
X ~ N(p,0?).

This is also often called th8aussiardistribution, after German mathematician Carl
Friedrich Gauss, who used it to describe errors in astronahmeasurements. The
typical bell-shaped pdf is shown in Figure 2.12. The normstrithution shows up
naturally in many situations where there are measuremsarisar fluctuations due to
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M M
Fig.2.12 Thd pdf's of two normal distributions with the same mean. ©he on the left has
higher variance.

randomness, noise, and other factors, and itis the mostynided of all distributions.
It is used in models of signal processing, the velocitiesad qolecules, and the
movement of stock market prices. It also arises in the stddyany biological
phenomena, where the randomness is typically composedfefadit components.
As an example, consider taking the blood pressure of a perBost, there is the
variation that occurs between individuals, which gives tisrandomness due to the
selection of individual. Then there is variation over timighin each individual, and
finally there is uncertainty in the actual measuring procedu

Note that the pdf is symmetric around By computing the usual integrals, it is
easily shown that

Proposition 2.7.1. If X ~ N(p,0?), thenE[X] = pand VafX] = o2.

A word of caution regarding notation is due here. We have ehds gives? as the
second parameter, so that if we writg0, 4), we mean that the variancedgand the
standard deviatioB). Some texts prefer to give the standard deviation as thenskec
parameter, as does, for example, Matlab, so you need to rentiah.

Since we cannot find a primitive function of the pdf, thereagwope of an explicit
expression for the cdf, and it must be computed numericaltig normal distribution
with . = 0 ando? = 1 is of particular interest and is called tetandardnormal dis-
tribution. For the standard normal distribution, we useftil®wing special notation
for the pdf and cdf:
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The significance of the standard normal distribution is Igglebut in the next propo-
sition.

Proposition 2.7.2. Suppose tha ~ N(u,0?) and letZ = (X — u)/o.
ThenZ ~ N(0,1).

Proof. Let 'z denote the cdf of. Then

ptow 1 2 2
Fz(z) =P(Z<z)=P(X < +:c:/ ———e =W gy
2@)=P(Zs0)=PX sptor)= [ —
Making the variable substitution= (¢ — 1) /o givesdt = ody, and the new integral
limits —oo andx and the expression equals

x 1 T

—00 O 2w —0o0 |

Hence, any normal distribution can be brought back to thedstad normal distri-
bution by subtracting the mean and dividing by the standaxdation, a procedure
sometimes referred to as computing thecoreof X. We state in a corollary how
this is used in computations.

Corollary 2.7.3. Let X ~ N(u,0?). Foranyz,a,b € R, we have

@) P(ng):ob(x_“)

g

(b) P(angb):q)(b_ﬂ)_(I)(a—u)

Proof. (a) If X ~ N(u,0?), then

P(ng):P(X;llg%):@(x;M)

where the first equality holds since we subtracted and divijethe same quantities
on both sides of the inequality in the probability statemeriieres > 0, thus not
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changing the inequality. The second equality holds by Psitiom 2.7.2. Part (b) is
true because of Proposition 2.3.2(a) . ]

By Corollary 2.7.3, we have to compute only the cdf of the dead normal distribu-
tion, and Table A.1 gives numerical valuesigfr). Note that only values for positive
x are given,; for negative, we use the following result.

Corollary 2.7.4. Foranyz € R

O(—z)=1—d(x)

Proof. Note thaty is symmetric around, which gives

B(—z) = /ﬁ o(t)dt = /Oo o(t)dt = 1 — ®(x)

— 0o

Another immediate consequence of Proposition 2.7.2 isaliaiear transformation
of a normal distribution is normal, in the following sense.

Corollary 2.7.5. LetX ~ N(u,0?),leta,b € R,andlety’ = aX +b. Then

Y ~ N(ap +b,a*0?)

Proof. Let us do the case > 0. Start with the cdf oft".

P <2) = P<aX+b§x>—P(XsIa_b)
- @<w>_@<w>

which is precisely the cdf of a random variable, whiciNigay + b, a>0?). The case
a < 0is similar. [ |
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Let us look at a few examples.

Example2.7.1 ThelQ of arandomly selected individualis often supposddliow
a normal distribution with mean00 and standard deviatior. Find the probability
that an individual has an I(&) abovel40 and(b) betweeni 20 and130, and(c) find
a valuer such thab9% of the population has 1Q at least

We haveX ~ N (100, 15%) and get, for (a)

P(X >140) = 1-P(X<140) = 1_q)(1401;5100)
= 1-—®(2.67) ~ 0.004
For (b), we get
PI20< X <130) = & (@) 8 <w>

= ®(2)— ®(1.33) ~ 0.07.
For the last part, we need to findsuch thatP(X > z) = 0.99. By Corollary 2.7.4

we get
x — 100 100 — =
P(X =1-9 =0 =0.
(X > ) <15) <15>099
and Table A.2 gives
100 —
=2.33
15
which givesz =~ 65. The valuer is called the99th percentile 0

Example2.7.2 A power source gives an output voltage of (volts). Because
of random fluctuations, the true voltage at any given tim&is= 12 + X, where

X ~ N(0,0.1). The voltage is measured once an hour, and if it is outsidetaeval

[11.5,12.5] the power source needs to be adjusted. What is the prolyatbidit no

adjustment is needed durin@4-hour period?

Let us first note that by Corollary 2.7.%, ~ N(12,0.1). At any given hour, the
probability that the voltage is within bounds is

11.5 - 12 12.5 - 12
P(115<V <125) = | ——— | - Q| ———
( - ) ( v0.1 ) ( v0.1 )

®(1.58) — B(—1.58) = 28(1.58) — 1 ~ 0.89

%
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and hence the probability that it is out of bound8.isl. Now consider the experiment
to check the voltage every hour 24 hours. Assuming that hours are independent,
the number of hours that has the voltage out of bounds is abaleandom variable
with n = 24 andp = 0.11. Call this numbef” to obtain the probability that no
adjustment is needed as

P(Y =0) = (1-0.11)* = 0.06

For values ofr larger than those in Table A.1, the approximation

@(I)%l—@

can be used. See Problems 89 and 90.

2.8 OTHER DISTRIBUTIONS

So far we have seen the uniform, exponential, and normailulisibns as examples
of continuous distributions. In this section we list a numb&other continuous
distributions, as well as some of their properties. We wi#baencounter a type of
random variable that is neither discrete nor continuous.

2.8.1 The Lognormal Distribution

Sometimes observations do not follow a normal distribubahtheir logarithms do.
This may simply be an empirically observed fact but can atsarigued theoretically.
The normal distribution arises in situations such as thosstioned in the previous
section because the randomness hadglitiveeffect. It may instead be the case that
randomness hasraultiplicativeeffect. This is true in many applications in science
and engineering, for example, reliability and materiaigiaé analysis, and also in
models for financial markets where it is more realistic to mlaal price change by
multiplying by a percentage than to add a dollar amount.

Definition 2.8.1 Let X ~ N(u,0?) and letY’ = ¢X. ThenY is said to have
alognormal distributiorwith parameterg ando?2.

For practical reasons, this time we deviated from our usaavention of defining a
continuous distribution in terms of its pdf. The reason & the can always compute
probabilities in the lognormal distribution by referringithe normal distribution. We
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leave it as an exercise to show the following.

Corollary 2.8.1. LetY be lognormal with parametefsando?. ThenY has

pdf
1

ellogz—w)*/20% 1 < )
rxoV 2T

fy(z) =

Note that the parametessando? are the mean and variance of the underlying normal
random variableX, not of the lognormal random variabié By computing the usual
integrals, it can be shown that the mean and variance are

B[Y] = et/ and Vaiy] = et (e 1)

Example2.8.1 Suppose that the price of a particular stock at closing has a log-
normal distribution withE'[Y] = 20 dollars and VaiY'] = 4. What is the probability
that the price exceed2?

First we need to find: ando. By the expressions above we have

eto’/2 — o

and , )
e?rte (e" — 1) =4

where the first equation gives
[+ % = 1og 20
which we substitute in the second equation to get
210820 (602 _ 1) iy
which gives
o? =log(1.01) ~ 0.01

and
3.0

log 1.01
u=log 20 — 0g2 ~

Finally, sincelog Y is normal, we get
P(Y > 22) 1-P(Y <22) = 1—P(logY <log22)

1—d (103227_3-0) ~ 0.18.
V0.01
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2.8.2 The Gamma Distribution

The gamma distribution is flexible, fits many different typpdéseal-world data sets,
and can be used as an alternative to the normal distributimmwata are nonnegative
and not exactly symmetric. Before we define the gamma digtab, let us introduce
thegamma functiopwhich is defined as

I(a) = / et 1dt
0
If « is a positive integen, this reduces to
P(n)=(n—-1)!

so the gamma function can be regarded as an extension ofdiogihto the entire
real line. We are now ready to define the gamma distribution.

Definition 2.8.2 If X has pdf

>0

it is said to have ggamma distributiorwith parametersx > 0 and\ > 0,
written X ~ I'(a, ).

Note thato = 1 gives the exponential distribution with paramekerThe parameter
«vis called theshape parameteand) is called thescale parameterFigure 2.13 gives
the pdf’s for three gamma distributions with= 1 and different values ak. Notice
how the shape changes with the valuexphsa increases, it increasingly resembles
the normal distribution. Changing the parametamrresponds to changing the unit
of measure and does not affect the shape qualitatively (sdddPn 95). In particular,

if a is an integerp, we get the pdf

xnfl

(n—1)V z20

This has an interpretation to which we will return in Sect®®0.5. In this case, we
can get an explicit expression for the cdf as

fla) = e

n—1
/\k k
Flz)=1—e z
k=0

S e=0

which can be shown by partial integration and induction. Bynputing the usual
integrals and using some special properties of the gamnwifum it can be shown
that
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_— a=2
a=3
/ / a=5
0 2 4 6 8 10

Fig. 2.13 Pdf’s of the gamma distribution with fixed and different values of.. Note the
increasing resemblance to the pdf of a normal distribution.

E[X]:% and VafX] = %

In Section 3.6.2 we will show this for the integer case- n.

2.8.3 The Cauchy Distribution

We finish with a distribution that does not have much prattica. It is, however,
derived from an easily described experiment and turns ohat@ some interesting
properties, which makes it a favorite in various countenegkes in the probability
and statistics literature.

In an ordinary coordinate system, start at the pint ), choose an angle between
—7/2 andr /2 at random and at this angle draw a line to ihaxis (the angl® gives
a line to the origin). LetX be the point where you hit theaxis (Figure 2.14). The
range ofX is (—oo, 00) and we next find the pdf oK. Denote the angle b and
assume thad ~ unif(—7/2,7/2). ThenX = tan © and has cdf

Fx(r) = P(tan© <z) = P(© <tan 'z)
-1
= Fo(tan'z) = M7 rER
T

Differentiation gives

fx(@) = Fiw) = ———, 2 €R

(1 +22)’
This is called theCauchy distribution Something interesting happens when we at-
tempt to compute its expected value:

X = [ = o g1+ e,

) oo 1+ 22
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This is not well defined since it is of the formx$ — co.” In this case, we say that
the expected valudoes not exist If the experiment were to be repeated over and
over and consecutive averages computed, these would nagigrrbut keep jumping
around ther axis forever, which is somewhat surprising since the pdf/iametric
aroundo.

2.8.4 Mixed Distributions

The distinction between discrete and continuous randoiabias is fundamental but
not exhaustive. There are random variables that belongitbereof the two cate-
gories, as the following example shows.

Example2.8.2 Jobs arrive to a computer. With probability 0.8, the compige
busy and the incoming job must wait in queue for a time (in adsd, which has an
exponential distribution with parameterLet X be the waiting time for an incoming
job and find the cdf ofX.

The crux here is that the waiting time(isf the computer s free and has an exponential
distribution otherwise. LeB be the event that the computer is free and fix:an 0.
The law of total probability gives

P(X <) = P(X < 2|B)P(B) + P(X < «|B°)P(B")

whereP(X < z|B) = 1andP(X < z|B°) = 1— e *. SinceP(B) = 0.2 and
P(B°) = 0.8, the cdf becomes

Fz)=1-08e"", x>0

The cdf is shown in Figure 2.15. Clearly the range is uncduletaso this is not a
discrete distribution. On the other hand, since the cdf hdiseontinuity at0, it is
not a continuous distribution either. This is an example ofiged distributionland

Fig.2.14 If © is chosen at random betweenr/2 andn /2, X has the Cauchy distribution.
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0.8
0.6
0.4

0.2

Fig. 2.15 The cdf of a mixed distribution with a discrete part at 0 andatmuous part on
(0,00).

X is called amixed random variablewhich has a discrete part@and a continuous
part on(0, co). 0

Let us conclude this section by mentioning that there are sttanger creatures in
the world of probability, namely, distributions that arether discrete, nor contin-
uous, nor a mixture of the two. These so-called singularitigions are strange
mathematical constructions and of no use in any of the agipdics we consider.

2.9 LOCATION PARAMETERS

The mean is not the only possible location parameter andrireszases may not be
the best choice. For example, in Problem 40, we learn that i unif(0, 1), then
E[1/X] = oo. Since we always get finite values bf X, the mean may not be the
best way to summarize the distribution. Another locatiorapeeter is thanedian
which can be considered the midpoint of the distributiomimdense that, on average,
half of the observations fall below and half above it. Weesthe formal definition.

Definition 2.9.1 Let X be arandom variable. Any numberthatis such that

P(X >m)> and P(X <m)>

DN | —
DN —

is called amedianof X.

Note that the median is not necessarily unique. For exanifpl¥, is the number
when we roll a fair die, botl3 and4 are medians, as are all numbers in-between. If
the distribution is continuous with cdf, a median always satisfi¢&(m) = 3, and
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if the range ofX does not have any “holes,” the median is also unique. We #tate
following result without proof.

Corollary 2.9.1. Let X be a continuous random variable with ptiind cdf
F', such thatf is strictly positive in an entire intervdk, b) and0 otherwise
where—oo < a < b < co. Then the mediam: is the unique number that
satisfies

Flm) = 3

The mean is thus the average and the median the midpoint sfréibdtion. If X is
continuous with a unique median and its pdf is symmetric adqu then the mean
and median are equal.

Example2.9.1 Consider the random variablé = 1/X, whereX ~ unif(0, 1).
What is the median of ?

We need to find the cdf df’. Takey > 1 to obtain

Fr(y) = P(Y<y) = P<Xz 5)

1 1
= 1—Fx<—>—1——,y>1.
) )

Solving the equatioty (m) = % gives the mediam = 2. On average, half of the

observations are less tha@mand half are larger. Values that are larger have a good
chance to be much larger, in fact so much that the mean istmfini 0

For a data set, the median is defined as the value that is initttdem|f the number of
observations is even, it is the average of the two middlees(note that the median
for a data set is always unique). Consider the following eplam

Example2.9.2 A survey of salaries at a small company with employees gives
the following values:30, 30, 30, 30, 30, 40, 40, 60, 70, 150, 220 (x 1000 dollars per
year). This gives a mean salaryGtf, 364 and a median of0, 000 dollars per year. If
the manager doubles his salary fr@a0, 000 to 440, 000, the mean goes up to over
86, 000, whereas the median stays the same. It is probably fair tthsdyhe median
better represents the data set. 0
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The distribution in the example is skewed, and in such a ¢@&seammon to give the

median instead of the mean. Also note how the median is lesstise to extreme

values; it does not change with the manager’s doubled saldmgreas the mean in-
creases significantly. Yet another location parameterdgahowing.

Definition 2.9.2 Let X be a random variable with pmf or pdf Any number
T, With the property

f(xm) > f(z) forallz € R

is called amodeof X.

Whereas the mean is the average and the median the midpwnttérpretation of
the mode is that it is thenost likely valueof X. It need not be unique in either the
discrete or continuous case. For example, for a uniformitigion, any number in
the range is a mode. We can also defme&al modeswhich have the property that
the pdf or pmf has a local but not necessarily global maximapending on the
number of such local modes, distributions can be classifiednémodal, bimodal,
and so on. For example, the pdfin Figure 2.5 is bimodal.

Example2.9.3 Let X ~ exp()). Find the mean, median, and modeX6f

We already know that the meanjis= 1/\. For the median, we need to solve the
equation

1
1— —\m _
¢ 2
which gives
~ log2

m

~ 0.694

which means that the median is smaller than the mean for {herential distribution.
The intuition behind this is that the range above the meanfiisiie and large values
tend to push the average up. This distribution is said to besH to the right. The
modex,, is thex value that maximizes the pdf

flx) =A™, >0

which givesr,, = 0. It seems strange thats the “most likely value,” but since thisis
a continuous distribution, we need to think of the mode as#hee that observations
are most likely to be near, not exactly equal to. 0
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For a data set, the mode is simply the most frequent valuehwhay not be unique.

Example2.9.4 In the example of salaries above, the mod&0is000, the “typical”
salary for an employee. Like the median, it does not changle the manager’s
doubled salary. 0

2.10 THE FAILURE RATE FUNCTION

In this section we study nonnegative, continuous randormalbkes, with the interpre-
tation that they are lifetimes of some object. We use thetiwotd for “time” rather
than X, and the argument of cdf’s and pdf’stis

Definition 2.10.1 Let T be a random variable with cdf’ and pdff. The
failure rate functionis defined as

r(t) = —

Some alternative terms fo(t) arehazard rate functiomnddeath rate functionThe
interpretation ofr(¢) is that it is a measure of how likely failure is at timeof an
object that is already time units old. Compare this with the pdft), which is a
measure of how likely failure is d@tof a brand-new object. Hence the failure rate is
aconditionalmeasure of failure and the pdf an unconditional such measure

This is easier to understand if we instead think of a disceatge. Consider a
human lifespan measured in years, and:let 100 years. The pmp(100) is the
probability that a newborn individual dies at ag#, which is pretty low. The failure
rater(100), on the other hand, is the conditional probability that atiidual who is
alreadyl00 dies before turning01, which is much higher. Witll. denoting lifespan,
we thus have

p(100) = P(L = 100)
r(100) = P(L =100[L > 100)

Indeed, a$ gets large, we have(t) going to0 butr(t) going tol. As we discussed
already in Example 1.2.3, it is convenient to model lifetsvas continuous, even
though we always have a discrete timescale in practice. Wehaerefore treat only
the continuous case, but see Problem 107 for more on thethdailure rate function.
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Example2.10.1 LetT ~ exp(A). Find the failure rate function df.

From the definition we get

e e~ M B
W= T ioame N =20

so the exponential function has constant failure rate. Wais to be expected since
we introduced the exponential distribution as the lifetioisomething that does not

age. O

Example2.10.2 LetT ~ T'(2,1). Find the failure rate function df.
From Section 2.8.2 we have
fit)y=e't, t>0

and
Ft)y=1-(1+te ", t>0

which gives the failure rate function

_fe ot
rﬁ)"l-—ﬁXﬂ 14t =0 O

Note howr(¢) in Example 2.10.2 is an increasing functiort o his means that failure
becomes more and more likely with time; that is, unlike theanential distribution,
aging is present. This is an example of a distribution viittreasing failure rate
(IFR). We could also imagine that aging is beneficial so thdtife is most likely
early on, and becomes less likely as time passes. This isafieeaddecreasing failure
rate (DFR). Constant failure rate is appropriately labeled CFR.

In reality, most failure rate functions are combinationson€ider, for example,
a human life. There is certainly an elevated risk of deatfn ladtand shortly after
birth. After a couple of years, the risk of death is fairly stemt, mainly due to
accidents and other unpredictable causes. Then aging stakick in (around the
time you start college), and the risk of dying starts to imse This is typically true
for mechanical objects as well. Firstthere is a certaindkran” period during which,
for example, manufacturing errors may cause failure. Afftés is over, there is a
period of fairly constant failure rate, and after a while eral fatigue starts to have
an impact, thus causing the failure rate to increase. Siukhdaate functions are
said to be “bathtub-shaped,” as shown in Figure 2.16.
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When the standard of living in different countries are congpaone summary
statistic that is often given is tHde expectancy In our terms, this is the expected
value of the lifetime of a newborn individual, and it varigegtly between first world
and third world countries. For example, life expectancyapah is81 years, and in
Angola, only37 years. Whatdoes thismean? Are there no old people in Angartes?
important explanatory factor is thefant mortality measured in deaths per thousand
live births, or in our terminology, the probability that awigorn child survives. In
Japan this number &3 and in Angolal93.8! Thus, the probability that a newborn
Angolan does not survive its first year is almOs2, and this brings the expected
lifetime down significantly. Instead of just comparing thgpected lifetimes, we can
compare the failure rate functions, which would be morerimfative, and we would
then notice a large gap in the beginning, correspondingfemtrmortality.

If we still want a single number to describe lifetime, rattigan the entire failure
rate function, it might be more appropriate to use the meft@n Section 2.9, since
this is less sensitive to a skewed distribution. We disalissenan lifespans above,
but the same problems are present in any kind of lifetimeyaiglor, as it is more
commonly termedsurvival analysis

2.10.1 Uniqueness of the Failure Rate Function

As we will soon see, the failure rate function uniquely detieres the distribution.
This is convenient, since when we model lifetimes, it is maeBier to figure out
what the failure rate function should look like, than it isdescribe the cdf or pdf.
For example, the bathtub shape shown in Figure 2.16(b) nyakdsct sense, but it
is not easy to figure out what this means for the pdf or cdf.

When lifetimes are studied, it is often convenient to coesttie probability that
T is greater thaninstead of less than We therefore introduce the following function.

DFR IFR

é \
o CFR o
= I}
1 o
S =
< 2

Age Age
(a) (b)

Fig. 2.16 Different types of failure rate functions: (a) decreasiognstant, and increasing;
(b) bathtub-shaped.
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Definition 2.10.2 Let T be a nonnegative, continuous random variable with
cdf F. The function
Gt)=1-F(), t>0

is called thesurvival functionof 7'.

Thus, the survival function is decreasing witf0) = 1 andG(cc) = 0. In terms of
G, the failure rate function is
_ [

r(t) = Tt

and we have the following relation.

Proposition 2.10.1. LetT be a nonnegative, continuous random variable with
failure rate functionr. ThenT" has survival function

G(t) = exp (— /Otr(u)du) L t>0

Proof. First note that

and integrate both sides to obtain

/0 r(u)du = —log(1 — F(t)) = —log G(t)

G(t) = exp (_ /0 t r(u)du)

and we are done. We have implicitly used the boundary candii(0) = 0 which
always holds for a nonnegative continuous random variable. ]

which gives

Example2.10.3 Inthe late1990s it was reported that flu shots cut the death rate in
half among elderly people in the United States and Canadap&e that an unvacci-
nated70-year old person has probability8 to survive anothet0 years. How much
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(in percent) does this probability increase for a vaccidgterson?

Denote the lifespan for an unvaccinated persoilgnd a vaccinated person by
Denote the corresponding failure rate functions and cdf's b, rv, Fyy, and Fy,
respectively. Henceys (t) = 2y (t), and the desired probability is

P(V > 80)
P(V > 70)

— e (_ / v rvmm) / exp (_ / " Tv(u)du)
= exp (_ /7j0rv(u)du) = exp (—%/ﬂiorU(u)du)

= /P(U >80|U > 70) = 0.8 ~ 0.894

PV >80V >170) =

which constitutes 42% increase in thé0-year survival probability. 0

Example2.10.4 Consider a certain type of ball bearing that wears down gakiylu
at a slow but steady rate. To model this, we suppose thatiitsdaate function is
linearly increasingy(t) = at for somea > 0. It has been observed that the median
lifetime is3 years. What is the probability that such a ball bearing lstsore than

4 years?

Let T be the lifetime. Thel" has survival function

610 s (- [ i) s (1)

and since the mediam = 3 satisfiesG(3) = 1, we getexp(—9a/2) = 3 which
givesa = 2log2/9 and

2log2 x 4
P(T > 4) = exp (—%) ~ 0.29

If we differentiateF'(t) = 1 — G(¢) in the previous example, we get the pdf
fit) = atefatz/Q, z>0

which is a special case of the following distribution.



150 RANDOM VARIABLES

Definition 2.10.3 If T" has pdf
ft) = Aat"te M £ >0

it is said to have &Veibull distributionwith parameters: > 0 and\ > 0.

The parametet: is called theshape parameteand A\, the scale parameterIn the
example we had = a/2 anda = 2. The cdf of the Weibull distribution is

Fity=1—e", t>0
and the failure rate function
r(t) = At t>0

Thus, by choosing different values afwe can model increasing failure rate ¢

1), decreasing failure ratex( < 1), or constant failure rateo( = 1, exponential
distribution). This makes the Weibull distribution one betmost commonly used
distributions for lifetime modeling. Note how determines the shape of the failure
rate function, and how the other paramefercan be varied to change the scale, for
example to change between different units of measure.

Example2.10.5 LetT ~ unif[0, 1]. Find the failure rate function df.

This is straightforward. Sincé(t) = 1 andF(t) = ¢, we get

r(t) =

L, 0<t<1

1—-1

where we notice that(t) — oo ast approaches. If we think of this as a lifetime
distribution, then failure will always occur before ageThus, as the age approaches
1, failure becomes more and more likely, which is reflectechmfailure rate going
to infinity. Compare with the argument for human lifespanghi@ introduction, but
remember that(¢) is now a rate and not a probability. 0

PROBLEMS

Section 2.2. Discrete Random Variables

1 The discrete random variabl€ has cdfF that is such thaf'(z) = 0,z < 1, F(z) =
3,1 <z <3,andF(z) = 1,z > 3. Find(a) F(2), (b) P(X > 1), (c) P(X = 2),
(d) P(X = 3).
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The discrete random variablé has cdf

0 forz <1
1/4 for1<z<2
3/4 for2<z<3
1 forz >3

Find(@ P(X =1) (b) P(X =2) (c) P(X =2.5) (d) P(X <2.5)

Roll two dice and find the pmf oKX if X is (a) the smallest numbegb) the difference
between the largest and the smallest numbers.

The random variabl& has pmfp(k) = ck, k = 1, 2, 3. Find(a) the constant, (b) the
cdf F, (c) P(X <2),(d) P(X > 1).

The random variablé& has pmfp(k) = ¢/2%, k = 0, 1, ... Find (a) the constant, (b)
P(X > 0), (c) the probability thatX is even.

Five cards are drawn at random from a deck of cards. Xdie the number of aces.
Find the pmf ofX if the cards are draw(a) with replacement(b) without replacement.

F(z) =

A fair coin is flipped twice. LetX be the number of heads minus the number of tails.
Find the pmf and sketch the cdf &f.

Cards are drawn one by one at random from a deck of cards.XLké the number
of draws needed to draw the ace of spades. Find the pmf dfwe draw (a) with
replacement(b) without replacement.

Let the random variabl& have pmfp(k) = 1/2*, k = 1,2,..., and letY = 1/X.
Find the cdf ofY".

Section 2.3. Continuous Random Variables

Let X andY be nonnegative random variables with the samefedBhow that, for any
x>0

1-2F(z) < P(X4+Y >2z) <2(1 - F(z))
Hint: Problem 13, Chapter 1.

The concept of a random variable can be extended to allownforite values as was
mentioned in the text following Proposition 2.3.1. Supptsa# X is a nonnegative
random variable such th&(X = co) = p > 0. Show thatF'(z) — 1 —pasz — oc.

Let f be the pdf of a continuous random variate Is it always true thaf (z) < 1 for
all z in the range ofX? Does it have to be true for someén the range ofX?

The functionf is defined asf(z) = cz?, 0 < = < 1. (a) Determine the constant
¢ so that this becomes a pdf of a random variakle (b) Find the cdf and compute
P(X > 0.5). (c) LetY = /X and find the pdf ot

Which of the following functions are possible pdf’s for comtous random variables?
For those that are, also find the cdf.

@/f(@)=lz], -1<z<1 () f(@)=3@E"—1), 0<z<2

©f(x)=1, -1<z<0 (d)f(z)=1/2" z>1.

Consider the functiorf(xz) = az + b,0 < « < 1. For which values o& andb is this
a possible pdf for a continuous random variable?
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The random variableX has pdff(z) = 1/2% & > a. Find (a) the value ofa, (b)

P(X > 3),(c)avaluez such thatP(X > z) = 1.

Suppose that the rate of growth of striped badsrpone saxatili} is constant between
the ages of and15 years. Letd be the age antd” the weight in pounds of a randomly
sampled bass from this age interval, and supposeithat 24 + 3. Let the pdf ofA
be

fa(z)=a(20 —x2), 5<x <15

Find (a) the constant, (b) the pdf of .
The continuous random variahlé has pdf

1/2 if0<z<1
f(‘”)_{ 1/(22%) ifa>1

(a) Show that this is a possible pdf of a continuous random verigb) Find the cdf of
X and sketch its graph(c) LetY = 1/X. Find the pdf ofY".

Let X ~ unif(0,1). What is the distribution of — X?

Let X ~ unif(0,1). Find the pdf's and sketch their graphs of the following ramd
variables (be careful with the range§) Y = 1/X, (b)Y = 1/vVX, (¢)Y = log X.
Let X have pdff(z) = e~®,z > 0. Find the pdf ofe™*. What is this distribution
called?

Let X have pdff(z) = e~%,2 > 0, and letY’ = v/X. Find the pdf ofY.

We have seen that iX is continuous ang is a function,g(X) can be discrete. Is it
possible to have discref€ and continuoug(X)?

Section 2.4. Expected Value and Variance

Roll two dice and finde [ X ] if X is (a) the smallest numbefb) the difference between
the largest and the smallest numbers.

(a)Consider arandomly chosen family with three children. Wtite expected number
of daughters?b) Consider a randomly chosen girl who has two siblings. Whateis
expected number of sisters? (Recall Example 1.4.4.)

Draw three cards without replacement from a deck of carddetn® be the number of
spades drawn. Finfl[X].

One hundred people are to have their blood drawn to be testealdisease. Instead
of immediately analyzing each individual sample, a pooktigle of all individuals is

analyzed first. If the pooled sample is negative, everybsdyeclared healthy; if it is

positive, each individual blood sample is analyzed. Supbat individuals have the
disease with probability, independently of each other. L&t be the number of blood
sample analyses that are done; fiigX ] and for which value o this is< 100.

In a “street bet” in roulette you bet on three numbers. If ahthese come up, you win
11 times your wager, otherwise lose your wager. Kebe your gain if you bet one
dollar on a street bet. Find the mean and varianc& of

In a “five number bet” in roulette you win if any of the numbefg 0, 1, 2, or 3 come
up. (a) In order to get the usual expected gain-e2/38, what should the payout be
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if you wager a dollarAb) The actual payout on this bet is 6:1. What is your expected
gain?

The game of chuck-a-luck is played with three dice, rolledkipendently. You bet one
dollar on one of the numbeisthrough6 and if exactlyk of the dice show your number,
you win k dollarsk = 1,2, 3 (and keep your wagered dollar). If no die shows your
number, you lose your wagered dollar. What is your expeciss?

You are given two envelopes containing money and are toldathe contains twice as
much as the other. You choose one at random, open it, andfio@ You are now
given the options to either keep the money or switch to therathvelope and take what
is inside. Since you chose at random, you figure that the aheslope with equal
probabilities contain850 or $200. If you switch and it contain$50, you lose$50 and
if it contains$200, you gain$100. Since the average ef50 and100 is 25, you figure
that your expected gain is positive and that it makes senseitoh. Now you realize
that you would reach the same conclusion regardless of tliainyou found in the
first envelope, so you did not even have to open it, just takadtimmediately switch
to the other. So, you might as well just pick the other envelapstart with. But then,
by the same argument, you should switch to the first! Thisaisly does not make
any sense. Where is the error?

In the island problem in Example 1.6.8, [§tbe the number of individuals on the island
with the genotype, lep, = P(X = k), k = 0,1,...,n, and lety = F[X]. (a)
Suppose that we know that the murderer has the genotype. Bladwhe conditional
distribution of X given this fact is given by

Pe=FPE b 01, .n
n

and explain why this is calledsize-biasedlistribution. (b) Suppose that we have an old
report stating that an islander has the genotype but thattime has been erased, and that
we also find out that Mr Bloggs has it (so that we have threerghens of genotype,
which could be from one, two, or three individuals). Find ttmaditional distribution

of X, and show that the probability that Mr Bloggs is guilty i§X?]/E[X?]. (c)
Generalize (b) tg independent observations of the genotype.

There aren families living in a neighborhood. Of these; havek children, where
k=0,1,...,4. Letpr = ni/n, the probability that a randomly chosen family Has
children and lef: be the mean number of children. You observe a child playirthén
street. Show that the probability that this child belonga tamily with & children is
kpr/p. Explain how both this and Problem 32(a) can be explained‘twls in urns”
model.

You bid on an object at a silent auction. You know that you @dhitdater for $100 and
you estimate that the maximum bid from others is unifornfi@n 130] (for convenience,
you assume that it is continuous, thus disregarding theiltigsof two equal bids).
How much should you bid to maximize your expected profit, ahdtis the maximum
expected profit?

A stick measuring one yard in length is broken into two piestasindom. Compute the
expected length of the longest piece.

A European roulette table has the numb&s86 plus0 (but no00), and the payout is
the same as for the American table. What is the mean and ecarigfithe gain if you
(a) bet on odd(b) make a straight bet?
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Compute the means and variancesicindV in Problem 17.

The random variableX has pdff(z) = 322, 0 < 2 < 1. (a) ComputeE[X] and
Var[X]. (b) LetY = v/X and computeZ[Y] and VafY].

Let X > 0 be continuous. Show thaf[X] = [* P(X > z)dz and E[X?] =
2f0°° zP(X > z)dz. Hint: z = fot dt andz? = 2f0w tdt.

Let X ~ unif(0,1), letY = 1/X, and letZ = 1/v/X. Compute the expected values
and variances of andZ where possible.

Let R ~ unif[0,1] V be the volume of a sphere with radiis ComputeE[V] and
Var[V].

Let X ~ unif[0,2] and letV" be the volume of a cube with sid¥. Find E[V] and
Var[V].

The continuous random variablé has pdff(z) = 2z, 0 < = < 1. Find (a) E[X]
and VafX] (b) the expected volume of a sphere with radiis

The random variabl& has pdff(z) = ¢sinz,0 < z < 7. Find(a) The constant
(b) The cdf F'(z) of X (c) F[csc X].

Let X have mearu and variances. (a) What are the mean and variance-efX ?
Explain intuitively. (b) Find constanta andb such that the random varialte = a X +b
has meai® and variancd (this is calledstandardizatioh

The coefficient of variatiorfor a nonnegative random variable is defined:as o /.
(a) Let X ~ unif{a, b] and findc. (b) In (a), if a = n andb = n + 1, what happens to
casn — c0?

Let X be a nonnegative random variable with mgamnd variances2. Prove the
following inequalities and compute the bounds they givexaraple 2.4.15.

(a) Markov inequality: P(X > ¢) < u/c

(b) One-sided Chebyshev inequalit(X > 1 + a) < 0%/(c* + a?)

Prove Proposition 2.4.9 by lettingg = 1/k in Chebyshev’s inequality, and apply
Proposition 1.3.5.

Section 2.5. Special Discrete Distributions

Let A andB be events. Show thé) I2 = T4, (b) Jac =1 — 14, (C) Ianp = Ialp,
(d) TauB =1a+ I — IanB.

Suppose that the probability of a rainy day in Seattle in Ddwmer is 0.8. If a day is
not rainy, call it sunny. In which of the following cases igéasonable to assume a
binomial distribution? Argue why/why not and give the paser values where you
have a binomial distribution(a) You count the number of rainy days on Christmas Eve
for ten consecutive yeargb) You count the number of rainy days in December next
year. (¢) You count the number of rainy days on the first of each monttafgear.(d)
You count the number of sunny days on Christmas Eve for tesexmitive years.

The random variabl& has a binomial distribution witl’[X] = 1 and VafX] = 0.9.
ComputeP (X > 0).
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Roll a die10 times. What is the probability of getting) no 6s, (b) at least twass, (c)
at most threés.

Let X be the number ofs when a die is rolle@ times, and lett” be the number of
6s when a die is rolled2 times. Find(a) E[X] and E[Y], (b) P(X > E[X]) and
P(Y > E[Y]).

A fair coin is flippedn times. What is the probability of getting a totalloheads if(a)
the first flip shows headgb) the first flip shows tails(c) at least one flip shows heads?

Ann and Bob flip a fair coinl0 times. Each time it shows heads, Ann gets a point;
otherwise Bob gets a poinfa) What is the most likely final resulttb) Which is more
likely: that it ends5—5 or that somebody wing—4? (c) If Ann wins the first three
rounds, what is the probability that she ends up the wini{d)af Ann wins the first
four rounds, what is the probability that Bob never takesldal? (e) What is the
probability that the lead changdgimes?

A multiple-choice test consists of six questions, each \fatlr alternatives. At least
four correct answers are required for a passing grade. VEiheiprobability that you
pass if youa) guess at randongb) know the first three answers, and guess on the rest,
(c) for each question know the correct answer with probabi%it)otherwise guess at
random?(d) In (c), to ensure at leas6% certainty that you will pass, how high must
the probability that you know an answer b@&) For (a)—(c), find the mean and variance
of the number of correct answers.

A restaurant hass tables, and it is known thai0% of guests who make reservations
actually show up. To compensate for this, the restaurard paficy of taking more than
15 reservations, thus running a risk to become overbooked. tHany reservations can
they take to limit this risk to at mo$t%?

Let X ~ bin(n,p) andY ~ geon{p). (a) Show thatP(X = 0) = P(Y > n).
Explain intuitively. (b) Express the probability’(Y < n) as a probability statement
aboutX.

You flip each ofn coins repeatedly until it shows heads. Léte the number of coins
that require at least five flips. Find(X = 0) andE[X].

In Example 2.5.4, lef be the number of sons ardd the number of daughters. Find
P(D > 8),P(D=S),andP(D < S).

Consider a sequence of independent trials that result ireregiuccess or failure. Fix
r > 1 and letX be the number of trials required until théh success. Show that the
pmf of X is

r—1

This is called anegative binomiatlistribution with parameters andp, written X ~
negbir(r, p). What is the special cage= 1?

k—1\ , -
p(k)_< >pr(1—p)k b k:r7r+17"'

Each workday (Monday-Friday) you catch a bus from a stregtezo You have esti-
mated that you arrive too late and miss the bus on average &datys. Consider a new
workweek. (a) What is the probability that the next missed bus will be ord&yi? (b)
You decide to start biking after you have missed theftiimes. What is the probability
that this happens on Friday the next week?

The number of customers that call a certain toll-free number in a minute has a Poisson
distribution with mear2. A minute is classified as “idle” if there are no calls and “us
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otherwise. (a) What is the probability that a given minute is busi?) Let Y be the

number of calls during a busy minute. Find the pmfiond E[Y]. (c) If a minute is

idle, what is the expected number of busy minutes before ¢xéidle minute? What
assumptions are you making?

Insects of a certain type lay eggs on leaves such that theemushleggs on a given leaf
has a Poisson distribution with meanFor any given leaf, the probability 51 that it
will be visited by such an insect, and leaves are visitedpedédently of each othe(a)
What is the probability that a given leaf has no eg@spIf a leaf is inspected and has
no eggs, what is the probability that it has been visited biynsect?(c) If 10 leaves are
inspected and none have any eggs, what is the probabilitatfeast one leaf has been
visited by an insect?

Prove the expressions for the variances of the binomialla@&bisson distributions by
first finding useful recursive expressions feik — 1)p(k) and then using the fact that
E[X? = E[X(X - 1)] + E[X].

(a)Flip a coin10 times and letX be the number of heads. ComputéX < 1) exactly
and with the Poisson approximatiofi) Now instead flip four coing0 times and lefX

be the number of times you get four heads. Comget&’ < 1) exactly and with the
Poisson approximatior(c) Compare (a) and (b). Where does the approximation work
best and why?

Do Example 1.4.12 with the binomial approximation to thedrg@ometric distribution
and compare with the exact probabilities.

Compare the variance of the hypergeometric distributiai e variance of the bino-
mial approximation. Which is smaller, and why?

Let X be hypergeometric with paramete¥s r, andn. Argue thatX can be approxi-
mated by a Poisson distribution. What is required of thempatars for the approxima-
tion to be good.

Section 2.6. The Exponential Distribution

Jobs arrive at a computer such that the tifidetween two consecutive jobs has an
exponential distribution with meal) seconds. Finda) Var[T], (b) P(T < 5), (c) the
probability that the next job arrives withiliseconds given that the last job arrived 25
seconds agdd) P(T > E[T7).

A large number of lightbulbs are turned on in a new office bindd A year later30%
of them still function, and years later30% of the original lightbulbs still function.
Does it seem likely that the lifetimes follow an exponentstribution?

Let X ~ exp(A) and letY” = AX. Show that” ~ exp(1).
The elementobeliumhas a half-life 0658 minutes. LetX be the lifetime of anindividual
nobelium atom. Finda) P(X > 30), (b), P(X < 60|X > 30), (c) E[X] and VafX].

LetT ~ exp(A) and letX = [T] + 1 (“[-]” denoting integer part). Show thaf ~
geon(1l — e~*) (success probability — e=*). If T'is the lifetime of a component,
what could be the interpretation &f?

Prove Proposition 2.6.1 by first subtractitg(y) and dividing byx in the equation
G(z + y) = G(z)G(y). Solve the resulting differential equation.
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76 You are at a post office where there are two clerks, you areglssnsed by one of them,
the other clerk serves another customer, and one customitiag in line. If service
times are independent ardp(A), what is the probability that you are the last of the
three customers to leave the post office?

Section 2.7. The Normal Distribution

77 Let X have a normal distribution with mean= 200 and standard deviation = 10.
Find (a) P(X < 220) (b) P(X < 190) (c) P(X > 185) (d) P(X > 205) (e)
P(190 < X < 210) (f) P(180 < X < 210)

78 Let X have a normal distribution with meanand standard deviatiosm. (a) Find an
expression involvingp for the probability thatX is within ¢ standard deviations of its
mean where is a positive real numbe(b) If you want the probability ifa) to be 0.99,
what value ofc do you get?

79 Suppose that heights in a population follow a normal distidn with mean 70 and
standard deviation 3 (inches). Find the 10th and the 90ttepéites.

80 Suppose thak ~ N(u,o?). Find theZ-score corresponding to th€-valuey + co
wherec is any real number (negative or positive).

81 Two species of fish have weights that follow normal distiiis. Species A has mean
20 and standard deviation 2; species B has mean 40 and stateléation 8. Which is
more extreme: a 24-pound A-fish or a 48-pound B-fish?

82 Jane takes a test and scores 80 points. The test results afalserfollow a normal
distribution with mean 70 and standard deviation 10. On amsgdest, the mean is
instead 150 and the standard deviation is 30. How much messatre to do as well
as on the first test?

83 The number of free electrons in a metal fragment is measuichvmeasurement error
that is normally distributed. More specifically, if thereear free electrons, the number
Y = n+ X is recorded wher& has a normal distribution with mednand standard
deviationo = 0.43. If Y is rounded to the nearest integer, what is the probabildy th
we get the correct answer?

84 A manually operated stopwatch is used to clock times in a 18@nirack race. If the
true time of a runner is seconds, the watch will show the tirfie= ¢+ 0.1 + X, where
X has a normal distribution with meanand variance.01. (a) For a givent, what is
the distribution of7"? (b) If the true timet is 11.5 seconds, what i® (7" < 11.5)? (c)
What is the probability thal is within 0.05 seconds of the true time

85 Let X ~ N(0,1). Express the pdf's of the following random variables in terofi the
standard normal pdb(z): (a) — X, (b) | X|, (c) X2, (d) e*.

86 Let H andW be the height and weight of a randomly chosen individualhénlight of
the previous problem, is it reasonable to assume that tleelpath normal?

87 A type of metal rod is desired to have a length16f) cm. It is first cut crudely by a
machine and then finished by hand. It is known that the madfiires lengths that are
normal with mean: and varianc®, wherey can be set by the operator. If amachine-cut
rod is shorter thari00, it is wasted and if it is longer thatD0, the excess material is
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wasted. (a) If the length of a rod isX, which function of X describes the amount of
waste?(b) How shouldu be chosen in order to minimize the expected waste?

The random variabl& has cdfF'(z) = 1— e*zz, x > 0. Use properties of the normal
distribution together with Proposition 2.4.2 to fifi¢] X].

If X has a normal distribution, what is the probability that ividées more thark
standard deviations from its mean fore= 1, 2, ...? Compare with the bounds given by
Chebyshev’s inequality.

Use the approximation formula given in Section 2.7 to find ghabability that a ran-
domly selected person has an 1Q at least as high as Marilye&sExample 2.4.15).

Let X ~ N(0,1). Show thatP(X > z + ¢|X > x) ~ e * for largex and smalk.

Section 2.8. Other Distributions

Let X be lognormal with parameteysando?. Find the distributions of¢? and X .

Let W and H be the weight and height of a randomly chosen individual Hlfis
lognormal, is it reasonable to assume tHats also lognormal?

Let X be lognormal with parameteys = 0 ando® = 1. Find(a) P(X < 2), (b)
P(X? < 2),(c) P(X > E[X]), (d) the mediam of X.

Let X ~ I'(a, A), and letY” = AX. Show tha®y” ~ I'(a, 1).

Let X have the Cauchy distributiorfa) Find the cdf ofX. (b) LetY = 1/X. Show
thatY also has the Cauchy distribution.

On my drive to work from home, | have a left turn where there Ea@plight. About
80% of the time it is red, in which case my waiting time untiflitns green is uniform
on (0,30) seconds. Let be my waiting time when | arrive at the stoplight. Find the
cdf of X and sketch its graph. I§ discrete? Continuous? Why or why not?

A box contains equally many electronic components of twasyd and II. A type |
component has a lifetime that ésp(1); a type 1l component has a lifetime that is
exp(2). Consider a randomly chosen component ancldde its lifetime.(a) Find the
cdf of X. Is X exponential?(b) Given that a component works aftehours, what is
the probability that it is of type 1?

Section 2.9. Location Parameters

For the following pdf’s, find means, medians, and modes wpessible. Compare
them and argue which best represents the distribuianf(z) = 1/22, = > 1, (b)
f(z)= %7 z €[0,1]U[2,3],(c) f(z) =2(1—z), € [0,1],(d) f(z) = -z, -1 <
z<0andf(z) ==, 0<x <1,(e) f(z) =1/(x(1 + %)), z € R.

For the following pairs of expressions, explain the diffese in terms of location pa-
rametersy(a) “taller than average” and “taller than most peoplg) “typical new home
price” and “average new home pricé¢) “a majority of the salaries are betwe®s0, 000
and$60, 000" and “a plurality of the salaries are betwe#0, 000 and$60, 000”.
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101 Let X be a random variable. If there exists a constastich thatP(X > a + z) =
P(X <a-—z)forallz > 0, X is said to have aymmetridistribution. (a) Which of
the following distributions are symmetric? (§(0, 1), (ii) exp(\), (iii) unif[0, 1], (iv)
Poi(\), (v) bin(n, 1), (vi) bin(n, p), wherep # 1. (b) What does the pmf or pdf look
like for a symmetric distribution?c) Suppose thak is continuous and has a symmetric
distribution with mean:. Show thats = y, and that the median equals the mean (under
the assumptions of Corollary 2.9.1).

102 Let X have mearu and variancer?. The skewnes®f X is defined as skiiX] =
E[(X — 1)?/c® and is a measure of the asymmetry of the distribution. Shaw th
skw[X] = (E[X?] — 3uE[X?] + 2u3)/0® (compare Corollary 2.4.5).

103 Find skwX] if (&) X ~ exp(\) (Note: E[X?] = 6/A%), (b) X ~ Poi(\) (Note :
E[X?%] = X* + 3X% + \). (c) What happens in (a) and (b) asncreases? Explain!

104 Let X have mearp and variances®. The kurtosisof X is defined as kyX] =
E[(X — w)*]/c* and is a measure of the peakedness of the pdf. Show thigf kur
(E[X*] — 4E[X3p 4+ 6 B[ X2 1u? — 3u*)/o* (compare with Corollary 2.4.5).

105 FindkufX]if (@) X ~ N(u, o?) (Note: E[Z*] = 3if Z ~ N(0,1)),(b) S ~ exp(\)
(Note: E[X*] = 24/X\%), (€) X ~ unif[0,1], (d) X ~ Poi(\) (Note: E[X*] =
AT 6A3 + 727 + ).

106 The kurtosis can be used to check for deviations from the abdistribution. For this
purpose, theexcess kurtosisan be defined as xkif] = kur[X] — 3. Find xkufX]
for the distributions in the previous problem and interpreterms of deviations from
normality.

Section 2.10. The Failure Rate Function

107 Let X be a discrete random variable with ran@e 1, 2, ...}. The (discrete) failure rate
function is then defined as

P(X =k)

P(X > k)

(a) Show that-(k) = P(X = k|X > k). (b) Let X be the number when you roll a fair

die. Find the failure rate function of . Sketch the pmf and the failure rate function of

X and explain the difference between the two graphs. Alsoestgn interpretation in

terms of lifetimes.

r(k) =

108 Let T be a nonnegative, continuous random variable. Expfg%3 as an integral that
includes the failure rate functior(¢) but not the pdf, cdf, or survival function.

109 Find the failure rate function of the random variafilef it has pdf(a) f(¢) = 2¢,0 <
t <1,(b) f(t) = 1/t*,t > 1,(c) f(t) = 2t exp(—t?),t > 0.

110 Find the cdf’s of the nonnegative continuous random vagsilith the following failure
rate functions:(@) 7(t) = 1/(1 +t), (b) r(t) = 2t, (c) r(t) = £*, (d) 7(t) = e~ ".

111 A certain type of lightbulb has failure rate functiofit). The probability is0.2 that
such a lightbulb functions for more th&000 hours. Suppose that we want to double
this probability by decreasing the failure rate functionebfactore < 1, tocr(t). How
should we choose?
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112 The lifetime L of a certain insect has medi@mmonths and failure rate function
r(t) =at®, t>0

Find (a) the constant, (b) the probability that a newborn insect lives at leastonths.
113 The timeT in seconds between consecutive jobs arriving to a compatefdilure rate

function
1—¢t ifo<t<1
ru){t—l ift>1

Find(a) P(0.5 < T < 1.5), (b) the pdf f and the mediam: of T'.
114 The lifetimeT in years of a lawn mower has failure rate function

rt)y=14 t/4 f2<t<6

{ 1/2 fo<t<2
9 ift>6

Find (a) the probability that a new mower breaks down witimonths,(b) the prob-
ability that a2-year-old mower works for yet another yedc) the probability that a
seven year old mower breaks down within a morth) ,the median life-length of a new
mower,(e) the median remaining life-length ofzayear-old mower.

115 The lifetime T in hours of a type of electronic component is a continuousioan
variable with failure rate functiom(¢) that equals the constantfor ¢ < 100. For
t > 100, r(t) is such that the failure rate doubles evergours and-(t) is continuous
at100. Find(a) the expression for(t), (b) the value of: if it is known that the median
lifetime is 110 hours,(c) the probability that a lifetime is at mo$00 hours.



Joint Distributions

3.1 INTRODUCTION

In the previous chapter, we introduced random variableegzidbe random exper-
iments with numerical outcomes. We restricted our attenti cases where the
outcome is a single number, but there are many cases wheoaitt@me is a vector
of numbers. We have already seen one such experiment, inid&dn?.5, where a
dart is thrown at random on a dart board of radiusThe outcome is a paitX,Y’)

of random variables that are such tiat + Y2 < 2. For another example, suppose
that we measure voltage and current in an electric circuft imown resistance. Due
to random fluctuations and measurement error, we can vievathan outcom@’, )

of a pair of random variables.

These examples have in common that there is a relation bettteerandom
variables that we measure, and by describing them only orenbywe do not get
all the possible information. The dart coordinates areriged by the board, and
voltage and current are related by Ohm’s law. In this chapteextend the notion of
random variables to random vectors.

3.2 THE JOINT DISTRIBUTION FUNCTION

We will focus primarily on random vectors in two dimension%t us begin by for-
mally defining our fundamental object of study.

161
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Definition 3.2.1 Let X andY be random variables. The pdiK,Y") is then
called a (two-dimensionatandom vector

Our aim is to describe random vectors in much the same waywbhakescribed ran-
dom variables in Chapter 2, and we will thus define analoghetdf, pmf, and pdf.
For a given random vectdtX, Y), we will often be interested in events of the type
{X € A} n{Y € B}, thatis, the event thaX belongs to the seti andY at the
same time belongs to the sBt To ease the notation, we wrilg(X € A,Y € B)
instead of P({X € A} N {Y € B}). With this in mind, we can state the following
definition.

Definition 3.2.2 Thejointdistribution functior(joint cdf) of (X, Y) is defined
as
F(az,y)=P(X <a,Y <y)

forz,y € R.

The joint cdf is a function of two variables. It has propest@milar to those of
the one-dimensional cdf, but since it requires three diressto plot, it is more
difficult to visualize. It also turns out to be somewhat lesateal for computation
of probabilities than its one-dimensional analog. Theaedsr this is that in one
dimension, virtually any event involving a random variaisi®f the form{X = «}
or {a < X < b}, and the probabilities of these events can be directly esgaein
terms of the cdf according to Propositions 2.2.2 and 2.3.2.

In two dimensions, things become more difficult. The cdf ino@p(z, y) is the
probability thatX < z andY < y, that is, the probability thatX,Y") is in the set
(=00, 2] x (—00, y], the infinite rectangle “southwest” of the poiat, y). For a finite
rectangleB = (a, b] x (¢, d], it is easy to show (Problem 1) that

Pla< X <b,c<Y <d)=F(bd)— F(b,c)— F(a,d) + F(a,c)

and we can find probabilities of other types of rectangulas & a similar way.
However, in two dimensions, there are many other types &f sebr example, if
C is the unit circle diskC = {(x,y) : 2% + y*> < 1}, then we cannot express
P((X,Y) € C) directly by the joint cdf. (Try it!) The same problems aris® f
events such a§X < Y} or {|X — Y| > 1}. The planeR? is so much more
complicated than the nicely ordered real line.

If we are given the joint cdf of (X,Y"), we can obtain the individual cdf’s of
andY by noticing thatthe evedtX < z}isthe sameastheevelX < z,Y < oo},
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which puts no restrictions o¥i. Since this has probability
P(X <z,Y <o) = F(z,00)

we get the following result.

Proposition 3.2.1. If (X,Y) has joint cdfF’, thenX andY have cdf’s
Fx(z) = F(z,00) and Fy(y) = F(oo,y)

forz,y € R.

The cdf’s of X andY are called thenarginalcdf’s of (X,Y").

3.3 DISCRETE RANDOM VECTORS

Just as in the one-dimensional case, we make the distinlcétween discrete and
continuous random vectors.

Definition 3.3.1 If X andY are discrete random variables, thel,Y) is
called adiscrete random vector

If the range ofX is {z1, x2, ...} and the range of is {y1, y2, ...}, then the range of
(X,Y)is{(z;,yx),j, k = 1,2,...}, which is also a countable set. Hence, a discrete
random vectof X, Y') is characterized by a countable range, in the same way as is
a discrete random variable. In analogy with the one-dimmradicase we state the
following definition.

Definition 3.3.2 If (X,Y) is discrete with rangé(x;, yx) : 5,k = 1,2, ...},
the function
p(xj,yn) = P(X =2;,Y = yi)

is called thgoint pmfof (X, Y).
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Example3.3.1 Roll a die twice. LetX be the first and” the second number. Find
the joint pmf of (X, Y").

Therangeiq(j,k):j5=1,2,....,6,k = 1,2,...,6}, and for any paifj, k), we get

p(],k) = P(XZ],Y:]{)
— P =)PY =) - &

since the event§X = j} and{Y = k} are independent. We say th@,Y") has a
uniform distribution on{(5,k) : 5 =1,2,...,6,k =1,2,...,6}. 0

Example3.3.2 Phone calls arrive to a mail order company such that the numbe
of phone calls in a minute has a Poisson distribution withmaA given caller is
female with probabilityd.5, independently of other callers. In a given minute Xet

be the number of female callers aFdhe total number of callers. Find the joint pmf
of (X,Y).

Unlike the previous example, events pertainingiand toY are not independent,
which is clear sinceX is always less than or equal 6. However, we can use
conditional probabilities by noting that ¥ = &, then the number of female callers
is binomial with parameterk and0.5, and we get

p(j,k) = P(X =jlY =k)P(Y =k)
_ (Mg sig ki1t
= <j>o.5ﬂo.5 lerl
2 .
= et T 0<j<k k=0,1,2,..
]!(k_])! O

The joint pmf’s for the two examples are depicted in Figurk 3.

If we are given the pmf of X, Y'), we might be interested in finding the marginal
(one-dimensional) pmf’s of the random variahféandY”. Sincethe everftX = «z;}
can be described in terms X, Y') as{X = z;,“Y =anything’}, we get

px(z;) =Y P(X =2, Y =yx) = > pla;, )
k=1 k=1

with the obvious analog fgry. We have the following result.
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Fig. 3.1 Joint pmf's for Examples 3.3.1 and 3.3.2, respectively.

Proposition 3.3.1. If (X,Y) has joint pmfp, then the marginal pmf’s ok
andY are

k=1
pY(yk) = Zp(xjayk)a k= 1127-“'
j=1

Example3.3.3 Find the marginal pmf’s in Example 3.3.2.

From the problem it is given that ~ Poi(4). To find the pmf ofX, start from the
joint pmf
4 2k
p(j k)= *—~—, 0<j<k k=0,1,2,..
BB = e =

and note that for fixed, k£ ranges fromyj to co. This gives

. e 2F
px(j) = e ;m

2] X, 9k—j 2J
—4 —92 .
= € —g — =€ -, J=0,1,...
| — 1) |
iz (k=) j!

which means thak” ~ Poi(2). 0
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3.4 JOINTLY CONTINUOUS RANDOM VECTORS

Definition 3.4.1 If there exists a functiorf such that

P((X,Y)e B)= //B f(z,y)dx dy

for all subsetsB C R?, thenX andY are said to bgointly continuous The
function f is called thgoint pdf

We may also say simply that the vectoX,Y’) is continuous. The notatioffif,,
means that we integrate over the two-dimensional re@idnin particular, the choice
B={(s,t): s <z, t <y} = (—00,z] X (—00,y] gives

F(z,y) = /yoo /1 f(s,t)dsdt

which also gives the following proposition.

Proposition 3.4.1. If X andY are jointly continuous with joint cd#" and
joint pdf f, then

82

0xdy

f(xvy): F(x,y), r,y €ER

The intuition is the same as in the one-dimensional cASe;y) is a measure of how
likely it is that (X,Y") is in the neighborhood of the poifit, y), not exactly equal
to (z,y). Again, the probability thatX,Y) equals(z, y) is 0 for all 2 andy. Even
more holds in the jointly continuous case. Since lines amdesin R? have ared,
integrating the joint pdf over them also giveéand hence the probability théX, Y")
takes values on any fixed line or curveisin particular,P(X =Y) = 0.

Since probabilities are always nonnegative &(dX,Y) € R?) = 1, we get the
following analog of Proposition 2.3.4.

1As in the one-dimensional case, some restrictions mustriergé be imposed on the class of possible
subsetsB, but we can again safely disregard this problem.
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Proposition 3.4.2. A function f is a possible joint pdf for the random
variablesX andY if and only if

(@) f(z,y) >0forallz,y € R

(b) /O; /Zf(w)dxdy—l

Example3.4.1 The random vectofX, Y) has joint pdf
flzy)=clz+2y), 0<2<1,0<y<l1

Find (a) the constant, (b) the joint cdfF'(x, y).

For part (a) we use Proposition 3.4.2. Cleaflyz 0 and since

1 1 1 .1
//f(:z:,y)d:cdy = c//(a:—i—Zy)da:dy
o Jo o Jo
b 3¢
= — 42y |dy = —
of (g =3

we getc = 2. For part (b), we get
v v(a?  Aat
F(z,y) = //—(s+2t)dsdt:/ 2 ar
o Jo 3 0 3 3
te?  4at?]? 1
L = —(2%y+20y?), 0<2<1,0<y<1
36 |, 3

O

In analogy with the result regarding marginal pmf’s, we hthefollowing result in
the jointly continuous case.

Proposition 3.4.3. Suppose thaK andY are jointly continuous with joint
pdf f. ThenX andY are continuous random variables with marginal pdf’s

fx(w):[ flz,y)dy, ©€ R

fy(y):/_ flx,y)de, y € R
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Example3.4.2 Find the marginal pdf's in Example 3.4.1.
The joint pdfis
2
flay)=3@+2y), 0<sz<l0<y<l

which gives

1
@ = 5 [ @

2 ) 2
= g[a:yjty}rozg(:z:+1), 0<z<1
and
2 1
o) = 3 [ @i

0

2 [ 22 !

= —[—+2:cy} = -(1+4+4y), 0<y<1
3 =0 O

Example3.4.3 Choose a pointX, Y) atrandomin the unitdisk(xz, y) : 22 +y? <
1}. Find the joint pdf and the marginal pdf’s.

In analogy with the one-dimensional case, “at random” méagisthe joint pdf must
be constant on the unit disk (and 0 outside). Since the jaifhitrqust also integrate to
one and the area of the unit diskrdswe realize that X, Y") has joint pdf

1
fley)==, ®+y*°<1
iy

We call this a uniform distribution on the unit disk. Since thoundary has probability

0, we can replaceX” by “ <” if we wish and thus it makes no difference whether we

consider the closed or open disk (compare the one-dimealsioiform distribution).
Whatis the marginal distribution ot ? First note thatthe range &fis[—1, 1]. Is

X uniform on this range? To find the marginal pdfXf fix € [—1, 1] and compute

@ = [ " )y

The integral limits are determined by where the joint gdf, ) is strictly positive,
which is where the pointr, y) is inside the unit disk. For fixed, this happens when
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y is between-+/1 — 22 andy/1 — 22. Hence we get

Vi—a?

fX(a:):l/ dy:g\/l—xQ, -1<z<1
L S ™

and by symmetryY” has the same marginal distribution &s Now, this is certainly

not the pdf of a uniform distribution o-1, 1]. To understand why is not uniform,

consider an interval, of a fixed length inside[—1, 1]. For a uniform distribution,

the probabilityP(X € I) is the same regardless of where the interval is located, but

in our case this probability is larger the closer the intéiw#o the origin. Remember

that we are choosing a point uniformly in the unit disk, anttigg X in a specific

interval corresponds t@X, Y') being in a specific region. For a fixed interval length,

this region is larger the closer the interval is to O (draw arf&). 0

3.5 CONDITIONAL DISTRIBUTIONS AND INDEPENDENCE

Recall the concept of conditional probability from SectihB. The intuition behind
P(A|B) is that this is the probability ofl if we know that the evenB has occurred.
Now suppose that the eveats related to a discrete random variablefor example,
A ={Y = y}. The conditional probability of the evefit” = y} given B can then
be regarded as theonditional pmfof Y, given the evenB, evaluated in the point.

If also the evenD3 is related to a discrete random variable, s&y,we can state the
following definition.

Definition 3.5.1 Let X andY be discrete random variables with ranges
{z1, z2,...} and{y1,y2, ...}, respectively, and joint pmp. The conditional
pmfof Y givenX = z; is defined as

py (yklz;) = CT)) for y;, in the range ot
px(z;)

We view this as a function aof;, where the value; is fixed. An application of the
law of total probability gives

py (k) = Y oy (yilz;)px (2;)
i=1

for y, in the range oft”, which is the same formula as in Proposition 3.3.1. To get
the conditional cdf, we compute the sum

Fy(ylz;) = > py(yele;)

kyr<y
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fory € R.

Example3.5.1 Consider Example 3.3.2, whepé is the number of female callers
andY the total number. Find the conditional pmfBfgiven X = j.

We computed the joint pdf and found it to be

2k
. 4 . o
p(jvk)_e mv OS]Sk,k—O,l,z,

and in Example 3.3.3, we found th&t ~ Poi(2). Conditioned onX = j, the range
of Yisj,j+1,...and we get the conditional pmf

e 2%/ (j!(k — 5)1) 2k
klj) = , =e? k=34,j+1,..
py (klj) 221 Choy FeaiEL

which means that, given that there griemale callers, the total number of callers is
j plus a number that has a Poisson distribution with nizamhich is of course the
number of male callers. 0

The continuous case is similar, but we have to be carefukgiif’s are not proba-
bilities. Let us first consider what we should mean by the domthl pdf of Y given

an eventB. Intuitively it is clear that this should be a pdf that is caumgd given the
information that the evenB has occurred. It” were discrete, we would simply go
ahead according to the definition above, but for continuduthe evenfY = y}

has probability for all iy, and we need to proceed differently. Since the pdfis not a
probability but the cdf is, let us first define thenditional cdfas

F(y|B) = P(Y <y|B) = w

and then the conditional pdf &f given B as

f(|B) = d%F(y|B)

This is fine as long a® is an event withP(B) > 0, but what if B is also related to
a continuous random variable, of the fofth= {X = 2} so thatB has probability
07? Clearly, it still makes intuitive sense to talk about thistdbution of Y given that
X = z,” butif X is continuous, we cannot use the definition of conditionabpr
bility as we did above. Our definition of conditional pdf iaatl mimics its discrete
counterpart, and we state the following.
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Definition 3.5.2 Let (X,Y") be jointly continuous with joint pdff. The
conditional pdf ofY” givenX = z is defined as

fz,y)
fx(x)’

fr(ylz) = yER

We interpret this as the pdf &f if we know thatX = 2. Note thatx is a fixed
value and the argument of the pdfjisTo define the conditional cdf, we integrate the
conditional pdf and get

Yy
Fy(ia) = PY <ylX =) = [ fueloi
fory € R. More generally, for any sé® C R, we have

P e BIX =) = | Kyl

Example3.5.2 Consider again Example 3.4.3, where a pdiit V) is chosen uni-
formly in the unit disk. What is the conditional pdf &f given X = x?

The joint pdfis
flzy) = % ?+y? <1
and the marginal pdf ok is

For a fixedz, the range ot is (—v/1 — 22, v/1 — 22), and the conditional pdf is

_ Sy 1 A= )

But this functional expression does not depend;oso we conclude thafty (y|x) is
constant as a function gf(remember that is a fixed value). Hence, the conditional
distribution ofY" given thatX = x is uniform on(—+/1 — 22, /1 — 22), which we

may write as
Y|X = ~ unif (—\/1 —22,v/1— :102)

and by symmetry we also get

X|Y =y ~ unif (—M, M)
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In the example above, we started by descriliiAgY’) and found the marginals and
conditional distributions. Itis also possible to go theativay, that is, to first define
the marginal pdf ofX and then the conditional pdf &f given X = x. Thisis natural
if the experiment is performed in stages, as the followingregle shows.

Example3.5.3 Choose a poink uniformly on|0, 1] and givenX = z, chooseY’
uniformly on|0, z]. Find the joint pdf of( X, Y).

First note that the range ¢, Y') is the triangle{(z,y) : 0 <z < 1,0 < y < z}.
The pdf of X is
fx(x)=1, 0<z<1

and the conditional pdf of givenX = x is
1

which gives joint pdf

f(z,y) = fr(ylz) fx(z) = é 0<z<1, 0<y<uz

Note that this is not a uniform distribution on the triangénce values tend to be
more likely near the origin. Think about why this is the case. 0

The following proposition is a continuous version of the lafitotal probability.

Proposition 3.5.1. Let X andY be jointly continuous. Then

(@) fy () = /_ " i) fx (@), ye R

(b) P(YEB):/OO P(Y € B|X = 2)fx(z)dz, BCR

Proof. For (a), just combine Proposition 3.4.3 with the definitidrconditional
pdf and for (b), part (a) gives

P(YeB) = /B fr (y)dy = /B / 7y (yle) fx (2)de dy
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/O; /B Fy (yla) fx (x)dy dx

/_ P(Y € B|X =z)fx(z)dx

as desired. [ |

Note again how intuition is quite clear. To find for exampl€y” € B), we condition
on a particular valueX = z, and computeP(Y € B|X = z). Then we compute
a weighted average over all possible values¥ofind use the pdf oK to find the
weights. SinceX is continuous, the averaging is done by an integral instéagom.
In particular, withB = (—o0, y], we get

)= [ " Py (lo) fx (x)de

Another version of the law of total probability that we statghout proof can be
helpful for computing probabilities of events involvingthaX andY .

Proposition 3.5.2. Let X andY be jointly continuous. Then, faB C R?

P((X,Y)e B) = /OO P((z,Y) € BIX = z)fx(z)dx

— 00

Note howP((z,Y) € B|X = z) is in fact the probability of a statement abdut
alone, for fixede. The usefulness of the proposition is best illustrated bg»ample.

Example3.5.4 Let X ~ unif[0, 1], and givenX = z, letY ~ unif[0,z]. Find

P(Y < X?).

The regionB is the set{(z,y) : 0 <z < 1,0 < y < 2%}, and we have
P((z,Y)eB|[X=2)=PY <2*X =x) =2

since givenX = z, Y has cdfP(Y < ¢|X = z) = t/x. We get

P(Y§X2):P((X,Y)EB):/lxdx:%
0
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Part (b) in Proposition 3.5.1 is valid also¥f is discrete andX continuous. In this
case, the paifX, Y) is neither jointly discrete nor jointly continuous, buttillsnakes
sense to talk about conditional distributions. We illutgrthis in an example.

Example3.5.5 Let X ~ unif[0, 1] and givenX = z, letY ~ geon{z). Thus, we
consider a geometric distribution where the success pibiyab chosen at random
from [0, 1]. Find the distribution ol".

The quickest way is to note th&(Y > k|X = x) = (1 — ), which gives
1
P(Y > k):/ (1-z)de = ——, k=0,1,2,...
0

which in turn gives

P(Y:k):P(Y>k—1)—P(Y>k):m, k=1,2,..

and it is interesting to note that this is not a geometricitigtion. 0

3.5.1 Independent Random Variables

Recall Example 3.4.3, where a poifiX,Y") is chosen uniformly in the unit disk.
When we computed the marginal pdf &f, we saw thatX tends to be more likely to
be near the midpoirit than the endpoints- 1 and1. By symmetryY has the same
marginal distribution as{ on they axis and hence alsp tends to be more likely to
be nead. But this seems to indicate that the p@¥, Y) is more likely to be near the
origin (0, 0), which would contradict the assumption th{&, Y) is uniform on the
unit disk. How is this possible?

The solution to this apparent paradox is tkaandY do tend to be concentrated
near) when considered one by one dt at the same timeRecall the conditional
distributions, which state that if, for exampl€, = x, theY is uniform on the interval
(—v1—22,v/1—z2). Hence, ifX is near0, there is a lot of room for variability in
Y, butif X is far from0, there is less room and must be neaf.

It would be natural to say that andY aredependentsince knowing the value
of one of them gives us information on the possible valuedwmte the distribution
of the other. We next state the formal definition of indeperdef random variables.

Definition 3.5.3 The random variableX andY are said to bandependerif
P(XeAYeB)=P(X e AP(Y € B)

forall A, B C R.
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Note that this means thdtX € A} and{Y € B} are independent events. It can
be difficult to check this for all possible setsand B, but it turns out that there is a
simpler characterization of independence.

Proposition 3.5.3. The random variableX¥ andY are independentif and only
if

F(z,y) = Fx(2)Fy (y)
forall z,y € R.

The proof of the proposition is beyond the scope of this botk X andY are
independent angl andh are any functions, it can be shown th@fX') andh(Y") are
also independent. While intuitively reasonable, the pieafuite advanced and we
will not give it. For some special cases, see Problem 37.

In the case wheX andY are discrete, independence can be easily characterized
directly in terms of the probability mass functions, as tifving proposition shows.

Proposition 3.5.4. Suppose thatX,Y) is discrete with joint pmp. ThenX
andY are independent if and only if

p(x,y) = px(x)py (y)

forall z,y € R.

Proof. Suppose thak’ andY are independent. In the definition of independence,
choosed = {z} andB = {y} to obtain

p(r,y) = P(X =2,V =y) = P(X = 2)P(Y = y) = px(z)pv (y)

Conversely, suppose thatz, y) = px(z)py (y) and take two subsets &, A and
B. Then

P(XEA,YEB): Zzp(ajay): ZpX(I)ZpY(y)

zceAyeB z€A yeB

which equalsP(X € A)P(Y € B), and henceX andY are independent. [ |

Not surprisingly, an analogous relation characterizesjr@hdence in the jointly con-
tinuous case. The proof, which relies on Proposition 3iS.[&ft as an exercise.
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Proposition 3.5.5. Suppose thak andY are jointly continuous with joint
pdf f. ThenX andY are independent if and only if

[z, y) = fx(x)fy(y)

forall z,y € R.

Thus, there are several equivalent characterizationsd#fgandence, depending on
what type of random variables we are dealing with. Regasdiésvhether we are
talking about cdf’s, pmf’s, or pdf’s, we can keep the follogiinformal description
in mind.

Corollary 3.5.6. The random variableX andY are independent if and only
if “the joint is the product of the marginals.”

Italso follows from the definitions thatindependence isieajent to equality between
conditional and unconditional distributions. Thus, alf ouuition from independent
events carries over to independent random variables.

Example3.5.6 Recall Example 3.4.3, where a poidt, Y') is chosen uniformly in
the unit disk. The joint pdfis

1
flwy) ==, 2+y°<1

and the marginals
and

andsincef (z,y) # fx(z)fy (y), X andY are notindependent, as was to be expected
from the discussion at the beginning of this section. 0

In the last example, it is immediately clear th&tandY cannot be independent
since if we know the value of one of them, this changes thegafgossible values
of the other. This leads us to realize that two random vaemldl andY can be
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independent only if the range in two dimensions of the paifY’) has a shape such
that the ranges ok andY individually do not change in this way. Thus, only ranges
that are shaped like rectangles (possibly infinite) paralith the axes are possible
in order to get independent random variables. Note thatishésnecessary but not
sufficient condition. Even if the shape is rectangular, thetjpdf may still not equal
the product of the marginals (as in Example 3.4.1).

When we compute probabilities pertaining to independemdoan variables, the
following corollary to Proposition 3.5.2 can be very useful

Corollary 3.5.7.

oo

P((X,Y) € B) :/ P((z,Y) € B) fx(z)dw

— 00

Proof. By independence
P((z,Y)e BIX =z) = P((z,Y) € B)

and everything else follows from Proposition 3.5.2. [ ]

Example3.5.7. (Buffon’s Needlg. A table is ruled by equidistant parallel lines,
one inch apart. A needle of length one inch is tossed at raradotine table. What is
the probability that it intersects a line?

We describe the needle’s position by the distabciEom the center of the needle to
the nearest line and the (smallest) angleetween the needle and that line. In Figure
3.2, we see how the left needle and the line form a triangletiha a hypotenuse
of lengthD/ sin A. The right needle does not intersect the line but would adsmf
such a triangle if extended toward the line. Thus, we redliaéthe needle intersects
the line if and only if

where the range ab is [0, 1/2] and that ofA is [0, 7/2]. If we interpret “tossed at
random” asD and A being independent and uniform on their respective ranges, w
can apply Corollary 3.5.7 to obtain the probability of areirsiection as

D 1 /2 D _1
P <=-) = P <= d
(sinA - 2) /0 (sina - 2) fala)da

w/2 "y
3/ P(ngma) da
s 0 2
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Fig.3.2 Buffon’s needle. The needle to the left hag sin A < ; and thus intersects a line.

3w

2 71’/2
= —/ sinada =
™Jo

yet another of the many appearances of the numbemathematics. 0

3.6 FUNCTIONS OF RANDOM VECTORS

Just as in the one-dimensional case, we may be interestefdincgong of (X,Y).
There are two principal cases of interegt: R? — R, resulting in a random variable;
andg : R? — RZ?, resulting in another random vector. We start with the fifshese.

3.6.1 Real-Valued Functions of Random Vectors

The typical situation here is that we have a random vecxarY”) and apply a real-
valued functiory to get the random variablg( X, Y). To compute probabilities of
the typeP(¢(X,Y) € B) for B C R, we need to identify the outcomes @X,Y)
that are mapped tB. Let us illustrate this with a couple of examples.

Example3.6.1 Let X andY be independent and ufiif 1], and letA be the area of
a rectangle with side¥ andY. Find the pdf ofA.

HereA = XY and the range afl is [0, 1]. Takeq in this range and start with the cdf
to obtain

Fa@ =PV <) = [[ fladzdy

2|n the late eighteenth century, Count de Buffon, Frenchraisi and avid needle tosser, designed this
experiment to estimate a numerical valuerofWe will return to this aspect of the problem in Chapter 4.
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whereB is the two-dimensional region
B={(z,y):0<2<1,0<y<1lay<a}

andf(z,y) = fx(z)fy(y) = 1 by independence. Draw a picture to realize that

1 ra/z
a+/ / dy dx
a JO
1

1
a—l—a/ —dxr = a—aloga, 0<a<1
0 T

FA(G)

which we differentiate to get the pdf

fa(a) = Fj(a) = —loga, 0<a<1

Example3.6.2 Let X andY be independentandp()), andletZ = X/(X +7Y).
Find the pdf ofZ.

First note that the range df is [0, 1]. Takez in this range and consider the cdf

rao=p (55 22) = p(v= (11) )

This means that we integrate the joint pdf over the region

B—{@Wyyz<%_gz}

By independence, the joint pdfis

flz,y) = e Mxe ™, 2>0,y>0

and witha = 1/z — 1 we get

Fz(z) = / / e M \e M dy dx
0 ar

1
/ e AT ATy —
0 a + 1

in which we substitute by 1/z — 1 to obtain

1
Fp2) = —— — 2 0<z<1
2(2) 1z—1+1 = "=7=



180 JOINT DISTRIBUTIONS

which we recognize as the uniform distribution fin1]. It is tempting to believe
that this has nothing to do with the exponential distribatimd thatX /(X + Y) is
uniformon[0, 1] as long asX andY” are independent and have the same distribution.
However, this is not the case; see, for example, Problem)4Bilfact, it is a special
property of the exponential distribution that gives thisuk, and we return to this in
Section 3.12. 0

Sometimes two-dimensional methods can be used even ifitseemingly nothing
two-dimensional in the problem. Here is one typical example

Example3.6.3 Choose two points at random on a yardstick. What is the piitityab
that they are at most half a yard apart?

Let us first formulate this strictly as a probability problefrhus, we letX andY” be
independent unié, 1], and wish to find?(|X — Y| < 1). Although there is nothing
two-dimensional in this problem from a physical point ofwjeve can solve it by
viewing (X, Y) as a random vector in two dimensions. By independence, the jo
pdfis

flxy) = fx@)fy(y) =1, 0<z<1,0<y<1

and the region of interes® = {(z,y) : [z — y| < 3}, which is illustrated in Figure
3.3. Sincef (z,y) = 1, the integral off overB is equal to the area d#, which gives

1 3
PlIX-Y|<Z)==
2 4 n
1
1/2
Ix-y| £1/2
00 1/2 1

Fig. 3.3 lllustration of Example 3.6.3. Every outcome (@X,Y") in the region bounded by
the axes and the lines hg¥ — Y| at most half a yard apart.
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We have seen examples of how to find the distribution of a fang(X,Y") of a
random vecto(X,Y). If all we are interested in is the expected valig (X, Y)],
we do not need to find the distribution, according to the felitg two-dimensional
analog of Proposition 2.4.4, which we state without proof.

Proposition 3.6.1. Let (X,Y") be a random vector with joint pmf or joint
pdf f and letg : R x R — R be any function. Then

Zzg T, Yr)P(T5, Yr) if (X,Y)isdiscrete
j=1k=1
Elg(X,Y)] =

/ / g(x,y)f(z,y)dzedy if (X,Y)is continuous

— 00 — 00

Example3.6.4 Choose a point at random in the unit disk. What is its expected
distance to the origin?

If the point is (X,Y), the distance iR = v/ X2 + Y2. We thus have(z,y) =
V2% + y? in the proposition above, and the joint pdf(ct,Y) is

fay) ==, 2?2 <1
™
which by Proposition 3.6.1 gives

E[R = E [\/X2+Y2} - l// Va2 ¥ y2dx dy
™ x249y2<1

which we solve by changing to polar coordinates. Thus:let rcos 6,y = rsin#,
which gives region of integratiofl < » < 1 and0 < 6 < 2x. The Jacobian matrix
for the transformatiofir, 6) — (z,y) is

Oor O
J - or 09 _ ( cosf) —rsinf )
dy Ay sinf rcosf
or 060
which has determinant
|J| = cosf xrcosf — (—rsinf) x sinf

= r(cos?d +sin’f) =
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which givesdx dy = r dr df and

1 27 1 1 27 1 2
E[R]:—/ / \/7’_2rdrd9:—/ do/ 7’2d7’:§ o
™ Jo 0 ™Jo 0

3.6.2 The Expected Value and Variance of a Sum

We can use Proposition 3.6.1 to show that expected valudipaae in the sense that
the expected value of a sum is the sum of the expected values.

Proposition 3.6.2. Let X andY be any random variables. Then

E[X +Y] = E[X] + E[Y]

Proof. Let us do the jointly continuous case. By Proposition 3.6vith the
functiong(z,y) = = + y, we get

E[X +Y] /_O:O /_O:O(x—i-y)f(a:,y)d:cdy

/_O:O/_O:Oxf(x,y)dxdy—i—/_O:O/_O;yf(x,y)dxdy

= [ ancws [ Ty )dy = EIX) + E[Y]

— 0o

where the second to last equality follows from Propositioch3 The discrete case
is similar, replacing integrals by sums. [ ]

Combining Propositions 3.6.2 and 2.4.3 gives the followizgult.

Corollary 3.6.3. Let X andY be any random variables, and tetandb be
real numbers. Then

ElaX +bY] = aE[X] + bE[Y]

From Proposition 2.4.8, we already know that the variannetfinear since Vau X| =
a*Var[X], but the question remains whether the variance is addithvat is, if
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Var[X + Y] = Var[X] + Var[Y]. The following simple example shows that there
might be a problem.

Example3.6.5 Let X ~ unif[0,1], and letY’ = —X. By Propositions 2.4.6 and
2.4.8, we have

Var[X] = Var[Y] = %

and hence

Var(X] + Var]Y] = %

However,X + Y = 0, so by Proposition 2.4.9, VEX + Y] = 0 and
Var[X + Y] # Var[X] + Var[Y]

in this case. 0

The problemin the example is that there is no variabilitjldahahe sumX + Y, even
thoughX andY have variability individually. Intuitively, this is becae variation
in X is canceled by variation il in the opposite direction. Note that andY are
dependent (and very strongly so), and it turns out that inddpnce is an assumption
that allows us to add variances. We state this next, togetliera result about the
expected value of a product.

Proposition 3.6.4. Let X andY be independent random variables. Then
() E[XY] = E[X]E[Y]

(b) Var[X + Y] = Var[X] + Var[Y]

Proof. Let us again consider the continuous case only. First natenthenX and
Y areindependent, thef{z, y) = fx (x)fy (y) by Proposition 3.5.5. By Proposition
3.6.1, we get

EXY] = /_Z/_O:Oxyf(:z:,y)d:cdy

o0

_ / o fx(@)da / yfy (y)dy = E[X]E[Y]

— 00



184 JOINT DISTRIBUTIONS

which proves part (a). For part (b), use Corollary 2.4.5 thgewith linearity of
expected values to obtain

VariX +Y] = E[(X+Y)?] - (EX +Y))°
= E[X?+2E[XY]+ E[Y?] - E[X]? - 2E[X|E[Y] - E[Y)?
= E[X? - E[X)?+E[Y? - E[Y)? = Var[X] + Var[Y]

where we used part (a) for the second to last equality. ]

Finally, combining Propositions 2.4.8 and 3.6.4(b), wetpetfollowing corollary.

Corollary 3.6.5. Let X andY be independentrandom variables, and:lahd
b be real numbers. Then

VaraX + bY] = a*Var[X] + b*Var[Y]

Example3.6.6 You have an instrument to measure length, which gives a small
measurement error. If the true length jghe instrument gives the estimated length
L = | + ¢, wheree is a random variable with mednand variance2. You have two
rods of different lengths and are allowed a total of two measients to determine
their lengths. Can you do better than one measurement oPeach

Yes, you can. Let the true lengths beand b, wherea > b. If you take one
measure of the longer rod, you get the measuremert a + ¢ which has mean
E[A] = a + Ele] = a and variance Varl] = Vare] = o2. Similarly, the shorter rod
is measured to b&, with meanb and variance?.

Instead, put the rods side by side and measure the diffelBntkeen put them
end to end and measure the s¥m To estimatez andb, let A = (S + D)/2 and
B=(S—D)/2. SinceS =a+b+e¢ andD = a — b + e wheree; ande, are the
two errors which we assume are independent, Corollary 8%

E[A]:%E[S—l—D]:%(a—i-b—i—a—b):a

and similarly E[B] = b, so your estimates are correct on average. The precision of
A and B are measured by their variances, and Corollary 3.6.5 gives

0.2

Var[d] = 2—12(Var[S]+Var[D]) =

2
Var[B] = 2—12(Var[S]+(—1)2Var[D]) = %
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and the precision is better than that of two individual measients. The reason is
that in effect we get two measurements on each rod insteadgeof\e are assuming
that there is no error in the alignment of the rods side by;sde Problem 49 for a
variant of this. 0

Example3.6.7. Let X andY be independent and uniform d@, 1], and letC' be
the circumference of arectangle with sidéandY’. Find the mean and variance®©f

SinceC = 2X + 2Y, Propositions 3.6.3 and 3.6.5 give
E[C] = 2E[X]|+4+2E[Y] =2
2
Var[C] = 4VarX]+4VarlY] = 3 O

If we have a sequencky, ..., X,, of random variables, Corollary 3.6.3 and induction
give the general result about linearity of expected values:

Proposition 3.6.6. Let X, X»,...,X,, be random variables and let
ai,as, ..., a, be real numbers. Then

Z akal = Z akE[Xk]
k=1 k=1

E

We will look at several examples. The first two examples camogpeated rolls of a
die and are special cases of more general problems. Thesfaisbiupon collecting
problemand the second, asccupancy problem

Example3.6.8 Roll a die repeatedly, and I&f be the number of rolls it takes to get
all the numbers. Fin&[X].

The first number comes in the first roll. Then we wait for any temthat is different
from the first. Since the probability of this in each roll%s the time it takes has
a geometric distribution with success probabilgy Once the second number has
appeared, we start waiting for the third one, and now theimgtime is geometric
with success probabilitg and so on. Hence



186 JOINT DISTRIBUTIONS

whereXj, ~ georr(%) and
: 6 6 6
E[X] :1+];E[Xk] 1+ <5+1+"'+I> ~ 147
To explain the term “coupon collecting problem,” replace ttie with coupons num-

beredi, 2, ..., 6, which are collected until we have all of them. For a geneeasion,
see Problem 54. 0

Example3.6.9 Roll adie6 times and lefX be the number of different numbers that
are represented. For example, if you ¢§gi, 3, 5, 3, 5, thenX = 4, sincel, 3, 5, and
6 are represented. What 15[ X|?

Note thattherange of is 1,2, ..., 6. Itis possible to find the pmf ok and compute
E[X] according to the definition, but it is much quicker to use @adors. Let

I 1 if kis represented
71 0 otherwise

so that .
X=> L
k=1
and
6
E[X] =) E[L]
k=1

Now, I} equalsl unless all six rolls gave numbers different fradmThe probability
in one roll to get a number different frokis % and hence

E[L]=P(,=1)=1- <%)6

E[X] =6 <1 - (%)6> ~ 3.99

If we call a number “occupied” once it has been rolled, we ustdad the term
“occupancy problem.” See also Problem 55. 0

which gives

Example3.6.10 Recall the matching problem from Example 1.4.17. What is the
expected number of matches?
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Again, let us use indicators. Thus, let

I 1 ifthereis a match at
§ 0 otherwise

so that .
X=>"I
k=1
Following the calculations in Example 1.4.17, we get

1
Ell] = P(Iy =1) = —
for all I;,. Hence
- 1
E[X] _;E[Ik] =nx - =1

S0 on average one match is expected, regardless of the Viatue o
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To deal with more than two random variables, let us first sa¢eobvious general-

ization of the independence concept.

if
k
P(X;, € By, X;, € By, ... X;, € By) = [ [ P(Xi, € By)
i=1

for all choices ofi; < --- < i, and setBy, ..., By C R, k= 2,3, ...

Definition 3.6.1 The random variableX;, X, ... are said to béndependen

—

Note that we have defined independence for an infinite seguemactly as we did
for events in Definition 1.5.4. As in the two-dimensional &amdependence can
be characterized in terms of joint and marginal distribasiocand we return to this
in Section 3.10. For now, let us concentrate on the gener&nee formula. By

Proposition 3.6.4, Corollary 3.6.5, and induction, we ¢etfollowing result.

Proposition 3.6.7. If X1, ..., X,, are independent, then

i akal = i aiVar[Xk]
k=1

= k=1

(b) Var
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Example3.6.11 Let X ~ bin(n,p). Find the mean and variance &f.

Recall that a binomial distribution counts the number ofcasses im independent
trials. By introducing the indicators

1 if the kth trial gives a success
I, = :
0 otherwise

we can write
n
X = Z Iy
k=1

where thel; are independent and have meBfi;] = p and variance Vaf;] =
p(1 — p); see Section 2.5.1. Hence

E[X] =) B[I] =np
k=1

n

and

Var[X] = zn:Var[Ik] =np(1 —p)
k=1

which is in agreement with Proposition 2.5.1, but note howcmsimpler it was to
use indicators. 0

3.6.3 Vector-Valued Functions of Random Vectors

Above we saw how we can apply a real-valued funcgdo map(X,Y’) to a ran-
dom variableg(X,Y"). The following example illustrates a situation whére, ')
is mapped to another two-dimensional random vector.

Example3.6.12 Choose a pointX, Y") at random in the unit disk, and let its polar

coordinates béR, ©). What is the joint distribution ofz and©?

First note that the random radilisand the random angte relate toX andY through
X =Rcos® and Y = Rsin®

where the range aR is [0, 1] and the range d® is [0, 27]. Are they uniform on these
ranges? Let us try to find the joint cdf @R, ©), that is

F(r,0) =P(R<r,0<0)
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Fig. 3.4 A pointin the disk has angle less thédmnd radius less thanif it is chosen in the
regionC.

for fixedr in [0,1] and@ in [0, 27]. Now let

C = {(x,y) 0<Va2+y2<r 0<tan! (%) Sb‘}

so that we have
F(r,0) = P(X,Y) e C)
(see Figure 3.4). SingeX, Y) is uniform, the probability that it belongs to the sector
C is simply the area of” divided by the area of the unit disk, and we get
mr?0/2T ﬁ
T o

F(r,0) = P(X,Y) € C) =

By differentiating, we get the joint pdf

and

Hence,© is uniform butR is not, which should not be too surprising. It is easier to
getaradius nedrthan nea0, since aring of fixed width has larger area nearhere
is no reason why any particular angle would be more likelynthay other, though.
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Note also thaif (r,0) = fr(r)fo(8), which means that the radius and the angle are

independent. Think about why this makes sense. 0

The following is a two-dimensional analog of PropositioB.Z, which is stated with-
out proof.

Proposition 3.6.8. Let (X,Y’) be jointly continuous with joint pdff x y.
Further, let(U,V) = (u(X,Y),v(X,Y)), where the magz, y) — (u,v) is
invertible. The pai(U, V') then has joint pdf

f(U,V) (uv 1)) = f(X,Y) (x(uv ’U), y(uv 1))) |J(:c(u, ’U), y(uv 1)))|

where|J(x(u,v), y(u,v))| is the absolute value of the Jacobian determipant
of the inverse magu, v) — (z(u,v), y(u,v)).

Example3.6.13 Let X andY be independent standard normal random variables
and consider the paitX, Y) in its polar representatiof?, ©). Find the joint pdf of
(R, ©) and the marginal distributions d¢t and©.

By independence, the joint pdf X, Y") is

faxw (@ y) = fx(@) fy(y) = %e—(12+y2)/2

and(X,Y) is mapped td R, ©) according to

R=+vX24+Y2 and ©=tan! (Z)

X

The inverse map is
X =Rcos® and Y = Rsin®

and we apply Proposition 3.6.8. We know from before {biat= r and get

fro)(r,0) = fxy)(rcos, rsinf) xr

1
= —Tefrz/Q, r>0,0<60<2r
2

The marginals are easily found to be
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and
1

f@(&) = %7

so thatRk and® are independent arfél is uniform on|0, 2]. If we considerR?, the
squared distance to the origin, Proposition 2.3.7 with) = r? gives

0<0<2r

1 1
fr2(x) = mfR(\/E) = 56_1/2, z>0
which we recognize as an exponential distribution with peater\ = % We will
later see that this observation is useful in order to sinewdéiservations from a normal
distribution. 0

3.7 CONDITIONAL EXPECTATION

Once we have defined conditional distributions, it is a laggtep to also defineon-
ditional expectationsThe intuition is clear; these are simply the expected \sine
the conditional distributions, and the definitions areigltforward. We start with
conditioning on an event.

Definition 3.7.1 LetY be a random variable arfel an event withP(B) > 0.
Theconditional expectationf Y given B is defined as

> ykP(Y = yi|B) if Y is discrete with rangéy: , y», ...}

ElY|B|={ "

/ yfy(y|B)dy  if Y is continuous

— 00

Now recall the law of total probability which allows us to cpate probabilities by
finding suitable conditioning events. There is an analogigected values, a “law
of total expectation,” which states that

E[Y] =) E[Y|B]P(By)
k=1
under the same conditions as the law of total probabilityusisal, the sum may be
finite or infinite. We omit the proof and illustrate with an exgle.

Example3.7.1 Consider the computer from Example 2.8.2, which is busy with
probability 0.8, in which case an incoming job must wait for a time thatsig(1).
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Find the expected waiting time of an incoming job.

The two cases pertain to whether the computer is busy, 99 bet the event that it is
busy to obtain
E[Y]| = E[Y|B]P(B) + E[Y|B°|P(B°)

where E[Y|B¢] = 0 since there is no wait if the computer is free afiff"|B] = 1
since the expected wait issecond if it is busy. Hence, the expected waiting time is

E[Y]=0x0.2+1x0.8=0.8 seconds -

Next, we condition on the outcome of a random variable. ¥ thindom variable is
discrete, the situation is the same as above, with eventedfpeB; = {X = z;}.

Definition 3.7.2 Suppose thak andY are discrete. We define

BIY|X = 2] =Y ypy (vilz))
k=1

The law of total expectation now takes the form

o0

EY] =) E[Y|X = ;lpx())

Jj=1

where the sum is over the rangeXf Finally, we consider the continuous case where,
as usual, sums are replaced by integrals.

Definition 3.7.3 Suppose thaX andY are jointly continuous. We define

EY|X =] = /OO yfy (ylz)dy

— 00

Following the usual intuitive interpretation, this is thepected value oY if we know
thatX = z. The law of total expectation now takes the following form.
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Proposition 3.7.1. Suppose thak andY are jointly continuous. Then

ElY] = /OO ElY|X = z]fx(x)dx

— 00

Proof. By definition of expected value and Proposition 3.5.1

ElY] —/O; yfy(y)dy—/o; /Z yfy (ylz) fx (z)dzdy

where we change the order of integration to obtain
BYl= [ [ unGlodutxs

where the inner integral equalgY | X = z] by definition, and we are done. ®

Example3.7.2 Consider Example 3.5.3 whe?€ ~ unif[0, 1] and the conditional
distribution of Y isY'| X = z ~ unif|0, z]. What isE[Y]?

There are two possible ways to solve this; using the defimitibexpected value or
using Proposition 3.7.1.

The first solution is as follows. By definition

1
ElY] = / yfy (y)dy
0
where
o0 1 1
fel) = [ fwia= [ i
— o y L
since for fixedy, the joint pdf is strictly positive when is between; and 1. Hence
fr(y) =[loga], = —logy, 0<y<1
The expected value is
1
ElY]= —/ ylogydy
0

which can be shown to equél
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The second solution is as follows. SinEéX = x ~ unif[0, ], we have
mezﬂ:g
and by Proposition 3.7.1 we obtain

1 1,
E[Y]:/o E[Y|X=:E]fx(x)d£v:/0 §d:v:i .

Example3.7.3 A Geiger countelis an instrument used to detect radiation, such
as emission of alpha particles. When a particle is deteeted;called dead period
follows, during which the counter cannot register anythifigead periods are often
given as single numbers, but it is more realistic to assuraé ttrey are random.
Suppose that alpha particles are emitted at a rat8,6f00 per second and that a dead
period lasts for a random time that has pdf

f)y=6t(1—1t), 0<t<1

where we take the basic time unit to b@0 microseconds. What is the expected
number of particles that go undetected during a dead period?

Letus denote the number of particlesin an interval of fixagtht x 100 microseconds
by X (¢) and assume tha¥ (¢) has a Poisson distribution with meatemissions per
100 microseconds). Since the length of a dead period is not fix¢damdom, say,
T, the number of emissions during this periodki$7T"), and we condition to obtain

1
BX(@) = [ BX@)IT=1felt)at
0
! 1
= 6/ txt(l—t)dt = =
O 2
SO on average, we miss one particle for every two that arectizte 0

We have considered jointly discrete and jointly continumlom vectors. Itis also
possible to have a mixture in the sense that, for examplés discrete and” is
continuous. In that case, neither a joint pmf nor a joint pdées, but we can still use
conditional distributions and expectations.

Example3.7.4 LetY ~ unif[0, 1] and independently choose one of the endpdints
and1 such thab is chosen with probability. What is the expected distance between
Y2 and the chosen point?
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Let X be the point so thaP(X = 0) = pandP(X = 1) = 1 — p, and we are
looking for E[|Y? — X|]. Now, X is discrete and” continuous, so we solve this by
conditioning onX. First note that

Y2 if X =0
2 —
Y _X|_{1—Y2 if X =1

This means that
E[IY? - X[|X =0] =E[Y?X =0] = E[Y?]
sinceX andY are independent. Similarly,
E[Y?-X||X=1]=1-E[Y?]
and sinceE[Y?] = 1 we get

E[[Y?-X|]] = E[[Y’-X||X=0]P(X=0)
+E[Y?-X||X=1]P(X

I
—_
~—

= E[Yp+(1-EY*)A-p) = ——

3.7.1 Conditional Expectation as a Random Variable

In the previous section we learned that the conditional ebgti®n E[Y | X = z] is
the expected value of if we know thatX = z. We can therefore view [Y | X = z]
as afunction ok, g(x), and it is natural to define a random variap(eX) that is such
that it equalsE[Y|X = z] wheneverX = z. We use the notatioR'[Y'| X] for this
random variable and get the following definition.

Definition 3.7.4 The conditional expectatiof Y given X, E[Y|X], is a
random variable that equalg[Y'| X = z] wheneverX = z.

To get a better understanding, let us reconsider Exampl2.3.There we had
E[Y|X = z] = 2/2 and hence

E[Y|X] = g

the conditional expectation &f given X . We also showed that

E[Y] = /01 %d:c
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and since the integral is the expected value of the randorablartX /2, we see that
we have X
ElY]=F [—}
2
In fact, itis a simple consequence of the laws of total exqtémt that we always have
this type of relation.

Corollary 3.7.2.
E[Y] = E [E[Y|X]]

We can now restate Example 3.7.2 in a more compact wayY Letunif[0, X | where
X ~ unif[0,1]. Thenitis clear thaF’[Y'| X| = X /2, the midpoint, and by Corollary
3.7.2 we get

Make sure that you understand the difference between g¢onulig on theevent

{X = 2} and ther'andom variableX . In the first case, the conditional expectation is

a number (dependent af) and in the second case it is a random variable (dependent
on X). When we condition onX, we can think ofX as a known quantity, and the
following result, stated without proof, is easy to believe.

Corollary 3.7.3.
(a) E[XY|X] = XE[Y|X]
(b) If X andY are independent, thefi[Y|X] = E[Y]

(c) For any functiory, E[g(X)|X] = g(X)

Note that (b) and (c) are the two extremes of independencesaldlependence. The
conditional expectation changes from being equalf&] (no information fromX)
to g(X) (complete information fronX).

Example3.7.5 LetX ~ unif[0, 1] and letY'| X ~ unif[0, X?]. Let A be the area of
a rectangle with sidelengths andY’, and findE[A].
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By Corollary 3.7.2 we gee[A] = E[E[A|X]], and sinceA = XY, Corollary
3.7.3(a) gives
E[A|X]=E[XY|X]=XE[Y|X]

whereE[Y|X] = X?/2, and we get

1 o 11 1

3.7.2 Conditional Expectation and Prediction

A common problem in many applications is that we are intextdh one random
variable but observe another. For example, if a signal isived and we know that
there is noise that distorts the transmission, we wish tdipté¢he most likely signal
that was sent. Another application might be that we areésted in the concentration
of a chemical compound in a solution but can measure only dheantration of a
byproduct of the reaction that creates the compound. A tdglication could be a
company predicting sales figures for next year, based ory#ass sales.

In all of these cases, we are interested in a random varlalblat observe another
X and want to predicY” by a function ofX, g(X), called gpredictorof Y. Clearly,
we wantg(X) to be as close t&” as possible and to be able to quantify this idea, we
need a “measure of closeness.” The following is the most comm

Definition 3.7.5 Let g(X) be a predictor off’. The mean-square errors

defined as
E[(Y —g(X))?]

It turns out that the best predictor Bfis the conditional expectatiof[Y'| X] in the
following sense.

Proposition 3.7.4. Among all predictorg(X) of Y, the mean square error|is
minimized byE[Y | X].

We omit the proof and instead refer to an intuitive arguméntppose that we want
to predictY as well as possible by a constant vatueThen we want to minimize
E[(Y — ¢)?], and withy = E[Y] we get
E[Y-0? = E[Y—-p+p—2c)?
E[(Y =] +2(u = )B[(Y = )] + (n —¢)°
= VarY]+ (u—c)?
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sinceE[Y — u] = 0. But the last expression is minimized wher= 1 and hence
1 is the best predictor of among all constants. This is not too surprising; if we
do not know anything about, the best guess should be the expected valpé|.
Now, if we observe another random variable the same ought to be tru#: is best
predicted by its expected value given the random variabléhat is, E[Y| X].

Note here how we view the conditional expectation as a randamable. If we
observe a particular valug the best predicted value df is E[Y|X = z]. Thus, if
we plot observations 00X, Y'), the curvey = E[Y|X = z] gives the best fit to the
data.

3.7.3 Conditional Variance

Once we have introduced conditional expectation, the rogithl definition is that
of conditional variance.

Definition 3.7.6 Theconditional varianceof Y given X is defined as

VarlY|X] = E [(Y — E[Y|X])*X]

Note that the conditional variance is also a random variabttwe think of it as the
variance ofY” given the valueX . In particular, if we have observed = x, then we
can denote and define

VarY|X = 2] = E [(Y _EY|X = 1))? ‘X - x}

Also note that ifX andY are independenf[Y'|X| = E[Y], and the definition boils
down to the regular variance. There is an analog of CoroRady5, which we leave
to the reader to prove.

Corollary 3.7.5.

Varly |X] = E [Y2|X] — (E[Y|X])?

There is also a “law of total variance,” which looks slighthore complicated than
that of total expectation.
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Proposition 3.7.6.

Var[Y] = Var [E[Y|X]] + E [Var]Y | X]]

Proof. Take expected values in Corollary 3.7.5 to obtain
E |VarY|X]] = E[Y?] - E [(E[Y|X])*] (3.7.1)
and sinceF [E[Y | X]] = E[Y], we have
Var [E[Y|X]] = E [(B[Y|X])?] — (E[Y))? (3.7.2)

and the result follows by adding Equations (3.7.1) and 23.7. [ ]

The first term in the formula in Proposition 3.7.6 accountshfmwv much of the vari-
ability in Y that is explained by’s dependence oX’; the second, how much that
is explained by other sources. To understand this, notefthatandY are highly
dependent, then it should make little difference whethecamsiderY” or E[Y|X],
so their variances should be about the same. On the othey ifitmeldependence is
weak, thenE[Y'| X] should not change much as a result of variatioXinand thus
have a small variance. The extreme cases areiff a function ofX, in which case
the second term i8and if X andY are independent, in which case the first terrh is
(see Problem 76). For all cases in-between, the size of 8tedim relative to Vi
measures how good is at predictingY”. We will formalize the idea of strength of
dependence in Section 3.8.

Example3.7.6 Let us revisit Example 3.7.2 again and use the propositidmtb
Var[Y']. SinceY" ~ unif[0, X ], Proposition 2.4.6 gives

X X2
E[Y|X]=— and VafY|X]=—
2 12
and we get
X X2 1.1 1 b,

3.7.4 Recursive Methods

In Section 1.6.3, we saw several examples of how the law af psbbability can be
used to compute probabilities with recursive methods. Emestype of technique
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can be applied to compute expected values and variancesyesthrt by a simple
illustration of this.

Example3.7.7. Let X ~ geom(p). Show thatE[X] = 1/p.

Recall that the geometric distribution counts the numbéardépendent trials needed
to get the first success. We condition on the first trial, whiah be either success
(S) or failure (). Let = E[X] to obtain

= E[X] = E[X|S|P(S) + E[X|F]P(F)

whereP(S) = pandP(F) = 1 — p. For the conditional expectations, note that if the
first trial is a success, then we know that= 1 and henceZ[X|S]| = 1. If the first
trial is a failure, one trial has gone by and we start over td Ve the first success
and henc& [ X |F] =1+ u. We get

p=1xp+1+p)(l—p)=1+p—pp

which givesu = 1/p as desired. There was a little bit of handwaving in the argume
To make it strict, we should lefs and I be the indicators of success or failure in
the first trial and left” be a random variable with the same distribution¥asThen
we have the relation

X=Is+Ir(14Y) (3.7.3)

and by linearity of expected values and independende @ndY’, we get
p=E[ls]+ E[Ip]1+E[Y])=p+ (1 —p)(1+p)

which is the same equation as above. We will generally nohisepicky since it is
intuitively clear what we are doing. In Problem 77, you arkeaisto compute the
variance with a recursive argument, and then EquationdBcomes in handy.

Example3.7.8 A fair coin is flipped repeatedly and we count the number offlip
required until the first occurrence of the pattéfii/. Let X be this number and find
the expected value of .

To computeF’[ X ] directly, we would need to find the probabiliti® X = k), which
leads to a challenging combinatorial problem. Insteadideise a recursive approach.
There are three different possibilities: (1) the first flipegT and we start over, (2)
the first two flips giveH'T" and we start over, and (3) the first two flips gif#{ and
we are done (see Figure 3.5). Wjth= E[X] we get

RNy

1 1
p= EIX|T] x 5 + B[X|HT| x 7 + E[X|HH] x
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done in2 flips

start over, wait another flips

start over, wait another flips

Fig. 3.5 Waiting for HH

Clearly, E[X|HH|] = 2, and for the other conditional expectations, note that ehea
case we have already spent a number of flips and then start@weait for HH,
which takes an additional number of flips with mganHence
1 1 1 6 3
p=0+ps+E+u)g+2x =240
which givesy = 6. Hence, on average we have to wait six flips until the first
occurrence of{H (see also Problem 80).

Now let us instead consider the same problem for the pafféfn Since the
probability to getl’H in any two flips isi, the same as the probability to géti, we
might guess that the mean number of flips is étilLet us compute it by conditioning
on the first flip. If this isH, we have spent one flip and start over. If ifiswe have
spent one flip and wait for the firgf, which takes a number of flips with mearthe
mean of a geometric distribution with success probabyy;yWe get

1 1 n

u—(1+u)2+(1+2)>< 5= 5 +2
which givesy = 4. Although the two patternég’/H andTH are equally likely to
occur in any particular two flipsT’H tends to show up befor&H after repeated
flipping. To compensate for its tardineddf{ has the possibility of repeating itself
immediately in the next flip (if{HH there are two occurrences Afff) whereas we
must wait at least an additional two flips before we canBHeaepeat itself. Hence,
in a large number of flips, we see on average equally many oeces ofHH and
HT, but HH tends to come in bursts affdd more evenly spread out.

This “pattern of patterns” becomes more pronounced thedongr pattern se-
guence is. Recall the game of Penney-ante from Exampledl v@hich is constructed
so that the inherent asymmetries work to your advantageanthe shown that the
expected number of flips unttiHH is 14, whereas the same number @ 'H is 10
and forHTT andHHT only 8 (see Problem 82).

Itturns out that the key in determining the length of the igitime for a particular
pattern is how mucbverlapit has (with itself) . For example, the patteFfil’H has
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an overlap of length since the last letter can be the first letter of another oetioe

of the pattern. For the same reason, the patféfif{ has one overlap of length

1 but also one of lengtB since the last two letters can be the first two in another
occurrence of the pattern. Finally, the pattefil§ 7T and HT'T have no overlap at
all. The higher the amount of overlap, the longer the waitingg and there is a nice
and simple formula that expresses the expected waitingitinteyrms of the amount

of overlap. In Problem 83, you are asked to find this formula Bpecial case. For

a general overview of waiting times for patterns and pleritgtber good stuff, see
Problems and Snapshots from the World of ProbabiiiyBlom et al. [2]. 0

Example3.7.9 Recall Example 1.6.17, the gambler’s ruin problem when Aans
with a dollar and plays against the infinitely wealthy Bob. ¥dev that she eventually
goes broke, and we now address the question of how long the gambe expected
to last.

Let N be the time when Ann goes broke, anddet E[N]. Again, we condition on
the first flip. If this is heads, Ann goes broke immediatelyd &enceE [N |H] = 1.

If the first flip is tails, one round of the game has passed amis&ortune is$2. In
order for her to go broke eventually, she must first arrive &irtune of$1 which
takes a time that has mean Then she starts over, and the remaining time until ruin
has mean:. Hence, the total time until ruin, given that the first flip gdstails, is
E[N|T] =1+ p+ pand we get

u = FE[N|H|P(H)+ E|N|T|P(T)
= 1x%+(1+2u)% =1+4u

and since the only possible solution to the equatiog 1 + u is u = oo, we have
shown that the expected time until ruin is infinite! Note thas the mean ofV that

is infinite, not the random variabl¥ itself (compare with the St. Petersburg paradox
in Example 2.4.9). Ann will eventually go broke, but it makéea long time. 5

3.8 COVARIANCE AND CORRELATION

So far we have distinguished between random variables tieaindependent and
those that are not. This is a crude distinction, and in the cdslependent random
variables, we would like to be able to quantify the strendgthe dependence. Another
consideration is that dependence can go in different daest For example, consider
the ideal-gas law from chemistry. This states that in oneerobfas, the pressure,
volumeV, and temperatur& are related through the formula

_RT

P
v



COVARIANCE AND CORRELATION 203

where R is the universal gas constant. Hence, pressure increasiesneieasing
temperature but decreases with increasing volume. We @drkss this as having

a “positive” dependence betweéhandT' but a “negative” dependence betweln
andV.

It would be convenient to have a quantitative measure of dygae and direction
of dependence. IK andY are two random variables, it is reasonable to require such
a measure to

e Be0if X andY are independent

e Be> (if larger X values on average correspond to largevalues

e Be < (if larger X values on average correspond to smalfevalues

e Be higher (in absolute value) the “stronger” the dependéetweenX andY'.

Only the first requirement is mathematically precise, butdfally there is a clear

intuition for what we want to achieve. Our first attempt at sasige of dependence
is the following.

Definition 3.8.1 Thecovarianceof X andY is defined as

CovX,Y] = E [(X — E[X])(Y - E[Y])]

To compute the covariance, we can use Proposition 3.6.1t isudften easier to use
the following formula, which is easily proved by repeateé 0§ Corollary 3.6.3.

Proposition 3.8.1.

CoV[X,Y] = E[XY] — E[X]E[Y]

The covariance satisfies the requirements that we stateceabiéor example, by
Proposition 3.6.4(a), we get

Corollary 3.8.2. If X andY are independent, then Clo¥, Y] = 0.
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In the next section we will see that the converse is not titue covariance can ke
even if X andY are dependent. The covariance satisfies the other requitsras
well. Suppose, for example, that andY are “positively dependent,” that is, that
larger X values tend to correspond to larggérvalues. This means that when the
factor X — E[X] is positive, the factob” — E[Y] also tends to be positive and so is
the product. On the other hand, if larg&rvalues correspond to small&r values,
then positive values ok — E[X] correspond to negative valuesBf— E[Y], and
the product is negative. Hence, we have CoW’] > 0 in the first case anet 0 in
the second.

In the same way, we can argue that “strong positive deperdemeans that large
values ofX — E[X] correspond closely to large values¥of— E[Y] and the product
becomes large as well. A weak positive dependence meanthtéhabrrespondence
is less precise and the product, while still positive, maybeas large.

Example3.8.1 Let X andY be independent and uniform ¢@, 1]. Let C be the
circumference and the area of a rectangle with sid&sandY . Find the covariance
of AandC.

Sinced = XY andC = 2X + 2Y, we getAC = 2X2Y + 2XY? and hence

E[AC] = 2E[X?|E[Y] + 2E[X]E[Y?] =2 x L +2x 112
372 273 3
which gives
Cov[A, C] = E[AC] — EJAE[C] = 2 L xo =1
T 3 4 6 O

One important use of the covariance is that it allows us tie stayeneral formula for
the variance of a sum of random variables.

Proposition 3.8.3.

Var[X + Y] = VarX] + Var[Y] + 2CoV X, Y]

Proof. By the definitions of variance and covariance and repeatedfyzroperties
of expected values, we get

VarX +Y] = E[(X+Y - E[X +Y])?]
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= E[(X-E[X]|+Y - E[Y])]
E[(X - EX])*+ (Y — E[Y])*+2(X — EX]))(Y — E[Y))]
= Var[X]+ VarY] +2CoV[X,Y]

and we are done. [ |

Note that Proposition 3.6.4(b) is a special case of this @ith[ X, Y] = 0.

Example3.8.2 In Example 3.6.5, we ha®l ~ unif[0, 1] andY = —X. Verify that
VarlX + Y] =0.
We have VafX] = Var[Y] = - and covariance

CoviX,Y] = CovX, —X] = E[X(—X)] — E[X]E[-X] = —Var[X]

and Proposition 3.8.3 gives & + Y] = 0. 0

Let us investigate some of the properties of the covariaaestart with the case of
two random variables and proceed to a more general resuttpidof of the follow-
ing proposition is a straightforward application of the défon and the properties of
expected values.

Proposition 3.8.4. Let X, Y, andZ be random variables, and letandb be
real numbers. Then

(a) CoviX, X| = Var[X]
(b) Cov[aX,bY] = abCoV X, Y]

(c)CovX +Y, Z] = Cov[X, Z] + Co\Y, Z]

By Proposition 3.8.4 and induction, we can now show that tamaes ardilinear,
in the following sense.
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Proposition 3.8.5. Let X4, ..., X,, andY7, ..., Y,, be random variables and let
ai,...,an andbq, ..., b, be real numbers. Then

n n m

Vv Zanj,Zkak :ZzajbkCOV[Xj,Yk]
k=1

j=1k=1

Jj=1

We also get the following general variance formula, proved¢bmbining Proposi-
tions 3.8.4(a) and 3.8.5.

Proposition 3.8.6. Let X1, ..., X,, be random variables and let, ..., a,, be
real numbers. Then

Var

i aka‘| = i aﬁVar[Xk] + Z aiajCOV[XZ—, Xj]

k=1 k=1 i#j

Example3.8.3 LetX have a hypergeometric distribution with paramefgrs, and
n. Prove Proposition 2.5.4 about the mean and variancé.of

Recall thatX is the number of special objects, when we drawut of N objects,

r of which are special. Just as for the binomial distributiase, can solve this by
introducing indicators. Thus let

| 1 if the kth draw gives a special object
k 0 otherwise

to obtain .
X = Z I
k=1

It is easily realized that thg, have the same distribution and that

which is the proportion of special objects. This gives theamefX as

=Y En] = ZL:%

k=1 k=1
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which proves the first part of Proposition 2.5.4. Theare not independent this time

since, for example
r

N

r—1

N -1

since repeated drawing without replacement changes tipegion of special objects.

In order to find the variance ok, we thus need to use the general formula from
Proposition 3.8.6. The variance ff is

T T
and we also need to find the covariances [Co\Vy]. By symmetry, we realize that
these are the same for dlt£ k, so let us find CoMy, I3]. We have

COV[Il7 IQ] = E[Illg] — E[Il]E[IQ]

P(l;=1)=
but

P(L=1;=1) =

where
E[L L) =PI, =1,1,=1)
since this is the only case whénl, # 0. But

r—1 r
Ph=LL=1)=Ph=1h=)P(i=1)=F— %+
and we get
r—1 T rr r(N —r)
CoVly, ] = N NN NN
Ov[lv 2] N_lxN NN N2(N—1)
which finally gives
varX] = ZVar[Ik]JrZCO\/[Iij]
k=1 i#£j
B r T T(N_T)
- "N (1 N) nin 1)1\72(]\’—1)
N —n r r

after doing some algebra. Note that if we draith replacement, we get a binomial
distribution with parameters andp = r/N. The mean is the same, but the variance
is changed by a factqiV. — n)/(N — 1). If N is large relative to, this factor is
approximatelyi, which indicates that the hypergeometric distributiorhiattcase can
be approximated by a binomial distribution. 0

Note how the general variance formula shows that the assangpf independence
in Propositions 3.6.4 and 3.6.7 can be replaced by &pvX ] = 0, j # k, aweaker
assumption. However, since independence is a central pgnee stick with the
formulations that we have.
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3.8.1 The Correlation Coefficient

The covariance is an important and widely used concept ibability theory, but
it turns out that it has shortcomings as a measure of dependefio see where
the problem lies, consider the experiment of measuring thight and height of a
randomly chosen individual. LeX be the weight in pounds and the height in
inches. The degree of dependence betwgeandY” is then CoyX, Y]. Now let us
instead use the metric system, anddetlenote the weight in kilograms arid the
height in centimeters. Thefi = 0.45X andT = 2.5Y and Proposition 3.8.4(b)
gives

Cov[S,T] = Cov[0.45X,2.5Y] = 1.12CoV[ X, Y]

so if covariance measures the degree of dependence, we wuddhave “12%
stronger dependence” if we use kilograms and centimetens ifhwe use pounds
and inches. If we further change from centimeters to miltieng the covariance
increases by another factor of 100! Clearly this makes neeseand we realize that
any reasonable measure of dependence mudittensionlesshat is, not be affected
by such changes in units of measure. It turns out that we daie\aethis by scaling
the covariance by the standard deviations, and we statelibe/ing definition.

Definition 3.8.2 Thecorrelation coefficienbf X andY is defined as

Cov[X,Y]

v/ Var[ X]VarY]

p(X,Y) =

The correlation coefficient is dimensionless. To demonstiss, takez, b > 0 and
note that
Cov[aX, bY]
Var[a X |Var[bY]
abCoV[ X, Y]
Va2Var[ X |b2Var[Y]

p(aX,bY) =

= p(X, Y)

We also callp(X,Y) simply thecorrelation® betweenX andY. Here are some
further good properties of the correlation coefficient.

3In the electrical engineering literature, the term “caatin” is used in a slightly different meaning,
namely, to denotd’[ X Y']. Statisticians refer to this quantity as the@duct moment
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Proposition 3.8.7. The correlation coefficient of any pair of random variables
X andY satisfies

(b) If X andY are independent, thef{X,Y) =0
(©)p(X,Y)=1ifandonlyifY = aX + b, wherea > 0

d) p(X,Y)=—1ifandonly if Y = aX + b, wherea < 0.

Proof Let VarfX] = o? and VafY] = o3. For (a), first apply Proposition
3.8.3 to the random variablé§/o, andY /o, and use properties of the variance and
covariance to obtain

X Y Var[ X VarlY’ 2CoVX,Y
OSVar{—Jr—}: [2]+ [2]+ MX, ]=2+2p
g1 g9 01 g3 0102

which givesp > —1. To show thap < 1, instead useX/c; and—Y/co2. Part (b)
follows from Corollary 3.8.2, and parts (c) and (d) followofn Proposition 2.4.9,
applied to the random variablég§/o; — Y/o2 andX /o1 + Y/ o2, respectively. Note
that this also gives andb expressed in terms of the means, variances, and correlation
coefficient (see Problem 90). [ ]

The correlation coefficientis thus a number betweérandl, where—1 andl denote
the maximum degrees of dependence in the sensétltain be computed fronX
with certainty. Part (b) states that independent randonalbas have correlatiof,
but it turns out that the converse of this is not true; the @ation coefficient can be
0 even if the random variables are dependent, as we will see @xample.

Example3.8.4 Choose a pointX, Y') uniformly in the unit disk. Whatig(X,Y)?

The joint pdfisf(x,y) = 1/7. Denote the unit disk by to obtain

E[XY] = %//Daryda:dy

which we realize must equalby symmetry. Also by symmetnf[X] = E[Y] =0,
so we get ColX, Y] = 0 and hence alsp(X,Y’) = 0. Thus the correlation i8, but
we know from before thak” andY are dependent random variables. 0
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p>0 . . i p=0 E

Fig. 3.6 Simulated observations on pa{&, Y') that are positively correlated, uncorrelated,
and negatively correlated, respectively.

The explanation is that the correlation coefficient measardy the degree dinear
dependenceThus, if we have a number of observations(df, Y'), the correlation
coefficient measures how well the observations fit a strdigét If p(X,Y) > 0, X
andY are said to beositively correlatedif p(X,Y) < 0, they arenegatively cor-
related and if p(X,Y") = 0, they areuncorrelated See Figure 3.6 for an illustration
with simulated values. We have seen that

X,Y independent= X, Y uncorrelated

but not the converse. In the case of the uniform points in tble dlthoughX andY
are dependent, there is no linear dependence. See Figuia 27 illustration with
simulated values. Note how the boundaries of the disk agr blet how there is no
particular straight line that would fit better than any oth€hus, there is no linear
dependence and, in fact, no functional dependence at all.

The following example shows how there can be functional ddpace (in this
case quadratic) and how the correlation coefficient candaletect it but how the de-
pendence structure can still be revealed by an approphatege of random variables.

Fig. 3.7 One hundred simulated points, uniform in a disk. Note howbitnendary is clearly
discernible, indicating dependence, but how there is ndoolsvway to fit a straight line,
indicating uncorrelatedness.
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Example3.8.5 Let X ~ unif[0,1], and letA be the area of a disk with radius.
Whatisp(X, A)?

We haveE[X] = 1, Var[X] = i, and sinced = 7.X?2, we get

12

2

1 1
E[A] = 7T/ ridr = z, E[A?] = 71'2/ wtde = =
0 3 0 g

which gives VafA] = 472 /45. We also obtain

HXMZWﬂXﬂ:w/%%ng
0
which gives CoyX, A] = E[X A] — E[X]E[A] = n/12. We get
B w/12 N
P, 4) = \/(1/12)><(4w2/45)’V()97

which is certainly high but does not reveal the fact thas completely determined by
X. However, if we instead compute the correlation coefficat and the random
variableY = X2, we haveA = 7Y, and by Proposition 3.8.7 (c)(4,Y) = 1.
Hence, by changing the random variable, we can view the gtiadiependence ok

as linear dependence off and reveal the completely deterministic relation between
X andA. 0

Example3.8.6 If X ~ unif[0, 1] and givenX = z,Y ~ unif|0, =], whatisp(X,Y)?

From previous treatment of this example, we know that thenaaae
1 1

E[X])= 3 and E[Y]= n

and the variances )
Var[X] = - and VafY]= il
so all we need to find is the covariance C&vY] and since
CoVX,Y] = E[XY] — E[X]E[Y]

all that remains is to compufe[ X Y]. A direct application of Proposition 3.6.1 gives

1 T 1 1
E[XY] = / / xy—dydx = =
o Jo x 6

which gives the correlation

_6= (/)X () s

X = ey ) O
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A logical next question is “What is a high correlation?” Wencanderstand the
extremes of correlations df, —1, or 1 and also values near these, as in Example
3.8.5. But how about intermediate values? For examplegi8.&% we got in the last
example a high correlation? What does it tell us about tlemgth of the relationship
betweenX andY? To come up with an interpretation of the valuegofive revisit
the concept of prediction from Section 3.7.2.

Recall how we argued th#[Y'| X] is the best predictor df’, based on observing
X. To compute the conditional expectation, we need to knoyaihédistribution of
(X,Y). This is not necessarily the case, and even if we do, the lagilcns may be
intractable. If we restrict our goal to finding the bésear predictor, that is, of the
formi(X) = aX + b, we need to know only the means, variances, and the cooslati
coefficient, as the following result shows.

Proposition 3.8.8. Let X andY be random variables with means anduy,
variancesr% ando?., and correlation coefficient. Thebest linear predictof
of Y based onX is

g
I(X) = py + p—(X — px)
ox

Proof. Suppose first thatx = uy = 0 ando? = 0% = 1. The mean-square
error is then

E[(Y — (aX +b))?] = EY?] + *E[X?] + b — 2aE[XY] = 1 + b* + a(a — 2p)

which is minimized foh = 0 anda = p. For the general case, consider the random
variables(X — ux)/ox and(Y — uy)/oy, which have mean and variances,
and apply the result we just proved. ]

Thus, for any two random variables andY’, the correlation coefficient can be re-
garded as a parameter that is chosen so that the relatioedeXkvandY becomes
“as linear as possible.” If we have a number of observatior(sg Y'), we can regard
the liney = [(x) as the best linear fit, whereas the cupve E[Y|X = z]is the best
possible fit among all functions.

Example3.8.7 Let X ~ unif[0,1] and givenX = z, letY ~ unif[0,2?]. Find
E[Y|X = z] andi(z).

It is clear from the description thad[Y | X = ] = 2?/2. Fori(x) we need to find

all the parameters involved in its definition. We havgX] = 1 and VafX] = -,
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and to find the mean df, as well as the correlation coefficient, we use conditional
expectations and variances. Since

oy COV[)(7 Y]
ox O'gc

we do not need to compute the varianceYaf We haveE[Y|X] = X?2/2, which
gives
X2 1t 1
=EY]=E|=| == *dr = —
w =Bl =8 | 5| = 5 [ s =

and for the covariance we also neBfX Y], which equal%, by Example 3.7.5. We
get

CoV[X,Y] = E[XY] - E[X]E[Y] = —

which finally gives

1 1/24 1 z 1
“@_6+WEQ“E>_§_E
which is depicted in Figure 3.8 together wi{Y | X = z] and100 simulated obser-

vations. Overall, the fits are both pretty good, but the détathe right shows that
the linear fit is poor near the origin. 0

In the previous example, the liigr) is computed from the values of the parameters
ux, iy, and so on, and we can see how well the line fits the obsergtinipractice
the situation is usually the reverse; we start from a set seolations, do not know
the values of the parameters, and wish to find the straigbtthat fits the data best.
This means that we are trying to find the ideal liGe) by finding approximations of

1 0.04

0.5 AN 0.02

Fig. 3.8 One hundred simulated values(of, Y") in Example 3.8.7 together with the curve
y = E[Y|X = z] (dashed), and the ling= [(z) (solid). To the right is a detail of the region
near the origin.
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the parameters on basis of the data. We will return to thisieotion between theory
and data in Chapter 6.

We still do not know what a particular value pfmeans, so let us now finally
address this question. One way to evaluate the linear fitéemapare the variances
of Y and/(X). The random variabl& has a certain variance.. If Y is strongly
correlated withX, thenY is closely approximated by the straight lilgX ), and most
of the variation inY” can be attributed to variation iN. By computing the variance
of [(X), we get

2
g
Var[l(X)] = pQéVar[X] = p’o?

and see that V@i X)] < Var[Y] always holds. Moreover, we see that

Var[l(X)] 9

VarlY]

which gives an interpretation @; it measures how much of the variation¥hcan
be explained by a linear relationship . The numbep? is called thecoefficient
of determination Hence, a value gb = 0.65 as in Example 3.8.6 gives = 0.42
with the interpretation thak” explains about2% of the variation int”, whereas the
rest is due to other sources of randomness. The followingelais illustrative and
good to remember.

Example 3.8.8 Roll two fair dice, lettingX andY be the numbers and letting
Z = X +Y, the total number. What ig(X, Z)?

First, we find the covariance of andZ. By Proposition 3.8.4 and Example 2.4.11,
we have

CoVX, Z] = CoV[X, X + Y] = Var[X] + CoV[X,Y] = %
sinceX andY are independent and hence C&vY] = 0. Further, by Proposition

3.6.4(b)
Var[Z] = Var[X] + Var[Y] = 3—65

and we get
CovX, 7] 1

~ NVarxNafz] - V2

and if we square this, we get the coefficient of determinatidnr= 5. Thus, half
of the variation inZ is explained by variation ifX', which is intuitively clear since
7Z = X 4+ Y, whereX andY are independent and on average contribute equally to

the sum. See also Problem 99. 0

p(X, Z)
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Recall from Section 2.5.6 how we can summarize a data seabingtts mean and
variance and how this can be viewed in the context of randatahigs. The same is
true for the correlation. Given a data t= {(x1,v1), ..., (¥n,yn)}, we define its

correlation as

n

(zr = 2)(yx — )
k=1

> (k=2 (v —9)°

k=1 k=1

Again, we can think of this as an approximation of the trueumknown correlation,
computed from a set of observations.

Example3.8.9 The following data are eight of astronomer Edwin Hubble29
measurements on a galaxy’s distance from Earth (megasueamed recession veloc-
ity (kilometers per second).

Distance:0.032, 0.263, 0.45, 0.63, 0.90, 1.00, 1.4, 2.0
Velocity: 170, —70, 200, 200, 650, 920, 500, 850

Computing the sums in the expression above gives 0.78. We view this as an
approximation of the true value, an approximation that wiggt better the more data
we have. We will return to Hubble’s data in Chapter 6. 0

It is important to realize that the correlation coefficiened not measureausation
only associatiorbetween random variables. This means that even if thereigha h
correlation, it does not necessarily follow that large eslwf one random variable
causedarge values of the other, only that such large values teragpear together.
One amusing example is to I&t be the number of firefighters sent to a fire ahthe
economic damage in dollars of the fire. It can then be obsehatdhere is a positive
correlation betweerX andY. Conclusion? To keep your economic loss down in
case of a fire, don't call the fire department? In this caseettsea third variable that
explains the correlation: the size of the fire. The correlaiis thus caused by an
underlying factor that affects both andY.

A similar effect can also be caused by an intermediate fafdoexample in the
Berkeley admissions data from Example 1.6.4 where a caiwalbhetween gender
and admission rate was demonstrated, but the real causehaiafeale students
applied for majors that were more difficult to be admitted Ttws, gender affected
choice of major, which in turn affected the chance of beingigied.
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3.9 THE BIVARIATE NORMAL DISTRIBUTION

In Section 2.7, the importance of the normal distributiorsvg@inted out. In this
section, its two-dimensional analog is introduced.

Definition 3.9.1 If (X,Y) has joint pdf

v

2ro1094/1 — p?

1 ((510—/“)2 n (y —p2)* QP(x—Ml)(y—Mz))}
2 2

X exp 4§ —
p{ 2(1 - p?) g1 72 7102

forz,y € R, then(X,Y) is said to have hivariate normal distribution

f(xvy) =

The formula is ugly, but the pdf itself is beautiful (see Fig.9). The bivariate
normal distribution has five parameters;, us € R,01,02 > 0, and—1 < p < 1.
The center of the bell in Figure 3.9 is above the pdjint, 112 ), and its shape is deter-
mined by the other three parameters. The notation sugdegtsese are the means,
variances, and the correlation coefficientdfandY’, but we need to prove that this
is actually the case.

Proposition 3.9.1. Let (X,Y) have a bivariate normal distribution with
parameterg, us, 01,02, p. Then

(8) X ~ N(u1,0%) andY ~ N(uz,03)

(b) p is the correlation coefficient ok andY

Proof. (a) Let f(z,y) be the joint pdf of( X, Y). To find the pdf ofX, we need
to integrate the joint pdf with respect o We first make the change of variables
u = (x—p)/or andv = (y — p2)/o2, so thatdy = o2 dv and the integral limits
remain—oo andoo. We get

@ = [ " )y

1

1 o0
2wo1/1 — p? /—oo p( 2(1-p?)

(u? +v? — 2puv)) dv
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Now note that? + v? — 2puv = (v — pu)? + u?(1 — p?) and hence

fx(@) = 01\1/%%10(—%2)

Now note that the integrand in the last integral is the pdfiedanal distribution with
meanpu and variancé — p?, and hence this integral equals one. Finally, substituting
backu = (z — u1)/01 gives

fx(z) = L_M)Q)

1
exp | —
o1V 2T P ( 20%

which we recognize as the pdf of a normal distribution withamg, and variance
o?. We prove (b) in Example 3.9.1. [

It is instructive to consider theontoursof the joint pdf, that is, the sets of points
(z,y) for which f(x, y) equals some fixed constant. These contours are ellipses that
reflect how observations are typically spread in the planehn ellipse is centered

in (u1, p2), and its shape and direction depend on the other paramétess= 0,

the ellipse is parallel with the axes, and if, in additiefl,= o3, it is in fact a circle.

See Figure 3.10 for an illustration of some different casEach plot shows 00

Fig. 3.9 The joint pdf of a bivariate normal distribution.
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@) (b) ()

Fig. 3.10 Simulated observations from bivariate normal distriongin(a)p = 0, 0% = o3;
(b) p=0,03 > 07;(c) p < 0.

simulated observations from a bivariate normal distrititidisplayed together with
two contours.

We have seen that a bivariate normal distribution has nomaajinals. Is the
converse also true, that is, ¥ andY are normal, then the paftX, Y) is bivariate
normal? The answer is “almost,” but¥f is a linear function ofX, the pair(X,Y")
is concentrated on a straight line and there is no joint pdf.cah also see this in the
expression forf (z, y) above, since would then be-1 or 1. It is also possible to
construct a non-normal joint pdf such that both marginadsrearmal, but this is not
of much practical interest and we will not address it furth&mice property of the
bivariate normal distribution is that not only the margsalt also the conditional
distributions are normal.

Proposition 3.9.2. Let (X,Y) be bivariate normal. Then, for fixede R

g
Y X=2~N <M2 +P0—j($ — m),05(1 —PQ))

Proof. Carry out the division in

fz,y)
€Tr) =
and identify the expression with the desired normal pdf. ]

Note that Proposition 3.9.2 states that

02
ElY|X] = p2 + PU—I(X - p1)
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which we note is a linear function of. Hence, in the case of a bivariate normal
distribution, the best predictor &f given X is linear (see also Proposition 3.8.8).
This indicates that all the dependence that exists betéeandY can be attributed
to linear dependence, and the following result shows thatishindeed so.

Proposition 3.9.3. Let (X,Y) be bivariate normal. TheX andY are inde
pendent if and only if they are uncorrelated.

Proof. Simply note that the joint pdf equals the product of the maafpdf’s if
and only ifp = 0. ]

This is a convenient result since it says that if we cannotdimglinear dependence
structure in observations that are bivariate normal, thengis no dependence struc-
ture at all. Another ramification of Proposition 3.9.2 isttlige can easily prove
Proposition 3.9.1(b), thatis the correlation coefficient o andY'.

Example3.9.1 Let(X,Y) be bivariate normal. Show tha{X,Y") = p.

Let first Z andW be standard normal. By Corollaries 3.7.2 and 3.7.3, we nbtai

CovZ, W] = E[ZW] = E[E[ZW|Z]]
= E[ZEW|Z]] = pE[Z°] = p

and since both variances alrgthis is also the correlation coefficient. Next, consider
the random variableX = 1 + 01Z andY = s + ooW. ThenX ~ N(u1,0%)
andY ~ N(uz,03), and since

CovlX,Y] = CovX — i, Y — po]

we get
p(X7Y):p(01Za02W):p(Z7W):p O

Example3.9.2 At a measuring station for air pollutants, the amounts ofnezand
carbon particles are recorded at noon every day. X dte the concentration of car-
bon (ug/m?®), andY” the concentration of ozone (ppm), and suppose(thal’) has
a bivariate normal distribution such th&t~ N (10.7,29.0),Y ~ N(0.1,0.02), and
p = 0.72. The ozone level is considered unhealthy if it exce@d8. Suppose that
the equipment used to measure ozone fails, so that we caureeady the carbon
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level. If this turns out to b&0.0 ug/m?, what is(a) the predicted ozone level aitil)
the probability that the ozone level is unhealthy?

We have observed = 20.0. For (a), we need to find?[Y|X = 20]. From
Proposition 3.9.2, we know that is normal with mean

V0.02
E[Y]X =20] = 0.1+ 0.72==2(20 — 10.7) ~ 0.28

1v/29.0

so this is the predicted ozone level asked for in part (a).(Bprwe wish to find the
probability
P(Y > 0.30|X = 20.0)

and also need the conditional variance, which is

VarY'| X = 20] = 0.02(1 — 0.72%) ~ 0.01

which gives
P(Y >0.30|X =20.0) = 1-P(Y <0.30|X = 20)
= 1-® <70'30 _ 0'28> ~ 0.42
v/0.01 O
The line

(o}
y=BYIX =2]= o+ p (e — )

is called theregression line For an observed valu¥ = z, it is the best predicted
value ofy, in the sense discussed in Section 3.7.2. It might be tegptitbelieve
that the regression line is an axis of the ellipses desaittie pdf, but this is not the
case. The reason why is probably best understood by comsideplot of observed
values. Figure 3.11 shovi®0 simulated values from a bivariate normal distribution
with means), varianced, and correlationp = 0.5. The major axis is the dashed line
y = x and the regression line, the solid lipe= 0.5z. Since the regression line in a
pointz is the conditional mean df , given X = z, it has roughly the same number
of points above and below for any given Look, for example, at in the vicinity of
2. Note how the regression line cuts through the points roughthe middle, and
compare with the ellipse axis, which is entirely above adl points.

There is an interesting observation to be made here. Supfoysxample, that
the points represent standardized test scqies (0,0 = 1) for students where&
is the score on the first test afdthe score on the second. The positive correlation
reflects that students with high scores on one test are eeghémthave high scores
on the other as well. Now consider students with good scaneh® first test, say,
abovel. On the second test, most of them did worse! What happened?thigis
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Fig. 3.11 Simulated observations diX, Y'), with the corresponding regression line (solid)
and major ellipse axis (dashed).

completely normal. If your test score 6 = 1 on the first test, your predicted score
on the second test B[Y|X = 1] = 0.5. In the same way, those who did poorly on
the first test are expected to do better on the second. It isritapt to understand that
such changes are natural and do not necessarily indicateiagyn particular. The
phenomenon is calleggression to the medmand is frequently misinterpreted.

By working through more tedious calculations, it can be shtwat linear combi-
nations are also normal. More specifically, consider thie¥ahg proposition.

Proposition 3.9.4. Let (X,Y") be bivariate normal, and let andb be real
numbers. Then

aX +bY ~N (aﬂl + bus, CLQO'% + bQO'S + 2abp0102)

In particular, if X andY” are independent, this leads to the following corollary.

Corollary 3.9.5. If X ~ N(u1,0%), Y ~ N(u2,03), andX andY are
independent, then

aX +bY ~N (aul + b, a*o? + b2cr§)

4The British aristocrat and scientist Sir Francis Galtonpw¥as one of the first to use linear regression
methods, used the term “regression to mediocrity.”
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The noteworthy property of the bivariate normal distriloutis not that the means and
variances add the way they do; we know that this holds gelge¥&hat is noteworthy
is that the normal distribution is retained by taking a lineambination ofX andY’,
independent or not. This is not true for most distributidies;example, the uniform
and exponential distributions do not have this propertythiMiiduction, we get the
following immediate extension.

Corollary 3.9.6. If Xy, ..., X,, are independent witX;, ~ N (ux,07) and
ai, ..., an are constants, then

n n n
Z apXp ~ N <Z aklk, Z aiai)
k=1 k=1 k=1

Example3.9.3 Two different types of diets are used on a salmon farm. Suppos
that one group of fish is given diet A and the other diet B. Tockh&there is a dif-
ference in weightsp salmon from each group are weighed, and the average weight
is computed for each group. Suppose that the weightsVdg®, 5) and N (18,4)
(kilograms) in the two groups. How large musbe in order for us to be at lea%#%
certain to determine that diet A yields bigger salmon?

Call the weightsX 1, ..., X,, andY3,....,Y,, and letX andY be the two averages.
Corollary 3.9.6 witha; = - - - = a,, = £ gives

X~N<2o,§> and yNN(l&é)
n n
and Corollary 3.9.5 wittu = 1,b = —1 gives
X—Y~N<279)
n
We get
099< P(X>V)=P(X -V >0)=1-d(2—2) g2
T 0 3/vi) ~ \3/va

which gives2/n/3 > 2.33, so that, must be at least 13. 0
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3.10 MULTIDIMENSIONAL RANDOM VECTORS

Everything we have done for two-dimensional random vaealih the previous sec-
tions generalizes in an obvious wayrtaimensions as well. Thus, X1, ..., X,, are
random variables, we callX1, ..., X,,) ann-dimensional random vector. If th&;
are discrete, we define the joint pmfg&:y, ..., z,) = P(X1 = 21,..., X», = Tp),
and if there is a functiorf : R™ — R such that

P((X1,..., X5) EB)z/---/Bf(xl,...,xn)dacl---dxn

for setsB € R", thenXy, ..., X,, are said to be jointly continuous with joint pdf
The joint cdf is defined as

F(x1,.yxn) = P(X7 <21,...,Xn < zp)

and we have the relations

Tn 1
Fonan) = [ o [ fltnti)dn -,

and o
flay,.xy) = 9o 0z,

for z1,...,z, € R, in the jointly continuous case. The marginals for tkig are
obtained by summing the joint pmf orintegrating the joint peer the other variables.
Note, however, that when > 3, we also get “multidimensional marginals,” for
example, the joint distribution ¢fX, Y) when we startfroni.X, Y, Z). Independence
between random variables now means that all possible jatrlulitions are products
of the possible marginals.

Rather than stating formal multidimensional analogs oftthe-dimensional re-
sults, we illustrate these in an example that deals with formidistribution in three
dimensions.

F(Ila ,In)

Example3.10.1 Suppose that we choose a pofX, Y, Z) uniformly in the unit
sphere{(z,y, z) : x2 +y? + 22 < 1}. By an argument similar to that for the uniform
distribution in one or two dimensions, we must have the jpatit

3 2 2 2
fley,2) =~ 2" +y +2°<
since the volume of the sphereds/3. We might now wonder what the joint dis-
tribution of X andY is. Is it the uniform distribution on the unit disk in tHe, y)
plane? We need to integrate oveiso let us first note that for fixedandy, z ranges
from —/1 — 22 — y2 to /1 — 22 — y2 and we get

3 [Vi—a?—y? 3 .
yp dz:2—\/1—:c2—y2, o4y <1
T J—\/1—x2—y2 ™

f(X,Y) (z,y) =



224 JOINT DISTRIBUTIONS

which is certainly not a uniform distribution. The intuitids that a region of fixed
size in the(z,y) plane is more probable if it is near the origif, 0), because it
then corresponds to a larger volume to pick, Y, Z) from. With the experience
from Example 3.4.3, this was to be expected. We also expattlile conditional
distribution of (X, Y") givenZ = z is uniform on the disk with radius’1 — z2. Let

us verify this. The conditional pdf dfX,Y") givenZ = z is defined in the obvious

way:
f(z,y,2) 2 2 2
b = 77 —"_ S 1 -

and we must thus find the marginal ptif(z). We get

// flz,y, 2 d:vdy— // dx dy
24 g2<]1—22 24y2<1—22

where we change to polar coordinates to obtain

3 2 1—22
fz(z) = — / rdrdf
47T 0 0
3 VimE g
= = x2 =S(1-2%, -1<2z<1
1 <o [ 5 L 4( z7), z
We now get
1 2 2 2
fxn (@, ylz) = m7 4y <1-=z2
and it is reassuring to note that this is indeed a unifornritistion on the disk with
center in0 and radius/1 — 22. 0

If the random variables(;, X5, ... can be regarded as repeated measurements on
some quantity, they can be assumed to be independent, andlfieeall have the
same distribution. If this is the case we use the followingiiaology.

Definition 3.10.1 If X3, X5, ... are independent and have the same distribu-
tion, we say that they ari@adependent and identically distributex i.i.d. for
short.

Example3.10.2 (Waiting Time Paradoy. Bob often catches a bus from a street
corner to go downtown. He arrives at different timepointsiniy the day but has
estimated that his average waitli minutes. His friend Joe, who can see the bus
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stop from his living room window, assures Bob that the bus@san average every
half hour. But then Bob’s average wait ought toltleminutes, not 7. Explain!

This is an example of thevaiting time paradoxand the explanation is simple. The
times between consecutive arrivals are i.i.d. random béggwith mear30 minutes.
If Bob arrives at an arbitrary timepoint, he is more likelyaoive in a time-interval
between buses that is longer than usual. For example, sepipatthree consecutive
buses arrive at:00, 1:40, and2:00. The time intervals aré0 and20 minutes, which
have the averag#® minutes. However, if Bob arrives at a uniform time betwee)
and2:00, the probability that he arrives in the first interval%s in which case his
expected wait i20 minutes and with probabilit%, his expected wait i$0 minutes.
This gives the expected wal x % + 10 x % ~ 17 minutes. Hence, it is perfectly
normal that buses run on average every half hour but Bob’s@rg wait is more
than15 minutes. 0

Call the times between successive arrivals in the exaffipl#s, ..., which are i.i.d.
random variables. This is an example ofemewal process Now letu = E[T],

the mearninterarrival time, and consider the tim&” until the next arrival at some
arbitrary timepointt. We argued above thd[7"] does not equgl/2. It can be
shown that for large (the process has been going on for a while), this expectes tim
is

E[T?

BT ==,

For example, if thel}, are uniform|0, 1], the mean ig. = § and E[T?] = %, which
givesE[T'] = % Note that this means that the expected length of the intéraa
containst is E[T?]/u, which is reminiscent of the size-biased distributionslgtd
in Problems 32 and 33 in Chapter 2. If you sample a person dbranthis person is
more likely to belong to a large family. If you arrive at ramd@t a bus stop, you are
more likely to arrive in a long time-interval and we might Iciis alength-biased

distribution.

3.10.1 Order Statistics

As we know from many applications and real-life situatioih$s often of practical
interest to order observations by size. In terms of randorrabkes, we have the
following definition.

Definition 3.10.2 Let X1, ..., X,, be independent and denote Ky the jth
smallest of theX,.. The random variablex'(;) < X3 < -+ < X,y are
called theorder statisticeof the random variableX, ..., X,,.
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Note thattheX;, are independentbutth€, are obviously not. Of particularinterest
are Xy and X, the smallest and largest of tig, .

Example3.10.3 LetXj, ..., X,, beindependentwherf§;, ~ exp(A\y),k =1, ...,n.
What is the distribution of(;)?

First note thatX ;) > x ifand only if X; > z, X» > z,..., X;, > 2. Hence, using
independence, we obtain

P(Xq >2) = PXi>uwz,.,X,>1n)
= P(X1>x)- - P(X,>2x)

Mz ~€7>\"I )\1+---+)\n)17 T > 0

e = 67(

which gives the cdf
Fx (@) = 1—e itz g > 0

which we recognize from Section 2.8.2 as the cdf of an expaatistribution with
parameten; + --- + \,. Hence

X(l) ~ exp(/\1 + -+ )\n)

Example3.10.4 Recall Example 2.6.1, where the concept of half-life of doad-
tive material was first introduced informally as the time uiggd until half of the
atoms have decayed, and then defined as the median lifetimeintlividual atom.
Let us now examine this more closely.

Suppose that we start from a numi2er of atoms. The half-life is then the time it
takes until we have, atoms left. If we assume that lifetimes are i.iekp()\) for
some), the time until the first decay i&/,), the minimum of2n exponentials. We
then start over witten — 1 atoms and wait for the next decay. The time until this
is T{2), which by the memoryless property is the minimumef — 1 exponentials
(note that this is also the second smallest among the otiginéfetimes if 7(;) is
subtracted from all of them; hence the subscript). The tim@ balf of the atoms
have decayed is then

T=> Tw

k=1

which is a random time. To describe this by a number, we defaiklife as the
expectedime until half of the atoms have decayed:

h = E[T]
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Now, by Example 3.10.3[(1) ~ exp(2n]), ..., T(,) ~ exp((n + 1)A), which gives

2n 1 1 2n 1 1
257 (ZE_ZE>
=n+1 k=1

k=1

h=> Ellw)=

k=1

>| =

Itis awell known result thatthe harmonic serigs = 1+3+- - -+ = is approximately
equal tolog n for largen, and we get

h =~ %(1og(2n) —logn) = %10g2

which is precisely the median &f. Thus, if the radioactive sample is large, the
interpretation of half-life as the median in the individligdtime distribution works
fine. However, as the sample gets smaller, this becomesneskess accurate and
the decay tends to speed up. Consider the extreme case wiggwoatoms remain.
The time until only one is left is then the minimum of two exgotials, which gives

h = 1/(2X), which is smaller than the medidwg 2/ . 0

The definition of half-life as “the time until half of the at@thave decayed” is a
deterministiadescription, and our approach with exponential lifetinsgsdbabilistic
(or stochastig. We have seen that they agree when the number of atoms ¢ targ
only the probabilistic description is accurate for smalinhers.

If the random variables are not just independent but alse bz same distribu-
tion, there are some nice and simple formulas for the digtion of individual order
statistics, as well as their joint distribution. We startdyesult that gives the cdf’s
of the minimum and maximum.

Proposition 3.10.1. Let X1, ..., X, be i.i.d. with cdfF". ThenX ;) and X,
have cdf's

Fay(z) = 1-(1-F(z)", z€R
Foy(z) = F)", z€R

Proof. We do the maximum and leave the minimum as an exercise. 6isthat

(X <o} ={X1 <w,..,X, <7}

5The exact result is that the difference between the harmamiesH,, andlog n approaches a number
asn — oo. The numbery is known asEuler’s constantind is approximately equal t58.
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that is, the maximum is less than or equaktd and only if all the X, are less than
or equal tox. We get

PX1<z)---PX,<z) = Fx)", z€R

where the second to last equality is due to independence éfth For the minimum,
instead start with the eveqiX ;) > = }. [ |

This result is valid for both discrete and continuous rand@mables, but there are
some differences between the two cases when it comes t@fymtbperties of order
statistics. In the discrete case we may get duplicate vadunekthe order statistics are
not necessarily unique. Thus, we can, for example, havermanivalues attained
at two or more differentX, and computing the joint pmf of the order statistics is
complicated by this fact. In the continuous case, howeugslicate values are im-
possible [recall from Section 3.4 th&(X; = X;) = 0 for all j # k], so there is
only one possible set of order statistics.

Example3.10.5 You are selling your car and receive consecutive bids. Ttdds
do not know each other bids, and for each bid you need to denidediately whether
or not to take it. If you decline, you cannot accept the offdef. Your strategy is to
decline the very first bid, then accept the first bid which rgés. How long can you
expect to wait?

Let us assume that the consecutive bifls, Xo, ..., are i.i.d. continuous random
variables. You are thus waiting for the first timesuch that

X1> X0, X1 > X, 1, X1 <X,

which means thak, is the largest and(; the second largest among thg,. We
thus define

N = min{n : X(n) = Xn,X(n—l) = Xl}
and wish to findE[N]. The assumption of continuod§, means that all th&(;, are
different from each other, and since they are i.i.d., edighs equally likely to be the
maximum. Once a maximum is decided, each of the remaiXings equally likely
to be the second largest. Hence, the probability fia&quals a particulat is

P(N=n) = P(Xu) =XnX@u-1)=X1)
= P(X(u-1) = X11X(n) = Xn) P(X(n) = Xn)
1 1 1
— X — = —_—, TL:2,3,...
n—1 n n(n —1)

and the expected value of is

E[N]:ZnP(N:n):Znil =00
n=2 n=2
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so you can definitely expect to wait for a long time! See Pnobl®9 for a strategy
that enables you to sell your car faster. 0

In the continuous case, it turns out that it is easy to find tlaegmal pdf's of the
order statistics, as well as their joint pdf. We start by thkofving corollary, which
follows immediately by differentiating the expressiongiroposition 3.10.1.

Corollary 3.10.2. Let X4, ..., X,, be i.i.d. and continuous with pdfand cdf
F. ThenX ;) and X, have pdf's

fay(@) =nf(2)1 = F(2))"" and  fe(x) = nf(z)F ()"

forx € R.

In Problem 113, you are asked to find the pdf’s for the remajmirder statistics.
In the case of i.i.d. continuous random variables, we cailyefisd not only the
marginals but also the entire joint distribution of the ardatistics.

Proposition 3.10.3. Let Xy, X5, ..., X, bei.i.d. and continuous with the com-
mon pdffx. Then the vector of order statistiCX (1, X(3), ..., X(,,)) has join
pdf

flxr, @2, ..,xn) = n! fx(x1) fx(x2) - fx(xn)

for—-co< oz <29 < <2, <0

The intuition behind the expression in the proposition igaalear, if we skip the
strict definition of the joint pdf for a moment, and insteathkhof it as a proba-
bility. Then, the “probability” that the ordered, values equal the particular vec-
tor (z1, z2, ..., T,) IS Simply the “probability” that the unordered random véiis
X1, X5, ..., X,, equal the numbers,, zo, ...,, z,, in any order. Since there aré
different ways to order these numbers and the “probabibfydny particular order is
fx(x1)fx(z2) - fx(zy), the expression follows.

Proof. We will do the proof only in the case = 2. Thus, fixz < y and consider
the joint cdf of (X 1), X(2)):

F(r,y) = P(X) <2, X <y), v<y
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In terms of the unorderefl; and X5, this means that both must be less than or equal
to y but that at most one can be betweeandy. Denoting the cdf of th&, by Fx,
we thus get

Flz,y) = P(Xi<y,Xs<y) - Pla<Xi<yz<Xs<y)
= Fx(y)® - (Fx(y) — Fx(z))

which we differentiate twice to get the joint pdf 0K (1), X(9)):

fa) = o (Fx@? - (Fx(o) - Fx(@)?)
d

= 32 Fx )~ Fx(@)fx (@) = 2fx W) fx (@)

as desired. The general case is proved in the same way, cefyrigetrack of more
different cases. [ |

3.10.2 Reliability Theory

Recall Example 1.5.15, where we defined the reliability ofsteam as the probabil-
ity that it functions, given that its components functiodépendently of each other.
We will now instead consider this as a process in time. Thuppgse that each
component has a random lifetime that has some continuouibdison, and consider
the timeT" until failure of the system. Let usfirst consider the casswoftomponents.

Example3.10.6 Suppose thatthe individual lifetimes @eandT%, which are i.i.d.
continuous and nonnegative random variables withjpahd cdfF. What is the pdf
of the lifetimeT" for a series system and for a parallel system?

Since a series system functions as long as both componertsdia, the time until
failure is the minimum ofl’; and75. Hence, by Corollary 3.10.2

fr(z) =2f(x)(1 - F(z)), =0

The parallel system functions as long as at least one cormpéunections, and hence
T = T(3), the largest of’, and75. We get

fr(x) =2f(x)F(z), >0
(see Figure 3.12). In particular, if we assume that lifeSraseexp()), we get
fT(I) = 2)\672)\17 x> 0
for the series system and

fr(z) =2X(e™* —e™), 2 >0
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T

T T

—_ —_ T2 I

T = Inin(Tl, TQ)

T = maX(Tl, TQ)

Fig. 3.12 Systems in series and parallel.

for the parallel system. Note how the lifetime for the seggstem isxp(2)). See
also Problem 112. 0

Example3.10.7 Recall the failure rate function from Section 2.10. Consmlee-
ries system where theth component has failure rate functiop and components
function independently of each other. What is the failute fanction of the system?

Denote the lifetimes by, ..., X,,, and let the corresponding survival functions be
G1i,...,Gn. Then the lifetime of the system is the minimuki,), whose survival
function and failure rate function we denote &Yy;) andr(y), respectively. We get

Goy(t) =P(X1>t,...Xpn >t) = Gi(t)---Gu(t)
by independence. By Proposition 2.10.1, we obtain

Gay(t) = kﬁlexp <_ /0 t rk(u)du> = exp <_ /0 t Xn:rk(u)du>

k=1
and since also .
G1y(t) = exp <—/0 (1) (u)du
we identify the exponents to conclude that

ry(u) = Zrk(u), u>0

k=1

Note how Example 3.10.3 was a special case of this for exg@iéifetimes.

Example3.10.8 In Example 2.10.4 we considered a type of ball bearing whose
failure rate function-(¢t) = at was chosen to describe an increasing risk of failure
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due to continuing wear and tear. Now suppose that in additidhis, a ball bearing
may also suddenly break as a result of external factors ssigxglosions or other
accidents, which occur at random. What failure rate fumctioes this give?

We need to interpret the expression “at random.” If we asstimatthis means that
the time until the next accident is independent of the agheball bearing, then the
time until failure because of an accident is exponentiahwime parameteér> 0.
Thus, if we denote the time until failure due to weariyand the time until failure
due to an accident by, the timeT until failure of the ball bearing satisfies

T = min(Tl, Tg)
whereT; andT; are independent. By Example 3.10I7has failure rate function
rp(t) =rp () +ro,(t) =at +b, t >0

Adding a constant to a failure rate function thus corresgandntroducing failure
due to random incidents. 0

3.10.3 The Multinomial Distribution

Recall how the binomial distribution counts the number at&sses in independent
trials, where each trial can result in success or failure.idimediate extension of
this is to consider the case where each trial has more thanliffezent outcomes.
For example, consider a soccer match and the three outconiag “loss,” and
“tie” for the home team. Suppose that we considanatches and that we let the
vector (W, L,T) be the numbers of wins, losses, and ties, respectively. \ighat
the joint distribution of (W, L, T'), expressed in terms of and the probabilities
p = P(W),q = P(L), andr = P(T)? Let us consider the joint pmf in a point
(w,1,t), thatis

p(w,l,t) =PW =w,L=1,T =t)

wherew + [ + t = n and the probabilitieg, ¢ andr add to one. First note that each
configuration ofw wins, ! losses, andties has probability ¢!+, so the issue is how
many such configurations there are. First, there(gba/vays to choose positions for

thew wins. For each such choice, there are tl(fé@w) ways to choose positions for
thel losses. Once this is done, thées are put in the remaining positions. Hence

the probability is
- n n—w w 1t
p(w,l,t) = (w) ( / )p qr

forw > 0,1 >0,t > 0andw + [ + t = n. Now note that

(Z)) (n f w) - w!(nni o) (fzn__wwzl oo wﬁiﬂ

a quantity that is called thmultinomial coefficientWe generalize te dimensions.
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Definition 3.10.3 If (X3, ..., X,.) has joint pmf

|
n: ny_no

p(nl,...,nr): --nT!pl V%) "'p?T

nllngl-

forny +---+n, =nandp; +---+p, = 1, then(Xy, ..., X,.) is said to have
amultinomial distributiorwith parametersn, p1, ..., pr).

Note that the binomial distributionis a special case with 2, p; = p, andps = 1—p.

Example3.10.9 Roll a die12 times. What is the probability that you get exactly
two of each numbet, ..., 6?

With X, = the number o values, we have a multinomial distribution with= 6

and parameter§l2, 1, £, ..., +) and get

120 1?1\ [(1)?
99 oy _ 128 (1 ) oo 2) ~0.003
P22,02) = 5o 5 (6) (6) (6) H

What are the one-dimensional marginal distributions in dtimamial distribution?

If we considerXy, this is the number of times we get tl¢h outcome, and it is
easy to realize that the distribution &f; is binomial with parametera and py.

To prove this formally, we would have to sum over all the othariables in the
joint pmf, but we will not do this. Thus, eack is binomial when considered
individually, but clearly theX;, are notindependent; for exampR(X; = n) = p7,

but P(X; = n|X2 > 0) = 0. In Problem 124, you are asked to find the covariance
and correlation.

3.10.4 The Multivariate Normal Distribution

In Section 3.9, we introduced the bivariate normal distiiliu Notice how the expo-
nent in Definition 3.9.1 is a quadratic form, which we will nogwrite in convenient
matrix notation. Introduce the column vectors

X x
X:(Y) and x:(y) forx,y € R

and define thenean vectoy: andcovariance matrix: as

2
p=(1) ana mo (e
H2 po102 05



234 JOINT DISTRIBUTIONS

Note that all entries it are covariances, since Cd¥, Y] = CoV[Y, X| = poi02,
CovlX, X] = Var[X] = 0%, and Co,Y] = o2. The covariance matrix has

determinant

3| = oto3 — pPoio; = oios(1 - p)

and inverse
w1 1 o3 —p0o102
T 0202(1—p?) \ —poioz of
102 p pPo102 1

and we get, with the superscriptdenoting matrix transposition,

(x = p)"2H(x—p)

1 <(~’c—u1)2 (y—u2)2_2p(x—u1)(y—u2))

1—p? o? + o3 0109
and taken altogether, we can write the joint pdf of the batgrnormal distribution as
1 1 Ty—1 ) 2
X)=———exp|—=(x— X (x — , XER
Ix(x) =~ o] p( 5(x— k) (x — )

We can now generalize and defineradimensional multivariate normal distribution.
Let Xy, Xo, ..., X,, be random variables with means, o, ..., i, and let

Xl M1

Xg M2
X = ) and p=

Xn Hn

Further, let: be an x n matrix where thgs, j)th entry is¥,;; = Cov[X,, X;]. This
means that the diagonal elements are the variances of ftend the off-diagonal
elements can be written &%; = po;o;.

Definition 3.10.4 If X hasn-dimensional joint pdf

x:;ex —lx— Ty (x -
f(x) T p( 5(x —p) X u))

for x = (x1,72,...,2,)7 € R", it is said to have anultivariate norma
distributionwith parameterg: andX:, written X ~ Ny, (i, 3).

As in the bivariate case, marginals are normal, keeping imdrthiat marginals can now
themselves be multidimensional. Linear combinations amdlitional distributions
are also normal.
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3.10.5 Convolution

We have seen how to find the expected value and variance of aosuandom
variables. Sometimes we want to know more, and in the caselependent random
variables, it turns out that we can establish nice formutagHe entire distribution
of their sum. We will start with the discrete case, for which already possess the
necessary tools.

Let us start by examining random variables with finite rang8appose thak
andY are independent discrete random variables, both with rédmg2 ..., n} and
pmf’s px andpy, respectively. We wish to find the pmf of the suxh+ Y. First,
note that the range of + Y is {2, 3, ..., 2n}, take a valué in this range, and apply
the law of total probability to obtain

zn:P(X+Y = kX = j)P(X =j)

j=1

P(X+Y =k)
- ZP(Y:k—ﬂX:j)P(X:j)

= D PV =k—j)P(X =)

where we used the independenceXdfandY in the last equality. In terms of the
pmf’s, we have thus shown that

pxiv (k)= py(k—jpx(j), k=2,3,...2n
j=1

This is called theonvolutionof the two pmf'spx andpy. The assumption of finite
range was made only to simplify things a little, but it doesetmange anything vital,
and we have the following general result.

Proposition 3.10.4. Let X andY be independent discrete random variables,
with ranges{x1, zo, ...} and{y1, y2, ...}, respectively, and pmf'sx andpy .
The sumX + Y then has pmf

px+y () = Zpy(:c —z;)px(x;) forzintherange ofX +Y
j=1

Once we have established the formula in the discrete caseaweuess that the
corresponding formula in the continuous case is similath wdf’s instead of pmf’s
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and that the sum is replaced by an integral.

Proposition 3.10.5. Let X andY be independent continuous random variaples
with pdf's fx andfy, respectively. The pdf of the sud + Y is then

[xiv(z) = /_OO fy(z —u)fx(u)du, z€R

For a formal proof, start with the cdf of + Y, and use Corollary 3.5.7 to express this
as an integral involvindgy- and fx. It can be shown that it is allowed to interchange
differentiation and integration; use this fact to obtaie guf of X + Y and finish the
proof.

Just as in the discrete case, this is calleccthavolutionof fx andfy. The actual
limits of the integral are determined according to where ititegrand is positive,
which means that we must have bgth(u) > 0 and fy (z — u) > 0.

Example3.10.10 Let X andY be independent and uniform ¢t 1]. Find the pdf
of the sumX + Y.

By Proposition 3.10.5

Fxav(@) = /_ " fv(@— u)fx (w)du

where we need to determine what the actual integral limés Birst we note that the
range ofX 4+ Y is [0, 2], so we need to pick ourfrom that interval. Now,x (u) = 1

if u is between 0 and 1 and 0 otherwise. For the other factor inntfegiand, note
that fy (z —u) = 1 ifits argumentc — v is between O and 1, thati§,< z —u < 1
and 0 otherwise. Sinceis fixed andu is the variable of integration, we rewrite this
asxz — 1 <wu < 1. Hence, for any: € [0, 2], the two inequalities

0<u<l and z—1<u<z (3.10.1)

must be satisfied and if they are, the integrand equals 1. \&@ toedistinguish be-
tween two cases:

Case 1 z € [0, 1]. In this case, the two conditions in Equation (3.10.1) atisfead
if 0 <u<uz Hence, foll <z <1

fX+Y($):/ du=z, 0<z<1
0
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Case 2 z € [1,2]. Here, the conditions are satisfiediif- 1 < u < 1, and we get

1
fX+y(:C)=/ du=2—x, 1<x<2
x—1

and the pdf ofX + Y is therefore

f () = T if 0<z<1
XV =222 if 1<a<2
This is for obvious reasons calledréangular distribution 0

Example3.10.11 Consider radioactive decay that is such that times betwern c
secutive emissions are independentane ). Find the pdf of the time between the
first and third emissions.

This example asks for the pdf &f + Y, whereX andY are independentangp()\).
We have
fx(u) = de M if u >0

and
fy(@—u)=Xe " ifz —u>0

Recalling thatr is fixed andu the variable of integration, we get

fxtv(z) = //\e_’\“)\e_’\(m_“)du
0

which we recognize from Section 2.8.2 as the gamma distabwtith n = 2, that
is, X +Y ~T(2,)\). 0

The last example can be extended to sums of more than onemavat@able. For
example, ifX,Y, and Z are independent and exponential with parametethen

X +Y ~ I'(2,)), and we can apply Proposition 3.10.5 to the random variables
X + Y andZ to obtain

[xiyviz(r) = /jo fz(x —u)fxqy(u)du

/ e AE—w) = AuNZy gy
0

T IQ
= ef)‘””/\g/ udu = e N3 £>0
0 2
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by integration by parts of the last integral. Again, we retiag a gamma distribution,
this time with parametens = 3 and\. By induction it is easily shown that this holds
generally, and we get the following nice result.

Proposition 3.10.6. Let X1, ..., X, bei.i.d. variables that have the exponential
distribution with parametek, and letS = >, Xj. ThenS ~ I'(n, \).

This means that in the case of integer values of the parametee have a direct
interpretation of the gamma distribution as the sum of iraefent exponentially
distributed random variables.

3.11 GENERATING FUNCTIONS

Generating functionsortransforms are very useful in probability theory, as in other
fields of mathematics. Several different generating fumgiare used, depending
on the type of random variable. We will discuss two, one thatseful for discrete
random variables and one for continuous random variables.

3.11.1 The Probability Generating Function

When we study nonnegative, integer-valued random vasatiie following function
proves to be a very useful tool.

Definition 3.11.1 Let X be nonnegative and integer-valued. The function
Gx(s) = E[s], 0<s<1

is called theprobability generating functiofpgf) of X .

Note that by Proposition 2.4.4 we compudig as the power series

Gx(s) = Zskpx(k:), 0<s<1
k=0

wherepx is the pmf ofX. If the range ofX is finite, the sum is finite. Note that

Gx(s) = px(0)+ > s"px (k)
k=1
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which immediately gives the following corollary.

Corollary 3.11.1. Let X be nonnegative and integer-valued with g .
Then
Gx(0)=px(0) and Gx(1)=1

Before we examine further properties of the pgf, let us fingl pigf for two of our
common distributions.

Example3.11.1 X ~ bin(n,p). The pgfis

n

Gx(s) =) (Z) (ps)" (1 —p)" F =1 —p+ps)", 0<s<1
k=0

by the binomial theorem. 0

by Taylor’'s theorem. 0

One important property of the pgf is that it uniquely deteras the distribution. In
other words, if we are given a pgf, exactly one pmf correspgaiadit and we can
compute this pmf explicitly. Above, we saw that (0) = Gx(0), and to obtain
px (1), we first differentiate the pgf

Gx(s) = d% <px(0) + Zskpx(k)>
k=1

= stkflpx(k) = px(1)+ stkflpx(/f)
k=1 k=2

where we have used a result from calculus that says that thgpseries may be
differentiated termwise. We now see that if we are given tijie\we have

px(1) = G%(0)
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To see the general pattern, let us differentiate once more:

G%(s) = d% (px(l) + stk_lpx(k)>
k=2

= k(k —1)s*2px (k)
k=2

= 2px(2)+ Y _k(k—1)s"2px(k)
k=3

which gives
G% (0
px(2) = X2( )
If we continue to differentiate, we get the general formutdah we state as a propo-
sition.

Proposition 3.11.2. Let X be nonnegative and integer-valued with 10¢ .
Then "

Gy’ (0
Px (/{) — Xk!( )7

WhereGg?) denotes théth derivative ofG x .

k=0,1,..

Another property of the pgf is that we can obtain the mean arthuce, also by
differentiating. From the formulas for the derivatives abpwe get

Gx(1) = E[X]
Gx(1) = EX(X-1)]

and we get the following result.

Proposition 3.11.3. If X has pgfGx, then

E[X]=G%(1) and VafX] = G% (1) + G'x (1) — G’ (1)?

Let us check the formulas for the Poisson distributionX I~ Poi(\), then it has pgf

G(s) = M=)
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which has first and second derivatives
G'(s) = A1) and G"(s) = A=)

which gives
G'(1)=X and G"(1)=\?

and
E[X]=X and VafX]=X+X-)2=)

which is in accordance with Proposition 2.5.3 (or, if you lwia proof of the propo-
sition). Note how it is simpler to find the mean and variandagipgf’s than to work

directly with the definition. Another central property ofetlpgf is that it turns sums
into products, in the following sense.

Proposition3.11.4. Let Xy, Xo, ..., X,, beindependentrandom variables with
paf's G1, Gs, ..., G, respectively, and le%,, = X; + Xo +--- + X,,. Then

Sy has pgf

Ggs, (s) = G1(8)Ga(s) - Gp(s), 0<s<1

Proof. Since X, ..., X,, are independent, the random variald€s, ..., s*~ are
also independent for eagtin [0, 1], and we get

Gsn (s) _ E[SX1+X2+---+Xn]
= E[sBs™] - Bls™]
= G1(5)G2(8) - Gn(s)

and we are done. [ |

This result is useful for proving results for sums of randcemiables. Let us look at
one example.

Example3.11.3 Let X3, ..., X,, be independent such th&t, ~ Poi(\;). What is
the distribution ofS,, = X; +--- + X,,?

By Proposition 3.11.4 and Example 3.1152, has pgf

GS (S) — e)q (s—=1) .. €>\"(S_1) _ €(>\1+m+>\")(8_1)

which we recognize as the pgf of a Poisson distribution wattameten; + - - -+ \,,.
We have shown that the sum of independent Poisson is agassdPoi We could
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have done this with the convolution methods from Sectiod.5.lbut note how much
quicker it is to use generating functions. 0

In particular, if theX, arei.i.d. with pgfG(s), then the sum has pgf(s)™. We look
at one example of this.

Example3.11.4 LetX ~ bin(n,p). ThenX can be written a§";_, I, where the
I are i.i.d. indicators withP(I, = 1) = p. The pgf of each}, is

G(s)=s"1—p)+s'p=1—p+ps

and henceX has pgf(1 — p + ps)™, in accordance with Example 3.11.1. 0

A different situation arises if the number of summands is fixed but random,
which is a very natural assumption in many applications.pgdsp, for example, that
customers arrive at a convenience store and each custolygamumber of lottery
tickets. How many tickets are sold in a day? We can supposeatteanumber of
customers is a random variabd and that thekth customer buys(;, tickets, where
X1, X5, ... arei.i.d. nonnegative integer-valued random variabfeependent aiv.
The total number of tickets sold is then

N
Sy = ZXk
k=1

which is the sum of a random number of random variables, wiveraterpretSy
as0 if N = 0. If we are given distributions oV and theX, we can find the dis-
tribution of S via probability generating functions according to thedaling result.

Proposition 3.11.5. Let Xy, X5, ... be i.i.d. nonnegative and integer-valyed
with common pgfiG x, and letN be nonnegative and integer-valued, and inde-
pendent of theX, with pgf G . ThenSy = X7 + - -- + X has pdf

Gsy(s) = Gn(Gx(s))

the composition oty y andGx.

Proof. We condition onV to obtain

Gsy(s)=> E[s*|N=n]P(N=n)=> E[s%]P(N=n)
n=0

n=0
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sinceN andS,, are independent. Now note that
E [SS”} =Gx(s)"

by Proposition 3.11.4 and we get
Gsy(s) =Y _Gx(s)"P(N =n) = Gn(Gx(s))
n=0

the pgf of N evaluated at the poirtt x (s). ]

Note the similarity between the cases of fixed and random rusntif summands:

Gs,(s) = Gx(s)"
Gsy(s) = E[Gx(s)V]

Example3.11.5 Supposethat customers arrive at a rural convenience stondisat
the number of customers in a not-so-busy hour has a Poisstibdtion with mean
5. Each customer buys a number of lottery tickets, indepethdefother customers,
and this number has a Poisson distribution with nzaor this hour finda) the pgf
of the total number of tickets sol¢h) the probability that no tickets are solg) the
expected number of tickets sold.

We have the situation in Proposition 3.11.5 with the pgf’s

Gx(s) = e2(=1)

Gn(s) = eS6D
and get
Gy (5) = exp (5(62@*1) - 1))
which answers (a). For (b), we let= 0 to obtain
P(Sy =0) =exp (5(e™* = 1)) ~ 0.01
and for (c), we differentiate and get

sy (s) = 10e2¢7Y exp (5(62(571) - 1))

and plugging ins = 1 gives
E[Sy] =10 0
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There are two interesting observations to be made in theslastple: (1)Sy does
not have a Poisson distribution, so “the sum of independeissbn is Poisson” from
Example 3.11.3 is not true for random sums; and (2) we canthatéZ[Sy| = 10
equals the product df[N] = 5 andE[X] = 2. This is no coincidence, and we next
state a general result for the mean and variance of a random su

Corollary 3.11.6. Under the assumptions of Proposition 3.11.5 it holds that

E[Sy] = E[N]u
Var[Sy] = E[N]o? + Var[N]u?

wherey = E[X] ando? = Var[Xy].

Proof. First note that

d
sw(8) = =G (Gx(s)) = G (Gx (5))Gx (s)
by the chain rule. Combining this with Propositions 3.11n8 8.11.5 now gives
E[Sn] = G5, (1) = Gy (Gx(1))Gx (1) = Gy (1)Gx (1) = E[N]u

where we also used the fact that (1) = 1. We leave the proof of the variance
formula as an exercise. ]

Recall from Section 3.6.2 that for a sum »ofi.i.d. random variables, we have
E[S,] = nu and VaiS,] = no?. In the case of a random number of summands
we can thus replace by E[N] for the mean, but things are a little more complicated
for the variance. The first term in the variance formula actstor the variability of
the X, and the second, for the variability of.

3.11.2 The Moment Generating Function

The probability generating function is an excellent toalfionnegative and integer-
valued random variables. For other random variables, wensé@ad use the following
more general generating function.

Definition 3.11.2 Let X be arandom variable. The function
Mx(t) = E[e™X], te R

is called themoment generating functidmgf) of X .
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If X is continuous with pdf'x, we compute the mgf by

Mx(t) = / e fx (x)dx
and for discreteX, we get a suminstead. Note thakifis nonnegative integer-valued
with pgf G x, then

]\/fx(t) = Gx(et)

which immediately gives the mgf for the distributions foristhwe computed the pgf
above. Let us look at some continuous distributions.

Example3.11.6 Let X ~ unif[0,1]. Find the mgf ofX .

We get

! et —1
]V[X(t):/ e dr = " , t€R
0

where we interpred/ x (0) as the limitlim; o Mx (¢) = 1. 0

Example3.11.7 Let X ~ exp(A). Find the mgf ofX.

We get

A
t< A

Mx(t) :/ e e Ay = /\/ =Ny = Pt
0 0 - |

Note that the integral in the calculation above is infinite # A, and hence the mgf
of the exponential distribution is defined only fox A. In general, the mgf is not
necessarily defined on all @t, and for some random variables it turns out that the
mgf does not exist at all (Problem 146). Before the next exanmpe state a useful
property of the mgf. We leave the proof as an exercise.

Corollary 3.11.7. Let X be a random variable that has mffy, and let
Y =aX + b. ThenY has mgf

My (t) = e* Mx (at)
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Example3.11.8 Let X ~ N(u, o). Find Mx ().

Let us start with the standard normal distribution. Thusde~ N(0,1), and find
Mz(t). We get

o0 1 00
Mz(t) / e p(x)dr = E/ o(t2/2—=(@=1)2/2) 4.

/2 /OO L @02y, _ 22
e e r=¢'", teR
Lo V2T

where the last equality follows since the integrand is thiegbd normal distribution
with meant and variancd, and hence the integral equalsNow let X = pu+ o7
so thatX ~ N(u,o?), to obtain

Mx(t) = e My(ct) = 7 F/2 teR

by an application of Corollary 3.11.7. 0

The moment generating function has many properties tharstogous to those of
the probability generating function. Thus, the mgf uniquggtermines the distribu-
tion of X, a fact that we will not prove. We can also obtain the mean anhrce
from the mgf, according to the following formula.

Corollary 3.11.8. If X has mgfMx(t), then

B[X] =M (0) and VafX]=M(0) - (Mx(0))*

Proof. By differentiatingM x (¢) with respect ta we get

d
EE[etX] = E[Xe'X]

where we assumed that we can interchange differentiatid egpectation. Note how
t is the variable of differentiation and we vielt as fixed. In the case of a discrete
this amounts to differentiating a sum termwise, and in thseaz a continuouX, it
means that we can differentiate under the integral signs iBiby no means obvious
but can be verified. We will not address this issue furtheffeBeéntiating once more
gives

M (1) =

d
MYy (t) = EE[XetX] = E[X?%e]
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which gives
VarlX] = E[X?] - (B[X])* = Mx(0) — (MX(0))*

as desired. [ |

Note that we get the general result
E[X") =M 0), n=1,2,..

whereM)((”) is the nth derivative of Mx. The numberE[X"] is called thenth
momenbf X'; hence the term moment generating function. Compare wélptbba-
bility generating function which generates probabilitigsdifferentiating and setting
s = 0. The moment generating function also turns sums into prisdaccording to
the following proposition, which you may prove as an exexcis

Proposition 3.11.9. Let Xy, Xo, ..., X,, beindependentrandom variables with
mgf’s My, Mo, ..., M,,, respectively, and le$,, = X; +--- + X,,. ThenS,,

has mgf

Mg, (t) = My () Ms(t) - Mo (t), t€ R

Example3.11.9 LetX ~ N(ui,o0?)andY ~ N(uz,03), and suppose thaf and
Y are independent. Show th&t+ Y ~ N (u; + p2, 01 + 03).

By Proposition 3.11.9 and Example 3.11.8, the mgKkof- Y is

242 242
]\/fx+y(t) = exp (tul + 017) exp (tug + UQT)

(ﬁ+ﬁW>
2

exp (t(ﬂl + p2) +

which we recognize as the mgf of a normal distribution withgmaeters:; + po and
o? + o3, and by uniqueness of the mgf we are done. 0

We have seen how summation of independentrandom variatresponds to multi-
plication of their pgf's or mgf’s. Also, we have previousbdrned that the distribution
of the sum of independent random variables can be obtain#iteasonvolution of
their distributions, in both the discrete and continuousesa We summarize this



248 JOINT DISTRIBUTIONS

observation in an informal statement that can be usefulnwember.

The following are equivalent:
(a) Summation of independent random variables
(b) Convolution of distributions

(c) Multiplication of generating functions

3.12 THE POISSON PROCESS

Suppose that we are observing some system where changesamdomly in time.
For example, we could be observing incoming jobs to a conmpeiistomers arriving
at a store, accidents occurring on a certain highway, eastkes, or emission of
radioactive particles. Each of these examples have in camthai we can represent
them as points on a timeline; see Figure 3.13, where eallrarks the time when
something was observed.

We call this apoint process To be able to investigate the behavior of this point
process, we need to make assumptions on how the points aifleudisd. We therefore
assume that the times between consecutive points are indeperandom variables
T1,Ts, ..., which have exponential distributions with the same patame Assum-
ing an exponential distribution means that we assume tlegtrtbcess is very unpre-
dictable. Thel}, are called thénter-arrival times By the memoryless property, this
means that at any fixed time, the time until the next pointxis(\) regardless of
when the previous point came. Such a process is sometinegsagto acompletely
randombut we use another term, already mentioned in Section 2.6.

Definition 3.12.1 A point process where times between consecutive ppints
arei.i.d. random variables thatarep(\) is called &Poisson processith rate\.

The rate) has unit mean number of points per time unit. Hence, largkeregaof A
correspond to more points per time unit, which is also cleaesthe expected time
between points i$/ .

One random variable of interest is the number of points int@r@l. Fixt > 0,
and define the random variable

X (t) = the number of points in a time interval of length
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| >
I o

0 time

Fig.3.13 A point process in time. Each<” marks the occurrence of some event of interest.

and note thaf (¢) is a discrete random variable with ran{@& 1,2, ...}. Also note
that by the memoryless property, it does not matter wherarttegval is located,
since at any given time, the time until the next point has #mesdistribution. Thus,
we can without loss of generality consider the inteffgat]. Let us first investigate
P(X(t) = 0). Ifwe denote the time for the first point 5y, we realize thak (¢) = 0
if and only if T} > ¢ (see Figure 3.14). Hence we get

P(X(t)=0)=P(Ty >t) =e
For generak, note thatX (¢) = k& if and only if thekth point came beforeand the

(k + 1)th point, aftert. With Sy, = T1 + - - - + T}, the time for thekth point, we can
express this in terms of events as

{X(1) =k} = {Sk <t} \ {1 <t}

the event that thith but not thgk + 1)th point came before Also, sinceSi1 <t
implies thatSy, < t, we have{Sk1 <t} C {Sk < t}, and we get

P(X(t) =k)=P(S; <t)— P(Sk41 <?)
and by Proposition 3.10.6y, ~ I'(k, A) for all k. From Section 2.8.2 we now get

k—1 k

J+J J+J
PX(t) =k) = 1-e MY 20 [ ny OF

1l 1l
=0 I i=0 I

At)*
,At(k') , k=0,1,2,...

= €

which we recognize as the Poisson distribution from Se@iém4. Hence we arrive
at the following proposition.

0 X(t)=0 t T, >t

\J

Fig. 3.14 The relation between the random variabféé) andT;
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Proposition 3.12.1. Consider a Poisson process with ratewhere X (t) is
the number of points in an interval of lengthThen

X(t) ~ POi(At)

Recall that the parameterin the Poisson distribution sthis expected value. Hence,
we have

E[X(t)] = At

which makes sense sinceis the mean number of points per time unit and the
length of the time interval. In practical applications, weed to be careful to use the
same time units fok andt.

Now consider two disjoint time intervals. By the memorylpssperty, we realize
that the number of points in one of the intervals is independ&the number of points
in the other. Thus, in a Poisson process with intensjtyhe numbers of points in
disjoint time intervals are independent and have Poissstnilglitions with means
times the interval lengths. Formally, 1éf, I, ... be any sequence of disjoint time
intervals of lengths, ¢2, ..., and letX (¢;) denote the number of points . Fur-
ther, letTy, Ts, ... be the times between points defined above. We have the folipwi
proposition.

Proposition 3.12.2. In a Poisson process with rate
(8) T1, T3, ... are independent anekp(\)

(b) X (t1), X (t2), ... are independent anli (¢;) ~ Poi(\t;), j=1,2,...

We have used (a) as the definition of the Poisson process guddithat (b) follows.
In fact, we could as well use (b) as the definition and argue (#afollows. The
independence assumption in (b) implies the memorylessptpfor times between
points and the relation above between numbers of pointsianas thetween consec-
utive points gives the exponential distribution. Hence

The properties (a) and (b) in Proposition 3.12.2 are eqgeial
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We know that the number of points in the inter{@l¢] in a Poisson process with rate
A has a Poisson distribution with meah Now suppose that we know that there is
exactly one pointin the interval. What is the distributidrite position?

By the memoryless property, it does not matter whether tiserkso a point exactly
attimet, so we can assume that the second point arrived\hat is the distribution
for the position of the first point? In terms of the interaalitimes, we ask for
the conditional distribution of’; givenT; + T, = t. To find this, consider the
transformation

S1=T1, So=T1+1T>

thatis,S; andS; are simply the arrival times of the firstand second pointseetvely.
We wish to find the conditional distribution 6f givenS; = ¢. The joint distribution
of (T1,Tz) is, by independence

for ) (tr,t2) = NeAMhtta) oy b e R

The joint pdf of(S1, S2) is obtained by noting that the Jacobian matrix for the trans-
formation (t1,t2) — (t1,t1 + t2) has determinant (and so does its inverse), and
Proposition 3.6.8 gives

f(sl,sg)(&t) = f(T],Tz)(s,t —s5) = AQe_)‘t, 0<s<t
We already know tha$s ~ I'(2, \), so thatS; has pdf
fs,(t) = N2te
which gives the conditional pdf

t
UERESICLN S

f52 (t) t

which is a uniform distribution of0, t]. Thus, given that the second point arrives at
time ¢, the position for the first is uniform betwe@®mand¢. Considering the memo-
rylessness of the exponential inter-arrival times, thimes as no big surprise. Also,
by the memoryless property, it is equivalent to conditiorttes fact that the second
point arrived att and that there is exactly one point in the interfalt]. Whether
there is in fact a point at timedoes not matter. More generally, if we conditionon
points in[0, ] or equivalently, that thén + 1)th point arrived at time, then points
are distributed as independent uniforms on the interval usestate this formally.

fsl (Sl |t) =

Proposition 3.12.3. Consider a Poisson process with rate If there aren
points in the time intervdD, ¢], their joint distribution is the same as thatiof
i.i.d. random variables that are uftif¢].
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The property in the proposition is called tbeder statistic propertyof the Poisson
process, since the points are distributed likerder statistics from a uniform distri-
bution on[0, ¢]. The proofis similar to what we did above in the case 1, invoking
Proposition 3.10.3.

Example3.12.1 Suppose that earthquakes in a region occur according tcsad?oi
process with an average ®04 earthquakes per year. Find the probability tfet

a given week has at most one earthqudke three consecutive earthquakes are at
least one week apart from each othe),a week with two earthquakes has them on
different days.

The rate isl04 earthquakes per year. (a) With as the number of earthquakes in a
week, we have\ = 104 and¢ = 25 and henceX ~ Poi(2) and get

PX<1)=PX=0+PX =1)=e?(1+2)~0.41

For (b), the timed; andT; between consecutive earthquakes are independent and
exp(2), which gives

P(Ty >1,Ty>1)=P(Ty > 1)P(Ty > 1) = e * = 0.02

For (c), by the order statistic property, the two earthqakee distributed as two
independent uniform random variables over the week. Heag,given day has
probability%, and the probability that the other falls on another dagf gormally,
condition on the day of one of the quakes). 0

3.12.1 Thinning and Superposition

Suppose now that we have a Poisson process with\ratdhere we do not observe
every point, either by accident or on purpose. For examgienp calls arrive as a
Poisson process, but some calls are lost when the line is blgyicanes are formed
according to a Poisson process but we are interested orfipgetthat make landfall.
These are examples tfinningof a Poisson process (see Figure 3.15).

We assume that each point is observed with probabhilépd that different points
are observed independently of each other. Then it turnshadithe thinned process
is also a Poisson process.

o ®
o ®
O ®

\

Fig. 3.15 The original Poisson process with observed points endiraled the resulting
thinned process.
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Proposition 3.12.4. The thinned process is a Poisson process withxate

Proof. We work with characterization (b) in Proposition 3.12.2. e@ly, the
numbers of observed points in disjointintervals are inaelesit. To show the Poisson
distribution, we use probability generating functions.nSidler an interval of length
t, letting X (¢) be the total number of points ari,(¢) be the number of observed
points in this interval. Then

X(t)

Xp(t) = Z I
k=1

wherel} is 1 if the kth point was observed artdotherwise. By Proposition 3.11.5,
X,(t) has pof
Gx,(s) = Gx)(G1(s))

where

GX(t) (S) _ e)\t(s—l)
and

Gr(s)=1—p+ps
and we get

Gx,(s) = M(L=ptps—1) _ Apt(s—1)
P

which we recognize as the pgf of a Poisson distribution wittametenpt. ]

It is definitely reasonable that the expected number of elesigpoints in the thinned
process is\pt. The more interesting aspect of Proposition 3.12.4 is tafPtoisson
process properties are retained. It is important, thouugt, the thinning is done in
the independent way described above; otherwise the Pofssaerss properties are
ruined. The following result is not only interesting but grising.

Proposition 3.12.5. The processes of observed and unobserved points are
independent.

Proof. Fix an interval of lengtlt, let X (¢) be the total number of points, aiid, (¢)
andX,_,(t), the number of observed and unobserved points, respactit#snce
X(t) = Xp(t) + X1-,(t) and by Proposition 3.12.4, we obtain

X,(t) ~ Poi(Apt) and X;_p(t) ~ Poi(A(1 —p)t)
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Also, given thatX (¢) = n, the number of observed points has a binomial distribution
with parameters andp. We get

P(Xp(t) =, X1-p(t) =k) = P(Xp(t) =5, X(t) =k+))

= P(X,(t) = jIX(t) = k+ HP(X(t) = k +3)

LR AW o (A
= ("o

= P(Xp(t) = )P(X1-(t) = k) u

This result should end with an exclamation mark instead ofeaenperiod. For ex-
ample, suppose that we have a Poisson process such that et 8xgoints per
hour. If in one hour we obsena$ points and in another no points at all, it seems that
the second hour ought to have more unobserved points. Howkedast result tells
usthatthisis not so, but the distribution of unobservedtsas the same in both cases.

Example3.12.2 Consider the earthquakes in Example 3.12.1, occurring en-av
age twice a week. Each time there is an earthquake, it is efjoag “major” with
probability 0.01; otherwise, “minor.” (a) What is the probability that there are no
major earthquakes in a given yedt®) What is the probability that there are no major
earthquakes and at least one minor quake in a given week?

For (a), note that the numbéf of major earthquakes in a year has a Poisson distri-
bution with meam\p = 104 x 0.01 = 1.04 and hence

P(X=0)=e " ~0.35

For (b), the mean aX is instead).02 (quakes per week) and if we [Etbe the number
of minor quakes, thel” has a Poisson distribution with mearnx 0.99 = 1.98 and
by independence oX andY’, we obtain

P(X=0,Y>0)=P(X=0)(1-P(Y =0))=e %1 - 19%) ~0.84

O
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Let us finally consider a situation which is in a sense the sgp®f thinning. In-
stead of removing points from a Poisson process, we addgadacbrding to another
Poisson process. Hence we are considering a situation weehave two Poisson
processes and observe the total number of points in botteaf;tthat is, we observe
thesuperpositiorof the two. For example, jobs may arrive at a computer acogrdi
to Poisson processes from different sources or cars passitagmoa road according
to two Poisson processes, one in each direction (see FiglBg@ an illustration).
Just as in the case of thinning, the Poisson process prepart retained, provided
the two processes are independent.

Proposition 3.12.6. Consider two independent Poisson processes with rates
A1 and s, respectively. The superposition of the two processes isissBn
process with rate.; + Xs.

Proof. For this we use characterization (a) in Proposition 3.1Ri2a time where
there is a point in either of the two processes. Denote the tintil the next point
in the first process by and the corresponding time in the secondihbySince the
two processes are independesitand T’ are independent random variables. Also,
by the memoryless property, the distributions &re- exp(A1) andT ~ exp(Xq),
regardless of which of the two processes the last point caome.fHence the time
until the next point in the superposition process is the minih of S andT’, and by
Example 3.10.3, this isxp(A; + A\2). Thus, the superposition process is a Poisson

process with rate.; + A\, and we are done. [ |
| -
| >
Ly o~ o\ -
M \ >} -
Ly ra\ o\ -
= A\ A\ -

Fig. 3.16 Two independent Poisson processes and their superposition
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PROBLEMS

Section 3.2. The Joint Distribution Function

Let (X,Y) have joint cdfF’. Show that

Pla< X <b,c<Y <d)=F(bd)+ F(a,c) — F(a,d) — F(b,c)
Let (X,Y) have joint cdfF, and letx < y. For which set do we get the probability if
we computeF(y,y) — F(x,z)?

Let F' be a joint cdf. Find the limit ag — oo of (a) F(z,z), (b) F(—=z,z), (c)
F(—z,—x).

Are the following statements true or false in generd¥) F(x,y) < Fx(x) for all
z,y € R,(O)P(X >z,Y >y)=1— F(z,y) forallz,y € R.

Let (X,Y) have joint cdfF’, and letG be the cdf of the random variablé + Y. Show
that F(z,z) < G(2z) forall z € R.

Find the marginal cdf's ofX andY for the following joint cdf’s: (a) F(z,y) =
1—e®—e y+ef(z+y)xy>0(b)F(:ry)—x\/_0<x<10_y§1
(©) F(z,y) =22y,0< 2z < ,0<y < 1,(d) F(z,y) = 3 (z°y + 22y%),0 <z <

L0<y<1.

Section 3.3. Discrete Random Vectors

Let (X,Y) be uniform on the four point$0, 0), (1,0), (1,1),(2,1). (a) Find the
marginal pmf’s ofX andY". (b) For which joint pmf of(X, Y) areX andY” uniform
on their respective ranges?

8 Isittrue in general that(z,y) < px(x) for all z,y?

9 Consider a family with three children. Leéf be the number of daughters aldthe

10

11

12

13

number of sons. Find the joint pmf ¢, Y").

Roll a die twice and let” be the sum of the two rolls. Find the joint pmf X, Y") if
X is (a) the number on the first rol(b) the smallest number.

Draw three cards without replacement from a deck of cards. H.&e the number of
hearts andS the number of spades draw(a) Find the joint pmf of(H, S). (b) Find
P(H=285).

Draw one card from a deck of cards. LEtbe the number of hearts antithe number
of aces drawn(a) Find the joint pmf of(H, A). (b) Find P(H < A).

Consider a population of individuals that reproduce in sa(vhay that the number of
children of an individual has probability dlstrlbutlc(ri, 5 4 ) on the sef{0, 1,2} and
that individuals reproduce independently. Consider aoarig chosen individual, let
X be the number of children arid the number of grandchildren of this individual, and
let p be the joint pmf of( X, Y"). Find(a) p(0, 0), (b) p(2, 2), (c) P(Y = 0).
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Section 3.4. Jointly Continuous Random Vectors

Show that the following functions are possible joint pdfta) f(z,y) = e ¥,0 <z <
y < oo, (b) f(z,y) = ze "V 2y > 0, (¢) f(x,y) = 1/(2y*), 2,y > 1, (d
fl,y)=2/\/y,0<z<1,0<y <1

Which of the following functions are possible joint pdf's i 1] x [0, 1]: (a) f(z,y) =
zy, (0) f(z,y) = 4y — 2z, (C) f(z,y) = 3|y — |, (d) f(z,y) = 227

The random variableX andY have joint pdf

~

Find (a) the constant, (b) P(X > 1,Y < 1), (c) P(X < 2Y), (d) the marginal
pdf’'s of X andY'.

The random variable andY have joint cdfF (z,y) = 1 (z*y + zy%),0 < z <
1,0 < y < 1. Find the joint pdf and the marginal pdf’'s &f andY'.

Let X ~ unif[0, 1] and letA be the area of a square with sidelength Show thatX
andA are continuous when viewed one by one but {fat A) is not jointly continuous.
Let (X,Y’) be uniform on the sef{0, 3] x [0, 3]) U ([3,1] x [3,1]) (draw a figure).
Find the marginals o andY'.

Consider a dart thrown at a dart board with radius 1. Supplesethe player aims
at the center and that this is reflected in the joint pdf(&f,Y") being f(z,y) =
c(1— (2% +9?)),z? +y* < 1. Find(a) the constant, (b) the probability that the dart
hits within distancel of the center.

Are the following statements true in general for a joint p@) f(x,y) < fx(x) forall
z,y € R, (b) f(z,y) < fx(z) forsomez,y € R, (c) f(z,y) < 1forall z,y € R,
(d) f(z,y) < 1forsomez,y € R?

Section 3.5. Conditional Distributions and Independence

Eggs are delivered to a restaurant by the gross (1 grd€sdozen). From each gross,
a dozen eggs is chosen at random. If none are cracked, the igrascepted, and if

more than one egg is cracked, the gross is rejected. If gxao# egg is cracked, an
additional dozen eggs from the same gross is inspecteds Iiéts no cracked eggs, the
entire gross is accepted, otherwise it is rejected. Supipasa gross has eight cracked
eggs. What is the probability that it is accepted?

Customers arrive to a store such that the number of arrivirsgorners in an hour has a
Poisson distribution with meah A customer is male or female with equal probabilities.
Let X be the number of female customers in an hour and fig&” = 0).

Let X be a random variable anda constant. Show tha&f andc are independent.

Let X andY be independent and have Poisson distributions with maarend A2,
respectively. Show that the conditional distributiondfjiven X + Y = n is binomial
and identify the parameters.

Let X andY be independent and have the same binomial distributionpéitameters
n andp. Show that the distribution oX given X 4+ Y = n is hypergeometric and does
not depend om. Explain intuitively.
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Let X andY be independent and have the same geometric distributidnsuitcess
probability p. Find the conditional distribution oK given X + Y = n. Explain
intuitively.

A salesman has a weekly net income that is uniform[-em, 2] ($1000; a negative
number means a net loss). L¥tbe his income in a week when he makes a profit. Find
the pdf of X.

Consider Example 2.4.8 where the amodnof the compound has pdf(z) = 2z, 0 <
x < 1andis kept ifX > 0.5. What is the conditional pdf of the compound in a test
tube that is kept?

Let(X,Y) bejointly continuous. Isitthenalwaystruett#at (y|z) = F(z,y)/Fx (z)?
If not, give a condition for when it is true.

For the joint pdf's in Problem 14, find the conditional pdf¥éfgiven X = .

Let X have a uniform distribution of0, 1), and given thaf = z, let the conditional
distribution ofY” be uniform on(0, 1/z). (a) Find the joint pdff(x, y) and sketch the
region where it is positive(b) Find fy (y), the marginal pdf ol” and sketch its graph.
(c) ComputeP(X >Y).

Let X ~ unif[0,1]. Find the pmf ofY if the conditional distribution ofY” given
X = zis bin(n, z). DoesY have a binomial distribution®ote: fol z%(1 — z)bdx =
ad!/(a+b+1)!

Adam and Billy Bob have agreed to meet at 12:30. Assume tledt #nrival times
are independent random variables, Adam'’s uniformly disted betweeri2:30 and
1:00 and Billy Bob’s uniformly distributed betweet2:30 and1:15. (a) Compute the
probability that Billy Bob arrives first.(b) Compute the probability that the one who
arrives first must wait more thard minutes.

Let X andY be nonnegative, independent continuous random variag@gShow that
P(X<Y)= / Fx(z)fy(x)dx
0

(b) What does this become X ~ exp(A1) andY ~ exp(A2)?

Decide whethetX andY are independent ifX,Y") has the following joint pdf’s on
[0,1] x [0,1]: (@) f(z,y) = 4=y, (b) f(z,y) =z +y,(C) f(z,y) = z(2y + 1), (d)
f(z,y) = 62y?, (€) f(z,y) = 2.

(a)Let X andY be independent random variables. Show tR&tandY? are also
independent(b) The converse of (a) is not true. L&t Y, andU be independent such
that X andY” areexp(1) andU is —1 or 1 with equal probabilities. Le$ = UX and
T = UY. Show thatS? andT™ are independent but thatand7” are not independent.
(c) Let X andY be independent random variables andnd’ be two functions that
are strictly monotone. Show thatX) andh(Y") are independent.

Let R, and R, be independent and ufii 1], and letV; be the volume of a sphere with
radiusR; andV; the volume of a cube with sideR,. Find P(V1 > V5).

Consider the quadratic equatiefi + Bz + C = 0 whereB andC are independent
and have uniform distributions dr-n, n]. Find the probability that the equation has
real roots. What happens as— co?
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Consider the bass from Problem 17 in Chapter 2. A more réalisbdel is that the
weight at aged is W = 24 4+ 3 + X, whereX is a random variable, independent
of A, accounting for the fact that not all fish of a particular agedhexactly the same
weight. Suppose thaX’ ~ unif[—2, 2] and find the probability thafa) a 10-year-old
bass weighs less th@2 pounds,(b) a randomly chosen bass is older tfsayears and
weighs more thar0 pounds,(c) two randomly chosen bass of the same age differ in
weight by at leas? pounds.

Let f andg be two pdf’s, letp € (0,1) and leth(z) = pf(z) + (1 — p)g(z),z € R.
(a) Show thath is a pdf. (b) If X has pdff andY has pdfg, what does the pdk
describe?

Section 3.6. Functions of Random Vectors

Let X andY have the same distribution (but not necessarily be indegrahénd let
Z = X —Y. Show thatZ has a symmetric distribution (see Problem 101 in Chapter
2).

Let X andY” be independent and uftif 1]. Find the cdf and pdf of the random variables
@I|X -Y], (b) X/(X +7Y).

A current of I amperes flows through a resistancdbhms, thus generating the power
W = I’R watts. Suppose thdthas pdff(z) = 2,0 < z < 1, R ~ unif[0, 1] and
that/ and R are independent. Find the pdf @f.

In Problem 34, compute the expected time @ Billy Bob must wait for Adam (b)
the first person to arrive must wait for the second.

Water flows in and out of a dam such that the daily inflow is umifon|0, 2] (megaliters)
and the daily outflow is uniform of0, 1], independently of the inflow. Each day the
surplus water (if there is any) is collected for anirrigatfwoject. Compute the expected
amount of surplus water in a given day.

Let X andY be independent angkp(1). Find E[e~(X+Y)/2],

Let X andY be independent and ufiif 1]. Find (a) F[XY], (b) F[X/Y], (c)
Ellog(XY)], (d) E[lY — X|].

Consider the two rods in Example 3.6.6. Suppose that thene ésrorX when we lay
the rods side by side that is independent of the measurerardtsuch thal[X] = 0
and VafX] = 72. Now measure the sum and differen§eand D and estimate; by
A= (S+ D)/2. (a) Find the mean and variance df (b) When is the precision with
this method better than taking one single measurement dbtiger rod?

Let X1, X2, ..., X, be i.i.d. random variables with meanand variancer?, let S,, =
X1 4+ Xn, and letX = S, /n (called thesample mean Find E[X] and VafX].

Let X1, ..., X,, beindependent with the same meeand the same variane€ . Express
the following expected values in terms of i, ando?: (a) E[XT + --- + X2, (b)
E[(X1+ -+ Xn)?].

Let X have a negative binomial distribution with parameteendp (see Problem 61,

Chapter 2). FindE[X ] and VafX|] without using the definition; instead, consider how
X can be written as a sum of independent random variables.
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Recall the concepts of skewness and kurtosis from Probl@2asdd 104, in Chapter
2. Let Xy, ..., X, be independent and have the same distribution with skewnasd
kurtosisc, and letS, = Y, X. (a) Show that skis,,] = s/y/n. (b) Show that
kur[S,] = 3 + (¢ — 3)/n. (c) Find skw{X] and kufX] if X ~ bin(n, p).

Consider coupons numbereéd2, ..., n, which you collect until you have all numbers.
Each time you get a coupon, its number is independent of guevinumbers and alll
numbers are equally likely. LéY be the number of coupons you need, and show that
(@) E[N] =n)_,_,(1/k) ~ nlogn for largen, (b) there is a constant such that
Var[N] = cn? for largen. What isc?

In the previous problem, leX be the number of different coupons when you have
collectedk coupons. (a) Find E[X]. Hint: Let I; be the indicator that there is at
least one coupon with numbgyramong thes coupons.(b) Show that, for large: and
k=cn, E[X]=n(l—e"°),c=1,2,....

You roll a die repeatedly until all numbers have shown up. Yiéthe expected number
of 6s? Hint: Let Ny be the expected number bk and N as in Problem 54 and argue
that E[N1] + - - - + E[Ng] = E[N].

You throw darts at random on a chessbodai fquares). Aften throws, letX be the
number of squares that are not hit. FiadlX], and show tha[X] ~ ne~/%* for
largen. For which values of: is the approximation useful?

ConsiderN married couples. If there ane deaths, what is the expected number of
married couples remaining?

Consider a sample containi2zg carbon-14 atoms (see Example 2.6.1). Show that the
expected time until all have decayed is approximat&lg0 log n/ log 2 years. How
can you come up with this number in the deterministic desong

Consider the inclusion—exclusion formula in Propositio®.4. Prove this by first ex-
pressing the indicator of the union in terms of indicatorsraérsections, then take
expected values.

Let X andY be nonnegative and have joint pfifand letZ = Y/X. (a) Express the
joint pdf of (X, Z) in terms of f. (b) If X andY” are independenixp(1), find the joint
pdf of (X, Z) and the marginal pdf of.

Let X andY be independent and ufiif 1]. Find the joint pdf ofU = X + Y and
V=X/(X+Y).

Let X andY be independen®v(0,1) and letU = X —Y,V = X 4+ Y. Find the joint
pdf of (U, V).

A point (X,Y") is chosen in the unit disk by letting its polar coordinafesind© be
independent and uniform on their respective ranges. Fiagbint pdf of (X,Y").

A battery with voltagel/ volts is connected to a resistance ®fohms, thus creating
a current off = U/R amperes and a power & = U?/R watts. Suppose thdf
has pdff(u) = 2u,0 < u < 1, R has pdff(r) = 1/7%,r > 1 and thatU and R
are independent. Find the joint pdf 6f, 177) and the marginal pdf's of andW (be
careful with the ranges).

Let (X,Y) have joint pdff(z,y) =z + 3,0 <2z < 1,0 <y < 1landletU = 2X,
V = X 4+ Y. Find the joint pdf of(U, V) (be careful with the range).
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Let (X,Y) have joint pdf

L 2021y —ay)/3
z,y) = e , T,y € R

andletU = X +Y,V = X — Y. Find the joint pdf of U, V).

Section 3.7. Conditional Expectation

Let X be a continuous random variable with pfifand letb be a real number. Show

that -
fb zf(x)dx

P(X >b)
A saleswoman working for a company sells goodsXo61000 per week, whereX is
unif0, 2]. Of this, she must pay the company back uf860 and gets to keep the rest.
Compute her expected prof#) in a given week(b) in a week when she makes a profit.
In Problem 10 (a) and (b), compuldY' | X = k] fork =1, ..., 6.
Compute the conditional expectatioA$Y | X = z] in Problem 14.
Let X ~ unif[0, 1]. ComputeE[Y] if the conditional distribution ot given X = z is
(@) unif[0, 2], (b) unif[0, sin(7z)], (€) unif[0, 1/x], (d) exp(1/z).
Let X ~ exp(1). ComputeE[Y] if the conditional distribution ot given X = z is
(@) unif[0, ], (b) unif[z, z + 2], (c) exp(x).
Let X ~ unif[0, 1]. ComputeE[Y] if the conditional distribution ot given X = z is
(a) geom(x), (b) bin(n, x) (recall Example 3.5.5 and Problem 33).

Suppose thaX andY are such thaF[Y|X] = 2X. Thus, if we knowX, we would
expectY” to be twice as much. Does this imply thafX Y] = Y/2?

Consider the variance formula \&f] = Var[E[Y'| X]] + E[Var[Y'| X]]. (a) Show that
Var[E[Y|X]] = 0if X andY are independent(b) Show thatE[Var[Y'|X]] = 0if X

andY are totally dependent in the sense thiat= g(X) for some functiory (recall
Corollary 3.7.3).

Let X ~ geon(p). Use a recursive argument to show that Y& = (1 — p)/p>.
Hint: First, letr = E[X?] and obtain an equation ferby using Equation (3.7.3) and
properties of indicators.

EIX|X >0 =

Recall Example 1.6.14, where Ann and Bob play tennis and Ains @ point as server
with probability p. Suppose that the players are at deuce and that Ann serves.isVh
the expected number of played points until the game is over?

Recall Example 1.6.15, where Ann and Bob play badminton amadwins a rally with
probability p. If Ann is about to serve, what is the expected number ofesillintil the
next point is scored?

In Example 3.7.8, we arrived at the equatjor=  + 2, which has solutiop = 6.
However,;. = oo also is a solution, so we need to argue why this can be ruled out
Show thatu can be at most (think about coins flipped two by two).

In Example 3.7.8, compute the variances of the waiting tifoethe patterndfH and
TH.
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82 Flip a fair coin repeatedly and verify the expected numbetip$ until the first occur-
rence ofHHH, HHT, HTH, andHT'T, as given in Example 3.7.8.

83 Flip a fair coin repeatedly and wait for the first occurrendenoconsecutive heads,
HH --- H. Find an expression for the expected number of flips unti titicurs.

84 Roll a die repeatedly. What is the expected number of rolts the first occurrence of
the patterr(a) 36, (b) 6667

Section 3.8. Covariance and Correlation

85 LetU andV beindependentand ufiif 1]andletX = min(U, V)andY = max(U, V).
Find CoJ X, Y] and comment on its sign.

86 Find the variance of the number of matches in Example 3.6718t argue that thé,
are not independent but that Gdy, 1] is the same for alf # k, then compute it.

87 Draw three cards without replacement form a deck of cards. H.&e the number of
hearts andb, the number of spades drawn. Fip@H, S) and comment on its sign.

88 In Definition 3.8.2, it is necessary that Var[X} 0 and VafY] > 0. If this is not the
case, what value is reasonable to assign to the correlation?

89 Letp be the correlation betweek andY. What is the correlation betweeX + a and
Y + b wherea andb are constants?

90 Prove Proposition 3.8.7 (c¢) using the method suggesteciprbof, and also expreas
andb in terms of 1, ji2, 0%, 02 andp.

91 Computep(1;, I+,) in Example 3.8.3. What is its sign, and how does it depend en th
parameters of the hypergeometric distribution? Explainifively.

92 Let (X,Y) be uniformly distributed on the triangle with corners(i 0), (0, 1), and
(1,0). (a) Compute the correlation coefficiep(X,Y"). (b) If you have done (a)
correctly, the value 0p(X,Y) is negative. Explain intuitively.

93 Let A and B be two events. The degree of dependence betweand B can then
be measured by the correlation between their indicaf@randIz. SupposeP(A) =
P(B) = 1 and express the correlation coefficigiif 4, 5) as a function ofP(A|B).
Give an intuitive interpretation.

94 Let A andB be independent events. Show that- I and|I4 — I 5| are uncorrelated.
Are they independent?

95 For the following random variableg andY’, determine whether they are uncorrelated
and independent{a) X ~ unif[0, 1] andY = X2, (b) X ~ unif(—1,1] andY = X?,
() X = cos(U) andY = sin(U), whereU ~ unif[0,2x], (d) X ~ N(0,1) and
Y = X2

96 Let X andY be independent and uniform df, 1]. Let A be the area and’ the
circumference of a rectangle with sid&sandY . Find the correlation coefficient of
andC.

97 Let X andY be independent with the same variancg and letS = X + Y and
T = XY. Under what conditions ar& and7" uncorrelated?

98 Let(X,Y) be uniform onthe regiofi(z,y) : 0 < 2 < 1,0 < y < z*}. FindE[Y'|X]
and the best linear predictéfX).
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99 Let X andY be independent, with the same meamand the same varianeg’, and
let Z = X +Y. Findp(X, Z). Explain intuitively in terms of the coefficient of
determination.

100 You are dealt a bridge hand3 cards). LetX be the number of aces aid the number
of hearts. Show thak’ andY” are uncorrelated but not independeHint: Write both
X andY as sums of indicators and show that indicators in one sunmdependent of
indicators in the other.

101 Recall the sample meaki from Problem 50.(a) Show that Co{X1, X] = ¢*/n and

find p(X1, X). Interpret the value of in terms of the coefficient of determinatiotb)
Show thatX and X, — X are uncorrelated for each= 1,2, ..., n.

Section 3.9. The Bivariate Normal Distribution

102 Which of the following are plots from a bivariate normal dilsution? For those that
are, what can you say about variances and correlation? Beetthat are not, what
looks wrong?

(@) (b) ()
o
oy ol . s .o.:"‘
7 b
123 i
(d) (e) ®
o
)
R | .:.' < :
':Q";'-_':Sf-! a, T R

(9) (h) @
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103 A company manufactures rectangular metal plates of size B (inches). Due to
random fluctuations, a randomly selected plate has a size »fY" in. where(X,Y)
follows a bivariate normal distribution with meafisand 10, variance9.01 and0.04,
and correlation coefficierit8. LetC be the circumference antithe area of a platga)
Find E[C] andE[C|X = z]. (b) Find E[A] and E[A|X = z]. (c) A plate is useless
if C is less thar29 or more thar1 in. What is the probability that this happen&?)

If the sidelengthX of a plate is measured to B3el in., what is the probability that the
plate is useless(®) One way to improve the process is to reduce the variancasarid
Y. Suppose that we can calibrate the process so that botmeasiare reduced by a
factorc (so thatX has varianc®.01c andY 0.04c). To get the probability in (c) down
below0.01, how small must be?

104 Suppose that the weights (in kilograms) of Norwegian salwioa certain age follow
a normal distribution with mea®0 and variancd 5 and that those of Canadian salmon
of the same age are normal with mezhand varianc1. What is the probability that
a randomly chosen Norwegian salmon weighs more than a rdgddrasen Canadian
one?

105 Lead fishing sinkers of two types are being manufactured. tgpeshas weight/ (5, 1)
and the otheV (7, 1) (ounces). Choose one of each, and¥eandY be their weights.
Find (@) P(X > Y) (b) P(Y > 2X). (c) Let X andY be the average weights of
sinkers of the two types. How large musbe for P(Y > X) to be at leasd.99?

106 Let X ~ N(0,1), and letY” be a random variable such that

v — X x| <1
Tl X ifX|>1

(a) Show thaty” ~ N (0, 1). (b) Is (X, Y") bivariate normal?

107 Let (X,Y) be bivariate normal with means 0, variances 1, and corcglatoefficient
p>0,andletU = X +Y,V =X —Y. Whatis the joint distribution ofU, V')?

108 Two types of lightbulbs are being manufactured, one whdsértie is N (1000, 100)
and one whose lifetime i87(800, 81) (hours). (a) Choose one of each type, and let
Z be the average lifetime. Express the pdf2in terms of the standard normal pdf
. (b) Choose a lightbulb at random, so that it is equally likely &df either type,
and letW be its lifetime. Express the pdf of in terms of the standard normal pdf
. DoesW have a normal distribution? What does its pdf look likdiht: Write W
asIX + (1 — I)Y, wherel is a suitably chosen indicatoc) Find the means and
variances oZ andW. Compare.

Section 3.10. Multidimensional Random Vectors

109 Consider the following variation of Example 3.10.5. Insted accepting the first bid
that is higher than the first, you decide to accept the firstthéd is higher than the
one immediately preceding it. Lé{ be the number of the bid you accept. DefiNe
formally and findE'[N].

110 In the previous problem, suppose that you instead decideki the first offer that
exceeds: dollars. If the independent bids have ddf what isE[N]?
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111 TheOld Faithful geyser in Yellowstone National Park is so named for its regefup-
tions, about once an hour on average. However, most tohaststo wait for more than
half an hour, which they think indicates that the geyserasvsig down. (a) Explain
why their longer waiting times do not contradict hourly eiiops. (b) Suppose that
times between eruptions are i.i.d. random variables tleatiaiform betwee0 and90
minutes. What is the expected wait for an arriving tourietéll Example 3.10.2)?

112 Consider a parallel system afcomponents whose lifetimes are i.igkp()). Find the
pdf of the lifetime of the system.

113 Let X3, ..., X, bei.i.d. and continuous with cdf and pdff. Find the pdf ofX;,, the
jth smallest order statistiddint: Let N(x) be the number o}, that are less than or
equal tox and express the eve(iX ;) < =} interms of N (x). What is the distribution
of N(z)?

114 Consider the sinkers from Problem 105 with weights that &, 1) and N(7,1),
respectively. Choose one of each andiétbe the maximum weight of the twda)
Express the pdf of\f in terms of the standard normal cdf and pdfe. (b) Find
P(M <6).

115 Let X4, ..., X, be i.i.d. exponential with parametar Show that the expected value of
the maximumX,,) is approximatelylog n/X for largen. Hint: Example 3.10.4.

116 Let X4, ..., X,, be independent such th&%, has cdfF}, (z) and pdff, (z). Find the cdf
and pdf ofX ;) and X ,,).

117 Let X, Y, Z, andW be i.i.d. continuous random variables. Find the probapbitiat
@X>YadZ < W, (b)) X <Y < Z<W,©X <Y < Z>W,()
X<Y>Z>W.

118 You and four other people are bidding at a silent auction. fitle are independent and
you assume that the other bids are uniform{ 10, 200] dollars. How much must you
bid to be at least0% sure to win the bidding?

119 An electronic component has failure rate functicit) = a + r1(t) + r2(t) wherea
is a constantri(¢) is an increasing function, an¢ (¢) is decreasing. What does the
failure rate function-(t) describe?

120 Consider a parallel system of two components that havértitet that arexp(1). When
one of them breaks down, the other has to take more stressaaradrkmaining lifetime
that isexp(2). Find the failure rate function of the system.

121 A machine manufactures two types of components with expaidifietimes, one with
mean 1 and one with mea@b year. Find the failure rate function of the lifetime of a
randomly chosen component.

122 Let X; and X be jointly continuous with joint pdff (not necessarily independent).
Find an expression for the joint pdf 6% (1), X (o)) in terms of f.

123 Consider the ABO classification of blood types from Proble2rirbChapter 1. If you
choose eight people at random, what is the probability tbatget two of each type?

124 Let (X4, ..., X;) have a multinomial distribution with parametersand (p1, ..., pr).
Use indicators to show that

Cov[ X, Xi] = —np;pk

for j # k. Why is it intuitively clear that the covariance is negafivéVhat is the
correlation coefficient?
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125 Let X, Y, andZ be independent ani (1, 1). Find the probability tha’l + Y > 3Z7.

126 Jobs arrive to a computer. When the computer is free, théngeime 7 until the next
incoming job has an exponential distribution with mean lisgbond. The time it
takes to complete a job has a uniform distribution with m@amillisecond. Consider
a time when the computer is free, andTébe the time until the next job is completed.
Find the pdf ofl" and sketch its graph.

127 Recall the Geiger counter from Example 3.7.3. Consider & tishen the counter
registers a particle and |&t be the time until the next registration. Find the pdfiaf

128 Let X andY be independent, both with pgf{x) = exp(1 — z), > 1. Find the pdf
of X +Y.

129 Let X ~ exp(A1) andY ~ exp(A2) be independent. Find the pdf &f + Y.
130 Let (X, Y) have joint pdff(z, y). Show that the pdf of the su + Y is

Fxov(z) = / J o — w)d
131 Let (X, Y) have joint pdf

1 (=
f(:c7y):§(m+y)e (&L+y)7 2373120

Find the pdf ofX + Y.

Section 3.11. Generating Functions

132 Describe the random variables that have the following pg{s) G(s) = 1, (b)
G(s) =s, (€)G(s) = 2(s+5%).

133 Let G be the pgf of a random variabl. Show thatG is increasing and convex. When
is it strictly increasing? Strictly convex?

134 (a)Let X be the number when a fair die is rolled. Find the pgPof (b) Let S be the
sum wherb fair dice are rolled. Find the pgf & and describe how you can use it to
find the probabilityP (S = 20).

135 (a)Let X ~ geonyp). Find the pgf ofX. (b) LetY ~ negbir(r, p) (see Problem 61,
Chapter 2). Use (a) and Proposition 3.11.4 to find the pgf of

136 Let X andY be independent random variables with ragd@e2, ...} and pgf'sG x and

Gy . Show that
X v
E[Xer} —/O Gy (s)Gy (s)ds

137 Let X1, X, ... be i.i.d. nonnegative and integer-valued, andVet- Poi(\), indepen-

dent of theX. If the random sunby = X; + --- + Xn has a Poisson distribution
with meanu, what is the distribution o}, ?

138 In the department | am currently in, there is a self-servia#ee bar downstairs from
my office. Each week | go down for coffee a number of timéswhich has a Poisson
distribution with mear20. Each time, | am equally likely to choose the small sizerfor
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cents or the medium for one dollar, and | am equally likely &y gdirectly or to record
my purchase to pay later. At the end of a week, what is my erpedtbt?

Jobs arrive to a computer at a rate of 1.8 jobs/day. Each jphines an execution time
(in milliseconds) which has a binomial distribution with= 10 andp = 0.5 (where a
zero execution time means that the job is rejected). Rpthe probability that the total
execution time in a day for this type of job is at leasnilliseconds,(b) the expected
total execution time in a day.

140 Cars arrive at a park entrance such that the number of canseérhour has a Poisson

141

142

143

144

145
146

147

distribution with meant. Each car is equally likely to contain one, two, three, orfou
people. LetY” be the number of people that arrive at the park during an fendt,find
(after making appropriate assumptioifa) the pgf ofY’, (b) P(Y = 0), (c) E[Y] and
Var[Y].

Roll a fair die repeatedly and keep track of the numbers. Wherfirst6 shows up,

you add what you have thus far, not including theHence, we haveX;, X5, ... i.i.d
die rolls, N ~ geon(1/6), and observe

2

-1
Y = X
k

1

whereY is 0 if we get6 in the first roll. We wish to find the expected valueof By
Proposition 3.11.6, we gét[Y] = E[N — 1]E[X] which equal$ x 3.5 = 17.5. We
could also argue that the values we add cannot contaitisaynd are thus uniform on
1,2, ..., 5, which would instead givé&Z[Y] = 5 x 3 = 15. Which of the answers is
correct? Does Proposition 3.11.6 apply?

Let X, Xo, ... be i.i.d. nonnegative with cdf and let/N be nonnegative and integer-
valued with pgi, independent of th& .. LetMy = max(Xi,..., Xy)With My =0

if N = 0. (a) Show thatP(My < z) = G(F(z)). If the X}, are continuous, what
type of distribution doed/n have?(b) You are bidding on a silent auction where the
number of other bidders has a Poisson distribution with n&edBids are independent
and uniform on0, 100] dollars. What is the minimum amount that you would need to
bet to be at leasi0% sure to win the bidding?

If we allow random variables to take on infinite values, théqam still be defined in the
same way, but many of the results are no longer valid XL &tke valuesif0, 1, ..., 00}
and have pgfG, and letp = P(X = oo0) > 0. (a) Show thatG(1) = 1 —p
(recall Problem 11 in Chapter 2)(b) Give an example to show that we may have
E[X] # G'(1).

Let X have mgfM (¢t). Show that

X 4k
M) =>" %E[X’“]
k=0

Let X ~ N(0,1). Use the mgf to findZ[ X 3] and E[X*].

Let X have the Cauchy distribution from Section 2.8.3. Show thathgf of X does
not exist (in the sense that the integral defining it is of threnf“co — co”).

There is an analog to Proposition 3.11.5 that deals with sngFhus, letX;, Xo, ...
be i.i.d. random variables with common myfx and common meap, and letN be
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nonnegative and integer-valued, and independent aXihevith pgf G x (note that this
is the pgf).(a) Show thatSy has mgf
Msy, (t) = G’z\r(JWX(t))7 teR

(b) Let X, ~ exp(A), and letN ~ geomr(p). Show thatSxy ~ exp(Ap). (c) Show
that E[Sn] = E[N]u.

148 Let X1, Xo, ... bei.i.d. N(0, 1), and letS, = X1 + - - - + Xy, in which case we know

thatS, ~ N(0,n). Now roll a die to decide how man¥ to sum. Find the mgf of
the resulting sum. Is it normal, and if so, what are the patara@

149 If X andY are nonnegative and integer-valued, the functitfe, t) = E[s*t], 0 <

s < 1,0 <t < 1is called thgoint pgfof X andY. (a) Express the pgf's ok andY
in terms of G. (b) Use differentiation to find formulas for expected valuesjarmces,
and the covariance of andY. (¢) Show that the joint pg& uniquely determines the
joint pmf p of (X,Y") and thatX andY are independent if and only & = GxGy.
(d) Suggest how to define the joint mgf and do (a) and (b) in this.cas

Section 3.12. The Poisson Process

150 Alaska has over half of all earthquakes in the United Stategarticular, earthquakes

151

152

153

154

with magnitude> 8 on the Richter scale occur in Alaska on average euéryears.
Suppose that these occur according to a Poisson processpanuite the probability
that (a) a decade has no such earthquakb}two consecutive such earthquakes are
at leasts years apart(c) a 13-year period has exactly one such earthqugégthree
consecutive decades have exactly one such earthquake each.

Traffic accidents in atown occur according to a Poisson ®aea rate of two accidents
per week.(a) What is the probability that a given day has no accidetdhenever
there is an accident, the risk Isin 10 that it will cause personal injury. What is the
probability that a given month has at least one such accdent.et N be the number
of accident-free weeks in a year. What is the distributiotNef

Inany given hurricane season (6 months from June to Noventhere is about a 50-50
chance that the Gulf Coast will be hit by a hurricane. Assurf®@iason process with
rate A and use time unit “months.(a) Find the value of\. (b) Let X be the number of

hurricanes that hit the Gulf Coast during the months of Atignsl September. What is
the distribution ofX (name and parameter(s)j€) Let Y be the number of months that
have no hits during one season. What is the distributidr @iame and parameter(s))?

Large meteorites hit Earth on average once every 1,000 yEard (a) the probability
that Earth gets hit within the next 1,000 yeé¥the probability that Earth gets hit more

than once within the next 1,000 yedc3 the probability that there are no hits within the
next 100 years.

Consider a radioactive sample that decays at xat&ou turn on the Geiger counter,
wait for the first registered emission, and wonder how lorig tdikes on average. Since
the timepoint at which you turned it on is completely arbigrand independent of the
decay process, you figure that you ought to be on average imithdie between two
consecutive emissions, and since the average time betweegnissions id /A, you
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decide that the average wait must b&2)). However, experience tells you that the
average wait is longer. Explain! What is the average wait?

155 Explain Problem 147 (b) in terms of thinning of Poisson peses.

156 Consider two independent Poisson processes with kataad\.. Given that a total of

n points are observed in the intenjal ¢], what is the probability that of those came
from the first process®int: Problem 25.

157 Southbound and northbound cars pass a point on a rural higheeording to two

independent Poisson processes, at rates two and threeeramsiqute, respectively.
(a) What is the probability that exactly two cars passes in argivénute? (b) What
is the probability that exactly one northbound car and onghdmund car pass in a
given minute?(c) If two cars pass in a minute, what is the probability that they
both northbound?d) If four cars pass betweehl:55 am and12:05 pm, what is the
probability that two pass before and two after noon.

158 Accidents in a town occur according to a Poisson processattaf two accidents per

week. Two towing companies, Adam’s Towing and Barry’s Weackave agreed to
take turns in dealing with the accidents on a weekly basism\dvho has been in town
longer, takes care of the first accident of the week, Barrysmond, and so on(a)
Consider the process of accidents that Adam takes care thfisla Poisson process? If
so, what is the rate®h) What is the probability that Barry gets no business in a given
week?(c) What is the probability that Adam and Barry get an equal arhofibusiness

in a given week?

159 Consider the superposition of two independent Poissonegess with rateg and A,

respectively. LefX be the number of points in the first between two consecutivetpo
in the second. Show tha&f has a geometric distribution includifi(see Section 2.5.3)
and identify the success probability. Explain intuitivelyou may need to utilize the
factthat [ e~““z"dz = k!/a**', or you can use generating functions.






Limit Theorems

4.1 INTRODUCTION

In advanced studies of probability theory, limit theorerami the most important
class of results. A limit theorem typically starts with aseqgce of random variables,
X1, X5, ... and investigates properties of some functioXoef X5, ..., X,, asn — oo.
From a practical point of view, this allows us to use the liastan approximation to
an exact quantity that may be difficult to compute.

When we introduced expected values, we argued that thedd beuconsid-
ered averages of a large number of observations. Thus, ifave bbservations
X1, X5, ..., X,, and we do not know the mean a reasonable approximation ought

to be thesample mean
1 &
X=-)») X

in other words, the average o&fy, ..., X,,. Suppose now that th&; are i.i.d. with
meany and variancer2. By the formulas for the mean and variance of sums of
independent random variables, we get

B 1 n n 1
EX]=E |- Zxk] =Y —E[Xy]=p
n k=1 k=1 n
and
_ 1 & L] o2
VarlX] =Var |~ % " Xy| =) —VarlXy] = —

271
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that is, X has the same expected value as each individijahnd a variance that
becomes smaller the larger the valuewfThis indicates thak is likely to be close

to 1. for large values of.. Since the variance goes@pwe might want to say thatt
converges tqu asn — oo,” but exactly what does this mean? For a sequence of real
numbersa,, — a means that for any > 0, we can always make,, — a| < eif n

is large enough. This cannot be true férandy, though. SinceX is random, we
can never say for certain that we will ha\& — | < ¢ from somen on. We need to
come up with a definition of what convergence means for rangoanmtities such as
X, and in the next section we address this issue.

4.2 THE LAW OF LARGE NUMBERS

Although we can never guarantee that — x| is smaller than a givea we can say
that it is very likely that X — | is small ifn is large. That is the idea behind the
following result.

Theorem 4.2.1(The Law of Large Numbers) Let X, X5, ... be a sequenge
of i.i.d. random variables with mean and letX be their sample mean. Then,
for everye > 0

P|X —pl>€¢)—0 as n— oo

Proof. Assume that theX; have finite va_riancear2 < oco. Apply Chebyshev’'s
inequality toX and letc = ey/n/o. SinceE[X] = p and VafX] = % /n, we get

2
P(|)_(—,u|>e)§a—2—>0 as n — oo
ne

The assumption of finite variance is necessary for this pro@fork. However, the
law of large numbers is true also if the variance is infinitat, the proof in that case
is more involved and we will not give it. [ ]

We say thatX converges in probabilito 1 and write
X B4 as n—oo

The law of large numbers thus states that although we can beweertain thaf is
within +e of , the probability that this happens approaches oneiasreases.

IMore precisely, for fixed > 0 we can never be certain thatis in & € for anyfixedn. However, it can
be shown that the probability is one th¥twill eventually be inu + € but this occurs at eandomN so in
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In general, ifY7, Ys, ... is any sequence of random variables and constant,

Y, £ ameans thaP(|Y,, —a| > ¢) — 0asn — oo foralle > 0. Itis also possible
to have a random variablg in the limit instead of the constantbut we will not
consider any such examples.

Toillustrate the law of large numbers let us consider thexg{a of rolling a die. In
the left plotin Figure 4.1, consecutive averages in a tdta0o rolls are plotted. Note
the typical wild fluctuations in the beginning, followed byedrly rapid stabilization
around the meaB.5. After about130 rolls, the average appears to have settled, but
then there is a sudden decline after i@lD. By pure chance, between roll§0 and
180, there were unusually large numbers of ones and twos whaxdoerd the average
down. In the right plot in Figure 4.1, the sequence is cormthto5000 rolls. The
dip aroundl80 is visible, as are a a few subsequent excursions above ao B,
but after that, all deviations are significantly smaller imes If another sequence of
20 rolls similar to that betweeh60 and180 would occur afte000 rolls, it would
have no visible impact.

A consequence of the law of large numbers is that we can novephat the prob-
ability of an event is the limit of the relative frequencid&ecall how we mentioned
this as a source of inspiration for the axioms of probabdgitd how we have often
argued that we can think of a probability as a relative fremyean a large number of
trials.

Corollary 4.2.2. Consider an experimentwhere the evarttccurs with prob
ability p. Repeat the experiment independentlydgtbe the number of times
we get the evendl in n trials, and letf,, = S,,/n, the relative frequency. The

=

P
fn—p as n— oo

Proof. Define the indicators

j 1 if we getA in thekth trial
7 0 otherwise

fork = 1,2,...,n. Then thel, are i.i.d. and we know from Section 2.5.1 that they
have mean. = p. Sincef,, is the sample mean of thig, the law of large numbers

. P
givesf,, — pasn — oo. [ |

practice we never know whether it has actually occurred. éXaet formulation is? (X — ) = 1, atype

of convergence calledonvergence almost surelyhich is stronger than convergence in probability. The
distinction between these two convergence concepts isatin@ more advanced treatment of probability
theory; we will consider only convergence in probability.
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Fig. 4.1 Consecutive averages 260 (left) and5000 (right) simulated rolls of a fair die.

The law of large numbers is also popularly known as the “lavaadrages” and is
frequently misunderstood. Let us illustrate some of the mmm misperceptions by
considering the experiment of flipping a fair coin.

The first mistake we examine is the confusion betwetattive andabsolutefre-
qguencies. If we flip the coin times and letS,, be the number of heads, this is the
absolute frequency anf}, = S,,/n is the relative frequency. The expected value of
Sn is 5, and the expected value ¢f is % The law of large numbers states tlfat
gets close t()}, notthatsS,, gets close td;. In fact, the differencésS,, — g| tends to
increase wit, which is illustrated in Figure 4.2. In the next section wéd sée that
the rate of increase is on the ordergh.

The second mistake is the incorrect notion that extremeroeasces in one direction
are compensated by extreme occurrences in the other. Aduatration, look at
Figure 4.3, where the consecutive relative frequenciegdatad of 200 coin flips are
plotted. This is a sequence of coin flips that had an unusiathe number of tails
in the beginning. Aften00 flips, there had only bee3p heads, quite far from the
expected number &0, and thus the relative frequengyyg is only0.39. The relative
frequencies slowly but steadily work their way up toward, and after200 flips we
are getting quite close. Now, this must mean that the unlysoat number of heads

1 80
08 60
0.6
W 40
0.4
0.2 20
0 0
0 5000 10000 0 5000 10000

Fig. 4.2 Successive relative frequencigs (left) and absolute differencgs,, — 3| (right)
of repeated coin flips. Note the stabilization to the left &melincrease to the right.
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Fig. 4.3 Successive relative frequencies of repeated coin flips.

in the first100 flips was compensated for by an unusually high number of hizads
the last100 flips, right?

Wrong! Actually, there weré4 heads in the last00 flips, not far from the
expected number di0. If we had had exactl0 heads in the last00 flips, the
relative frequency,g, would have beerfo% = 0.445, significantly higher than.39.
Even if we got a little bitessthan the expected number of heads, gaythe relative
frequency would still go up, t6.42. As we keep flipping, the unusual number of
heads in the first00 flips will have less and less impact on the relative frequency
Thus, there is no trend to compensate, only the persisteincenopletely normal
behavior that in the long run erodes the effects of any ababies?

Sometimes we are interested in a functioXofather thanX itself. The following
result is useful.

Corollary 4.2.3. Let g be a continuous function. Under the conditions ofjthe
law of large humbers

9(X) 5 g(p) as n— oo

It certainly feels reasonable thatXf is close tou, theng(X) by continuity must be
close tog(u). However, since “close” now refers to convergence in praigbit
must be shown tha®(|g(X) — g(i)| > €) — 0. We omit the technical proof.

2My good friend, the eminent probabilist Jeff Steif, oncerped out to me over a roulette table that it is
sometimes better to be completely ignorant than to havealitife bit of knowledge. After seven straight
occurrences of red, the ignorant gambler does not blink does Jeff), whereas he who has heard of, but
not understood, the law of large numbers believes that morereences of black must follow.
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Example4.2.1 In Example 3.5.7, we examined Buffon’s needle tossing sehem
which can be used as a primitive way to estimatbased on the law of large numbers.

We saw that the probability that the needle intersects aidign, and if we letf,,

be the relative frequency of intersectionsinosses, the law of large numbers tells

us that
p 2

fn—— as n— o
™
and by Corollary 4.2.3 witly(z) = 2/ we get
2

P
— — 1T as n — o0
n

which suggests the estimagf,, of 7. We will later investigate how good an estimate
this is. 0

We finish this section with an example of convergence in podityathat does not
involve the sample mean.

Example4.2.2 Let X, Xy, ... be i.i.d. exp(A), and as usual leX ;) denote the

minimum of X1, ..., X;,. Show thatX( £ 0asn — .

By Example 3.10.3 we hav& ;) ~ exp(nA) and hence for fixed > 0
P(|Xa)—0>€) =P(Xq >¢)=e " =0

asn — oQ. O

4.3 THE CENTRAL LIMIT THEOREM

In the previous section we saw thst Eil pasn — oo orin other words, thak’ ~
if nislarge. It would be good to also have an idea of how accun&e@pproximation
is, that is, have an idea of the extent to whikhtends to deviate from. The next
result gives the answer.

Theorem 4.3.1(The Central Limit Theorem) Let X, X5, ... bei.i.d. randonL
variables with meam and variancer? < co and letS,, = ZZ:l Xi. Then,
for eachx € R, we have

asn — oo, where® is the cdf of the standard normal distribution.
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Before the proof, let us point out that this is a truly remdnlearesult. It states that
the cdf’s of the random variablés,, — nu)/o+/n converge to the cdf of a standard
normal distribution. In other words, for large

Sn —np
Pl ——< ~ o
(oﬁ —I> @)
which we can also write as s
n—NU d
— " ~ N(0.1
e ANO)

d, . . . o :
where “=” is notation for approximate distribution. Sincg, has meamu and
varianceno?, we can also write this as

Sy £ N (np, no?)

Thus, the central limit theorem states that the sum of isiasthdom variables has an
approximate normal distributioregardless of the distribution of th&,! The X}
do not even have to be continuous random variables; if wegjddtenough random
variables, the sum becomes approximately normal anyway.

The central limit theorem gives theoretical justificatian fvhy the normal distri-
bution tends to show up so often in practice. If a quantithesresult of many small
independent contributions, it is likely to be approximgtebrmal. For example, the
weight of a bag of potato chips is the sum of the weights of madiyidual chips.
Whatever the distribution of the weight of a single chip, sien has an approximate
normal distribution. For another example, consider thenglean location of a dust
particle in the air. This is due to the bombardment of a hugelmer of air molecules
from different directions, and when added up, the changesandinates are likely
to follow normal distributions.

Proof. We will only outline the proof and skip the details. The maiea is to
work with moment generating functions instead of workingedtly with the dis-
tribution functions. Thus, we will show that the moment geartiag function of
(Sn — nu)/o+/n converges to the moment generating function of a standardalo
distribution.

Let us first assume that= 0 ando? = 1. LetY,, = S,,//n, and letM (¢) be the
mgf of the X;;. Combining Corollary 3.11.7 and Proposition 3.11.9, wetbe¢Y,,

has mgf .
My, (t) = (M (%)) (4.3.1)

Now do a Taylor expansion d¥/ (s) arounds = 0 to obtain

M(s) = M(0) + sM'(0) + SQW
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where we have neglected the error term. By Corollary 3.4e8get

2

M(s):1+%

(remember that, = 0 ando? = 1). Inserting this into Equation (4.3.1) we obtain

t2\"
Myn(t): (14—%) —>€t2/2, as n — oo

which we recognize from Example 3.11.8 as the mgf of the stehdormal distri-
bution. The result for general ands? follows by considering the random variables
X} = (X — p)/o, which have meafi and variancé, and we leave it to the reader
to finish the proof.

The details that we have omitted include an explanation of ednvergence of
the mgf’s is the same as convergence of the distributiontfong (which is a fairly
deep result and not exactly a detail) and why the error terthénTaylor expansion
can be neglected as— oc. ]

Example4.3.1 You play 1000 rounds of roulette, each time bettiSg. What is
the probability that you end up with a gain if y¢al) bet on odd(b) play straight bets?

Denote your gain in rouné by X}, so that your total gain in rounds is

6oy,

k=1

By the central limit theoremS,, has an approximate normal distribution with mean
nu and varianceo?. We computed the means and variances in Example 2.4.12, and

for (a) we have

1 360
=—— and o=+
F="19 7 7 361

and withn = 1000 we get
P(S,>0) = 1-P(S,<0)

| 01000 x (~1/19)
/1000 x 360/361

= 1-(1.67) ~ 0.05.

Q

For (b) we have



THE CENTRAL LIMIT THEOREM 279

which gives

-1 -1/1
PS>0~ 1o L2100 X (19 a9
/1000 x 11988/361

so you are much more likely to be ahead with the straight bratesty. Now, the
expected gains are the same for the two strategies, so #tegstrto bet on odd must
have some other advantage instead. To illustrate thisslebmpute the probability
that you lose more tha$i00. With the straight bet strategy this is

P(S, < —100) ~ @ <_100 — 1000 (_1/19)> ~ 0.40

/1000 x 11988/361

and with the strategy to bet on odd

~100 — 1000 x (—1/19
P(Sng—m())ch( x (=1 )> ~0.07

/1000 x 360/361

so you are more likely to lose more money with the straighshretegy. The smaller
variance of the strategy to bet on odd means that your losieely o be fairly close
to the expected loss aH00 x % ~ 53 dollars. With the straight bet strategy, there
is more fluctuation and you take a greater risk for the changmin more. 0

Example4.3.2 We have previously seen that the binomial distribution camep-
resented as a sum of indicators. ThusXif~ bin(n, p), the central limit theorem
states that

X —np

d
w(l—p) NGO

or equivalently
d
X = N(np,np(1 — p))

Historically, this was among the first versions of the cdrinait theorem that was
proved. Itis often called theée Moivre—Laplace theorenfrigure 4.4 shows the pmf’s
of three binomial distributions witlp = 0.8 andn = 5,10, and100, respectively.
The pdf’s of the corresponding approximating normal disttions are plotted for
comparison. Note how the binomial pmf far= 5 is quite asymmetric but how the
pmf’'s become more symmetric asncreases. This suggests that the accuracy of the
normal approximation depends not only @ut also orp; the more symmetric the
binomial pmf is to start with, the better the approximatidrhis is indeed true; for
fixed n, the approximation works best;if = % and gets worse gsapproaches or

1. A general rule of thumb for a decent approximation is thahbg andn(1 — p)
should be at least 5. 0
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6 7 8 4 8 12 70 80 90

Fig. 4.4 The central limit theorem in action; pmf’s for three binomndistributions with
parametery = 0.8 andn = 5,10, and 100, respectively. The dashed curve shows the
corresponding normal pdf.

If we divide S,, by n we get

2
XgN(u,ff_>
n

or in the case of relative frequencies
1—
fa AN (p, Pl —p) p)) (4.3.2)
n

Hence we have two results about the sample mEarthe law of large numbers,
which states that
X ~u
and the central limit theorem which states that
_ d 2
X =N (u, 0—)

n

Note how the first result talks about ti@lueof X whereas the second talks about its
distribution The type of convergence in the central limit theorem isefane called
convergence in distributigrand we will return to this in Section 4.4.

We can now get an idea of how clo&etends to be te.. The central limit theorem

gives ))

P(|X—u|>e)%2<1—<b(€ r
ag

regardless of the distribution of thé;,.

Example4.3.3 Consider again Buffon’s needle problem. Recall that théabdity
that the randomly tossed needle intersects a lirisand how we argued in the
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previous section that/ f,, £ 1 asn — co. Let7 denote our estimate of aftern
tosses:

2
fn

%:

As mentioned previously, Buffon himself actually intendbdt this experiment be
used to estimate. Let us say that on some occasion he tossed the n&gildimes.
What is the probability that he got the estimate correct to decimals?

We wish to find

2 2
P(j7t —3.14| <. =P|—<f, < ——
(7 = 3.14] < 0.005) <3.145—f —3.135)

where, by Equation (4.3.2) with= 2 /7

o (2,22

nm
With n = 1000 we now get
P(|7 — 3.14] < 0.005) P 2 < f1o00 < 2
™ — O. . = e R
= 3.145 — /19 = 3735
_ % 2/3.135 — 2/7 @ 2/3.145 — 2/7
2(m — 2) /100072 2(m — 2)/100072

= ®(0.09) — ®(—0.05) ~ 0.06

which is not a very good reward for all that needle tossing. 0

4.3.1 The Delta Method

We have learned that the sample mééahas an approximate normal distribution. It
is often the case that we are interested in some functioneo$aimple meary(X),
and we already know from Corollary 4.2.3 th@tX) converges in probability to
g(w). It would be useful to also supplement this with a result alioe approximate
distribution of g(X). The following proposition, usually referred to as tHelta
method gives the answer. Although it should formally be stated i result, we
state it as an approximation, which is how it is useful to us.
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Proposition 4.3.2(The Delta Method) Let X;, X, ... be i.i.d. with mean:
and variancer?, and letX be the sample mean. Let furtheibe a functior]
such thaty’(u) # 0. Then

5. d

o) AN (g, L)

for largen.

Proof. A first-order Taylor expansion gf aroundu gives

9(X) = g(p) + (X — )y’ (1)

2
XéN(u,ff_>
n

and sincey(X) is (approximately) a linear function of, we know that it has (ap-
proximately) a normal distribution. The mean is

Elg(X)] = g(p) + ¢ (WE[X — p] = g(p)

sinceE[X — u] = E[X] — u = 0. The variance is

where we know that

Var[g(X)] =~ (¢'(n)*Var[X] = M

as was to be shown. [ |

Note how there are two factors in the variancgy0K): o2 /n, which measures how
muchX deviates fromu, and(g’(x))?, which measures how sensitive the function
is to deviations fromu. The smaller these quantities are, the better the apprdixima

Example4.3.4 Let X;, X5, ..., X;, bei.i.d. random variables. Tlggometric mean
G, is defined as
Gn = (X1Xs-- -Xn)l/”

Suppose that th&;; are unif0, 1]. Find the limit of G,, and its approximate distri-
bution for largen.

To be able to apply the law of large numbers, we need to tramsfioe product into
a sum. Thus, leY;, = log X, to obtain

1 n
logG,, = — Y,
0og n; k
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that is B
G, =e¥

By the law of large numbers; Eil 1, where
1
u = E[Y;] = Elog Xi] = / logx de = —1
0

HenceY £ —1, and since the functiog(x) = e” is continuous, Proposition 4.2.3
gives

G, Bt
asn — oo. To get the approximate distribution, we apply the deltalmodttoY” and
the functiong(z) = e®. We havey’(z) = e* which gives(¢’(1))? = e~2, and since
o2 = Var[Y;] = 1, we get the approximate distribution

G, g <€—1’ e__2>
n O

4.4 CONVERGENCE IN DISTRIBUTION

In the previous sections we looked at two limit results: #ne bf large numbers and

the central limit theorem. As we pointed out, these are dhffiein the sense that the
first deals with convergence of itself and the second, with its distribution. In this
section we take a closer look at this second type of convermen

4.4.1 Discrete Limits

We first consider the case of discrete random variables atel ste following defi-
nition.

Definition 4.4.1 Let X1, X, ... be a sequence of discrete random variaples
suchthatX,, has pmipx,, . If X is a discrete random variable with pm{ and

px, (z) — px(x) asn — oo forallz

then we say thak’,, converges in distributiorto X, written X, 4 x,

This limit result is used much in the same way as we used owiqare limit results,
as the approximatio®(X,, = z) = P(X = x). The largest and most useful class
of limit theorems for discrete random variables is when timéting random variable
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has a Poisson distribution. Let us look at the simplest eXamwipthis: the Poisson
approximation of the binomial distribution. In Section 2.5we learned that iX is
bin(n, p), wheren is large and small, thenX is approximately Pghp). We will
now state a limit result that motivates the approximation.

Proposition4.4.1. Let X1, X5, ... be a sequence of random variables such|that
Xp, ~ bin(n, p,), wherenp,, — A > 0 asn — oo, and letX ~ Poi(A). Then

X, 4 x.

Proof. We sketch a proof based on probability generating functidres G, ()
be the pgf ofX,, so that
Gn(s) = (1 — Pn +pn5)n
of which we take the logarithm to obtain
1Og Gn(s) = nlog(l +pn(8 - 1))
Now, by a Taylor expansion aroutiigdwe obtain
log(l+z)~x (4.4.2)

for smallz. Sincenp, — A > 0, we must have,, — 0, and the approximation in
Equation (4.4.1) can be used to get

logGpn(s) = mnlog(l+pn(s—1))
npp(s—1) — As—1) as n — o©

Q

Hence
Gn(s) — ™Y a5 n— 0o

where we recognize the limit as the pgf of a Poisson distidiouvith parametep.
It is true but not trivial that convergence of the pmf’s is @glent to convergence of
the pgf’s. We will not prove this. ]

Hence, the informal statement “largeand smalp” can be formalized agp,, — A,
and the limit result legitimizes the use of the approximatio

Another approximation was suggested in Section 2.5.5, edierhypergeometric
distribution was considered. We argued that under somemistances, sampling
with or without replacement ought to give approximately saene result. Thus, if
X ~ hypergeoniN, r,n), then

P(X =k) = (’“)((%’j)’“) ~ (n) (L)k (1- L)””“
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The limit result that justifies the approximation is statethie following proposition.
It is proved by a direct computation according to Definitiod.4 and we leave the
proof as an exercise.

Proposition 4.4.2. Let Xy ~ hypergeoniN,r,n), where N — oo and
r/N — p >0, and letX ~ bin(n,p). Then

Xy 5 X asN — oo

In words, the approximation works wellsif is small and- is moderate relative té/.
We leave it to the reader to contemplate what may go wrongsftoo large or ifr
is either too large or too small.

4.4.2 Continuous Limits

Let us next consider the case when the limiting random vhgisbcontinuous. As
we already know from the de Moivre—Laplace theorem, thetlzan be continuous
even if the random variables themselves are not.

Definition 4.4.2 Let X, X», ... be a sequence of random variables such|that
X,, has cdfF;,. If X is a continuous random variable with cBfand

F,(z) - F(z) asn —ooforallz € R

we say thatX,, converges in distributioto X', written X, 4 x,

The most important result of this type is the central limigahem. Another class of
important results regarding convergence in distributieald with so calleéxtreme
values for example, the minimum or maximum in a sequence of randarakles.

Example4.4.1 Let X;, X5, ... be i.i.d. random variables that are Unifl], and let
X1y = min(Xq, ..., X;,), the minimum of thex first X. Asn increasesX ;) can
only get smaller so as — oo, we expectX ;) to go to0. However, if we adjust for
this by multiplying X, by a suitable factor, we can get something interesting in the

limit. Thus, letY,, = nX(;) and letY” ~ exp(1). ThenY, Ly asn — oco.
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Note that the range df,, is [0, n] and that oft” is [0, c0). We need to find the cdf of
Y,, and get

xT
Fyn (I) = P(nX(l) S I) =P (X(l) S E)

In Section 3.10.1 we studied order statistics, and by Piitipns3.10.1 we have
PXqp<t)=1—-(1-t)", 0<t<1
which gives
Fy, () =1~ (1—%)n—>1—€_w as n — oo

whichis the cdf o ~ exp(1). Note that this holds for any since eventually; will

be large enough so thatis in the range ot’,. Thus, we have thatX L exp(1),
which can be used to approximate probabilitiesXqy), for example as

P(Xqy <z)=PnXy<nz)~l-e", 0<z<1

PROBLEMS

Section 4.2. The Law of Large Numbers

1 Let X1, X2, ... be a sequence of random variables with the same meard variance
o2, which are such that C¢X;, Xx] < 0forall j # k. Show thatX £ [ asn — oo.

2 Let X;, Xo,... andY1,Y>, ... be two sequences of random variables arahdb two

constants such thaf,, L aandY,, L. Show thatX,, +Y,, 5 a+b. Hint: Problem
10 in Chapter 2.

3 Let X1, Xo,... bei.i.d. unifo,1], and letg : [0,1] — R be a function. What is the
limitof >~ | g(Xx)/n asn — co? How can this result be used?

4 Let Xy, X5, ..., X, bei.i.d. random variables. ThHermonic mearis defined as

" -1
1 1

Suppose that the pdf of th&, is f(z) = 3z%, 0 < z < 1, and find the limit ofH,,
asn — oo.

5 Let X1, X», ... be i.i.d. continuous with a pdf that is strictly positive ionse interval
[0, a]. Show thatX ) £ oasn — .

6 Let X1, Xs, ... be i.i.d. exp(1). Show thatX ,,)/logn = 1 asn — .
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Section 4.3. The central limit theorem

In Problem 53 (a), and (b), Chapter 3, what happens as co? Explain this in the
light of the central limit theorem.

Use the central limit theorem to argue that the followingd@am variables are approxi-
mately normal; also give the parametefa) X ~ I'(n, ) for largen, (b) X ~ Poi())
for large \.

Radioactive decay of an element occurs according to a RoBseaess with raté0, 000
per second. What is the approximate probability that théienih decay occurs within
100.2 seconds?

In any given day, a certain email account gets a number of sipaails that has a Poisson
distribution with mear200. What is the approximate probability that it receives less
than190 spam emails in a day?

How many times do you need to roll a die to be at lea$19% certain that the sample
mean is betweed and4?

Let X ~ bin(5,0.8). ComputeP(X < k) for k = 4, 5, and6, both exactly and with
the approximate normal distribution. Compare and comment.

A multiple-choice test hak)0 questions, each with four alternatives. At leg&torrect
answers are required for a passing grade. On each questianknow the correct
answer with probability2, otherwise you guess at random. What is the (approximate)
probability that you pass?

In Buffon’s needle problem, what is the probability that ttadue ofr is correct to one
decimal?

A parking lot is planned for a new apartment complex vt apartments. For each
apartment it is assumed that the number of cafs 1s or 2, with probabilities.1, 0.6,
and0.3, respectively. In order to be approximatély% certain that there is room for
all cars, how many spaces must the parking lot have?

Let X be a random variable with meanand variancer?, and letg be a differentiable
function. Use the idea in the proof of the delta method to dediie two approximations

2

Blo(X)] ~ g(n) and Blg(x)] ~ g() + L

Compare these iK ~ unif[0, 1] for (a) g(x) = z (b) g(z) = =2 () g(x) = z* (d)
g(z) =€ (€)g(z) = ™" () g(x) = sin(7z) (9) g(x) = sin(27z).

Consider Buffon’s needle problem. Use the delta method toptde how may times
we must toss the needle in order to be at |8&8% certain to be withint-0.01 of 7?

Consider Problem 4. Find the approximate distributiorof for largen.

Section 4.4. Convergence in Distribution

Let X ~ hypergeoniV, r,n). Argue thatX has an approximate Poisson distribution
and what is required of the parameters for the approximatdse justified. Try to both
state a formal limit result and give an intuitive argument.
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20 Let X4, Xo, ... be a sequence of random variables such #fiatis uniform on the set
{0,1,...,n}, and letX ~ unif[0, 1]. Show thatX,,/n < X asn — oo.

21 Let X1, X2, ... be a sequence of random variables such #at~ georm(1/n), and let
X ~ exp(1). Show thatX,, /n 2 X asn — .

22 Let X, Xo, ... bei.i.d. unifo, 1], letY, = n(1 — X(,,)) whereX,, is the maximum,
and letY” ~ exp(1). Show thaty;, Ly asn — oco.

23 Let X1, X, ... be i.i.d. exp()), and letY ~ exp(1). Show thatX;/X % YV as

n — oo. Hint: Letthe X}, be inter-arrival times in a Poisson process, and use the orde
statistic property from Proposition 3.12.3.

24 Let X, Xo, ... be i.i.d. random variables with pdf(z) = 2z, 0 < 2 < 1. Show that
the sequence of random variablés = \/n.X ;) converges in distribution to a random
variableY that has a Weibull distribution. What are the parameters?

25 Let X1, X, ... be i.i.d.random variables with pdf(z) = 3z2,0 < z < 1. Find a
sequence, such that the random variablgs = a, X1y converges in distribution to
arandom variabl®”, and identify the distribution o¥".



Simulation

5.1 INTRODUCTION

Simulationis one of the most commonly used techniques to gain infoonatbout
complicated systems, but the term simulation is used toe@pmany different mean-
ings. According to thélerriam-Webster Online Dictionansimulation is “the im-
itative representation of the functioning of one system mcpss by means of the
functioning of another.” We probably think of simulation ssmething involving
computers, but it does not have to be so. For example, agpléiying in specific
parabolic patterns are used in astronaut training to sitewl@ightless conditions in
space. Even when we restrict our attention to computer sitiaul, there are many
different meanings. For example, an airline pilot in tramsits in a flight simulator,
and a mathematician may simulate a numerical solution téferential equation by
plugging in different starting values in an algorithm. Fa, lhowever, simulation
will always mean “imitating randomness,” and for this reasbe termstochastic
simulationis often used. The terflonte Carlo simulatioris also common.

The main use of stochastic simulation is to approximate tiiesithat are difficult
to obtain analytically. To take a frivolous example from therld of gambling, in
rouletteitis easy to specify a probability model and comegarbbabilities of winning,
expected gains and so on. But what about the game of blackjBlais is a card game
played against a dealer where you are dealt cards one by @haftan each card
decide whether to stop or take another card. The dealer leasard face up that you
can see. If you go abo\H, you lose. If you stop belo@1 , the dealer draws cards
and must stop at or above 17. If the dealer goes ®vgyou win, otherwise whoever
has the higher total wins. It is difficult to find exact answirgjuestions such as “If

289
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| adopt a particular strategy, what is the probability thaih?” but it is easy to run
a computer simulation of the game.

When we use simulations, we rely on the law of large numbergp8se, for
instance, that we wish to find an approximate valug,dhe probability of winning
in blackjack using some particular strategy. We run a numbafrsimulated rounds
of the game and observe wins & of them. The relative frequency/n is our
approximation op, and we know by the law of large numbers that this gets cloge to
for largen (and “largen” is something we can often guarantee in simulation studies)
If we are interested in the expected gain,save the gain in each round to obtain a
sequencé’, Ys, ..., Y;, of gains and use the sample méano approximate.

We have already seen how simulated data can be used toatkistoncepts such
as pmf, pdf, and expected value. Such data can be generatedwime variety
of distributions by using ready-made routines in any of trEganmathematical or
statistical software packages (Matlab has been used ixann@es). In this chapter
we take a closer look at how such simulated data are generated

5.2 RANDOM-NUMBER GENERATION

The most fundamental object in simulation is the standaifdtm distribution. Even
simple calculators can often generate what are usuallgd@hdom numbersvhich
are precisely simulated observations from the standarfdumidistribution. So how
do we simulate the standard uniform distribution?

There are several issues, and we will not address them alimArediate problem
that comes to mind is thé®, 1] is an entire interval, but a computer has only finite
precision. Hence, we must be satisfied with values on someel§6, %, - mT*l, 1},
which is not too serious a restrictiomif is large. One way to do this is to generate
random integers between 0 amdand divide them byn. In other words, ifY” has the
discrete uniform distribution of0, 1, ..., m},thenU = Y/m has the discrete uniform
distribution or{0, %, cey ’”T‘l, 1}, which for largem is an acceptable approximation.
But this only shifted the problem to how to generate randaegars. How do we do
that?

Here is where we must admit that random number generatalsrseproduce
“truly” random numbers. Instead, deterministic algorithiare used that produce
sequences that “look random.” For this reason, the tesgudorandomumbers is
often used. We want to achieve two main goals: that the numbers seem ® dav
uniform distribution and that they seem independent. Omenacon way to generate
random integers is bgongruentialrandom-number generators (power residue
generators). These start with a valjg theseed and generate a sequence of integers
by computing the next from the previous according to the fden

Y11 =aY, +b(mod(m + 1))

Lincidentally, Merriam-Webster also gives the alternativeaning of simulation as “a sham object.”
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wherea, b, andm are fixed integers. Note that the sequence is periodic since o
a value is repeated, the entire sequence will be repeatddislieow taken = 19,
a=>b=1,andYy = 0. We get

Y1 = 1xY;+1(mod20)=1

Y = 1xY;+1(mod20) =2

Yi9 = 1xYig+1(mod20)=19

Yoo = 1xYi9+1(mod20) =20 (mod20)=0

which gives the sequené€el,?2,...,19,0,1,2,...,19,0, 1, 2, ..., where each number
in the long run shows up with relative frequenﬁy, so the distribution would look
uniform. However, the observations do not look independdnteed, if we are

presented this sequence, we would quickly figure out theriitgo that produced it.

Not good. Let us instead try, = 19, a = 5,b = 3, andYp = 0. We now get

Y1 = 5x043(mod20)=3
Yo = 5x3+3(mod20)=18
Y3 = 5x 184 3(mod20) =93 (mod20) = 13
Y, = 5x13+3(mod20) =8
Ys; = 5x8+3(mod20)=3

which givesthe sequen6e3, 18,13, 8, 3, 18,13, 8, 3, ..., where the patterd, 18, 13, 8
is repeated indefinitely. This is an improvement since tier® immediately clear
structure for short pieces of the sequence. On the other, ndreh a period is com-
pleted, most numbers betwe@rand19 have not shown up at all, so we do not get
the uniform distribution. A problem here is that the perieddo short.

These calculations illustrate some potential problemhb wahdom-number gen-
eration. We will not address this further but mention thaemesults can be obtained
from number theory that give criteria for how to choosga, andb to avoid these
problems and get a good random-looking sequence. For paaptirposesy; must,
of course, be much larger than in the two examples above.

Assuming thus that we can generate observations from theatd uniform dis-
tribution, how can we transform these to observations fraheodistributions? In
the following sections we will investigate this.

5.3 SIMULATION OF DISCRETE DISTRIBUTIONS

Let us start with the simplest of discrete random variabiledicators. Recall that
an indicator functiorf , assumes the valukeif the eventA occurs and) otherwise.
Suppose that the probability of is p so that/, assumes the valugsor 1 with
probabilitiesl — p andp respectively. How can we generate an observatiohoif
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we are giverl/ ~ unif|0, 1]? The idea is simple. Let

Ie— 1 if U<p
A7 0 if U>p

which gives the correct distribution because
P(Ix=1)=PU<p)=p

which also givesP?(I4 = 0) = 1 — p. Note that it does not matter what the eveint
is since we are not simulating the underlying experimeraally. We are interested
only in getting the right distribution fof 4.

Any discrete distribution can be simulated by a similar idéaX assumes the
valueszy, 2, ... with probabilitiespy, po, ..., we divide the interval0, 1] into subin-
tervals where théth sub-interval has lengthy,, and ifU falls there, we seX = z;.

It does not matter whether the rangeXfis finite or countably infinite. To express
X explicitly as a function ot/, we state the following proposition.

Proposition 5.3.1. Consider the pmp on the ranggx1, z2, ...} and let

k
Fy=0, Fr=> plx;), k=1.2,..

j=1

LetU ~ unif[0,1] and letX = xy if F,_1 < U < F}. ThenX has pmfp.

Proof. Note thatX = zy ifand only if U € (Fy_1, F], which has probability
P(X:Ik):P(kal < USFk) :Fk_kal :p('rk)v k= 1527"'

as desired. If the range is finit€z1, ..., z,, }, we getF,, = 1. [ ]

The numberFy, is in fact F'x (zy), the distribution function o in the pointz;, (and
we can letry = —o0). In the next section we will see how this is a special case of a
more general method.

For certain special discrete distributions, there araadtive and more attractive
ways to simulate. We will look at one example and leave otfarshe Problems
section.

Example5.3.1 Let X ~ bin(n,p). We can use Proposition 5.3.1 to generate an
observation onX, but we can also use the fact that the binomial distributim loe
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represented as a sum of indicators
n
X=> I
k=1

where thel;, are i.i.d. withP(I;, = 1) = p. Thus we simulate standard uniforms
Uy, ...,Upy, for each of these lef, = 1 if U, < p and add thd. One advantage of
this method compared to using Proposition 5.3.1 is that iheed to change from
100 to 200, for example, we simply simulaté)0 more indicators, which is easier
than having to start over and recalculate all fhe 0

5.4 SIMULATION OF CONTINUOUS DISTRIBUTIONS

From previous results we know thatlif ~ unif[0, 1] and we letX = (b — a)U + q,
thenX ~ unif]a, b]. Hence itis clear how to generate observations from anyuamif
distribution, starting from a standard uniform distritmnti simply multiply each ob-
servation by — a and addu. As it turns out, this is a special case of a more general
result that we state next.

Proposition 5.4.1(The Inverse Transformation Method) et ' be a dis
tribution function that is continuous and strictly incremgs Further, le
U ~ unif[0, 1] and define the random variable = F~1(U). ThenY has
distribution functionF'.

Proof. Start with Fy, the distribution function o¥”. Takex in the range ot to
obtain

Fy(z) = P(FYU)<u)
PU < F(z)) = Fy(F(z)) = F(x)
where the last equality follows sind&; (u) = w if 0 < uw < 1. The argument here is
u = F(z), which is between 0 and 1 sinégis a cdf. [ |

In order to generate observations from a distribution with E, we thus findF 1,
generate i.i.d. uniform [0,1] variablesy, ..., U, and letX, = F~1(Uy) for

k = 1,...,n. Note that the assumptions dry continuous and strictly increasing,
together guarantee that ! exists as a function on the entire inter{@|1].

Example5.4.1 Generate an observation from an exponential distributidgh pa-
rameter.
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Here
Flx)=1—e >0

To find the inverse, as usual sol¥&x) = u, to obtain

sz_l(u):—ilog(l—u), 0<u<l1

Hence, ifU ~ unif{0, 1], the random variable
1
X = —Xlog(l -U)

isexp(XA). We can note here that since alse- U is uniform on|0, 1] (see Problem
19 in Chapter 2), we might as well také = — log U/ \. 0

Example5.4.2 Generate an observatidX, Y') from a uniform distribution on the
triangle with corners if{0, 0), (0, 1) and(1,0) (see Problem 92 in Chapter 3).

Our approach will be to first generaé, and then, given the valu€ = z, we will
generat&” from the conditional distribution. Since the triangle hesaa}, the joint
pdf is

flz,y)=2, 0<z<1, 0<y<l-uz

which gives the marginal pdf

1—x
fX(:zr):2/ dy=21-z), 0<z<1
0
which in turn gives the cdf
Fx(x):/ 201 —t)dt =2x — 2, 0<z<1
0

Next we find the inverse—!. Solve

u=2x — x>

to obtain

r=F ' u)=1-vV1-u, 0<u<l1

Note that solving the quadratic gives two solutions but dinéyone with “-"is correct
(why?). We also need the conditional distribution ¥6given X = x, which is

fy(ylz) = ) :?,Ogygl—x
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thatis,Y|X = x ~ unif[0, 1 — z]. Now letU andV be independent and uniform on
[0,1], and let

X = 1-V1-U
Y = V1-X)

to get a pair X, Y) with the desired distribution. Figure 5.1 shows the outcare
100 generated such paifs,Y). Note that we cannot use the same random number
U for both X andY. This would give the correcharginaldistributions ofX andY

but not the corredbint distribution, sinc&” would become a deterministic function
of X. Also note that sinc&X andY are dependent, we need to pair edttvalue
with its corresponding” value. 0

The assumptions oR' are that it is continuous and strictly increasing. If there a
parts wherel" is constant, these parts correspond to values Xhaannot assume,
so this is not a problem. If there are points whérgumps, these are points that
can assume with strictly positive probability. In partiaylif X is a discrete random
variable,F' consists entirely of jumps and constant parts, but also némeethat there
are random variables that are mixtures of discrete andmootis parts. For a general
cdf F, we can introduce the generalized inversegoantile function F', defined
by

F~(u) =inf{x: F(z) > u}

This has the property that
F~(u) <z & u<F(x)

and in the case of strictly increasitfig we haveF—! = F—. It can be shown that if
U ~ unif[0,1] and we letX = F(U), thenX has cdfF. In principle, this solves
the problem of simulating any distribution, discrete or tionous. For example, the
random variableX in Proposition 5.3.1 is merelfy (U) in disguise.

051" ‘-: o° .:'l

Fig. 5.1 One hundred simulated observations, uniform on a triangle.
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If we do not know the functional form of the cdf, we cannot use the inverse
transformation method. This is, for example, the case fentbrmal distribution and
since we have pointed out the importance of this distrilbytiee would certainly like
to have a way for generating observations from it. We nextudles a clever method
to generate observations from a continuous distributi@h tquires that we know
the pdf but not the cdf.

We want to generate observations on a continuous randorbkaX which has
pdf f. Suppose that there is another random variableith pdf g, from which we
know how to generate observations and that there is a cdnstan such that

f(x) < cg(x) forall z

We can then use consecutive generated observatiolstorcreate observations on
X according to a certain algorithm, which we state as a projposi

Proposition 5.4.2(The Rejection Method)

1. Generat&” andU ~ unif|0, 1] independently of each other.

2. 1fU < 1) , setX =Y. Otherwise return to step 1.
cg(Y)

The random variabl& generated by this algorithm has pfif

When the criterion is satisfied in step 2 and weXet Y, we say that waccepty’
and otherwiseejectit. Hence the name of the method.

Proof. Let us fist make sure that the algorithm terminates. The poitibain any
given step 2 to accepf is, by Corollary 3.5.7

P (U < cfg(é//))) - /r (U < c%) a@)dy
f(y)
rc9(y)

where we used the independencéiodndY” and the fact thal/ ~ unif[0, 1]. Hence
the number of iterations until we accept a value has a gedsrdistribution with
success probability/c. The algorithm therefore always terminates, in a number of
steps with meam from which it also follows that we should chooseas small as
possible.

Next we turn to the question of why this gives the correctriistion. To show
this, we will show that the conditional distribution Bf, given acceptance, is the same
as the distribution ofX'. Recalling the definition of conditional probability andeth
fact that the probability of acceptanceliéc, we get

g(y)dy = %/Rf(y)dy = %
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P(YS:C

U< i;(?)) P (y <aU< Cfg((z;)))

By independence, the joint pdf 6/, Y) is f (u,y) = ¢g(y), and the expression above
becomes

F(Y) B £ f)/eg(y)
cP(Ygx,USCg(Y)) = c/ioo/o g(y)dudy

= of L9 yay = pix <)

—oo €9(Y) -

which is what we wanted to prove. ]

Let us now see how this applies to the normal distribution.

Example5.4.3 Let X ~ N(0,1) so thatX has pdf

1
6—12/2

o(x) Nor :
We will use the pdf of an exponential distribution as the timtg. However, the
normal distribution can take on values on the entire realdind the exponential, only
positive values, so we have to make some adjustments. Siecgdndard normal
distribution is symmetric around, we can get the right distribution of by first
generating a value dfX| and then choosing+" or “ —" with equal probabilities.
According to Problem 85 in Chapter 2, the pdf|&f| is

rE€R

f(z) = 20(x) = é_w/ 23>0

Now letY ~ exp(1). By Example 5.4.1, we know how to generate observations on
Y that has pdf
glxy=e"" x>0

and we will proceed to find the constantNote that

after completing the square (note that we use “exp” in twéed#nt meanings: the
exponentialistributionand the exponentidlinction do not confuse these). Since
the second factor is at mostwe can take: = /2e/7 to obtainf(z) < cg(x). To
apply the method, we follow the two steps

1. Generaté/ ~ unif[0, 1] andY” ~ exp(1) independently of each other
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2. fU < exp(—(Y —1)?/2), set|X| = Y. Otherwise repeat step 1.

Finally, to choose the sign of, generatd/ ~ unif[0,1]. If V' < 1, setX = |X]|,
otherwise se = —|X|.

The mean number of steps until acceptaneexsl .32, so the algorithm terminates
quickly. There are ways to improve the efficiency of the methout we will not
address them here. 0

We conclude this section with another way to simulate thedsted normal distribu-
tion.

Example5.4.4 (Box—Muller Method). Recall from Example 3.6.13 thatlf andY’
are independent and have standard normal distributioas,ttieir polar coordinates
R and© are independent witlk? ~ exp(1) and© ~ unif[0, 27]. Since we know
how to generate the uniform and exponential distributieresshould be able to use
this to generate observations ahandY'.

Suppose that we havé andV independent uniform oft), 1]. The inverse trans-
formation method gives that2log U ~ exp(4), and hence observations éhand
© are generated by

R = +/—2logU

0 = 27V

and sinceX = Rcos© andY = Rsin ©, we get

X v/ —2logU cos(27V)
Y = +/—2logUsin(27V)

which are independent, and each has the standard normébdtien. Hence, with
this method we get two observations at a time(&QY') is bivariate normal with
correlationp = 0. In Problem 17 we investigate how to generate observatinnise
bivariate normal distribution in general.

Note the somewhat surprising fact tiatandY” are independent even though they
are both functions of the same random varialifeandV (but recall Problem 95(c)
in Chapter 3). 0

5.5 MISCELLANEOUS

A nice use of simulation is that it can help us suggest whatrealytical formula
should look like, which we can then set out to formally prowe look at an example
of this.
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Example5.5.1 Recall the gambler’s ruin problem, where two players, And an
Bob, take turns flipping a fair coin and the winner in each gats a dollar from the
other player. Suppose that the players start widndb dollars, respectively. How
long can we expect the game to last?

LetT be the duration of the game. If we denote Ann’s fortune afierith round by
S,., we thus have
T =min{n: S, =—aorsS, =b}

and we want to findZ[T]. To use the definition, we need the distributiorifgfand
this is quite tricky to find. (Just try!) However, we can intigate the problem with a
computer simulation for different values @fandb and see if we can guess a formula
for E[T]. Table 5.1 shows average value§udbtained from simulations for different
values ofa andb. It seems thaE[T| = ab is a good guess. Of course, this is not a
proof, but now that we have an expression, we can try to pttove i

Let us follow the idea from Example 1.6.16 and condition oa fist flip or in
the random-walk interpretation, the first stp. Let u, ;, be the expected number
of rounds until the game is over when the initial fortunes@aendb. After the first
round we are at either1 or 1 with equal probabilities, so the law of total expectation
gives

p = E[T|S1=-1P(S1 =-1)+ E[T|S: =1]P(S: = 1)

1

1
(L4 pa1p41)5 + (L Hayro1)5

1
= 1+ i(uafl,bJrl + Ha+1,6-1)

and since )

143 (((a_ D(b+1)+ (a+1)(b— 1)) — ab
our suggested expression satisfies the equation. Thusxpleeted duration of the
game is the same in the case- 1,b = 100 as in the case = 10, b = 10. Since the
game can be over already after one round in the first case (dinokvso half of the
time) but there must be at leadt rounds (and most likely many more) in the second,

Table 5.1 Average simulated duration timés until ruin and their standard deviatioss:
for different values ofi andb

ab T sy ab
23 65 07 6
34 11.0 11 12
35 1564 15 15
46 222 20 24
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we realize that although the means are the same, the distrilsun the two cases
must be different. 0

Finally, an example that shows how simulation can help usghbetter than random.

Example5.5.2 In an urn there are two slips of paper, each with a real number
written on it. You do not know how the numbers have been chosely that they

are different. You pick a slip at random, look at the numbged are asked to guess
whether it is the larger or smaller of the two. Can you do thd be correct with a
probability strictly greater tha@?

Surprisingly, you can! Call the two numbersndb and suppose that< b. Call the
number you picked so thatX equals: or b with probability% each. Now generate
an observatiofy” from a continuous distribution with range, for example, a normal
distribution, independently of . Your rule to decide is to pretend that the number on
the other slip in the urn i¥". Hence, ifX < Y, you guess that you have the smaller
number; ifX > Y, you guess that you have the larger. It is easy to realizeythat
will guess correctly if eithe’X = ¢ andY > qa, orif X = bandY < b. (SinceY is
continuous, we rule out the possibility thetis exactlyequal toa or b. In the actual
simulation, we are limited by finite precision, but with saifintly many decimals in
our observation oiY’, it is very unlikely thaty” equalsz orb.) Let F' be the cdf ofY.
SinceX andY are independent, the probability to guess correctly is

p = P(X=a,Y>a)+P(X =0Y <b)
= P(X=a)P(Y >a)+P(X =b)P(Y <b)
1 1

sinceF(b) > F(a). The value ofp of course depends om b, and F', but in any
case, the probability of guessing correctly is always #jrigreater than}. Since the
simulation ofY” has nothing to do with the problem of choosing and guesdiigig
really mysterious, isn’t it? 0

PROBLEMS

Section 5.3. Simulation of Discrete Distributions

1 A family with three children is chosen at random and the numkeof daughters is
counted. Show how to simulate an observatiombbased oV ~ unif|0, 1].

2 A girl who has two siblings is chosen at random and the nunibesf her sisters is
counted. Show how to simulate an observatiombbased oV ~ unif|0, 1].
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Let Y ~ Poi(\) and suppose that you can simuldfe, X2, ... that are independent
exp(1). Suggest how th&, can be used to simulate observationstan

Suppose that you know how to generate the uniform and thes@oudistribution. De-
scribe how you can use this to simulate a Poisson processieeraigterval[0, ¢]. Hint:
The order statistic property.

Let X have a negative binomial distribution with parameteendp. Describe how to
simulate observations oK. Hint: Problem 52, Chapter 3.

Section 5.4. Simulation of Continuous Distributions

LetU ~ unif[0, 1] and letX = (b — a)U + a. From previously we know thaX’ ~
unifa, b], which can be used to simulate values’¢f Show that this is a special case
of the inverse transformation method.

The random variabl&X has pdff(z) = 3z%, 0 < = < 1. Describe how to generate
an observation oX based oV ~ unif0, 1].

Let X have a Cauchy distribution (see Section 2.8(8).Describe how to generate an
observation orX based o/ ~ unif[0, 1]. (b) Use the result from (a) to create repeated
samples of some large size, for example= 100, 000, and each time compute the
sample mean. What do you observe, and why?

Let X have a Weibull distribution (see Section 2.10). Describe/ bm generate an
observation onX based orl/ ~ unif{0, 1].

Let X have a geometric distribution with success probabgitypemonstrate how you
can simulate an observation ghbased o/ ~ unif[0, 1] using Problem 74 in Chapter
2.

The mixed random variabl& in Example 2.8.2 has cdf (z) = 1 — 0.8e" %,z > 0.
Describe how to generate an observation®oiased or/ ~ unif[0, 1].

Suppose that you have a random-number generator, a fajrastdriTable A.1. Describe
how you can use these to generate observations on the silaratanal distribution.
Let X ~ exp(1). Use simulation to determine an approximate valu&fbg X].

Let X ~ N(0,1). Use simulation to determine an approximate valu€ffin X].
Let X, Y, andZ be independent and uniforf, 1]. Use simulation to find an approx-
imate value ofP(X +Y + Z < 2.5).

Letg : [0,1] — R be a function whose integrdl = fol g(z)dx is impossible to
compute explicitly. How can you approximaleby simulation of standard uniforms
Ui, Us,...2

The Box-Muller method gives you a pdiX, Y) of independent standard normals. De-
scribe how you can use these to generate observations oarabinormal distribution
with parametersu:, u2, o3, o2, andp.

Describe how to generate observations on a @¥irY") that is uniform on the unit disk
{(z,y) : 2* + y* < 1}. Hint: Use polar coordinates.

Let X have pdff(z) = 4m2e*w2/ﬁ, x > 0. Apply the rejection method to generate
observations orX.






Statistical Inference

6.1 INTRODUCTION

In the previous chapters, we developed a theory of protiptilat allows us to model
and analyze random phenomena in terms of random variabiethain distributions.
While developing this theory we often referred to real-wlosbservations and data
sets, for example, in the assumption that the tropical eyetan Example 2.5.5 follow
a Poisson distribution with mealr$. Although we might be able to argue that the
distribution should be Poisson from purely physical andeusdlogical principles,
where did the numbdi5 come from? Itis simply the average number of cyclones per
year that has been observed during the y&ags—2003, so we used this measured
value as our parameter. This is a typical situation in anyliegiion of probability
theory. We formulate a model by making assumptions abotrilalisions and their
parameters, but in order to be able to draw any useful coimciaswe need data. In
this chapter we outline the field sfatistical inferencgor statisticsfor short, which
ties together probability models and data collection.

6.2 POINT ESTIMATORS

Suppose that we manufacture lightbulbs and want to statevéérage lifetime on the
box. Let us say that we have the following five observed lifies (in hours)

983, 1063, 1241, 1040, 1103

which have the averag®s86. Ifthisis all the information we have, it seems reasonable
to statel086 as the average lifetime (although “at leasb0 hours” might sound

303
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better from a commercial point of view). Let us now descritis in terms of random
variables.

Let the random variabl& be the lifetime of a lightbulb, and let = F[X]. Here
1 is anunknown parameteMe decide to repeat the experiment to measure a lifetime
5 times and will then get an outcome on the five random variakles.., X5 that are

i.i.d. We nowestimateu by
5
X=> X,
k=1

which we recall from Section 4.1 as the sample mean. We cak tifithis as the
way we would describe it before having actually performesigkperiment. The,,

are random, and so i%. After the experiment, we get observed values, and with the
values given above we get the outcorie= 1086. We now generalize the idea of
this example, for which we need the following definition.

Definition 6.2.1 Ifthe randomvariableX, ..., X,, arei.i.d., we referto them
collectively as afandom) sample

Note that it is the entire collectioN, ..., X, which is called “a sample,” which may
be a bit different from the way the word “sample” is used inrgday language. In
practice, it is not necessarily the case that observatimgdependent or have the
same distribution and we will later use the term “sample™inlsmore general cases
as well. For now, however, we will stick with the i.i.d. obgations.

Suppose now that we want to use a random sample to gain infiemebout an
unknown parametet. The following definition is central.

Definition 6.2.2 A random variable@, which is a function of a random
sample and is used to estimate an unknown pararfigi®called arestimato
of 8. The observed value dfis called arestimateof 6.

Thus, if we have a sampl&, ..., X,,, an estimator is a random variable of the type
g9(X1,...,X,,) for some functiory : R* — R. Itis important to understand that a
parametep is a fixed but unknown number and an estimatds a random variable
to be computed from a sample. We will stick to the distinctetween estimator and
estimate, although these terms are sometimes used inbgeahly in the statistics
literature.

In the lightbulb example we have the parametand the functiog (X1, ..., X,,) =
(X1 + -+ + X,,)/n, which gives the estimatgi = X and the estimate086. If
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we repeat the experiment with five new lightbulbs, the editimia the same but the
estimate will change.

It is natural to estimate the mearby the sample meai, but how do we know
that there are no other estimators that are better? What'etier estimator” mean,
anyway? The intuitive general criterion for a good estimétis simply that it is “as
close tod as possible.” How can we formalize this intuition?

Since an estimatat is a random variable, it has an expected vaﬁjé]. Since
this is a number and we use the estimator to estimate the wwrkmombe#, it seems
reasonable to require that the two be equal.

Definition 6.2.3 The estimatof is said to bainbiasedf

E[6]=6

If E[@] -+ 6, 6 is said to bebiased Thus, an unbiased estimator “aims at the true
value off” or is “correct on average.” For an illustration of the ideansider Figure
6.1, where histograms are given for unbiased and biasedagstis. Each histogram
is computed fromL000 values off, and each such value is computed from a new
sample of a fixed size.

From Section 4.1 we know th&@[X] = ., andX is thus an unbiased estimator of
u. Itis notthe only unbiased estimator of the meathough. We could also us€,,
the first observation, and disregard all the others. SIEfE;] = u, this is also an
unbiased estimator, and in the lightbulb example we getstimateX; = 983. Intu-
itively X ought to be a better estimator than since it uses all the information in the
sample. To extend this argument, if we would increase thebauwf observations in
the sample we would increase the amount of available infoaomand, consequently,

0 0

Fig. 6.1 A paramete® and histograms of repeated observations on its estindatém the
left, the estimator is unbiased and on the right, it is biasigd £[6] < 6.
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should obtain an even better estimator. This brings us tth@némportant property
of estimators.

Definition 6.2.4 The estimatoﬂAn based on the samplé,, ..., X,, is said to
beconsistentf

~

0, Lo

asn — oQ.

This property can often be difficult to verify for a given esttor, so the following
result is very useful.

Proposition 6.2.1. Let §n be an estimator based on the samflg. .., X,,.
If
Var[6, ] — 0

asn — oo, thend,, is consistent.

Proof. Apply Chebyshev’s inequality t6, and letc = e/4/ Var] 0, |. This yields
that
Var{ 6, |

62

P(|6, — 0] > €) <
Now, if Var[f,, ] — 0 asn — oo, we see that
P(|6, — 0] >¢) =0

asn — oo for all e > 0, which completes the proof. ]

Hence, unbiasedness and consistency are two desirablerpesghat we should look
for when considering estimators. This invites the follogiguestion: If we have two
unbiased and consistent estimat®endd, which should we choose? Intuitively, we

should choose the one that tends to be closér and sinceE[0] = E[0] = 6, it
makes sense to choose the estimator with the smaller vatianc
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Definition 6.2.5 Suppose thad andd are two unbiased estimators@fIf
Var{6] < Var[d]

thend is said to benore efficienthand.

Let us again return to the lightbulb example and the two esttins X and X;. If o2
is the variance of an individual lifetime, we thus have

2
Var[X] = % and Vafx;] = o?

so X is more efficient tharX;. Since the sample mean is a natural estimator of the
mean, regardless of distribution, let us restate its pitiggefrom Section 4.1.

Proposition 6.2.2. Let X1, ..., X,, be a sample with megnand variancer.
Then the sample meaXi has mean and variance

_ 2

E[X]=p and VafX]= %

There are numerous other ways to construct unbiased estisnand it can be shown
that the sample mean is the most efficient among a large dasb@sed estimators
(see Problem 1). R B

When two estimatorsy and#, are given, one is not necessarily more efficient
than the other. The reason for this is that the varianceseoggtimators typically
depend on unknown parameters (most nota&ltgelf), and it may well happen that
Var| 5] < Var|#] for some parameter values and [\é} > Var| 4] for others.

Example6.2.1 Let X3,..., X,, be a random sample from a uniform distribution
on [0, 0] wheref is unknown. Since the mean @52, one reasonable estimator is

6 = 2X. Also, since the maximum valuk ,,) ought to be close té but is always
smaller, another reasonable estimataf is ¢, X(,,), wherec,, > 1. Determinec,
so that) becomes unbiased and compare the two estimators.

We need to find:,, such that

E[G] = CnE[X(n)] =0
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To computer[X,,)], we recall Corollary 3.10.2, which states that the pd&of,) is

Sy (@) =nf(@)F ()"
where in our cas¢ (z) = 1/6 andF(z) = z/6, and we get

nxn—l

foy(@) ==, 0<w <0

This now gives

n

) )
E[X(n)]:/o xf(n)(:v)d:vze—n/o z"dx = n+16’

which givesc,, = (n + 1)/n and the estimator

X(n)

n
Let us compare the two estimators. We already knowahisnbiased and since

E[6) =2E[X] = 2% =0

alsod is unbiased. Let us next compare the variances of the twmatis. Fof we
have,
N B 92 92
Var[f] = 4VarX] =4— = —
12n  3n
where we got the variance for the uniform distribution fronejposition 2.4.6. Fob
we have

Var( ] = £(°] - (510)) = (1) 1t - o7

so we need to fin(E[X(zn)]. The pdf of X, is given above, and we get

0
2 1_ 1N nt+l g _ 2
which finally gives
- 2 2
Var[0] = ntl n 92_92:79
n n+2 n(n+2)
Since B ~
Var[6] < Var[ 6]

for n > 2, 4 is the more efficient estimator. Note that the differencedniance is
quite substantial sinaghasn? in the denominator wheredshas onlyn. 0
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When given two (or more) alternative estimators, Definité8.5 thus gives a cri-
terion to use for selecting the most efficient one. Howeteatpes not say anything
about optimality, i.e. is it good enough or should we keefking for something even
better? To answer that question, we need the following tesul

Proposition 6.2.3(Cramér-Rao Lower Bound?). Letd be an unbiased es

mator of the parametérbased on the samplg,, ..., X,,. Then
var{6] > L
— nl(0)
where

is theFisher information.

The proof of Proposition 6.2.3 is rather involved and fakybnd the scope of this
book.

This result gives us the smallest possible variance of amaget estimator for a
given sample distribution, so if we manage to attain this;ame sufficiently close,
we can be confident that we have a good estimator. We can adsib tasobtain an
absolute measure of efficiency.

Definition 6.2.6 Theefficiencyof an unbiased estimatéris

1

O = o vard]

We can interpret the efficiency as the ratio of the variand¢b@best possible unbiased
estimator (if it exists) and the variance of the giveand from Proposition 6.2.3 we

INamed after the Swedish mathematician Harald Cramér (B386) and the Indian statistician C. R.
Rao (1920-).

2Named after the English statistician Sir Ronald A. Fish&@-1962), who, among other things, intro-
duced the method of maximum likelihood (see Section 6.4.2).
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-~

get thate(9) < 1.

Example6.2.2 Let us assume that we have a sam§lg . .., X,,, which is nor-
mally distributed with meap and variancer?. Proposition 6.2.2 says that the point
estimator = X is an unbiased estimator pf Let us now see how efficient this
estimator is. The Fisher information of the normal disttibo with respect tqu is

I(p) = -E Lj—;log<a 127T6<Xu>2/202>}
=+ [ (oo - O] =[] -

The Cramér-Rao Lower Bound hence becomésl (1) = o2 /n, which, by Propo-
sition 6.2.2, is equal to the variance &f This shows that there does not exist any
other unbiased estimator pfwith a higher efficiency than the sample mean.

Efficiency is thus a criterion that we can use to choose batwstmators. To get a
better idea of what the actual numbers mean, rather thag tisinvariance, we use
the standard deviation that has the correct unit of meagimean estimator, there is
a special piece of terminology.

Definition 6.2.7. The standard deviation of an estimatef; = |/ Var| 9], is
called thestandard error

In practice, the standard error typically depends on unknparameters, and by
estimating these, we get tiestimated standard errodenoted bys;. This is also
sometimes referred to as the standard error if there is koofi€onfusion. Let us
revisit our examples.

Example6.2.3 In Example 6.2.1, suppose that we have the followligpbserva-
tions, ordered by size:

0.94, 1.56, 2.52, 3.54, 3.91, 4.16, 4.49, 6.50, 7.42, 8.69

which gives the estimates
6 =2X =838
and
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The standard errors are

0 and 0
Op= —F—— 0y = —F/—————
o V3n o n(n+2)
which, as we can see, depend on btindn. For the estimated standard errors we
insertn = 10 and the values of and6 to obtain

s *i*ﬁ*26 and s> = 0 _ 96 =0.77
O V3n V30 o /nn+2) V120 0

Example6.2.4 In the lightbulb example, the estimators akeand X; and the

standard errors are o
ngﬁ and ox, =0

which depend on the unknown parameterThus, in order to estimate the standard

errors, we need to know how to estimatdérom the sample. We address this in the

next section. 0

6.2.1 Estimating the Variance

We have learned that the sample mean is a good estimator wighe. Now suppose
that we also wish to estimate the variance Recall the definition

o =B [(X - p)?]

wherey is the mean. Thus, the variance is the mean of the randonbl@(is — 1:)?
and a good estimator is the sample mean of the random vasiable

(Xl - N)27 i) (Xn - /L)2

that is, we could use

n

1
~2 _ — _ 2
0" =~ > (X —p)
k=1
as our estimator of2. One obvious problem is that this requires that we know the
meany, and this is rarely the situation. However, we can replatsy its estimator
X and hopefully still get a good estimator @f. It turns out that this results in an

estimator that is slightly biased, and instead the foll@yisimost often used.

1%

Definition 6.2.8 Let X4, ..., X,, be a random sample. Thlsample variance
is defined as

R _
2 _ X_X2
s n—l;(k )
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For computations, it is easier to use the following formelasily proved by expand-
ing the square and doing some simple algebra.

Corollary 6.2.4.

1 - .
2 _ 2 2
§'=—— (kg_le—nX>

It may seem strange to divide ly— 1 when there are terms in the sum. The reason
for this is that it gives an unbiased estimator.

Proposition 6.2.5. The sample variance’ is an unbiased and, E[X}] is
finite, consistent estimator of.

Proof. By Corollary 6.2.4, we obtain

B = (ZE[X%J—nEW])

k=1

1 2
n—1 n

where we used the variance formula from Corollary 2.4.5. fitoef of consistency
is left as an exercise. ]

Dividing by n would thus give an estimator that is on average too small.iffthéive
reason for this is that th&;, tend to be closer t&X than they are tqu itself. The
square root o2 is denoted by and called thsample standard deviatiowhile s2

is an unbiased estimator of, s is not an unbiased estimator@but is nevertheless
commonly used (see Problem 11).

Example6.2.5 Find the sample standard deviatiein the lightbulb example and
use it to estimate the standard errors of the estimatgrand.X .
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Our observed sample 83,1040, 1063, 1103, 1241, which has observed sample
meanX = 1086 and

5

> X7 =5,934,548
k=1

which gives

(5,934,548 — 5 x 1086%) = 9392

52:

R

which finally givess = 96.9. This is also the estimated standard errotgf. The
estimated standard error &f is

which is less than half of that oX;. Note how the estimation af achieves two
things: (1) we get an estimate of the variation of individiifatimes and (2) we get
an estimate of the standard errorXf 0

By comparing standard errors, we can compare estimatoisstill not clear, how-
ever, what the actual value of the standard error means.mebow measures the
accuracy of our estimator and we would like to use it toagetr bounds In the light-
bulb example, we have the estimafe= 1086, which has estimated standard error
43. Perhaps we could summarize thislas6 + 43, but exactly what does this mean?
The meanu is unknown, so either it is in the intervgl043, 1129] or it is not. Note,
however, that the interval is an outcome of taadom interval X — s, X + s¢],

so what we can do is to find the probability that this randorarivel containg:. We
could then further supplement our error bounds with a prditathat tells how much
we believe in the bounds. Instead of takitigy, we could taket2s g, +3s g, or
+c sy for some other constant The probability of catching changes with, and

in the next section we introduce a systematic way to detexmiror bounds.

6.3 CONFIDENCE INTERVALS

As discussed in the previous section, it is desirable to betalsupplement an esti-
mator with error bounds, to get an idea of its accuracy. THeing definition gives
the formal description.
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Definition 6.3.1 Let X3, ..., X,, be a random sample afdan unknown pa;
rameter. If77 andT5 are two functions of the sample such that

PTh <6<T)=gq

we call the interva|Ty, T»] aconfidence intervdbr 6 with confidence levej.
We write this
T <0<T» (q)

A confidence interval is thus a random interval that contéliresparametef with
probabilityq. Note that the probability statement in the definition seéartse a bit
“backward” from what we are used to, since there is a congtéamthe middle and
random variables at the ends. Once we have numerical oliggry@n our sample,
we get numerical values df; and 7> and refer to this as aabserved confidence
interval. We often refer to the confidence level as a percentage, atehid of saying
“a confidence interval with confidence lev@b5,” we may say “@5% confidence
interval.” We can regard a confidence interval as an estintla#b is an entire interval
instead of a single point, and for this reason, the distimchietweerpoint estimation
andinterval estimatioris often made.

Example6.3.1 Let us return to Example 6.2.1 where we used the estimator

X(n

" (n)

to estimate from a uniformly distributed sample on the interjal §]. To find

a confidence interval of, we first need to determine the distribution of the order
statistic X ,,y. Since X, is the maximum of the: independent random variables

X1,...,X,, we can write the distribution function
FX(m(‘T) = PXup <z)=PXi<um...,X, <z
xX n
= 2 < " = n I
P(Xi <) = (3) (63.)

The next step is to find valuas andz, such that
Pxy < Xy <m2) =¢q

This can be done in several ways (infinitely many, actualyies us also require the
interval to besymmetrici.e.
I—q

P(X(n) < .’L‘l) = P(X(n) > xg) = ?
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Equation (6.3.1) implies that

whose solution is

. 1/n
o =0 (1TQ)

Correspondingly, we get the upper limit as the solution to

()

1/n
2y — 0 (1%)

A confidence interval is now obtained from the inequality

1/n 1/n
1-— 1
0 1—4q <Xy <0 1+q
2 2

by dividing by# and X, and finally taking the reciprocal. The final result can then
be expressed

—1/n —1/n
1+g¢ 1—g¢q
X(n) (T) <0< X <T> (q)

which is

(Note that the upper and lower limits switch when we take gairocal.)

Let us now apply this to the observed sample in Example 6.3 £ 0.95. The
maximum observation was,,) = 8.69 in a sample of siz& = 10. The lower limit
will then become

8.69 x 0.975~ Y10 =871

and the upper limit
8.69 x 0.025- /10 = 12,57

Hence, we can claim with 95 % confidence that the actual vdlddies somewhere
between 8.7 and 12.6. 0

This example illustrates the most common way to calculatgfidence intervals,

namely to first determine the distribution of an efficienfrasttor (or a related statis-
tic), use this to obtain an interval for the estimator andlf§n@ansform this into a

confidence interval. However, it is often the case that therval is of the form

[6—R,0+R]
whered is an estimator of andR is an error bound determined such that

PO -R<0<O+R)=¢
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We then usually write the interval in the form
6=0+R (q)

where the error boun® may be deterministic or random. A general observation is
that we want the confidence interval to be as short as possibiee this means that
our estimator has high accuracy. On the other hand, we alsttheconfidence level

g to be as high as possible, since this means that we have $tediefjthat we have
caughtthe true paramet@m our interval. However, these two wishes are conflicting,
and there is the trade-off that higher confidence levelssspwnd to longer intervals.

It is more important to have high values @fsince it would not be of much use to
have a very short interval if we did not have any confidence iRar that reason, the
value ofq is typically determined in advance and the interval then goted. Some
standard values af are0.90, 0.95, and0.99.

Finding a confidence interval requires computation of a phbility, and this, in
turn, means that we must know something about the distdbudf our sample. To
be able to compute the probabiIiR/(a— R<0<0+ R), we need to know the
distribution of the estimatat and of R if it is random. We next look at one important
special case, when the observations come from a normaibdittm

6.3.1 Confidence Interval for the Mean in the Normal Distribu tion with
known Variance

Suppose thak, . . ., X, is a sample from a normal distribution with unknown mean
w and known variance?. As usual, we estimate with X, but how can we find a
confidence interval of the form = X + R? This means that we need to fildsuch
that

PX-R<pu<X+R)=q
By transformation we obtain the equivalent inequality

_ R <X—u< R
oIV = alvn = oV

where we know that the quantity in the middIeNg0, 1). With z = R\/n/o, we get
the equation

X—u<
z
o/vn —

g=P (—z < ) = B(2) — B(—2) = 28(2) — 1

by symmetry. This implies the following proposition.
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Proposition 6.3.1. If X1, ..., X,, is a sample from aV(u,o?) distribution
whereo? is known, al00¢% confidence interval fop is

MZXiZ% (9)

wherez is such thatb(z) = (1 + ¢)/2.

Example6.3.2 Consider the lightbulb example and fin@%% confidence interval
for u under the assumption that= 100.

Since(1+¢)/2 = 0.975 we need to find such thatb(z) = 0.975. Table A.2, which
is specifically constructed for confidence intervals, gives = 1.96, which yields
the confidence interval

100
u=1086+1.96 x — = 1086 =88 (0.95)

V5

This result is mostly of theoretical interest since, in mpsictical situations, the
variance is usually not known beforehand. It is possiblayéwer, to generalize
this for unknown variance, but it requires some additionatmematics and will be
deferred to the next chapter.

6.3.2 Confidence Interval for an Unknown Probability

Suppose that we are interested in the probahiltfsome event, repeat the experi-
mentn times, and observé in X ofthese. TheX ~ bin(n, p), and a good estimator
is the relative frequency = X /n (in Section 4.2 denotedl,). Thus, by Equation
(4.3.2), a consequence of the normal approximation to therbial distribution is

that a )
_d p(1—p
p~N (p, 7)
n

which means that
p—p

P(—zgmgz)zq

where®(z) = (14 ¢)/2. Although we could get an interval fprfrom the preceding
expression, we make yet another simplifying approximadiot replace by p in the
denominator, which gives

e PTP ) o
(s ) =
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which in turn gives the following result.

Proposition 6.3.2. An approximatel 00¢% confidence interval fop is given
by

., [p(-p
p=pt /20D
n

(= q)
where®(z) = (1 + q)/2.

Let us comment on the substitutionfor p. Since

~

p—p  _ —p p(1—p)
VP —=p)/n  /p(—p)/n\ P -D)

where the first factor is approximately (0, 1) and by Corollary 4.2.3 the second
factor is approximately, the product should also be approximatalyo, 1). We are
not spelling out the exact asymptotic results that are rebadee, but hopefully this
gives some intuition as to why the substitution is valid. Vdemot substitut@ for p
just anywhere; if we do it in the numerator, for instance, ey

An application where the approximation works well is palii opinion polls. Let
p be the unknown proportion of supporters of a particular odatet, draw a sample of
nindividuals, and ask if they favor this candidate. If thigmherisX, we can estimate
p by p = X/n as usual. Now, the distribution df is not exactly binomial since we
sample without replacement but by Proposition 4.4.2, orthemial approximation
to the hypergeometric, we can assume tkidas binomial for all practical purposes.
The total population sizé/ is typically on the order of many millions; the sample
sizen, typically aroundl000. The confidence interval is, as above

where the quantity-z+/p (1 — p)/n is referred to as thmargin of erroror thesam-
pling error.

Example6.3.3 As an illustrative example, let us consider a historicahaogi poll
from October2000, regarding the upcoming presidential election. In thid, @307

3This “two-step” approximation suggests that we can appnaxé the hypergeometric distribution directly
by the normal, without going via the binomial distributiofhis is indeed true, and we could then use the
slightly lower variance of the hypergeometric distributimstead. In the current example, there is nothing
to gain from this.
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likely voters were asked whom they would vote for. The resulere George Bush
47%, Al Gore 44%, Ralph NadeR%, and Pat Buchanati; the rest were either
undecided or supporting other candidates. The poll wasrtegpd@o have at2%
margin of error.

Let us take confidence levgl= 0.95, which gives: = 1.96. The four confidence
intervals are

0.47(1 — 0.47)

DBush = 047£1.96 5907 = 0.47£0.02
DGore = 044£1.96 %870% = 0.44£0.02
PNader = 0.02£1.96 % = 0.02 £ 0.006
PBuchanan = 0.01+£1.96 %87001) = 0.01 £0.004

or in terms of percentage poinfsz.sn = 47 + 2 and so on. Note how the margins
of error differ because the length of the confidence intetlegdends op. When the
margin of error is stated as2%, this is correct for Bush’s and Gore’s numbers, but
for the smaller numbers of Nader and Buchanan, the margimrof s significantly
smaller. See Problem 21 for more on this. 0

Note that the margin of error does not depend on the populaie NV, only the
sample sizen. Obviously this is an effect of the approximation and noktia
general; if we ask the5 inhabitants of Luckenbach, Texas if they are feeling any
pain, our margin of error will b®. However, as long as is small relative taV, the
size of the population does not matter. Thus, if we 20 people, the poll will be

as valid in the United States as in Canada, Chile, or China.

Another remark is that the margin of error also depends orctindidence level,
and this is rarely reported in the media. A confidence levéb&t is supposedly the
standard for the polling companies and a reasonable chdmwe.much lower, and
the results are not trustworthy, too much higher and the mafgerror may become
too large to be useful.

The theory of opinion pollsis part of the areaspirvey samplingan important sub-
discipline of statistics. There are many ways to improveststenates and confidence
intervals, such as by ensuring that different populatidsgsaups are proportionally
represented in the sample, but we will not discuss this &rtinstead, we will focus
on a common question regarding opinion polls; if there is ange in support for a
candidate between two consecutive polls, does this irelecagal change in the pop-
ulation? The question can be answered with a confidencevaitier the difference
between two probabilitieg; andp.. In short, suppose that we have observed that
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p2 > p1. We then conclude that, > p; if the confidence interval fop, — p; does
not include0. We call the differencstatistically significanta concept that will be
further clarified in Section 6.5. If the interval includéswe cannot rule out that
p2 < pp and that the observed difference was due only to chance. 4 euisit the
election yeaR000.

Example6.3.4 Shortly after the Octobex000 poll described in Example 6.3.3, an-
other poll was taken whet& 67 individuals were surveyed and the percentages were
48% for Bush,43% for Gore,3% for Nader, and % for Buchanan. Thus, two of the
candidates had gained support in the second poll. Doesnttlisaite a real change in
the population?

Let us start with Bush’s numbers, denoteaythe support in the population at the
time of the first poll anch, the support at the time of the second. The estimators are
p1 andps, and we have

~ d 1-— . d 1-—
p1 =N (plapil( pl)) , p2=N <p27p72( p2))
n m

wheren andm are the sizes of the two polls. If we assume that the secondspol
done independently of the first, this means fhaandp, are independent, and thus

p2(1 — p2) n p1(1 —P1))

m n

. d
D2 — D1 %N<P2—p1,

and we can construct a confidence intervalfor- p; with methods similar to those
used before. If we thus substitute andp, with their estimators in the expression
for the variance, we get the confidence interval

p2(1=p2)  p1(1—p1
(=), n0—7) .,

P2 — P1 Zﬁz—@iz\/
m n

where as usuab(z) = (1 + ¢)/2. Again takingg = 0.95 gives

0.43(1—0.48)  047(1-047)
2167 2207

p2—p1 = 0.48—0.4711.96\/

= 0.01+0.03

which is the interval—0.02,0.04). Since this include$, the change is not large
enough to rule out randomness and the change is thus netistlty significant. For
Nader's numbers we get

0.03(1-0.03)  0.02(1-0.02)
2167 2207

pa—p1 = 0.03-0.02+ 1.96\/
0.01 +0.009
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which is an interval entirely abou& so this change is statistically significant, albeit
justbarely, and roundoff errors may also play a role here ifitportant point, though,
is that an increase by one percentage point in the polls isymare significant for
Nader's numbers in the single digits, than for Bush’s, whaahin the10-50 percent
range. 0

Another obvious question is whether the difference betwiaesh’'s and Gore’s num-
bers of47% and44% in the first poll is statistically significant. Again, thiscée
answered with a confidence interval for the difference betwtvo probabilitiesp g
andp¢, but note that the estimatops; andps are not independent since they come
from the same sample. You are asked to investigate this ipl€ro24.

In the media, we often hear statements like “candidate Adezthdidate B in
the poll,” and later it is mentioned that the difference ishin the margin of error.
Such statements are meaningless. To “lead in the poll” is¢imse that the estimated
proportion is higher has no value unless the confidencevaltéor the difference is
entirely above).

6.3.3 One-Sided Confidence Intervals

Our confidence intervals thus far have been of the jpel 6 < T, or = 0+ R,
which we calltwo-sided Sometimes it is more desirable to haree-sidedntervals,

of the typed < 6+ Ror6 > 6 — R. Forinstance, consider Example 6.3.2, where the
confidence interval for the mean lifetime of a lightbulb vi886 + 88 hours. Instead

of claiming that the mean lifetime is betwe868 and1174, we may be interested
in claiming only that it is at leas298. Thus, we are interested only in one of the
confidence limits and in such a case, it is a “waste of confidéne@|” to construct a
two-sided interval by splitting — ¢ in two (equal) parts. Let us say that we want an
interval with only a lower bound. In the lightbulb exampleistcan be expressed

— o
p=X—-z—= (q
n

where®(z) = ¢. Forg = 0.95, Table A.2 gives ug = 1.64, which yields the

interval 100
u>1086 — 1.64— = 1086 — 73 = 1013 (0.95)

V5

We see that if we are only interested in a lower bound of lifgeztancy we can make
a slightly stronger statement than before.

6.4 ESTIMATION METHODS

The estimators that we have come up with so far have been bassmmmon sense,
such as estimating the mean by the sample mean. In more aatgalisituations,
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there might not be an obvious estimator, and the questioustb find one. In
this section we will examine two general methods to find egtirs, based on two
different principles. Both methods work in great geneyabind in simple cases they
give estimators that are intuitively reasonable.

6.4.1 The Method of Moments

We have seen that the sample méais a natural estimator of the mean= E[X]and
that it has good properties. Suppose instead that the pseawewish to estimate is
6 = E[X?]. Since this is the expected value of the random variableit is logical
to estimate it by the sample mean of the squared observations

~ 1
9:5;)(,3

In the same way, we can estimate any expected value of thd}j&| by the corre-
sponding sample mean of the observations raised tetthgower. Let us state some
definitions.

Definition 6.4.1 Let X be arandom variable. Thé¢h momenof X is defined
as
pr = E[X"]

Henceu; = E[X], u2 = E[X?]and so on. Nextwe define the corresponding sample
means to be used as estimators.

Definition 6.4.2 X1, ..., X,, be a random sample. Thth sample momeris

defined as
1 n
Op = — XT
W n ]; k

In particular,7i; = X, the sample mean. Note that the moments are parameters
computed from the distribution and that the sample momeatsstimators computed
from the sample. Also note that for eachi, has mean and variance

~ . 1 .
Eli] = pr, Var(piy] = EVar[X ]
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so that each sample moment is an unbiased estimator of tressponding moment
and has a variance that is small for larg@unless VajX "] = c0). Now, our parame-

ter of interest may not be one of the moments, but if it can lpgessed as a function
of moments, it can be estimated by replacing moments by ttregmonding sample
moments. This is the main idea behind the following definitio

Definition 6.4.3 Suppose that we can express the unknown parandgter
as a function of the firsj moments,§ = g(u1,...,u;). The estimator

b= g(f1, ..., ;) is then called thenoment estimatowf 6.

The representatioft = g(u1, ..., ;) is not necessarily unique since parameters may
often be written as different functions of different mon®niThe convention is to
start by computing the first momeng. If 6 can be expressed as a function.gf

we are done. If not, we go on to compute the second moment aod,amtil we

get the desired expression. Let us look at a few exampletusirite the method,
appropriately named thmethod of moments

Example6.4.1 Let X, ..., X, be a sample from an exponential distribution with
unknown parametex. Find the moment estimator of

We start by computing the first moment

and hence\ = 1/u,. In the terminology of Definition 6.4.3, we haye= 1 and
g(z) = 1/x. The moment estimator is therefore

it -1
w X O

In the last example, it was sufficient to find the first momergt s next look at a
few examples where this is not the case. The first of theselhlstyrates the fact that
we do not always need to know the distribution of figto find moment estimators.

Example6.4.2 Let X4, ..., X,, be any random sample with meanand variance
o2. Find the moment estimators pfando?2.

Sinceu; = u, the moment estimator ¢f is 7i; = X. For the variance, note that

0% = E[X?] - (B[X])* = p2 — 1}



324 STATISTICAL INFERENCE

so the moment estimator is
1< 1«
~2 =~ =2 2 2_ g2 _ 1t w2
0% = iz — [1y nZXk X nZ(Xk X)
k=1 k=1
after some algebra. Note that this is not equal to the untiesmators?. Moment

estimators are not necessarily unbiased but can sometienadjbsted to be so. In
this case, we can multiply? by n/(n — 1) to obtain an unbiased estimator. 0

Example6.4.3 The following is an observed sample from a uniform distribaton
[0, 0] wheref is unknown. Find the moment estimatetof

—6.9, 2.8, 3.4, 6.4, 6.7, 8.0

Let us first find the moment estimator for a sample, ..., X,,. The first moment
is p1 = E[X] = 0, which does not help us, so we need to proceed to the second
moment. We get

0 319 2
_ 2 _ |z
m_/ P =g | 5| =

9 3
which gives
0= 3#2

The moment estimator is therefore

52 V3l =

and in our case this becomes
~ 3
0=4/=-x217T=104
6
whichis an estimate that we would certainly have been unalfiigure out by intuition
alone. 0

6.4.2 Maximum Likelihood

The method of moments from the previous section was baseldeosirmple idea of
estimating each moment by its corresponding sample momarthis section we
consider another estimation principle, which is based @nidea of choosing the
most likely parameter value for a given sample. We illustthis in an example.

Example6.4.4 A digital communication system transmits andls. We know that
on average, one of the bits is sent twice as often as the btlteve do not know which
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one. Inordertotry to decide which, we have the followingrfobservationsi, 1, 0, 1
(independent transmissions and no transmission error)coOfse, our immediate
observation is that there are mars than0s and hence we ought to believe that
is the more common. We now formalize this intuitive reasgris an estimation
problem.

Letp be the probability that 1 is sent. Then we know thét either% or % Hence
we can viewp as an unknown parameter with possible value%in%}. Let us now
compute the probability to get the outcome that we actually By independence

P(1,1,0,1)=pxpxpx (1—p) xp=p*(1 —p)

If p = 3, this equal®).025, and ifp = 2, it equals0.099. Sincep must be either of
the two andP(1, 1,0, 1) is higher ifp is 2, we may say tha$ is amore likelyvalue
of p thani and choosé as our estimate of. n

Note the idea in the example. We look at the outcome we got laewd &sk which
value of the parameter we think it came from. The parameta&r taximizes the
probability of the outcome is chosen as the estimate. Leg¢tusn to the example.

Example6.4.5 Now assume that we do not know anything ahpahd wish to esti-
mate it on the basis of the same observations and the sanoipeinThe probability
of our outcome is a function of, say,L(p), where

Lp)=p’(1—p), 0<p<1

just as above bytcan now be any number jf, 1]. On the basis of the same principle
as above, we wish to find the most likely valuerpfand to that extent we find the
maximum ofL(p) by the usual method of differentiation. We get

L'(p) = 3p* — 4p® = p*(3 — 4p)

Setting this to 0 yieldp = 0 or p = 2, and since the second derivative is
3
L"(p) = p(6 —12p) < 0 for p = .

we see thap = % gives the maximum (the valye= 0 is also unreasonable since we
havels in our sample). Our estimateps= %, the relative frequency ofs. 0

Let us now generalize the method from the example. Firstideestate the example
in terms of random variables. Thus, |&t be a random variable that describes a
transmitted bit. TherX = 1 with probabilityp and X = 0 with probability1 — p,
and the probability mass function &f is therefore

[p(0)=1-p, f(1)=p
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The indexp emphasizes that the probability mass function dependseopatameter
p (and it looks better to usg rather than the previoysfor the pmf). We now realize
that the functionl, in Example 6.4.5 can be written as

L(p) = fp(l)fp(l)fp(o)fp(l)

the product of the probability mass function evaluated atdhserved values. We
can now easily generalize to the case where we have a sample, X,, of 0s and
1s with probability mass function as above. The functiohecomes

Lp) = [] f(x0)
k=1

where we note that there afg, in the arguments sé(p) is actually random. How-
ever, we view it as a function of, and for that purpose we can view thg as fixed.
When we maximize, the maximum is attained at some pitiat must then be a
function of theX;, andp is a random variable exactly as we want an estimator to be.
To find out whatp is in this case, see Problem 33.

The method described above can be directly generalizedytdiaorete distribu-
tion. If X1, ..., X,, is a sample from a discrete distribution with pifiaf we can define
L(0) as the producfy(X1) - - - fo(X,), which again describes how likely different
parameter values are to produce the samiale .., X,,. For a continuous distribution,
the probability mass function is replaced by the pdf, whathwe already know, is
not directly interpretable as a probability. Itis still a aseire of howX is distributed
over its range, in the sense that large valueg abrrespond to regions wher€ is
more likely to be. Hence we can still define the functibf®) and interpret it as a
measure of how likely a parameter valiés to produce the samplg, ..., X,,. We
now formalize this.

Definition 6.4.4 Let X4, ..., X,, be a random sample from a distribution that
has pmf or pdffy. The function

L(0) = H fo(Xk)
k=1

is called thdikelihood function The valued where attains its maximum is
called themaximum likelihood estimatdMLE) of 6.

To find the MLE, we thus viewX1, ..., X,, as fixed and find the maximum of the
function L(#), by common techniques from calculus. As it is most oftenerasi
maximize a sum than a product, we defineldgelikelihood functioras

1(0) =log L(6)
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and maximize this instead @f. Since the logarithm is a strictly increasing function,
[ and L attain maximum for the same argument. To find the MLE, theofaithg
algorithm often works:

1. FindL(#) andi(#) = log L(6).
2. Differentiatel(#) with respect t@ and set equal to.

3. Solve ford and denote the solutich R
4. Check that”(#) < 0 to ensure maximum. If this holds, théns the MLE.

AlthoughL(6) could have several local maxima, it can be shown that the MiiEs
and is unigue under some fairly general assumptions. Thensederivative check
in step 4 is also often superfluous, as the functi@ is often strictly concave. We
will not address these issues here and instead turn to soamepdes.

Example6.4.6 Let X, ..., X,, be a sample from an exponential distribution with
unknown parametex. Find the MLE of\.

The pdfis
fz)=re™, >0
which gives likelihood function
L) =[] Ae ™™ = A"exp <—A2Xk>
k=1 k=1
The log-likelihood function is
I(\) =log L(\) = nlogA = A _ X
k=1

which has derivative

%z(x):%-ixkznG—X)

k=1
and the equation
d
—I(A) =0
has solution )
/): = =
X

which is the MLE (the second derivative is always negatiael] we note that it is
the same as the moment estimator from the previous section. 0
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Example6.4.7. Let X4, ..., X,, be a sample from a Poisson distribution with mean
. Find the MLE of\.

This time the random variable is discrete with pmf

_ N

fk)=e? 5, k=01,
which gives
oA —nAynX
L) =]]e Xk!:ce A
k=1

whereC = (X;!--- X,,!)~1. We get
I(\) =log C — n\+nXlog A

which has derivative

d__inX
dx A
which set equal t6 gives the MLE
A=X
the sample mean. 0

Note how there is no difference between the discrete andraanis cases in the
way the method is applied. The next example is a case whderdtitiating the
log-likelihood function does not work.

Example6.4.8 Let X, ..., X,, be a sample from a uniform distribution ¢ 6].
Find the MLE of6.

The pdfis
[ 1/0 ifo<z<@
fo(x) = { 0 otherwise

When we write down the likelihood function, we need to rementhat we view the
X, as fixed and as the parameter. We get the following expression.

[ 1/6™ if6 > all Xy
L(®) = { 0 otherwise

We may first try to take the logarithm and differentiate wigispect t@, but this leads
nowhere. In Figure 6.2 we can see tliaattains its maximum precisely where the
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@ e

Fig. 6.2 The likelihood functionL(6) for a sample of size = 3 from a uniform distribution
on [0, §]. The maximum is attained at the largest observafis) .

largestX value is. Recalling therder statisticfrom Definition 3.10.2, we realize
that

0= Xm

the maximum value in the sample. Note that this estimatoiffierdnt from the one
obtained previously by the method of moments, and alsolrEgaimple 6.2.1.

We will next find the MLEs ofu and o2 in the N (i, 0?) distribution. If one of

the parameters is known, it is straightforward to estimhgedther, and if both are
unknown, we can view them as a two-dimensional paranteter (11, 2). In the
definition of maximum likelihood, we simply maximize overdwariables instead

of one, everything else remaining the same. We could arg@thghwe should find
the MLE of o or 02, but it turns out that we can find either one and then square or
take the square root to find the other. This is by virtue of thi¥ing proposition,
which we state without proof.

Proposition 6.4.1. If g is the MLE of¢ andg is a one-to-one function, then

~

g(0) is the MLE ofg(6).

Example6.4.9 Let X1, ..., X,, be a random sample from(u, o?) distribution
where bothy ando? are unknown. Find the MLEs gf ando?.
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By virtue of Proposition 6.4.1, we can view the likelihoodhfition as a function of
1 ando, rather than: ando?. The likelihood function is

n

= 1 2 )0g2
L(p,o) = Hfu_’g(Xk) - H o~ (Xi—n)*/20
paie V2

=17

1 \"1 1 <
= =) = N X, — )
(\/277) o P < 202 k:l( k= h) )

and the log-likelihood function

1 n
l(p,0) = —nlog V2mr —nlogo — — Z(Xk — p)?

We set the partial derivative with respectt@qual to0 to obtain
o 1 & 1 (<
on ;Z(Xk—u):§ (Zxk_”ﬂ> =0
k=1 k=1

which givesyi = X. The partial derivative with respect tq with . replaced byX,

gives
o 1 1 & .
which gives the MLEs

po= X

n
k=1

(Xp — X)?

)
I
NE

which are the same as the moment estimators. By virtue ofd3itbpn 6.4.1, the
MLE of the standard deviation is

SH
I
SRS

S (X - X2
k=1

The maximum likelikood principle is central in statisticsdacan be used to solve
various estimation problems, even for quite complex modg¢sides being general,
it can also be shown to produce good estimates. In fact, Mk&man sense optimal,
at least asymptotically, which the following result fornaals.
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Proposition 6.4.2. Let §n be the MLE off based on the sampl§, , ..., X,
and assume that the Fisher informatidf) exists. Then

) E[6,]— 6
i) §n is consistent.
iii) e(6,) — 1
iv) /nI(0)(8, —6) % N(0,1)

asn — oo.

The first and the third part says that an MLEasymptotically unbiasedndasymp-
totically efficientwhich implies that, for large samples, there is (prachyjalo better
estimator. The last partis very useful when deriving apprate confidence intervals
based on MLEs. It can be reformulated as

~ d 1
o~ <9’ nf<e>)

forlargen, which can be used in a similar way as in Section 6.3.1 to i@ interval
0=0,+—— (~q)
nl(0,)

where: satisfiesb(z) = (1 + ¢)/2. Note thatl () is replaced byl (4, ) in the error
bound. Sincé is unknown, we cannot compuféd) but if n is sufficiently large we
know thatf ~ 6,, and, consequently, thafo) ~ I(@L) One has to be aware that this
interval is probably slightly narrower than an exact inwror, correspondingly, that

the true confidence level is lower tharsince Vatf,,) > 1/nI(#), but for largen
this will be negligible.

Example6.4.1Q Let us apply this to Example 6.4.6 to derive an approximate co
fidence interval for\ in the exponential distribution. The Fisher informatiortliis
case becomes

I\) =—E > log(Ae )| = L
R 2 BpY
Replacing) with X = 1/X yields
1 z 1+2z/v/n
nX?2 X
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However, the exponential distribution is notoriously diffit to approximate by the
normal distribution because of its heavily skewed natwe, would have to be really
large for this interval to be accurate. In this case, it isially preferable to use the
Central Limit Theorem

and then taking the reciprocal to obtain

. !

X0+ 2/ (= q)

= X0 = 2/v) -

6.4.3 Evaluation of Estimators with Simulation

Estimators derived with the method of moments or maximusliiood method can
have complicated expressions as functions of the sampler Example, we want to
check unbiasedness or compute the standard error forgaatessment, this may be
difficult or even impossible. One way to evaluate such egtinsas to use simulation.

Example6.4.11 Let X, X5, ..., X,, be a random sample from a distribution with
pdf
flz)=02""10<2<1

whered is an unknown parameter. Find the moment estimaterarid examine its
properties.

The first moment is

which gives

and the moment estimator _
~ X
9 = —
1-X
It is difficult to compute the mean and variancefofso let us instead examine its
properties by simulation. To do so, we first choose a valugard a sample size,
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then run repeated simulations of samplés ..., X,, and each time compuﬁe This
gives us a sample,, ..., O, whereN is the number of simulated samples. Now we
can use the sample mean (let us calib avoid putting a bar on top of a hat)

- 1 M
GZNZ@
k=1

and sample variance
N

1 o~
82 = ﬁ Z(ek — 9)2
k=1

to estimateF| GA] and Vaf 5] (where as usual it is more informative to take the square
root to get the standard deviatiah Note that each observation dris computed
from n observations, so we simulate a total¥fx n X values. We also need to
repeat this for various values éfandn.

To simulate observations oxi, we use the inverse transform method from Propo-
sition 5.4.1. The cdf oX is

F(a:):/ f(t)dt:@/ ' ldt =2 0<z<1
0 0

the inverse of which is
F_l(:v) = xl/e, z>0

Letus taked = 2. Ifif Uy, ..., U, are i.i.d. standard uniform, our sample is

X1 =U1, .. Xo =\U,

and from this we compute

~ X

f= "

1-X

This gives us one observation énand we repeat the proceduketimes to get our
sample of observations @n Let us takeV = 1000 andn = 10. A Matlab simulation
gave the estimated medn= 2.18, which we compare with the true meanso it
looks pretty good. The standard error was- 0.85. Make sure not to confuse the
two sample sizes; is the “real” sample size anlf is the number of simulations that
we decide to run. To investigate the effect of the samplersisamulations were run
with n = 5, 10,50, 100, and1000. The results are summarized in Table 6.1.

We can see thdt tends to overestimatga little but that it is pretty accurate and
becomes more so the larger the valuenof This last observation is not surprising
sinced is based onX, and we can invoke the law of large numbers and Corollary
4.2.3. These results are of no help when it comes to smalleesafn, though.
Figure 6.3 gives histograms for the cases- 10 andn = 1000. We will stop here,
but to continue the investigation we would need to run sitrtes for many different
values off. If we have reason to believe théis in some particular range, this can
help us reduce the number of simulations. 0
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Table 6.1 Estimated meangand standard deviationsof the estimatoé\, based on simula-
tions of sample size and true parameter valde

0 6 s
5 2 232 1.33
10 2 218 0.85
50 2 2.01 0.30
100 2 2.02 0.21
1000 2 2.00 0.07

6.4.4 Bootstrap Simulation

The simulation method presented in the previous sectionveoiks when we have full
knowledge about the underlying distribution of an actuaigke, something which is
rarely true in reality. Let us assume that we have the obsesampler,, . . ., z,, and
we want to say something about the point estimat@rg(Xl, ..., X,). Thegeneral
idea that the properties of estimators may be evaluated bgrgéng new random
samples can still be used but instead of the true distributie use theempirical
distribution function

. 1 <&
Fo(x) = ~ > Iai<ay
=1

wherel4 denotes the indicator of the eveAt In practice, it simply means that a
simulated sampl&, ..., X, is obtained by picking: values at random from the
observed sample with replacement. Finally, we obtain a ksited sample of values

of §by repeating this procedur€ times as in the previous section.ifis large, the
empirical distributionF’,, (x) approximates the true distributidri(z), which means

that the obtained sample 6fsalues will reflect the true distribution reasonably well.

250

B 120 N
200 100
150 80
60
100
40
50 20
% 2 4 6 8 0 19 2 21 22

Fig. 6.3 Histograms from simulations of the estimatbfor 6 = 2, n = 10 andf = 2,
n = 1000, respectively. Note the different scales on thexis.
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This method of simulating random samples from an unknowiridigion is called
bootstrap simulatioh

Example6.4.12 The concentrations of antibodies against pertussis (wihgaough)
in the blood of umbilical cords of 30 randomly chosen motlieSweden from 2007
are presented below.

00 00 00 00 17 23 29 33 4.0 4.5
53 6.1 6.7 79 89 103 11.1 122 13.1 144
16.0 174 21.0 244 294 335 42.1 522 939 353.7

Letus say that we wantto estimate the mean concentratiogiege 95 % confidence
interval based on the sample. The observed sample mean mpleseariance are

7 = 26.6 ands? = 4201. Since we have a rather large sample size, we can hope that
the approximate confidence interval

4201
pm Tt = 26.6£1.961) 29 9664 23.2
Vn 30
or
3<u<50 (95%)

is somewhat reliable. Now, let us instead genefédte: 1000 independent bootstrap
samples of size 30 by resampling the original data set amdicdé the sample mean
of each one. This produces a sample. .., Zy that hopefully represents the true
sampling distribution ofX. We then get the bootstrap mean as

1 N
== 7,=2238
2

Kl

and bootstrap variance as

2

whichis reassuring. However, since the simulated meansesggarded as a random
sample from the underlying sampling distribution’6f we can calculate a confidence

4Using a distribution we know nothing about is like lifting selves by the bootstraps much like the 18th
century nobleman and adventurer Baron Munchhausen.
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interval by taking the 2.5 and 97.5 percentiles, i.e. théaZtallest value 5y and
the 25th largest valug g75). In this case we get the bootstrap confidence interval

10< <55 (95%)

Note that this yields an asymmetric interval, which reflebhtssasymmetrical nature
of the observed sample.

Since this procedure can be applied to any estimator, welsamat a confidence
interval for the variance. Again, generate= 1000 bootstrap samples as before (or
recycle the old ones) and calculate the sample variasices. , s% for all of them.

It turns out that we get the bootstrap mean

1
2 — 2 _
52 = 2_1 s; = 4074

and bootstrap variance
1 & -
§5 = N1 E_l(sf —52)2 =1.216- 107

Again, the second value is an estimate of the sampling vegiahS2, which usually

is difficult to obtain analytically. Finally, we find the 258ma||ests?25) and 25th
Iargests?975) to get a 95 % confidence interval as
108 < 0% < 11100 (95%) .

In Section 6.4.3, we could increase the number of simulatiorachieve any desired
precision in our estimates since we used the exact samiédi®on. Here, we are
limited by the size of our original observed sample and iasieg the number of
bootstrap samples beyond some level does not improve thkksgsry much. In this
example we used/ = 1000, which is quite sufficient for a sample of size= 30. It
makes no sense to put a lot of simulation power into a bogstnalysis if the results
only refer to the empirical distribution, which is just anpapximation of the true
underlying distribution.

6.5 HYPOTHESIS TESTING

We have learned how to find estimators and confidence intefoalinknown param-
eters, based on observed data. Once this has been done, alscaoften interested
in drawing some particular conclusion about the underlylisgribution. Let us look
at a simple example to illustrate the main problem and idea.



HYPOTHESIS TESTING 337

Example6.5.1 Suppose that we have a coin and want to test whether it isTair.
do so, we flip it100 times and count the number of heads. How can we decide if the
coin is fair?

First, if the coin is fair, the expected number of headlisNow, we do not require
to get exactlyp0 heads, since there is variability due to randomness, saubstion is
whether our outcome is easily explained by such naturahbdity or indicates that
the coin is unfair. What if we geib heads? What if we getd, 80, or 100 heads?
Certainly all of these outcomes gpessible so the only criterion we can use is how
probablethey are, and to assess this, we need to invoke the disbibatithe number
of heads.

Let usfirst restate the problem in terms of the unknown patarpgthe probability
of getting heads in a single flip. Our estimatepa$ the observed relative frequency
p, and if the coin is fair, thep = 0.5. The question is now whether the valuegof
deviates too much frorfl.5 for us to believe in fairness. We need to quantify “too
much” and decide how much deviation we can accept. Let ushedyah outcome
that has probability as small 895 is acceptable but not any smaller. Thus, we first
assume thgt = 0.5 and will change our mind and decide that the coin is unfair if
deviates fron0.5 by more thand, where

P(|p—0.5]>d)=0.05

By the central limit theorem, we know thahas an approximate normal distribution
with mean0.5 and standard deviatiofy0.5(1 — 0.5) /100 = 0.05. Thus, we choose
d such that

. d _p-05 _ d
0.05 = P(|p—0.5|2d)_1—P<——§p §_>

0.05 0.05 0.05
2(1-9 i
0.05

which gives®(d/0.05) = 0.975 which in turn gives! = 1.96 x 0.05 = 0.098. Thus,

if pis less thar).402 or greater the.598, we decide that this is not due to random
variation but rather that the coin is not fair. In this casesag that wereject the
hypothesis of fairnesdn terms of the number of heads, this means that we reject the
hypothesis of fairness if there ate 40 or > 60 heads. There is a possibility that
such a conclusion is wrong and we know that the probabilithisfis0.05. We are
thus taking &% risk of classifying a fair coin as unfair. 0

This example illustrates the main idealigpothesis testingWe set up a hypothesis
about an unknown parameter and test it by estimating thenmtea. According to
how extreme the estimate comes out, we eitbgctor acceptthe hypothesis.

Note how this is reminiscent of mathematical proof by caditdon. In such
a proof, we start by making an assumption, and if we arrive araradiction, we
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conclude thatthe assumption was false. In hypothesiatps® make an assumption,
and if we observe a very unlikely outcome, we decide that fsemption was false,
realizing that there is a small risk that we are wrong.

Let us introduce some concepts and notation. Supposétlsatn unknown
parameter and we want to decide wheth@quals some specific valdg. We then
formulate thenull hypothesishatd = 6, written

HQSGZGO

In conjunction with the null hypothesis, we also haveadtarnative hypothesjsie-
notedH 4. This could, for example, be

Hy:0 =09 versus Hy : 0 > 6

Such an alternative hypothesis is said todne-sidedas isH 4 : 0 < 6p). A test
against awo-sidedalternative has the form

Hy:0=20qg versus Hy : 0 # 6y

It has to be decided in each case whether a one-sided or tled-aiternative hypoth-
esis is reasonable. To telt versusH 4, we need the following concepts.

Definition 6.5.1 A test statisticl’ is a function of the sample, used to té&f.
Thesignificance level and thecritical region C' are determined such that

PTelC)=«

under the assumption thak, is true. If T € C, wereject H in favor of H 4.

The critical region is often an interval of the folth= (—oo, ¢] or something similar.
The number: is then called theritical value. The test statistiis typically based on
an estimato. It could bed itself or some function of. Two things are important
for the test statistic: that it indicates whether we showdtidve more inf 4 than in
Hy and that its distribution is completely known. The significa levek is the risk
we are willing to take to reject a hypothesis that is in faoetrand some standard
values ofa are0.05, 0.01, and0.001 or as percentage points%, 1%, and0.1%. If
we cannot reject,, we say that weacceptit. This does not mean that weove
it, only that the data do not support a rejection. In the comdkample, even if we
cannot reject fairness, the coin may still be unfair but tohsa small extent that it is

5Generally, the terrstatisticis used for any function of a random sample. Thus, an estinstostatistic
used to estimate an unknown parameter, and we have preyviotreiduced order statistics.
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hard to detect. This is a typical problem in hypothesis tgstand we will return to
it later.
In the coin flip example above, we have the null and alteredtiypotheses

Hy:p=0.5 versus Hs : p# 0.5

Here we want a two-sided alternative, since we are not istedeprimarily in any
particular “direction of unfairness.” The estimatorfs p, the relative frequency.
Large deviations op from 0.5 indicate thatH, is not true. Rather than using
directly, let us use the test statisfitdefined as

P—0.5
0.05

which is approximatelyV (0, 1) if Hy is true and we proceed to finding the critical
regionC. We should rejecH) if the observed value df deviates too much fror.
The critical region should be of the for = (—oco, —c] U [ ¢, 00), and if we choose
significance level.05, we get

0.05 = P(T € C) = 2(1 — ®(c))

which gives®(c) = 0.975, which finally gives: = 1.96. Thus, we rejecH|, in favor
of H4 onthe5% level if |T| > 1.96.

Example6.5.2 The IQ of arandomly chosenindividualin a populationis,a@isfed
outin Example 2.7.1, constructed to be normally distridwtéth mean 100 and stan-
dard deviation 15. Assume that a group of eight pupils hastetea new pedagogical
method, designed to increase 1Q, for one semester. To eégdheamethod, they take
an 1Q test after the study period, which yields the results

87, 92, 97, 110, 115, 120, 121, 122

The main question is now: Does this sample provide enougleace to conclude
that the method works? Clearly, five out of eight pupils relear |Qs above average,
some of them quite far above. On the other hand, can we cak#iieuccessful when
three pupils ended up below average? Since we want to draargleronclusions
about the method and not just how these eight pupils perfdyme can consider this
as an observed sample from some underlying distributionwich distribution? If
the method does not work, i.e. it does not affect the 1Q, weldvexpect the sample
to be normally distributed with parameters= 100 ande = 15. On the other hand,
if it had been effective, we would expect that the pupils hadeased their IQs by
some quantity. If we assume that the individual variatiothes same, we can then
assume that it is normally distributed with somédarger than 100 and = 15. To
formalize this, we want to test the hypotheses

Hy:p =100 versus Hy :p > 100
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Since we estimatg by the sample meaiX, we can use that as a test statistic or,
equivalently, - -
Z*X_#O X —100
o/vn  15/V8

Now, we are looking for evidence to rejekf, in favour of H 4, so we should only

reject if Z is large enough. Under the assumption th&tis true, Z 4 N(0,1),
which means that

a=P(Z>c)=1-9(c)

Fora = 0.10, for example, we get that = 1.28. In this case, the value of the test
statistic becomes

g 1082100, o
15/v/8
which means that we can reject the null hypothesis and claatthe method indeed
works. 0

The IQ example illustrates a typical situation in hypothdsisting—it is often the
alternativehypothesis that we want to prove, and we therefore set ud hypothesis
that we wish to reject in favor of the alternative. From a stifec point of view, it is
easier tdalsify a hypothesis than to prove it, and the philosophy of hypdghesting
reflects this principlé. If we cannot reject the null hypothesis, we say that we accept
it, which does not mean that it is proven, only that we canhoisit to be false.

In legal terminology, the null hypothesis is “innocent liptioven guilty.” The two
examples illustrate the general procedure to perform a tigsis test:

1. State the null and alternative hypothedés.and H 4.

2. Find the test statisti¢’ and decide for which type of values (large, small, pos-
itive, negative,...) it rejectsl in favor of H 4. Make sure that the distribution
of T'is completely known under the assumption tHatis true (often expressed
“under Hy").

3. Choose a significance lewel Find the critical regiorC' by assuming thaki,
is true and seP(T € C) = «a. The general form of’ was determined in 2,
now you get the numbers.

4. Computél” and compare with the critical region.If € C, rejectH in favor
of H 4, otherwise acceptly.

Although the method of hypothesis testing seems somewfiatatit than calculat-
ing confidence intervals they are in fact two sides of the saaie, which can be
formalized as follows.

8Recall our discussion in Example 1.5.6 regarding the hygmigHAll swans are white.” To falsify this, we
only need to observe a single black swan, but to prove it wddvoeed to observe all swans and note that
they are white. As long as all hitherto observed swans areeywivie may say that we accept the hypothesis
but it has not been proved.
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Proposition 6.5.1(Correspondence Theorenm LetXy, ..., X, bearandom
sample and an unknown parameter.

i) LetI be aconfidence interval férsuchthatP(§ € I) = q. Thenfy ¢ I
is a rejection rule for the test @i, : # = 6, on significance level — q.

i) Let C be a critical region for the test statisficsuch thatP(7" € C) = «
under the assumption thak, : § = 6, holds. Then/ = {6y : T & C}
is a confidence interval @f on confidence level — «.

The proof is rather straightforward and is left as an exercis

More informally, the correspondence theorem says that &demce interval con-
sists of exactly those parameter values that cannot betedj@t a hypothesis test
and vice versa. This means that a hypothesis test can alveagarbied out by first
calculating a confidence interval and then checkinty ifs included, if not,H, can
be rejected. However, it is the second part that is most Ubeftause there are sit-
uations where it is easier to come up with a good hypothesigftan a confidence
interval so then the former can be used to construct ther.laftieis will be used in
Section 6.9 where some alternative methods of hypothestiagewill be introduced
and where it is not obvious how confidence intervals for theapeeters involved
should be constructed.

6.5.1 Large Sample Tests

In Section 6.4 we introduced an approximate method of cating confidence in-
tervals for MLEs. The same result can also be used to obtaaparoximate test
procedure.

Proposition 6.5.2. Letd be an MLE of the unknown parametebased on th
large sampleX, .. ., X,,. We wish to test the null hypothesis

D

Hy:0=0y versus Ha : 0 # 6

The test statistic is R
Z = v nI(Oo)(O — 90)

wherel(6y) is the Fisher information &, and we rejecf, on level~ « if
|Z] > ¢

where®(c) =1 — «/2.
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Proof. Proposition 6.4.2 implies that

Z = \/nl(80)(8 — o) ~ N(0,1)

for largen under the condition thally holds. The approximate significance level is
then

P(Z|>¢) = P(Z<L<—c)+P(Z>c)=®d(—c)+1—(c)
= 21-2() =«
[ ]
Example6.5.3 Let Xy,..., X,, be arandom sample from the Poisson distribution

with parametei. We want to test the hypotheses
Ho: A= MXg versus Hy: A # Xg

on the 5 % level under the assumption thas large. In Example 6.4.7, the MLE of
A was derived a3 = X. The Fisher information for the Poisson distribution is

o=l 5)) -3

This yields the test statistic

and the rejection ruleZ| > 1.96. 0

6.5.2 Test for an Unknown Probability

The coin flip example also fits into a general test situatiarp®se that we want to
test whether an unknown probabilityequals a specific valug. We can then test
Hy : p = po based on the estimatpr
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Proposition 6.5.3. Letp be an unknown probability, estimated by the relative
frequencyp based om independent trials. We wish to test the null hypothesis

Hy:p=po versus Hu :p+# pg

The test statistic is

po(1 —po)/n
and we reject]; on levelx « if

|T| > ¢

where®(c) =1 — «/2.

Proof. UnderH,, we know that

N (pO’po(ln—Po))

Q=

p

and hencd” ~ N(0,1) and

a=P(T| >c)~2(1—o(c)) -

For one-sided alternatives, we rejecfif> ¢ (orT' < —c) where®(¢) = 1 — «, in
analogy with previous results. Note that we are using thenabapproximation, so
the significance level can be reported to be only.. If there is reason to suspect
that the normal approximation does not work well, a test d¢dad derived from the
binomial distribution instead.

Example6.5.4 A company makes plastic paper clips and the manufacturiag pr
cess needs to be adjusted if the probability that a clip isad&f exceed$0%. To
investigate whether adjustment is need#tl) randomly selected clips are checked
and55 of these are found to be defective. Test onitielevel whether adjustment is
needed.

The hypotheses are
Hy:p=0.1 versus Hy : p > 0.1
and we use the test statistic
p—0.1

/0.1 x 0.9/500
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and reject ifT” > ¢ where®(c¢) = 0.95 (one-sided alternative). Table A.2 gives
¢ = 1.64, and since we have observgd= 55/500 = 0.11, we getT" = 0.75 and
cannot rejectdy. There is no need for adjustment. 0

6.6 FURTHER TOPICS IN HYPOTHESIS TESTING

In this section we will address some topics related to tgstiethodology, potential
problems and errors, and quality criteria for hypothesi¢steWe start with a closer
examination of significance levels.

6.6.1 P-values

The choice of significance level is quite arbitrary, althbugertain values have
emerged as being typical. Still, it is not always satisfacto fix « in advance.
Let us revisit Example 6.5.2 about the 1Q test to see an exaofithis. We chose
«a = 0.10, which gave the critical value = 1.28, and since we observéd = 1.51,
we could rejectHy. Now, 1.51 is not much higher thah.28, so we might not have
been able to reject also on the lewel= 0.05. For thisa, Table A.2 gives = 1.64, so
we cannot indeed reject on thé level. There is still some room for improvement,
and we realize that we can reject on any level as long as thesmonding: does not
exceedl.51. With ¢ = 1.51 and Table A.1, we get

P(Z >1.51) =1 - ®(1.51) = 0.066

which is the lowest significance level on which we can refégtfrom the observed
data. By stating this number instead of merely testing oneséired significance
level, we have given a measure of how strong evidence thegdlsgagainst.

Definition 6.6.1 The P-valueof a test is the lowest significance level jon
which we can rejecti, for a given data set.

Thus, if we compute thé-valuep, we reject on levek if p < «. It is common
to state theP-value when a hypothesis test is performed. This is degrsibce the
reader of a scientific report can in this way evaluate thengtiteof evidence against
a hypothesis, rather than just being told that it was refecte a particular level.
The reason for using significance levels is historical; betbe days of computers,
values needed to be computed by hand and tabulated for ez=ssaand the standard
significance levels emerged. There is nothing sacred a¥éwas opposed td.7%

or 5.2% but in practice, conclusions must be drawn and actions takdrusing nice
round numbers such a$; or 5% is easier on the ear and mind.
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Example6.6.1 Consider Example 6.5.4, whe§é out of 500 examined clips were
defective and we could not rejeéf, on the5% level. Since the estimate 511,
above the limit ofl0% defective, there might still be some suspicion that the gssc
is not correct. To get a measure of how bad it is, computéthalue.

The observed value of the test statistic Was- 0.75 and sincel’ ~ N(0, 1) and the
test is one-sided and rejects for large value%'pfthe P-value is

p=P(T >0.75) =1 — ©(0.75) = 0.23

which is not likely small enough to arouse anybody’s sugpici 0

6.6.2 Data Snooping

For a hypothesis test to be meaningful, it is important thatitypotheses be formu-
lated before the data are analyzed as the following exarfipstrates.

Example6.6.2 On the Texas Lottery Web site, number frequencies for thiouar
games are published. When | looked at the number frequefariéBick 3” (recall
Example 1.4.15) during the yean03, | noticed that the numbér seemed to be
overrepresented on Wednesdays. Out&f numbers drawn on a Wednesdag,
wereT7s. Are7s overrepresented? Test on &g level.

Let p be the probability that is drawn on a Wednesday. If the drawing procedure is
fair, we should have = 0.1, and we test

Hy:p=0.1 versus Hy:p>0.1
We havep = 0.147, and from Section 6.5.2 we get the test statistic
0.147 - 0.1 191
4/0.1(1 —0.1)/150

The critical value is the valuefor which ®(c) = 0.95, which givesc = 1.64. We
rejectHy and conclude that Wednesdays give nitse 0

Why areT7s overrepresented? Note that Wednesday is the third day efdlek and
since the numberdand7 are often assumed to have mystical powers, maybe we are
onto something here.

Sorry to get your hopes up, but we are not about to prove nuoggydo be helpful
in playing the lottery. This is a typical exampleadta snoopingto first look at the
data and then formulate and test the hypothesis. Advalue, that is, the probability
of getting at least twenty-twds on a Wednesday, is

P(T > 1.91) = 0.028
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which is certainly quite low. However, the probability oftteg at least twenty-two
7s onsomeday of the week is

1—(1-0.028)"*=0.29

(numbers are drawn twice a day Monday—Saturday). Now, ¢hist a very small
probability. The probability thasomenumber is overrepresentsdmeday of the
week is even larger. Thus, if we look at the lottery data, fitdsat all unlikely that we
find some number that is overrepresented on some day of tHe aee after we have
found it, we can easily prove the claim in a hypothesis testvel look specifically
for 7 and Wednesday, we can go through the léisgears and have 26% chance of
finding at least one year with overrepresentation. In thiechwas lucky enough to
find it the first year | looked at; now what are the odds of tifat..

This example may be frivolous but the problem that it illasts is real. If a
hypothesis is formulated after examination of a data sep thcannot be tested on
the same data set. Indeed, if you keep generating variousttpes from the same
data set, eventually you will find one that you can reject,sstatisticians put it: “If
you torture data long enough, it will confess.” This is aletated to the problem of
multiple hypothesis testingvhich we address in the Problems section.

6.6.3 The Power of a Test

When a hypothesis test is performed, the significance Ievieéiprobability that a true
null hypothesis is rejected. This is not the only error thatean commit, however;
it could also happen that the null hypothesis is false andlghiwave been rejected
but that our test fails to do so. These two types of error dermed to agype land
type |l errors respectively. By choosing a low significance level, we hensured a
low probability of committing a type | error but what abougthther type, to accept
a false null hypothesis?

Let us consider Example 6.5.1, to test whether a coin is faithe basis of00
flips and the relative frequengy The hypotheses are

Hyo:p=0.5 versus Hy : p #0.5

the test statistici$ = (p—0.5)/0.05, and we rejecH, on the5% levelif | T| > 1.96,
which is to say thap < 0.402 orp > 0.598. If H is true, the probability that we
reject it in error is0.05.

So far so good, but now suppose tH is false andH 4 is true. What is the
probability that we fail to rejectl? This cannot be answered immediately sifce
specifies a whole range of parameter values, not just one @ali, does. Thus, the
probability of rejectingH, depends on “how false” it is or, more precisely, which of
the values in the range @f 4 is the true parameter value. Let us for example assume
that the true value gf is 0.6. Thenp is approximately normal with meah6 and
variance).6(1 — 0.6)/100 = 0.0024, and the probability of rejectingl, is

598 — 0. 402 - 0,
1-P(0.402<5<0598) = 1— (q; (w) % (M))
0.0024 0.0024
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= 1—(9(—0.04) — &(—4.04)) = 0.52.

If instead the true value is = 0.7, a similar computation gives the probability to
rejectH, as0.99, which is higher, since it is easier to rejddy the farther the trug
is from0.5. Generally, if the true value ig, the probability of rejectinddy is

- 0.598 — p ® 0.402 — p
Vp(1 —p)/100 p(1 —p)/100
which we note is a function gf. This functionis called thpower functionor simply
the power, of the test. If we denote it by(p), we thus haveg(0.5) = 0.05 (that is

how the significance level is defined)0.6) = 0.60, andg(0.8) = 0.94. Let us state
a general definition.

Definition 6.6.2 Suppose that we test the null hypothelis: 6§ = 6,. The
function
g(0) = P(rejectH if the true parameter value &

is called thepower functiorof the test.

Note thatg(6y) = «, the significance level. If we have a one-sided alternafiwe,
exampleH 4 : 8 > 6y, we want the power function to increase as quickly as passibl
as soon afd increases abouw. Belowd, we want the power function to take on low
values. If we instead have a two-sided alternatig, : 0 # 6y, we want the power
function to increase on both sidestf See Figure 6.4 for an illustration.

The power function can be used to choose between tests. Saipipat we have
two test procedures that both have significance lavéf the power functiong; and

6
%

Fig. 6.4 Power functions for test offp : § = 6. To the left, the alternative is one-sided,
0 > 6o, and to the right, the alternative is two-sided.
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g2 are such thag; (6) > g2(0) for all # such thatH 4 is true, we say that the first test
is more powerfukhan the second and is preferable since it is more likely teale
deviations fromH. If we have two test procedures, it is not necessarily the tzest
one is more powerful than the other since we can lya¢@) > g»(6) for some values
of 6 andgy(0) < g2(0) for others (see Problem 59). In particular, if one test isenor
powerful than any other test, it is said to beiformly most powerfuhnd according
to what we just stated, such a test does not necessarily &istpower function can
also be used to determine sample sizes (see Problem 60).

6.6.4 Multiple Hypothesis Testing

By carefully chosing the appropriate level of significance @an, as pointed out in
the previous section, control the risk of rejecting a tru# hypothesis in a statistical

hypothesis test. This works well when we have one singlerparar of interest, but

in many situations we typically have many different paraengtand, consequently,
many different hypotheses we want to test.

Let us say that we want to investigate the effect of a new druthe human body
and therefore administer the drug to a group of randomlycseteindividuals and
monitor their well-being by measuring blood pressure, hiedie, body temperature,
oxygen uptake, amount of sleep, you name it. For compargemeasure the same
variables by monitoring a control group of comparable imdials that did not get
the drug or, preferably, a placebo to minimize the well-kngwacebo effect. The
natural next step is to carry out a series of test of each medsariable separately
to investigate whether the drug had any significant effe¢herbody. The problemis
that if we choose significance lewelfor each single test, the overall risk of rejecting
at least one true null hypothesis ususally becomes mucérlign we want.

Let us for example say that we carry out 20 independent testsvel o = 0.05,
we get the multiple significance level

20
am =1—=P(A1N...NAyp)=1-][P(4)=1-(1-005>=0.64

i=1

whereA; denotes the event of accepting the null hypothesis intddence, even if
not one single null hypothesis is true, it is quite likelyttieae will still reject at least
one of them and risk drawing wrong conclusions.

As long as we carry out independent tests, it is easy to cheagethat we get
the right level ofa,,, (Problem 61), but often the tests are dependent as in the drug
example above where we measure different variables but @same individuals.
However, there is a simple procedure calonferroni correctionthat guarantees
that the multiple significance level at least does not exeegelsired value.

Assume that we want to carry out a sequence diependent tests, each on the
same significance level, so that the multiple significance lewe}, does not exceed
the valuer’. The inequality in Problem 10 in Chapter 1 yields that

am = 1—P(AiN...NA,)=P(ASU...UA®)
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< PA))+...+ P(A) =na

Consequently, if we choose= «'/n, we guarantee that,, < «’'.

The advantage of this procedure is that it always works ndaenathat kind of
tests we are performing, but the major disadvantage is thatquite conservative
especially for large:. Again, let us say that we wish to carry out 20 different test
and that the multiple significance level should not exceed T Ben we end up with
a = 0.05/20 = 0.0025, which means that it is much more difficult to rejecty null
hypothesis, even the false ones.

Luckily, there is an extension of this method calledBuomferroni-Holm correction
that remedies this to some extent. First, calculateptivalue for every single test
and order them ag;) < ... < p(,). Then, reject the null hypothesis of the test
with the smallesp-value ifp;y < o/ /n. If this is true, move on and reject the null
hypothesis of the test with the second smalfesalue if po) < o/ /(n — 1). If this
is also true, reject the null hypothesis of the test with thiedtsmallestp-value if
p3) < o'/(n —2) and so on until you get to a test whose null hypothesis canmot b
rejected, where you stop and accept all other null hypothese

6.7 GOODNESS OF FIT

In the previous sections, we tested hypotheses that waeslstaterms of unknown
parameters. To be able to do this, we had to assume that oarvaltisns came
from some specific distribution, for example, normal or bimal. Sometimes this
assumption is precisely what we wish to test: whether ow dettually do come from
a specific distribution. In this section we will look at onetimad of doing this. Let
us start with an example.

Example6.7.1 A transmitter send8s andls and is supposed to do so such that
1s are twice as likely aés. It has been observed that out1&00 independently
transmitted bits470 were0Os and1030 werels. Does this support the claim thit
are twice as likely ags?

We can describe the null hypothesis as a hypothesis abouttiaa @istribution as
oo (12
H, : the distribution |S(§, §) on{0,1}

against the alternative thak, is not true. Let us start by arguing intuitively. Suppose
that we have observedl 0s andY 1s. We should then rejedt if the observed
frequenciesX andY deviate too much from the expected frequenciesatf and
1000, respectively. The deviation of from 500 can be measured by the squared
difference

(X —500)?
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but since we would expect this to be quite large even by puamah because the
number of trials is large, we account for this by also diviglyy the expected num-
ber,500. TreatingY” in a similar manner suggests the summary meagiref the
deviation, defined as

(X 5000 (¥ —1000)°
500 1000

72 =

(we will soon see why we denote it as a square). We should n@ettd, for large
values ofZ? and need to figure out its distribution. Sinte= 1500 — X, we get

(Y —1000)? = (1500 — X — 1000)? = (X — 500)?

which gives
(X—5mP+(X—5mP4(X—5mP
500 1000 1000/3

7 =
and sinceX ~ bin(1500,1/3), we know that

X%N(%Q%?)

and hence the quantity? is the square of a random variable that is approximately
N(0,1). Thus, we reject, on levela if Z2 > z where®(\/r) = 1 — a. With
a = 0.05, Table A.2 givest = 1.962 = 3.84. Our observed value of? is

(470 — 500)2 (1030 — 1000)?

=2
500 + 1000 70

and since this is less thah84, we cannot rejectly. The observed values of
(470,1030) are close enough to the expect@d0, 1000) to fit the suggested dis-
tribution well. 0

Note how the test statistic in this example is the sum of tweasgd random variables
but how we can rewrite it as the square of one random variatlieh is approximately
N(0,1). Thisillustrates a general principle and result. Supploaedur observations
are such that there arepossible different outcomes (which need not necessarily be
numerical) and that we wish to test for a particular disttilbo. We calculate the
squared differences between observed and expected freigaeand divide by the
expected frequencies for each of theutcomes. When we add these together, the
sum can be rewritten as the sum of the squares-af independend (0, 1) variables.
The general proof is beyond the scope of this text, but we stet result.
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Proposition 6.7.1. Suppose thatin an experiment, an observation can fal| into
either ofr different categories, with probabilities, ..., p,., respectively. If the
experimentis repeatedtimes andX;, denotes the number of observations that
fall into categoryk, fork =1, ...,r, then

an approximate chi-square distribution with- 1 degrees of freedorh.

Note that the random vectdiXy, ..., X,.) has a multinomial distribution with pa-
rameters(n, p1, ..., pr), and a more formal statement of the proposition would be
as an asymptotic result regarding such a distribution. Emelom variable in the
proposition is often denoteg? and written in the alternative form

2 - (Ok - Ek)2
= E ~—r R 6.7.1
X 2 EL ( )

where ‘O” and “E” stand for “observed” and “expected,” respectively. As kerof
thumb, the approximation is valid wheneug > 5 for all k. As indicated above,
our interest in the proposition is to test the hypothesiofis specified distribution,
and next we state the test.

Corollary 6.7.2. To test the null hypothesis
H, : the distribution igp1, ..., p.)

against the alternative thaf, is not true, we use the test statisti¢ above andl
rejectHy on levela if
X2 >x

whereF,: (z)=1-a.

This is one example of a so callgdodness-of-fit testvhere we test whether a pro-
posed distribution fits the observed data well. The intenbisnecessarily to reject

"The chi-square distribution will be defined and treated irrendetail in Chapter 7. For the present
exposition it suffices to know that critical values can beaoi#d from Table A.4.
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the null hypothesis, but we may also wish to argue that aqdati distribution is rea-
sonable. The testis one-sided since we reject the null st for large deviations
from what is expected. Sometimes, however, it can be archetdate should also
reject for small values, since these could indicate thafith&“too good to be true”
and that data may have been manipulated to fit the desireibdisin® We will not
address this in the text, but see the Problems section.

Example6.7.2 Recall that in the lottery game “Pick 3,” the winning threigid

number is chosen by picking at rand@times fromo, 1, ..., 9. The following tabu-
lation shows the observed and expected number frequene@Tordrawn numbers.
Is the drawing procedure fair? Test on g level.

Number 0 1 2 3 4 ) 6 7 8 9

Observed | 182 201 211 184 212 199 209 241 214 217

Expected | 207 207 207 207 207 207 207 207 207 207

If the drawing procedure is fair, each integer should hawbability 1/10, and our
null hypothesis is

1 1
: the distribution |s( 0 E)

and the chi-square statistic

10
Oy — E3)? 182 — 207)2 217 — 207)2
p=S O BT ) .. (217207

= =12.6
E}, 207 207

k=1

which we compare with the valug which is such that, 2 (z) = 0.95, which gives
x = 19.92, and we cannotrejedfy. TheP-valueisP(x? > 12.6) = 1 - F. \2(12.6)
which can be computed in Matlab as “1-cdf( 'chi22.6, 9)” and equalg). 18 thus
the drawing procedure shows no signs of unfairness (but sesd 63). 0

If the expected frequency in a class is too small, this candeel foy lumping classes
together. For instance, if we have orfg observations in the Texas Lottery ex-
ample above, the expected frequencies3arhich is below the numbes in our

8A famous example is Gregor Mendel's experiments with ganoleas, which lead him to discover the
fundamental laws of genetics. His data fit his hypothesesedlatiat foul play seems hard to rule out. It
has been suggested that an overzealous gardener who knéwestigs Mendel wanted, manipulated the
data.
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rule of thumb. If we lump the classes together two by two, wetlge five classes
{0,1},{2,3}, ..., {8,9}, each with expected frequen6y so we can go ahead and
do the goodness-of-fit test on these classes and the reggcitirsquare statistic has
4 degrees of freedom. This idea of lumping classes togeth&esia possible to
do goodness-of-fit tests also for distributions with infiniinge. Let us look at an
example.

Example6.7.3 A *“great earthquake” is defined as one that has magnitude) on

the Richter scale. Suppose that it has been claimed thatinéer of great earth-
guakes worldwide is on average per year. The tabulation below gives the numbers
of great earthquakes between the year$a®0 and2001. Do the data support the
claim? Test on th6% significance level.

Numberofearthquakes‘ 0o 1 2 3 4 5

Number of years 5 13 4 1 0 0

Thus, there weré5 years with no earthquakel years with one earthquake, and so
on. No year had more than three earthquakes. If we assumedttaguakes occur
according to a Poisson process, the claim is that the nunilearthquakes in a given
year is Pofl.5). Let us thus do a goodness-of-fit test of the null hypothesis

H, : data come from a P¢i.5) distribution

against the alternative thaif, is false. Since the range is infinite, we have to lump
classes together, so let us look at the expected frequeridiesprobabilities are

1.5k
__—1.5
pe=e

and withn = 33, we get the following expected frequencies
Ey=74, E; =110, F;=83, F3=4.1, F;=1.6

k=0,1,..

and there is a rapid decline as we continue. To get expectgddncies that are at
least5, we create a new class>“3.” If X ~ Poi(1.5), this new class has expected
frequency

nP(X >3)=n(l - P(X <2)) =33(1 - (po +p1 +p2)) = 6.3

The four classes with their observed and expected freqasiace

Class 0 1 2 >3

Observed | 15 13 4 1

Expected | 74 11.0 83 6.3
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The chi-square statistic ig? = 14.9 which we compare with the number which
is such that 2 (z) = 0.95, and a look at Table A.4 reveals that= 7.82, and hence
we rejectH, on the5% level. TheP-value is

P(x* > 14.9) = 1 — F3(14.9) = 0.002

and thus the fit to a Poisson distribution with méahis poor. 0

In the last example, we rejected the hypothesis that theadate from a Pdi.5)
distribution. Since the alternative in a goodness-of-§it iesimply “Hj is false,” this
means that it could be the claim of a Poisson distribution Wes rejected or only
that it did not have the right mean. Suppose that we want toateether the data
come fromsomePoisson distribution but not with a specified mean.

The idea is to simultaneously estimate the mgdrom the data and tesi, with
the estimated values of the probabilities (which we reaalladl functions of\). We
can think of this as testing the Poisson distribution thattfie data the best, and if
this is rejected, so is any other Poisson distribution. Hetke general result.

Proposition 6.7.3. Under the assumptions of Proposition 6.7.1, suppose that
the probabilities depend on an unknown parameter,5&y), ..., p.(6). If 0
is the MLE of6 and thep, () satisfy certain technical conditions, then

2’“: (X — npr(0))? 4

2
= ~ Xr—2
k=1 npi(6) '

a chi-square distribution with — 2 degrees of freedom.

The technical conditions are assumptions of differenlitgl®f the p, (6), which are
always satisfied in our examples. A more general result isifithere arej un-
known parameters, we replace them by their MLEs and thetiegudistribution is
chi-square with- — 1 — 5 degrees of freedom. Thus, we lose one degree of freedom
for each estimated parameter. In Equation (6.7.1)FHhare nowestimatecexpected
frequenciesE, = npk(é\), and for the goodness-of-fit test, we should make sure
that all thenpy ( 5) > 5. We should also point out that it is not necessary to use the
MLEs; the result is true for any estimators that satisfy @ierasymptotic properties.
We will, however, stick with MLEs.

Example6.7.4 In the earthquake example above, test whether the data ¢ome f
a Poisson distribution.
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The pmf for a Poisson distribution is

L AF
pe(N) =e o
where we need to estimaie From Section 6.4 we know that the MLE dis A = X.
We have the observed value

Ox15+1x13+2x44+3x1

)= =0.73
33

which gives the estimated probabilities

~ 0.73"
pk(A):eiong, k:0,1,2,...
and estimated expected frequencies
0.73*
E; = 33e—0-73T, k=0,1,2, ..

Again, we need to make sure to define classes such thdfttere at leasbt and
computation gives the following classes and numbers.

Class 0 1 > 92

Observed 15 13 5

Expected| 159 11.6 5.5

This time, the chi-square statistic is
X2 =10.27

which we need to compare with which is such thaf’ 2( ) = 0.95, since there

are now three classes and one estimated parameter and?henbe 1 =1 degree

of freedom. Table A.4 gives = 3.84, and we cannot rejedt{y. The P-value is

1 — F1(0.27) = 0.60, which means that we cannot reject on any reasonable level.
The fit to a Poisson distribution is good, so the rejectionxaraple 6.7.3 was due to
the fact that the suggested mean was wrong.

This is a good place to remind the reader that accepting ahgplbthesis is not
the same as proving it. Even if the fit to a Poisson distribui® good, the true
distribution may still be something else, but the differerctoo subtle to detect. All
we can conclude is that it is not unreasonable to assume adpodsstribution. It
gives a good fit and unless it is rejected, we can keep usirgatwworking model.
See Problem 66 for more. 0
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In the previous example, it is important to note that wendttest the null hypothesis
that the data come from a Poisson distributiath mean0.73, only that they come
from some Poisson distribution. The estimation dfis part of the test If we first
estimate\ by 0.73 and then tesH|, : Poi(0.73) with Proposition 6.7.2, we are guilty
of data snooping since we let the data generate our hypetH&si since we still need
the estimate oA to do the test, what is the difference? One degree of freeddra!
fact that the estimation is part of the test gives-us 2 degrees of freedom instead
of r — 1, and this makes the null hypothesis a little easier to rejElstis, the proper
test takes into account the fact that there is variabiligpah the estimation, whereas
data snooping would make the fit seem better than it really is.

The goodness-of-fit test can be used also to test for contsxdwstribution. All
we have to do is to divide the range into classes, computetimpility of each class
and go on as before. See Problem 70 for an example.

6.7.1 Goodness-of-Fit Test for Independence

A special case of the goodness-of-fit test from the precieesian is to test for
independence between certain characteristics. If we densivo characteristicsi
and B, we can think of these as events that may occur when an objeahipled at
random. There are then four possibilitieg:n B, A N B¢, A° N B, and A° N B€.
Our null hypothesis is

Hy : A andB are independent

and if we letp = P(A) andg = P(B), Hy specifies the probabilities

Category ‘ ANB ‘ AN B¢

A°NB ‘ A°n B¢

Probability‘ pq ‘ p(1—q) ‘ (1-p)q ‘ (1-p(—q)

If p andq are known, we have the situation from the previous sectiadh wi= 4
and can do a chi-square test based on observed frequendies fiour categories.
More commonly, however, the probabilities are not known engst be estimated
from the data. According to the comments following Progogsi6.7.3, the degrees
of freedom will be reduced by one for each estimated parametere, we need to
estimate two parametegsandqg, and gett — 1 — 2 = 1 degree of freedom. Suppose
that we examine objects and classify them into each of the four categoridstaat
we get the number;, X2, X51, and X, respectively. It is practical to display
these types of data in@ntingency table
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B B¢
A | X1 | Xio
AC | Xo1 | Xoo

The estimators op andq are the relative frequencies

X X X X
5= 11 + X12 and = 11 + A21
and the chi-square statistic
s (Xu-npq)* | (Xi2—-np(1-7))°
X = — = =
npq np(l—q)
(X21 —n(1 = p)q)? n (X22 —n(1=p)(1 = q))*
n(l—p)g n(l-p)(1—-7q))

which has ay? distribution.

Example6.7.5 Recall the Berkeley admissions data from Example 1.6.40\B&

a contingency table of the numbers of male and female apytida the categories
“easy” and “difficult,” respectively. Is choice of major ingendent of gender? Test
on the5% level.

Male | Female

Easy major 1385 133

Difficult major | 1306 | 1702

We haven = 4526, and the observed numbers a¥g; = 1385, X15 = 133, Xo1 =
1306, andX2, = 1702. This gives the estimates

1385+ 133 1385 + 1306
p=—-—— =0.34 d §=————+——=0.
1526 034 and ¢ 1526 059
and the chi-square statistic
5 (1385 — 4526 x 0.34 x 0.59)2 N (133 — 4526 x 0.34 x 0.41)?
X 4526 x 0.34 x 0.59 4526 x 0.34 x 0.41

(1306 — 4526 x 0.66 x 0.59)* (1702 — 4526 x 0.66 x 0.41)*
4526 x 0.66 x 0.59 4526 x 0.66 x 0.41

= 957.1
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which we compare withr, which is such that,» () = 0.95, which givesz = 3.84,

and we can reject independence. Since our observed valugyss, fit would be
interesting to compute th2-value. Recall the relation between the chi-square and
normal distributions to realize that our chi-square stiatis the square of &/ (0, 1)
variable. Thus, for any:

P(x*21)=1-P(—Vo < x <Vr)=2(1-2(V7))
and by the approximation at the end of Section 2.7, we get
P(x* > z) = 20(Va) [V

which, withz = 957.1, equals3.8 x 1072101 Quite impressive evidence against
independence. 0

The characteristics do not necessarily have to be binare{female, easy/difficult,
etc.). Suppose that the first characteristic definesitheategoriesd;, Ao, ..., A,
with corresponding probabilities , ..., p,, and the second characteristic thecat-
egoriesBy, By, ..., By, with probabilitiesy, ..., g.,. There are then,n, categories
total, and we still wish to test for independence betweernlecharacteristics, and
hence our null hypothesis is

Hj : A; andB; are independent for allandj

Suppose that we have a total nfclassified objects; let the observed number in
category(i, j) be X;;, so that the contingency table hag rows andn, columns.
UnderH,, the expected number of objects in categ@ry) is np;q;. Assuming that
thep; andg; are unknown, we estimate them by relative frequencies as

1 & 1 &
]/9\1' = E ZXij and qu = E ZXij
j=1 i=1

and define the chi-square statistic

and need to figure out how many degrees of freedom it has. Indtaion of the
previous section we have= n;n,, and we need to estimate theandg;. Since
each set of probabilities adds to one, we have to estimatergnt- 1 of thep; and
ny — 1 of theg;. Thus, the resulting chi-square distribution has

nlng—l—(nl—1)—(712—1):(711—1)(712—1)

degrees of freedom. We may need to lump classes togetherk® suge thatp;q;
are> 5 for all ¢, j and also make sure that this is done in a sensible manner.



GOODNESS OF FIT 359

Example6.7.6 The following contingency table shows the classification @31
blood donors, according to blood type (A, B, AB, or O) and adowy to Rh factor
(Rh+ or Rh-). Are blood type and Rh factor independent? Tedtwel5%.

A | B|AB| O

Rh+| 320 | 96 | 40 | 412

Rh-| 66 [ 23] 9 65

The estimated probabilities are

R 320 + 96 + 40 + 412 N N

D1 1031 0.84, Do p1 =0.16

~ 320 + 66 - 96 + 23

« o1 08T @ T

N 40+ 9 ~ A

Q3 = 1031 0.05, Gu =1— (1 +q@+q)=0.46
and the chi-square statistic becomes

x? =3.54

We haven; = 4 andny = 2, which gives the number of degrees of freedom as
(n1 —1)(ng — 1) = 3. The critical value is thus the, which hasF,; (z) = 0.95,
which givesz = 7.8 so we cannot reject independence. ‘ 0

6.7.2 Fisher's Exact Test

As long as we have sufficiently many observations, the testals quite reliable, but
what can we do if the rule of thumip;g; > 5 cannot be satisfied even after lumping
classes together? F@rx 2-tables, there is an alternative approach cakether’s
exact test

First, let us introduce the convenient notatin = X;; + X;», wherei = 1, 2,
for the row sums an.; = X,; + X»;, wherej = 1, 2, for the column sums in the
contingency table

A | Xo1 | Xoo
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Next, we condition on the observed row and column sums,heeventy X;. =

x1.} and{X.; = z.1}. Under the null hypothesis that the two classifications are
independent, we can interpret the variallg as the number of objects with property
A we get when randomly selecting; objects from a set of objects. This means
that X1, follows the hypergeometric distribution introduced in Bewc 2.5.5 with
parameters, 1. andz.; and we get the probability mass function

PR 5t B ) 5 R
(") ()

Note that whenX; = x1; the rest of the table is determined automatically.

If the null hypothesis is false, we get an unbalanced taldle &n unusually small
or unususally large value d€;;. Hence X1 can be used as a test statistic in a test of
independence and the hypergeometric distribution candsbtosbtain critical values.

Example6.7.7. Crohn’s disease is a serious chronic inflammatory diseasheof
intestines that may cause severe symptoms like abdomiimalgiarrhea, vomiting
and weight loss. It is believed that specialized diets maygate symptoms, so 20
hospitalized patients were randomly assigned to two grotip8 patients each where
one group (control) had a regular diet and the other groaftnent) were given a
diet without some of the food items that were believed to agage the disease. After
six months it was found that 7 of the 10 in the treatment greupained in remission
compared to none in the control group, which was reduced fo@&gwo patients
had to undergo surgery. We can summarize the trial in thetabl

Remission| No remission

Treatment| 7 3

Control 0 8

If the two diets do not affect the chance of remission, the Ineinof patients in the
treatment group that would be in remission follows the hgepemetric distribution
with parameters 18, 7 and 10. The probability mass funcagiven in Figure 6.5.
In order to find appropriate critical values, we have to citaithe probabilities of
the most extreme outcomes. Using equation (6.7.2) witlethasameter values yields
that P(X;; = 0) = 0.0003, P(X;; = 1) = 0.0088 andP(X;; = 7) = 0.0038. A
rejection region consisting of the values 0, 1 and 7 thusggissea confidence level
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Fig. 6.5 The probability mass function ofy; in Example 6.7.7.

of @ = 0.013. Including the value with the next smallest probability {@uld add
0.053 toa and produce a significance level larger than 5 %. In any céses sur
observed value falls into the rejection region, we can tdjee hypothesis that diet
and remission are independent and conclude that the sigediaiet indeed affects
the chance of remission of patients suffering from Crohisgdse. 0

6.8 BAYESIAN STATISTICS

The field of Bayesian statistichas a starting point that differs from those of the
methods we have encountered so far. It is inspired by Bagesidla, which in its
simplest form (Corollary 1.6.4) says that

P(A|B)P(B)

P(BIA) = =55

As an example, consider Example 1.6.8, where there.agually suspected poten-
tial murderers. In particular, Mr Bloggs is considered togagity with probability
P(G) = L. After he has been screened and found to have the murdeesrisype,
the probability of his guilt is updated to

1

P(G | same genotypg= TThop

Now, either Mr Bloggs is guilty or he is not, and this fact doed change after his
genotype has been found, so the probabilities reflect oigfbelhis guilt before and
after screening. One way to think about this is that Mr Bloggses with a “guilt
parameter” that is eithd¥ for innocent orl for guilty. We can describe our initial
degree of belief in his guilt by assigning probabilities be two outcome$ and1.
As new evidence is gathered, we update these probabilities.
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The fundamental idea in Bayesian statistics is similar. i@grpreting probability
as a measure of the degree of belief, we can view an unknovameder as @&an-
dom variableinstead of an unknown constant. We can then assign it alisith
that describes how likely we think different parameter eslare, and after we have
gathered the data, we update the distribution of the paemeethe conditional dis-
tribution given the data, using some variant of Bayes’ folanirhe methods we have
previously developed, where parameters are viewed as fixeahknown constants,
are often referred to dsequentist statistic$

Example6.8.1 A digital communication system transmits andls where the prob-
ability that1 is sentig, whichiis eithert or 2. The four observed values arel, 0, 1.

In Example 6.4.4 we vieweg as an unknown parameter to be estimated from these
observations. We will now apply the Bayesian reasoning.

We viewp as a random variable with rangé, %}. Thusp has a distribution and as-
suming that before the experimentwe have no reason to leatieve in any particular
one of the values, it is natural to assume that uniform on its range. Thus

1 1 2 1
P( —g)—5 and P(p—g)_§

We now observd, 1,0, 1 and wish to update our distribution. This means that we
compute the conditional distribution pfgiven the observations. With denoting
“data” (i.e.,1, 1,0, 1), Bayes’ formula gives

1/3)P(p=1/3)

1)) P(D}p =
P (‘3‘17) P(Dlp = 1/3)P(p = 1/3) + P(Dlp = 2/3)P(p = 2/3)

+
(1/3)°(2/3)(1/2) _1
(1/3)(2/3)(1/2) + (2/3)*(1/3)(1/2) 5

which also givesP(p = 2|D) = 2. Thus, the new distribution i¢1, 2) on the
range{1, 2}. The data made us belleve morednthany, but the latter is not ruled
out. The umform distribution we started with, before we gay data, is called the
prior distribution (or prior for short), and the conditional distribution given the data
called theposterior distribution If we were to collect more data, it would make sense
to use the distributio r, r) as the new prior and thus take previous measurements

into account. O

hS|

90r “classical statistics,” which is somewhat ironic sinbese methods were developed mainly in the
twentieth century, whereas early Bayesian methods, as iveagin see, were used by Laplab@0 years
earlier. However, modern Bayesian methods have been prm&hl only relatively recently, since they
often involve substantial computational problems.
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The use of Bayes’ formula is what gives this methodology &se. Generally, i
is the parameter and we denote the datdhye have
P(D]0)P(0)

P(D)

Here P(0) is the prior distribution, that is, the probability distition before the
experimentand(#|D) the posterior distribution, that is, the distribution cdtiwhed

on the data. The other probabilities aP¢D|0), the probability of the data if the
parameter value andP (D), the unconditional probability of the data. To compute
P(D), we sum orintegrate ovéiin the numerator, depending on whethiés discrete

or continuous.

Note that we usé to denote both the random variable and its value. Although no
strictly in line with how we usually formulate probabilityegements, this is convenient
and is also the standard notation.

In Bayesian analysis, the posterior distribution contalhthe relevantinformation
about the parameters. If we want to summarize the informatith a single number,
we may, for example, use the mean in the posterior distobufi hus, computing the
posterior mean can be regarded as the Bayesian equivalepombestimation.

P(0|D) =

Definition 6.8.1 Let # be a parameter anfd a set of data. The posteripr
meanFE|[f| D] is then called 8ayes estimatoof 6.

This is not the only way to define a Bayes estimator but the only that we will
consider. As before, we refer to this asestimatorif data are described in terms of
random variables and astimatdf data are actual numerical observations on these
random variables.

Note that “estimator of” does not have the same meaning in the Bayesian as in
the frequentist setting. In frequentisttheory, an estomata random variable used to
approximate the unknown constahin Bayesian theory itis the mean of the random
variablef conditioned on data.

Example6.8.2 Reconsiderthe previous example but suppose that we kndwngot
at all aboutp. Suggest a prior, then find the posterior distribution arel Bayes
estimate op.

If we do not know anything about, we would tend to to let the prior be uniform on
[0, 1], that is, letp have pdf

flp)=1, 0<p<1
and with the same data as above we get

i) = SRS
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Herep is a continuous random variable and the observations coome & discrete
distribution. ThusP(D|p) and P(D) are actual probabilities, and we get

P(Dlp) =p*(1 —p)

and
1

1
P0) = [ PO = [ 0= = 55

which gives the posterior pdf
f(pID) =20p°(1—p), 0<p<1
The mean in this distribution is

1 1
5 2
Elp] = / pf(p|D)dp = 20/ (" = p")dp = 3
0 0
which is the Bayes estimate. Compare this with the freqatasitimate of the un-
known parametep, which is the observed relative frequer‘%yThe Bayes estimate
is smaller since it can be thought of as a weighted averageegior mean, which
is % and the sample meﬁﬁ For more on this, see Problems 77 and 78. 0

Example6.8.3 (Laplace’s Rule of SuccessigrConsider an experiment where an
event occurs with unknown probability The experimentis repeatadimes, and the
event is observed every time. Assume a uniform prior; findob&terior distribution
and Bayes estimate.

With p ~ unif[0, 1], we havef(p) = 1, P(D|p) = p", and P(D) = -5, which
gives posterior distribution

P(Dlp)f(p)

f(p|D) = P(D)

=(n+1)p", 0<p<1

The mean in this distribution is

n+1
n+2

Emm=émmm@=m+u4¢“@=

When Laplace computed this value, he interpreted it as thieglnility that something
that has always occurred will occur once more; hence theesspon “Laplace’s rule
of succession.” The example he chose as an illustrationheas/ent that the sun will
rise again tomorrow, knowing that it has risen every day $o Raobably realizing
that this was not the best chosen example, he quickly addéethénprobability would
be much higher for “he who, seeing the principle regulating days and seasons,
realizes that nothing at the present moment can arrest tire€of it.” In probability
terms, consecutive observations regarding sunrise anadependent. 0
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The uniform prior in this example is reasonable if we have riorgknowledge ofp
whatsoever. In practice, it is likely that we know at leashsthing. We might have
previous data from some similar experiment or other infdforathat make some
values ofp more likely than others. A useful distribution ¢ 1] is the following.

Definition 6.8.2 If X has pdf

Ia—l(l _ x)ﬁ—l

0<z<1

)

it is said to have &eta distributionwith non-negative parametesisandg.

The functionB(«, 3) is thebeta functiondefined as

1
B(a, ) = / 2711 —2)PYdx
0
which for integer values of and equals

(a =13 - 1)!
(a+pB—1)

and can otherwise be expressed in terms of the gamma fundtiote thate =
gives a beta distribution that is symmetric around, and in particulany = 8 = 1
gives the standard uniform distribution. By computing tiseal integrals and using
some additional properties of the beta function, it can mshthat

a af
ElX|=——

X a+p (a4 B a+p+1)
Example6.8.4 Reconsider Example 6.8.2, where we have obsetved), 1 and
choose as prior fop a beta distribution witl = 5 = 10. Find the posterior distri-
bution and the Bayes estimateof

B(O‘aﬁ) =

and VafX]=

This choice of prior means that we believe thais centered at, and symmetric
around(.5 but that we do not have strong belief in extreme deviatioe Josterior
distribution is

i) = ZEEI)
where, as usuak(D|p) = p*(1 — p) and
flp) = Pl = p)

B(10, 10)
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Fig. 6.6 The pdf’s of the prior (solid) and posterior (dashedpofis in Example 6.8.4.

which gives

PPA-p) xp’1-p)°  p1-p"
P(D)B(10, 10) P(D)B(10, 10)

f(p|D) =

We could compute the denominator explicitly but insteackribat if it were equal to
B(13,11), then this would be a beta distribution with= 13 andg = 11. But then
this must be the case, for otherwigép| D) would not be a pdf. Hence, we conclude
that the posterior pdf is
12 10
_p-(1—-p)

TwID) = 5310y
a beta distribution witlh = 13 ands = 11. See Figure 6.6 for a plot of the prior and
posterior distributions. By the formula for the mean, the/8aestimate is

1
3 ~ 0.54

E[p|D] = —>
PPl = 713 O

In the previous example we recognized the principal fornmeflieta distribution and
therefore we did not have to compute the denominator exiglicihis is typical for
these types of calculations and it is common to write

f(p|D) o< P(D|p)f(p)

that is, the posterior is proportional to the probabilitytbé data times the prior.
We can also note tha®(D|p) is in fact the likelihood function, so the fundamental
equation in Bayesian statistics becomes

Posteriorx likelihood x prior

Computation of the proportionality constaitP (D) is one of the most challenging
problemsin Bayesian statistics. In complex models it isdggible, and sophisticated



BAYESIAN STATISTICS 367

simulation methods, calledarkov chain Monte CarlMCMC) methodshave been
developedin orderto get approximate solutions. For a mizeduction to such meth-
ods in a nonstatistical setting, see Haggstremite Markov Chains and Algorithmic
Applicationg8].

In the last example, the number1s in the sample has a binomial distribution. It
is easy to see that if the prior pfis beta, then the posterior is also beta, regardless
of the sample size or the outcome. We say that the beta distiibis conjugate
to the binomial distribution. To choose a conjugate distiiin as prior has several
advantages. As we saw in Example 6.8.4, a conjugate prititdison means that
we do not have to calculate the proportionality constanlieitly but can identify the
posterior distribution by examining the functional forntbé product of the prior and
the likelihood with respect to the parameter. Another gashantage is that it sim-
plifies comparisons between priors and posteriors asiidtest in Figure 6.6. Since
the prior distribution is a quantification of our knowleddwat a parameter before
observing data, we want to see how this change when we inthedaformation
given in a sample.

So, when we have chosen a model for the sample, how do we firdthespond-
ing family of conjugate distributions? For most standastriiutions we can use the
following result.

Proposition 6.8.1. Consider a sampl&, ..., X,, with pmf p(x|) or pdf
f(x|6) wherex = (z1,...,2,). If p(x|0) or f(x|6) can be written in the
form?°

c(x)g(0)" "0

wherec, g, h andt are arbitrary functions, the conjugate distribution can be
expressed
F(8) o g(6) @

wherea andb are arbitrary constants.

Proof. Let us consider a prior distribution of the form above. Thiea posterior
distribution can be written

JO1%) o p(x[6)£(8) ox c(x)g(6)" MO x g(g) O

o 9(9)n+aeh(0)(t(x)+b) — g(o)aleh(e)b/
wherea’ = n + a andb’ = t(x) + b. The proof of pdf's is completely analogous.
10Any class of distributions that can be written in this formcilled anexponential family There are

several statistical advantages in expressing distribatia this form, which we will not develop further
here. It suffices to say that most standard distributionsrefect exponential families.
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Let us assume that we do not know that the beta distributi@ongugate to the
binomial distribution. The probability mass function oéthinomial distribution can
be written

ptelp) = (1)1 = o = () 1= pyrer s

where we identify:(z) = (7), g(p) = 1 — p, t(z) = = andh(p) = log(p/(1 — p).
Hence, the prior pdf can be written

F(p) oc (1= p)eet1os®/U=p)) — pb(1 — p)a=?

and by settingn = o« + 8 — 2 andb = a — 1, we can identify this as the beta
distribution. For more, see the Problems section.

Inthe examples thus far, the data have been discrete andithmpter continuous.
Let us next consider an example where both data and paraareteontinuous and
all probability statements must be made in terms of pdf’s.

Example6.8.5 Consider a normal distribution with unknown mearand known
variancel where the prior distribution of is N (0, 1), the standard normal. Suppose
that we have observed the values ..., x,,; find the posterior distribution and the
Bayes estimate.

Letx = (z1,...,2,) to get the posterior pdf

Sx|p) f(w)
X)="—"T27 6.8.1
T = =5 (6.8.1)
Let us look at the factors one by one. First note that
F) = —me 2
V2T

Next, the observations are i.i.d/(u, 1), and we get

—_

—(z—p)?/2

e
2

fxlp) = J] flalp) =
k=1

n

ﬂ

k

= (#)nexp <—% é(xk - M)2>

The numerator in Equation (6.8.1) becomes
(zp — p)? + u2>>
k=1

Pl ) = (%fp (_%

1

N
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where we will rewrite the exponent of the exponential. Firste that
D Ok EED USRI
k=1 k=1 k=1
2 T
= (n+1) ( Z M +u2>

k

n 2
= (n+1) (N_n—li—lzxk> +R

k=1

where R is what is left over after we complete the square and depends and
T1,..., Tpn. SiNCEY_,_, 1 = ni, we now get the posterior pdf

b - <\/L2_W)”“ ef—(i/;exp <—%(n+1) (u—nnf1>2>

Cexp <—%(n+ 1) (u - nrfl)2>

whereC' does not depend om. Now comes the neat part. We know th&u|x)
is a pdf as a function of, (remember thak is fixed). Also, we recognize that with
C = (n+1)/+/2m, the last expression is the pdf of a normal distribution witban
nZ/(n + 1) and variancé /(n + 1). Thus, there is no other possible value fd(or
f(u|x) would not be a pdf), and the posterior distribution is

nT 1
NN _
,u|x (n—i—l’n—i—l)

The Bayes estimate is thus

nx
Elu|p) = "

which we can compare with the standard frequentist estimate

p=z

Note how the Bayes estimate is closer to 0. This reflects fheeimce from the prior
distribution in which the mean is 0. The posterior mean cahiscase be regarded
as a weighted average of the prior m&samnd the observed sample megiwith the
weights beingl/(n + 1) andn/(n + 1). Note that a much larger weight is put on
the sample mean and that for largeF || D] ~ Z. This suggests that the choice of
prior is less important than what the data support, and thégnosation reduces some
of the arbitrariness in the choice of prior. See also Prol8dm 0



370 STATISTICAL INFERENCE

6.8.1 Non-informative priors

The greatest strength of Bayesian statistics is that it lesals to incorporate prior
knowledge in a statistical analysis in a mathematicallygent way. However, we
also need to address the issue of what to do if we do not knothergywhatsoever
beforehand or if we do not want our prior belief to affect oasults. In Example
6.8.2, we introduced a uniform prior to account for lack dbimation, but is this
really the best choice?

If we do not know the value of a certain parameter in a givetritigtion it does
makes sense to spread out the probability mass uniformlytbeeparameter space
because no particular parameter value will then get a ladgasity than any other
value. Aslong asthe parameter space is bounded, this wedkswt most parameters
in the standard probability distributions are actually deél on unbounded spaces like
A in the Poisson distribution and and o2 in the normal distribution. One way of
getting around that is to choose a so caladue prior, which is some distribution
that gives almost equal weight to all parameter values lileeuniform distribution
on a really large interval or a normal distribution with alhgdarge variance. This
solves the practical problem but is still somewhat unsatisfry from a theoretical
point of view. However, it turns out that we can still use Bsiyfermula if we pretend
that uniform distributions on unbounded spaces do exist.

Since any uniform distribution, by definition, gives equalight to all parameter
values and, consequently, should have a constant pdf, wexgaess a uniform prior
oné asf(0) « 1. If the parameter space is unbounded, the proportionalittant
cannot be positive, but let us disregard that for the mom&he posterior density
can then be written

Posteriorx likelihood x prior  likelihood

and as long as the likelihood has finite and positive integithl respect t@, we have
a correct posterior distributiot.

Example6.8.6 Let us return to Example 6.8.5 and see what happens if we ehoos
a non-informative prioif (1) o 1 for u. Then, we get the posterior

Pk o SOt o) o o) = (=) exp (—%Zm-ﬁ)
k=1

x o (<2 27)

11 This argument can be put in correct mathematical form byidenisig a sequence of correct prigfis(0)
where the probability mass is gradually spread out unifgram the parameter space as— oo, i.e. the
normal distributionV (0, ). The posterior can then be expressed as

_ . P(DI0)f.(0)
f(G‘D)_UIHI;OW
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where the last step follows from the fact that

> @k —p)? =n(p—z)*+C

k=1

We recognize the posterior as the normal distribufigiz, 1 /n), which means thatthe
Bayes estimate becomé&8u| D] = z. Using a non-informative prior thus produces
a Bayes estimate identical to the frequentist estimategiisilogical since no prior
belief should affect our results in any direction. Morequle posterior variance
coincides with the frequentist variance of the m&gmvhich implies that the statistical
error is the same in the two approaches. 0

As we have seen, the uniform distribution works in many situeas a reasonable
model for the absence of prior information about parametdues, even for un-
bounded parameter spaces. But that depends on what parameetee interested
in.

Let us for example say that we have observed a sample ofriféhs that are
assumed to be exponentially distributed. One alternagit@ choose a uniform prior
for the parametek, but if we are interested in the mean lifelength it would marbbe
more natural to consider the parameatet 1/) instead. To see that these approaches
are incompatible, assume a uniform prit\) o< 1 and compute the distribution of
1 as

B du 1
f(#)—f()\)‘a O(l.ﬁ
which is definitely not uniform.

Consequently, the choice of a non-informative prior showdtibe dependent on
the choice of parametrization.

Proposition 6.8.2(Jeffrey’s prior ). The prior density

where
d2

is the Fisher information, is invariant under parametangfarmation.

g (16

What Proposition 6.8.2 says is essentially that if we havalt@mnative parametriza-
tion ¢ = g(0), it does not matter if we choog&6) < /I(6) or f(¢) x \/I(¢), we
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will still get the same result.

Example6.8.7. Let us return to the binomial distribution and see what hagpt
we use Jeffrey’s prior fop. We first calculate the Fisher information

d2 X n—X n
I(p)=-E [W logp(le)} =-F [—p E —p)2:| “p(1-p)
This yields the prior

1) o VI(p) o Jﬁ =R - p) 2

which we identify as the beta distribution with parameters- 1/2 andg = 1/2.
Since we know that the beta distribution is conjugate to thernial distribution, we
immediately get that the posterior is the beta distributitth parameters = x+1/2
andg = n —x + 1/2. If we, for instance, apply this to Example 6.8.2, we would ge
a Bayes estimate of

3+1/2 7
E(p|D) = = —
WD) =2 =1
This is closer to the frequentist estim%tehan the Bayes estimate obtained from the
uniform prior (%) but still not equal. 0

This example clearly illustrates the problematic natutbetoncept of non-informative
priors. In a nutshell, introducing a prior distribution a@ys brings some subjective
information into the analysis and the two intuitive choiodésiniform or Jefferey’s
prior to minimize the impact of the prior sometimes coincéthel sometimes differ.

6.8.2 Credibility intervals

When we have obtained an estimate, the next natural staptlesfrequentist case, is
to try to get an idea about the accuracy of this value. Sinepdisterior distribution is
interpreted as our knowledge about a parameter, as a cotiuired our prior belief
and the information contained in the observed data, theegosstandard deviation
is the obvious choice of uncertainty measure analogouststémdard error. There
is also a Bayesian analog to confidence interval caltedibility intervaldefined as
[1, 23], where
P(z1 <0< ux3]D)=¢q

Note thatitis the parameter and not the interval limits,dibaned on the dat®, that
is random in this framework. This makes a credibility int@mnore intuitive because
now we can interprej as a (posterior) probability given an observed data setén t
frequentist setting, a given confidenve interval is eitligintror wrong sincé is fixed.
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The confidence level only tells us what proportion of confikemtervals would be
correct if we would repeat our calculations using new inchef@nt samples from the
same underlying distribution, which many non-statistisifind confusing.

Example6.8.8 Let us again consider the important special case where wé¢ wan
to estimate the probability based on a binomial responde and a beta prior. If
the parameters of the prior distribution are denateand 5, we have seen that the
posterior is also beta with parameters- x andg + n — x. The posterior standard
deviation is then

a+0B+n a+pB+n+1
and the limits of a symmetric credibility interval can be @ibed as the solution to

1—
P(p < @1]X) = Pp > x| X) = =

which has to be calculated numerically. In earlier exampleshave used three
different priors for the communication system example vhet= 3 andn = 4. For
the uniform prior, which can be seen as a beta distributich wi= 5 = 1, we got
the Bayes estima@. The posterior standard deviation for this case becomes

1 [Ix2
VVarpiX) = 2/ ; = 0.178

and a 95 % credibility interval turns out to f&28, 0.95]. The informative prior with
a = 3 = 10 yields the Bayes estimateb4, the posterior standard deviation

1 /13 x11
v/ Var(p|X) = 2 E = 0.100

and the credibility interval0.34, 0.73]. Not surprisingly, we see that an informative
prior yields a smaller posterior standard deviation andyseguently, a narrower
credibility interval. 0

6.9 NONPARAMETRIC METHODS

All the methods we have developed in this chapter have besedb@anparametric
models assumptions of specific distributions and their paransetén this section
we will investigate methods used to construct tests thatenmakassumptions other
than that the distribution is continuous and sometimessisametric. Such methods
are said to benonparametri¢? and are widely used when it is not obvious what
distribution to assume.

12 perhaps more correct term distribution-free but the term nonparametric is so well established that
we will use it here.
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6.9.1 Nonparametric Hypothesis Testing

Suppose that we are interested in testing a hypothesis abmg location parameter
of a data set and do not know anything about its distributithreothan that it is
continuous. Itis then suitable to use the mediaas the location parameter, recalling
from Section 2.9 that this has the property

P(Xgm):P(XZm):%

Our null hypothesis id1y : m = mg and if Hy is true, we expect to have roughly
the same number of observations above and betgwand if our sample deviates too
much from this, we rejectiy. The test is usually described as assigning a plus sign
to those observations that are abavgand a minus sign to those that are below (the
assumption of a continuous distribution rules out obs@matthat are exactly equal

to my, at least in theory). In this formulation, 1&f, be the number of plus signs:

Ny = #{k: X > mo}

Suppose that the alternative is two-sid&d, : m # mg. We then rejecH if N, is
either too large or too small, and the resulting test is deteesign test Let us state
the test formally.

Proposition 6.9.1(The Sign Test) Suppose thak, ..., X, is a sample from
a continuous distribution with median and we wish to test

Hy:m=mg versus Hu :m # mg

We rejectH if
N+ S k or N+ Z n—k

1 k n
7> ()
-

on significance level

o =

Proof. UnderH,, N, ~ bin(n, 1), which means that the random variable N,
(the number of minus signs) is also bin %) and hence

P(N+§k):P(N+2n—k):2nzk:(r.b)

which gives the significance levalin the proposition. [ ]
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Since the significance level can be expressed in terms ofdhefahe bin(n, %)
distribution, it is easy to compute. For largewe can use the normal approximation
to the binomial, and for one-sided alternatives, the obwiadjustments are made,
rejecting for only one of the inequalitie¥, < k and Ny > n — k and getting

significance level
k
1 n
AaETpY (J)

J=0
Previously, we set the significance level in advance, ugasii%. Since the distribu-

tion of N is discrete, we are seldom able to achieve those levelslgxattchoose
k so that we come as close as possible.

Example6.9.1 Laboratory rats run through a maze, and the time until exités-
sured. It is known that they either manage to exit relatigelgn or they get lost and
it takes a long time to exit, thus making intermediate timge r The distribution of
times can be assumed to be symmetric. It has been claimeththatean exit time
is more thanl00 seconds. Use the following data to test this on leveél%:

26, 31, 43, 163, 171, 181, 193, 199, 206, 210

Since the distribution is symmetric, the mearand mediann are equal. The hy-
potheses arél, : ; = 100 versusH 4 : p > 100, and we reject if Ny > n —k
wheren = 10 andk satisfies

k
1 10
§m§2(j)z0ﬂ5
j=0
which givesk = 2. Thus, we reject ifN;. > 8, and since the observed value is
N, =7, we cannot rejecH. 0

Take a look at the data in the previous example. Since there amly seven ob-
servations above00, the sign test could not rejeéf,. However, the observations
abovel 00 tend to deviate more frorh00 than those below. Since the distribution is
symmetric, this might indicate that the mean is more th@hbut the sign test does
not take into account the values themselves, only whetlegrahe greater thai00.
We willintroduce a more refined test that also takes into antthe magnitudes of the
deviations from the median but requires a symmetric disti@in. If the distribution

is symmetric, the mean and median are equal and we statelggastin terms of the
meany instead. Suppose thus that we wish to test

Ho:p=po

based on the observatiofis, ..., X,,, a sample from a continuous and symmetric
distribution. Consider the absolute deviations fragn

|X1 - ,U()|, ) |Xn - ,U()|,
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and order these by size, from smallest to largest. This gimebX; arank Ry, such
thatR; = jif X} hasthejth smallest absolute deviation frgmy. Also for eachXy,
keep track of which side qij, it is on by assigning to it an indicator function

I — 1 if Xg > Lo
=1 0 otherwise

Thus, for each observatiaki; we have a paif Ry, I;.), a rank, and an indicator for
which side ofyy it is on. The test statistic we will use is

W= Ryl (6.9.1)
k=1

which is simply the sum of the ranks of all the observatiord t#re above,. Note
that W ranges fronD (all observations below) to n(n + 1)/2 (all observations
aboveuy). If Hy is true, it is not too difficult to realize that the distriboii of W is
symmetric with meam(n + 1)/4, and we reject, if W deviates too much from
its mean. As usual, we need the distributioViéfto be able to quantify “too much.”
This turns out to be a nice exercise in the use of probabiétyegating functions, and
you are asked to do it in Problem 93.

Proposition 6.9.2. The probability mass function d#/, defined above, is

a(r)

nn+1)
on

PW=r)= 5

r=0,1,...,

wherea(r) is the coefficient ot in the expansion of [;._, (1 + s*).

By summing probabilitied?(W = r), we can find critical values and significance
levels. For example, in a one-sided testrhf : 1 = po againstl 4 : p > pg, We
reject if W > C and get significance level

n(n+1)/2

> PW=r

r=C

which we can choose to be close to the desiraxt put in the observed value oF
to get theP-value. Since the distribution d¥ is symmetric around its mean, the

identity
PW=r)=P <W = L”; D _ r>

can be used for computations and the significance level c@ad be computed as

n(n+1)/2—-C

> PW=r)

r=0
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Corollary 6.9.3 (Wilcoxon Signed Rank Test) Suppose thaX, ..., X,, is a
sample from a continuous and symmetric distribution wittameand we wish
to test

Hy:p=po versus Ha : pu # uo

With the test statistiéV in Equation (6.9.1)H, is rejected if
W<e orW>C

whereC = n(n + 1)/2 — c. The significance level is

2P(W <¢) = 2iP(W =r)
r=0

If the alternative is one-sided, we make the obvious adjests1 Thus, if the al-
ternative isH 4 : p < po, we reject ifW < cand forH, : u > pg, we reject

if W > C. In both cases, the significance levelR$1V < ¢). The test is called
the Wilcoxon signed rank testTable A.7 lists critical values that give significance
levels approximately equal tb05 for one-sided and two-sided tests. Note that if we
remove the ranks and only sum the indicators, we get the sign The assumption
of a symmetric distribution makes it possible to replacerttealian by the mean, but
even if we test for the median, it is still important to haveyangetric distribution.

If this is not the case, it is natural to have larger deviation one side of the median
than the other so that such behavior does not necessaritatednything suspicious.

Example6.9.2 Forthe lab rats in Example 6.9.1, we wish to test

Hy:p=100 versus Hy:p> 100

onlevel~ 5%, and from Table A.7 we get= 11, whichgivesC' = 10x11/2—11 =
44, so we reject in favor of H 4 if W > 44. The observed values are

26, 31, 43, 163, 171, 181, 193, 199, 206, 210
The absolute differencéX;, — 100| are
74, 69, 57, 63, 71, 81, 93, 99, 106, 110

and if we order these by size we get
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where the underlined numbers belong to positive deviatidhe ranks of the under-
lined values are
2,4,6,7,8,9, 10

and if we sum these, the value of our test statistic becdies 46 and we can reject
the null hypothesis, something the sign test failed to do. 0

Note how the test statistid” is based on the ranks of the deviations fropmot the
values of the deviations themselves. Thus, in the last ela@rnighe largest three
values were insteazh9, 306, and310, the value o’ remains the same, so although
this would be even stronger reason to rej@éttdoes not take this into account. For
large sample sizes, we can use the following normal appratian for1/. The proof

is left for Problem 94.

Proposition 6.9.4. If Hy is true, the mean and varianceldf are

nin+1)

Bw] = =

nin+1)(2n+1)

Var[W] = ol

and for large values af

W —n(n+1)/4

d
T Jant D@nt )24 MO, 1)

Example6.9.3 The density of Earth is usually reported to 562 g/cn®. In a
famous experiment in798, Henry Cavendish used a clever apparatus to measure the
density. Cavendish89 observations were

4.07, 4.88, 5.10, 5.26, 5.27, 5.29, 5.29, 5.30, 5.34, 5.34, 5.36, 5.39
5.42, 5.44, 5.46, 5.47, 5.50, 5.53, 5.55, 5.57, 5.58, 5.61, 5.62, 5.63
5.65, 5.75, 5.79, 5.85, 5.86

which have sample med2. Let i be the true mean of Cavendish’s data and test
Hy: =552 versus Ha:p#5.52

on the5% level.
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We will use the statistid” and the normal approximation from above. With=
0.05, we thus reject if T > 1.96, and we haver = 29. The absolute deviations
| X — 5.52|,k =1, ...,29, ordered by size, with positive deviations underlined are

0.01, 0.02, 0.03, 0.05, 0.05, 0.06, 0.06, 0.08, 0.09, 0.10, 0.10, 0.11
3, 0.13, 0.16, 0.18, 0.18, 0.22, 0.23, 0.23, 0.23, 0.25, 0.26, 0.27

1
.33, 0.34, 0.42, 0.64, 1.45

o O

This is a good place to comment on the problentiesé Note for example how
there are two occurrences 6f05, coming from the two measuremeriist7 and
5.57. Under our assumption of a continuous distribution, thisigossible butin real
life we are limited by the accuracy of our measurements. Wiherput the values
together, the value of the test statistic will depend on Whie decide to underline,
which is an arbitrary decision. Since the t&#®5s should really have the same rank,
we assign them both thmean rank(4 + 5)/2 = 4.5 and proceed as before. If
there are not too many ties, this is no big deal, but in gentbiglis a problem that
cannot be ignored. The test statistic and its distributiarstithen be adjusted to
account for ties, but we will not address this issue furthising mean ranks we get
W=1+4+3+45+65+9+10.5+12+ 13.5+ 20 + 24 + 25+ 26 = 155 which
gives the test statistic

155 — 29 x 30/4

V29 x 30 x (2 x 29 +1)/24

and with|T'| = 1.35 we cannot rejecHy. 0

If we compare the two nonparametric tests we have seen sedaran note that the
sign test is a very crude test and it is therefore often unabdetect deviations from
the null hypothesis, especially for small samples (seelEnoB0). If it is reasonable
to assume a symmetric distribution, the signed rank testeifemble as it takes more
information into account and is thus better able to detectadiens from the null
hypothesis. In the terminology of Section 6.6.3, the sigaadt test is more powerful
than the sign test.

If we want to test the stronger statement that the sample sdrom a particular
continuous distribution, we can use the so calkamogorov-Smirnov test Let
us assume that we have a random sandple. . ., X,, with continuous distribution
function F'(z) and we want to test the hypotheses

Hy : F(x)=Fy(x) forall =
Hy : F(x)# Fo(x) for somez

for a givenFy(x).
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As an estimator of'(z), we use thempirical distribution function

~ 1 &
wherel 4 denotes the indicator of the evefif and the maximum distance
D,, = max |F,,(z) — Fy(z)|

as test stgtistic. R
SinceF,, (xz) andFy(x) are non-decreasing arfd, (z) is a step function that only

jumps at the pointX1, . .., X,,, the test statistic can be somewhat simplified as
D, = Tl mx )l 1L = B (x) (6.9.2)
n = lrgzagxn max o I YOUE " oA (3) 9.

whereX ;) < ... < X, are the order statistics. Sinég(X;) ~ unif[0, 1] under
H,, we can actually rewrite (6.9.2) as

whereU) < ... < Uy, are the order statistics from a sample from the uniform
distribution onl0, 1]. This implies that the null distribution ab,, is actually inde-
pendent ofFy («) and we can use the properties of the uniform distributionetave
this distribution. However, althoughiit is possible to abtanalytical expressions for
the density and distribution function f@»,, for different values of,, they are much
too complex to be of any practical use, especially for latgénstead, critical values
for significance levels 0.01 and 0.05 can be found in Tablefév.9 < 30. For large

n, it is possible to use the limiting distribution

7
= = Ug)

—1
D, = max {max< L Uiy
n

1<i<n

n

o0

P(VAD, <) —1-23 (=1)ktem20) (6.9.3)
k=1

asn — oo, to calculate approximate critical values or, somewhateggs-values.
For instance, the condition for rejection on the 5 % leveldmesD,, > 1.358/\/n
and on the 1 % level it becomés, > 1.628//n.

Example6.9.4 In 2009, a comparative study used different scales to testt@es
of a group of 12 randomly selected pupils. The results forsmae were
78,93, 95,96, 99, 100,104, 105,110, 113, 124, 127

A correct 1Q scale should, by definition, give a normally disited score with mean
100 and standard deviation 15. Does the data above supsoctaim?
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Fig. 6.7 The empirical distribution function (solid line) for the tdain Example 6.9.4 and
the distribution function (broken line) of the normal dibtrtion with mean 100 and standard
deviation 15. The Kolmogorov-Smirnov test statisfig, is also shown.

The empirical distribution functioR,» () for the data and distribution functicf («)
for the normal distribution with mean 100 and standard demial5 are shown in
Figure 6.7 together with the test statisfigs.

It turns out that the maximum difference is attained at 93, which yields

=~ 93 — 100 1

- — =0.237
15 12

From Table A.9 we get the critical value 0.375 on the 5 % lewdlich means that

we cannot reject the null hypothesis. If we use the limitirgjribution above, we get

the approximate critical value358/+/12 = 0.392, which is quite close to the exact
value. 0

6.9.2 Comparing Two Samples

There are two different situations for comparisons of tmmpkes: pairwise observa-
tions and independentsamples. Ifwe have paired obsen&fia , Y1), ..., (X, Ya)
and wish to tesfiy : ;1 = p2, we can base this on the differendes = Y, — X
and the nice thing is that as long as thig andY}, have the same distributior)y
has a symmetric distribution evenX; andY), do not (see Problem 42 in Chapter
3). Thus, in this case, we can use the signed rank test to kether the differences
have mea.

The other two-sample situation is when we compare the melweodandepen-
dent samples. We assume that we have two continuous distrisuthat have the
same spread and shape and that the only possible differsrtbe imean (this is
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called atranslation modél The distributions do not have to be symmetric. Now let
Xy, ..., X, andYy, ..., Y, be the samples, where < n. The fundamental idea is to
put X andY values together in a big sample, sort this combined samp$iziey and
consider the positions of thE values (the smaller sample). My : 11 = po IS true,
the X values should be uniformly spread within the combined sangd if they tend
to concentrate too much to the either left or right, this dadés thatd is false.

Let W be the sum of the ranks of, ..., X,,, in the combined sample. Thé#
ranges fromi +2+---4+m = m(m+1)/2 (all X values smaller than all values)
to(n+1)+(n+2)+---+(n+m) =m(m+2n+1)/2 (all X values larger than
all Y values) and ifH, is true, the distribution 0¥V is symmetric around its mean
m(m + n + 1)/2. Let us state the test based Bh

Proposition 6.9.5Wilcoxon Rank Sum Test) In the translation model abowve,
we wish to test
Hqy:pp = po versus Hy @y # e

and rejectH if
W<e or W>C

whereC = m(m + n + 1) — ¢. The significance level is

2PW<c)=2 >  PW=r)
r=m(m+1)/2

The usual adjustments are done for one-sided tests. Thalpilities P(1W = r) are
more complicated to compute than in the signed rank testpendill only consider
an example in Problem 98. Table A.8 can be used to find critiglales for signifi-
cance levels approximately equald®5 for one-sided and two-sided tests.

Example6.9.5 When oil companies drill in the North Sea, they charter ofrglrigs.
After bidding and negotiating, a deal is struck with a coatoaand a daily rate is set.
The following data are daily rate$1000, rounded to integer values) for two different
regions, Denmark and the Netherlands, from the p8ae. (The data were kindly
provided by Dr. Patrick King of ODS-Petrodata, Inc., Houstbexas.) Test on level
~ 5% whether there is a difference in rates between the two region

Netherlands58, 62, 63, 68, 69, 70, 77
Denmark: 50, 52, 52, 60, 60, 63, 64, 70, 82
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With up andu as the two means, our hypotheses are

Ho:pup =pn versus Hy:pup # pn

We haven = 7 andn = 9, and Table A.8 gives = 41, which givesC' = 7(7+ 9 +
1) — 41 = 78 (remember that the test is two-sided so the significance éyals
2P(W < ¢)). We thus reject in favor of H4 if W < 41 or W > 78. The data
put together and ordered by size, with the Netherlands galueerlined, are

50, 52, 52, 58, 60, 60, 62, 63, 63, 64, 68, 69, 70, 70, 77, 82

Since there are some ties, we use mean ranks and get the sina étherlands
ranks

W=44+7+85+114+124+135+15="71
and we cannot rejedt. 0

Example6.9.6 The drilling rigs in the previous example are of two diffetépes:
“jackup” and “semisubmersible.” It is assumed that the seiminersible rigs are
more expensive to charter. Do the following data suppostltypothesis?

Semisubmersibler2, 89, 90, 94, 100, 104, 127, 155
Jackup: 50, 58, 60, 64, 68, 70, 77, 83, 103, 125

The hypotheses are, in obvious notation,
Hy:ps=py; versus Hp:ps > g

We havemm = 8 andn = 10, and Table A.8 gives = 57, which givesC =
8(84+ 10+ 1) — 57 = 95, so we reject in favor of H4 if W > 95. The data put
together with values for semisubmersible rigs underlimed a

50, 58, 60, 64, 68, 70, 72, 77, 83, 89, 90, 94, 100, 103, 104, 125, 127, 155

which gives the rank sum
W=7T+10+114+12+134+15+ 174+ 18 =103

and we rejectH, on the5% level and conclude that the semisubmersible rigs are
indeed more expensive. 0

For large values ofn andn, there is a normal approximation, which is slightly more
complicated than the one for the signed rank test. Sifices a sum of ranks, the
meanE[W] is straightforward, but since the ranks are not independeatvariance
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requires a bit more work, using the general formula for thearece of a sum. As
for the normal approximation, our central limit theorem da®t apply since the
summands are not independent, but more general versiore dhéorem can be
applied. We will not address this further but just state #&uit. For an application,
see Problem 102.

Proposition 6.9.6. If Hj is true, then

- W-mm+n+1)/2 4

r= Vmn(m +n+1)/12 ~

N(0,1)

When comparing samples from two continuous distributiovescan also apply the
ideas behind the Kolmogorov-Smirnov test introduced inti®ac6.9.1. Let us
denote the distribution function forsamptg, . . . , X,,, by F'X (z) and the distribution
function for sampley;, ..., Y, by FY (x). The relevant hypotheses can now be
expressed

Hy : FX(x)=FY(x) forall =

Hy : FX(x)#FY(2) for somez
and we use the test statistic

Dy = sup |[F¥ (z) — EY ()]

n

whereﬁ;ff (x) andﬁ,’{(x) are the empirical distribution functions for the samples.
Since all empirical distribution functions are non-desiag step functions, we realize
that the supremum distance is attained in one of the poirteicombined sample.

Dy = o (e [FX() = B (), max [F5() - B (1))
1<i<m 1<<n

Furthermore, it turns out that it suffices to know the relatarder, i.e. the ranks,
of the variables in the combined sample to be able to deterthia value oD, ,,.
Unfortunately, the actual calculations are somewhat miavelved, especially for
large samples, compared to the Wilcoxon rank sum test arlzbatédeft to a computer.
Under the null hypothesis, we can again use the conclusion &bove that the ranks
are uniformly spread out on the combined sample to calctHatdistribution ofD,,, ,,
and, consequently, critical values, which are given in &@ahll0. For large samples,
the limiting distribution

mn = i_—2(iz)?
P< m—i—an’n §a:> — Z (—1)'e

1=—00
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Table 6.2 The maximal absolute distance between daily rates in theedends and Den-
mark (denoted in boldface).

~

K@) F(x) |[F¥@) - (2)]

x <50 0 0 0
50 <z <52 0 1/9 1/9
92 <z <58 0 3/9 1/3
58 <z <60 1/7 3/9 4/21
60 <z <62 1/7 5/9 26/63
62 <z <63 217 5/9 17/63
63 <z <64 3/7 6/9 5/21
64 <2 <68 3/7 719 22/63
68 <z <69 4/7 719 13/63
69 <z <70 517 7/9 4/63
0<z <77 6/7 8/9 2/63
7T <z <82 1 8/9 1/9

x> 82 1 1 0

can be used to obtain critical valuesppvalues. The condition for rejecting on the
5 % level can be expressed

Dy > 1358,/ "
mn

Example6.9.7. Let us apply this test to Examples 6.9.5 and 6.9.6 and see gietve
similar results. We first consider the daily rates of the Mefinds versus Denmark
and calculate the test statistie; 9. This is easiest done in tabular form, which is
displayed in Table 6.2.

We see that the maximal distancels g = 26/63 = 0.413, which is smaller than
the critical valuec = 0.667 from Table A.10 so we cannot reject the null hypothesis
using the Kolmogorov-Smirnov test either.

Again, caution is adviced in the presence of ties, espgaidien the two empirical
distribution functions compared jumps simultaneouslynsider for instance what
happens in the point = 63. If daily rates had been measured more accurately, it is
quite possible thafy (z) would assume the value 6/9 befare () jumps to 3/7.

In that case the absolute difference would have Heén— 6/9| = 8/21 before it
would decrease to 5/21. In this particular example it dogésvadter since the maximal
absolute difference is 26/63 anyway, but in general theaerisk of underestimating
D, in the presence of ties.

In Example 6.9.6, there are no ties, so we can be confiderthhatsult is correct.
Without going into details, it turns out that the test statisecomedsg 19 = 27/40 =
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0.675 and since the critical value from Table A.10ds= 0.6, we can rejecid, on
the 5 % level. 0

6.9.3 Nonparametric Confidence Intervals

Itis not obvious how to construct confidence intervals inaheence of a distribution
assumption or even for what parameter. To approach thidgmgtProposition 6.5.1
turns out to be quite useful. It claims that if we can formelathypothesis test for a
specific problem, we can always translate that into a conéielerierval for a required
confidence level.

Let us first consider the sign test, introduced in the previsection, where we
only make the assumption that a given sample comes from aconis distribution.
Proposition 6.5.1 basically says that we can obtain a comfiglsnterval by including
all parameter values that cannot be rejected in the correpg hypothesis test. Let
us therefore assume that we have chosen a parti¢usar that we reject the null
hypothesisn = my if and only if Ny < k or N, > n — k, where N, is the
number of positive difference&; — mg. This naturally implies that we accept the
parameter valuen, if and only if & < Ny < n — k. The condition thafV has to
be larger thark means that at leagt+ 1 sample points has to be larger thap or
thatmo < X(,_x), whereX ;) < ... < X, are the order statistics. By symmetry,
we conclude that the lower limit can be writtery > X ;1)

To summarize, we can express a two-sided confidence intenvtidle mediann
as

Xkr1) Sm < X (q)

where

k
g=1- 27}71 3 (S‘) (6.9.4)
§=0

Note that we switched from strict to weak inequalities, whitoes not make a dif-
ference in this case since we have assumed a continuoubutistn. As for the sign

test, we cannot hope to get exactly the confidence level we,wan 5 %, but have

to find the value of that brings us as close as possible. If a one-sided confidence
interval is required, the lower or upper limit can be dropped the confidence level
adjusted accordingly.

Example6.9.8 Consider once more the lab rat data of Example 6.9.1 and &sum
that we want a 95 % confidence interval of the median time wxiil. The test
procedure in Example 6.9.1 can be translated directly imooine-sided confidence
interval
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Since the aim of the test was to establish that the medianwiaselarger than 100
seconds, it is natural to calculate only a lower bound. If veaina two-sided interval
on the same level, we have to chodsso that (6.9.4) becomes approximately 95 %.
In this example it is difficult to achieve this, but the valkie= 1 gives usq ~ 0.98
which is as close as we can get. Now, our interval becomes

31 < m < 206 (~ 0.95)

If we can assume that the sample distribution is symmetrig,can use the
Wilcoxon Signed Rank Test to obtain a, hopefully, more medonfidence inter-
val. However, it is less straightforward to transform @di values of ranks, which
this test is based on, into interval limits.

First, we have to calculate pairwise averages

1<i<j<n

based on the sample. Note that we include averages whergso thatX;; = X;.
Then we order them a& ;) < X(5) < ... < X(n(n+1)/2). In the previous section
the test statistid¥ was defined as the sum of the ranks of the positive differences
X;—po. By symmetry, underthe assumption that 1, we can instead consider the
sum of the ranks of the negative differences, which somesitmglifies the following
argument.

Let us now begin by considering a parameter valgeso thatu, < X(l). This
means that all differences are positive and that= 0. By increasinguy so that
X(l) < pp < X(g) we obtain one negative difference whose absolute valueaiam
than any other so that” = 1.

The vaIueX(Q) has to be the average of the two smallest values in the ofigina
sample (why?), so whem, is increased one more step, i) < po < X(3), the
difference| X ;) — po| becomes larger thalX ;) — o[ and gets the rank 2 so that
W =2.

In the next step whei 5y < o < X(4) there are two possibilities. Eithe¥ s,
is an average of two distinct values, which means that tHereificel X ;) — 10| gets
rank 3, or it is equal toX,y, which means that we get one more negative difference
with rank 1. In either case, we g8t = 3. By following the same kind of argument
we can show thatV = k if and only if X () < puo < X(441), whereX o) = —oo
and X n(nt1)/2+1) = 00

Since the Wilcoxon Signed Rank Test rejects the paramelee g if W < c or
W > n(n +1)/2 — ¢, wherec is the critical value, we can express the confidence
interval

X(et1) S0 < Xinmi1)/2—0) (9)
where

g=1-2) P(W=r)
r=0
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Table 6.3 All pairwise averages.

| 26 31 43 163 171 181 193 199 206 210

26 | 26

31| 285 31

43 | 34.5 37 43

163| 94.5 97 103 163

171} 985 101 107 167 171

181}103.5 106 112 172 176 181

1931095 112 118 178 182 187 193

199| 1125 115 121 181 185 190 196 199

206| 116 1185 1245 1845 188.5 1935 1995 202.5 206
210| 118 120.5 126.5 186.5 190.5195.5 201.5 204.5 208 210

Example6.9.9 Let us look at the data in Example 6.9.1 one last time. When we
have a small sample, the pairwise averages can be listeduratdorm (Table 6.3).
If we want a two-sided interval, we get the critical value-= 9 from Table A.8,
which yields
X0y < 1 < X(ap) (= 0.95)

or
101 < p <195.5 (~ 0.95)

It is clear that we get a narrower interval than in Example&.9The upper limit
becomes slightly smaller but the lower limit is increasedesubstantially. Actually,
this is a bit misleading in this particular example sincerttaggor improvementis due
more to the large gap in the data than to the methods used. \doyitas possible to
show that the interval based on the Wilcoxon Sign Rank teslinays smaller than
the interval based on the Sign Test, but the degree of impnewt depends on the
particular data set. 0

PROBLEMS

Section 6.2. Point Estimators

1 Let X1, ..., X,, be a sample with meap and variances® and consider thdinear

estimator
L= Z aka
k=1
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where theu, are nonnegative and sumto(a) Show thatl is unbiased(b) Show that
L is consistent(c) Show thatX has the smallest variance among all linear estimators
(compare with Problem 56 in Chapter 1).

Let X4, ..., X, andYq, ..., Y;, be two independent samples with meansand 2 and
variancesr? ando?. Suggest an unbiased estimator of the differemge- 11, and find
its standard error.

Letp be the unknown probability of an eveAt Repeat the experimenttimes and let
X be the number of times that occurred. Show that the relative frequenty: X/n
is an unbiased and consistent estimatags ahd find its standard error.

Suppose that we want to estimate the proportiaf men with some characteristic that
is considered embarrassing and not readily admitted. Tiond#athis, each questioned
individual is given a fair coin and is asked if he has the ctiamdstic. He is then
instructed to flip the coin out of sight of the investigatof.itishows heads, he must
answer truthfully, and if it shows tails he must answer “YeSuppose that we geX’
out of n “Yes” answers. Suggest an unbiased estimatqr @fid compute its standard
error.

Capture/recapture.To estimate the siz&V of a fish population in a lakes fish are
caught, tagged, and released. Suggest estimatd¥sanfd investigate for unbiasedness
if you at a later timga) catchn fish and getX tagged,(b) catch fish repeatedly with
replacement and get the first tagged fish in catch numbeic) What assumptions are
you making?

To estimate the sizg of an underground well, one gallon of a dye is poured into tel w
and is allowed to mix. Later, a water sample of one gallonkerteand the dye is found
to have concentratiof’. Suggest an estimator ¢f and investigate for unbiasedness.
What assumptions are you making?

Consider a Poisson process with rate Suppose thaiX points are observed in an
interval of lengtht. Suggest an unbiased estimatonaind compute its standard error.

Czilculate the Cramér-Rao lower bound foin the previous problem and show that
e(A) =1

How do X ands? change if a constant is added to all observations in the sample?
Show thats? is a consistent estimator of if E[X}'] < oo.

Show that the sample standard deviatiois a biased estimator ef. Hint: Sinces is
random, Vafs] > 0. Now apply the variance formula from Corollary 2.4.5.
Consider the following sample of sidrom an unknown distribution. Use the inequal-
ities from Problem 47, Chapter 2, to get two estimated uppanis on the probability
P(X >5):

1.2, 1.5, 2.2, 3.1, 3.4, 3.7, 4.0, 4.4
On the basis of the following data, estimate the coefficiémaoiation c (see Problem
46 in Chapter 2). Is it likely that the data are from an expdiagdistribution?

9.4, 9.6, 9.8, 10.0, 11.0, 11.2, 11.4, 11.6, 12.9
The following is a sample from a normal distribution.

7.6, 9.6, 10.4, 10.7, 11.9, 14.1, 14.6. 18.5
(a) Let X have this normal distribution, and lpt= P(X > 20). If we estimatep by

the relative frequency, we just get Suggest another estimatgh) Let x be the95th
percentile, that is, a value such tHa(X < x) = 0.95. Suggest an estimate of
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In a sample of siz&00 from a normal distribution, it was observed ti2&tvalues were
below80 and19 abovel20. Use this to find estimates pfando.

Let & be an estimator of. Thebias of § is defined asB = E[é\] —0.1fB=0,0

is unbiased, and iB — 0 asn — oo, 0 is said to beasymptotically unbiased(a)
Consider the estimator of® that is given in Example 6.4.9. Find its bias and show that it
is asymptotically unbiasedb) Consider the estimatox ,,), the maximum observation,
of 8 in a unifl0, 6] distribution. Find its bias and show that itis asymptoticahbiased.

(c) Consider a binomial distribution with knownand unknowm, whereX is observed.
Letp = X/n andp = (X + 1)/(n + 1). Find their respective biases and investigate
for asymptotic unbiasedness.

Section 6.3. Confidence Intervals

Below are two sets of 1Q scores from two different univeesitiA and B. Find &5%
symmetric confidence interval for the difference betweaenrtteans it- = 15.

A: 106, 114, 116, 123, 124, 133
B: 99, 113, 114, 121, 126

A scale is known to give measurement errors that are nornthlmwear0 and variance
1. A piece of metal is weighe@times, and the following weights in grams are observed:

999.4, 999.8, 1000.4, 1000.8, 1001.0

Find an observed symmetric confidence interval for the treggit 1 with confidence
level 0.95.

Headlines like this from 999 are typical: “Majority favors U.S. troops in Kosovo.”
This was based on an opinion poll, whérr out of 1014 said they favored troops in
Kosovo. Find &5% symmetric confidence interval for the true proportion tteaitdrs
troops. Does this support the headline?

Here is another headline from Swedenli#p4: “Majority of Swedes support joining
the European Union.” This was based on a polll660 people, wher&05 were in
favor. In order to consider it significant that a majority weahto join, what confidence
level would be needed for a symmetric confidence interval?

Consider the confidence interval for an unknown probabjlitysuppose that we want
confidence leveD.95 and that we want the length of the interval to be at nbst
(margin of error at most-0.05). How should we choose if (a) we know thatp is at
most0.2, (b) we do not know anything abow® (c) In the light of (b), argue why it is
reasonable to state the margin of error in an opinion pottag,/n.

To answer the age-old question “Coke or Pepsi?” there areralegpinion polls on
the Web where people are encouraged to vote. In one such4iobut of 275 people

preferred Coke. Should the Coca-Cola company use this indgbmmercials to claim
that Coke is more popular? From a methodological point ofvyighat problems are
there with online opinion polls of this kind?

A Septembe004 opinion poll showed support for President Bush in Florida24%,
compared tal7% in another poll earlier in the month. If the margin of errottive last
pollis +3%, can it be argued that the change is significant since thedmmde interval
from the second poll i§19, 55], which is entirely above7?
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Consider the opinion poll in Example 6.3.3 where Bush ##d and Goret4%. Is the
difference statistically significant? Let the size of thengée ben, and letB andG be
the numbers of supporters of Bush and Gore, respectivedyledip s andp be the true
proportions. We need a confidence interval fer — pc, based on the estimatops
andpg, which are not independenta) Show that Cofps, pc] = —pepc/n (recall
Problem 124 in Chapter 3]b) State the approximate normal distributiorpef—p¢ and
use thistofind a confidence interval fo — pc by replacing unknown probabilities with
their estimators in suitable place&) With the numbers given in Example 6.3.3, what
is the observed confidence intervdtf) A quick way to decide whether the difference is
significant is to see if the individual confidence intervalertap. Since Bush hati +2
and Gore44 + 2, which do overlap, we conclude that the difference is natiiigant.
This is equivalent to adding the margins of error, which githe differenc®.03+0.04.
What is the principal flaw in this? In practice, what is thdatiénce from the interval
in part (c)?

Assume thaf(y, . .. X,, is a sample from an arbitrary distribution with unknowrand
knowno. Derive an approximate confidence interval with confideewelly under the
assumption that is large.Hint: Use the central limit theorem.

For large normal samples, it can be shown that

d o?
~ N —
s (07 2n)

Use this to derive an approximate confidence interval wittifidence level; for o.

Consider a Poisson process with ratdf X points are observed in an interval of length
t, argue that an approximate confidence intervalfavith confidence levey is given
by

A= X/t+2VX/t

where®(z) = (1 + g)/2. Hint: Problem 8, Chapter 4.

In a clinical trial for a new drug, patients were divided irtt@o groups, one of size
n = 503 receiving the drug and one of size = 430 receiving placebo. One of the
side effects studied was headaches. In the drug gaspexperienced headaches and
in the placebo groupl56. Find a95% one-sided confidence interval to investigate
whether the drug increases the risk of developing headaches

Let 64,6, ...,0,, ben parameters, and ldt, I», ..., I,, be their corresponding confi-
dence intervals, each with confidence leyelThe simultaneous confidendevel, g5,

is defined as the probability that all intervals contain thespective parameterga)
Show thatgs = ¢" if the intervals are independenfb) Suppose that a president has
approval ratings that are statistically significant ab89€% in 10 consecutive polls. If
each poll has confidence lev&@b5, what is the simultaneous confidence levétyIn
general, show thag; > 1 — n(1 — ¢). Hint: Problem 13 in Chapter 1(d) If you
want a simultaneous confidence level of at €285 and havel 0 intervals that are not
necessarily independent, what confidence level do you mee@th individual interval?

Prediction intervals. Suppose that we have obsenZd, ..., X, inanormal distribution
with known variancer? and that we wish to predict the outcome of a future obsematio
say,X (remember Section 3.7.2) that is independent of the a¥heand with the same
distribution. A natural predictor i{, and in order to measure its accuracy, we need
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error bounds such that
PX-R<X<X+R)=g¢q

for a given probabilityg. The interval X — R, X + R] is called al00¢% prediction
intervalfor X. (a) Show that the prediction interval is given by

X=X+zs 1—‘—l
n

where®(z) = (1 + ¢)/2. (b) Compare this with thé00¢% confidence interval for
. What is the difference in interpretation? Which intenglanger?(c) Consider the
lightbulb data from Section 6.2. FindJa% prediction interval for the next lifetimé&.
(d) Compare th&®5% prediction interval with th®5% confidence interval fon. What
happens ag — oo? Explain!

Section 6.4. Estimation Methods

Let X, ..., X;, be arandom sample from a gamma distribution with unknowarpar
tersae and\. Show that the moment estimators are

A=X/(n—1)s> and &= X\
Consider a Poisson process with unknown Pat&uppose that theth point arrives at
timeT'. Find the moment estimator of

Find the MLE in Example 6.4.4 assuming that we have obseX/dd inn trials.

Let X1, ..., X, be a sample from a uniform distribution ¢a, b) where the parameter
a is known. Find the MLE and moment estimatorbof

In the previous problem, suppose that bathndb are unknown. Find the MLE and
moment estimator af andb.

Let X1, ..., X;, be a random sample from a uniform distribution [es9, 6]. Find the
MLE of 6.

Let X4, ..., X, be arandom sample from a distribution with pdf

f@)y=e " x>0

Find the MLE and moment estimator éf
Let Xy, Xs, ..., X,, be arandom sample from a distribution with pdf

folx)=02""10<z <1

(a) Find the moment estimator 6f (b) Find the MLE off. (c) Calculate an approximate
confidence interval fof.

Let X1, X, ..., X,, be a random sample from a normal distribution with mean 0 and
unknown variancé. Find the MLE and moment estimator &f

Let X1, Xs, ..., X,, be a sample from a distribution with pdf

f(z) = axef‘”z/Q, x>0
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(a) Find the moment estimator af (b) Find the MLE ofa. (c) Calculate an approximate
confidence interval fos.

Let X1, X, ..., X;, be a sample from a uniform distributidé — 1,6 + 1], whered

is unknown. (a) Find the moment estimator & (b) Show that any point between
Xy —1land Xy + 1 is an MLE of. This shows that MLEs are not necessarily
unique.

Let X1, X5, ..., X,, be a sample from a distribution with pdf
f(z) = ief‘mf"‘/‘7 r€R
20

(a) Show thatX is the moment estimator gf. (b) Show that the sample media¥y,
is the MLE of . for oddn = 2k — 1.

Section 6.5. Hypothesis Testing

Ann suspects that her coin may be manipulated so that it dategive heads and tails
with equal probability when she flips it. She decides to teist by flipping the coin 8
times and conclude that itis unfair if she gets all headsl¢aitd. Formulate hypotheses
and calculate the level of significance. Find another @itiegion so thatx < 0.10.

A climate scientist believes that the mean number of humgsain the Mexican Gulf
is five during a normal year. He wants to test if this is truetfer period 2005-08 or
if the mean has increased. Assume that the number of huesciana year is Poisson
distributed with mean\. (a) Formulate hypothesis in a statistical te@) Determine
the largest critical region so that < 0.10. (c) In the period 2005-08, there were 15,
5, 6 and 8 hurricanes recorded per year. Is this sufficiemdesde to reject the null
hypothesisHint: Problem 8(b) in Chapter 4.

Consider a samplé&(y, ..., X,, from a normal distribution with unknown meanand
known variances? (compare with Problem 18).(a) Describe how to test the null
hypothesisHy : © = po. (b) Use the data in Problem 18 to test on &% level if the
true weight is1000 grams.

Show that Proposition 6.5.1 holds.

Let X1,..., X, be a sample from the exponential distribution with paramate(a)

Use Proposition 6.5.1 and Example 6.4.10 to derive a ted{ipof A = )\ against
Ha : X # Xo. (b) Use Proposition 6.5.2 to derive a test of the same hypoth&gbih

test do you prefer?

Here is a headline from the Libertarian Party Web sit2(63: “Thompson could have
doubled vote in Wisconsin race, according to poll.” Wisdorgibernatorial candidate
Ed Thompson won0.5% of the vote in2002, and in a poll ofl000 voters shortly after
the election23% said that they would have voted for him, had they thought hddco
win. Does this support the claim of (at least) doubling hite®oState the appropriate
hypotheses, and test on th# level.

In a poll before the004 presidential election, the support for John Kerry W& in
Washington, DC and8% in Texas. Suppose that both polls had sampleKig6. Can
you conclude that the support in DC is at least twice as bigna®kas? How is this
situation different from that in the previous problem.
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50 In 2010, there were 266 persons killed in traffic accidentSweden compared to 358
in the previous year. Carry out a hypothesis test to seesfdbcrease can be considered
statistically significant. What assumptions do you need a&ef?

51 Use Propositions 6.5.1 and 6.5.3 to derive an alternativéidence interval for the
unknown probabilityp than the one in Proposition 6.3.2.

Section 6.6. Further Topics in Hypothesis Testing

52 You are asked to decide whether males are less likely thaalésrto call a particular toll-
free number and are presented the following sequence @frsall F'F'F'F M. With p
as the probability of a male caller, you thus wish to tlst: p = 3 versusHa : p < 3
and decide to compute thie-value. Consider the following two test methods: (a) the
sample size is = 6, and since the number of male calle¥Xsis bin(6, %) underHo,
the P-value isP(X > 1); (b) the first male caller was in the sixth call, and since the
number of trialsN until the first male caller is geometric with = % under Hy, the
P-value isP(N > 6). Compute the twd’-values and show that method (b) rejects on
the 5% level, whereas method (a) accepts. What further informatiould you need
in regard to how the data were collected?

53 Consider a study that compares test results of two groupsidéats from two universi-
ties, A and B, which are known to be of comparable quality. itk hypothesis of no
difference is therefore tested versus the two-sided at&mthat there is a difference.
Suppose that the test statisticA§0, 1) under Ho and that we test on th& level,
which means thatl, is rejected if|7’| > 1.96. The observed value turned out to be
1.68 so Hy cannot be rejected. However, a representative from uritygksotices that
positive values of " is in their favor and that the null hypothesis can be rejetddvor
of the alternative 1 4 : A is better” since this test rejects on th& level if T > 1.64.
How would you persuade the representative that publistiisvtould be dubious?

54 If you read a research report that claims that men are beiterd than women and that
this has been confirmed in a study with a givesvalue, you should probably double
that P-value. Why? (Compare with the previous problem.)

55 A certain type of disease occurs in a small fractipof the population and is known
to occur fairly uniformly across the United States. 2004, each state screens for the
disease and tests on th& level whether it occurs in a fraction higher than A
significant result is found in California. How would you pegsle the Governor of
California that there is no immediate reason to panic?

56 Suppose that we test and reject five different null hypothesach on thé% level. If
the tests are independent of each other/anfithe null hypotheses are true, what is the
probability of rejectingsometrue null hypothesis? For which value bf= 0,1, ...,5
is this probability largest?

57 In July 2004, a special opinion poll was done regarding the upcomingigeesial
election. In this poll, the outcome in the Electoral Collegss targeted and a separate
poll was done in each of thi# U.S. states. If a multiple level &% was desired, what
would the significance level have to be in each state?

58 Consider the two extreme test proceduresligaysreject the null hypothesis and to
neverreject the null hypothesis, regardless of data. What arsigmeficance levels and
power functions of the two tests?
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Consider the test offy : p = % versusH, : p # % for an unknown probabilityy
based om repetitions of the trial. The relative frequencyzsand the test statistic is
T = 2/n(p— %) which is approximatelyv (0, 1) underH, (verify this). Now consider
the two5% level test procedures: (a) rejectdif > 1.64 and (b) reject iff 7| > 1.96.
Compare the powers of the two tests and argue that (a) is nooverful than (b) for
some values of the true probabilipy whereas (b) is more powerful than (a) for other
values. Which test makes more sense?

(a)Consider the test oy : p = % versusH, : p > % which rejects on thé% level if
2y/n(p— %) > 1.64, and suppose that the true probabilitypi§. Suppose further that
we want to be at least0% certain to detect this with our test. How large mushbe?
(b) Generally, suppose that the true probabilitpis- 0.5 and that we want to have at
least probabilityy to detect this. What equation in terms of the standard nocuaifa®
do we need to solve far?

Assume that you are about to carry out two independent tedtg@u want the multiple
significance level to be 0.05. What level of significance $thgwou choose in each
individual test? How does the result change#oe= 3, 5, 10, 20 independent tests?

Show that the Bonferroni-Holm correction yields a correcttiple significance level.

Section 6.7. Goodness of Fit

Consider the Texas Lottery data from Example 6.7.2. On &closk, it seems that the
number7 is overrepresented. Letbe the probability to geT and test the hypothesis
Hy : p=0.1versusH4 : p > 0.1 on the5% level. Compare with the conclusion of
the goodness-of-fit test in the example. Comment!

A store owner classifies each day as “good” or “bad,” depandimsales. Each week
(6 workdays) the number of good days are counted. Use the datadne year below
to test on the&s% level if good and bad days are equally likeklint: The number of
good days in a week has a binomial distribution withk-= 6.

Numberofgoodday+0 1 2 3 4 5 6

Number of weeks 1 9 12 13 11 5 1

The weekly number of accidents on a particular highway wadistl. Use the data
below to test on th6% level whether the number of accidents is better describeal by
Poisson distribution or a geometric distribution incluglin

Numberofaccident+ 0 1 2 3 4 5 6 >7

Number of weeks 24 14 4 1 4 1 2 0

Consider the earthquake data in Example 6.7.3. Test whitth@umber of earthquakes
in a given year has a binomial distribution with parameters 25 andp = 0.03. After
you have done the test, what would you like to ask the person suggested the
distribution?
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67 Sometimes we want to reject also for very small values of tliesquare statistic in a
goodness-of-fit test. The reason is to rule out data snoapidgther manipulation that
may render the fit “too good to be true.” Show that such a tgstteon leveky if

X°<xioor xP >

whereFXi1 (z1) = /2 andeg_1 (z2) =1— /2.

68 In Gregor Mendel's famous experiment with peas, the twodysenooth” and “wrin-
kled” were identified. Mendel argued that the smooth seétii@s dominant and the
wrinkled, recessive (recall Section 1.6.2) and in a pofaadf peas there should thus
be 75% smooth and25% wrinkled. Out of a total of7324 peas, Mendel go5474
smooth and 850 wrinkled. (a) Test the dominant/recessive claim on 15 level. (b)

Do a two-sided test on thE% level according to the previous problem. What do you
conclude?

69 We might not want to put equal weight on “poor fit” and “too gotmdbe true fit.”
Suppose that we want levels in a two-sided test and that we accept a close fit as long
as it is not less probable tha&nl %. Give the critical values:; andz- for this test for
Mendel's data and do the test.

70 Metal bars of length 00 cm are manufactured. They are first cut crudely, somewhere
betweenl00 and101, and then refined to achieve the desired length. The follgugn
a set 0f26 measured deviations froi0 cm. Does this cutoff waste follow a uniform
distribution on[0, 1]? Test on th&% level.
0.11, 0.18, 0.28, 0.33, 0.42, 0.42, 0.47, 0.48, 0.49, 0.49, 0.51, 0.52, 0.59
0.61, 0.62, 0.63, 0.66, 0.68, 0.74, 0.74, 0.75, 0.76, 0.78, 0.79, 0.81, 0.83

71 In the previous problem, test if the data come freameuniform distribution. Hint:
The MLEs are the minimum and the maximum.

72 In a study of bats, it was investigated whether a tendencytéqieople was associated
with carrying rabies. $ource: Emerging Infectious Diseases 5:433-437 (1999)] Out
of 233 bats who hit people¢9 were found to have rabies, and out4#37 that did
not bite peoplef13 had rabies. Describe the data in a contingency table andiotest
independence on tH&% level.

73 In Example 6.7.5, after we have rejected independence, @woonclude from the
chi-square test that females are less likely to be admitted?

74 In a study of voting behavior in th#000 presidential election, it was investigated how
voting was associated with education level. Use the coating table below to test on
the5% level whether voting is independent of education level.

No degree| High school| Some college| College degree

Voter 26 223 215 387

Nonvoter 168 432 221 211

75 Eight men and ten women tried a new diet for a month. Five méoily two women
lost more than ten pounds. Use Fisher's exact test to tdst idiet is equally effective
for men and women.



NONPARAMETRIC METHODS 397

Section 6.8. Bayesian Statistics

76 Consider Example 6.8.1 and suppose thédtas prior distributionP(p = %) = q,
P(p=2) =1 — q. Find the posterior distribution and its mean.

77 Consider Example 6.8.1 where the data &ré, 0,1 and the prior uniform oo, 1].
Compare the mode (recall Section 2.9) in the posterioritigion and the MLE of.

78 Consider Example 6.8.1 where the data aré, 0,1, and suppose that has prior
f(p) = 2p,0 < p < 1. Find the posterior distribution and the posterior mean and
mode. Compare with the MLE.

79 Microhips are being produced, and there is a certain prdibapithat a chip is defective
and thus useless. To estimaiel 00 chips are checked andof these are defective. In
the archives you find the results of four previous studiessnetihe estimated values
of p are0.05, 0.06, 0.08, and0.10. Suggest a way to use this information to choose a
prior beta distribution, and then find the posterior disttibn and the Bayes estimate of
p. Compare with the frequentist estimat®4. From a frequentist point of view, how
can the previous estimates be used?

80 When tossing a fair coin repeatedly, it turned up tails 2 sniehe total number of tosses
was however unknown and therefore considered as a positiggar-valued random
parametef. (a) Use a uniform prior on the integets. . . , 6 and calculate the posterior
distribution of. (b) Calculate the mean and variance of the posterior distobu{ic)
Calculate a two-sided credibility interval férwith approximate probability 70 %.

81 Show that the gamma distribution is conjugate to the Poidigiribution.
82 Show that the gamma distribution is conjugate to the expialatistribution.

83 Assume thatX is exponentially distributed with parametgrand that the prior of
is the gamma distribution with parametets= 2 and3 = 10. (a) If we make the
observationX = 5, calculate the posterior mean and varian@®. If we only get the
information thatX > 5, calculate the posterior mean and variance. Can you explain
the difference?

84 Consider a normal distribution with unknown mearand known variance? where
the prior distribution ofu is N(uo, o3). Suppose that we have observed the values
x1, ..., Tn. (@) Show that the posterior distribution is normal with mean sadance

o202 nT olo?
ElulD] = 27— (55 4+ 55 ) varuD] = -7

02 +nog \ of 02 4+ no

(b) Express the posterior mean as a weighted average of thenpeian and the sample
mean. What happens as— oco? What happens to the posterior variandePHow
do the weights in (b) depend on the varianeésando2? Explain this intuitively if we
interpret a small prior variance as strong belief that therpnean is correct.

85 Calculate Jeffrey’s prior for the Poisson distribution.
86 Calculate Jeffrey’s prior for the exponential distributtio
87 Let X,..., X, be a sample from the geometric distribution with pmf

px)=01-0)""" z=1,2,...
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(a) Find the conjugate family of prior distributiongb) Let us assume that we have
observed the sample

2,9, 4,6, 7

Calculate posterior mean and standard deviation for a mmiforior. (c) Calculate
posterior mean and standard deviation for Jeffrey’s prior.

Section 6.9. Nonparametric Methods

Below is a set ofl 5 1Q scores. Find parametric (based on the normal distrib)iémd
nonparametriez 95% observed confidence intervals for the median. For the parame
interval, assume that the scores are normal wite 15. Compare the lengths of the
intervals and comment.

88, 90, 93, 96, 98, 106, 109,111, 113, 113, 114, 116, 119, 126, 140

Below is a set ofl0 measured service times (milliseconds) for a particulaetypjob
arriving at a computer.

23.2, 27.3, 41.3, 56.6, 82.8, 83.7, 118.5, 210.8, 263.9, 621.8
Find the nonparametri@5% observed confidence intervals for the median.

Consider a sample of size= 5. Show that the sign test cannot rejé€§ : m = mg
on significance leve5% in a two-sided test and not on levEk in a one-sided test.
What are the smallest possible levels for which the signdasido these rejections and
what is then required of the test statishi. ?

In Problem 89, use a one-sided sign test to test whether tdeaméme is100 versus
the alternative that it isc 100.

Below is a data set of the annual change in the last readirgeddow index each year
betweenl972 and2002 (1.06 means that it went up b§%, 0.84 that it went down by
16% and so on). Do a two-sided sign test to investigate if the “Near's Eve Dow”
tends to stay constant.

1.06, 0.84, 0.89, 1.30, 0.97, 0.80, 1.10, 1.07, 1.08, 0.89, 1.32, 1.06, 1.12, 1.29
1.34, 0.90, 1.14, 1.13, 1.13, 1.11, 1.30, 1.14, 1.05, 1.38, 1.25, 1.18, 1.14, 1.42
0.94, 0.95, 0.83

This problem outlines the proof of Proposition 6.9.2, whitie pmf of the test statistic
W = Zzzl R Ik is given. First argue that ifl, is true, the distribution ofV is the
same as that o/ = ) ' Usx, where theU,, are independent an&(Ur = 0) =
PU,=k)= % Next, use the fact that the pgf 6f, which is the same as the pgf of
W, is the product of the pgf’s of th;,. Then argue thaP(W = r) = a(r)/2", where
a(r) is the number of ways in whictis andls can be assigned to tfig so thatiV” = r
(and undetHy, all such ways are equally likely), and finally, identi®(W = r) with
the appropriate coefficient in the pgf &f .

UseU in the previous problem to find the mean and varianc&lof It can be shown
thatW is asymptotically normal but more general versions of thareé limit theorem
than ours are needed. Why does our central limit theoremdiEme 4.3.1) not apply?

ForW as above, find>(W = 3) if n = 5.
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96 A company manufactures metal plates. Each plate gives aicextnount of cutoff
waste, and the process needs to be adjusted if this exteedsg per plate. Below are
11 measured weights of waste. Do they call for adjustment? drettte5% level.
88, 98, 99, 110, 118, 121, 123, 129, 136, 140, 149
97 We have probably all wondered from time to time whether iheai more in St. Louis
or Minneapolis during tha970s. Below are the annual total amounts (inches) for the
two cities, for the yeard970-1979. Decide what type of two-sample procedure to
use (pairwise differences or independent samples) andnesie5% level if there is a
difference.
Minneapolis:30.5, 29.4, 23.8, 21.1, 19.1, 35.1, 16.5, 34.9, 30.3, 31.0
St. Louis:  36.2, 33.7, 33.7, 39.8, 36.8, 40.2, 23.5, 43.4, 37.7, 29.5
98 Consider the Wilcoxon rank sum test with = 2 andn = 5. Find the range ofV and
P(W=T).
99 Execution times for a particular type of numerical compotatvere measured using
two different algorithms, A and B. The times in millisecondsre
A:2, 4, 4,8 9 14, 21, 25
B: 7, 13, 25, 43, 47
Use the rank sum test to test on le@éh whether there is a difference between the
algorithms.
100 Use Kolmogorov-Smirnov’ s test to test the difference inphevious problem.

101 The following data are the number of murders (in thousandshé United States
during the1980s (starting1984) and 1990s (Source: FBI Uniform Crime Reports,
www.fbi.gov) ordered by size. Is there a difference betwihentwo decades?

1980s: 18.7, 19.0, 20.1, 20.6, 20.7, 21.5
1990s: 15.5, 17.0, 18.2, 19.6, 21.6, 23.3, 23.4, 23.8, 24.5, 24.7

102 Recall Cavendish’s density data from Example 6.9.3. It isvkm that six of his29
measurements were taken before he changed his experinappi@iatus. These mea-
surements were

5.42, 5.47, 5.50, 5.53, 5.57, 5.61
Did the change make a difference? Test oritfidevel (use the normal approximation).






Linear Models

7.1 INTRODUCTION

When the normal distribution was introduced in Section 2\d, garticularly, when

the Central Limit Theorem was presented in Section 4.3msartance in statistics
was pointed out. Since the Central Limit Theorem basicalysshat any quantity
that can be seen as a sum of a large number of indendent raraidribations can

be considered to be, at least approximately, normallyitlisted, it was argued that
many quantities that we tend to study in practice satisfy. thi

We have already looked at IQ as an example, but this is a soateavtificial
measure that is specifically constructed to be normallyriligied. For another,
more relevant example, consider body length of a randombgeh individual. We
can easily come up with dozens of factors that affect a psringth like parents’
lengths, intake of various nutrients during childhood reiee, sleep habits, whether
the mother smoked or consumed alcohol during pregnancgsado proper medical
care and so oh.

Therefore, it is quite common to make the assumption thataamsamples come
from normal distributions with unknown mean and variancd anthis chapter we
will present a number of inference methods that are speltjfidaveloped to handle
this case. Models that include normally distributed vésiatire usually calletinear
models a term that hopefully will become clearer as we go along.

1Age and sex are also important factors but they influence bodyth somewhat differently and cannot as
easily be described as random contributions. For simplist us assume that we consider body lengths
of individuals in the same age group and of the same sex.

401
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7.2 SAMPLING DISTRIBUTIONS

Before going into the various inference methods of normaityributed samples, we
need to introduce some new distributions that will be usefuleriving confidence
intervals and hypothesis tests. Since they can be used toilte¢he properties of
sample mean& and sample varianceg, they are usually referred to aampling
distributions

The first distribution is defined as follows.

Definition 7.2.1 If the random variabl@” has pdf

1
— r/2—1_—x/2 >0
| (,T) 27‘/2 (7"/2) T e , X

thenY is said to have &hi-square distributiorwith r degrees of freedom
written Y ~ x2.

The chi-square distribution is related to the normal distion in the following way.

Proposition 7.2.1. Let X3, ..., X, be i.i.d. random variables that aM&(0, 1)
andlety =Y, XZ. ThenY ~ x2.

Proof. We begin by deriving the following useful equation.

[e’e) [e's) a—1
/ e kgl dp = / et <£> % = F]ES) (7.2.1)
0 0

using the variable substitutian= k2 and the definition of the gamma functibifc)
from Section 2.8.2. This can now be used to obtain the moresrgmting function,
introduced in Section 3.11.2, of the chi-square distrifuts

1
M (8) = EletY :/ te_____~ ar/2-1l,-w/24
v (t) [e"] ; e 2T/21"(7°/2)x e x

1 o0
— r/2—1 —(1/2—t)wd
2772 (r/2) / S !

1 T(r/2) 1

2(r/2) " (Z 02 (1207
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The next step is to derive the moment generating functioh@ft? variables as

e 1
My2(t) = Ele ] = / et —
X,f( ) [ ] - \/%

1 /OO 1 /-2 g - L
VI=2t ) o (1—2t)"1/2/27 V1I—2t
where the last equality follows from the observation thatititegrand is the pdf of a
normal distribution with mean 0 and variange— 2t)~! and therefore integrates to
one. The result now follows from Proposition 3.11.9 as

e~ /2 4y

My(t) = Mys(t) Mya(t) = (M ()
1 " 1
B (\/1—215) T a-207? (7.2.2)

It is clear from the definition and, particularly, from Preggition 7.2.1 that a chi-
squared variable is always non-negative. Since we mairnllyuse the chi-square
distribution for confidence intervals and hypothesis testawill not go further into
the theoretical properties of this distribution. Criticallues can be calculated nu-
merically using Definition 7.2.1 and some of them are presgirt Table A.4.

The second sampling distribution is defined as follows.

Definition 7.2.2 If the random variable¢Z has pdf

then Z is said to have ar distribution with » and s degrees of freedom
written Z ~ F, ;.

TheF distribution can in turn be characterized in terms of theszjuiare distribution.

Proposition 7.2.2. Let X ~ x? andY ~ x?2 be independent and let

7X/T
=y

ThenZ ~ F, ;.
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Proof. Let fx(z) and fy (y) denote the pdf's oX andY’, respectively. Then we
can use Corollary 3.5.7 to express the cdfbf= X/Y as

Fo) =P (3 <2) = [P <uvdi= [ Fx) e dy

Taking the derivative with respect toyields the pdf

fz/(2)

| utstwa) e dy
0
_ /OO y x 1 (yz)r/Qflefyz/Q ~ 1 ys/Qflefy/Q dU
o U7 2 (r2) M 93/2T(5/2) '
Zr/Qfl /OO
20+ 20 (r/2)T(s/2) Jy "V

D((r +5)/2)2"/2)
T(r/2)T(s/2)(1 + )0 F9)/2

(r4)/2-1=(142)u/2 g

where the last equality follows from equation (7.2.1). Hinaising the methods of
Section 2.3.2 yields the pdf ¢f as

s = 5t (i) = et ()= (0 5)

Again, it is obvious that the ratio of two non-negative chitare variables is also
non-negative. Critical values of thié distribution are given in Table A.5
We have now come to the last sampling distribution.

Definition 7.2.3 If the random variable&Z has pdf

LT/ [, 2\ TP
f(x)_\/ﬁf(r/m (1+7°) , TER

it is said to have a distributionwith » degrees of freedom, writtefi ~ t,..

This can also be characterized in terms of the previousibligions.
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Proposition 7.2.3. Let X ~ N(0,1) andY ~ x?2 be independent and let

ThenZ ~ t,.

Proof. SinceX?2 is chi-square distributed with one degree of freedom, wizea
thatV = Z% ~ F , and, conversely, that

VV with probability1/2.
Z =
-V with probability1/2.

because of symmetry of the normal distribution. We can nogress the cdf of as
Fy(z) = %P(—\/V <)+ %P(\/V <) = %P(\/V > ) + %P(\/V <)

Whenz < 0, we get that

and ifz > 0, we get that

Fala)= 3 + 3PV < 0%) = 5(1 4 Fr(a?)

Taking the derivative with respect toyields the pdf

r 1/2 42\ ~rHD/2
fz(x) = |z|fv(2?) = || %1% (%) (22)1/2 (1 i 7)

T((r+1)/2) < 22 > —(r+1)/2

1+ =
-

VL (r/2)
where we used the propem(1/2) = /7. [ |

Just like the standard normal distribution, thdistribution is symmetric around.
Indeed, it looks very similar to the standard normal disttibn; the main difference

is that it hasheavier tails(see Figure 7.1). The difference gets smaller the larger the
value ofr, and as- — oo, thet distribution converges to the normal distribution.
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0.4

0.3

0.2

0.1

Fig. 7.1 The pdf’s of the standard normal distribution (dashed len&) at distribution with
r = 2 degrees of freedom.

7.3 SINGLE SAMPLE INFERENCE

In this chapter, we are going to develop inference methodg fandos? based on
a sampleXy, ..., X,, of i.i.d. normally distributed variables with unknown mean
and variance2. Many of the methods will be similar to those introduced ire@ter
6. What remains to be done is to derive new distributions lefsamnt statistics based
on the sampling distributions of the previous section.

7.3.1 Inference for the Variance

It turns out that it is more logical to start with the variancein this setting. Let us
go directly to the key result.

Proposition 7.3.1. Let X1, ..., X,, be a sample from & (u, o2) distribution.
Then ( 2
n—1)s 9
2 Xn—1
a chi-square distribution with — 1 degrees of freedom.

Proof. We first expand the expression
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=1
= > (X=X +nX —p)?+ ) (XX - X = Xip+ Xp)
1=1 1=1

= (n—1Ds+nX - p)?+nX?—nX?—nXp+nXpu

= (n—-1)s" +n(X —p)®
Dividing this byo? yields that

2 5 2 n 2
(n 21)5 n (X ,u) _ Z (XZ ,u)
o o/\/n P o
The second term on the left hand side is the square of a sthmdamal variable
and, hence, chi-square distributed with one degree of fnemed he expression on the
right hand side is the sum of the squares.@gfidependent standard normal variables
and, hence, chi-square distributed witkegrees of freedom. It can be shown tat

ands? are independent for normal samples so Proposition 3.11978.2) together
imply that

1 1
VT2t (1-2t)n2
where) (t) is the moment generating function @f — 1)s?/02. This means that
1
(1 —2t)(n—1)/2
which is the mgf of the chi-square distribution with— 1 degrees of freedom. ®m

M(t) x

M(t) =

We can use this result to find the confidence intervabfar If we want confidence
level ¢, we need to find:; andx, such that

—1)s2
P<I1§u§$2)—q

o2
that is ) )
P((n—l)s <o? < (n—1)s ) _,
Z2 Z1
The interval we get is not unique; in fact, there are infigitelany ways to choose;
andzxs so that the last equation is satisfied for a giyei®ne additional requirement
that is often used is that the intervaldgmmetricn the sense that we are equally
likely to miss the parameter to the right and to the left. Themmust choose; and
o such that

() (25 )3

o2 o2
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areg area=(1-q)/2

Fig. 7.2 The pdf of a chi-square distribution and how to choss@ndz- in order to obtain
a symmetric confidence interval fef with confidence levey.

(see Figure 7.2). Since— (1 — q)/2 = (1 + ¢q)/2, we get the following confidence
interval.

Proposition 7.3.2. Let X1, ..., X,, be a random sample from/&(y, 02) dis-
tribution wherey is unknown. A100¢% symmetric confidence interval for®
is
_ 2 _ 2
(n—1)s <o < (n—1)s @
X9 I

whereF,» (z1) = (1—¢)/2andFz (w2) = (1 +q)/2.

Note how this interval is not of the form “estimat&rsomething,” which is because
the chi-square distribution is not symmetric like the nokdistribution or¢ distribu-
tion.

Example7.3.1 Find the observed symmet¥%% confidence interval for the stan-
dard deviatiorv in the lightbulb example.

From Example 6.2.5we hayé = 9392. Withn—1 = 4and(1+¢)/2 = 0.975, Table
A.4givesr; = 0.48 andzy = 11.14, which givegn—1)s?/zy = 4x9392/11.14 =
3372 and(n — 1)s?/0.48 = 78, 267. These are the bounds fof and in order to get
bounds forr, take square roots to get the confidence interval

58 < o <280 (0.95)
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We can also use Proposition 7.3.1 to come up with a test pureed

Proposition 7.3.3. Suppose thak, ..., X,, is a sample from a normal distri
bution where we wish to test

Hy:0=09 versus Hy : 0 # og

The test statistic is ( 2
9 n—1)s
X = T
0
andH, is rejected on level if
X2§01 or XQZCQ

whereF 2 (c1) = a/2andF2 (c2) =1—a/2.

7.3.2 Inference for the Mean

We have already looked at confidence intervals (Exampl@padid hypothesis tests
(Example 6.5.2) for: in the normal distribution whes is known. It turns out that we
only have to modify these methods by replacingith s and the normal distribution
with thet distribution according to the following result.

D

Proposition 7.3.4. Let Xy, ..., X,, bei.i.d. N(u, o?), and lets? be the sampl

variance. Then B
X—p

NG

at distribution withn — 1 degrees of freedom.

tnfl

Proof. We can rewrite the expression
X—up
X —u a/v/n

YN
e

where the enumerator (0, 1) and Proposition 7.3.1 implies that the denominator
is the square root of?_, divided by the degrees of freedom. Again, the fact that
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X ands? are independent for normal samples and Proposition 7.2 ldes the
proof. ]

We can now find a confidence interval fer The inequalities
X-R<u<X+R
are equivalent to the inequalities
R X —u R
- < <
s/vn = s/\n T s/yn

where we now know that the quantity in the middle hasdastribution withn — 1
degrees of freedom. With= R./n/s, we get the equation

X—up
s/v/n

by symmetry of the distribution. This finally gives the following proposition

q = P <—t S S t) = Ftnfl(t) — Ftnfl(_t) = 2Ftn,1(t) -1

Proposition 7.3.5. If X1, ..., X,, is a sample from aV(u,o?) distribution
wherecs? is unknown, al00¢% confidence interval fop is

5
vn
wheret is such thaty, _, (t) = (1 + q)/2.

p=X+t—= (q)

The cdf of thet distribution is easily computed in many of the mathematical sta-
tistical software packages that are available. For exanplglatlab, the command
“cdf(’t', x, r)" gives the valueF; _(x). For your convenience, Table A.3 gives values
of ¢ for various sample sizes and confidence levels.aPaalues larger than those in
the table, you may use th€(0, 1) distribution as an approximation.

Example7.3.2 Consider the lightbulb example and fin@%% confidence interval
for p.

We haven = 5 and, from Example 6.2.5, = 96.9. Since(1 + ¢)/2 = 0.975 and
n — 1 = 4, we need to find such thatF;, (t) = 0.975, and from Table A.3 we get
t = 2.78. This gives the confidence interval

96.9
1= 1086 £ 2.78 x —— = 1086 + 120 (0.95)
NG O
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By comparing this result with Example 6.3.2 where we assuthatb: = 100, we
see that we get a considerably wider interval. This is qyipécal because using an
estimate for a parameter instead of the exact value incseageuncertainty, which
is reflected in the result.

The symmetry of thedistribution also makes it possible to design a hypothesist

Proposition 7.3.6. Suppose thak, ..., X,, is a sample from a normal distfi
bution where we wish to test

Hy:p=po versus Hu : pu # g

The test statistic is

X — 1o

="

andH, is rejected on level if
|T|>c

whereF;, _,(c) =1—-«/2.

This is called theone-samplé test If we test against a one-sided alternative, we
should rejectH, only for deviations in one direction df' from 0. Thus, for the
alternativeH 4 : p > po, We reject ifl” > c whereF;, _,(c) =1 — «, justas in the
blood pressure example. If we instead h&lg : 1 < uo, we should reject for large
negative values df'. More specifically, we reject if’ < —c wherec satisfies

a=PT<-c)=F, (-)=1-F, (¢

which again giveg;, ,(¢) =1 — a. We get the following corollary.

Corollary 7.3.7. In Proposition 7.3.6, if we testl, against the one-sided
alternative

Ha:p>po (O p < po)
then Hy is rejected on level if

T>c (orT < —c¢)

whereF;, ,(¢)=1-a.
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Note how the’'s in the two-sided and one-sided tests are not the samewlo-aitled

test, we divide the significance level equally between ttedisections specified by
H 4. In a one-sided test we put all the significance level on ode, svhich makes
it easier to reject in that particular direction but does rejéct at all in the other
direction. For example, with = 10 anda = 0.05, the two-sided test rejects if
| T| > 2.26 and the one-sided testTf > 1.83 (or 7' < —1.83). If we wantto do a

one-sided test, we should not “waste significance” on theratlile. Compare with
the comments about one-sided versus two-sided confidetereals in Section 6.3.3.

Example7.3.3 A generator is supposed to give an output voltag@2ifV. It is
measured once an hour, and at the end of the day a technicgatedevhether ad-
justment is needed. Test on th# level if the mean voltage 820V, based on the
following data:

213, 223, 225, 232, 232, 233, 237, 238

We assume that measurements are independent and followaldistribution. The
hypotheses are

Hy:p =220 versus Ha : p # 220

where we choose a two-sided alternative since we are nobhgd$@r a particular
direction of deviation fron220. The sample size is = 8, and witha: = 0.05, Table
A.3givesc =2.36 (n—1=17,1—a/2 = 0.975). We haveX = 229.1ands = 8.3,
which gives the observed test statistic

229.1 — 220
=————=31
8.3//8
and we reject, and conclude that adjustment is needed. 0

7.4 COMPARING TWO SAMPLES

A common situation is that we have two samples and are intstés making com-
parisons between them. One typical application is in cdiniGals, where we want to
determine whether a particular treatment or a new drug tebitan some other stan-
dard treatment or no treatment at all. Patients are rechaitel randomly assigned
to two different groups, usually calleteatmentand control, and then treated (or
not treated) accordingly. After some predetermined peabtime, all patients are
examined and health indicators like blood pressure or clherel level are measured.
Ifitis possible to detect statistically significant diféerce, we can claim that the new
treatment is efficient.
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7.4.1 Inference about Means

There are two different situations; one where the samplesralependent and one
where the observations come in pairs and are dependente fiirshcase, we thus
have two independent samplds, ..., X,, andY, ..., Y,, (the sample sizes are not
necessarily the same). If th€; have mean:; and theY; have mean.,, we are
interested in estimating the differenge — ;2. The estimatoris¥ — Y and sinceX
andY are independent and normally distributed, we can use ttisda confidence
interval for u; — uo. If the variances are? ando?, respectively, then according to
what we know about linear combinations of normal distriboi, we obtain

where we need to estimate the variances in a way that give&kn@ven distribution,
something that turns out to present a difficult problem. Tiheation simplifies if we
can assume that the variances in the two samples are’equitlatX;, ~ N (u1,0?)
andYy ~ N(u2,0?). If we estimater? within each sample by

n

)—AM

v 2 2
— and s; = e Z (Y —
k:l k=1

respectively, we can combine these to get an estimate? dfased on both samples.

Definition 7.4.1 Let X4, ..., X,, andY1, ..., Y,, be two samples, independent
of each other, with means, and», respectively, and the same variance
Thepooled sample variands then defined as

_ (n—1)s? + (m —1)s2

2
°p n+m-—2

For a proof of the following result and further propertiessﬁf see Problem 31.

Corollary 7.4.1. The pooled sample vanansﬁ is an unbiased and consistent
estimator of the variance?.

2This property is calledhomoscedasticitya great word to throw around at cocktail parties.
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Note how the pooled sample variance is a weighted averadedft sample vari-
ancess? ands3, giving larger weight to the one that comes from the largensia.
Note also that neither the definition nor the result abouiasdriness assumes any-
thing about the distributions of the random variables. Ifassume normal distribu-
tions, the following result helps us with the confidence rivéds that we set out to
find. We use the obvious notatiap for the square root of>.

Proposition 7.4.2. If X4, ..., X,, andY, ..., Y;, are two independent samp
from a N (1, 0?) distribution and aV (u2, 02) distribution, respectively, an
sg is the pooled sample variance, then

o ®
n

X =¥ — (o — o)
LT
P n m

~ tn+m—2

at distribution withn + m — 2 degrees of freedom.

Employing the usual method gives the confidence intervalléake this as an exer-
cise.

Corollary 7.4.3. Under the assumptions of Proposition 7.4.2, the confidence
interval forp; — s is

(9)

S 1 1
,ul—,ung—Y:I:tsp E‘FE

whereF;, . ,(t) = (1+q)/2.

Example7.4.1 Suppose that we have the following measured weights (in gram
from two shrimp farms, one in Louisiana and one in Arizonaegthere are shrimp
farms in Arizona!) Find the observeé$% confidence interval for the difference be-
tween the means:

Louisiana:15.5, 12.7, 12.1, 14.4, 16.1, 15.0, 16.2
Arizona: 11.9, 13.3, 15.8, 11.6, 10.4, 13.6, 13.8, 12.4, 13.6, 13.0

The sample sizes are= 7, m = 10; the sample means a’¢ = 14.6 andY = 12.9
and the sample variances afe= 2.6 ands? = 2.2. This gives the pooled sample
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variance
(n—1)sT+(m—1)s3 6x26+9x22

2

P n+m—2 15
With ¢ = 0.95 andn + m — 2 = 15, we gett = 2.13 and the observed confidence
interval

24

1
+ —

1
p—pr = 1461295213 x V24 /- + o

= 1.7+£1.6.

This interval[0.1, 3.3] does not contaif. Thus, the difference; — po is entirely
above0, which indicates that the Louisiana shrimp are on averagegdsi If we had
gotten an interval that included] this would have included both the cages> o
andyu; < pe, and no difference could have been detected. 0

We can also use Proposition 7.4.2 to construct hypothestis t8ince we are usually
interested in determining whether there is a differencabeh the samples or not,
the most common null hypothesis is

Ho : g1 = p2

If we want to test this against a two-sided alternative higpsis, we get thetwo-
samplet test

Proposition7.4.4. LetX;, ..., X,,andYy, ..., Y,, betwoindependent samples
with means:; andu., respectively, and the same variance We wish to test

Hg:pp = po versus Hy @y # e

The test statistic is

and we rejectd, on levelq if

whereF;  .(c)=1—-«/2.

The one-sided tests are obvious, as follows.
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Corollary 7.4.5. In Proposition 7.4.4, if we tesk, against the one-sided
alternative
Ha:pa > pa (OFpy < p2)

then Hy is rejected if
T>c (orT < —c¢)

wheref;, _.(c)=1-a.

Example7.4.2 To determine whether smoking is associated with elevateddl
pressure, a group of people were divided into two groupskemscand nonsmokers,
and their blood pressures were measured. The systolicypesstor smokers were

128, 131, 137, 138, 139, 141, 150, 156
and for nonsmokers
101, 125, 129, 130, 130, 136, 138, 140, 143, 146

Test on thes% level whether smokers had higher blood pressure.

We assume that measurements are normal. If the mean for seniske and for
nonsmokergi,, we test

Hy:py =pe versus Hy:pup > pe

We haven = 8, m = 10 and withas = 0.01, Table A.3 gives = 1.75 (n+m —2 =
16,1 — o = 0.95). The sample means a’ = 140 andY = 132 and the pooled
sample variance
$2 752 + 953
P 16
which gives the observed test statistic

=128.5

140 — 132

- T 1
VTS % 4= + —
“\Vs 10

and we cannot rejedi. There is no clear support for the theory that smoking raises
blood pressure. A practical observation is that the obsevadue ofT’ is fairly close

to the critical value and it might be a good idea to get largengles to be able to
perhaps draw a more definite conclusion. 0

T =1.49
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If the variances are not equal, the confidence interval aachtipothesis test still
work as approximations it andm are roughly the same. Otherwise, certain adjust-
ments can be made to improve the approximation, as desaéniltieeifollowing result.

Proposition 7.4.6. If X4, ..., X,, andYy, ..., Y,, are two independent samples
from a N (uu1, 0%) distribution and avV (u2, o3) distribution, respectively, the

=]

X -V — (1 — po)

2 2
51, %2

d
~t

v

n m

where

It should be quite clear how this can be used to modify theiptesymethods of
inferencé. Note that is not necessarily an integer so to be able to use Table A.3,
we have to round it off to the nearest smaller integer (to bthersafe side).

To illustrate the other case, paired observations, supjpssead that we are in-
terested in the monthly rate of growth of shrimp at one of tenfs. To measure
this, we take a sample of shrimp, label and weigh them, antheet aside. After a
month, we weigh the same shrimp again and thus have a pairights¢ X, ') for
each individual shrimp, wher& andY are obviously dependent. We get a sample
(X1,Y1), ..., (X, Y,) of weight pairs and are interested in the differepge— ;.

By letting Dy, = Y, — X, we can view this as a sample,, ..., D,,, and sinceXy,
andY}, are normal, so i®y, and we are back at a one-sample problem. The mean of
Dy is E[Y;] — E[Xk] = u2 — u1, and the variance is unknown and estimated by the
sample variance in thB sample. Note that this means that we do not need to assume
that the variances oX andY are equal.

Example7.4.3 Suppose that we have the following weights, before and after
month:

Before:11.9, 13.3, 15.8, 11.6, 10.4, 13.6, 13.8, 12.4, 13.6, 13.0
After: 20.9, 18.1, 20.9, 13.6, 11.3, 17.2, 20.4, 16.4, 15.5, 21.5

3The test based on Proposition 7.4.6 is usually referred to\edch’st test
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The sample of the differenceB; = Y, — Xy, “after minus before” is
9.0, 4.8, 5.1, 2.0, 0.9, 3.6, 6.6, 4.0, 1.9, 8.5

which has sample mean = 4.6 and sample varianc€ = 7.5. Withn — 1 = 9 and
q = 0.95, we gett = 2.26 and confidence interval

= S
o —p1 =D +t— =4.6+2.0 (0.95
Vn (0.95) 0

7.4.2 Inference about Variances

Although we are mostly interested in studying changes inntlean values when
comparing different groups or treatments, there are sadonatwhere changes in the
variances may be relevant. Let us say that we wantto compadifferent measuring
devices and want to determine if the measurement errorridesidby the variance, is
smaller for one of them. Another common problem is whethecamassume equal
variances so that we can use the methods described in Ggrola3 and Proposition
7.4.4.

The key result, which follows directly from Proposition 7L3and 7.2.2, for the
methods in this section is the following.

Proposition 7.4.7. If X4, ..., X,, andY, ..., Y;, are two independent samples
from a N (uu1, 0?) distribution and aV (u2, o3) distribution, respectively, the

=]

2 2

si/o7 ~F

52/0_2 n—1,m—1
2 2

an F' distribution withn — 1 ochm — 1 degrees of freedom.

Since theF distribution, just like the chi square distribution, is asyetric, we have
to formulate a confidence interval fok /0% as follows.

Corollary 7.4.8. Under the assumptions of Proposition 7.4.7, the confidence
interval foro3 /o is

2
<22 < g2
_O'%_xQS% (q)

WhereFanl,wnfl(xl) = (1 - q)/2 andFanlmnfl (‘TQ) = (1 + q)/2'
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Example7.4.4 In Example 7.4.1, the sample variances were found te?be 2.6
ands2 = 2.2. This difference was not considered to be too large so traptioled
variance, under the assumption of equal variances, wasin$iee calculations. Let
us take a closer look at this assumption.

The sample sizes were= 7 andm = 10, which means that we need to use the
Fj.o distribution. If we want a 95 % confidence interval for theioaif variances,
Table A.5 yields the percentileBy, ,(0.181) = 0.025 and Fr, ,(4.32) = 0.975.
Hence, we get the interval

22 42 2.2
181x =2 < 92 <432x 22 (0.
0.A8Lx 55 < 73 <432 % (0.95)

o2

015< =% <3.6 (0.95)
o
1

Since the value one is included in the interval, we cannduebecthe possibility that
the two variances are equal. 0

We can also use Proposition 7.4.7 to construct a hypothestis t

Corollary 7.4.9. Under the assumptions of Proposition 7.4.7, we wish to test
Hy:0? =02 versus Hy : 0} # o2

The test statistic is

and we rejecti, on levelq if
F<xy or F>uxo

WhereFanl,wnfl(xl) = (1 - q)/2 andFanlmnfl (‘TQ) = (1 + q)/2'

7.5 ANALYSIS OF VARIANCE

In this section we are going to take things one step furthdrlaok at statistical
methods of comparing more than two independent normal sn@f course, we
can always use the methods of the previous section to carpainwise comparisons,
but then we will end up in multiple testing problems as ddsatiin Section 6.6.4,
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especially if we have several samples to compare. Insteadrewgoing to use a more
comprehensive approach where we compare the variatiorinwitith the variation
between the samples to detect any differences in the meamse 8e focus on the
variation through variances, these methods are referradAmalysis of Variancer
ANOVAfor short.

7.5.1 One-way Analysis of Variance

Here, we assume that we havendependent samples;, . . ., X;, such thatX;; ~
N (ui,0%), wherei = 1,...,kandj = 1,...,n. Note that we make two simplica-
tions in this model, namely that all samples are of equalsiaed that they have the
same variance?. ANOVA is mostly used irexperimental designvhere individuals
or other experimental units are randomly assigned to diffegroups and subjected
to a number of different treatments and it is quite commorhimose groups of equal
sizes. Therefore, the varianeé is interpreted as the natural individual variation,
which should have nothing to do with the treatments and shthdrefore be the
same in all groups. Actually, the assumption of equal sizesle relaxed without
much trouble, but we will not consider that case here.

The hypotheses of interest are

Hy:pr=...=p versus Hy : u,;, # pi, for somei; andis
Now, we can obtait independent estimators of the unknown variance as

1 o .
S?: Z(Xij_Xi»)Q izl,...,k
j=1

n—14%
where
_ 1 &
X ==Y Xy

Since they are all based on samples of sizthey can be pooled together as

k k n
1 1 _
i=1 i=1 j=1
which is thewithin-group variance If the null hypothesis is true, we can regard
the sample meanX, ., ..., X;. as a normally distributed sample with meanand
variances? /n. This means that we can get a second estimatot afs
n k 1 k n
2= X —X)?P= — X —X)? 7.5.2
sh k—li;( ) k—é;( ) (7.5.2)
where

B 1k L
X=X = 2%
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is the total sample mean. This is usually calledlibéveen-group variance

The within-group variance?, is always an unbiased estimatorafwhereas the
same holds fos% only if the null hypothesis is true. If the alternative hypesis is
true, it is possible to show th#t[s%] > o2 (see Problem 37), so we should rejétt
if s% is significantly larger thar; or, equivalently, if the test statistic

is large enough. Itturns out thg}, ands% are independentand chi square distributed
with £ — 1 andk(n — 1) degrees of freedom, respectively, under this model, which
means that” ~ Fj_1 (,—1) and that critical values can be obtained from Table A.5.

In classical ANOVA notation, the sums in (7.5.1), (7.5.2)ldhe total variation
are denoted

Ea

SSA = D (X - X)?
i=1 j=1

7=

k
SSE = ) ) (X - Xi)?

k
SST = ) ) (X - X)?

where it can be shown that
SST= SSA+ SSE

The SS in the notation stands f8um of Squarewith T for Total, E for Error and A
for treatment4*. The variance estimators above are also referred ke Squares
and denoted MSA and MSE, respectively. The result of an Asislgf Variance is
often summarized in aANOVA tablewhose structure is illustrated, for a one-way
ANOVA, in Table 7.1. Sometimes, thevalue for theF test is also included in the
table.

Example7.5.1 In 2010, a large farming experiment was carried out in sauthe
Sweden, where nine different varieties of canned peas werergn five fields each.
After harvest, the yield in metric tonnes per hectare wassuesl and the results
were the following.

4In higher order ANOVA, combinations of several differereatments (ususally denoted B, C and so
on) can be studied and corresponding sum of squares compltedugh only one treatment is considered
in one-way ANOVA, it is often called treatmeunt.
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Table 7.1 An ANOVA table for a one-way Analysis of Variance.

Source DF Sum of Squares Mean Square F'-statistic
_ SSA _ MSA
Treatmentd k-1 SSA MSA= =27 F={3E
_ __ SSE
Error k(n—1) SSE MSE= = 1)
Total kn—1 SST
Variety | Yields | Meanyield Variance
A 3.18 3.33 3.87 527 558 4.25 1.24
B 2.17 455 460 5.15 561 4.42 1.77
C 2.84 361 457 4.69 500 4.14 0.80
D 452 474 574 593 6.18 542 0.55
E 3.12 3.13 438 4.60 4.88 4.02 0.70
F 1.81 283 311 380 425 3.6 0.88
G 194 272 280 294 356 279 0.34
H 1.75 245 310 363 392 297 0.78
I 323 394 401 430 435 3.97 0.20

We see that best variet) yields about twice as much as the worst variétyon
average, but we also see that there is a large variation ketthe fields probably due
to quality of soail, climatic conditions, drainage and so bpt us see if an Analysis of
Variance can determine whether there is any differencedstvthe varieties of peas.

Since the total mean i¥ = 3.90, we can use Corollary 6.2.4 to calculate the
variety sum of squares as

9 5

9
SSA=) ") (Xi - X)*=5x (in‘% - 9X2> =27.10
=1

i=1 j=1

and the total sum of squares as

SST= ii(xij -X)2 =)

i=1 j=1 i=1 j

5
X7 —45X% =56.13

=1

which yields the error sum of squares SSB6.13 — 27.10 = 29.03%. Now we get

the mean squares as

MSA = ﬁ:@:&gg
k—1 8

5This is the usual order of calculations since SSA and SSTattednsier to calculate than SSE.
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Table 7.2 The ANOVA table for Example 7.5.1.

Source DF Sumof Squares Mean SquarE-statistic P-value

Variety 8 27.10 3.39 4.20 0.001
Error 36 29.03 0.81
Total 44 56.13
SSE 29.03
MSE = = =0.81
k(n—1) 36
which yields the test statistic
MSA  3.39
F= MSE — 031 =4.20

The 95 % percentile of thé' distribution with 8 and 36 degrees of freedom is 2.21,
which means that we can reject the null hypothesis on the 5/ énd claim that
the nine varieties vary in yield. The ANOVA is summarized eble 7.2. 0

7.5.2 Multiple Comparisons: Tukey’s Method

Suppose that we have managed to reject the null hypothesiguafl means, as in
Example 7.5.1, in an ANOVA. The next natural question is théthich group or
groups differ from the rest and by how much? In this sectiomligoresent the most
common method of making pairwise comparisons between grsugh that the joint
level of significance is correct, the so call®akey’s methotl

It is based on the following distribution.

Definition 7.5.1 Let X;, ..., X,, be anormally distributed sample with megan
w and variancer? and lets? be an estimator of? such that

Then
Rn,m =

follows thestudentized range distributiomith » andm degrees of freedom.

6Named after the American chemist and mathematician JohayT{#915-2000).
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The cdf can be expressed as an integral in terms of thstribution and can, unfor-
tunately, only be calculated numerically. Pairwise confieintervals can now be
obtained as follows.

—

Proposition 7.5.1. Let {X;; : i« = 1,...,k;j = 1,...,n} be independer
random variables such that;; ~ N(u;,02). Then

_ _ Sw
Wiy = Miy = Xiy. — Xip. £ 1 Jn
are pairwise confidence intervals far=1,...,k andi; = 1,..., k, where

i1 # iz, With joint confidence level, wheres?, is defined in (7.5.1) and
FRk,k(n—l) (T) =4q.

Table A.6 gives 95 % percentiles of the studentized rangeildigion.

Example7.5.2 InExample 7.5.1, we hald= 9 andn = 5, which yields the critical
valuer = 4.66. Using the within-group variatios?;, = MSE = 0.81 gives us the

statistical error
W 466 x ,/—0'81 —1.87
Vn 5

When comparing all group means we find that only the threevate

up —prp = 542—-3.16+1.87=2.26=+1.87
Up — g = 542-279+187=2.63=£1.87
Up —pg = 542-297£187=245+£1.87

does not contain the value zero. Hence, we can conclude9%i#a confidence, that
variety D have a mean yield larger than varieti8sG andH. 0

7.5.3 Kruskal-Wallis Test
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If the assumption of normally distributed samples with dgadances is not satisfied,
there is an alternative approach calkediskal-Wallis test, which is based on ranks
like the Wilcoxon rank sum test introduced in Section 6.2 using the ANOVA
method of comparing sources of variation. The first step st the values in all
samples combined. If we denote the rank of observatigroy R, ;, the test statistic
is defined as

M=

2 (R
= (7.5.3)
> > (R

—

.
Il

= (kn — 1)

M=

1

i
<
I

whereR is the mean of all ranks anf;. is the mean rank of group Note that the
enumerator and denominator in (7.5.3) correspond to SSASST] respectively, in
the one-way ANOVA. This means that we would expect a largeatian in mean
ranksR;. if the group means are different and, consequently, shajétt the null
hypothesis if the test statisti€ is large enough. If there are no ties, it is possible to
simplify (7.5.3) (see Problem 38) as

k

12 2

whereR;. = 2?21 R;; are the group rank sums. In most textbooks in statistics,

the fact thatk ~ X:_, is often used to obtain critical values apéeralues for the
Kruskal-Wallis test. However, this approximation is notyaccurate for smath,
especially if is large. The problem is that it is virtually impossible tdadate the
exact distribution ofX” (except for really smalh andk) due to the enormous number
of combinations of ranks that has to be considered. In Tallé Aestimates of 95 %
percentiles are presented based on simulation methodbhbke presented in Section
6.4.3. Therefore, these values may not all be accurate dowhetlast decimal, but
they at least give better critical values than the chi-seagproximation.

Example7.5.3 There were some irregularities like different varianceshia data
in Example 7.5.1 that suggested that the conditions foyoagrout an ANOVA may
not have been met completely. Let us therefore apply thek&lvd/allis test to the
data and see if we get a similar result. We first rank all 45 olzdons as follows.

"Named after the American mathematician William Kruskall@92005) and economist W. Allen Wallis
(1912-98).
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Variety | Ranks | Rank sum
A 15 17 22 40 41 135
B 4 31 335 39 42 1495
C 9 19 32 35 38 133
D 30 36 43 44 45 198
E 13 14 29 335 37 126.5
F 2 8 12 21 26 69
G 3 6 7 10 18 44
H 1 5 11 20 23 60
I 16 24 25 27 28 120

Note that we have one tie in the value 4.60 that occurs twitkerable and, conse-
guently, gets the midrank 33.5. This means that (7.5.4) doggive the correct value
of K and that we should use (7.5.3) instead. In practice, (7i$abtually used any-
way because as long as there are nottoo many ties, the eneatlisnegligible. In this
case, (7.5.3) gives the (correct) valile= 22.196 while (7.5.4) givesl = 22.194.
The critical value fork = 9 andn = 5 on the 5 % level is 14.62 according to Table
A.11, which means that we can still reject the null hypotbes$n fact, thep-value
can be calculated to 0.0009, which is quite similar to theesponding value in the
traditional ANOVA in Example 7.5.1. 0

7.6 LINEAR REGRESSION

The world is full of linear relationships. When measurensene taken, observations
seldom lie on a straight line, though, as a result of measen¢rarror and other
random effects. In Section 3.8, we learned how the cormatoefficient can be used
to describe the degree of linearity in a relationship betw&e random variables,
and in Section 3.9, we saw that}¥f andY are bivariate normal, there is a linear
relationship between them in the sense that the conditiexdctation oft” given

X is alinear function ofX . In this section, we will investigate a similar model but
assume that only” is random. For fixed:, we assume that

Y=a+bxr+e¢
wherea andb are constants and
e~ N(0,07)

This means that deviations from the lipe= ax + b are normally distributed random
variables, and an equivalent formulation is

Y ~ N(a+ bz,o?)

We call this thesimple linear regressiomodel, and the lingg = a + bz is called
theregression line Thex values can be chosen by us or come from observations but
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we think of them as fixed, not random. For eactalue, the correspondinlg value
is measured, where we assume that consectitivalues are independent random
variables. Thus, we have thevalueszy, ..., z,,, get a samplé?, ..., Y,,, where

Yi = a+ bxy, + e ~ N(a+ bay, 0?) (7.6.1)

and our main objective is to estimate the interaephd slopé. Note that the;, are
independent but do not have the same distribution. Withghstnodification of the
maximume-likelihood method, we can still define the likeliftbfunction as

Hfab (Yz)

where

67(Yk7a7bmk)2/20'2

fap(Yr) = e

and we can maximize overandb in the usual way by taking logarithms and setting
the partial derivatives t6. The resulting estimators are stated next, leaving thefproo
for the Problems section.

Proposition 7.6.1. In the linear regression model, the maximum likelihgod
estimators ofi andb are

Zxk—x Yk—Y)
k=1

po—
> e~y
k=1

a = Y-—bz

The liney =a + b is the estimated regression line (or simply the regressimmnif
there is no risk of confusion). There are different ways torite the expression for

b. We introduce one, which is suitable for computations.
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Corollary 7.6.2. Define the sums

n n n 2
Spe = Z(xk —1)? = in — % (Z $k>
k=1 k=1

k=1
n - n 1 n n
SzY = Z(xk — ,T)(Yk — Y) = Zxkyk — E (Zl‘k) (Z Yk)
k=1 k=1 k=1 k=1
Then s
E: xY
SZIJJJ

Example7.6.1 Letuslook at a famous data set, Edwin Hubbl&/29 investigation

of the relationship between a galaxy’s distance from Eamthits recession velocity
(see also Example 3.8.9). He got the followihigobservations pairs, whetevalues
are distances in megaparsecs &nehlues the corresponding velocities in kilometers
per second. Find the estimated regression line.

Distance: 0.032, 0.034, 0.214, 0.263, 0.275, 0.275, 0.45, 0.5, 0.5, 0.63
0.8, 0.9, 0.9, 0.9, 0.9, 1.0, 1.1, 1.1, 1.4, 1.7, 2.0, 2.0, 2.0, 2.0

Velocity: 170, 290, —130, —70, —185, —220, 200, 290, 280, 200, 300 — 30
650, 150, 500, 920, 450, 500, 500, 960, 500, 850, 800, 1090

Computation of these sums gives
24 24 24 24
> a =21.87, Y Y, =8965, » af =29.52, » x Vi =12,519
k=1 k=1 k=1 k=1

and

2
Szz = 29.52 — 21.87 = 9.583
S,y = 12,519 — M = 4348
24
which gives
~ 4348
b = ——= =454
9.583
~ 8965 454 21.87 400

21 Y
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Fig. 7.3 Plot of Hubble’s galaxy data and the estimated regressien Distance is on the
axis and recession velocity on thexis.

and the regression line is= —40.0 + 454z, which is shown together with the data
setin Figure 7.3. Note how the line intersectsgraxis very close to the origin. Why
do you think this is the case? 0

If you are familiar with themethod of least squaregou may have noticed that the
estimated regression line is precisely the line that legsares fitting gives. (Why
is this?) Our assumption of normally distributed errorst#es us to further analyze
the estimated regression line. Let us investigate prageedi our estimatorg andb.
Since ther;, are fixed, the only randomness is in thig, and since botla andb are
linear combinations of the normally distributéq, the estimators themselves must
be normal. It is straightforward to compute their means aaribwces (see Problem
39).

Corollary 7.6.3. The estimatorg andb have normal distributions with meaps
and variances

n
o? g 7
k=1

E[a] = a Vaa] = —
n xTrxr
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In particular, Corollary 7.6.3 tells us that bathandb are unbiased estimators and
that
Q- b—b
=%~ N(0,1) and ——— ~ N(0,1) (7.6.2)
Var[a] Var[b]

where the variances depend o, which must thus be estimated. The following
estimator is used.

Proposition 7.6.4. In the linear regression model, the estimator

1

n—2

> (Vi — @ — bay, )?

k=1

82:

is an unbiased estimator of.

Note how this resembles the sample variance from Sectign6tBe sense that it
sums the squares of the observations minus their estimapeted values. Since
there are two estimated parameters, we divideiby 2 instead ofn. Another sim-
ilarity is that s2 is not the MLE; the MLE is obtained by dividing by rather than
n — 2. For practical calculations, the following result is udefu

Corollary 7.6.5. Define the sum

n

n n 2
‘%ngjn—Yﬁzg¥f—%<;¥g

k=1

Then

For inference about?, we need the distribution of2. In the light of Proposition
7.3.1, the following is to be expected.
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Proposition 7.6.6. In the linear regression model

(n —2)s? 2
T2 T Xn-2

a chi-squared distribution with — 2 degrees of freedom.

Note how this follows the by now familiar pattern; the numbg&degrees of freedom
equals the number of terms in the sum, minus the number ohatd parameters.
Confidence intervals far? can now be derived on the basis of the chi-square distri-

bution (see Problem 50).

As we might expect, if the estimaterreplacesr in the expressions in Equation
(7.6.2), we gett distributions withn — 2 degrees of freedom instead of normal

distributions. Recalling the computational formulas alave have

T, = n 5 tn—2

T, = Y it

which gives us the following confidence intervals.

Corollary 7.6.7. In the linear regression model with unknown variarce
confidence intervals far andb with confidence leved are given by

—~ szl xi
a a=+tsy 5, (q)

b = btts (q)

1
V Sil)il)
whereF;, ,(t) = (1+q)/2.

Example7.6.2 Find95% confidence intervals far andb in Hubble’s galaxy data.

From Example 7.6.1, we havdie= —40.0,b = 454,%", 22 = 29.52,%, Y} = 8965,
Sze = 9.583, Syy = 4348, andn = 24. we also need , Y? = 6,516,925 to

calculate
89652

24

Syy = 6,516,925 — = 3,168,124
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Now, we get the sample variance as

1 43482
2 _
=0 (3,168,124 053

which givess = 233. With ¢ = 0.95 andn — 2 = 22, we gett = 2.07. The
confidence intervals are

[ 29.52
—40.0 £ 2. 2 —— = —400+£1 .
0.0 07 x 233 21 % 9583 0.0£173 (0.95)

1
b = 4544+2.07 x 233——— = 454 £ 156 (0.95
v/9.583 (0.95)
Note that the intervals are quite wide; in particular, the éora is all over the place.
Two cautious conclusions we can draw are thit positive and that we cannot rule
out thate = 0 (which, of course, makes sense). 0

) = 54,328

S
Il

As you know by now, the step from confidence intervals to higpsis tests is not
big. Since the quantities, andT, given above have known distributions, we can
construct tests of the null hypotheses

Hy:a=aqag and Hy:b=by

based on the test statisti@s andT;, where we sett = ag andb = by. If the
alternatives are two-sided, we reject on lewef |T,| > t and|T,| > ¢, respectively,
whereF;, _,(t) = 1 — «/2. For one-sided tests, the usual adjustments are made,
usingl — « instead ofl — «/2.

Example7.6.3 The Old Faithful geyser (see Problem 111 in Chapter 3) ista ric
source of data. Two quantities that are routinely measuredhae times between
eruptions (typically3d0—-120 minutes) and the length of eruptions-f minutes). It

is known that these are positively correlated, and the Meltone park rangers use a
formula that is roughlyy = 13z + 30 to predict the time, until the next eruption,
based on the length of the most recent eruptionSeurce The Geyser Observation
and Study Association, www.geyserstudy.org.) Assume ealimegression model
and estimate the regression line based on the followihgbservations; also test
whether the slopé3 is correct.

Length: 1.7,1.7,1.7,1.8,2.3,3.1,3.4,3.5,3.7,3.9,3.9,4.0,4.0, 4.0, 4.1, 4.3
4.4,4.6,4.7,4.9
Time: 55, 58,56, 42,50, 57, 75,80, 69, 80, 74, 68, 76, 90, 84, 80, 78, 74, 76, 76
To compute the estimators, we need the usual spips;, = 69.7, Y, Y, = 1398,
> a2 =264.65 and) ", 21 Yy = 5083.1, which withn = 20 gives us

69.72

Sze = 264.65— =21.75
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Fig. 7.4 The Old Faithful data with the regression line (solid) anelilingers’ line (dashed).

69.7 x 1398

Sey 5083 20
Now, we get the estimators
~ 211.1
1398 69.7
a = — —9.71— =36.1
a 50 9.7 50 36

which gives the regression line= 9.71z + 36.1. To test
Hy:b=13 versus Hy:b#13

on level0.05, we haven — 2 = 18 and1 — 0.05/2 = 0.975 and reject if T,,| > 2.10,
whereb = 13. We first needy, Y;? = 100, 768 and

13982

Syy = 100,768 — = 3048

to compute

e 21.75
which givess = 7.45 and test statistic
71-13 ———

and we cannot rejedtl, although it is close. The rangers know what they are doing
and, of course, base their estimates on much larger datdhaeteur20 observations.
See Figure 7.4 for the data and the two lines. 0

1 211.12
$2== (3048 — ) =55.5
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7.6.1 Prediction

In the last problem, it was mentioned that one variable {lerd last eruption) is
used to predict another (time until next eruption). Gengrad the linear regression
model, if we observe or choosgwhat can we say abodt? We know that the mean
of Y is E[Y] = a + bz, which we estimate by + bz, and we can use this estimator
as a predictor of” (recall Section 3.7.2). How good is it? The difference betwe
the true valug” and the predicted valug+ bz is

D=Y—-Gd—bx=Y—-Y +b(z— )

Note here that, Y, andb are computed from the observatiopns, Y1), ..., (zn, Y,),
2 is our new observed value, andy” the yet unobserved value that we are trying to
predict. ClearlyF[D] = 0 and for the variance, note thgtis independent of and
b. Itis also easy to show that andb are uncorrelated (see Problem 40) and hence

varD] = Var[Y]+ VarY]+ (z — z)2Var[b]

o2 =242

- 240 Eo2)e
n Sea

Moreover, sinceD is a linear combination of normal distributions, it is nodméth

mearD and the variance given above. Henbg, /Var[D] ~ N (0, 1), and estimating

o2 by s? and using the computational formula for the sum of squanessgi

D
T = ~tp_2

1 (r—1x)?
14— 4 =
S\/ +n+ S

a t distribution withn — 2 degrees of freedom. Thus, we can fihduch that
P(—t < T < t) = ¢ for our desiredy, and sinceD = Y — a — bz we get the
following prediction interval(see also Problem 30).

Corollary 7.6.8. Consider the linear regression model with estimatoand
b. If = has been observed,180¢% prediction interval for the corresponding
Y value is given by

(z — 2)°

xrx

~ 1
Y—a+b$:|:t8\/1+—+
n

whereF;, _, = (1+q)/2.
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Note the difference between a prediction interval and a denfie interval. A pre-
diction interval captures the nekt value for a given: value; a confidence interval
captures the long-term average of a large numbér afalues for a given: value.
A confidence interval for the expected valueffor a givenz, would thus look
somewhat different (see Problem 48).

Note the length of the prediction interval increases withéasing x — )2, thatis,
the farther away the choservalue is fromz. This reflects that fact that our estimated
regression line is most reliable near Indeed, for ane far outside the range of our
originalz, ..., z,,, the prediction is highly uncertain and should preferalelgboided.

Example7.6.4 Consider the Old Faithful example and suppose that we just ob
served an eruption that lasted fob minutes. Find the predicted time until the next
eruption and &5% prediction interval.

The estimated regression lineyis= 9.71x + 36.1, so withx = 1.5 we get predicted
y value9.71 x 1.5 + 36.1 = 50.6. For the prediction interval, we have = 20,
t=2.10,s ="7.5,% = 69.7/20 = 3.5 andS,, = 21.75. We get

— 2
Y:50.612.10x7.5\/1+i+w

20 5175 =50.6£17.5 (0.95)

7.6.2 Goodness of Fit

To determine whether the linear regression model is reddeniais useful to examine
the difference between the obsen/édralues and those predicted by the estimated
regression line. The deviations

Ek :Yk—a—/gxk, kZl,...,TL

are called theesiduals Do not confuse thév;, and thee, from above;E} is the
difference between the observEdralue and thestimatedine @ + bz, whereas, is
the difference between the obseniédalue and thérueline a + bz, sSo we can think
of E}, as a predictor of.. If the residuals are plotted against thealues, they should
appear more or less randomly scattered and not display aogmtiible patterns, if the
model is correct. In Figure 7.5(a), the residuals for Hulsldalaxy data are plotted,
and they look just fine. In contrast, consider plot (b) whée riesiduals tend to be
below 0 at the ends and above in the middle, indicating a neatirelation. Finally,
in (c), the residuals tend to increase in magnitude witheasigz, indicating that
the variance is not constant but dependscohe plots in (b) and (c) illustrate the
two most common deviations from the linear regression mot®ito figure out how
the data set together with the estimated regression linéddook in these two cases.
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(@) (b) (c)

Fig. 7.5 Three residual plots. In (a), the residuals for Hubble'saggpldata are plotted and
give no reason to suspect that the model is wrong. In (b), Ham&dna shape” indicates a
nonlinear relationship, and in (c), the residuals indieat®nconstant variance.

Plotting the residuals provides a quick diagnostic tool¢eess whether the as-
sumed linear model is reasonable. For a more detailed dsaityshould be noted
that the residuaF;, has mear) and a variance that depends bn If the residuals
are divided by their estimated standard deviations, thesecalled thestandard-
ized residuals If the model is correct, the standardized residuals arecqipately
independent and/ (0, 1), which can be used for further analysis.

The situation with nonconstant variance is common and maynbdeled by
weighted linear regressigrietting Y = a + bz + ¢ wheree ~ N(0,w(x)o?),
where thew(x) are weights depending an

Itis also possible to apply the ANOVA method of comparingrees of variation
to quantify the goodness of fit. The residuals defined abovéeaised to obtain the
error sum of squares as

Say
Smm

SSE= > (Vi —a — bay)® = Syy —
k=1

and the total sum of squares is defined in a similar way as itid@®e¢.5 as
SST=Y (Vi —Y)® = Syy
k=1
The difference between the total variation and the randamatian

2
SzY

T

SSR= SST— SSE=

denotedegression sum of squaresan be interpreted as the amount of variation that
can be explained by the regression model. Hence, the la&fRisSin relation to SSE,
the better because then the points will lie close to the edéithregression line and
we will be able to predict” values with high accuracy. The proportion of variation
explained by the model, namedefficient of determinatiomnd defined as

SSE 52,

RP=1-22"= ¥
SST  SueuSvyy
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is the most common way of quantifying the goodness of fit ofgaession model.

Example7.6.5 The coefficient of determination for the regression modeHub-
ble’s data is

B 43482
~9.583 x 3,168,124

R? =0.62

which means that most of the variation, roughly 60 %, can haaéxed by the
estimated linear relationship. The Old Faithful analysidds a coefficient of deter-
mination of

211.12
2 = - =
R =575 x 300 = 007
which is even better with two thirds of the variation expledn 0

7.6.3 The Sample Correlation Coefficient

The simple linear regression model is useful, as we have, seleen we want to
estimate the linear relationship between two measuredtijiesrand make predic-
tions about new observations. Sometimes we are merelyesteat in estimating the
strength of the connection between two variables and testhveh it exists. This
can be done if we assume that data can be regarded as obmes\fatim the sample
of pairs (X1, Y1), ..., (X,, Y,) and consider the correlation coefficigntwhich we
recall is defined as

El(X = )Y — p2)]
Var[ XVar[Y]

Note that we regard both variables as random in this contédewhe = variables
previously were fixed. The difference lies mainly in the asption of a causal
relationship in the simple linear regression model. By mgki random and: fixed,
we are implicitly assuming that the value ofhave a direct impact on the value of
Y. Here, we just claim that the two variables are connectedsagchothing about
direction of influence. It may even be the case that both bbetaare affected by a
third variable not included in the model and not directlykkal at all.

Anyway, the following estimator should make intuitive sens
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Definition 7.6.1 If (X1,Y3),...,(X,,Y,) is a sample from a bivariate distfi
bution, we define theample correlation coefficieias

> Xk = X)(Vi—Y)
k=1 Sxy

R =
n \/SXXSYY
(Xe = X (Ve -
=1

k=1

We use the term “sample correlation coefficient” to pointthetanalogy with sample
mean and sample variance. If you wish to memorize a longeentra termproduct
moment correlation coefficieistalso used. Note that the square of the sample corre-
lation coefficient is actually the same as the coefficiensdédmination introduced in
Section 7.6.2, which further emphasizes the link betwegression and correlation.

Example7.6.6 Below is a data set of0 observations of the daily closing prices
for the two U.S. stock market indices, Dow Jones Industriagrage and Nasdaq
Composite Index, chosen at random between the year8dfand2003, rounded
to the nearest integer (and listed in chronological ordé&s3timate the correlation
coefficient of X andY'.

Dow: 887, 833, 821, 961, 1259, 2176, 2820, 3442, 7289, 10715
Nasdaq:108, 86, 74, 95, 283, 352, 430, 696, 1228, 2028

This is merely an exercise in computing the sums needed., Weubave

10 10

D X =31203, Y Vi =5380

k=1 k=1
10 10
D OXP=197x10% > V2 =653x 10°
k=1 k=1

and finally
10
ZXkYk =3.57 x 107
k=1

8Sometimes it is also prefixed withearson’sto honor its discoverer, English statistician Karl Pearson
(1857-1936), one of the founders of the theory of statistics
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Fig. 7.6 Plots of Dow ( axis) versus Nasdag @xis) for10 randomly sampled days during
19712003 (left) and1971 (right).

This gives us the sum of squares

312032

Sxx = 1.97x10%— =9.98 x 107
53802

Syy = 6.53x 10— =3.63 x 108
31203 x 5380

Sxy = B3.57x 107 — 222 X9 4 g9 % 107

10
Inserting these in the expression @ifrom Definition 7.6.1 yields

7
R 1.89 x 10 — 0.995
V/(9.98 x 107) x (3.63 x 109)

which is a very high correlation. For comparison, consitherfollowing 10 pairs of
closing prices, chosen at random from the yE##1 only (the year that the Nasdaq
index was started).

Dow: 941, 947, 889, 874, 850, 908, 888, 798, 829, 873
Nasdag:104, 104, 114, 110, 105, 110, 108, 106, 109, 105

This time the estimated correlation s = —0.14, which is not only much smaller
in magnitude but also negative. The reason for the diffexeénaorrelation is the
relatively stable growth of the markets over a long periadiisas the32 years we
first sampled from but less stable behavior over a shortéogesuch as a single year.
Since both indices mirror the market as a whole but are cadgibm different sets
of stocks, we would expect their correlation to be positind high for longer periods
of time, but for shorter periods of time, the correlation ltbe anything. The two
data sets are plotted in Figure 7.6. See also Problem 51. 0
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The most common test problem regarding the correlatiorficierit is to testifp = 0,

if there is an association between the random variaklesdY’, and intuitively the
test should be based on how fais from0. In general, we cannot find the distribution
of R but if our data are from a bivariate normal distribution witk= 0, the following
result gives the exact distribution for a particular funatof R, which we can use to
construct our test procedufe.

Proposition 7.6.9. Let (X;,Y7),...,(X,,Y,) be a sample from a bivariaLe
normal distribution withp = 0, and let

n—2
T=R
1— R2
Then
TNtn72

at distribution withn — 2 degrees of freedom.

The test procedure is now straightforward. Rf = 0, then alsol’ = 0, and asR
increases from-1to 1, T' increases from-oo to co. Thus we rejectd if T is too
far from0. Let us state this formally.

Proposition 7.6.10. Let (X1, Y3), ..., (X, Y,) be a sample from a bivarialte
normal distribution where we wish to test

Hy:p=0 versus Hy: p#0
The test is based on the statisti@above, and we rejedi on levela if
|T| > ¢

whereF;, ,(c) =1—«/2.

If we want to test against a one-sided alternative insteadsXample, with the inten-
tion of showing a positive (or negative) correlation, weerjif ' > ¢ (or T' < —c¢),
whereF;,_,(c) = 1 — a. Note that since we assume thdtandY are bivariate

9The result in Proposition 7.6.9 actually requires only tHabe normal; in factX does not even have to
be random.
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normal, a test op = 0 is in fact a test for independence.

Example7.6.7. Use the two data sets from Example 7.6.6 to test whether the Do
and Nasdagq indices are correlated. Test orbffidevel.

We test

Hy:p=0 versus Hy: p#0

where we choose a two-sided alternative since we are natgefsir any particular
direction of the correlation (although the one-sided alitivep > 0 would also make
sense). Let us first find the critical value. We hawve- 10, and witha = 0.05, we
getFy, (t) = 0.95, which givest = 2.31 so thatH| is rejected if| | > 2.31. In the
first data set we havB = 0.995, which gives

/ 8
T =0.995 1209952 — 28.1

and we rejeci,. In the second data set we hakle= —0.14, which gives

—0.14
T — _8x(=0.14) —0.40

V11— (=0.14)2

and we cannot rejedtly. The negative correlation for the short time period is not
significant. 0

If we wish to testp = po for somepy # 0, we cannot usé'. Also, if we wish to find

a confidence interval fop, we cannot usé’, either. The problem witH" is that it
does not include the unknown parametgwhich would be necessary for both these
tasks. In these cases an approximation can be used, aseesarProblem 53.

7.6.4 Spearman’s Correlation Coefficient

If data cannot be assumed to be normal, which is often the wakemarket data
such as the above, there is an alternative approach cafjedrman’s correlation
coefficient® based on ranks similar to the methods in Section 6.9. Theisdgaite
simple as in many nonparametric procedures.

10Named after the English psychologist Charles SpearmarB8iB5).
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Definition 7.6.2 If (X1,Y3),...,(X,,Y,) is a sample from a bivariate distfi
bution, we defin&Spearman’s correlation coefficieas

> (rk = )(sk = 3)

S
R J— k 1 . r8s
5 n n \/S'rrSss
(re —7)* (sk — 5)°
k=1 k=1
wherery, is the rank ofX;, amongXj, ..., X,, ands; is the rank ofY};, among

Yi,..., Y.

If there are no ties in the data, the formula in Definition Z.€an be simplified quite
considerably.

Proposition 7.6.11. Ifthere are noties, Spearman’s correlation coefficienfcan
be expressed as

6 - )
Rs—l—m;(rk—sk)

Hence, what you do is rank th€ andY observations separately, sum the squared
differences and use the formulain Proposition 7.6.11stidrns outthatitis possible
to test the hypothesi&, : p = 0 using the same test statistic ahdistribution as
above, only that the result is approximate

for largen.

Example7.6.8 Letusreturnto Example 7.6.6 and calculate Spearman’sietion
coefficient for the two data sets. When ranking the two setsbsérvations from the
period 1971-2003, we get that

Dow: 887 833 821 961 1259 2176 2820 3442 7289 10715
Rank: 3 2 1 4 5 6 7 8 9 10

Nasdaq: 108 86 74 95 283 352 430 696 1228 2028
Rank: 4 2 1 3 5 6 7 8 9 10
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Since the ranks only differ in two positions and by only oné,ume get the sum of
squared differences., (rx — sx)? = 2 and the correlation coefficient

x 2 =0.988

= 1 —_
Rs 10 x 99
which is quite close to the previous result.
When looking at the data from 1971, we discover several tiethe Nasdaq data
set and have to use midranks.

Dow: 941 947 889 874 850 908 888 798 829 873
Rank: 9 10 7 5 3 8 6 1 2 4

Nasdag: 104 104 114 110 105 110 108 106 109 105
Rank: 15 15 10 85 35 85 6 5 7 3.5

Unfortunately, this means that the formula in Propositiof.Z1 does not yield an
accurate value, so here we have to use the more complicateid ®@efinition 7.6.2.

After some standard calculations we reach the rdgglt= —0.17, which is also quite

close to the previous estimate. 0

7.7 THE GENERAL LINEAR MODEL

When comparing the one-way ANOVA model of Section 7.5 witl simple linear
regression model of Section 7.6 we notice some common fematun both cases,
observations are assumed to be normally distributed randmmmables where the
means are described by deterministic parametric lineactfoms. Any model that
satisfies these requirements is calle@eneral Linear Modéf, or GLM for short,
which s really a large class of models with tremendous irtgpare in many statistical
applications. We will not expand this rich field here but eatbffer a brief outline to
give some feeling for the kind of problems addressed and odsthsed.

We begin with the formal definition, which is most convenlgeixpressed in ma-
trix notation.

Definition 7.7.1 LetY be an x 1 vector of random variables an x k
matrix with known entries@ ak x 1 parameter vector and~ N, (0,X). The
General Linear Model satisfies

Y=X3+¢e€

1INot to be confused with the even larger cla@sneralized Linear Modgusually abbreviated GLIM,
also covering other distributions like the binomial andd$3on distributions.
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The matrixX is usually called thelesign matrixbecause it defines the design of the
model, i.e. how the unknown parametergiare linked to the observed valuesyn
Using standard linear algebra, the GLM can also be expressed

k—1
nzzxijngrei i=1,...,n (7.7.2)
§=0

whereY;, §; ande; are the components of the vectdfs 3 ande, respectively, and
x;; are the entries of the matriX. Note that the vectg8 and the columns ok are
indexed from O td: — 1, a common standard which will be motivated below.

In the most general form, the multivariate structure of taedom error vector
€ makes it possible to have different variances and deperetemt, but it is quite
common to assume that the covariance matrix can be wittens21,,, wherel,, is
the identity matrix with ones in the diagonal and zeros im#iker positions. This will
give us a model with independent errors and constant vagiadmother common
requirement is that the first column of the design mafixshould consist of ones,
i.e.z;o = 1in (7.7.1), which is mainly a technical condition that willarantee that
parameter estimates are unique. The consequence is thiatall models get an
intercept parametes;.

Example7.7.1 (Linear Regressiol It is quite easy to see that the simple linear
regression model (7.6.1) of Section 7.6 fits into this frarodwLet k£ = 2 and

1 X

1 i) a
1] e (o)

1 =z,

Itis also quite straightforward to generalize this intokhdtiple Linear Regression
model

Y = 8o+ brzin + Boxio + ...+ Br—1Tip—1 + & 1=1,...,n

using

1 211 x2 - Tig—1 Bo

1 w21 ®a2 -+ Top—1 B
X=1. . . . 8= .

1 Zpr ZTp2 -0 Tpg—t Br—1 O
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Example7.7.2 (One-way Analysis of VarianceTo see that the one-way ANOVA
is a linear model requires a bit more work. Recall from Seticb.1 thatX;; ~
N (u;,0?), which can be expressed

Xij:m—i-eij Z:L,/{ j:l,...,n

wheree;; ~ N(0,0?) are independent. This almost fits into the form of (7.7.1),
except that we have two indices and no intercept term.

First of all, we have to reorganize the observatidfs and the error terms in the
vectors

Y (X11, X2, -+, Xin, Xo1, Xoo, oo+, Xon, X31, .o, Xin)'

/
€ = (6117612, <., €1n,€21,€22,...,€2n,€31, .. -7€kn)

whereM’ means the transpose of the mathik
Next, we reparametrize the group meansas

wi=p+a; i=1,....k

so that we get an intercept = u. Unfortunately, this adds an additional parameter
to the model, so some kind of restriction is necessary. Indgted ANOVA, it is
common to require thaEf:1 «o; = 0. This means that wheny,...,ar_1 have
been determined, then, = — Zf;ll «; showing that the number of parameters is
still k. Another alternative is to set one of theto zero (most commonly; = 0 or
ay, = 0), which gives an equivalent model, but we will not consides tase here.

In order to define the design matrix we need to introduce deddlimmy variables

Ti1 = 1, i:l,...,n
T = 1, 1=n+1,...,2n
Tig—1 = 1, i=(k-2n+1,...,(k—1)n
xi; = —1, i=(k-1n+1,...,kn j=1,...,k—1

If we let 0 and1 denote the: x 1 vectors consisting of zeros and ones, respectively,
we can express the design matrix and parameter vector as

1 1 0 0 0 I
1 0 1 0 0 a1

X = : : 8= Q2
1 0 0 0 1

1 -1 -1 .- -1 -1 ap—1 0
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If & = n we would have a square design matiixand we could get estimates 6f
as the solution to the linear matrix equation

Y = X3 (7.7.2)

which, if the inverse of( exists, can be writte = X ~1Y. In practical applications,
itis common to have more observations than unknown param@titen much more),
i.e.k < n. Inthat case, we can reduce the dimensionality of (7.7.2nbitiplying
with X’ from the left to get

X'Y=X'Xp
If the inverse of the: x k-matrix X' X exists, we get the solutigh = (X' X) 1 X'Y.
In fact, we get the following important result.

Proposition 7.7.1. Assume thatX’X)~! exists in a GLM. Then
B=(X'X)"'X'Y
is a uniqgue MLE of3. It also holds that

B~ Ni(B,(X'X) ' X'SX(X'X)™) (7.7.3)

If we consider the special case whéte= ¢2%1,,, we can simplify the covariance
matrix in (7.7.3) as

(X' X)X L)X (X' X)) = (X' X) I X'X(X'X) ! =?(X'X)!
Then it is possible to show that

2

n k—1
1 ~ 1 ~
S _n_kHY_XﬁH_n_kl:l }/'L jzoxljﬁj

is an unbiased estimator ef such that

(n — k)s?

oz ~ X?sz
As a consequence of this, it follows that
Bj — Bj Bj — Bj

= ~tng j=1,....k

2\/ Var(B;) OV
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wherez;; are the diagonal elements in the matdx= (X'X)~'.

Example7.7.3 (Two-way Analysis of Variancg_et us end this section by indicating
how the theory of GLM can be used to handle higher order ANO\@deis. We will
only consider the two-way ANOVA here. It should be quite clbaw this can be
generalized to higher dimensions.

The two-way ANOVA can be written

Xijk ~ (pij,0%) i=1,...,a j=1,....,b k=1,...,n
or in alternative form
Xijk:u—i-ai—l—ﬁj—i—’yij—i—eijk 1=1,...,a jZl,...,b k:l,...,n

wheree; ;i ~ N (0, o2) are independent error terms. The parameterandg; are
calledmain effectsand-y;; are callednteraction effects As before, we need some
additional conditions to reduce the number of parameters

a b a b
D=0 D24=0 Yoa=0 D=0
i=1 j=1 i=1 j=1

This implies that the parameter vector can be written

B = (1, ey Qa1 B1s- s Bom1y Vit e o V1b—15 V215 - - - > Ya—1,0—1)

The design matrix becomes quite messy, so we will not attémpgtve a detailed
description of it here. It will be dabn) x (ab) matrix, which can be built up by
introducing dummy variables much in the same way as in Exar.2. In this
particular case, it is possible to express the parametien&tsirs analytically as

o = X

a, = X —X i=1,...,a—1

B, = X, -X j=1,....b—1

i = X —Xi. —X,;+X i=1,...,a-1 j=1,...,b—1

where we use the convenient notation introduced in Sect®wiiere the dots indicate
for which indices the average is taken. 0
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PROBLEMS

Section 7.2. Sampling Distributions

1 Let X ~ xZandY ~ x? be independent. Show that + Y ~ x2_..

2 LetX ~ x;. Show thatX ~ I'(%, 1).

3 Find the mean and variance in t# distribution. Also find the approximate distribution
for larger. Hint: Use the previous problem and Section 2.8.2.

4 LetX ~ F,. .. ShowthatX ! ~ F, ..

5 Find the mean (fos > 2) and variance (fos > 4) in the F" distribution. Hint: Use
Proposition 7.2.2 anfl(z + 1) = zI'(z).

6 Find the mean (for > 1) and variance (for > 2) in thet distribution.
7 Let X ~ t1. Show thatX is Cauchy distributed.

8 Maxwell-Boltzmann distributionThe velocity V' of a particle in an ideal gas can be

represented as
V = VE + Vy2 + Vz2

whereV,, V,, and V. are the velocity components in a three dimensional cooteina
system. They are assumed to be independent and normalijpdistl with mean 0 and
variances? = kT/m, whereT is temperatureyn is the mass of particles aridis the
Boltzmann constanty(= 1.381 x 10~2%). Derive the pdf ofv. Hint: Use Proposition
2.3.7.

Section 7.3. Single Sample Inference

9 Below are seven measurements of the ozone level (in ppmi takkan environmen-
tal measuring station. Suppose that these have a normabdtiin and find 5%
symmetric confidence interval for the mean

0.06, 0.07, 0.08, 0.11, 0.12, 0.14, 0.21
10 let Xy, ..., X,, be a sample from a normal distribution with known meeand unknown

variancer?. Use Proposition 7.2.1 to show that@q% symmetric confidence interval
for o2 can be based o’ from Section 6.2.1 and is given by

nb\'Q/mg <g?< nb\'Q/ml (9)

whereF,2 (z1) = (1 —q)/2 andF,z2 (z2) =1 — (1 —¢)/2.
11 Below are measurement errors from an unbiased sgale-(0). Use the previous
problem to find @5% symmetric confidence interval for its standard deviation.
—0.08, —0.05, —0.02, 0.01, 0.02, 0.06, 0.07

12 AnIQ testis being constructed, and it is desirable that taedard deviation i$5 (the
mean is unknown). To assess this, the test was givé0 tandomly selected people
and the sample variance came out tabe= 340. Find symmetric confidence intervals
for o with confidence level8.90 and0.95. Conclusions?
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Consider the symmetric confidence interval foin the normal distributiony = X +
ts/+/n. How should we choose in order to limit the length of the confidence interval
to eo with probability ¢ or greater? Express in terms of the cdf of the chi-square
distribution.

Lets? be the sample variance andebe arandom variable that haga_; distribution.
Show that(a) E[s] = cE[VY]/vn — 1, (b) E[s*] = ¢*E[Y?]/(n — 1)%. () In (b),
it can be shown thak[Y?] = (n — 1)(n + 1). Use this to find the variance ef and
show thats? is consistent (see Definition 6.2.4).

A company producing soda cans test whether their cans cothiaintended 2 ounces.
The contents of 00 cans are measured, the sample meag.is and the sample variance
0.96. State the relevant hypotheses and test ors¥hdevel if the mean id2.

The depth of a lake at a particular point is claimed to be mioa@t00 m. To test this,
the depth is measured repeatedly, where it is known that une@ent errors have a
normal distribution. On the basis of the following measueeis, test on th% level
whether the depth is more than0 m:

99, 101, 102, 102, 103, 103, 103

An electronic scale is known to give a measurement error, tartgést whether it is
unbiased, 400 g weight was weighed repeatedly and the following data abthi Test
on the5% level if the scale is unbiased (i.e., if the mea)s

—1.05, —0.55, —0.01, 2.55, 3.72

An environmental measuring station measures ozone lavéteiair. The level is con-
sidered unhealthy if it is over.30 (ppm) and to decide, the following five observations
were gathered. Assume a normal distribution, state theogpjate null and alternative
hypotheses (one- or two-sided?) and test on I6¥&l

0.32, 0.35, 0.38, 0.41, 0.48

The vendor of a particular herbal supplement claims thatlitincrease your 1Q. To
test the claim, the supplement was giveri@people. Before, the sample mean was
100 and after, it wad03. “l told you so!” says the vendor but test his claim on &%
level if you are also given the sample variance of the difiees, which wag818.

A test facility reports that they have found that a measurgndevice gives values
that tend to be too large. The measurement errors had a sangale of0.5 and a
sample variance of. How large must their sample size have been in order to draw th
conclusion in a two-sided test on th&; level?

Let X1, ..., X, be asample from a normal distribution with known meaand unknown
varianceo?. Describe how to use estimators@f and the chi-square distribution to
construct tests of the null hypothedi® : o> = o¢ for fixed o2.

The following data are from a normal distribution where itiesirable that the variance
is at mostl. Do the following data cause concern that the variance idaime? Test
on the5% level.

—3.7, —1.5, —0.6, —0.4, —0.3, 1.0, 2.0
An electronic scale gives measurement errors that are navittamean0. The scale
needs to be adjusted if the standard deviation exceeds dhgrami. The following
data are deviations in milligrams obtained by weighing ajectbof known weights
times. Do the data warrant an adjustment? Test onYhéevel.

—0.40, —0.28, —0.27, —0.16, 0.05,0.22
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24 An 1Q test is constructed and the desired standard devi&idh. The following data
are 10 measured 1Q scores. Test on thi& level if the standard deviation is out of
bounds.

75, 76, 87, 90, 97, 104, 106, 107, 111, 127

Section 7.4. Comparing Two Samples

25 Common sea-buckthorn berries are particularly rich inmitaE. Two genetically dif-
ferent types of plants were evaluated in an experiment wémren plants of typd and
five plants of typeB were cultivated. The vitamin E content (ig/g dry weight) of the
ripe berries were measured.

Type A: 416, 492, 444, 404, 325, 286 403

Type B: 279, 352, 320, 385, 315
Assume that the samples are normally distributed with egai@nces and carry out a
hypothesis test on the 10% level to see if the mean vitamimiecod differ between the
two types.

26 To investigate whether caffeine effects cholesterol keMéle patients had their choles-
terol levels measured before and after taking doses ofinaffé-ind a symmetri®5%
confidence interval for the difference in cholesterol levased on the following data:

Before: 162, 168, 197, 202, 225
After: 179, 170, 196, 188, 210

27 A chemist wants to see how much an industry contributes ttuthmh in a nearby
river. She collects 10 samples upstream and 15 samples tteammson 25 different and
randomly chosen days during a three month period and mesth&eontent of a certain
pollutant. The sample mean and standard deviation wereah®l 2.8, respectively, for
the upstream samples and 86.1 and 38.7, respectively, doddtvnstream samples.
Assume that the samples are normally distributed and ke 95 % confidence
interval for the difference in mean pollution downstreand aipstream.

28 A water laboratory need new pH meters and considers twordiftdrands. Therefore,
they acquire six meters each from the manufacturers fouatiain and use them to
measure the pH in a neutral solution known to have pH leveltYe Jample standard
deviations of each brand were 0.078 and 0.029, respectikellyis evidence enough to
claim that one brand has significantly lower measuremeunt ¢han the other? What
assumptions do you need to make?

29 A type of rectangular metal plate has sid€sandY that are normally distributed
with the same variance and meams and p2, respectively. Find &#5% symmetric
confidence interval for the circumferen2g, + 2u- of a plate, based on the following
two independent samples:

X :87, 90, 97, 102, 108, 110
Y : 133, 147, 148, 154

30 If we have two independent samples of the same siamd with the same variance,
the standard confidence interval for the difference betwhermeans is based on the
estimatory — X of us — p1. However, we could also pair the observations, compute
the differencesD, ..., D,,, and base the confidence interval bn= Y — X. Which
do you think is better and why?



THE GENERAL LINEAR MODEL 451

31 Consider two independent sampl&s, ..., X,, andYi, ..., Y,, that have the same un-
known variances?. Let s? ands2 be the respective sample variancéa) Prove that
the pooled sample variance from Definition 7.4.1 is an urddlasstimator ot2. (b)
Prove that any linear combination of the tygle= as? + (1 — a)s3 where0 < a < 1
is an unbiased estimator of. (c) Prove that the variance of is minimized for
a = (n—1)/(n+ m — 2) and thus that the pooled sample variance has a smaller
variance than does any other linear combinatiogiainds3. Hint: By Problem 14 (c),
Var[s?] = 26" /(n — 1) and Vafs3] = 2¢*/(m — 1).

32 In 1908, W. S. Gosset conducted a famous experiment to determingheriiain-dried
seed would give larger corn yield than would regular seeavéi plots were split in
half and planted with regular seed on one side and kiln-dvéedl on the other. (Why is
this better than simply planting regular seed in one big atat kiln-dried in another?)
This gave the followind 1 pairs of yields in pounds per acre:

Regular: 1903, 1935, 1910, 2496, 2108, 1961, 2060, 1444, 1612, 1316, 1511
Kiln-dried: 2009, 1915, 2011, 2463, 2180, 1925, 2122, 1482, 1542, 1443, 1535

which we assume are normally distributed. State the apjat@phypotheses and test
on the5% level.

33 Let us say that you want to test if the means in two independedtnormal samples
are equal and you are uncertain whether the variances aa dden, it may seem like
a good idea to first carry out a hypothesis test to see if thawees are equal. If you
acceptHo, you carry out the test in Proposition 7.4.4, and if you rejHg, you use
Proposition 7.4.6 instead. What is the problem with thispdure?

Section 7.5. Analysis of Variance

34 A biologist wanted to examine the impact of alcohol on sleafigons. A total of 20
mice were randomly assigned to four equally large treatrgemips and injected with
a certain concentration of ethanol per body weight. Thetleo§the REM sleep was
then measured during a 24 hour period. The result was asv@llo

Treatment | REM sleep | Mean Variance
O(control)| 89 73 91 68 75| 79.2 104.2
1 g/kg 63 54 69 50 72| 61.6 89.3
2 glkg 45 60 40 56 39| 480 905
3 g/kg 31 40 45 25 23| 328 90.2

(a) Carry out an ANOVA on the 5% level to see if alcohol consumptadfects REM
sleep. (b) Calculate pairwise confidence intervals for the differeirceneans. What
groups are significantly differentfc) Carry out a Kruskal-Wallis test. Does the con-
clusion differ from (a)?

35 Consider an ANOVA withk = 2 and arbitraryn. Show that this is equivalent to the
two-samplet-test with equal variances.

36 Unbalanced ANOVALet us assume that thietreatment groups in a one-way ANOVA
are of different size®, . . ., nx. Modify the balanced ANOVA and derive expressions
for the sum of squares, mean squares, degrees of freedoifi tesd.
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37 Show thatF[s%] > o2 if pi, # i, for somei; andis.
38 Use

Zk, _ n(n2+ D and Zk2 _ w (7.7.4)
k=1 k=1

to derive equation (7.5.4) if there are no ties in KruskalHi&/gest.

Section 7.6. Linear Regression

39 Verify the estimators of andb in Proposition 7.6.1 and compute the means and variances
of @ andb.

40 Show that” andb are uncorrelated (Problem 101 in Chapter 3). Are they inddest?

41 Find95% symmetric confidence intervals farandb based on the Old Faithful data in
Example 7.6.3. Compare with the “ranger formulaz= 13z + 30.

42 Test the hypothesis that= 0 in Hubble’s galaxy data, on significance le@ed1.

43 Consider the linear regression model without the inter¢epn, that is,Y = bx + e.
(a) Find the MLEDb of b and compute its mean and varian¢k) Suggest an estimator
of o2 and a confidence interval for (c) Again consider Hubble's galaxy data. Argue
why the modelY” = bx + ¢ is reasonable there, compLAlx,ea%% confidence interval
for b, and compare with the estimate obtained in Examples 7.6l 7 #2.

44 Consider the linear regression modél= a + bx + €. (a) Suppose that is known.
Find the MLE ofb. (b) Suppose thai is known. Find the MLE of:. (c) Compute the
preceding estimates for the Old Faithful data in Example3u6ing the rangers’ values
of a andb, respectively. Compare with the estimates in the example.

45 A cell culture is growing in such a way that the total mass @ett can be ideally
described by the equatian= ae®, wherea andb are constants. Because of random
fluctuations, the real relationship¥s = ae” L, whereL is a random variable that has
a lognormal distribution with: = 0 ando? = 1 (see Section 2.8.1). Find estimators
and95% confidence intervals for andb based on the following data, obtained from
five different cultures, weighed at different times.

Time: 1, 3,7, 8, 10
Weight: 1.43, 0.51, 4.57, 5.93, 1.73

46 Below are the winning times in men’s 10,000-m track in ther@bhyc Games between
the years1952 and 2004. Times are in decimal form, so, for exampik8.4 = 28
minutes an®4 seconds. Let the years be thealues and the times thevalues. (a)
Find the estimated regression line and the predicted wintime in the Olympic year
2668. (b) Is it reasonable to assume a linear relationship?

29.3, 28.8, 28.5, 28.4, 29.4, 27.6, 27.7, 27.7, 27.8, 27.4, 27.8, 27.1, 27.3, 27.1

47 Again consider the Old Faithful data in Example 7.6.3. Cotapa95% prediction
interval for the timeY” until the next eruption if the most recent eruption iasninutes.
Compare with the interval in Example 7.6.4. Which is longerd why?

48 Show that a confidence interval far+ bx, the expected value df if = has been
observed, is obtained by removing the ‘Under the square root in the expression for
the prediction interval in Corollary 7.6.8.
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49 Consider the following residual plots. What do they suggdxiut the true relation
betweenz andY ?

@ (b) (©
50 Consider the linear regression model. Describe how to finghansetric 100¢% con-
fidence interval foro based on Proposition 7.6.6. What does this give for Hubble’s
galaxy data in Example 7.6.1,4f= 0.95?

51 The following is a data set dfo closing prices for the Dow and Nasdagq indices, chosen
at random from the yea@000. Compute the sample correlation coefficighaind test
if p = 0. Look up the behavior of the two indices during the y2@00 and explain the
value of R in the light of this.

Dow: 10,092, 11,112, 10,621, 10,714, 10,504, 10,783, 10,908, 10, 681
10,707, 10,399
Nasdaq:4321, 4897, 3205, 3400, 3767, 3858, 3842, 3333, 3429, 3200

52 Compute Spearman’s correlation coefficidty for the data in the previous problem
and test ifp = 0. Do the results differ?

53 Letp be the correlation coefficient arféithe sample correlation coefficient in a sample
from a bivariate normal distribution, and let

L= ox (155)

It can be shown that the following approximation holds:

LéN(log<ﬂ>, 4 )
1—-p) n—-3

Use this to find an approximate confidence intervapfoApply this to find the observed
95% confidence interval for the stock market data in Problem 51.

54 Consider Gosset's corn yield data from Problem 32. Use titéstit L in Problem 53
to test whether the correlation between yields is greatm@p. Test on the&% level.

55 To test the null hypothesi&, : p = 0 about the correlation coefficient, we can use
either the test statisti€ from Proposition 7.6.9 or the test statisfidrom Problem 53.
However, only one of them can be used for power calculati@visich one, and why?

56 Use (7.7.4) to derive Proposition 7.6.11 if there are na ties

Section 7.7.The General Linear Model

57 Inthe multiple regression mod®l = B+ B1xzi1+ Bexiz+¢€;fori = 1,..., 25, where
€1,...,¢c5areii.d.N(0,0%), we gotBy = 2.71, 81 = 10.20, B2 = 2.07, s> = 0.180
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and the diagonal elements; = 0.4, z22 = 0.5 andzss = 0.02. Calculate two-sided
symmetric confidence intervals fal, 51 and32. Use Bonferroni correction to get
simultaneous confidence level at least 95 %.

Express the two-sample model in Section 7.4 as a generatlinedel both for the case

of =02 =o0%andoi # o2

Use Proposition 7.7.1 to verify Proposition 7.6Hint: The inverse of & x 2-matrix

is .
a b 1 d —b
c d T ad—bec\ —c¢ a

Consider the two-way ANOVA in Example 7.7.3 and derive sunsauiares SSA and
SSB for main effects, SSAB for interaction, SSE for error &8I for total.Hint: Use
SST= SSA+ SSB+ SSAB+ SSE.

It is perfectly fine to mix categorical components, like inAROVA, with linear com-
ponents, like in a linear regression, into a general lineadeh As a simple example,
considerX;; = p+ a; + Bxi; + €5 fori = 1,...,kandj = 1,...,n, where
Zi a; = 0ander,..., e, are i.i.d N(0,02). Outline the design matrix in this
model.




Stochastic Processes

8.1 INTRODUCTION

Many real-world applications of probability theory have rarticular feature that data
are collected sequentially in time. A few examples are weratlata, stock market
indices, air-pollution data, demographic data, and puaitiracking polls. These also
have in common that successive observations are typicatliypdependent. We refer
to any such collection of observations astachastic procesg~ormally, a stochastic
process is a collection of random variables that take vadiuasetS, thestate space
The collectionis indexed by another §&ttheindex set The two most common index
sets are the natural numbéfs= {0,1,2,...}, and the nonnegative real numbers
T = [0, 00), which usually represent discrete time and continuous,tiespectively.
The first index set thus gives a sequence of random varigblgs X, Xo, ...} and
the second, a collection of random variab{e$(¢),¢ > 0}, one random variable
for each timef. In general, the index set does not have to describe timestalso
commonly used to describe spatial location. The state spa@tee finite, countably
infinite, or uncountable, depending on the application.

In order to be able to analyze a stochastic process, we ngadke assumptions
on the dependence between the random variables. In thisecheye will focus on
the most common dependence structure, the so cittov property and in the
next section we give a definition and several examples.

455
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8.2 DISCRETE-TIME MARKOV CHAINS

You are playing roulette, in each round bettifigon odd. You start witl$10 and
after each round record your new fortune. Suppose that sidifie rounds gives the
sequence loss, loss, win, win, win, which gives the sequeht®tunes

9,8, 9,10, 11

and that you wish to find the distribution of your fortune attee next round, given
this information. Your fortune will bé 2 if you win, which has probabilitgﬁ, and10

if you lose, which has probabilit%%. One thing we realize is that this depends only
on the fact that the current fortuned$1 and not the values prior to that. Generally,
if your fortunes in the first: rounds are the random variablég, ..., X,,, then the
conditional distribution ofX,,.; given X3, ..., X, depends only orX,,. Thisis a
fundamental property, and we state the following generfihiion.

Definition 8.2.1 Let X, X1, X, ... be a sequence of discrete random vari-
ables, taking values in some seand that are such that

P(Xn+1 - .]|XO = iOv '-'7Xn71 = inflen - 'L) - P(XnJrl - .]|Xn = 'L)

for all i, 4,0, ...,4,—1 In S and alln. The sequencé¢X,} is then called a
Markov chain

We often think of the index as discrete time and say th#t, is thestateof the chain

at timen, where the state spacemay be finite or countably infinite. The defining
property is called th&larkov propertywhich can be stated in words as “conditioned
on the present, the future is independent of the past.”

In general, the probability’(X,,+; = j|X,, = ¢) depends on, j, andn. Itis,
however, often the case (as in our roulette example) tha¢ tikeno dependence on
n. We call such chainBme-homogeneotwand restrict our attention to these chains.
Since the conditional probability in the definition thus dags only on andj, we
use the notation

Dij = P(Xn+1 :]|Xn = i), 1,] € S

and call these th#ransition probabilitiesof the Markov chain. Thus, if the chain is
in statei, the probabilitie;; describe how the chain chooses which state to jump to
next. Obviously the transition probabilities have to $gtike following two criteria:

(@) ps;j >0, foralli,j S, (b) Zpij =1, forallie S
JjeSs

Example8.2.1 In the roulette example above, the state space is

S=1{0,1,..}
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and if the chain is in state> 1, it can jump to eithef — 1 or i + 1 according to the
transition probabilities

20 d 18

Piji—1 = % an Diji4+1 = %
Wheni = 0, this means that you are ruined and cannot play anymore. , Hous
can jump to0 but not from it. It is customary to describe this by lettipg, = 1,
thus imagining that the chain performs an eternal sequefjoenps fromo to itself.
The diagram below shows a way to describe a Markov chain aaghgmwhich we
refer to as thdransition graph The arrows show the possible transitions and their
corresponding probabilities. Note that the sum of the nuba the arrows going
outfrom each state i$. This is criterion (b) above.

(1_} 18/38 18/38
O, odbodr
20/38 20/38 20/38

Example8.2.2 A certain genein a plant has two allelesanda (see Section 1.6.2).
Thus, its genotype with respect to this gene canlde Aa, or aa. Now suppose that
a plantis crossed with itself and one offspring selectetlitherossed with itself and
so on and so forth. Describe the sequence of genotypes askawtdrain.

The state space iS = {AA, Aqa,aa}, which also shows that states do not have to
be numbers. The Markov property is clear, since the offspring’s genetgiepends
only on the parent plant, not the grandparent. Clearly, ggresA A andaa can have
only themselves as offspring and for the type, we recall the Punnett square from
Section 1.6.2 to get the following transition graph.

1 1/2 1
1/4

Cr Cr Cr
@, e @

1/4

1The picky probabilist then refers to th€;, asrandom objectsather than random variables. If we wish,
we can rename the statés, 2, 3} instead, where the numbers have no role other than servitapels.
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It is convenient to summarize the transition probabilitiethe transition matrix P,
which hagp;; as its(¢, j)th entry. Depending on the state space, the transition xnatri
may be finite or infinite. Thus, in the genetics example we have

1 0 0
P=| 1/4 1/2 1/4
0 0 1

and in the roulette example the infinite matrix

1 0 0 0 0
20/38 0 18/38 0 0
0

P = 0 20/38 0 18/38

8.2.1 Time Dynamics of a Markov Chain

The most fundamental aspect of a Markov chain in which weraerésted is how
it develops over time. The transition matrix provides ushwat description of the
stepwise behavior, but suppose that we want to compute stribdition of the chain

two steps ahead. Let

Pl = P(Xe = j|Xo = i)

and condition on the intermediate st&p. The law of total probability gives

kesS
- Z P(Xz = j|X1 = k)P(X1 = k|Xo =14) = Zpikpkj
kesS kes

where we used the Markov property for the second-to-lasakitgu\We switched the
order between the factors in the sum to get the intuitivelyesgting last expression;
in order to go fromi to j in two steps, we need to visiomeintermediate stef:
and jump from there tg. Now recall how matrix multiplication works to help us
realize from the expression above tbga?l) is the(i, j)th entry in the matrixP?. Thus,
in order to get the two-step transition probabilities, weae the transition matrix.
Generally, define the-step transition probabilitiegs

P = P(X, = j|Xo = i)

and letP(™) be then-step transition matrix. Repeating the argument abovesgive
P(") = P thenth power of the one-step transition matrix. In particulhistgives
the relation

prtm) _ pn) p(m)
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for all m, n, commonly referred to as thehapman—Kolmogorov equatiirapman—
Kolmogorov equationsSpelled out coordinatewise, they become

<n+m) (n)
Z Pik p/w
kesS

for all m,n and alli, 5 € S. In words, to go from to 5 in n + m steps, we need to
visit some intermediate stdpaftern steps. We leP(®) = I, the identity matrix.

Example8.2.3 Find then-step transition matrix in the genetics example (Example
8.2.2).

The state space 18 = {AA, Aa,aa}, and let us start with, = 2. We get

1 0 0 1 0 0
P@ = 1/4 1/2 1/4 1/4 1/2 1/4
0 0 1 0 0 1
1 0 0
= 3/8 1/4 3/8
0 0 1
We now realize thals andls will remain in all powers oP that the middle entry
in P is p{7) = (3)", and that by symmetryl?) = p{"). This gives thes-step
transition matrix
1 0 0
P =1 (1-@/2m/2 (1/2" (1-(1/2)")/2
0 0 1

It is obvious without computations that tie andls remain unchanged; the types
AA andaa can have offspring only of their own type. Also note how thelyability
to find the typeAa declines rapidly withe, indicating that eventually this genotype
will disappear. We will return to this aspect of the trargitimatrix. 0

It should be pointed out that computation®f® is seldom this simple and may be
more or less impossible if the state space is large. Even $onall state space, the
computation is not trivial, as the next example shows.

Example8.2.4 (ON/OFF Systen). Consider a system that alternates between the
two state$) (OFF) and1 (ON) and that is checked at discrete timepoints. If the system
is OFFat one timepoint, the probability that it has switche®toat the next timepoint
isp, and if itisON, the probability that it switches ©OFFis ¢. (a) Describe the system

as a Markov chain(b) Find then-step transition matrix(c) Suppose that = % and
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For (a), the transition graph is
1-p 1—gq
Cr = C»
odipo

q

(1)
q 1—g¢q

and computation of the powers &f needed for (b) is facilitated by diagonalization
techniques from linear algebra. The eigenvalueBafe)\; = 1and\s =1—p—gq
and it can be shown that

pr_ 1 ( q p )+ A ( p - >
p+q\ g P pt+qg\ —¢ ¢
and you may verify that this satisfies the relatiBh*! = P"P. To find the answer
to (c), we neeg>, which is the(0, 1) entry in P®). Thus, the probability that the
system iSON at timen = 3, given that it starts beinQFF, is
_p)\3 _ _ 3
3 P pA2:%+ 3/4x (=1/4)° _ 161
p+q p+qg 5/4 5/4 O

and the transition matrix

One interesting aspect of a Markov chain is its long term biehaAs it turns out,
there are simple and elegant asymptotic results for Markmins that makes this
easy to deal with. Before we get to those results, let us densisymptotics in some
of our examples.

Example8.2.5 Recall the genetics example (Example 8.2.2). Find thediofithe
transition probabilities a8 — oo.

Then-step transition matrix is

1 0 0
P = (1-(1/2)M/2 (/2" (1—(1/2)")/2
0 0 1

and lettingn — oo gives the matrix

lim P™ =1 1/2 0 1/2

n—oo
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Thus, if we start in statel A or aa, we stay there, and if we start in state;, we
eventually end up in eithet A or aa with equal probabilities. 0

Example8.2.6 Recall theON/OFFsystem in Example 8.2.4. Find the limits of the
transition probabilities a8 — oo.

Then-step transition matrix is

p<n>:;(q p)+A_E‘( P —p)

p+gq q p p+q -q q

and, since\s =1 —p—gandthug)z| < 1 (unlesp =g =00rp =g = 1), letting
n — oo gives the matrix

lim PO — (‘1 p)
n—00 p+a\a p

Note that the rows of this matrix are identical. Thus, at a Ehepoint, the prob-
abilities that the system i@FFandON are approximately/(p + ¢) andp/(p + q)
respectively, regardless of the initial state. Note that if p, the probability to be
OFFis larger, which makes sense. 0

In the last example, the asymptotic probabilities do noetelon how the chain was
started, and we call the distributién/ (p + ¢), p/(p + ¢)) on the state spacg, 1}

a limit distribution. Compare with the genetics example where no limit distrdrut
exists, since the asymptotic probabilities depend on thialistate. A question of
general interest is when a Markov chain has a limit distidyut To be able to answer
this, we need to introduce some criteria that enables usssify Markov chains.

8.2.2 Classification of States

The graphic representation of a Markov chain illustrates/iich ways states can
be reached from each other. In the roulette example, $tesm, for example, reach
state2 in one step and statk in two steps. It can also reach st&tén four steps,
through the sequen&1, 2, 3, and so on. One important property of statie that it
can reach any other state. Compare this to statkich cannot reach any other state.
Whether or not states can reach each other in this way is ofdfionental importance
in the study of Markov chains, and we state the following dédin.
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Definition 8.2.2 prgl) > 0 for somen, we say that statgis accessiblérom
statei, written: — j. If i — j andj — ¢, we say that andj communicate
and write thisi < j.

If j is accessible frory this means that it ipossibleo reachj from i but not that this
necessarily happens. In the roulette example; 2 sincep;2 > 0, but if the chain
starts inl, it may jump directly td), and thus it will never be able to visit stateIn
this example, all nonzero states communicate with eactr atid0) communicates
only with itself.

In general, if we fix a statéin the state space of a Markov chain, we can find all
states that communicate witland form thecommunicating classontainingi. It is
easy to realize that not only doesommunicate with all states in this class but they all
communicate with each other. By convention, every statensonicates with itself
(it can “reach itself inD steps”) so every state belongs to a class. If you wish to be
more mathematical, the relatior=" is an equivalence relation and thus divides the
state space into equivalence classes that are precisatptunicating classes. In
the roulette example, there are two classes

Co={0}, C1={1,2,...}
and in the genetics example, each state forms its own class@thus have
Cl = {AA}, CQ = {Aa}, C3 = {aa}

In the ON/OFFsystem, there is only one class, the entire state sfatethis chain,
all states communicate with each other, and it turns outttiis a desirable property.

Definition 8.2.3 If all states inS communicate with each other, the Markov
chain is said to bereducible

Another important property of Markov chains has to do witturas to a state. For
example, in the roulette example, if the chain starts inestait may happen that
it never returns. Compare this with tleN/OFF system where the chain eventually
returns to where it started (assuming that 0 andg > 0). We next classify states
according to whether return is certain. We introduce thetion P; for the probabil-
ity distribution of the chain when the initial stafg, is :.



DISCRETE-TIME MARKOV CHAINS 463

Definition 8.2.4 Consider a staté € S and letr; be the number of steps|i
takes for the chain to first visit Thus

—

7 =min{n >1: X, =i}

wherer; = oo if i is never visited. IfP;(r; < oo) = 1, statei is said to be
recurrentand if P;(7; < oo) < 1, itis said to beransient

A recurrent state thus has the property that if the chairtsstarit, the time until it
returns is finite. For a transient state, there is a positiedgbility that the time until
return is infinite, meaning that the state is never revisifgus means that a recurrent
state is visited over and over but a transient state is eaéiptuever revisited.

Now consider a transient stateand another statg such thati « j. We will
argue tha must also be transient. By the Markov property, every visit starts a
fresh Markov chain and since«< j, there is a positive probability to visitbefore
coming back tgj. We may think of this as repeated trials to reaavery time the
chain is inj, and since the success probability is positive, eventuladye will be a
success. Ifi were recurrent, the chain would return tanfinitely many times and
the trial would also succeed infinitely many times. But thisams that there would
be infinitely many visits ta, which is impossible sinceis transient. Hencg must
also be transient.

We have argued that transience (and hence also recurrenae)ass property
a property that is shared by all states in a communicatingscldn particular, the
following holds.

Corollary 8.2.1. Inanirreducible Markov chain, either all states are trangi
or all states are recurrent.

This is convenient since we can classify the entire Markairtlas transient or re-
current by checking only one state. In the case of a finite sfaéce, there is an easy
way to classify the transient and recurrent states.

Corollary 8.2.2. Suppose tha$ is finite. A statei is transient if and only if
there is another statesuch that — j butj /% 1.
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We omit the proof, referring instead to an intuitive argumdgvery time the chain
visits a transient state, there is a chance that it will nesterrn again. In a finite state
space, the only way in which this can happen is if there is sother state that can
be reached but from where there is no path back. In an infitate space, however,
there is enough room for states to be transient even if tHepaimunicate with each
other. We also realize that if the state space is finite, tisemet enough room for all
states to be transient.

Corollary 8.2.3. If a Markov chain has finite state space, there is at least one
recurrent state.

Example8.2.7. Classify the states as recurrent/transient in @NOFF system in
Example 8.2.4.

To avoid trivialities, we assume that bgitandg are strictly positive. Since the state
space is finite, we can use Corollary 8.2.2 and note that ginoelj communicate,
they must both be recurrent. 0

Example8.2.8 Classify the states as recurrent/transientin the roudstienple (Ex-
ample 8.2.1).

Here we must use the general definition. Let us start witle Stavhich is trivially
recurrentsince if we start there, we are stuck there for¢vatis,ro = 1. As for state
1, if we start there and the first jump is @p we never return td, and thusr, = oo
in this case. Henc®(m < oo) < 1 and statd is transient. Sincé communicates
with the stateg, 3, ..., they are all transient.

The recurrent state has the additional property that once the chain is thereyit ¢
never leave. Such a state is callembsorbing 0

A transient stateé is revisited a number of times, which has a geometric distigin
with success probability; (7, = co) (where “success” means that the state is never
revisited). This means that the expected number of retsrhgR; (7; = co), which
is finite sinceP;(r; = co) > 0. On the other hand, for a recurrent state the expected

2A quote fromHotel California is sometimes given at this point in the presentation, but egist the
temptation.
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number of returns is infinite (since already #iigtualnumber is infinite). Now let

[ 1 ifX,=1
"7 1 0 otherwise

and let
o0
S=>1I,
n=1
the total number of returns to state\We get

oo

EfS)=Y ElL]=Y R(X,=i)=> p’
1 n=1 n=1

n=

which gives the following nice characterization of tramsie/recurrencé.

Proposition 8.2.4. Statei is

o0
transientif Y il < oo

n=1

o0
recurrent if sz(.f) =00

n=1

Since we have noted that it is often difficult to computepﬁ@, one may wonder
how useful the last result is. However, we do not need to cdenihie exact value of
the infinite sum, only determine whether it is convergent for this, it will suffice
if we have some idea of hoyméf) behaves asymptotically in. We will later see
examples of this.

8.2.3 Stationary Distributions

Consider theDN/OFFsystem and suppose that we choose the initial state acgordin
to the probabilitiesy, = P(Xy = 0),v1 = P(Xo = 1) = 1 — 1. The distribution

v = (v, 1) is called aninitial distribution and the probability distribution of the
first stateX; is computed by conditioning o, which gives

P(X1 =j) =pojvo +pijv1, j=0,1

3In the calculation, we interchanged summation and expentaivhich is not always allowed when the
sum is infinite. However, it can be shown that it is justifiedhi&€ summands are nonnegative as in this
case.
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or in matrix notation
(P(X1=0),P(Xy=1))=vP

Suppose in particular that we take = ¢/(p + q),v1 = p/(p + q), the limit distri-
bution, as initial distribution. We then get

q p q
PXi=0=(010-p +4q = =1
( ) ( )p—i—q pP+q pP+q

andP(X; = 1) = v41. In matrix notationy = v P, which means that the distribu-
tion does not change over time. This is an important obsemwaand we state the
following general definition.

Definition 8.2.5 Let P be the transition matrix of a Markov chain with state
spaceS. A probability distributionsr = (71, 72, ...) on .S satisfying

wP=m

is called astationary distributiorof the chain.

The entries ofr thus satisfy

T = Zpijﬂ'i, for a”j es
€S

and together with the condition

Z T = 1

ies
this determines the stationary distribution. The intuitiehind the probabilityt; is
that it describes what proportion of time that is spent itestan the long run. Other
terms ardnvariant distributionandequilibrium distribution

There are, however, some caveats: (1) a stationary difbibmay not always

exist and (2) there may be more than one. The uniquenessepnajpbes away if
we make our usual assumption of irreducibility, an obseéovethat we state without
proof.

Proposition 8.2.5. Consider an irreducible Markov chain. If a stationary
distribution exists, it is unique.
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This is helpful, but we can still not guarantee that a statigrdistribution exists.
Things simplify if the state space is finite.

Proposition 8.2.6. If S'is finite and the Markov chain is irreducible, a unique
stationary distributionr exists.

Rather than giving the proof, we examine our examples tetilaite how to compute
the stationary distribution and what can go wrong if the nhginot irreducible.

Example8.2.9 Find the stationary distribution for th@eN/OFFsystem in Example
8.2.4.

Since the chain s finite and irreducible, the stationartritiistion exists and is unique.
The equationt P = 7w becomes

(770771)( 1;p 1]3(1)—(%71)

from which we take the first equation
(1 =p)mo + qmy = mo

which gives

T = —T

The second equation is
pmo+ (1 —q)m =m

which also givesr; = (p/q)mo. To get a solution, we note thay + w; = 1, which

gives
o (1 + 1—)) =1
q
which gives stationary distribution
_ < q P >
T=|— —
ptq p+gq

Note howry > 7 if ¢ > p. This makes sense since if the chain is more likely to
jump from1 to 0 than the other way, in the long run it spends more time.in 5
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Note how the two equations fafy andr; in the example turned out to be the same.
In general, if the state space hastates, the equatiomP = 7 gives at most- — 1
linearly independent equations, and in addition to thesealso have the equation
Zjes m; = 1. Recalling results from linear algebra, this means thatettadways
exists a solution to this system of equations, but unlessh is irreducible, there
may be more than one solution.

Example8.2.1Q Find the stationary distribution in the genetics exampbeafiple
8.2.2).

The chain is not irreducible, but let us still attempt to fihd stationary distribution.
The states ard A, Aa, andaa, and the equatiomr P = 7+ becomes

1 0 0
(TAA Tha Taa) | 1/4 1/2 1/4 | = (TAA TAq Taa)
0 0 1

from which we get the first equation

1
TAA + ZﬂAa =TAA

which givesr 4, = 0. Knowing this, the second equation gives ofly 0, and the
third givesm,, = m.. Thus, any distribution of the form

= (x0,1-a)

where0 < « < 1 qualifies as a stationary distribution. The evolution of¢hain is
simple; we choose eithet A or aa, according tor, and whatever state we choose
stays forever. Thus, we getthe sequeAck A A, ... with probabilitye andaa, aa, ...
with probabilityl — .. Perhaps not very exciting, but a good illustration of wteati c
happen without irreducibility. 0

Things are a little more complicated if the state space initefi Consider, for exam-
ple, the following variant of Example 1.6.17.

Example8.2.11 Recall the gambler’s ruin problem in Example 1.6.17, whena A
starts with one dollar and Bob is infinitely wealthy. Also page that Ann has an
infinitely wealthy and benevolent uncle who gives her a ddbiebet every time she
goes broke. Describe the Markov chain and find the statiodiatyibution.

The state space of Ann’s possible fortun&is- {0,1,2,...}. If i > 1, the possible
transitions are to statés- 1 andi + 1 and in staté), Ann either wins and pays back
her uncle’s dollar or loses her uncle’s dollar, stay$,imnd borrows another dollar.
The transition graph is
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g% 1/2 1/2 1/2
1/2 1/2 1/2

and the transition matrix is

/2 1/2 0 0 0
/2 0 1/2 0 0
/2 0

P=1 0 1/2 0 1/2

The equationr P = 7 now gives the first equation

1
§7T0 + 57‘1’1 = T

which givesr; = my. The second equation is

1
§7T0 + 57‘1’2 =T

which giveste, = 27 — 19 = m9. The remaining equations all look the same:

1

572 + 3™ =Tn-1, N >3
which givesr,, = 27,1 — m,_2 = my. Thus, a stationary distribution must be of
the form

™ = (7T0, 70, 7T0,...)
which is obviously a problem since we cannot sum these piittiabto 1. If 79 = 0,

the sum is 0, and ifr, > 0, the sum is infinite. We conclude that stationary
distribution exists 0

The technique used in this example to express altthie terms ofry is the standard
way to try to find a stationary distribution. In this case itrted out to be impossible
since ther,, did not sum to one.

Example8.2.12 Reconsider the previous problem under the assumption thiat B
has an edge in the game, so that in each round Ann wins witrapiiity p < %

The transition graph is now
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1-p
O p p p
1—p 1—p 1—p
and the transition matrix
1-p P 0 0 O
1—p 0 p 0 0
P = 0 0 p 0

The equationt P = m gives

(1 =p)mo + (1 —p)m = mo

which gives

The next equation is

which gives

The remaining equations are

Pmn—2 + (1 _p)ﬂ—n = Tpn—-1

and it is easily verified that

7M=<;&J 0, n=0,1,2, ...
1-p

satisfy these equations. To firgd, we use the conditioﬁjjes m; = 1 and get

1 = _— =
which gives stationary distribution

1-2 n
= —P (P ) 01,2,
I—=p \1-p
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The Markov chains are irreducible and recurrent in both gXas) the only difference
is that the probability% was replaced by < % in the second. Why, then, does a
stationary distribution exist in the second but not the éil&tin? We need to introduce
yet another classifying property for Markov chains.

Definition 8.2.6 Let: be arecurrent state. E;[r;] < oo, theni is said to bg
positive recurrentlf E;[r;] = oo, ¢ is said to benull recurrent

This is a more subtle distinction than between recurrencket@msience. Any re-
current state is revisited infinitely many times, but onlyasitive recurrent state is
revisited in such a way that the expected time between visfitsite (recall from Ex-
ample 2.4.9 that a random variable can be finite and yet hairdiaitie expectation).
Thus, recurrence/transience is distinguished byrththemselves and positive/null
recurrence by the expected valuggr;]. It can be shown that positive recurrence is
also a class property, and hence we have the following @oll

Corollary 8.2.7. For an irreducible Markov chain, there are three possibili-
ties: (a) all states are positive recurrent, (b) all stateshall recurrent, (c) all
states are transient.

Now consider a finite state space. There cannot be any nuitnextt states, a fact
that we will not prove, but the intuition is that there simjgynot enough room for
very long paths of return. Also recall that there must be asti@ne recurrent state
and hence this state must be positive recurrent. Thus, ifta ihain is irreducible, it
must also be positive recurrent. If the state space is igfittiis is not true because of
(b) in Corollary 8.2.7. The following result covers both famand infinite state spaces.

Proposition 8.2.8. Consider an irreducible Markov chari¥,, }. Then
A stationary distributionr exists < {X,,} is positive recurrent

If this is the caser is unique and has; > 0 forall j € S.

The intuition behind the result is not obvious, but we carklatthe last two examples
for a comparison. By Proposition 8.2.8, all states are pasiecurrent whep < 2,
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something which can also be shown directly. We can think isfals there being a
“pull” toward 0 and the chain settles in toward a stationary distributioom@are
this with the case = % where there is no such pull and the chain wanders around
aimlessly forever. This is reflected in how the stationarstribution “tries to be
uniform,” but this is not possible on an infinite state spategeneral, think of a
positive recurrent Markov chain as one that makes a delibeféort to revisit states,
in contrastto a null recurrent chain, which just happensgtsit states without really
trying.

Note that Proposition 8.2.8 goes in both directions. THugeican find a stationary
distribution of anirreducible chain, we know two things) {fie stationary distribution
is unique and (2) the chain is positive recurrent.

8.2.4 Convergence to the Stationary Distribution

In this section we will state the main limit result for a Markchain. Although the
proof is not beyond the scope of the text, we will not giveritstead we will focus
on its interpretation and applications. For a proof, theiiested reader may consult,
for example, Grimmett and StirzakdProbability and Random Processgqd. In
Example 8.2.6, we found the limit distribution of the Markdvain, and let us now
formally define this concept.

Definition 8.2.7. Let pg’?) be then-step transition probabilities of a Markov
chain. If there exists a probability distributienpon S such that
(n

pij)—>qj as n— oo foralli,j €S

we callq thelimit distribution of the Markov chain.

Note that the limit distribution is the same for every inliséate:; € S. Another way
to express this is that the-step transition matrix°(™) converges to a limit matrix
in which all rows are equal. The intuition behind the limisttibution is thatg;
describes the probability that the chain is in stai some late timepoint and that
at this time, the chain has “forgotten how it started.” Weéagen in the examples
that a limit distribution does not always exist. If it doeswever, it also qualifies as
a stationary distribution (see Problem 13).

The more interesting question is whether the converse & tisithe stationary
distribution also the limit distribution? This would givenice computational recipe:
in order to find the limit distribution we solve P = =, which is typically much
easier than computing powers of the transition matrix. Tle¥ing example shows
that there may be a problem.
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Example8.2.13 In the ON/OFFsystem in Example 8.2.4, suppose that ¢ = 1,
that is, that the system always changes. Find the statiafiamybution and limit
distribution.

The stationary distribution satisfies

(7T07T1)< (1) (1) ) = (mo 1)

which givesr, = 71, so the stationary distribution is = (3, 3). In this case it is
easy to find thex-step transition probabilities explicitly. For example

n) | 0 ifniseven
Poo =3 1 if nisodd

and similarly for the other three-step transition probabilities. But this meansthatthe
n-step transition probabilities do not converge, and thasdis no limit distribution
Recall how a limit distribution forgets where the chain stdr in this case, if we start
in state0, we know that the system will be in staleat every even timepoint and in
statel at every odd timepoint, no matter how late. 0

Thus, stationary distributions and limit distributionsarot necessarily the same.
What is the intuition behind these concepts? Suppose thitoket a Markov chain
at some late time. The stationary distribution then gives the long-term mndipns
of time spent in the different statep totimen. The limit distribution, on the other
hand, gives the proportions of time spent in the statdgne n (so we have to think
of the Markov chain being run up to timemultiple times). In the previous example,
letn = 1000. The stationary distributiofi}, 1) tells us that equal amounts of time
have been spent in both states up to time- 1000, regardless of the initial state.
However, if we look only at precisely time = 1000, the chain must be in the same
state that it started in, and if we run the chain up to time: 1000 from the same
initial state, the proportion of time in the other stat®.id-or a theoretical result that
motivates the interpretation of the stationary distribatisee Problem 21.

The existence of a limit distribution is a desirable propet a Markov chain,
since it means that we can get an idea of the distributionthnestate space at some
late, arbitrary timepoint. It turns out that the problemie fast example is that the
chain isperiodic in the sense that returns from a state to itself can only oiocan
even number of steps.
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Definition 8.2.8 Theperiodof statei is defined as

d(i) = ged{n >1 :pgf) >0}
the greatest common divisor of lengths of cycles througtciviitiis possible
to return toi. If d(i) = 1, statei is said to beaperiodig otherwise it is called
periodic

The concept of a period may not be immediately clear. Let ak & two examples.

Example8.2.14 Find the periods of the states in th8/OFFsystem withp = ¢ = 1.

Sincepéﬁ) > 0 whenevem is even and otherwise, the set of such thatvf)g) >0
is {2,4, 6, ...} which has greatest common divisar Thus, the period of stat@is
2, which means that the only possible return paths to statev@ lemgths that are
multiples of2. The period of state 1 is also 2. 0

Example8.2.15 Find the period of the state 1 in the gambler’s ruin example (E
ample 8.2.11).

We havepgll) =0, pﬁ) > 0, andpﬁ) > 0, and since the greatest common divisor of
2 and3 is 1, we do not need to go any further. States aperiodic, and we note that
this doesnotmean that it can reach itself in one step. See also Problem 14.

If all states are aperiodic, we call the whole Markov chaiaragic. It can be shown
that periodicity is a class property in the sense that comaoating states have the
same period. Thus, if we can show that one state is aperiodic irreducible chain,

the whole chain must be aperiodic. Aperidodicity is the fasiperty we need to be
able to say that the stationary distribution and the limgtidbution coincide. The

following is the main convergence theorem for Markov chains

Theorem 8.2.9. Consider an irreducible, positive recurrent, and apedpdi
Markov chain with stationary distributiom andn-step transition probabil

tieSpl(;-l). Then

pz(-?)—wrj as n — oo

foralli,j € S.
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An irreducible, positive recurrent, and aperiodic Markdwamn is calledergodic
We have seen examples of what can go wrong when any of the toreditions
are removed. Take away irreducibility, and there may be nloa@ one stationary
distribution, take away positive recurrence, and there bwyone at all; take away
aperiodicity, and there may be a unique stationary didtigbuthat is not the limit
distribution.

We should also point out that positive recurrence is listereassumption. Positive
recurrence is an important characteristic of a Markov ché@scribing its long-term
behavior, but it is typically not checked since it is eas@fihd the stationary dis-
tribution. The practical way to use the theorem is thus tockhireducibility and
aperiodicity and then go about solvimg? = 7. If this can be doner is the limit
distribution, and we get positive recurrence for free.

Example8.2.16 (Success Runs A fair coinis flipped repeatedly, and at timewe
let X,, be the length of the current run of heads. For example, if vi¢tgesequence
HTHHHT, we have (letXy, = 0)

Xi=1,X,=0, X3=1, X4=2, Xs =3, X¢=0

Describe this sequencesiccess runas a Markov chain and find its limit distribution.

The state space iS = {0,1,2,...}, and from a staté, transitions are possible to
either: 4+ 1 or 0, with equal probabilities, giving the following transitigraph:

%/\2’ 1/2 1/2 1/2
R YV YR

1/2

The chain is clearly irreducible, so let us look for the statiry distribution. The
equationm P = w becomes

1/2 1/2 0 0

/ 0
12 0 1/2 0 0
12 0 0 1/2 0
7T,7T,... _ﬂ-aﬂ-v
(0,1, ) 0 0 0 1/2 (w0, 1, )

1/2

and it is easily checked that the solution is

1

:W’ k:O,1,2,...

Tk
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which we recognize from Section 2.5.3 as a geometric digiob including0, with
success probability = % The last question is whether this also qualifies as the
limit distribution and we need to check for aperiodicity. ridader state) and note
thatpgo > 0, which means that statels aperiodic. Thus, by irreducibility, the entire

chain is aperiodic, Theorem 8.2.9 applies, anid the limit distribution. 0

In a Markov chain with stationary distributian, ; is the long-term frequency spent
in statei; thus, staté is revisited on average evety; steps. Now consider another
statej. In any sequence aV steps, it is visited on averagér; times, and we get
the following nice result, which we state without formal pfoWe use the notation
E; for expected value when the initial state is

Proposition 8.2.10. Consider an ergodic Markov chain with stationary digtri-
bution7 and choose two statésnd;. Letr; be the return time to stateand
let N; be the number of visits tp between consecutive visits to Then

T

Ei[Ti] = i and El[NJ] =

Uy Uy

Note that by positive recurrence, all the[r;] are finite and hence all the are strictly
positive. TheF;[r;] are called thenean recurrence times

Example8.2.17 Consider Example 8.2.12. Suppose that Ann wins with praditabi
p= % (a) If Ann just went broke, what is the expected number of roundd she

is broke againb) If Ann reaches a fortune df5, how many times can she expect
to go broke before reaching that fortune again?

We are asking foFy[m] and E5 [Ny, and by Proposition 8.2.10, these are

1 1
E = —— = — = 2
ol7o] T 1/2
and 12
_To _ _

8.3 RANDOM WALKS AND BRANCHING PROCESSES

In this section we will look at two special cases of Markoviasarandom walksand
branching processeg\lthough they are examples of Markov chains, their prapsert



RANDOM WALKS AND BRANCHING PROCESSES 477

are such that the methods we have explored do not reach veandawe instead
analyze them by methods that are suited to their particatumrs.

8.3.1 The Simple Random Walk

Many of the examples we looked at in the previous section iandas in nature.
For example, the roulette example and the various versibgambler’s ruin have
in common that the states are integers and the only possivisitions are one step
up or one step down. We now take a more systematic look at swarkdM chains,
calledsimple random walksA simple random walk can be described as a Markov
chain{s,,} that is such that
n
Sn=>_ X

k=1
where theX;, are i.i.d. suchthaP(X, =1) =p, P(Xx, = -1)=1—p.

The term “simple” refers to the fact that only unit steps avegible; more generally
we could let theX;, have any distribution on the integers. The initial stateis
usually fixed but could also be chosen according to some pilityadistribution.
Unless otherwise mentioned, we will always h&¢e= 0. If p = % the walk is said
to besymmetric It is clear from the construction that the random walk is arlkba
chain with state spacg = {..., —2, 1,0, 1, 2, ...} and transition graph

P P P P
‘T/@‘?/@‘T/®‘T/
— P —p — P -

Note how the transition probabilitigs ;1 andp; ;1 do not depend ofy a property
calledspatial homogeneityWe can also illustrate the random walk as a function of
time, as was done in Example 1.6.16. Note that this illussrahe particular outcome
of the sequencg, S, So, ..., called asample pathor arealization of the random
walk.

It is clear that the random walk is irreducible, so it has teeliber transient, null
recurrent, or positive recurrent, and which one it is mayeateponp. The random
walk is a Markov chain where we can compute thstep transition probabilities
explicitly and apply Proposition 8.2.4. Consider any sta@nd note first that

(2n—1)

i

=0, n=1,2,...

since we cannot make it back to a state in an odd number of.stepmake it back
in 2n steps, we must take steps up and steps down, which has probability

nln!

P = <2§>p”(1 —-p)t = @(p(l —p)" (8.3.1)

and since convergence of the sum of ﬂﬁfé”) is not affected by the values of any
finite number of terms in the beginning, we can use an asymgpproximation of
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n!, Stirling’s formula which says that
n! ~ n"\/ne "V2r

where ‘~" means that the ratio of the two sides goes tasn — oo. The practical
use is that we can substitute one for the other for large the sum in Proposition

8.2.4. Thus
pem e —p)"
kA2 /ﬂ—n
and ifp = 1, this equalsl/\/7n and the sum oven is infinite. If insteadp # 3,

pff”) is of the forma™//7n where|z| < 1 and the sum oven converges. This

shows that the simple random walk is recurrent i % and transient ip # %

The next question is whether the case % is positive recurrent or null recurrent.
Repeating the argument from Example 3.7.9 shows that reggsrdf whether the
first step is up or down, the expected time until returd ts infinite. We summarize
as follows.

Proposition 8.3.1. The simple random walk is null recurrentif = % and
transient ifp # 3.

In particular, this means that there is never a stationasirilution, so the theory
for Markov chains does not give us anything further, but ¢hare still interesting
guestions regarding the behavior of the random walk. Regathe time of the first
visit to statel. From Examples 1.6.17 and 3.7.9, we know tRgtr; < oo) = 1 and
Ep[r1] = o0, if p = % What about other values of If p > % we must still have
Py(m < 00) = 1 butwhatifp < %? Let us use recursion and again condition on the
first step. Withr = Py(11 < 00), we get

r=p+(1-pp

which has solutions = 1 andr = p/(1 — p). We can exclude = 1, since if the
probability to reachl in finite time equalsl, the same must be true ferl (more
likely to go down than up), but then by symmetry, the prokigbit also1 that the
walk gets back t@ again in finite time, which contradicts transience. We get th
following result.

Corollary 8.3.2. The probability that the walk ever visitsis

1 ifp>1/2

Po(T1<OO)= P " 179
T—p ifp <1/
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Thus, ifp < 1, the probability isp/(1 — p) that the walknevervisits the positive
axis. If it does visit the positive axis, how far does it get€cArding to the following
result, not very far.

Corollary 8.3.3. The simple random walk witlp < % visits only finitely
many states on the positive axis.

Proof. Let A be the event that the walk visits all positive states dndhe event
that the walk eventually visits state Then

A= ﬁ A,
r=1

where the eventsl, are decreasing (must have visitedn order to visitr + 1).
Moreover, in order to visit-, the walk must first visitl, then2, and so on, and by
Corollary 8.3.2 and Proposition 1.3.5, we obtain

T—00 T—00 1 — p

P(A) = lim P(A,) = lim (L> =0

sincep < 1. [

We can continue the argument in the proof. Since the walk siétkep only to some
maximum integer, it must eventually leave the positive fxigjood. But then itis at
—1, and the same argument says that it must eventuallyhinever to return te-1
again. Thus, for any number, the random walk will eventusiéy below it forever,
and we have argued that the simple random walk with % drifts toward—oco. In
obvious analogy, ip > 1, the walk drifts towarcbo. In Problem 27, you are asked
to compute the probability that the transient random walk egturns td (right now
all we know is that this probability isc 1). In the remaining case, = % the walk
must visit all states infinitely many times (why?) and mukg IAhasverus, wander
aimlessly forever.

We next turn to expected values. If the walk start8,iwhat is the expected time
until its first visit to 1? If p < % it must be infinite, since the random variable
itself may be infinite. Ifp = 1, canEy[r1] be finite? If it were, then the expected
time to visit—1 would by symmetry also be finite. But then the expected tintkba
to 0 again would also be finite, which contradicts null recureenthus, ifp < 1, we
haveEy[r1] = oco. It remains to investigate what happens when % We will use
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a recursive approach, in the spirit of Example 3.7.9. ket Ey[r;] and condition
on the first step to get the equation

p=px1+(1=p)(1+2u)

which we solve foru to gety = 1/(2p — 1). Note, however, that alsg = ~ is a
solution, so we need to argue that this can be ruled out. katet thatr; = 2n + 1
if the walk is back ab at time2n, without having visited , then goes up ta in the
following step. The probability to be back @t time2n without any restrictions is

p™ and hence

n 4p(1 — p))"
Po(ri=2n+1) <pxpi”) ~ pi( al Tmp))

and sincelp(l1 —p) < 1, Eg[m1] = >, (2n+ 1) Py (11 = 2n+ 1) must be finite. We
summarize as follows.

Corollary 8.3.4. The expected time until the first visit tiois

1
— ifp>1/2
2p—1
E()[Tl] = p

00 if p<1/2

8.3.2 Multidimensional Random Walks

Let us now consider a two-dimensional simple random walkiauestigate it with

regard to transience/recurrence. First, how do we definmitthe dimension, if the
walk is ati, it chooses one of the neighboring poifitsl andi+1. Intwo dimensions,
there are different ways to define neighboring points. Ongig/éo consider the four
neighbors parallel with the axes; another, to consider the fiieighboring corner
points.

Regardless of definition, we will assume that the walk is swtmim so that each
neighbor is chosen with probability, otherwise the walk is transient (why?). Also,
since all we are interested in is transience/recurrenckés not matter which defi-
nition we choose, since in each case there are four equiadily Ineighbors (one case
is just a45° rotation of the other). We will choose the second versionoding the
corners with equal probabilities. The reason for this ig tha can then view the
two-dimensional random walk as two independent one-dimeaasrandom walks,
one on each axis. Thus, let

S, =(SW, 8@ n=0,1,2,..
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where we letSy = (0,0). ThenS,, = (0,0) if and only if st = 5% = 0 and by
independence and Equation (8.3.1),

n ) 4n

P@n=mﬁ»=ﬂﬁ”=mﬂﬂ”=”:(63302

and by Stirling’s formula

P(S, = (0.0)) ~ —

™

and since}_, 1 = oo, we conclude that the simple random walk in two dimen-
sions is recurrent (and must be null recurrent). But look mdvat happens in three
dimensions. By defining

P(S, = (8{7,8%,8%), n=0,1,2,..

where S, 52 and S are independent symmetric random walks and letting
So = (0,0,0), we get

1
(7m)3/2

and since)_,, —= < oo, we conclude that the walk is now transient. This might be
a bit surprising, and there is no immediate intuition for vthg walk always returns
to the origin in one and two dimensions but not in three. Wevktitat each of the
three individual walks returns infinitely many times, but only finitely many times
will they do so simultaneously. We can define the random wal&rny number of
dimensions and conclude the following.

P(Sn = (05070)) ~

Corollary 8.3.5. The symmetric simple random walk in dimensions is$
recurrent fom = 1 andn = 2, and transient fon > 3.

One thing needs to be pointed out. In two dimensions, we drtheg the definition
of a neighboring point does not matter, since there are feighbors with either
definition. This is not true in dimensioms> 3. For example, in three dimensions,
there is a difference between choosing between the eightcqoints and the six
points along the axes. We chose the first definition, and theahof return to the
origin ought to be higher with the second, since there arefehoices in each step.
However, it can be shown that the probability of return it lEs than one and also
this variant of the three-dimensional random walk is trans{see Problem 29).

8.3.3 Branching Processes

To steal a line of British humo(u)r from Grimmett and Stireal{7]: “Besides gam-
bling, many probabilists have been interested in repradoct In this section we



482 STOCHASTIC PROCESSES

Fig. 8.1 A branching process withy = 1,7, = 3,andZ, = 3

analyze a simple model for populations that are composeawdfiduals who repro-
duce independently of each other. Suppose that we start dreerindividual, the
ancestor who gets a number of childretk, with range{0,1,2,...} and pmfpx.
We refer to this pmf as theffspring distribution Each child then reproduces inde-
pendently according to the offspring distribution and thsiildren reproduce in the
same way and so on. The resulting evolving population is amgse of ébranching
procesgsee Figure 8.1j.To describe it mathematically, we 1&t, be the number of
individuals in thenth generation, and lef, = 1. The generation sizes relate to each

other as
anl

Zn=> Xp, n=12,.. (8.3.2)
k=1

where theX, arei.i.d. with pmix. The formula states thatin order to get the number
of individuals in any generation, we go through the indidattuin the preceding
generation and sum their numbers of children. Note thatah @@neration we get a
new set ofX;, which if needed can be indicated by a superscﬁéﬁ’l), the number

of children of thekth individual in the(n — 1)st generation.

We are interested in the behaviorgf and will focus on two issues: extinction and
population growth. Note that the procesg,, } is a Markov chain but the transition
probabilities are complicated and it is also clear thatestais absorbing, so the
Markov chain methods that we know will not be of much help. ustfrom now
on exclude the two uninteresting cages(0) = 1 andpx (1) = 1. (Why are these
uninteresting?) From Equation (8.3.2) it is clear that

Zpn=0 = Zpi1=0 (8.3.3)

in which case the population has gone extinct. NowHebe the event that the
population goes extin@ventually that is, the event that some generation siz@ is

4In this simple form, it is usually called &alton-Watsorprocess, after the previously mentioned Sir
Francis Galton, who worried about extinction of the Engfishility, and Henry W. Watson, mathematician,
clergyman, and mountaineer, who advocated the use of gamgefanctions to solve the problems. les
pays francophoneshe name oBienaymés usually also added, which is only fair since the work of.1. J
Bienaymeé precedes that of Galton and Watson.
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This event can be described as
E=|]J{Z.=0}
n=1

and to find the probability of/, we will use probability generating functions. Thus,
let X have pgfG, and letZ,, have pgfG,,. ThenG; = G (why?) and by Equation
(8.3.2) and Proposition 3.11.5, we get the relation

Gn(s) =Gn-1(G(s)), n=2,3,... (8.3.4)

By Equation (8.3.3), we realize that the evefi5, = 0} are increasing im, and
Corollary 3.11.1 and Proposition 1.3.5 together give

P(E) = lim P(Z, =0) = lim G,(0)

n—oo n—oo

Example8.3.1 Consider a population of cells that may either die or repoedu
according to the following random variable:

Y 0 with probability1/4
1 2 with probability3/4

Find the probability of extinction.

We have

1 3
G(S) = Z =+ 182

which givesG(0) = i, the probability that extinction occurs already in the first
generation. Fo€s, we use Equation (8.3.4) and obtain

2
Galo) = GG =+ (14 3°)

which givesG,(0) = 2. Already here we realize that it will be hard to filt{ ) in
this way; remember that we need to find the limit®f(0) asn — oo and a pattern
for the sequence does not readily emerge. We give up. 0

The branching process in this example is about as simplesgsctime, and yet it is
virtually impossible to find the extinction probability dsetlimit of G,,(0). Luckily,
there is a much quicker way.
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Proposition 8.3.6. Consider a branching process where the offspring distri-
bution has pgf7, and letE be the event of extinction. Then= P(E) is the
smallest solution irf0, 1] to the equation = G(s).

Proof. Let us first show thag is a solution and then that it must be smaller than
any other solution. Condition on the number of childr&n,of the ancestor and note
thatif X = k, then there aré independent branching processes that must go extinct,
which has probability/* (true also fork = 0). This gives the following observation

i P(E|X = k)P Z " P(X =G(q)
k=0

and we see that the extinction probability solves the eqoati= G(s).
Suppose that there is another solutiog [0, 1]. By Problem 133 in Chapter 3,
G(s) is increasing, and since> 0, we get

r=G(r) > G(0)

Applying G again gives: = G(r) > G(G(0)) = G2(0) and repeating the argument
gives
r > G,(0) foralln

But sinceGG,,(0) — ¢, we also get > ¢, and hence is the smallest solution to the
equations = G(s). [ |

Example8.3.2 In Example 8.3.1 we get the equation

L3,
it

which has solutiong and1. Thus, the probability of extinction i. O

Note that any pgf has the properf(1) = 1, and hence = 1 is always a solution to
the equation = G/(s).5> Let us now turn to the question of population growth. More
specifically, we will find the mean and variance of thitb-generation siz&,,. Equa-
tion (8.3.2)is central, and we can apply Corollary 3.11 @&itain the following result.

SWatson, whose work was published1ig75, found the solutiors = 1 but overlooked the fact that there
could be more solutions and erroneously concluded thaietidi is always inevitable. It took yet another
half-century and Danish ingenuity to completely solve thebfem, done by J. F. Steffensenlifi30.
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Proposition 8.3.7. Consider a branching process where the offspring distri-
bution has meap and variance?. Then

EZ,] = p"
no if u=1

2(,n _ n—1
% if £ 1

Proof. For the mean, repeatedly apply Corollary 3.11.6 to Equai#o8.2) and
get

ElZ,) = ElZnlu = E[Zpa)p? = --- = "
sinceE[Zy] = 1. We leave it as an exercise to verify that the expressiontfer t
variance satisfies Corollary 3.11.6. ]

The proposition thus tells us that

-0 ifu<1
E[Z,)< =1 if u=1
—o0 ifu>1

and that
-0 ifu<l

Var[Z,]{ — oo ifu=1
—oo ifu>1
This suggests that the population always goes extingt<f 1 since the mean and

variance both go t6 and Z,, itself can take on only integer values. It is less clear
what happens in the other two cases, but the following resudts the answer.

Proposition 8.3.8. Consider a branching process with mean number of chil-
dreny. Then

p<l = PE)=1
p>1 = P(E)<1
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Proof. If px(0) = 0, theny > 1 andP(FE) = 0. Now suppose thaix (0) > 0,

and recall from Section 3.11 that= G’(1), the slope at the poirt= 1. By Problem

133 in Chapter 3(7(s) is convex and increasing, and since it has to increase from
G(0) = px(0) > 0to G(1) = 1, it must intersect the ling = s if © > 1, and the
intersection is the extinction probability, which4s 1. If insteady < 1, there can

be no such intersection, and the extinction probability.isSee Figure 8.2 for the
two possible cases. Note that this also shows that thereassr be more than two
solutions in[0, 1] to the equation = G(s). [ |

This result is quite remarkable. It says that whether efitamcoccurs for certain
depends only on the mean number of children, and if this s tlesn or equal ta,
there will be extinction sooner or later. df > 1, extinction may be avoided and the
probability of this is found by solving the equatian= G(s). The caseg > 1,
u=1,andu < 1 are called thesupercritical critical, andsubcritical respectively.
Although extinction is certain in the last two, they exh#aime differences in behav-
ior that motivates the distinction (see Problem 30).

Example8.3.3 An individual with a contagious disease enters a large 8tppose
that he passes the disease on to a number of people, who ipassnt on to others
and so on. Suppose that each individual remains contagiowne day and in this
day interacts with a number of people that has a Poissorildigon with meanl0
and that for each person, the probability of infectiop.iga) For which values op
does the disease eventually die o@ If p = 0.2, what is the probability that the
disease still exists in the population on @&y(c) Forp = 0.2, what is the probability
that the disease eventually disappears?

The number of infected “children” of an individual has a Bois distribution with
mean10p, so the disease eventually dies oupik 0.1. For part (b), we need to

1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
% 0.5 1 % 0.5 1

Fig. 8.2 Plots of the pgfG(s) of the offspring distribution and the ling = s, in the cases
w=G'(1) <1(leftyandu = G'(1) > 1 (right).
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computeP(Z; = 0) = G2(0), and since
G(s) = e2(=1)

we get
P(Zy =0) = 27D ~0.18

so the probability that the disease still exist8.i82. For (c), we need numerically to
solve the equation

s = 62(3—1)

which givesq =~ 0.2. The spread of a disease may be adequately modeled by a
branching process in its early stages but as time goes ohasomdel becomes less
realistic. There are several reasons for this, which weddarthe reader to ponder.

O

The final question is what happens if there is no extinctios itAurns out, the only
other possibility is forZ,, to go to infinity. We will not give a strict proof but refer
to an intuitive argument. Suppose ti#at does not go to infinity. Then there is some
integerK such thatZ,, drops belowkK infinitely many times. But each time it does,
there is a chance that it goes extinct before the next timeopsibelowkK. The
probability of this is at leasty (0)¥, since the “worst case” is when the population
goes extinct already in the next generation. But this meaatsthe population must
become extinct sooner or later (think geometric trials heaad we have argued
that if Z,, does not go to infinity, the population must become extinnttekrms of
probabilities

P(Z, + %) < P(E)

and since the reversed inequality obviously also hold#éfé is extinction, the pop-
ulations size cannot go to infinity), the probabilities agea. We have argued for
the following result.

Proposition 8.3.9. Consider a branching process with extinction probabiility
g. Then

0  with probabilitygq
Zn = { s with probability] — ¢

asn — oo.

Note that‘Z,, — 0”is just another way of saying “extinction,” sinég, takes on only
integer values. We can describe this result by saying tleaséguence of random
variablesZ;, Z,, ... converges to a random variabteasn — oo, whereZ is either

0 or oo with probabilitiesy and1 — ¢, respectively. To be perfectly strict, we need to
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say that this convergence takes plagth probability 1 since we can describe other
types of sequences. For example, in a population of dividels let us say that

Zy = 2. It could then happen that one divides and the other diesss@th= 2 also.

If the same thing happens agaify, = 2, and we can continue, to describe a sequence
Z1,Zs,... whereZ,, = 2 for all n. However, it can be shown that this sequence
together with all other sequences that do not converg@eaiooo belong to an event
that has probability). This is an example of convergence almost surely, mentioned
in footnote 1 in Section 4.2.

8.4 CONTINUOUS-TIME MARKQV CHAINS

We have studied Markov chains in discrete time and will naw ta their counterpart
in continuous time. This means that the chains stays in datharandom time that
is a continuous random variable with a distribution that rdegend on the state. The
state of the chain at timeis denotedX (¢), wheret ranges over the nonnegative real
numbers. In addition to having the Markov property for theps, we also want
the jumps to be independent of how long a time that is spensipesific state, and
in order to achieve this, we recall that there is only one icaratus distribution that
would ensure this property: the exponential distribufiole state the following
definition.

Definition 8.4.1 Let {X(¢), ¢ > 0} be a collection of discrete randgm
variables taking values in some s¢and that evolves in time as follows:

(a) If the current state is, the time until the state is changed has an
exponential distribution with parametg(i).

(b) When staté is left, a new statg # i is chosen according to the transition
probabilities of a discrete-time Markov chain.

Then{X (¢)} is called acontinuous-time Markov chain

Thus, a continuous-time Markov ch&iX (¢)} is composed of a discrete-time Markov
chain{ X, }, thejump chain for the transitions and exponential random variables for
the holding times Recall that the holding times in a discrete Markov chain are
geometric, the discrete counterpart of the exponentia &ection 2.6), so this is

a natural assumption. Th¥:) are called théholding-time parametersNote that

SWe are leaving out some subtle technicalities here thatritegeisted reader may find, for example, in
Grimmett and StirzakeRrobability and Random Processgg.
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the state space is still finite or countably infinite; the di$e/continuous distinction
refers to how time is measured. Let us also mention that domasthe ternMarkov
processs used in continuous time. We will not formally state the ktar property
but intuitively it says that conditioned on the currentstand time, where and when
the chain jumps next is independent of the complete histbityeochain.

Our construction also ensures that the processris-homogeneouthat is, the
probability P(X (s +t) = j | X (s) = i) depends only on time through the difference
(s +t) — s = t, and we can define the transition probabilities as

pij(t) = P(X(t) = j [ X(0) = i)

the probability that the chain is in statet time units after having been in stateFor
eacht, we then get a transition matriR(¢) with entriesp;;(¢), ¢,j € S, which has
the following properties.

Proposition 8.4.1. Let P(t) be the transition matrix for a continuous-time
Markov chain with state space Then

(@) P(0) = I, the identity matrix
(b) > pij(t) =1, foralli € Sandt >0
JjES
(c) P(s+1t) = P(s)P(t)( Chapman—Kolmogorov equations)

When you talk to mathematicians, make sure to refer to th¢ Bét), t > 0} as a
stochastic semigroup

Proof. Parts (a) and (b) are obvious. For (c), consider an elemg(t + ¢) of
P(s+ t) and condition on an intermediate statat times to obtain

pij(s+t) = > P(X(s+1t)=j|X(s) = k)Pi(X(s) = k| Xo = i)
kes
= > pir(s)pr;(t)
kes
which is the(i, j)th entry in the matrixP(s) P(t). [ |

One problem is thaP(¢) is usually difficult or impossible to compute, in the same
way thatP(™) may be in the discrete case. In the discrete case, howevémaove
thatP(") = P", so all the information we need is contained in the one-stasttion
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matrix P. In the continuous case there is no analog of “one step,” soeed to
proceed differently in search of a more compact description

Let the jump chain have transition probabilities for i # j and consider the
chain in a staté. The holding time i2xp(A(¢)) and when it leaves, the chain jumps
to statej with probabilityp;;. Now, if we consider the chain only when it is in state
1 and disregard everything else, we can view the jumps fi@® a Poisson process
with rate A\(¢). For any other statg, the jumps fromi to j is then a thinned Poisson
process with rate\(¢)p;;. Thus, for any pair of statesandj, we can define the
transition ratebetween andj as

Yij = )\(i)pw‘
In addition to these, we also let
Yii = — Z Yij
J#i

and define th@eneratoras the matrixG whose(i, j)th entry is~;;. Note that once
the;; have been inserted, the diagonal elemegtare chosen such théat has row
sums equal td. The generator completely describes the Markov chainesinwe
are givenG, we can retrieve the holding-time parameters as

(i) = —vii, 1€S
and the jump probabilities as

Vij .,
pij = ——>, j#i
Yii
Note thatp;; = 0 forall i € S since thep;; give the probability distribution when the
chain leaves a state and there can be no jumps from a stagelfqs$ee also Problem
36). Let us look at a few examples.

Example8.4.1 An ON/OFFsystem stay®FFfor a time that isxp(A) andON for a
timeexp(u) (1« does not denote the mean here). Describe the system as lrumnrst
time Markov chain.

The holding-time parameters akeand y, and the only possible jumps are frdim
(OFP to 1 (ON) and vice versa. Thus we have

Yor = A, Yo =
and after filling in the diagonal elements, we get generator
G < - A >
[

We can also describe the system in a graph as follows:
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A
o O
\_/
1%

This is similar to how we described discrete-time Markoviokdut the numbers on
the arrows are now rates, not probabilities. The jump chamthansition matrix

01
P_<10) O

Example8.4.2 A continuous-time Markov chain on state spdde2, 3} has gen-
erator

G = 1 -2 1

Suppose that the chain is in state What is the expected time until it leaves, and
what is the probability that it next jumps to st&e

The holding-time parameter in state 1igl) = —vy11 = 6, so the expected holding
time is%. The probability to jump to statis

The generator now plays the role that the transition matidxin the discrete case,
and a logical question is ho® relates taP(t). The following proposition gives the
answer, where”'(t) denotes the matrix of the derivatives (¢).

Proposition 8.4.2. The transition matrixP(¢) and generatof7 satisfy the
backward equations
P'(t)=GP(t), t>0

andforward equations
P'(t) = P(t)G, t =0

If we spell out the backward equations elementwise, we get

keS
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and the forward equations

piy(t) =D pi(t)y, 4,5 € 8,t>0
kesS

Proof. We refer to an intuitive argument and leave out the techmietdils. Con-
sider the probability;;(t + h) = P;(X(t + h) = j). The Chapman—Kolmogorov
equations give

pij(t+h) =D pi(t)pi; (h)
keS

and if 4 is small, we have, witll; denoting the holding time in stage
pji(h) = P(X(h)=j|X(0)=j) ~ P(Ty > h) = e X"
1=X(G)h = 1+7;h

Q

The intuition behind this is that # is small and the chain is in stajeat times0 and
h, most likely nothing happened in the interval #). With a similar argument, if
there is a jump {0, 2), we neglect the possibility of more than one jump and obtain

prj(h) = yijh, k#j

This gives
pii(t+h) =~ pi(0)(1+75;50) + Y pir(t)ymsh
k#j
= puy(®)+h Y pk(t) s
kes
which gives

pii(t+h) —pii(t) _
h => pir(t)n
kes

and lettingh | 0 gives the forward equations, with a similar type of argunienthe
backward equations. ]

It turns out that the forward equations are usually easiesotee but do not always
exist (a fact that is not revealed by our intuitive argumdmiae). In all examples
and applications we consider, they do, however, exist. Usisally difficult to solve
the backward and forward equations and only in simple casesve easily find the
explicit form of P(t). In Problem 34, you are asked to find the solution for the sémpl
ON/OFFsystem.

SinceP(0) = I, the backward and forward equations also suggest a way &irobt
the generator fron®(¢) according to

G = P'(0) (8.4.1)



CONTINUOUS -TIME MARKOV CHAINS 493

8.4.1 Stationary Distributions and Limit Distributions

Justasinthe discrete case, we are interested in asymipediivior, which is described
by the limit of P(t) ast — oo and also as in the discrete case, we would like to do
this via stationary distributions instead of direct caltidns. A limit distribution in
the continuous case is the obvious analog of the discrete eadistributiong such
that

pij(t) — ¢;, ast— oo foralli,j €S

How should we define a stationary distribution? In the digcase, it is defined
through the relationr = 7P, but in the continuous case there is Ro However,
since a stationary distribution “stays forever,” we alsgém = 7 P(™ for all n, and
we can imitate this in the continuous case.

Definition 8.4.2 Consider a continuous-time Markov chain with transition
matrix P(¢). A probability distributionsr which is such that

wP(t) == forallt >0

is called astationary distributiorof the chain.

The intuition is the same as in the discrete case; the priityabj is the proportion
of time spent in statg in the long run. Since we have pointed out how difficult it
typically is to find P(t), the definition does not give a computational recipe. Irtstea
first differentiate with respect tbon both sides in the definition to obtain

L wP(t) = P(1) = S (m) =0, >0

— (7T =T = —|TT) =

dt dt T
sincew does not depend oh In particular, witht = 0, Equation (8.4.1) gives
P’(0) = G and we have shown the following.

Corollary 8.4.3. The stationary distribution satisfies the equation
G =0

where0 is a vector of zeros.

Elementwise, the equations are

Z’}/ijﬂ'i:(), jES

€S
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and as in the discrete case, we have the additional condlitatithe entries imr sum
to1l.

Example8.4.3 Consider theON/OFFsystem in Example 8.4.1. Find the stationary
distribution.

The equationtG =0 is

(7o, Wl)( A ) = (0, 0)

noo—p

which gives the first equation

—moA + i =0
which in turn gives
A
T = —TQ
0]

and we get stationary distribution

o= (755 755)
T, M) = | —~, —~
00 BHEA L+ A

Note howry > 7 if 4 > A, that is, when the transition rate is higher frdnto 0
than vice versa. Also note that

(mm)—( /A 1/ >

UA+1/p 1/A+1/n

which is intuitively appealing since the expected timesspestated) andl arel/\
andl1/u, respectively. Thus, in the long run, the proportions ofgispent in state®
and1l aremy andm;.

Recall that the jump chain has stationary distribuﬁén%), which tells us that the
jump chain on average visitsand1 equally many times but does not take holding
times into account. 0

The existence of a stationary distribution is again clogelated to the concepts
of irreducibility and positive recurrence. Irreducibjlits only a property of how the
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states communicate and has nothing to do with holding tistesge call a continuous-
time Markov chain irreducible if its jump chain is irredutgb As for recurrence and
transience, they are defined in the analogous way, letting

S; = inf{t: X(t) = i}

whereS; = o if ¢ is never visited. The only difference from the discrete dagbat
S; is now a continuous random variable and the following definiis a direct analog.

Definition 8.4.3 If P;(S; < oo) = 1, state: is calledrecurrentand if
Pi(S; < o) < 1, statei is calledtransient If i is recurrent and®; [S;] < oo,
1 is calledpositive recurrentotherwise it is callechull recurrent

We use the notatiofi for “sum,” sincesS; is the sum of the holding times in all states
visited before reaching We keep the notation; for the return times in the jump
chain. Thus, if the holding time in stakeis T}, thenS; andr; relate as

T1',—1

Si= 3 Tx, (8.4.2)
n=0

Now suppose that stateis recurrent in the jump chaifX,,}. This means that;
presented above is finite, and since alsofthare finite,S; must be finite andis re-
currentalso i{ X (¢)}. Thus, if the jump chain is recurrent, so is the continudoet
chain{X (¢)}. When it comes to positive recurrence, things are more cizated,
as the following example shows.

Example8.4.4 Consider the following continuous-time version of the sscrun
chain from Example 8.2.16. The holding time parameters)dtg = 1/2* for
k =0,1,2...,and the success run chain functions as the jump chain, étexcep-
tion thatpy; = 1. Show that the jump chaifiX,, } is positive recurrent buf X (¢)}
is not.

The state space 8 = {0, 1, 2, ...} and the transition matrix of the jump chain differs
fromthat of the successrun chainonlyinthatit hpgs= 1 instead opgg = po1 = %
Itis easy to find the stationary distribution (see Problefret®l this shows thdtX,, }
is positive recurrent.

Now consider stat®. Equation (8.4.2) is extra simple since the jump chain in-
creases by unit steps until it drops baclOtovhich givesX,, = n for n < 79, and
we get

To—1

So=> Tn
n=0
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Since the staté is recurrent in{ X, }, it is recurrent also i{ X (¢)}. However, we
will show that state 0 is null recurrent inX (¢)} and thus proceed to compute the
expected value afy. To do so, we condition ofy and note that the range of is
{2,3,..}. If 9 =k, Sy is the sum off}, ..., T;—; and hence

k—1 k—1
EolSolro =kl =Y E[T,]=> 2"=2"-1
n=0 n=0

and the distribution ofy is

1

PO(T():I{J) = F,

k=2,3,..

sincery = k precisely when there arfe— 1 successes followed by a failure, where
k must be at least. We get

Bssl = 3 EolSolro = K]Po(ro = )
k=2
= Z(2k - 1)2]671 = Z (2 - 2k1) =
k=2 k=2

which means that stateis null recurrent in the continuous-time chal(¢). By
irreducibility, the entire continuous-time chain is nidlaurrent. The problem is that
even though the jump chain is positive recurrent, the hgldiimes get so long that
the continuous chain becomes null recurrent. 0

If the holding times are instead very short, it is possibk {hX,, } is null recurrent
but {X (t)} is positive recurrent (see Problem 38). It is also possiblednstruct
examples where the jump chain is transient but the contisitiooe chain has a sta-
tionary distribution in the sense of a solutionité: = 0. However, in such examples
we get the unpleasant property of infinitely many jumps intditime, and to rule out
such anomalies, we always assume that the jump chain igestuil he following is
the continuous-time analog of Proposition 8.2.8.

Proposition 8.4.4. Consider an irreducible continuous-time Markov chain
with a recurrent jump chain. Then

A stationary distributionr exists < {X (t)} is positive recurrent

The stationary distribution is unique and hgs> 0 for all j € S.
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As in the discrete case, positive recurrence is an impodamtept for describing the
behavior of the chain, but it is typically not checked dihgctnstead, we look for a
solution torG = 0.

We next turn to the question of convergence to the statiodityibution. In the
discrete case this was complicated by possible perioghmityin the continuous case
we have no unit step size, and thus the concept of period diexist. We can state
the convergence theorem already.

it

Theorem 8.4.5. Consider an irreducible, continuous-time Markov chairhw
a recurrent jump chain, stationary distributiafy and transition probabilitie
Dij (t) Then

[

pij(t) — m; as t— o0

foralli,j € S.

As in the discrete case, a continuous-time Markov chaindhgfies the assumptions
in the theorem is calledrgodic The obvious analog of Proposition 8.2.10, regarding
mean recurrence times and mean number of visits to inteatediates, holds in the
continuous case as well. Finally, we refer to Problem 38 olsmv the stationary
distributions for{ X (¢)} and its jump chain relate to each other.

Example8.4.5 Consider theON/OFFsystem from Example 8.4.3, where the jump
chain has stationary distributic(r%, %) and the continuous-time chain has stationary
distribution(p/ (XA + i), A/ (A + p)). These describe the proportion of jumps and the
proportion of time, respectively, spent in each state inldimg run. However, only
the continuous-time chain also has a limit distributiorthd system starts in state 0,
it forgets how it started if we consider it in real time, but ifove count the jumps,
as we saw in Example 8.2.13. 0

8.4.2 Birth—Death Processes

In this section we will examine continuous-time analogsasfdom walks. Thus we
will consider integer-valued, continuous-time Markov ctsthat can only step up or
down, so the only generator entries that can be positivedbutot have to be) are
~i,i—1 andvy; ;+1. We also restrict the state spaceste= {0, 1, 2, ...}, the nonnegative
integers. Such Markov chains are call@dh—death processed et us explain why
in an example.

Example8.4.6 Consider a population of cells. Each cell lives for a timet tisa
exp(«a) and then either splits into two new cells with probabifitgr dies with prob-
ability 1 — p, independently of all other cells. L&f(¢) be the number of cells at time
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t and describe this as a continuous-time Markov chain.

The state space 5= {0,1,2,...}. If there arei cells, the next change comes after a
time that is the minimum oflifetimes that are independent ash(«). By Example
3.10.3, we thus have holding-time parameters

i) =i, i=0,1,2,...
whereA(0) = 0 means that stateis absorbing. This gives the transition rates
Yiit1l = ap and Yii—1 = ’LO&(l —p), = 1,2,

and it is common to define tharth rate \; = v, ;-1 anddeath rateu; = v, ,—1 [do
not confuse\; and\(¢)]. Since the birth and death rates are lineai; ithis is called a
linear birth—death process. Itis also customary to denoteap andy = a(1 — p),
theindividual birth and death rates. The transition graph is then

A 2
oupyodbodbr
W 2p 3u
and the generator
0 0 0 0 0
v —(A+p) A 0 0
e () 24 =2\ + p) 2 0
0

0 3 —3(A+pu) 3\

The jump chain is the simple random walk, which we know issiant ifp > 2, the
only case in which absorption ihcan be avoided. 0

Example8.4.7. Consider a population where the individual death rajeasd there
are no births. Instead, there is constant immigration ineogopulation according to

a Poisson process with rake Describe the process, determine when a limit distribu-
tion exists, and find what it is.

The birth and death rates are
/\1‘2/\7 i :iu, iZO,l,...

and we have the following transition graph:
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A A A
H 24 H

The chain is clearly irreducible, so we need only to look fetationary distribution,
which, if it exists, is also the limit distribution. The editm wG = 0 becomes

- A 0 0 0

po —(A+p) A 0 0o ...
MOy Ty -en =(0,0,...
(mo.m) g Y30 A L. ©.0,.-)

0 3u —(A

which gives the first equation
—Amp + pum =0

which gives

>

T = —To
The next equation
AT — (/\-i-,u)ﬂ'l + 2ume =0
gives, after some algebra
/\2
Ty = 2—//L27T0

The remaining equations all look the same:

Mp—1— A+ nuw)m, + (n+ Dpmppr, n=2,3,...
and it is easy to check that the general solution is

7

Ty = p—ﬂ'o, n=20,1,2,..
n!

wherep = \/p.. The conditiony  m, = 1 gives

o0 pn
1=7T0 E —=7T0€p
n!
n=0

which gives stationary distribution
n
Ty = efpp—, n=0,1,2,..
n!

which we recognize as a Poisson distribution with mgaiote that the stationary
distribution always exists. The intuitive reason for tlsiiiat the larger the population
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becomes, the more likely that the next event is a death r#tla@ran immigration.

Even if the immigration rate is enormous compared to the individual death yate
sooner or later there will be so many individuals that deaths to compensate for
immigration. The jump chain has transition probabilities

o it A
Piit1 = Yii A +ip

andp; ;1 = ip/(A+iu),i = 0,1, ... and also note that the larger the population
becomes, the more frequent the events, since the expedtidditime in state is

1/ (A + ip). 0

Since the structure of the generator is so simple in a bightfuprocess, it is possible
to find a general formula for the stationary distribution. eT@peneral form of the
generator is

—Xo Ao 0 0 0
pr =M+ ) A 0 0
G = 0 2 —(A2 + p2) A2 0

0 0 13 —(A3+pu3) A3

from which it is easily seen that the equatimtr = 0 gives the first equation
—Aomo + p1m =0

which gives
Ao
T = — T
H1

and the remaining equations
)\n—27rn—2 - (An—l + Mn—l)ﬂ-n—l + UnTn = 07 n = 21 37
and it is easy to check that these are satisfied by
AoAL - A
Ty = bﬂ'o, n=12,.. (8.4.3)
Hipt2 -~ fn
Summing overn now yields that a stationary distribution exists if and oifily

= AoA1 - And
1+ —— <X
Z Hipt2 = fp

n=1

and the stationary distribution is then given by
—1
— A1 Ana
mo=[1+ o ——
0 < ; Mlm"'ﬂn)

and the remaining,, by Equation (8.4.3). Also see Problem 42 for a nice interpre-
tation of the equatiomG = 0.
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8.4.3 Queueing Theory

A particular class of birth—death processes arise in mddet®rtain service systems.
Let us introduce the subject gfieueing theoryith an example.

Example8.4.8 (The M/M/1 queud. Customers arrive according to a Poisson
process with rate\ to a service station with one server. Service times are iéxd
ponential with rate, and independent of the arrivals (note thatoes not denote the
mean here; the mean service timd jg.). If the server is busy, incoming customers
wait in line and as soon as a service is completed, the nextfedpescribe the
system as a birth—death process, determining when it has@artry distribution and
what it is.

We let the stateX (¢) be the number of customers in the system (under service and
in line) at timet. Transition rates are given already in the problem:= X fori > 0
andyu; = u fori > 1. The transition graph is

A A A
O O G
0 j j

and to find the stationary distribution, note that

MM Ano1 A"
Hift2 - fn u"

so withp = \/u we see that a stationary distribution exists if and only if

o) )
1+Zp":Zp"<oo
n=1 n=0

which is to say thap < 1. Using the formula for the geometric series, it is easy to
see that the stationary distribution in this case is

= (1=p)p", n=0,1,2...

a geometric distribution including. The constanp is called thetraffic intensity
and in order for a stationary distribution to exist, this mis strictly less than one,
meaning that service rates are higher than arrival ratedy f@rthis way can the
server be efficient to regularly clear out the system.

The jump chain is the simple random walk where the probatiititstep up is
p=A/(A+ ) = p/(1+ p), which means that < 1 ifand only if p < 1. n
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The system in this example is called &f/M/1 queue where “M” stands for
“Markov,” meaning that both interarrival times (firdt') and service times (second
M) are exponential, which is the only way in which this systetisfies the Markov
property. The 1” indicates that there is one server. Other, non-Markowigeueing
systems are for exampld /D /1, where service times are deterministic and=/1,
where both interarrival times and service times have sonnermgeé distribution, not
necessarily exponential. The analysis of such systeméesofiher methods, and we
will stick with the M /M queues and analyze them as continuous time Markov chains.
There are many variants of thld/A /1 queue. In the following three examples, we
examine some of these, leaving others for the Problemsogecti

Example8.4.9 (Finite waiting room). Consider thel//M /1 queue, but suppose
that there is only room for customers in the system (the maximum queue length is
r — 1), denoted\/ /M /1/r.

The transition graph is

o @v o

Again letp = \/u. We have

an = r41
1_ -
n=0 7/) |f P 7& 1
L=p
which gives stationary distribution
: =0,1 ifp=1
rr1 T T p=
Ty =

(1—p)p" _
1_7p7~+11 nzO,l,...,’r‘ |fp7él

Note how the stationary distribution is uniformzf= 1 and how the probabilityt,.
approaches asp — oc. 0

Example8.4.10 (Balking). Consider thelM /M /1 queue and suppose that an ar-
riving customer who finds the system not empty joins with bty ¢ and leaves
otherwise.
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The only difference from th//M /1 queue is that transitions froirto i + 1 where
¢ > 1 now occur according to a thinned Poisson process withxatd hus we have
the transition graph

A Aq Aq
R Y YR YR
OO O

and we get
AoAr - Apor ATt
Hape2 - - fn "
where we lefpp = \q/u to obtain

1+Z Ao -

n=1 Hipz -

L1y = Zp

which is finite if and only ifp < 1, which makes intuitive sense. Since

o
-t
n=1

the stationary distribution is given by

n
T — P n=12,..

q 3

Note how we redefined the traffic intensjy We did this since we want < 1 to be
the criterion for when the system is efficient, that is, wHemgerver manages to deall
with the arrivals. 0

Example8.4.11 (More than one server Consider theM/ /M /2 queue, which is
just like the M /M /1 queue except that there are two servers instead of one. An
arriving customer can thus get immediate service if theesyss empty or if only
one server is busy.

The difference this time is what happens when both serverbasy. The time for a
service to be completed is now the minimum of two exponentiath ratei, and is
thusexp(2u) (recall Example 3.10.3). The transition graph is



504 STOCHASTIC PROCESSES

A A A
W 2p 2u
This time we get
XA A1 AT B (A)”
pap i p(2p)" 1 2u

which suggests that we define the traffic intensitpas A /2. We then get
Ty =2p"m, n>1
and the stationary distribution exists if and onlyik 1. Since
<1 +2 i pn> = 1+_p
n=1 L=p

the stationary distribution is given by

1—p
T = —
0 1+p
2p"(1 —
no— 2 p)’n21
L+p O

8.4.4 Further Properties of Queueing Systems

When a queueing system has settled in to have the statioistiijpdtion, we say that

it is in equilibrium. Several different measures can be used to assess the efficien
of the system, often callggerformance measureket us examine some of them for
the M /M /1 queue.

Example8.4.12 Consider the\//M /1 queue withp < 1 in equilibrium. (a) What

is the expected number of customers in the systém®Vhat is the expected queue
length? (c) When a customer arrives, what is the probability that shes st have

to wait in line? (d) When a customer arrives, what is her expected waiting time un
til service?(e) When a customer arrives, what is her expected total timesisyistem?

Let us introduce some random variables. Thus, let

the number of customers in the system
the queue length
= the waiting time until service

N=o =
I

the total time spent in the system
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For (a), we know thatV has distribution
Tk = (1 - p)pkv k= 07 17

the geometric distribution includingwith success probability— p, and from Section
2.5.3 we know that

EN] =
I-p
which answers (a). For (b), note that
0 0 if N=0orN=1
Tl N—-1 ifN>1
and hence
P(Q=0) = m+m
PQ=k) = mp1, k21
which gives
E[Ql = Y kP@Q=k) =D kmp
k=0 k=1
= pY k(1-p)p* = pE[N] = =5
k=1

The answer to (c) is simply, = 1 — p, and for (d), note thalt’ = 0 if the systemis
empty and the sum @¥ i.i.d. exponentials with meat/ . if there areN customers

in the system (keep in mind thatdoes not denote the mean but the service rate). By
Corollary 3.11.6 we get

1 p
E[W]=E[N]- = ————
W] []u n(l —p)
Finally, for (e), letS be a service time and note that= W + S to obtain

_ 1__ 1
mﬂ_uﬂ—m+u (1 = p)

We summarize as follows. In th¥ /M /1 system in equilibrium, we have
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There are many interesting relations between these expeatees. For example,

ElQ] _ EW]

E[N]  E[T]
which is also equal to the traffic intensity Also, sinceu = p), we obtain
E[N] = AE[T] (8.4.4)

formulas that are intuitively reasonable. These relatibaksl for many queueing
systems, not only thé&//M /1. Equation (8.4.4) is known dsttle’s formula Also
note how all the expectations godo asp approaches.

If there is finite waiting room, an obvious performance meassihow likely it is
that the systemis full, in which case arriving customerdase Thus, the probability
that the system is full is the long-term proportion of amigicustomers that are lost.
Let us consider one example.

Example8.4.13 Consider theM//M/1/r queue from Example 8.4.9. What pro-
portion of customers are lost?

This is the probability that the system is fufl,, which is

1 .
ifp=1
r+1 p
Ty =
(I=p)p" .
T o7l
where we can note that. — 1 asp — oc. 0

8.5 MARTINGALES

In this section, we will introduce a class of stochastic psses callechartingaleg
that is particularly useful in a wide variety of situationkere asymptotic properties
are of interest.

Let us go directly to the definition.

"The term originated in France in the 17th century as a clagetting strategies to increase the chances
in various games of gambling.



MARTINGALES 507

Definition 8.5.1 A sequence of random variabl&s, Y5, . .. is called a mart
tingale in discrete time with respect to the sequekigeXs, . . . if F[|Y,|] < oo
and

ElY,1|Xq,..., X, =Y, (8.5.1)

foralln=1,2,....

The conditional expectation used in Definition 8.5.1 is aggalization of Definition
3.7.4, where we interpreted conditional expectation asndom variable. In this
context, (8.5.1) isarandom variable assuming the vBI3&, 1| X1 = 21, ..., X,, =
x,] whenever the evedtX; = z4,...,X,, = z,} occurs.
In many applications, we can actually chodsg= Y}, forall k = 1,2, ... so that
(8.5.1) takes the form
E[Y,|Y1,.... Y] =Y,

which better illustrates the fundamental property of a ingelle. Basically, it says
that if we have observed the processiimsteps, we at least know that the process in
the next step on average will not deviate from the last valye The more general
definition above is useful in situations where we can wkiteas a function of the
underlying variables(y, ..., X,,.

Example8.5.1 One process that we have considered earlier that fits niatdythis
theory is the symmetric random walk from Section 8.3.1 wh€reXs, ... arei.i.d.
random variables wherB(X;, = 1) = P(X;, = —1) = £ and

Sn=>_ X
k=1
The first property in Definition 8.5.1 is clearly satisfied@##||S,,|] < n < oo and
E[Sn+1|X1, L. ,Xn] = E[Xn+1 + Sanl, L. ,Xn] = E[Xn+1] +S5,=35,

shows thatSy, Ss, . . . is a martingale with respect t&;, Xo, . . .. 0

Example8.5.2 (Branching Processes)Another example where martingales are
useful is the branching process introduced in Section 8.34&re, the variables
X1, X5, ... represent the number of offspring of individuals in a getiersand

Zn_1
Zn=> Xp, n=12...
k=1
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whereZ, = 1, denotes the number of individuals in generationf © = F[X}] <
oo, Proposition 8.3.7 implies thd[| Z,|] = E[Z,] = p"™ < oo and

Z’Vl
ElZy1|Zy,...,Zy]) = E ZXk 21,y dn| = Znpt
k=1
showing thatZ;, Zs, ... is a martingale with respect to itself, but only,if = 1.

However, it is actually quite easy to construct a marting@alarbitrary . by rescaling
Z, with respect to the mean as

Clearly,E|[|Y,|]] = E[Y,] =1foralln=1,2,...and

Z
1 n
ElYpii|Z1,....2,) = E sy > Xi| 2., Zn
k=1
1
showing thafty, Ys, . . . is a martingale with respect t6;, 75, . . .. 0

8.5.1 Martingale Convergence

The main result of this section is the following.

Proposition 8.5.1(Martingale Convergence Theorem)f Y7, Y, . .. isa mar
tingale with respect to some sequertg Xo, ... andE[Y,?] < ¢ < oo for all
n =1,2,...,thenthere exists a random variablesuch that

Y, —-Y as n—

with probability one.

Note that the convergence is almost surely, the strongeermbdonvergence men-
tioned in the discussion of the law of large numbers in Secti®. This implies
thatY,, also converges in probability and in distribution. Profiosi 8.5.1 says that
there exists a random variabléin the limit, but it does not say anything about its
properties. If we want to find out its distribution, say, wevb&o use other methods,
e.g. limits of moment generating functions as describekgrproof of Theorem 4.3.1.
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Example8.5.3 (Strong Law of Large Numbers)As a first example, we are going
to demonstrate how to use Proposition 8.5.1 to strengthenEm 4.2.8 which says
that the sample meak converges in probability to the meanasn — oo.

Let Xy, Xo,... be asequence of i.i.d. random variables and let

n

Y, = Z ka— H
k=1

Clearly, E[Y,] = 0 and

E[Y?] = Vary,] = Zﬁ < azzﬁ =

so as long as? < oo, the condition in Proposition 8.5.1 is satisfied. To conelud
thatY,, is a martingale, we have to show th&{|Y,,|] < oo for all n, which follows
from

EllYall = ElYal| [ [Ya] <UP(Ya| < 1)+ E[[Ya] [ [Ya] > 1P([Ya] > 1)

o’n?

6

< IxP(Y,| <)+ E[Y <1+

Proposition 8.5.1 now says that there exists séfhseich thaly,, — Y with prob-
ability one. To obtain the strong law of large numbers we reeeththematical result
called Kronecker's lemma, which says that if we have a secgiefharbitrary real
numbersey, zo, . . . and positive constants, bs, . . . that increase strictly to infinity
then

n Th 1 n
Z £ _, 2 implies that — Zxk =0
= b bn i3

asn — oo, Where|z| < co. We have to be a bit cautious since we are dealing with
random variables, but without going into details it turn$ that

n n

Xk—,LL . . 1
Y impliesthat — Xp — 0
kz::l I P n;( k= 1) —

asn — oo with probability one. Finally, we note that sinéé — i — 0 it follows
that X — p with probability one. 0

8Sometimes called thé/eak Law of Large Numbets distinguish it from this case.
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Example8.5.4 (Branching Processes)Recall Example 8.5.2 where we showed
thaty,, = Z,,/u™ forn = 1,2, ... is amartingale with respect t6,, Z5, . . .. Propo-
sition 8.3.7 implies that

E[YnQ] = (E[Yn])2+var[yn] = 1+W X 1
_ o*(1—p") o?
H p(p—1) Hu(u—l)

if © > 1. Hence, Proposition 8.5.1 says that there only exists a kifor the mar-
tingaleY,, in the supercritical case. Luckily, this is the most intéiregcase because
we know from Proposition 8.3.8 that subcritical and critiseanching processes al-
ways goes extinct eventually and it is possible, using atiethods, to conclude that
Y,, — 0 for those cases.

The properties of” are not that easy to obtain and we are not going to go much
further here. It is possible, though, to show tl¥ats continuous except for a point
mass at 0 equal to the extinction probability. This meanstthaevent{Y > 0}
is equivalent to non-extinction and if we condition on thieet, we can say that
Z, = Y u" forlargen. Essentially, the branching process grows with a more ar les
deterministic rate but from a random level. 0

8.5.2 Stopping Times

Let us assume that we can interpret a martingale as the adataddortune of a
gambler playing a fair game. The game is fair in the sensetlieag¢xpected amount
after each play is equal to the gambler’s fortune before thg gHowever, if we are
lucky we may win some money or if we are unlucky we may lose sameey in
each individual play.

Let us, for simplicity, consider the symmetric random wadkeasimple model for
gambling where we bet $1 and win $2 if we get heads and loseaiufrlve get tails.
Throughout history, innumerable attempts have been mabeabthe odds, to come
up with the perfect foolproof strategy to win money no malttew the dice fall or the
roulette wheel spins. One of the most (in)famous is the dedaoubling strategy,
where you always double your bet if you lose one play.

If it takesn plays to get heads, we have ldst- 2 +4 + ... +2" 2 =271 1
dollars along the way but since the winning play bring&'irm! dollars, we will gain
$1 altogether. Seems solid, doesn'tit, so, what's the groBl If we letV denote the
number of plays it takes to get heads, we know that= P(N = n) = (1)". The
expected amount that we will have to bet to gain $1 is then

[e'e] - [e'e] 1 1
et oim =3 5 =

Hence, no matter how big your initial fortune is, you will mékely be ruined before
you stand to win any significant amount of money.
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This is an example of a strategy usingtapping timei.e. a predetermined rule
when to stop playing. The rule has to be formulated so thatmesvidor sure, after
each play, if we will stop or not and that we are not allowedge future, unobserved
observations. In mathematical terms, it can be defined &sfsl

Definition 8.5.2 A random variablel’ that takes values if1,2, ..., 00} is
called a stopping time for the sequenke, Xo, . .. if

P(T:7’L|X1:$1,X2:x2,...):

P(T:TL|X1:Il,XQZSCQ,...,Xn:In):O or1l

This means that if we know exactly what values the stochasticessX, Xo, ...
has assumed up to and including stepve will know for sure if the everfT = n}
has occurred or not. Also, note that we all@to assume an infinite value, which
corresponds to a situation where our rule is never met andherefore never stop.

A poorly chosen stopping time usually means, as illustrateale, that there is a
clear risk that we may have to wait for a very long time until step and that things
may go awry before that. Exactly what conditions a usefupgtog time should
satisfy are covered in the following result.

Proposition 8.5.2(Optional Stopping Theorem)Let Y7, Y5, ... be a martin
gale andl" a stopping time with respect to some sequelgeXo, . ... If

) PT<oo)=1
i) E[vr] < oo
i) EY,|T>n]P(T>n)—0 asn— oo

thenE[Yr| = E[Y1].

There are several versions of the optional stopping the@iging slightly different
conditions, but those described in Proposition 8.5.2 amalliseasy to verify. This
is bad news for all gamblers since it shows that there is res(meable) strategy that
will increase your expected fortune in a fair gath&he doubling strategy described

9t is actually even worse because casinos and other gamiéinges rarely offer any fair games.
The odds are usually stacked in their favour, bringing in albmut steady profit. Processes where
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above satisfies the first two conditions in Proposition 8tbinot the third since

E[Ya|T > n]P(T > n) = —(2" — 1) x (%)n o

asn — oo.

Example 8.5.5 (Gambler's Ruin). As a first example of the optional stopping
theorem, let us revisit Example 1.6.16 where Ann and Bob dlipp coin and Ann
paid Bob one dollar if it turned up heads and Bob paid Ann orkadif it turned up
tails. Ann started withu dollars and Bob withh dollars and the question was which
one would be ruined first.

If we let X}, be 1 if we get heads in theth flip and -1 otherwise, we can write
Bob'’s total gain after. coin flips as

Sn=> Xk
k=1
This is clearly a martingale with respectio , X», ... since
1 1
E[Sp+1]|X1,.., Xn] = (Sn — 1) x B +(Sn+1)x 3= Sh
The game stops either whéh, = a (Ann is ruined) orS,, = —b (Bob is ruined), so

T =min{n: S, =aorsS, = -b}

is clearly a stopping time.

We know from Section 8.3.1 that the symmetric random walle@urrent, which
means that it will hit eithes or —b eventually. Thisimplies bothth&(T < co0) =1,
verifying the first condition of Proposition 8.5.2, and t#&tl" > n) — 0 asn — oo.
We also know that the random varialfle only assumes the valuesand—b so that
E[|Sr|] < max(a,b) < co. Finally, we realize that if the evel” > n} occurs, the
martingale has not stopped at timeso that—b < S,, < a and the third condition
follows.

Let p be the probability that Bob wins all the money (and Ann getaed) and
note thaijp = P(Sr = a). Proposition 8.5.2 now implies that

E[St] =ap —b(1 —p) = E[51] =0

which gives us that

E[Yn+1|X1, X2, ..., Xn] <Y, are calledsupermartingalegreplace< with > and you gesubmartin-
gale9 and have similar properties.
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We can also calculate the expected valu&'dfy considering the sequentg =
S2 — n, which also is a martingale with respectXa, X», . .. since

EYi1|X1,..., X0 = E[(Sn + Xni1)? — (n+1)|S,]

= S?z +2SnE[Xn+1] +E[X721+1] — (n+ 1) = SZ —-n=Y,

It is not quite as easy to verify that all conditions of Pragios 8.5.2 are satisfied,
but we will skip those details. Hence, we know that

Blyr] = B[ST — T] = E[S7] - E[T] = E[Y1] = E[S{ - 1] =0

and, since we know th&; is either equal ta with probabilityp or equal to—b with
probabilityl — p, we get that

2b b%a
E[T) = E[S2] = a?p+ b2(1 — p) = —— = ab
[11=ElSt]=a’p+b"(1—p) =~ + = =a
which would be very difficult to calculate in any other way. 0

Example8.5.6 (Ballot Theorem). There has been a ballot between Ann and Bob
where Ann won with votes whereas Bob only gbtotes. If the votes where counted
one by one in random order, what is the probability that Ans @head of Bob the
whole time?

Let X be equal to 1 if vote numbérwas a vote for Ann and -1 if the vote was for
Bob. Thens,, = Zzzl X . denotes the difference between the number of votes for
Ann and Bob aftern votes have been counted. The probability we are looking for
can be expressed #4S,, > 0;1 <n < N), whereN = a + b is the total number
of votes.

There are several ways to solve this classic probabilistblent® but we will
use the optional stopping theorem to do it here. It turnsloattwe can simplify the
problem by going backwards in time, creating a so calbedtkwards martingale

First, we note that after votes have been counted, Ann hdwe+ S,,)/2 votes
and Bob havén — S,,)/2 votes. This implies that

(n+1=Sui1)/2
n+1

n+1

P(Sn = On+1 + 1|Sn+1) =

P(Sn = On+1 — 1|Sn+1)

1Ontroduced by the French mathematician Joseph Bertrar@R00) in 1887. Martingale theory had
not been developed at the time, so he solved it using conaricat methods.
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These conditional probabilities consider the events theatake away a vote for Bob
and we take away a vote for Ann, respectively, fram 1 counted votes.
Now, we define the sequent®, Ys,..., Yy as

SN—n+1
Y, = Nl
N-—-n+1

which is a martingale with respect to itself since

n=1,2,...,N

SN—n
EYpV1,... Yo =E [NN_ ” SN,y SNCnyt
1
= N n{(SanJrl +1)P(SN-n=SN-ni1+ 1SN _ns1)

+(SN-n+1 — 1)P(SN—n = SN—n+1 — 1|SN—n+1)}

. 1 IS I (N—TL+1—SN_7H_1)/2
T N \PNtt N-—-n+1
_(N—n+1+SN7n+1)/2
N-n+1

_ SanJrl 1_ 1 _ SanJrl -V
N -—n N-—-n+1 N-—-n+1 "

Next, we define the stopping tinfeéas
T = min{min{n : Y,, = 0}, N}

Since we are going backwards in tinié,denotes the last time the candidates were
even and if this never happens, we Tet= N, which corresponds to the first vote
counted. This means thatTf < N, the candidates were evenAtandYr = 0.

On the other hand, if” = N, Ann was always ahead an@- = 1. Since both the
martingale and the stopping time are bounded, it is obvibas &ll conditions in
Proposition 8.5.2 are satisfied, so we can conclude that

Sni_a=b
N| a+b

ElYr]=EWM|=FE [

Finally, since the random variablé- only assumes the values 0 and 1, we get that

E[YT] = OXP(YT:0)+1XP(YT=1)

= OXP(T<N)+1xP(T=N)=P(T=N)
which yields the probability that Ann was always in the lead a

a—2>b
a+b O

P(Ann always in the lead= P(T = N) =
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8.6 RENEWAL PROCESSES

In Section 3.12, we introduced the Poisson process as a painess with i.i.d.
exponentially distributed inter-arrival times. In thiscéen, we will outline some
theory of the most obvious generalization of this, namelgltow the inter-arrival
times to have any non-negative distribution.

Let us start with the formal definition.

Definition 8.6.1 LetT3, 75, ... be i.i.d. non-negative random variables such
thatP(T), = 0) < 1andS,, = >,_, Tk, then

N(t) = max{n: S, <t}

is a renewal proces$ort > 0.

The time pointsy, S, . . . are called theenewalssince it is like starting all over from
the beginning every time an inter-arrival time ends. Sindge) = n is equivalent to
Sy <t < S,41,we see thal () counts the number of renewals in the interialk].
The cdf of T}, and S,, will be denotedF'(t) = P(T) < t) andF,(t) = P(S, < t),
respectively, and we lgt ando? denote the mean and the variancdpf

The exact distribution oiV (¢) is usually very difficult to derive, except for a few
simple cases, but it can at least theoretically be expréagbe form

P(N(t)=n) = P(Sy <t < Spi1)=P(Sn <t)— P(Sps1 < 1)
= Fu(t) = Frpa(t)

forn=0,1,2,..., whereFy(t) = 1. We can also write the mean(t) = E[N(t)],
using Proposition 2.4.1, as

m(t)=> P(N@t)=n)=Y P(S,<t)=>_ Fu(t)
n=1 n=1 n=1

The meann(t) is also called theenewal functiorand it turns out that it uniquely
determines the renewal process, i.e. if we are given an esgjoe form(t), we can
in principle calculate the distributioR'(¢) of the inter-arrival times.

Example8.6.1 Let us have a look at the Poisson process expressed as a fenewa
process. Since the inter-arrival times are exponentiadliributed, we know that

Fty=1—e*
and, by Proposition 3.10.6 and Section 2.8.2, that

n—1
_ At)F
Fo(t)=1—eM E (k')
k=0
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The distribution ofN (¢) can now be calculated as

(e 0 N U DY
P(N(t)—n)— <1—€ A I;)T>—<1—€ A I;)T>—€)\

n!

which is the Poisson distribution with mean The renewal function becomes

(e’ _tn—l /\tk (e’ Y . e’} )\tk
o = S (1- B ) 2 (e (-2 )
R VR U R Pk
= YD k! =My k! :ekz(k—n!
n=1k=n k=1n=1 k=1
v o0 )\tkfl
= eA/\tZEkzl)!—/\t
k=1

where we used the Taylor expansioredf. This is a very longwinded way to derive
the mean of the Poisson process but at least it shows thdte¢beytworks. What we

have shown is that the Poisson process has a linear renenaic and, since the
renewal function determines the renewal process, it islwooting that the Poisson
process is thenly renewal process with a linear renewal function. 0

For continuous inter-arrival times, we can use the propirdy the renewal process
starts over at every renews8), to obtain the following result.

a7

Proposition 8.6.1(The Renewal Equatior). If TY,T5,... are continuou

inter-arrival times with cdf'(¢) and pdff (t), the renewal functiom(¢) satis-
fies

m(t)zF(t)—i—/O m(t —u)f(u)du

Proof. If we condition on the time of the first renewal, Propositioi.2 says that
we can write the renewal function

m(t) = B[N()] = /OOO EIN()|Ty = ulf(u) du (8.6.1)

Now, if the first renewal occurs aftér i.e. thatu > ¢ holds, clearlyE[N (t)|T1 =
u] = 0. On the other hand, if < ¢, we count the first renewal and start the process
from the beginning at time. This means that

EINOITi=u]=1+EN{t—uw)]=1+mt—u) u<t
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which means that we can write (8.6.1) as

m(t)—/o(1—|—m(t—u))f(u)du—F(t)—|—/0 m(t —u)f(u)du

The main advantage of Proposition 8.6.1 is that we only neednsider the distri-
bution of the first renewal to get the renewal function, bstéad we need to solve an
integral equation, which is not that easy in most cased, iBglives us a tool to verify
whether a proposeah(t) actually is a renewal function for a given renewal process.

8.6.1 Asymptotic Properties

Since the exact distribution of the renewal process is difffito obtain in most cases,
it would at least be interesting to see hdWt) behaves as — oc. The first result is
essentially a version of the Law of Large Numbers.

Proposition 8.6.2. Fory > 0, it holds that

N(t
%ﬂ ast — oo

1
I

Proof. SinceSy () is the time of the last renewal befarewe note that
SN St < SNn)+1

which yields that
SN(t) t SN(t)+1
N(t) = N(@) ~ N(t)
for N(t) > 0. Now, it holds thatV(t) — co ast — oo (Why is that?), so the Law
of Large Numbers implies that

(8.6.2)

SN
N(t)

P
— u  ast — oo

Furthermore, using a similar argument yields that

SN+1  SN()+1 " N@#)+1 P
N(t)  N() +1 N(t)

pux1l ast— oo

We have shown that both the upper and lower bound in (8.6rR)age in probability
to . and since /N (t) is between these, it has to converge in probability ts well.
Taking the reciprocals completes the proof. ]
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The ratiol/p is called therenewal ratebecause it denotes the average number of
renewals per time unit in the long run. Note that the resuld$also for infinitey,
in which case we interpret the renewal rate as 0.

In light of Proposition 8.6.2, the following result seemstqunatural.

Proposition 8.6.3(Elementary Renewal Theoren). Fory > 0, it holds that

(t)

—_— =

t

ast — oo

=l

Itwould seem thatthis is a simple consequence of Propadti& 2, but thatis actually
not the case. Proving the elementary renewal theorem turrt®dve rather difficult
and requires some asymptotic theory that we have not intrediu

The following result is slightly more general but holds ofdy continuous inter-
arrival times.

Proposition 8.6.4(Renewal Theoren). For continuougt(¢) andy > 0, it
holds that
S
m(t+s)—m(t) —» — ast— oo
7

This result says essentially that if we slide a ruler of Iéngbn the time axis, the
expected number of renewals covered by the ruler will begastl approximately,
proportional to the length of the ruler. For a fixed and larg@ropositions 8.6.3 and
8.6.4 can be summarized as

Q

m(t)

Q

Tle T |+

m(t +s) —m(t)

which illustrates how they are connected. Proposition38dan be regarded as a
global average of renewals while Proposition 8.6.4 givasndar local property.
There is also a central limit theorem for renewal processes.
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Proposition 8.6.5. For i < oo ando? < oo, it holds that

N(t) —t/p
P <W < x) — (IJ(x)

ast — oo, where®(z) is the cdf of the standard normal distribution.

Proof. For a fixedz, let
t=nu—xo\vn (8.6.3)

and consider the probability

PN@ <y = p ([Nt mu=t) o (NO -t oo
ot/ ot/ o/t/p ¢
Now, if we letn — oo we see from (8.6.3) that— oo and vice versa. Also, (8.6.3)
implies that\/nu/t — 1, which means that

: —tm p (YOt
TJLII;OP(N(t)<n)_t1—>OOP< ot/ 13 < )

Finally, since the eventSN (¢) < n} and{S,, > t} are equivalent, we get that

B B Sp—np _ t—np
P(N(t)<n) = P(Sn>t)_P( P > 0\/ﬁ>
Sn —np
= Pl———>-z) —>1—®(—z) =d(x)
a\/Nn
asn — oo by the central limit theorem. [ ]

Example8.6.2 A Geiger-Miller counter (or Geiger counter for short) is elac-
tronic device that detects radioactive particles, usdediyn beta and gamma radiation.
One problem is that every time a particle is registered, theater has to be reset be-
fore it can detect new particles. These periods are calésdl perioddecause any
particles that arrive while the counter is reset are losteréfore, some appropriate
adjustment needs to be done in order to avoid underestimafidthe radioactive
intensity.

Let us assume that the radioactive particles arrive acogridi a Poisson process
with rate A and that the lengths of the dead periddsYs, ... are i.i.d. random
variables. LefX;, X5, . ..denote the times until areset counter registers a particle a
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from the properties of the Poisson process, these are indepéand exponentially
distributed with parametex. Furthermore, we assume that the lengths of the dead
periods are independent of the Poisson process.

If we let the inter-arrival times b&), = X, + Y, fork = 1,2, ..., we can define
the renewals as

n

Sn=> Tui=Y (Xi+Yi)
k=1

k=1
In this case, we get the mean and variance of the inter-atiiwas as

1

po= oyt (8.6.4)
1

0'2 = ﬁ-i-O'%/

Let us say that we have run the counter for a long tiraad registeredV (¢) particle
emissions:! Proposition 8.6.2 implies that

t ot

w 1/A+py

which gives us the appropriate estimatornodis

1
t

Having obtained an estimate far we can then use Proposition 8.6.5 to calculate

a confidence interval. First, we get an interval g with approximate confidence
levelq as

N(t) =

/)::

3
1 ~ NE®) tr—2 N () +z0 N ()
L t s t 12
where®(z) = (1 + ¢)/2. In the second approximation above, we used the fact that

w~t/N(t)and
6'\2 = § =+ 0'%/
Then, (8.6.4) can be used to transform the intervahfor

For a practical example, let us assume that we have detated= 5630 particles
during one second and the dead periods are uniformly dig&ibbetween 0 and 200
uS. Letus use 1 ms as a convenienttime unit sotltgnotes the average number of
particle emissions per ms. Itis clear thgt = 0.1, which yields the point estimate

1
1000
— —0.1
5630

= = 12.9

1t the time pointt ends up in a dead period, the number of detected particlesually N (t) + 1 since
the last particle is registered befaralthough the corresponding inter-arrival time ends aftddowever,
if ¢ is large, this is negligible.
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Now, we get
1 0.22
~2 — . 4
o 1292 + —= D = 0.009

which yields the 95 % interval

1 5630 V56303
— =+ 1.96v0.0094 =5.63£0.08
@ 1000 10002
Finally, this yields the limits fon as
1 1
G <A< —T—— (%%
— —0.1 — —0.1
5.58 0 5.71 0
or
125 <A <133 (=~ 95%) O

Example8.6.3 (Delayed Renewal ProcessThere is one variation of the regular
renewal process that is of particular interest, where thilution of the initial inter-
arrival timeT} may be different from the subsequent. Such a situation magygamif
we start the process in between two adjacent renewals thtoeat a specific renewal
time, hence the term delayed renewal process. Since onlyrshénter-arrival time
differs, all previous limiting results can be shown to hdkbefor the delayed renewal
process. In fact, it has some interesting theoretical ptasethat actually can be
used to prove some of these results for the regular renewatps. B

Let F'(t) denote the cdf of», T3, . . . as before and denote the cdfBf by F'(t).
Furthermore, lef,, denote the renewal&{ (¢) the delayed renewal process an)
the renewal function. Now, we can use the same method asjmdbéof Proposition
8.6.1 to obtain

(t) / BIR(0T) = ulftw)du = [ (1+m(e =) flw) du

+/0 m(t —u)f(u)du (8.6.5)

Note that we get the mean(¢ — u) in the integral since we get an ordinary renewal
process after conditioning off; = u}. If we apply Proposition 8.6.1 tow(t — w),
we can write (8.6.5) as

P+ /t <F(t —u)+ /Otu m(t —u—v)f(v) dv) Flu) du

/Ft—u du—i—/o (/Otvm(t—v—u)f(u)du) fv)dv
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The first integral can be transformed, using integration &g into

/Ot F(t —u)f(u)du {F(t—u)f(u)};_i_/otf(t_u)f(u) du

= / ﬁ’(t—u)f(u) du
0

and we can use (8.6.5) again to rewrite the inner integral as

/O it — v — ) Flu) du = it — v) — F(t— )

Together, these results imply that

m(t) F(t) +/0 F(t—u)f(u) du—i—/o (m(t —v) — F(t —v))f(v)dv

= ﬁ(t)+/0 m(t —v)f(v) dv (8.6.6)

which is the renewal equation for the delayed renewal pmces

As for the ordinary renewal process, this equation uniqdetgrmines the renewal
function. If we look at the asymptotic propertiestas» oo, we realize that they
depend largely orf'(¢) and that the initial inter-arrival time eventually becomes
irrelevant. This means that we may choose whatéel we like without affecting
any limiting results. Proposition 8.6.3 says that the stadémewal functionn(t)/t
for a regular renewal process converges towdrgs and, as mentioned above, the
same can be shown to hold fai(t) /t. Let us see if we can choog&t) so that

forall t > 0. In that case, (8.6.6) implies that

t

F() = %(t)—Atﬁ(t—v)f(v)dU:——At

u
- e

t—wv
I

f(v)dv

t

0
as long ag: < oo. 0
8.7 BROWNIAN MOTION

The simple random walk presented in Section 8.3.1 descailokscrete process that
at unit time points jumps one unit up or one unit down with fiyedbabilitiesp and
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1 — p, respectively, independent of all previous jumps. Let @sibee can construct

a continuous version of this that makes infinitesimally drjuahps infinitesimally

often. To achieve this, we can consider random walks withpjsimesAz and time

intervals of lengthAt¢ and then gradually decreager and At towards zero. In the

following, we will only consider the symmetric random wallherep = 1 — p = %
Let X1, X, ... be independent random variables such that

+1 with probability 1 /2.
X = (8.7.1)
-1 with probability 1/2.
Then we can define the process
Su(t) = Az Xy + AxXo + ...+ Ax Xjyyag = Az Y X, (8.7.2)

i=1

wheren = [t/At] denotes the largest integer less than or equal to the reabeium
t/At.

SinceE[X}] = 0 and VafX}] = 1, we can calculate the mean and variance of
(8.7.2) as

E[S.()] = A:czn:E[Xk]:O

i=1

Var[S,(8)] = (A@?iVar[Xk]:(A@%:(M)? [é} (8.7.3)
=1

If we let At — 0, thenn — oo and we can use the Central Limit Theorem to
conclude that the sum in (8.7.2), properly standardizedyemes to the standard
normal distribution.

To obtain a similar result fo§,,(¢), we also have to lehz — 0 in some orderly
fashion. It is clear from (8.7.3) tha&x would have to decrease at a slower rate than
At, of the ordern/At, if we are to obtain a positive and finite variance in the limit
For simplicity, letAz = o+/At to obtain the variance limit V&8, (t)] — %t and
let At — 0. Then, the Central Limit Theorem implies that

Su(t) — E[Sn(t)] 4 N(0,1) (8.7.4)
Var(S, (t)] 7 -

asn — oo.
Since both¥[S,, (¢)] and Vafs,, (t)] converge to finite and, for the variance, positive
limits, we can reformulate (8.7.4) as

Sn(t) % B(t) ~ N(0,0%) (8.7.5)

Another important property of the limiting proce#¥) is that it has independent
increments, i.e. that the changBéts) — B(t2) andB(t2) — B(t1) are independent
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liﬁw\/f’\w 1
0 0

(a) (b)

Fig. 8.3 Two realizations of Brownian motions in the unit interval {@) c = 1 and (b)
o =4.

random variables far, < t» < t3, which should be intuitively clear from the random
walk definition above. In fact, these are the two fundameatedihing properties of
the process.

Definition 8.7.1 The Brownian Motiod?B(t) is a real valued stochastic prio-
cess in real time¢ > 0 that satisfies

iy B(0)=0

||) Ift] <to <...<ty, thenB(tl),B(tQ)—B(tl), L. ,B(tn)—B(tnfl)
are independent.

i) B(t+s) — B(s) ~ N(0,02t) fort,s > 0

Note that part iii) of Definition 8.7.1 is slightly more gemgthan (8.7.5) since it
says that all increments are also normally distributedoéslbehave very erratically,
which is illustrated in Figure 8.3 where two simulated Braammotions are shown
foroc =1ando = 4.

This is one of the most studied stochastic processes in ttieematical literature
partly because it has a lot of fascinating theoretical prisgebut also because it has
beenfoundto be very useful in quite different areas likegits/(quantum mechanics),
electronics (filtering theory) and economics (option prggi. We will not have time to

12Named after the Scottish botanist Robert Brown (1773—1888) studied pollen grains submerged in
liquid. To his amazement he observed that particles ejdobea the pollen grains moved in a very erratic
random fashion. He was the first to observe this phenomenbhnebdid not manage to explain it. Later,
the American mathematician Norbert Wiener (1894—-1964eliged the mathematical theory behind it
and therefore the proce#(t) is sometimes also called thé/iener process
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explore the Brownian motion in detail here except for som#efmost fundamental
and useful properties.

One interesting feature d®(¢) is that it is scale invariant in both time and space.
Itis quite easy to see, by checking the conditions in DetiniB.7.1, that ifB(t) is a
Brownian motion with variance?, thenB(t) /o is a Brownian motion with variance
1. This is called thestandard Brownian motioand since any Brownian motion can
be standardized in this way, it is common to assumedhat 1. Similarily, it can be
shown thatifB(t) is a standard Brownian motion, thét{c2t) is a Brownian motion
with variances?. These scalings can also be combined.

>

Proposition 8.7.1(Self-similarity). Let B(t) be a standard Brownian motign.
Then the process

is also a standard Brownian motions for any 0.

Essentially, what this says is that if we would “zoom in” oe 8rownian motion we
would see a process that would look quite similar to what wetetl with, i.e. the
Brownian motion can be charaterized amadom fractal However, in order for this

to work, we see that the rescaling of the horizontal time hgis to be the square of
the rescaling of the vertical space axis. Also note that ésealing constants does
not have to be positive. A negativemeans that we reverse the vertical axis and, by
symmetry of the normal distribution, we still get a Browniaotion.

8.7.1 Hitting Times

One quantity of interest is the time until the Brownian mataitains some predeter-
mined level. As a practical example, let us say that we buyaaesbf stock whose
value can be described by a Brownian motion and decidesltthgehfter its value
has increased by a certain amount. Then we would like to knom long time it
takes until our investment pays off. We start with the foliegvdefinition.

Definition 8.7.2 The time until the Brownian motioB(¢) hitsa is called the
hitting timeand is defined

T, = min{t : B(t) = a}
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Clearly, T, is a non-negative continuous random variable whose digtab is given
below.

Proposition 8.7.2. The hitting timeT,, of a standard Brownian motion has pdf

foranya # 0.

Proof. Let us first assume that > 0 and consider the event that the Brownian
motion exceeds at timet. The law of total probability gives us

P(B(t)>a) = P(B(t)>alT, > t)P(T, > t)
+P(B(t) > a|T, < t)P(T, < a) (8.7.6)

The first conditional probability above is clearly O since #vent{7, > t} means

that the Brownian motion has not hitit timet and sinceB(t) is continuous, it cannot
be above:. If we turn to the second conditional probability, the cdiwdi says that
we have hita beforet. Then we can split u@(t) in the two parts

B(t) = B(T,) + (B(t) — B(T,)) = a+ (B(t) — a)
Now, the incremenB(t) — a is normally distributed with mean 0, which means that
P(B(t) >alT, >t)=P(B(t)—a>0)=

by symmetry. This means that (8.7.6) can be written

P(T, <t) =2P(B(t) > a) = 2 (1 -¢ (a\;g()))

Fora < 0 we consider the everdtB(¢) < a} and, again by symmetry, we get that

P(T, <t)=2P(B(t) < a) = 2® (a\;z()) =2 (1 -¢ (_%))

Hence, the cdf can be written

Frin=2(1-2 (1)) (8.7.7)

and taking the derivative with respectitgields the pdf

lal lal N _ _lal a2/
(1) < (-38%) - 7o
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The properties of this distribution are not that easy to #tigate. Even iff, is finite
with probability 1, implying that we will hita eventually, it turns out that the mean
is infinite, in analogy with Corollary 8.3.4, suggestingtthianight take awhile. The
median, however, turns out to be jus67a?, so for small there is a fair chance that
we will reacha fairly soon.

Example8.7.1 Since the Brownian motion can be characterized as the shalitd
of a symmetric random walk, we can use its properties to sayeioing, at least
approximately, about random walks. Therefore, let

6oy,

k=1

whereX, X, ...aredefinedin (8.7.1), be asymmetric random walk. As an ex@mp
let us consider the probability that the random walk willalke&,, = 100 within 2000
steps.

If we let At = 0.001 in andAz = v At = 1/0.001, by the proper scaling, we see
that the event tha$,, reaches 100 within 1000 steps is equivalenfjdt) defined
by (8.7.2) reachind00 x Az = /10 in the interval0, 1]. SinceAt is comparatively

small, we can use (8.7.5) to conclude ti5a(t) 9 B(t), which means that we can
express the event approximately{ds ;7 < 1} and (8.7.7) yields that

P(,_max Sy >100) = P(T 5 < 1) = 2(1 - €(3.16)) = 0.0016

This is quite unlikely, so let us consider 10,000 steps acktéVe could do this by

another rescaling wherAt = 104, but it suffices to use the scaling we have and
instead look at the time= nAt = 10. Then we get that

P(,_max = Sn > 100) = P(Tyg5 < 10) = 2(1 - &(1)) = 0.32

Another related quantity of interest is the maximum of a Bn@m motion in a
fixed interval. Therefore, we define the random variable

M, = Bax, B(t)

for the standard Brownian motiaB(t). This variable has the following distribution.
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Proposition 8.7.3. The maximumi/, of a standard Brownian motion in the
interval [0, t] has pdf

2 ..
fMt(I):\/ﬁe /2t x>0

Proof. The cdf of M; can be written
Fy,(2)=P(My<z)=1—-P(M;>z)=1—-P(T, <)

since we have to hit the levelin order to exceed it before the time point Now,
equation (8.7.7) yields that

Fu,(@)=1—Fp(t)=1—-2 (1—@ (%)) =29 (%) +1

sincex > 0, and taking the derivative with respectitaives us the pdf

far (2) = 2¢ (%) X % = %e—ﬁ/zt _

Sincet is fixed andr is variable, this distribution is easier to understand eBsally,

it consists of the positive part of a normal distributiontwihean 0 and variandge
which among other things means that the mean and variandeecealculated ana-
lytically (see Problem 66).

8.7.2 Variations of the Brownian Motion

The standard Brownian motioB(¢) is quite interesting in itself, but it is also used
as a component in other, more realistic processes appliedriaus fields. In this
section we are going to look at some of the most common vaniatfB(t).

Example8.7.2 (Brownian Motion with Drift). Sometimes itis not enough to look
at a Brownian motion with zero mean but rather a process that la tendency to
drift in a particular direction. We say that a Brownian matiwith drift parametey:
and variance? is defined as

X(t) = pt +oB(t)

For a fixedt, we get thatX (¢) is normally distributed with meaat and variancet.
This means that the mean is increasing (or decreasing fo0) towards infinity, but
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if the variance also increase towards infinity, can we reldlysure that the process
will have a tendency to drift upwards? This is indeed the catéch can be seen by
considering the limit of

P(X(t)>a)=1-a <“0_\/gt) —1-9 (g% - gx/i)

ast — oo. If 4 > 0, we see that the argument®fabove tends te-oo, which means
thatP(X (¢t) > a) — 1 for anya showing thatX (¢) will eventually exceed any finite
level. 0

Example8.7.3 (Geometric Brownian Motion).Let X (¢) be Brownian motion with
drift as defined in Example 8.7.2. Geometric Brownian motfothen defined as

Y(t) — eX(t) — eut-ﬁ-UB(t)

Since ordinary Brownian motion can be characterized as adindependent normal
increments, this gives us a process that can handle prazfuctiependent increments.
Furthermore, sinceX (¢) is normally distributed for any fixed, we get thatY'(¢)
follows a lognormal distribution (see Section 2.8.1). Timisans that we can get the
mean and variance as

E[Y(t)] = erttort/2 = luto®/2)t (8.7.8)
Varly (f) = ettet (et 1)

It is interesting to note that we can have an increasing mean i€ . is negative as
long asu > —o?/2. Italso holds that we can have an increasing varianeeif—o2.
This yields an interesting intervalo? < p < —o?/2 where we get a process whose
mean decreases exponentially to zero but whose variancsaiges exponentially to
infinity. Basically, it means that the drift downwards is isttong enough to prevent
brief excursions upwards and the exponential functionsldiegpthe effect rather
strongly.

One of the most common applications of the geometric Bromniation is to use
it as a model for stock prices and even whole stock excharjeds. Since price
fluctuations are relative to the stock, we get a natural 8@navhere increments are
multiplicative rather than additive. In this context,s usually called thexpected
logarithmic returnando thevolatility of the stock. Theisk is usually interpreted as
the probability that the stock will decrease in value ovexaditime period, i.e.

PY() <Y(0)=1) = P(X(t) < 0) = & (00—\}:75> = (—5\/5)

This shows that in order to minimize the risk, we should cleoastock with high
expected return but low volatility. This is unfortunatelyt@mlways possible in reality,
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stock with high expected return often suffer from high viditgtand vice versa. On
the other hand, a high volatility also means a higher expeetdue, as shown in
(8.7.8), so it might still be worth to accept the higher ridihe geometric Brownian
motion has also proved to be a valuable tool in the fieldmifon pricing but we will
not go further into that area here. 0

Example8.7.4 (Brownian Bridge). In some situations, we may be interested in
the properties of a Brownian motion that returns to its stgrpoint. Without loss of
generality, we will consider a standard Brownian moti®ft) that returns to O attime

t = 1. Brownian bridges with arbitrary variane€ and arbitrary time points can

be obtain by appropriate time and space scaling. One way tbalas to condition
on the even{ B(1) = 0}, but an equivalent and more convenient construction is

B°(t) = B(t) — tB(1)

The Brownian bridge3° (¢) is a linear combination of two normally distributed quan-
tities and, hence, also normally distributed. The meandarty 0 and to calculate
the variance, we first note th&(¢) and B(1) — B(t) are independent and normally
distributed increments, which yields that

Var[B°(t)] = Var[B(t) —tB(1)] = Var[(1 —t)B(t) — t(B(1) — B(t))]
= (1-t)*Var[B(t)] + t*Var[B(1) — B(t)]
(1—t)*t+t2(1—t) =t(1 1)

One of the most important applications of the Brownian beidgas a large sample
approximation of the empirical distribution function

~ 1 &
Fo(z) = n ZI{XJCSE}
k=1

introduced in Section 6.9.1. We note that, for a fixedhe total numbel” of events
{X < z} that occur is binomially distributed with parameterandp = F(z).
Then, the Central Limit Theorem implies that

Y —
27" 4 N(0,1)
np(1 —p)
asn — oo and, sincef, (z) = Y/n, we get that

Vi(Ey(z) — F(z)) % N(0, F(z)(1 - F(z))) £ B°(F(x))

Now, this result holds pointwise for every fixag but can actually be generalized to
hold uniformly over the whole interval and is then usuallpeessed as

Va(F() — F(-) % B°(F(-) (8.7.9)
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asn — oo3. To show this requires more elaborate mathematical toals e have
time to go into here. Suffice it to say that it can be used to/éetistributions of more
complex quantities like, for instance, the test statiBtic= max, |F, (z)— Fy(x)| for

the one-sample Kolmogorov-Smirnov test introduced in i8ad@.9.1. Then (8.7.9)

implies that

VnD, % max |B°(Fy(z))|
which in turn can be used to derive (6.9.3). 0
PROBLEMS

Section 8.2. Discrete-time Markov Chains

1 The weather at a coastal resort is classified each day simspiguany” or “rainy.” A
sunny day is followed by another sunny day with probability, and a rainy day is
followed by another rainy day with probability3. (a) Describe this as a Markov chain.
(b) If Friday is sunny, what is the probability that Sunday issedsinny?(c) If Friday is
sunny, what is the probability that both Saturday and Surdeyunny?

2 Atanother resort, itis known that the probability that awpttonsecutive days are both
sunny is0.7 and that the other three combinations are equally likelgdFe transition
probabilities.

3 Amachine produces electronic components that may comesterttive and the process
is such that defective components tend to come in clustemeféctive component is
followed by another defective component with probabilit, whereas a nondefective
component is followed by a defective component with prolitgbd.01. Describe this
as a Markov chain, and find the long-term proportion of défeatomponents.

4 An insurance company classifies its auto insurance polidghns in the categories
“high,” “intermediate,” or “low” risk. In any given year, agticyholder has no accidents
with probability 0.6, one accident with probabilitg.2, two accidents with probability
0.1, and more than two accidents with probabilityl. If you have no accidents, you
are moved down one risk category; if you have one, you stayevheu are; if you
have two accidents, you move up one category; and if you hawe than two, you

always move to high risk(a) Describe the sequence of moves between categories of

a policyholder as a Markov chain(b) If you start as a low-risk customer, how many
years can you expect to stay ther@} How many years pass on average between two
consecutive visits in the high-risk category?

5 Consider the ON/OFF system from Example 8.2.4. Ketbe the state aftet steps,
and defineY,, = (X,, X,+1). Show that{Y,,} is a Markov chain on the state space
{0,1} x {0, 1}, find its transition matrix and stationary distribution.

6 Suppose that statds transient and that— j. Canj be recurrent?

7 Consider the state spaSe= {1, 2, ..., n}. Describe a Markov chain ofi that has only
one recurrent state.

13This result is usually calledonsker’s Theorem
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Consider an irreducible Markov chain on a finite state spageh that the transition
matrix is symmetric f;; = p;; for all i, 5 € S). Find the stationary distribution.

Markov chains are named for Russian mathematician A. A. Blarwho in the early
twentieth century examined the sequence of vowels and cans®in thel833 poem
Eugene Onegihy Alexander Pushkin. He empirically verified the Markov peaty and
found that a vowel was followed by a consonéafit of the time and a consonant was
followed by a vowel66% of the time. (a) Give the transition graph and the transition
matrix. (b) If the first letter is a vowel, what is the probability that ttierd is also a
vowel? (c) What are the proportions of vowels and consonants in the text

A text is such that a vowel is followed by a conson&d; of the time and a consonant
is followed by a voweb0% of the time. In the following cases, how should you guess in
order to maximize your probability to guess correctlg) a letter is chosen at random,
(b) a letter is chosen at random and the next letter in the tertisrded(c) five letters
are chosen at random with replacemdu, a sequence of five consecutive letters is
chosen at random?

Consider a text composed of consonants, vowels, blank space punctuation marks.
When a letter is followed by another letter, which happ&i& of the time, the proba-
bilities are as in the previous problem. If aletter is notdaled by a letter, it is followed
by a blank spac60% of the time. A punctuation mark is always followed by a blank
space, and a blank space is equally likely to be followed byveel or a consonan{a)
State the transition matrix and find the stationary distidou (b) If a symbol is chosen
atrandom and turns out to be a punctuation mark, what is thected number of blank
spaces before the next punctuation maf&af this is a literary text in English, what in
the model do you find unrealistic?

Customers arrive at an ATM where there is room for three custs to wait in line.
Customers arrive alone with probabiligland in pairs with probabilityg (but only one
can be served atatime). If both cannot join, they both le®a&tla completed service or
an arrival an “event,” and let the state be the number of ecnsts in the system (serviced
and waiting) immediately after an event. Suppose that antésequally likely to be an
arrival or a completed servicga) State the transition graph and transition matrix and
find the stationary distribution(b) If a customer arrives, what is the probability that
he finds the system empty? Ful{@) If the system is empty, the time until it is empty
again is called a “busy period.” During a busy period, whahis expected number of
times that the system is full?

Show that a limit distribution is a stationary distributiofhe case of finites' is easier,
S0 you may assume this.

Consider the Markov chain with the following transition gha

1 1 1 1/2 1

(a) What is the smallest number of steps (excludign which a state can reach itself?
(b) What is the period of the chain(®) Find the stationary distribution. Is it the limit
distribution?
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Consider the success run chain in Example 8.2.16. Suppasé¢hth chain has been

running for a while and is currently in stai®. (a) What is the expected number of

steps until the chain is back at std@? (b) What is the expected number of times the
chain visits stat® before it is back at0?

Consider a version of the success run chain in Example 8&t§e we disregard
sequences of consecutive tails, in the sense that for exdfyd'7’, 77T, and so on,

all simply count asT". Describe this as a Markov chain and examine it in terms of
irreducibility, recurrence, and periodicity. Find thet@aary distribution and compare
with Example 8.2.16. Is it the limit distribution?

Reversibility. Consider an ergodic Markov chain, observed at a late tinmtpoi If
we look at the chairbackward we have the backward transition probabilify =
P(Xn-1 = j|X,» =1). (a) Expressy;; in terms of the forward transition probabilities
and the stationary distribution (b) If the forward and backward transition probabilities
are equal, the chain is calledversible Show that this occurs if and only if;p;; =
m;ip;: for all statesi, j (this identity is usually taken as the definition of reveildi).

(c) Show that if a probability distributiom satisfies the equatiom;p;; = ;p;; for all

i, j, thens is stationary.

The intuition behind reversibility is that if we are givenegsience of consecutive states
under stationary conditions, there is no way to decide wdretiie states are given in
forward or backward time. Consider the ON/OFF system in Eplen8.2.4; use the
definition in the previous problem to show that it is revelsiénd explain intuitively.

Forwhich values op is the following matrix the transition matrix of a revers#tiarkov
chain? Explain intuitively.

0 D 1-p
P = 1—p 0 p
D 1-p 0

Ehrenfest model of diffusionConsider two containers containing a total 8f gas
molecules, connected by a narrow aperture. Each time uretpbtheN molecules is
chosen at random to pass through the aperture from one nentaithe other. Lek,,
be the number of molecules in the first contain@) Find the transition probabilities
for the Markov chain{ X, }. (b) Argue intuitively why the chain is reversible and why
the stationary distribution is a certain binomial disttibn. Then use Problem 17 to
show that it is indeed the stationary distributidic) Is the stationary distribution also
the limit distribution?

Consider an irreducible and positive recurrent Markov ohdth stationary distribution
7 and letg : S — R be areal-valued function on the state space. It can be shwatn t

2300 23 g6m
k=1

JjES

for any initial distribution, where we recall convergenogoirobability from Section 4.2.
This result is reminiscent of the law of large numbers, betshmmands are not i.i.d.
We have mentioned that the interpretation of the statiodastyibution is the long-term
proportion of time spent in each state. Show how a partiathaice of the functiory
above gives this interpretation (note that we do not assyagaicity).
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Section 8.3. Random Walks and Branching Processes

Consider the symmetric simple random walk at two timepoimtandn + m. Find
p(Sn, Sn+m). What happens as. — oo for fixed n and asn — oo for fixed m?
Explain intuitively.

Consider the simple random walk with# % Use the law of large numbers to argue
that.S,, goes to—oc if p < £ and toco if p > 1.

Consider a symmetric simple random walk wietflecting barriers) anda, in the sense
thatpo,o = po,1 = % andpa,a—1 = pa.a = 3. (@) Describe this as a Markov chain
and find its stationary distribution. Is it the limit disttiion? (b) If the walk starts
in 0, what is the expected number of steps until it is bagk Suppose instead that
reflection is immediate, so that 1 = 1 andp, .—1 = 1, everything else being the
same. Describe the Markov chain, find its stationary distidm 7v, and compare with
(a). Explain the difference. I8 the limit distribution?

Consider a variant of the simple random walk where the wallesaa step up with
probability p, down with probabilityg, or stays where it is with probability, where
p+q+r = 1. Letthe walk start i), and letr; be the time of the first visit td. Find
Po(Tl < OO) andEo[T1].

Consider the simple random walk startinglimnd letr,. be the time of the first visit to
stater, wherer > 1. Find the expected value of if p > %

Consider the simple random walk with=£ % starting in0 and let
7o = min{n >1:S5, =0}

the time of the first return t@. Use Corollary 8.3.2 to show thdt(ro < oo) =
2min(p,1 — p).

Consider the simple random walk wigh > % started in state 1. By Corollary 8.3.2
“reversed,” the probability that the walk ever visits O(is— p) /p. Now let the initial
stateSy be random, chosen according to a distribution{6nl, ...} that has pgf>. (a)
Show that the probability thaxis ever visited (which could occur in st€af So = 0)

is G((1 — p)/p). (b) Now instead consider the probability thétis ever visited at
step1 or later. Show that this equats((1 — p)/p) —2p + 1. (c) Letp = 2 and
So ~ Poi(1). Compute the probabilities in (a) and (b) and also compaté thie
corresponding probability iy = 1.

Consider a three-dimensional random walkwhere in each step, one of the six neigh-
bors along the axes is chosen with probabi@tyzach. Let the walk start in the origin

and show that ) (20)
1\ " 2n)!
P(S2, =(0,0,0)) = | = VSTRITRIG)
(820 = (0,0,0)) (6) > (i'j1k1)2
itjtk=n
and use Stirling’s formula to conclude that the walk is trans

Consider a branching process with mean number of offsprifgtting Y., be the total
number of individuals up to and including theh generation and letting” be the total
number of individuals ever borr(a) For what values of. is Y finite? (b) ExpressY,,
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in terms of Z, ..., Z,, and find E[Y,]. What happens as — co? In particular, In
particular, compare the two cases= 1 andu < 1.

31 Consider a branching process where the offspring disiohus given by

1 /2\*
PIX=k) =3 (g) Ck=0,1,2, ..
(geometric distribution including). Find(a) E[Z.], (b) P(Z2 = 0), (c)the extinction
probability g.

32 Branching with immigrationConsider a branching process where the offspring distri-
bution is{po, p1, ...}, with pgf G(s) and mean:. Suppose that in each generation there
is immigration into the population according to a sequerfce.d. random variables
Yo, Y1, ... with range{0, 1, 2, ...} and the population is thus started by the first nonzero
Yk. Let theY} have distribution{qo, ¢1, ...}, pgf H(s), and mean/, and letZ, be
the nth-generation size(a) Show thatP(Z, = 0) = qoH (po). (b) Show thatZ,,
has pgf given by [7_, H(Gn—;(s)) whereG,,_; is the pgf of the(n — j)th gener-
ation in a branching process without immigration. Use thigind an expression for
E[Z,]. (c) Suppose that th¥}, are Poisson with meakand the offspring distribution
ispo = 1 — p,p1 = p. What is the distribution of,,?

Section 8.4. Continuous-Time Markov Chains

33 Consider a continuous-time Markov chain where staseabsorbing. How should the
ith row of the generatof be defined?

34 Consider the ON/OFF system in Example 8.4.1. State the tarckand forward equa-
tions and solve the forward equations. (Why are these eassetve than the backward
equations?) What happenstas> co?

35 Birds arrive at four bird feeders according to a Poisson @ssavith rate one bird per
minute. If all feeders are occupied, an arriving bird leaJ®g otherwise it occupies a
feeder and eats for a time that has an exponential distoibwtith mean one minute.
Consider this as a Markov chain where a “state” is the numbecaupied feeders. The
rate diagram is given belowa) Explain the rates in the diagrartb) Find the generator
G. (c) If three feeders are occupied, what is the expected timé thigichanges?d)

If all feeders are occupied, what is the probability that @l lzirrives before a feeder
becomes free?

OO e 0 0

36 Consider a continuous-time Markov chain that allows jumpaifstates to themselves,
after an exponentially distributed time. Although this sds more general than our
construction, it is not. ExplainHint: Problem 147 in Chapter 3.

37 Consider a continuous-time Markov chain whose jump chaimésimple random walk
with reflecting barrier$ andm from Problem 24 (c). Suppose that the holding times
in states) andm areexp(a) and in all other statesxp(b). (a) Describe this in a rate
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diagram and give the generat@r (b) Find the stationary distribution. For which values
of a andb is it uniform? Compare with the stationary distribution fbe jump chain.

An invariant measurdor a discrete-time Markov chain is a nonnegative vect@uch
thatv P = v. Thus, an invariant measure is more general than a stagialigtribution,
since its entries need not sum to on@) Let v be invariant and suppose that<
Zjes v; < oo. Show that a stationary distribution existgb) Let {X(¢)} be a
continuous-time Markov chain with stationary distributtia, and let its jump chain
{X»} have invariant measuee. Show that

where A(k) is the holding-time parameter in stateand c is a constant (show that
7G = 0 and explain the role of the constaft Note that this gives an alternative to
solvingwG = 0 in order to findw. (c) Now let the jump chai{ X, } be the simple
symmetric random walk. Show thatdefined by, = 1 forall k is invariant for{ X, }.

(d) Let A(0) = 1 and (k) = k* for k # 0, and show tha{ X (¢)} has a stationary
distribution but that the jump chaifiX,, } does not. This shows that the jump chain is
null recurrent but the continuous-time chain is positiveureent.

Consider a continuous-time Markov chdi (¢) } whose jump chain is the success run
chain from Problem 16. Give a condition on the holding timeapaeters\(k),k =
0,1, ... guaranteeing thatX (¢)} has a stationary distribution (remember the previous
problem).

Consider a linear birth—death process where the individhiréth rate isA = 1, the
individual death rate ig« = 3 and there is constant immigration into the population
according to a Poisson process with ratga) State the rate diagram and the generator.
(b) Suppose that there are currentlg individuals in the population. What is the
probability that the population size increase$ tdefore it decreases &2 (c) Suppose
thata = 1 and that the population just became extinct. What is thearpdime until

it becomes extinct again?

Inthe previous problem suppose that an immigrating indialgbins the population only
if it is extinct, and otherwise leaves. Find the rate diagrgenerator, and stationary
distribution.

Consider stat@in a birth—death process with stationary distributionUnder stationary
conditions we ought to have thmlance equationro Ao = 711 (“rate in equals rate
out”), which is also precisely the first equatiorrofz = 0. (a) Suggest how to formulate
balance equations for any three stdtes1, k, andk + 1, and show that these equations
are the same asG = 0. (b) Describe how the equatienG = 0 has aninterpretation as
balance equations for any continuous-time Markov chaibjusbbirth—death processes.

Consider am\/ /M /1/r queue in equilibrium where = 5 and the service rate equals
the arrival rate (a) What is the proportion of lost customerf® How does this change
if the service rate is doubled?

Consider a queueing system where there is one server an@motoowait in line (i.e.,
anM/M/1/1 queue). Further suppose that the arrival ratnd the service rate are
equal. Under stationary conditions, find the proportionugtomers that are loga) in
this system(b) if the service rate is doublegt) if one customer can wait in linéd) if
a second server is added.
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Consider the following queueing system. Customers arrivgdirs according to a
Poisson process with rafe= 1 customer pair/minute. There is one server and room
for two customers to wait in line. Service times are expoia¢mtith mean 30 seconds.

If there is not room for both arriving customers, they botiMe. (a) Describe the system

in a rate diagram and find the stationary distributi@m) Now suppose that pairs may
split up. If there is not room for both, then with probabili%ythey both leave and with
probability% one stays and the other leaves. Do (a) again under these atisusn

Customer groups arrive to a service station according toissBio process with rate
groups/minute. With probability, such a group consists of a single individual, and with
probability 1 — p, it consists of a pair. There is a single server and room fortowvait

in line. Service times are exponential with ratelf a pair arrives and they cannot both
join, they both leave(a) Give the state space and describe the system in a rate diagram
(b) Suppose\ = p andp = % Find the stationary distributiofrro, 71, 72, 73).

Phone calls arrive to a company according to two indeperféleisson processes, one of
female callers with rat2 and one of male callers with rat€calls/minute). There is one
server and room for one to wait in line. If the server is budgraale caller stays to wait

in line with probability0.8; a male caller, with probabilitp.5. Service times are i.i.d.
exponential with mean lengthminutes. Let the state be the number of customers in the
system.(a) Describe the system in a rate diagram and find the stationsirybdition.

(b) What proportion of callers are lost?

Consider an\/ /M /1 queue with arrival rate. and service ratg and where an arriving
customer who find individuals in the system joins with probability (k + 1). When
does a stationary distribution exist and what is it?

Reneging Consider anm\//M /1 queue with arrival rate\ and service rate, where a
customer who is waiting in lineenegesand leaves the line after a time thakisp(v)
(unless service has started), independent of the queuthlebgscribe this systemin a
rate diagram and state the generator.

Consider an\//M /1 queue in equilibrium and 18§ be the waiting time of an arriving
customer. Find the cdf of’. What type of distribution is this?Hint: First find
P(W = 0), and then comput®(W > xz) by conditioning on the number of customers
in the system.

Consider anM /M /1 queue in equilibrium and leT” be the total time an arriving
customer spends in the system. Find the distributiof’ ¢€ondition on the number of
customers in the system at arrival).

Section 8.5. Martingales

Let X1, Xo,...be positive i.i.d random variables with meamand letP,, = X1 x... X
X, forn =1,2,.... Find a functiong(z) so thatY,, = g(P,) becomes a martingale
with respect taX;, Xo, . . ..

Let X; = 1 andX,+1 be uniformly distributed on the intervll, X, forn =1,2,....
Find a functiong(z) so thatY, = g(X,) becomes a martingale with respect to
X1, Xo,. ...

Consider the branching process in Example 8.5.2. Shovitthat ¢%” forn =1, 2, . ..
is a martingale with respect 16, , Z, . . ..
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55 Polya’s urn model.Let us assume that we have an urn containing one white ball and
one black ball initially. A ball is selected completely ahcamm from the urn and put
back together with a ball of the same colour. Repeat thisatjmer infinitely and let
Y,, denote the ratio of white balls in the urn aftersteps. Show thaty, Ys,...is a
martingale with respect to itself and use Proposition 8t6.¢onclude thal,, — Y
with probability one. What distribution doés$ have?

56 Consider a simple random walk with > % Show thatY, = S, — (p — ¢)n is

a martingale with respect t8:, So, ... and use Proposition 8.5.2 to prove Corollary
8.3.4.

Section 8.6. Renewal Processes

57 Consider a renewal procedg(t) whereTy, Ts, . .. are i.i.d. and uniformly distributed
on [0, 1]. Derive the renewal functiom(t) for ¢ < 1.

58 Consider a lamp where the lightbulbs are replaced eithenvttwey burn out or when
they have burned for 336 hours. The lifelengths of lightlsudibe assumed to be i.i.d.
and exponentially distributed with mean 300 hou¢a) How often are the lightbulbs
replaced in the long run) What is the probability that a supply of 50 lightbulbs will
last for a year (8760 hours)?

59 M/G/1/1**. Assume that customers arrive to a service station with onesaccording
to a Poisson process with rake When an arriving customer finds the service station
empty, he enters and starts being served, whereas if thergerlusy, he leaves and
never returns.(a) If we denote the mean service tinwg, at what rate do customers
enter the service station®) What proportion of customers are actually served by the
service station?

60 Let us assume that = 5 customers per minute in the previous problem and that the
mean and variance of the service times age= 0.25 ando? = 0.1, respectively.
What is the probability that at least 120 customers will bwesg during one hour?

61 Find the distributionﬁ(t) of the initial inter-arrival time in a delayed renewal prese
if the subsequent inter-arrival times @ Exponentially distributed (delayed Poisson
process)(b) Uniformly distributed on0, 1]. (c) Gamma distributed witlhx = 2

Section 8.7. Brownian Motion

62 Calculate(a) Cov[B(t), B(s)] (b) Cov[B°(t), B°(s)]

63 Derive the distribution oB(¢) + B(s) for t # s.

64 CalculateE[B(t)B(s)].

65 Show thatB*(t) = tB(1/t) is a standard Brownian motion.

66 Calculate the mean and variance of the maximuiof a standard Brownian motion
in the interval0, ¢].

14The G stands foiGenera denoting that we allow any service time distribution
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67 Derive the conditional distribution aB(t) for t; < ¢t < ¢ conditioned on the event
{B(t1) = z1, B(t2) = 2}

68 Consider a Brownian motion with drift paramejeand variance2. Derive the condi-
tional distribution of B(¢) conditioned on the everdtB(s) = ¢} for (a) ¢t > s and(b)
t<s.

69 The discounted value of a share of stock can be described asmegric Brownian
motion with drift parametep, = 0 and variances® = 0.2. The time unit is one year.
Let us assume that we decide to sell the share when it hasseddy 20 %. What is
the probability that we sell the share within six months?

70 Two-dimensional Brownian motionLet B (¢) and B, (t) be two independent standard
Brownian motion describing the horizontal and verticakdtion of a particle moving in
two dimensions. Derive the pdf of the distan&ét) = /B, (t)? + By(t)? from the
origin aftert time units.
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Table A.1 Valuesofthe cd(x) of the standard normal distribution [e.@(1.41) = 0.921]

x 0 1 2 3 4 5 6 7 8 9

0.0 | .500 .504 .508 .512 .516 .520 .524 528 532 .536
0.1| .540 .544 548 552 .556 .560 .564 .568 571 575
0.2| .579 .583 .587 591 595 599 .603 .606 .610 .614
03| .618 .622 .626 .629 .633 .637 .641 .644 648 .652
0.4 | .655 .659 .663 .666 .670 .674 .677 .681 .684 .688
0.5|.692 .695 .698 .702 .705 .709 .712 .716 .719 .722
06|.726 .729 .732 .736 .739 .742 745 749 752 755
0.7| .758 .761 .764 .767 .770 .773 776 779 .782 .785
08| .788 .791 .794 .797 .800 .802 .805 .808 .811 .813
09| .816 .819 .821 .824 .826 .829 .832 .834 .836 .839
1.0| .841 .844 .846 .848 .851 .853 .855 .858 .860 .862
1.1| .864 .867 .869 .871 .873 .875 .877 .879 .881 .883
12| .885 .887 .889 .891 .892 .894 .896 .898 900 .902
1.3].903 .905 .907 .908 .910 .912 913 915 916 .918
1.4].919 921 .922 924 925 .926 .928 .929 931 .932
15| .933 .934 .936 .937 .938 .939 .941 .942 943 .944
16| .945 946 .947 948 950 .951 952 .952 9545 954
1.7].955 956 .957 .958 .959 .960 .961 .962 .962 .963
1.8 .964 965 .966 .966 .967 .968 .969 .969 970 971
19971 972 973 973 974 974 975 976 976 977
20| 977 978 .978 979 .979 .980 .980 .981 .981 .982
21|.982 .983 .983 .983 .984 .984 985 .985 .985 .986
22| .986 .986 .987 .987 .988 .988 .988 .988 .989 .989
23].989 990 .990 .990 .990 .991 .991 991 991 992
241 .992 992 992 992 993 .993 .993 .993 993 994
251.994 994 994 994 995 995 995 995 995 995
26|.995 996 .996 .996 .996 .996 .996 .996 .996 .996
271.99 .997 .997 997 .997 .997 997 .997 997 .997
28] .997 998 .998 .998 .998 .998 .998 .998 998 .998
291 .998 998 .998 .998 .998 .998 .998 .998 999 999

Table A.2 Values of®(x) commonly used in confidence intervals and tests, and the-corr
spondingz values

®(z) [ 090 0.95 0.975 0.99 0.995
x |1.28 164 196 233 258
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Table A.3 Percentiles of the distribution with DF degrees of freedom [e.@%, (1.89) =
0.95]

DF | 095 0975 099 0.995DF | 095 0.975 0.99 0.995
1 6.31 1271 3182 636616 | 175 212 258 292
2 292 430 696 992 17 | 174 211 258 290
3 235 318 454 584 18 173 210 255 288
4 213 278 374 460 19 | 173 209 254 286
5 202 257 336 403 20|172 209 253 285
6 194 245 314 371 21|172 208 252 283
7 189 236 3.00 350 22|172 207 251 282
8 186 231 290 336 23 |171 207 250 281
9 183 226 282 325 24 |171 206 249 280

10 {181 223 276 317 25|171 206 249 279
11 {180 220 272 311 26171 206 248 278
12 | 1.7v8 218 268 3.05 27 |170 205 247 277
13 | 177 216 265 3.01 28 |1.70 205 247 276
14 | 176 214 262 298 29 |1.70 205 246 276
151175 213 260 295 30 |1.70 204 246 275

Table A.4 Percentiles of the chi-square distribution with DF degreégreedom [e.qg.,
F\z (10.85) = 0.05]

F| 0025 0.05 0.95 0.97$ DF | 0.025 0.05 0.95 0.975
0.001 0.004 384 502 16| 691 7.96 26.30 28.84
005 010 599 7.38 17| 756 8.67 27.59 30.19
022 035 7.82 934 18 | 823 9.39 2887 3153
048 071 949 1114 19| 891 10.12 30.14 32.85
0.83 1.14 11.07 128320 | 959 10.85 31.41 34.17
124 164 1259 14.4%21 |10.28 11.60 32.67 3548
169 217 1407 16.0]1 22 | 10.98 12.34 33.92 36.78
218 273 1551 1754 23| 11.69 13.09 35.17 38.08
270 332 19.92 19.02 24 | 12.40 13.85 36.42 39.36
10 | 3.25 394 1831 20.48 25| 13.12 1461 37.65 40.65
11 | 3.82 458 19.68 2192 26 | 13.84 15.38 38.88 41.92
12 | 440 523 21.03 23.34 27 | 1457 16.15 40.11 43.19
13 | 501 589 2236 27.74 28 | 1531 16.93 41.34 44.46
14 | 5,63 6.57 23.68 26.12 29 | 16.05 17.71 4256 45.72
15 | 6.26 7.26 25.00 27.49 30 | 16.79 18.49 43.77 46.98

O©oO~NOOTLA,WNRQO
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Table A.5 Percentiles
Fry 50(2.45) = 0.95]

of theF' distribution with » and s degrees of freedom [e.g.,

2.5 % percentile

S |7°:2

3

5

6

7

10

2 | 0.026
3 | 0.026
4 | 0.025
5 | 0.025
6 | 0.025
7 | 0.025
8 | 0.025
9 | 0.025
10 | 0.025
12 | 0.025
15| 0.025
16 | 0.025
18 | 0.025
20 | 0.025
21| 0.025
24 | 0.025
25 0.025
27| 0.025
28 | 0.025
30 | 0.025

0.062
0.065
0.066
0.067
0.068
0.068
0.069
0.069
0.069
0.070
0.070
0.070
0.070
0.071
0.071
0.071
0.071
0.071
0.071
0.071

0.094
0.100
0.104
0.107
0.109
0.110
0.111
0.112
0.113
0.114
0.116
0.116
0.116
0.117
0.117
0.117
0.118
0.118
0.118
0.118

0.119
0.129
0.135
0.140
0.143
0.146
0.148
0.150
0.151
0.153
0.156
0.156
0.157
0.158
0.158
0.159
0.160
0.160
0.160
0.161

95 % percentile

0.138
0.152
0.161
0.167
0.172
0.176
0.179
0.181
0.183
0.186
0.190
0.191
0.192
0.193
0.194
0.195
0.196
0.197
0.197
0.197

0.153
0.170
0.181
0.189
0.195
0.200
0.204
0.207
0.210
0.214
0.219
0.220
0.222
0.224
0.225
0.227
0.227
0.228
0.228
0.229

0.165
0.185
0.198
0.208
0.215
0.221
0.226
0.230
0.233
0.238
0.244
0.245
0.248
0.250
0.251
0.253
0.254
0.255
0.256
0.257

0.175
0.197
0.212
0.223
0.231
0.238
0.244
0.248
0.252
0.259
0.265
0.267
0.270
0.273
0.274
0.277
0.278
0.279
0.280
0.281

0.183
0.207
0.224
0.236
0.246
0.253
0.259
0.265
0.269
0.276
0.284
0.286
0.290
0.293
0.294
0.297
0.298
0.300
0.301
0.302

S |7°:2

5

6

7

9

10

2 | 19.00
3 | 9.55
4 | 6.94
5| 579
6 | 5.14
7 | 4.74
8 | 4.46
9 | 4.26
10| 4.10
12| 3.89
15| 3.68
16 | 3.63
18| 3.55
20| 3.49
21| 3.47
24| 3.40
25| 3.39
27| 3.35
28| 3.34
30| 3.32

19.16
9.28
6.59
5.41
4.76
4.35
4.07
3.86
3.71
3.49
3.29
3.24
3.16
3.10
3.07
3.01
2.99
2.96
2.95
2.92

19.25
9.12
6.39
5.19
4.53
412
3.84
3.63
3.48
3.26
3.06
3.01
2.93
2.87
2.84
2.78
2.76
2.73
271
2.69

19.30
9.01
6.26
5.05
4.39
3.97
3.69
3.48
3.33
3.11
2.90
2.85
2,77
271
2.68
2.62
2.60
2.57
2.56
2.53

19.33
8.94
6.16
4.95
4.28
3.87
3.58
3.37
3.22
3.00
2.79
2.74
2.66
2.60
2.57
2.51
2.49
2.46
2.45
2.42

19.35
8.89
6.09
4.88
4.21
3.79
3.50
3.29
3.14
291
2.71
2.66
2.58
2.51
2.49
2.42
2.40
2.37
2.36
2.33

19.37
8.85
6.04
4.82
4.15
3.73
3.44
3.23
3.07
2.85
2.64
2.59
251
2.45
2.42
2.36
2.34
231
2.29
2.27

19.38
8.81
6.00
4.77
4.10
3.68
3.39
3.18
3.02
2.80
2.59
2.54
2.46
2.39
2.37
2.30
2.28
2.25
2.24
2.21

19.40
8.79
5.96
4.74
4.06
3.64
3.35
3.14
2.98
2.75
2.54
2.49
241
2.35
2.32
2.25
2.24
2.20
2.19
2.16
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S | r=2 3 4 5 6 7 8 9 10

2 139.00 39.17 39.25 39.30 39.33 39.36 39.37 39.39 39.40
3 | 16.04 1544 15.10 14.88 14.73 14.62 1454 1447 14.42
4 | 1065 998 960 936 920 9.07 898 890 884
5|1 843 776 739 715 698 685 6.76 6.68 6.62
6 | 726 660 623 599 582 570 560 552 546
7| 654 589 552 529 512 499 490 482 476
8 | 606 542 505 482 465 453 443 436 430
9| 571 508 472 448 432 420 410 4.03 3.96
10| 546 483 447 424 407 395 38 378 372
12| 510 447 412 389 373 361 351 344 337
15| 477 415 380 358 341 329 320 312 3.06
16| 469 408 373 350 334 322 312 305 299
18| 456 395 361 338 322 310 3.01 293 287
20| 446 386 351 329 313 301 291 284 277
21| 442 382 348 325 309 297 287 280 273
24| 432 372 338 315 299 287 278 270 264
251 429 369 335 313 297 285 275 268 261
27| 424 365 331 308 292 280 271 263 257
28| 422 363 329 306 290 278 269 261 255
30| 418 359 325 303 287 275 265 257 251
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Table A.6 95 % percentiles of the studentized range distribution witnd s degrees of
freedom [e.9.FRrg 40 (4.77) = 0.95]

s |7°:3 4 5 6 7 8 9 10

2| 833 980 10.88 11.73 1243 13.03 13.54 13.99
3| 591 682 750 804 848 885 9.18 9.46
4 | 504 576 629 671 705 735 7.60 7.83
5| 460 522 567 6.03 633 658 680 6.99
6

7

8

434 490 530 563 590 6.12 632 6.49
416 468 506 536 561 582 6.00 6.16
404 453 489 517 540 560 577 592
9 | 395 441 476 502 524 543 559 574
10| 3.88 433 465 491 512 530 546 5.60
12| 377 420 451 475 495 512 527 539
15| 3.67 4.08 437 459 478 494 508 5.20
16| 365 4.05 433 456 474 490 503 5.5
18| 3.61 4.00 428 449 467 482 496 5.07
20| 358 396 423 445 462 477 490 501
21| 356 394 421 442 460 474 487 498
24| 353 390 417 437 454 468 481 492
25| 352 389 415 436 453 467 479 4.90
27| 351 387 413 433 450 464 476 4.86
28| 350 386 412 432 449 462 474 485
30| 349 385 410 430 446 460 472 482

Table A.7 Critical valuesc for the Wilcoxon signed rank test, whereis the sample size
andC =n(n +1) — c[e.g., ifn = 20, thenP(W < 61) = P(W > 149) ~ 0.05]

n 0025 0.05 n(n+1)/2|n |0.025 005 n(n+1)/2
5 0 1 15 18| 41 48 171
6 1 3 21 19| 47 54 190
7| 3 4 28 20| 53 61 210
8 | 4 6 36 21| 59 68 231
9 | 6 9 45 22| 67 76 253
10/ 9 11 55 23| 74 84 276
11| 11 14 66 24| 82 92 300
12| 14 18 78 25| 90 101 325
13| 18 22 91 26| 99 111 351
14| 22 26 105 | 27| 108 120 378
15| 26 31 120 | 28| 117 131 406
16| 30 36 136 | 29| 127 141 435
17| 35 42 153 | 30| 138 152 465
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Table A.8 Critical valuesc for the Wilcoxon rank sum test, where is the size of the
smaller sample, an@' = m(m +n+1) — c[e.g., ifm = 4 andn = 8, thenP(W < 16) =
P(W > 36) ~ 0.05]

n |PW<¢ m=2 3 4 5 6 7 8 9 10 11
2 0.025 3
0.05 3
3 0.025 3 3
0.05 6 7
4 0.025 3 6 11
0.05 3 7 12
5 0.025 3 7 12 18
0.05 4 8 13 20
6 0.025 3 8 13 19 27
0.05 4 9 14 21 29
7 0.025 3 8 14 21 28 37
0.05 4 9 15 22 30 40
8 0.025 4 9 15 22 30 39 50
0.05 5 10 16 24 32 42 52
9 0.025 4 9 15 23 32 41 52 63
0.05 5 11 17 25 34 44 55 67
10 0.025 4 10 16 24 33 43 54 66 79
0.05 5 11 18 27 36 46 57 70 83
11 0.025 5 10 17 25 35 45 56 69 82 97
0.05 5 12 19 28 38 48 60 73 87 101
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Table A.9 Critical valuesc for the one-sample Kolmogorov-Smirnov test wherés the
sample size [e.gFp,,(0.409) = 0.95]

n | 001 005|n | 00L 005

0.995 0.975 16 | 0.392 0.327
0.929 0.842 17| 0.381 0.318
0.829 0.708 18 | 0.371 0.309
0.734 0.624| 19| 0.361 0.301
0.669 0.563| 20 | 0.352 0.294
0.617 0.519 21| 0.344 0.287
0.576 0.483| 22| 0.337 0.281
0.542 0.454| 23| 0.330 0.275
0.513 0.430| 24 | 0.323 0.269
10| 0.489 0.409 25| 0.317 0.264
11| 0.468 0.391 26 | 0.311 0.259
12 | 0.449 0.375| 27 | 0.305 0.254
13| 0.432 0.361| 28 | 0.300 0.250
14| 0.418 0.349| 29| 0.295 0.246
15| 0.404 0.338] 30 | 0.290 0.242

O©CoO~NOOUTA,WNBEP
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Table A.10 Critical valuesc for the two-sample Kolmogorov-Smirnov test on the 5 % level
wherem is the size of the smaller sample [eR)(D7,10 > 0.614) ~ 0.05]

n | m=2 3 4 5 6 7 8 9 10
4 - - 1
5 - 1 1 1
6 - 1 0.833 0.8 0.833
7 - 1 0.857 0.8 0.714 0.857
8 1 0.875 0.875 0.75 0.708 0.714 0.75
9 1 0.889 0.778 0.778 0.722 0.667 0.639 0.667
10 1 0.9 0.75 0.8 0667 0657 06 0589 0.7
11 1 0.909 0.75 0.709 0.652 0.623 0.602 0.596 0.545
12 1 0.833 0.75 0.717 0.667 0.631 0.625 0.583 0.55
13 1 0.846 0.75 0.692 0.667 0.615 0.596 0.556 0.538
14 1 0.857 0.75 0.657 0.643 0.643 0571 0.556 0.529
15| 0.933 0.8 0.733 0.733 0.633 0.590 0.558 0.556 0.567
16 | 0938 0.812 0.75 0.675 0.625 0.571 0.625 0.542 0.525
17| 0.941 0.824 0.706 0.647 0.608 0.571 0566 0.536 0.524
18| 0.944 0.833 0.694 0.667 0.667 0571 0556 0556 0.511
19| 0.947 0.790 0.697 0.642 0.614 0.571 0540 0.520 0.495
20| 0.95 0.8 0.75 0.65 0.6 0564 055 0517 0.55
n | m=11 12 13 14 15 16 17 18 19 20
11| 0.636
12| 0.546 0.583
13| 0524 0519 0.538
14| 0532 0512 0.489 0.571
15| 0509 0517 0.492 0.467 0.533
16 | 0.506 0.5 0486 0.473 0475 05
17| 0.497 0.490 0.475 0.466 0.455 0.456 0.471
18 | 0.490 0.5 0470 0460 0.456 0.444 0.435 0.5
19| 0.488 0.474 0.462 0.455 0.446 0.438 0.436 0415 0.474
20| 0.486 0.483 0.462 0.45 045 0.438 0.429 0.422 0421 0.45
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Table A.11 Critical valuesc for the Kruskal-Wallis test on the 5 % level, whekes the
number of groups and is the sample size [e.g., & = 4 andn = 5, thenP(K > 7.37) ~
0.05]

|k:3 4 5 6 7 8 9 10

- 6.00 7.31 8.85 10.17 1147 1274 14.03
542 690 830 975 1113 1249 13.83 15.18
565 7.21 873 10.16 1159 1298 14.33 15.68
566 7.37 891 10.38 11.84 13.21 14.62 15.95
745 9.00 1049 1196 13.38 14.77 16.10
577 748 9.09 1060 12.08 13.47 14.87 16.27
580 7.53 9.12 10.68 1210 1356 14.96 16.34
585 7.58 9.18 10.71 12.18 13.60 15.02 16.40
586 7.61 9.22 10.76 12.22 13.66 15.08 16.44

Boo~v~oouprwn| 3
o
\‘
N

11| 584 759 925 10.79 1226 13.71 1512 16.51
12| 588 7.65 9.26 10.80 1231 13.73 15.12 16.54
13| 586 7.65 9.27 10.82 1230 13.77 15.17 16.57
14| 586 7.63 930 10.84 1234 13.77 15.21 16.58
15| 591 767 933 1086 12.38 13.81 1522 16.62
16| 591 7.71 929 1086 12.38 13.82 1526 16.66
17| 590 7.70 9.31 10.88 1240 13.85 15.22 16.65
18| 591 7.69 934 1092 1243 13.85 1525 16.66
19| 593 7.72 935 1091 1237 13.89 15.28 16.69

N
o
o
©
®

7.72 9.35 1094 1240 13.89 15.31 16.69



Appendix B

Answers to Selected
Problems

CHAPTER 1

1(a){3,4, ..., 18} (b) [0,1] x [0,1] (c) {M, F} x {0,1,2,..} (d) {(5,5) : 1 <i < j < 10}
(e)[o,1].

2S5 ={rr,rs,sr,ss}

3 (c)and(e)

4@ (ANB°NCHYUA°NBNCHU(A°NB°NC)(b)A°NB°NC°(c) AUBUC

5() B1 (b) Bf N Bo N Bs (c) B1 N Ba N Bs N By (d) (BfﬂBzﬂBgﬂB4ﬂB5)U

(BiNBSNB3sNBsNBs)U(BiNB2NBSNBaN Bs)(B1 N B2N Bs N BN Bs) (€)

BiN BN B3N BfN BN B§N B

60.6

7(@) P(B) = 04 (b,c) P(AN B°) = 0.1 (d) P(A°) = 0.7 (e) P(B°) = 0.6 (f)

P(A°nN B°) = 0.5 (which also equal®((A U B)°)).

8(a)0.5 —p(b) 1 —2p(c)p

10 (b)

12(a)3/8 (b) 1/8 (c) 7/8 (d) 1/8 (€) 3/8

16(2)0.5 + 0.33 + 0.2 — (0.16 + 0.2 + 0.08) + 0.08 = 0.67 (b) P(A;) + P(A;) + P(Ay)
=(P(Aieme ) + P(Aieme,r) + P(Aiemim)) + P(Alem, ;) (Se€ Example 1.3.4)

17(a)(7.14+15—0.75) /143 = 0.149 (b) (7.1+15+ 10— (0.754+0.540) 4+0) /143 = 0.216

551
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(©) (7T14+154+71+1—(7.54+35.5+0+7.5+0-+0)+(3.75+0+0+0) —0) /143 = 0.778

19(@) (3) x 26° x 10> = 2.5 x 10" (b) (3) x (26)5(10)2 = 1.5 x 10™°

20(a)23 x 22 x 21/23* = 0.87 (b) 10 x 9 x 8/10% = 0.72 (c) 23/23* = 0.002
(d) 5%/10% = 0.125 (€) 23 x 22 x 21 x 10/(23%10%) = 0.009

21(a)5 x 26%/26' = 1.6 x 1078 (b) 5 x (20)4/(26)10 = 3.0 x 1075

22(a)1/4 (b) 11/24 (c) 10/24

20(a)6, 12

25(a) (3)/ (%) = 1/744 (0) (3)/(%) = 5/42 @8 x (3) /(%) = 1/98
@d8x2x(3)/(5) =1/651

26(2)1/(7) 0 2/(%) © (n—5+1)/(7)

273((%) = (/%)

28(4x (33) —6x (39) +4(13)/(33) =0.05

29(a) (3) () () /((5) (1)) = 0.00018 (b) (5) () (1) /(%) (%)) = 0.00016

30(@)4/ (%) = 1.5 x 107° (b) 9 x 4/(7) = 0.000014 (c) 13 x 48/ (%) = 0.00024
(d) 13 x 12 x ( )(;‘) (%) = 0.0014 () 4(x (*Y) — 10)/ (%) = 0.002

(f) (10 x 4° — /(502) =0.0039 (9) 13 x ('7) x 4*/ (%) = 0.021

M) (5) () () x 44/(3) =0. 0475 (0 13 x (3) () x 4%/(%) = 0.4226
31(@) (5) /() ®) (3)/(5) (© D/ (3)
32m(n)k—1/(n+m)g
34 (7))
33false,0 < P(A) < 1,B=A
350.63 .
36(@)no = n! S r_, S ® (b) P(j matchey = 24 = L3l S, 5 =0,...,n which
IS~ ej!l
40(@) P(AUB) = 2,P(ANB) =% (b) P(AUB) = 2, P(ANB) = 0(c) P(AUB) =
2, P(ANB) =t (d)P(AUB) = 3, (AmB) =3
41(a) P(ANB) = P(A)P(B|A) = 0.6 0 75 = 0.45 (b) P(AN B°) = P(A)P(B°|A) =
0.60 - 0.25 = 0.15 (c) P(A|B) = P(AN B)/P(B) = 0.45/0.50 = 0.90 (d) P(B|A°) =
P(A°NnB) _ P(A°|B)P(B)

P(Ac) P(AC)

42(a)true (b) false(c) true (d) true (if P(A4) < 1)
45p =0,1/2,1

48No, for any eventsA andB, P(AN B) < P(A)andP(AN B) < P(B)
49 P(B|A) =1, P(A|B) = 3/5
50(a)  (b) 3
51n="7
52(a) (0.4 x 0.16)% = 0.0041 (b) 2 x 0.378 x (1 — 0.378) = 0.47
(€)1 — (1 —0.45 x 0.84) = 0.61 (d) 0.96 x 0.84 + 0.96 x 0.84 x 0.16 = 0.94
(€)0.45% + 0.40% + 0.11%2 4 0.04% = 0.38 (f) 0.38 x 2 x 0.84 x 0.16 = 0.10
54 No, the probability that you win isz 0.45 (compare the birthday problem).
55 p? +gl —p)ip=1/2
56(a)2
57 (a) (1/2)° (b) (5/9)° () (2/3)°
59(a) P(ANBNC)=1/36,P(A) =1/2,P(B) =2/3,P(C) =1/12 (b) No
61(a) (1 — 1/143)* = 0.98 (b) 0.02 (c) (71/143)* = 0.1224
(d) 3(10 x 1182 + 10 x 15 x 118)/143* = 0.161
62(4/5)% = 0.512
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23(a38/15 (b) (2n —2)(2n —4)---2)/((2n — 1)(2n — 3)---1)

4n /21

653((2/3)° — (1/3)5) =0.38

67(1—(1— ) )% 1= (1-p*)?

6857 (1) (1 - )"

694 rounds,P(win) = 1 — (5/6)* ~ 0.52

70(@)1 — (1 —1/1, 000 000)2 000,000 — (.86 (b) n > 693147

71P(Ay) =6(1/6)", = (3)((2/6)" —2(1/6)")

7299.4%

73320 (1/2)F(1/6) = 0.164

74(2)2 x 0.40 x 0.11 = 0.09 (b) 0.45(1 — 0.45) + (0.40 + 0.11)(0.45 + 0.04)
+0.04(1 — 0.04) = 0.54 (c) 1 — 0.09 = 0.91 (d) 0.38 [same as 52(e)]

76 (1 x (1/56) + (1/3)(15/56 + 6/56) + (1/6)(34/56)) = 0.24

77(1 x (1/8) +3 x (1/2) +6 x (1/4))/10 = 5/16

78(10 x 143 x (%)) x 3 4855 x 6)/1000* = 0.0055

79((1) (5 () (BN (F)n <k =0.1....4
80(a)1/2 (b) 1/(1 + 2p)

834

840.8 x 0.05/0.135 = 0.296

87(a)1/3 (b) 1/2

88376,/459 ~ 0.82

89(a)0.902 = 0.81 (b) (9/11)(18/19) = 0.775
90(a)10/11 (b) 1/2

920.99 x 0.001/(0.99 x 0.001 + 0.01 x 0.999) = 0.09

1-0.002 ~
93 1-0.002+0.05-0.998 0.04
94 1/3-1/3 _ 1
1/3-1/3+2/32/3 — 5
971/(1+p)

98(a)p* +7(1 —p) () 1 — (1 —7)(1 = p) () (1 —p)p/(L = p)(p+1—7))
992p/(1 + p) o |

100(a)1/2 (b) 2/3 (c) 27 /(27 +2™77)

101(a)2401/2500 = 0.96 (b) 1/2499 = 0.04

102(a)0 and1 (b) 0 and1/2

103(a)1/250, 000 (b) 1/30 (c) N = 4n?

104(a)(1 —p)/(2 —p) (0) pa/(1 — pB + PaPB)

105pa(1 —pB)/(pa + PB — 2pAPB)

1060.47,0.45,0.37, and0.26 respectively.

107(1 - p)/p

108(a) P(TH beforeHH) = 3/4 (b) P(THHH before HHHH ) = 15/16
109244/495 ~ 0.49

CHAPTER 2

1(a)1/3 (b)2/3 (c)0 (d) 2/3

2@P(X =1)=1/4 (b)) P(X =2) =1/2 () P(X =2.5) =0 (d) P(X < 2.5) = 3/4
3(@)p(k) = (13 —2k)/36,k = 1,...,6 (b) p(0) = 6/36, p(k) = (12— 2k)/36,k =1,...,5
4(@)c=1/6(c)1/2(d)5/6

5(@)c=1/2 (b)1/2 (c)2/3

6(a)p(k) = (;)(1/13)*(12/13)° %,k =0,...5 (b) (}) (;**,)/(¥).k =0,....4

7p(=2) =p(2) =1/4,p(0) = 1/2
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8(a)p(k) = (51/52)*71(1/52),k = 1,2,... (0) p(k) = 1/52,k = 1,2, ..., 52

91f 2 = 1/n for some integen, thenFy (z) = (1/2)"*, for otherx € (0, 1],
Fy (x) = (1/2)1/#1 ([ -] denotes integer part)

12No and no.

13@)c =3 (b) F(z) = 2*, P(X > 0.5) =1 —0.5° = 0.875 (C) Fy (z) = 62°,0 <2 < 1

14@)F(z) = (1-2?)/2,-1<2<0,F(z) = (1+2%)/2,0 <z < 1(b) not possible
©F(xz)=z+1,-1<2z<0d)F(z)=1-1/z,2 >1

15b=1-a/2,-2<a <2

16(a)a = 1/v/2 (b) 1/18 (€)= = v/2

17(a)a = 1/100 (b) fw (z) = (43 — 2)/400,13 < z < 33

18(c) Same pdf as¥

19unif (0, 1)

20(a) fv () = 1/2%, 2 > 1 (b) f(x) = 2/23, 2 > 1 (C) fr(x) = exp(x),z < 0

21 unif{0, 1]

22 fy (z) = 2z exp(—x?), 2 > 0

23No.

24(a)91/36 = 2.53 (b) 70/36 = 1.94

25(a)1.5 (b) 1

263/4

27 E[X] = 101 — 100(1 — p)'®° < 100 if p < 0.045
28FE[X] = —Z,VarX] =38 — (- 2)>=10.5
29(a)$6.20 (b) —= cents

307.9 cents

34885, $3.75

353/4

36(a) —0.027,0.9993 (b) —0.027, 34.08
37 E[A] = 55/6, Var[A] = 275/36, E[W] = 64/3, VarlW] = 275/9
38(a) E[X] = 3/4,Var[X] = 3/80 (b) E[Y] = 6/7,Var[Y] = 3/196
40E[Y] = o0, E[Z] = 2, Var[Z] = o
41E[V] = rm/3,Var[V] = 72 /7
42E[V] =2, VarV] =%
43(@) E[X] = 2 Var[X] = & (b) 52
44(@)c= 3 (b) F(z) =1==2 0<z <7 (c)
45(a) E[—X] = —p, Var[-X] = o* (b)a = 1,b
46(a)c = (b—a)/(V3(b+a)) () c — 0
50(a) Binomial withn = 10 andp = 0.8.
bf(b) Not binomial as trials are not independent (one raiay thakes another more likely).
(c) Not binomial agp changes between monthgl) Binomial withn = 10 andp = 0.2.
51P(X >0)=1-10.9" ~0.65
52(a)0.1615 (b) 0.5155 (c) 0.9303
53(@)E[X] =1,E[Y] =2 (b) P(X > E[X]) = 0.6651, P(Y > E[Y]) = 0.6187
54(a) (771) (1/2)" 7 (0) (") (1/2)" 1 (©) () (1/2)" /(1 = (1/2)")
55(a)5 — 5 (b) somebody win$ — 4 (c) 0.7734 (P(X > 3) whereX ~ bin(7,1/2))
(d) 1 —(1/2)° = 0.9688 (e) (1/2)® = 0.004
56(a) 77,/2048 (b) 37/64 (c) 0.596 [distribution is bir(6, 5/8)] (d) p ~ 0.8 [distribution
is bin(6, (1 + 3p)/4)] (e)(a): 1.5, 1.125 (b): 3.75, 0.5625 (c): 3.75, 1.4062
5717
58b)P(Y <n)=P(X >1)
59 P(X =0) = (15/16)", E[X] = n/16
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60P(D >5)=1/2,P(D=S)=1/4,P(D<5)=1/4
62(a) (4/5)"*(1/5) = 0.08 (b) (3)(1/5)(4/5)° = 0.01
63(a) 1 — exp(—2) = 0.86 (b) py (k) = exp(—2)2" /(k!(1 — exp(~2))),
ElY]=2/(1 —exp(—2)) =23 (c)exp(2) —1 =64
64(a)0.9+ 0.1exp(—1) = 0.94 (b) 0.1 exp(—1)/(0.9 + 0.1 exp(—1)) = 0.04
(€)1 —(0.9/(0.9 + 0.1exp(—1)))'° = 0.33
66(a)0.0107 (exact)0.0404 (Poisson)b) 0.8741 (exact)0.8698 (Poisson)
70(a) 100 (b) 0.3935 (c) 0.3935 (d) exp(—1) = 0.37
71No, memoryless property does not seem to hold.
73(a)0.70 (b) 0.30 (c) E[X] = 58/ log 2 = 83.7, Var[X] = 7002
761/4
77(a) P(X < 220) = ®((220 — 200)/10) = &(2) = 0.98 (b) P(X < 190) = ®((190 —
200)/10) = ®(—1) = 1 — ®(1) = 0.16 (c) P(X > 185) = ®(1.5) = 0.93 (d) P(X >
205) = 1 — ®(0.5) = 0.31 (e) P(190 < X < 210) = ®(1) — ®(—1) = 0.68 (f)
P(180 < X < 210) = (1) — ®(—2) = 0.81
7828 (c) — 1
7966 and74
807 =c
81A 24-pound A-fish (theZ scores ar@ and1, respectively).
82180 points
832%(1.16) — 1 = 0.754
84(a)T ~ N(t+ 0.1,0.01) (b) &(—1) = 0.16 (c) &(—0.5) — ®(—1.5) = 0.24
85(a)¢(z),x € R, (b) 2¢(z),z > 0 (¢) p(vz)/Vz,2 > 0(d) p(log z) /2, z > 0
87(a)g(X) =X if X <100, g(X) =X —100if X > 100.
(b) E[g(X)] = 1 — 100(1 — ®((100 — 1) /+/2)) has mininum for, = 103.7
88 /7 /2
909.6 x 10'®
92 X* is lognormal with parameter@ ., k*o2)
94(a)0.76 (b) 0.64 () 0.31 (d) 1
96(a)1/2 + arctan(z)/m,z € R
97 F(z) = 0.2 + 0.82/30,0 < x < 30
98(a) F(x) = 1 — (exp(—x) + exp(—2))/2 (b) P(typel|X > ) = 1/(1 + exp(—1))
99(a) o0, 2, 1 (b) 1.5, any number irf1, 2], any number irf0, 1] U [2, 3] (¢) 1/3,1 — 1/+/2,0
(d) 0,0, and—1 or 1, (e) does not exist), 0
101(a)(i), (iii), (v)
103(a)2 (b) 1/v/A
105(a)3 (b) 9 (c) 1.8 (d) 3+ 1/
107(b)r(k) = 1/(7 — k), k=1,...,6
109(a)2t/(1 — t?) (b) 1/t (c) 2t
110@)F(t) =1 —1/(1 +1t) (b) F(t) = 1 — exp(—t?) (c) F(t) = 1 — exp(t*/4)
(d) 1 — exp(exp(—t) — 1)
111c¢ =log0.4/log 0.2 = 0.57
112(a)a = 0.26 (b) 0.096
113(a)0.15 (b) f(t) = (1 —t) exp(—t+t2/2),0 <t < 1, f(t) = (t—1) exp(t —t2/2—1),
t>1,m=1.6
114(a)0.22 (b) 0.54 (c) 0.53 (d) 2log 2 = 1.39 (e) 1.1 years
115(a)r(t) = ¢,0 < t < 100, r(t) = ¢2¥,100 + 2k < t < 100 + 2(k + 1),k =0,1,2, ...
(b) ¢ = log 2/162 = 0.043 () 0.35
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CHAPTER 3

3(a)1, (b) 0 (c) 0
4(a)true (b) false
6(a) Fx (z) = 1 — exp(—x), Fy (y) = 1 — exp(—y), (b) Fx (2) = «*, Fy (y) = \/9,
(©) Fx(x) = 2z, Fy (y) = y (d) Fx(z) = (2% +22) /3, Fy (y) = (y +2¢%)/3
7@)px(0) = 1/4,px(1) = 1/2,px(2) = 1/4, py(0) = py (1) = 1/2
(b) p(0,0) =p(2,1) =1/3,p(1,0) = p(1,1) = 1/6
9p(0,3) =p(3,0) =1/8,p(1,2) =p(2,1) = 3/8
10@)p(j, k) =1/36,5 =1,....,6,k =4 +1,...,5 +6 (b) p(5,25) = 1/36,5 = 1, ..., 6,
p(5,k) =1/18,7=1,...,6,k=2j+1,..,5+6
11@pG. k) = (1) () (6220)/(%),0 <j+k < 3(b) P(H = S) = p(0,0) +p(1,1)
=0.32
12(a)p(0,0) = 36/52,p(0,1) = 3/52,p(1,0) = 12/52, p(1,1) = 1/52 (b) 40/52
13(a)1/4 (b) 3/32 (c) 25/64
15(c), (d)
16(a)c = 6 (b) 3/4 () 1/4 (d) fx () = 32*,0 <z <1, fy(y) = 3y* —6y+3,0 <y <1

19 unif [0, 1]
20(a)c = 2/7 (b) d*(2 — d?)
220.68

23exp(—2) =0.14

28f(x) =1/2,0<x <2

2982/3,05 <z <1

31(a) fv (ylz) = exp(z — y),y = =, (b) fv (y|z) = z exp(—=zy),y > 0,
© fr(ylz) = 1/y*,y > 1,(d) fr(ylz) = 1/(2y/7),0 <y <1

32(a) f(z,y) =2,0<y <1/2,0 <z <1(b) fr(y) =1/2,0<y < 1,
fr(y) =1/2y*),y > 1(c)1/3

33Bpy(k)=1/(n+1),k=0,1,...,n

34(a)450/1350 = 1/3 (b) 800/1350 = 0.59

35(b) )\1/()\1 + )\2)

36 (a) yes(b) no(c) yes(d) yes(e)yes

38(7/6)/3/2 = 0.40

391/2 +n/24 forn < 4andl — 2/(3y/n) forn > 4

40(a)1/4 (b) 0.53 (c) 1/4

43@)F(z)=1—-(1-2)2,0<z<1(b) F(z)=2/(2(1 —x)),0 <z < 1/2,
Flx)=1-(1-2)/(2z),1/2<z <1

44 fy(x) = —logz,0 <x <1

45(a)10/3 minutes(b) 85/6 minutes

467/12 Ml (E[max(X —Y,0)])

474/9

48(a)1/4 (b) oo (c) —2(d) 1/3

49(a) E[A] = a,Var[A] = 6%/2 4+ 7%/4

50 EX] = p,Var[X] = ¢*/n

51(a)n(p? + o) (b) n(np® + 0?)

53(c) (1 — 2p)//mp(1 — p) and3 + (1 — 6p + 6p*)/ (np(1 — p))

55(a)n(l — (1 — 1/n))

58 (2N —n)(2N —n—1)/(4N —2) (letI; be the indicator for the event that thigh married
couple remains and finB[/;])
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61(a) fx,2)(x, 2) = of (z,22) (b) fix.2) (2, 2) = wexp(—a(1+2)), fz(z) = 1/(1+2)?

62 fw,vy(u,v) =u,0 <uv <1,0 <u(l —v) <1

63 f,v) (u,v) = exp(—(u® +v?)/4)/(4r) (note thal/ = X — Y andV = X +Y are
independent; this only holds for the normal distribution)

64f(X,Y)(m7y) = 1/(27T V z? + y2)7 z® + y2 <1

65 fow,n(w,1) =2/i, 0 < i < 1,i% < w < i (note the range)fr (i) = 2(1—14),0 < i < 1,
fw(w) =—-logw,0 <w <1

66 fu,v)(u,v) =v/2, 0 <u < 2,u/2 <v <14 u/2(note the range)

67 fw,v)(u,v) = exp(—(u® + 3v*)/6)/(2mV/3),u,v € R

69(a) $360 (E[g(X)] whereg(X) = X — 0.8 if X > 0.8 andg(X) = 0 otherwise)
(b) $600 (E[X|X > 0.8] — 0.8)

70@)E[Y|X = k] = k+ 3.5 (b) E[Y|X = k] = 52/11,56/9,54/7,46/5, 32/3,12
fork=1,2,...,6

7T1@EY|X =z]=2+1,(b) EY|X =2] =1/z,(C) E[Y|X = z] = o0,
d)EY|X =2]=1/3

72(a)1/6 (b) 1/m (c) co (d) 1/2

73(a)1/2 (b) 2 (c) 0o

74(a) oo (b) n/2

782/((1 - p)* +p?)

79(2-p)/(1 =p(1-p))

8110 and20

832"t —2

84(a) 36 (b) 258

851/36

861 [Var[I;] = (n — 1)/n?,CoMI;, Ix] = 1/(n*(n — 1))]

87-1/3

95 none are independe(d) correlatedb) uncorrelatedc) uncorrelatedd) uncorrelated

96 /6/7 = 0.93

97 E[X] + E[Y] =0

98 E[Y|X] = X?/2,1(X) =2X/3—1/5

102a,d,e,g

103(a)E[C] = 30, E[C|X = z] = 5.22+4(b) E[A] = 50.016, E[A|X = ] = 1.60>+2z
(€)0.08 (d) 0.02 (e) ¢ < 0.46

1040.37

105(a)0.08 (b) 0.09 (c) n > 3

107U andV are independent with’ ~ N(0,2(1 — p)), V ~ N(0,2(1 + p)).

108(a) f2(x) = ((x — 900)/1/181/4)/ /18174 (b) fw (x) = (s2((x — 1000)/10) /20
+((x—800)/9) /18 (c) E[Z] = 900, Var[Z] = 181/4 E[W] = 900, Var[W] = 10090.5

109E[N] =e

110E[N] =1/(1 — F(¢))

11132.5 minutes

114(a) frr (z) = @(z — 5)p(x — 7) + ®(x — 7)p(z — 5) (b) P(1)P(—1) = 0.13

117(a)1/2 (b) 1/24 (c)1/8 (d) 1/8

118100 + 100 x 0.9'/* = 197.40

120Hint: the lifetime ismax (T4, T2) whereT}, T are i.i.d.exp(2)

121 (exp(t) + 2)/(exp(t) + 1)

122 f(2,y) + f(y, »)

1230.0001
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1250.38

126 fr(z) =1 —exp(—x),0 <z < landfr(z) =exp(—z)(e— 1),z > 1

128 fxiv(z) = (x —2)exp(2 — z),z > 2

131 fx v (z) = exp(—x)z?/2,2 > 0

134(@)Gx(s) = (s + 82 +---55)/6 (b) Gs(s) = Gx(s)®

135(@)ps/(1 — 5 + ps) (b) (ps/(1 — 5 + ps))”

137P(Xp = 0) = 1 — /A, P(Xp = 1) = p/A

138$8.75

139(a)0.83 (b) 9 ms

140(a)Gy (s) = exp(s+s>4s° 45 —4) (b) exp(—4) = 0.02 (c) E[Y] = 10, Var[Y'] = 30

142(b)~ $95

1450 and3

148not normal

149(a)GX (8) = G(87 1) (b) COV[X7 Y] = Gst(L 1) - Gs(17 1)Gt(17 1)

150(a)exp(—10/13) = 0.46 (b) exp(—5/13) = 0.68 (C) exp(—1) = 0.37
(d) ((10/13) exp(—10/13))* = 0.045

151(a)exp(—2/7) = 0.75 (b) 1 — exp(—8/10) = 0.55 (c) bin(52, exp(—2))

155(a)exp(—5) x 5%/2 = 0.08 (b) 2exp(—2) x 3exp(—3) = 0.04 (c) 9/25
@) (3)(1/2)* =0.375

156(a)no (b) 3 exp(—2) = 0.41 (c) P(even number of accidents= 0.51

CHAPTER 4

3]01 g(z)dx

42/3

9®(2) = 0.977

101 — ®(10/+/200) = 0.24

1178

12 Exact:0.67, 1, 1, approximately:0.50, 0.87, 0.99

13P(X >80) =1— P(X <79) ~ 0.72 (n = 100, p = 13/16)

140.44

15254

16(a)1/2 and1/2 (exact:1/2) (b) 1/4 and1/3 (exact:1/3) (c) 1/16 and3/16 (exact:1/5)
(d) 1.65 and1.72 (exact:exp(1) — 1 ~ 1.72) () 0.61 and0.63 (exact:1 — exp(—1)
~ 0.63) (f) 1 and0.59 (exact:2/m =~ 0.64) (g) 0 and0 (exact:0)

17 =~ 216, 000 times

18 N(2/3,4/27Tn)

24N =1, aa =2

25 For exampler, = n'/?, Weibull with A = 1, = 3

CHAPTER 5

3LetsS, = ZT Xk,n=1,2,...and letY = min{n: S, > A} — 1.
6F '(u)=(b-au+a

7X=U"?

8(a) X = tan(n(U — 1/2))

9X = (—logU/N)Y*

10X =1+ [logU/logp] ([-] denotes integer part)

17X =1 + 01X, Y1 = p2 + po2 (X1 — p1) /o1 + o24/1 — p?Y
18 X = /Vsin(2nU),Y = /V cos(2nU)
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CHAPTER 6

2Y — X,\/o?/n+o3/m
5(a)]\7 = kn/X, not unbiasedb) N = kX, unbiased
TA=X/t,\/At
8I(N) T =\t
12 P(X < 5) <0.59 and0.06 respectively
13¢=0.11, no
14(a)p = 0.0113 (b) T = 17.8
150 = 98.3,0 = 24.7
17A—-B=47+1738
184 = X +1.96/+/5 = 1000.3 + 0.88
19p = 0.54 £ 0.03
20=0.25
21(a)n > 246 (b) n > 385
22p = 0.53 + 0.06
24pp — pg = 0.03 £0.01
25u:Xiz% (= q)
260 = m (=~ q)
28pq — pp > —0.03
30(c) 1086 + 215
32X =n/T
33p=X/n
34b = X(n) (MLE) andb = 2X —a
35G = X(1),b = X(n) (MLE’s) anda = X — \/3(fiz — X2),b = X + 1/3(5iz — X2)
3652 max(—X(l),X(n))
376 = X1y (MLE)andf = X — 1
38@0=z/(1-X)(0)0=-n/>,logXp ()0 =0(1+z/\/n) (=q)
390 =Y, X2/n (both)
40(a)a = 7/(2X?) (b)a = 2n/ Y, X (©)a =a(1+2/Vn) (~q)
43Ho:p=3,Ha:p# 3,0 =0.0078 C ={0,1,7,8}
44Ho: A=5Ha:A>5C={Y,_, X > 26}, We can rejecto.
45(a)Base the test ot = (X — p0)/(c/+/n) ~ N(0,1) (b) acceptHy
47@)T = /n(1 — XoX) () T = /n(1/(XoX) — 1) The second test is better.
48 Ho : p=0.21vsH4 : p > 0.21, acceptHy
49 Hy : pw = 2pr VSHa : pw > 2pr, acceptHy
d

50 Assume independent Poisson variables. Test staffstie (X2 — X1)/v X1 + X2 =

N(0,1).
51
np + 2%/2 nz2p(1 —p) + z4/4
+
n— z2 (n — 22)2
561 — 0.95"

60(a)n > 210 (b) ((p — 0.5)y/n — 1.64/2)/\/p(1 - p) = ¢
63 RejectHy, beware of data-snooping!

64 AcceptHy, x> = 4.06, lump together into five classes

65 Geometric:x? = 1.31, four classes. Poissory? = 10.48, four classes
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68 AcceptHy, x> = 0.26, DF=1

70 RejectHy, x% = 15.2, five classes

71RejectHy, x> =T7.1

72 RejectHy, x? = 76.6, DF=1

74 RejectHy, x% = 207, DF=3

75 p-value=0.14. Do not rejedt.

76 P(p =1/3|D) = q/(4 — 3q), E[p|D] = (8 — 7q) /(12 — 9q)

78 P(p|D) = 30p*(1 — p), mean= 5/7, mode= 4/5, MLE = 3/4

80(a) f(8|D) = 320(6 — 1)/(99-2%) #=2,...,6,(b)3.94and1.69,(c)3<H <5

83(a)1/5 and1/75 (b) 2/15 and2/225

87(a)Betd «, ) (b) 0.2 and0.072 (c) 0.175 and0.070

88 Parametric:101.2 < p < 116.4, Nonparametric (sign testp6 < m < 116, Nonpara-

metric (Wilcoxon test)l01 <m < 116

89 Parametric22.3 < u < 283.6, non-parametric27.3 < p < 263.9

900.06 and0.03 respectively, ifN; is either0 or 5

91 AcceptHp : m = 100

92 RejectHy : m = 1 on the5% level

951/16

96 RejectHO0 : = 100 in favor of Ha : po > 100 (W = 59,C = 66 — 14 = 52)

97 Pairwise differences. Rejeél, : p =0infavorof Hy : p # 0 (W =54,¢c =9,
C = 46)

98W =3,4,..,13, P(W =17)=1/5

99AcceptHy : pa = pup (W = 46.5,¢c = 22, C = 48)

100AcceptHy : Ds.s = 0.475 (¢ = 0.8)

101 AcceptHy (W = 43, ¢ = 33,C = 69)

102 AcceptHo (W = 106, W ~ N(90, v/345))

CHAPTER 7

8f(v)= 2/7r03v2ef”2/(2"2) v>0
9u=0.11+0.05

110.034 <0 <£0.104

1215.2 < o < 23.6 (0.90), 14.7 < o < 24.8 (0.95)
13F,2 (ne?/(4t%))

1420%/(n — 1)

15Hy: p=12vs Ha : pu # 12, |T| = (12.1 — 12)/(v/0.96/10) = 1.02 < 1.96, accept
Hy

16 Ho: pp=100vS Ha : pu > 100, T = (X — 100)/(s/v/7) = 3.1 > 1.94, rejectHy
17Ho:u=0vVsHa: un#0,|T| = X/(s/v/5) = 1.0 < 2.78, acceptHy

18 Hy: p=0.30VvS Ha : pu > 0.30, rejectHy

19Ho: u=0VSHa : > 0, acceptHy

20n > 62

22Hy:0?=1vsHy : 02 > 1, rejectHy

23Ho:0=1vsHa : 0 > 1, acceptHy

24Hy :0 =15VSH4 : 0 # 15, acceptHy

25RejectH, (T' = 1.875, 10 = 1.812)

26d = —2.24+16.3

2773 +22 (95%)



561

28 Assume normally distributed samples. Test= o2. RejectH, on 5% level. ¢ = 7.23,
X1 = 0.14, T2 = 7.15)

29 2;1,1 + 2;1,2 =489 £+ 27

32Ho: p=0vVvSHa : u>0,acceptdy

33 Eacht-test will be conditioned on the outcome of the first test,ahhineans that the test
statistic no longer ig distributed.

34(a) RejectHy. (F = 20.85, F3.16 = 3.24) (b) X4:- — X;,. £ 17.5. (c) Reject Ho.
(K =15.16 > 7.37)

4la=36+12,b=9.7+34

42 AcceptHp : a = 0 (T' = —0.48)

44(a)b = (Sey — aSs)/Sax (0)a =Y — bz (C)a = 24.6,b = 11.3

454 =0.85,0 < a < 25.5,b = 0.15,b = 0.15 % 1.12 (considerlog Y')

46(a)y = —0.039z + 105, 57 seconds

47Y =133 £ 27

50180 < o < 330

51Ho:p=0vsHa:p#0, R=0.25, acceptHy

52 Rs = 0.418, AcceptH, (T = 1.30).

53-0.45 < p <0.76 (= 0.95)

54Ho:p=09VvsH4 :p>0.9, L =466, rejectHo

5780 = 2.71 £ 0.70, f1 = 10.20 £ 0.78, B2 = 2.07 + 0.16

60SSA= >, . (Xi. — X)%, 88B=3_, . (X, —X)? SSE=}_, . (Xijx — Xij.)?%,
SST=3", ., (Xije —X)*and SSAB= 3", | (Xy;. — Xi.. — Xj. + X)? (Derive them in

) i,J,
this order.)

CHAPTER 8

1(b) 0.88 (c) 0.81

2pes =T7/8,prr = 1/2

31/71

4(b) 4 (geom().2) including0) (c) 1/7nigh = 5.8

9(b) 0.59 (c) 43% vowels

10(a) c(onsonantjb) ¢ (c) cccee(d) cveve

11(b) 10

12 (a)w = (1/10,2/10,4/15,5/18,7/45) (Note: pz2 = 3/5, paa = 2/5 andpss = 1)
(b) 1/10, 7/45 (c) 14/9

14(a)4 (b) 2 (c) mo = m1 = w2 = 73 = 1/5, 14 = 75 = 1/10, no

15(a) 2048 (b) 2

167 =m1 = 1/3, m, = (1/3)(1/2)* 1,k > 2

17(a) gi; = pjim; /i

19p=1/2

20(&)[)0,1 = PN,N-1 = 1,pk’k71 = k/N,pk’kﬂkl =1- k/NJC = 1,2, e N -1
(b) bin(V,1/2) (c) no

221/+\/14+m/n

24@)m, =1/(a+1),k=0,1,...a(b)a+1(c)m = ma = 1/(2a),
e =1/a,k=1,2,...,a—1

25 Py(71 < 00) = p/qif p < gandl otherwise.Eo[r1] = 1/(p — q) if p > g andoo
otherwise

267/(p —q)



562 ANSWERS TO SELECTED PROBLEMS

28(c)exp(—1/2) = 0.61in (a),2exp(—1)(1 — 2/3) + exp(—1/2) — exp(—1) = 0.48in
(b), and1/2if Sop =1

V@u<1®Y,.=1+21 4+ Zy, E[Yn] =n+1
if p=1and(1l—p ")/ (1 —p)if p#1

31(a)2™ (b) 3/7 (c)1/2

32 (b) Note thatz,, = ZfLO) 4+ Z,(L”) WhereZ,(Lj) is the number of individuals in theth
generation stemming from tié immigrants in generatiop, j = 0, 1, ..., n. Differentia-
tion of the pgf giveskZ[Z,] = v >, 1" (€) Poi(A(1 — p™*1) /(1 — p))

34 For examplepoo (t) = A/ (A + w)e” Mt /(X + p)

35(c)1/4 minute(d) 1/5

37(b)uniform if b = 2a

40(b) (10 + @) /(40 + &) (c) 1.5

417 =1/(1 —log(2/3)), 7n = mo/(n3™)

43(a)17% (b) 1.6%

44(a)50% (b) 33% (c) 33% (d) 20%

45(@)mo = 4/10, m = 2/10,ma = 3/10, w3 = 1/10 (b) mo = 16/43, 71 = 8/43,
mo = 12/43, 13 = 7/43

46(b)71'0 =T = 4/19771'2 = 6/197 T3 = 5/19

47(a)mo = 0.03, 71 = 0.19, m2 = 0.78 (b) m2 + m1((2/3) x 0.2 + (1/3) x 0.5) = 0.84

48Poi(A/ )

N, = Npin=p+Mn—-1r,n>1

50P(W < z)=1-—pexp(—z(up— X)),z > 0(P(W =0) =1— p) and conditioned on
k > 1 customers in the systeril/ ~ I'(k, u))

517 ~ exp(u(l — p))

52Y, = P, /u"
53Y, = 2" X,
55Y ~ unif[0, 1]

57m(t) =e' -1, t<1

58(a) Once in 190 hours(b) 0.79
S59(@) A /(14 Aps) (b) 1/(1 + Aus)
600.918 B
6l@) F(t) =1 — e (b) F(¢)
62(a)min(s,t), (b) t(1 —s)if ¢
63N(0,t+ s +2min(t, s))

64 min(t, s)

66 E[M,] = +/2t/7, Vai[M,] = t(t — 2/)
67
N<t2—t t—t (t2—t)(t—t1)>

oot Tt -t
68(a) N(c+ pu(t — s),02(t — 5)) (b) N(ct/s,a*t(s —t)/s)
690.362 )

70 f(r) = Fe™" /20 r >0

=t(2—1t) 0<t<1(C)F(t)=1—e (14 At/2)
<sands(l—t)ift>s
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Absorbing state, 464 approximation by Poisson, 125
Alternative hypothesis, 338 approximation of hypergeometric, 285
one-sided versus two-sided, 338 Birthday problem, 21-22, 71-72
Analysis of variance, 419 Birth—death process, 497
as GLM, 445 linear, 498
confidence intervals, 424 Bivariate normal distribution, 216
for regression models, 436 Bonferroni correction, 348
multiple comparisons, 423 Bonferroni-Holm correction, 349
one-way, 420 Bootstrap simulation, 334
two-way, 447 Borel set, 89
unbalanced, 451 Box—Muller method, 298
ANOVA, 419 Branching processes, 481
ANOVA table, 421 as martingale, 507, 510
Aperiodic state, 474 convergence of, 510
Backward equations, 491 Brownian bridge, 530
Backwards martingale, 513 Brownian motion, 524
Balking, 502 geometric, 529
Ballot theorem, 513 maximum of, 527
Base rate, 51 standard, 525
Bayes estimator, 363 two-dimensional, 539
Bayes' formula, 49 with drift, 528
in island problem, 53 Buffon, Count de, 178
in Monty Hall problem, 51-52 Buffon's needle, 177, 275, 280
Bayesian statistics, 361 C, 459
Beta distribution, 365 Cauchy distribution, 140
conjugate to binomial, 367 Cavendish, Henry, 378
Between-group variance, 421 Central limit theorem, 276
Bienayme, I. J., 482 for renewal process, 519
Binomial distribution, 116 Chapman—Kolmogorov equations, 489
approximation by normal, 279 Chebyshev’s inequality, 112
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one-sided, 154
Chi-square distribution, 402
Chuck-a-luck, 153
Coefficient of determination, 436
Coefficient of variation, 154, 389
Communicating states, 462
Conditional distributions, 169
Conditional expectation, 191

in prediction, 197
Conditional pdf

given an event, 170

jointly continuous case, 171
Conditional probability, 29

as information, 70
Conditional variance, 198
Confidence interval, 314

Design matrix, 444
Disjoint events, 8
Distribution function, 84
Distribution function

empirical, 334, 380, 384, 530
Distribution function

properties, 87
Distributive Laws, 6
Donsker’s theorem, 531
Efficiency, 309
Ehrenfest model, 533
Elementary renewal theorem, 518
Empirical distribution function, 334, 380, 384, 530
Estimate, 304
Estimator, 304

asymptotically unbiased, 390

for difference between means (equal variances), bias of, 390

414

for ratio of variances, 418

for the mean, 317, 410

for the variance, 408

for unknown probability, 318

nonparametric, 386

one-sided, 321
Confidence level, 314

simultaneous, 391
Conjugate distribution, 367
Consistent estimator, 306

Continuous-time Markov chain, 488

irreducible, 495
jump chain of, 488
limit distribution of, 493
null recurrent, 495
positive recurrent, 495
recurrent, 495
transient, 495
Convergence
almost surely, 273, 488, 508
in distribution, 283, 285
in probability, 272
Convolution, 235
Correlation coefficient, 208
Correspondence theorem, 341
Coupon collecting problem, 186
Covariance, 203
Cramér-Rao lower bound, 309
Craps, 77
Credibility interval, 372
Critical
region, 338
value, 338
Data snooping, 345
Delayed renewal process, 521
Delta method, 282
De Moivre-Laplace theorem, 279
De Morgan’s Laws, 6

consistent, 306
more efficient, 307
of mean, 304
of variance, 311
unbiased, 305
Eugene Onegin, 532
Euler’s constant, 227
Event, 5
decreasing sequence, 15
increasing sequence, 15
independent events, 35
independent vs. disjoint events, 37
pairwise disjoint events, 8
Expectation, 100
Expected value, 100
of a function, 106, 181
of a sum, 182, 185
Exponential distribution, 128
in Poisson process, 248
memoryless property of, 130
Exponential family, 367
Extreme values, 285
Failure rate, 131, 145, 231
constant, 131
increasing, decreasing, bathtub-shaped, 146
False-negative rate, 51
False-positive rate, 51
F distribution, 403
Fisher information, 309, 331, 341, 371
Fisher's exact test, 359
Forward equations, 491
Frequentist statistics, 362
Galton, Sir Francis, 221, 482
Gambler’s ruin, 61-63, 76
Gambler’s ruin, 512
Gamma distribution, 139
in Poisson process, 251
relation to exponential, 238
Gauss, Carl Friedrich, 132



Gaussian distribution, 132
General linear model, 443
Generator, 490
Genetics, 56, 76
Geometric Brownian motion, 529
Geometric distribution, 120
Goodness of fit, 349
for regression models, 435
test for independence, 356
Histogram, 81, 93
Hitting time, 525
Hubble, Edwin, 215, 428
Hypergeometric distribution, 125
approximation by binomial, 285
Hypothesis test, 336
for correlation coefficient, 440
for difference in means (equal variances), 415
for ratio of variances, 419
for the mean, 411
for the variance, 409
for unknown probability, 342
large sample, 341
multiple, 348
l.i.d. random variables, 224
Inclusion—exclusion formula, 14
Independent events, 35
and conditional probability, 36
and disjoint events, 37
conditionally independent, 72
infinite sequence of, 40
pairwise independent, 39
three events, 40
Independent random variables, 174, 187
Indicators, 116, 188
Inter-arrival times, 248, 515
Inverse transformation method, 293
Irreducible Markov chain, 462
Island problem, 53, 153
Jeffrey’s prior, 371
Joint
distribution function, 162
mgf, 268
pdf, 166
pgf, 268
pmf, 163
Kolmogorov-Smirnov test, 379, 384
one-sample, 379
two-sample, 384
Kronecker's lemma, 509
Kruskal-Wallis test, 424
Kurtosis, 159, 260
Laplace, Pierre-Simon, 1, 364
Laplace’s rule of succession, 364
Law of large numbers, 272, 509
for renewal process, 517
Law of total expectation, 191-193
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Law of total probability, 43, 172-173
Law of total variance, 198
Likelihood function, 326
Limit distribution
for continuous-time Markov chain, 493
for discrete-time Markov chain, 461, 472
Linear birth—death process, 498
Linear regression, 426
as GLM, 444
estimation of slope and intercept, 427
estimation of variance, 430
multiple, 444
prediction interval, 434
residuals, 435
Little’s formula, 506
Location parameter, 108, 142
Log-likelihood function, 326
Lognormal distribution, 137
Luckenbach, Texas, 319
Marginal, 163
Margin of error, 318
Markov, A. A., 532
Markov chain, 456
aperiodic, 474
continuous-time, 488
ergodic, 475
finite state space, 463
irreducible, 462
limit distribution of, 472
Monte Carlo (MCMC), 367
null recurrent, 471
periodic, 473
positive recurrent, 471
recurrent, 463
stationary distribution of, 466
transient, 463
Markov property, 456
for continuous-time Markov chain, 489
Markov's inequality, 154
Martingale, 507
backwards, 513
Martingale convergence, 508
Matching problem, 27, 70
Maximum likelihood estimator (MLE), 326
approximate confidence interval, 331
asymptotically efficient, 331
asymptotically normal, 331
asymptotically unbiased, 331
consistent, 331
in linear regression, 427
Maximum likelihood method, 324
Maxwell-Boltzmann distribution, 448
Mean, 100
Mean recurrence time, 476
Median, 92, 131, 142
Mendel, Gregor, 352
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Method of moments, 321
Mixed distribution, 141
Mode, 144
Moment estimator, 323
Moment generating function (mgf), 244
Moment of a random variable, 247, 322
Monty Hall problem, 51-52
Multidimensional random vectors, 223
Multinomial distribution, 232
Multiple linear regression, 444
Multivariate normal distribution, 233
Negative binomial distribution, 155
Non-informative prior, 370
Nonparametric methods, 373
Normal distribution, 132
approximation of binomial, 279
bivariate, 216
in central limit theorem, 276
linearity of, 221
standard, 133
Null hypothesis, 338
Null recurrent state, 471, 495
Occupancy problem, 186
Oil rigs, 382
Old Faithful geyser, 265, 432
One-samplé test, 411
One-way analysis of variance, 420
Opinion polls, 318
Optional stopping theorem, 511
Order statistics, 225
Outcome, 3
Pearson, Karl, 438
Penney-ante, 65, 77, 201
Percentile, 136, 389
Period, 474
Periodic state, 474
Poisson distribution, 122
approximation of binomial, 125
in Poisson process, 250
Poisson process, 131, 248, 515
superposition, 255
thinning, 252
Poisson, Siméon, 123
Poker, 24, 69
Polya’s urn model, 538
Pooled sample variance, 413
Positive recurrent state, 471, 495
Posterior distribution, 362
Power function, 347
Prediction interval, 392, 434
Predictor, 197, 391
best linear, 212
in linear regression, 434
Prior distribution, 362
conjugate, 367
Jeffrey’s, 371

non-informative, 370
vague, 370
Probability
as continuous set function, 15
axioms, 8
classical definition, 17
Probability density function (pdf), 88
interpretation, 92
relation to cdf, 89
Probability generating function (pgf), 238
Probability mass function (pmf), 81
relation to cdf, 86
Probability
measure, 8
objective and subjective, 1
Product moment correlation coefficient, 438
Punnett square, 57
Pushkin, Alexander, 532
P-value, 344
Quantile function, 295
Queueing system, 501
finite waiting room, 502
M/M/1, 501
multi-server, 503
performance measures, 504
with balking, 502
with reneging, 537
Random experiment, 3
Random number generator, 290
Random sample, 304
Random variable, 79
continuous, 86
discrete, 81
mixed, 142
Random vector, 162
discrete, 163
jointly continuous, 166
Recurrent state, 463, 495
Recursive methods, 58, 199
Regression line, 426
Rejection method, 296
Relative frequency, 1, 273, 317
Reliability, 42, 72, 230
Renewal, 515
Renewal equation, 516
Renewal function, 515
Renewal process, 225, 515
delayed, 521
Renewal rate, 518
Renewal theorem, 518
Residuals, 435
Reversible Markov chain, 533
Roulette, 76, 100, 107, 110, 153
Sample correlation coefficient, 438
Sample mean, 259, 263, 271, 304
Sample moment, 322



Sample space, 3
countably infinite, 4
finite, 4, 16
uncountable, 4
Sample variance, 311
Sampling distribution, 402
Sensitivity, 51
Significance level, 338
multiple, 348
Sign test, 374
Simple random walk, 477, 527
as martingale, 507
in three dimensions, 480
symmetric, 477
Simpson’s paradox, 47
Simulation, 289
bootstrap, 334
Box—Muller method, 298
evaluation of estimators with, 332
of discrete random variables, 292
with inverse transformation method, 293
with rejection method, 296
Size-biased distribution, 120, 153
Skewness, 159, 260
Spearman'’s correlation coefficient, 442
Specificity, 51
Standard Brownian motion, 525
Standard deviation, 109
Standard error, 310
Stationary distribution, 466
for continuous-time Markov chain, 493
Statistic, 338
Statistical inference, 303
Stochastic semigroup, 489
Stopping time, 511
St Petersburg paradox, 107
Strong law of large numbers, 509
Studentized range distribution, 423
Submartingale, 512
Success runs, 475, 495, 533

INDEX

Sum of squares, 421
Supermartingale, 512
Survey sampling, 319
Survival analysis, 147
Survival function, 148
Symmetric distribution, 159
T distribution, 404
Test statistic, 338
Texas lottery, 23, 26, 41, 122, 345, 395
Transient state, 463, 495
Transition

matrix, 458

probabilities, 456

rate, 490
Translation model, 382
Tree diagrams, 46
Triangular distribution, 237
t test

one-sample, 411

two-sample, 415

Welch’s, 417
Tukey’s method, 423
Two-sample: test, 415
Two-way analysis of variance, 447
Type | and type Il errors, 346
Unbiased estimator, 305
Uniform distribution, 17, 82, 94-95
Variance, 109

of a sum, 183, 187, 204, 206
Venn diagram, 6, 12-13, 67
Waiting time paradox, 224
Watson, Henry W., 482
Weibull distribution, 150
Welch'st test, 417
Wiener process, 524
Wilcoxon

rank sum test, 382

signed rank test, 377
Within-group variance, 420
Z score, 134
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