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Preface

The Book

In November 2003, I was completing a review of an undergraduate textbook in prob-
ability and statistics. In the enclosed evaluation sheet was the question “Have you
ever considered writing a textbook?” and I suddenly realized that the answer was
“Yes,” and had been for quite some time. For several years I had been teaching a
course on calculus-based probability and statistics mainly for mathematics, science,
and engineering students. Other than the basic probabilitytheory, my goal was to in-
clude topics from two areas: statistical inference and stochastic processes. For many
students this was the only probability/statistics course they would ever take, and I
found it desirable that they were familiar with confidence intervals and the maximum
likelihood method, as well as Markov chains and queueing theory. While there were
plenty of books covering one area or the other, it was surprisingly difficult to find one
that covered both in a satisfying way and on the appropriate level of difficulty. My
solution was to choose one textbook and supplement it with lecture notes in the area
that was missing. As I changed texts often, plenty of lecturenotes accumulated and
it seemed like a good idea to organize them into a textbook. I was pleased to learn
that the good people at Wiley agreed.

It is now more than a year later, and the book has been written.The first three
chapters develop probability theory and introduce the axioms of probability, random
variables, and joint distributions. The following two chapters are shorter and of an
“introduction to” nature: Chapter 4 on limit theorems and Chapter 5 on simulation.
Statistical inference is treated in Chapter 6, which includes a section on Bayesian
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statistics, too often a neglected topic in undergraduate texts. Finally, in Chapter 7,
Markov chains in discrete and continuous time are introduced. The reference list
at the end of the book is by no means intended to be comprehensive; rather, it is a
subjective selection of the useful and the entertaining.

Throughout the text I have tried to convey an intuitive understanding of concepts
and results, which is why a definition or a proposition is often preceded by a short
discussion or a motivating example. I have also attempted tomake the exposition
entertaining by choosing examples from the rich source of fun and thought-provoking
probability problems. The data sets used in the statistics chapter are of three different
kinds: real, fake but realistic, and unrealistic but illustrative.

The people

Most textbook authors start by thanking their spouses. I know now that this is far
more than a formality, and I would like to thankAλκµήνη not only for patiently
putting up with irregular work hours and an absentmindedness greater than usual but
also for valuable comments on the aesthetics of the manuscript.

A number of people have commented on various parts and aspects of the book.
First, I would like to thank Olle Häggström at Chalmers University of Technology,
Göteborg, Sweden for valuable comments on all chapters. His remarks are always
accurate and insightful, and never obscured by unnecessarypoliteness. Second, I
would like to thank Kjell Doksum at the University of Wisconsin for a very helpful
review of the statistics chapter. I have also enjoyed the Bayesian enthusiasm of Peter
Müller at the University of Texas MD Anderson Cancer Center.

Other people who have commented on parts of the book or been otherwise helpful
are my colleagues Dennis Cox, Kathy Ensor, Rudy Guerra, Marek Kimmel, Rolf
Riedi, Javier Rojo, David W. Scott, and Jim Thompson at Rice University; Prof. Dr.
R.W.J. Meesterat Vrije Universiteit, Amsterdam, The Netherlands; Timo Seppäläinen
at the University of Wisconsin; Tom English at Behrend College; Robert Lund at
Clemson University; and Jared Martin at Shell Exploration and Production. For help
with solutions to problems, I am grateful to several bright Rice graduate students:
Blair Christian, Julie Cong, Talithia Daniel, Ginger Davis, Li Deng, Gretchen Fix,
Hector Flores, Garrett Fox, Darrin Gershman, Jason Gershman, Shu Han, Shannon
Neeley, Rick Ott, Galen Papkov, Bo Peng, Zhaoxia Yu, and Jenny Zhang. Thanks to
Mikael Andersson at Stockholm University, Sweden for contributions to the problem
sections, and to Patrick King at ODS–Petrodata, Inc. for providing data with a dis-
tinct Texas flavor: oil rig charter rates. At Wiley, I would like to thank Steve Quigley,
Susanne Steitz, and Kellsee Chu for always promptly answering my questions. Fi-
nally, thanks to John Haigh, John Allen Paulos, Jeffrey E. Steif, and an anonymous
Dutchman for agreeing to appear and be mildly mocked in footnotes.

PETEROLOFSSON

Houston, Texas, 2005
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Preface to the Second Edition

The second edition was motivated by comments from several users and readers that
the chapters on statistical inference and stochastic processes would benefit from sub-
stantial extensions. To accomplish such extensions, I decided to bring in Mikael
Andersson, an old friend and colleague from graduate school. Being five days my ju-
nior, he brought a vigorous and youthful perspective to the task and I am very pleased
with the outcome. Below, Mikael will outline the major changes and additions intro-
duced in the second edition.

Peter Olofsson
San Antonio, Texas, 2011

The chapter on statistical inference has been extended, reorganized and split into
two new chapters. Chapter 6 introduces the principles and concepts behind standard
methods of statistical inference in general while the important special case of normally
distributed samples is treated separately in Chapter 7. This is a somewhat different
structure compared to most other textbooks in statistics since common methods liket
tests and linear regression come rather late in the text. According to my experience,
if methods based on normal samples are presented too early ina course, they tend to
overshadow other approaches like nonparametric and bayesian methods and students
become less aware that these alternatives exist.

New additions in Chapter 6 include consistency of point estimators, large sam-
ple theory, bootstrap simulation, multiple hypothesis testing, Fisher’s exact test,
Kolmogorov-Smirnov’s test and nonparametric confidence intervals as well as a dis-
cussion of informative versus non-informative priors and credibility intervals in Sec-
tion 6.8.

Chapter 7 opens with a detailed treatment of sampling distributions, like thet,
chi-square andF distributions, derived from the normal distribution. There are also
new sections introducing one-way analysis of variance and the general linear model.

Chapter 8 have been expanded to include three new sections onmartingales, re-
newal processes and Brownian motion, respectively. These areas are of great impor-
tance in probability theory and statistics, but since they are based on quite extensive
and advanced mathematical theory, we only offer a brief introduction here.

It has been a great privilege, responsibility and pleasure to have had the opportunity
to work with such an esteemed colleague and good friend. Finally, the joint project
that we dreamed about during graduate school has come to fruition!

I also have a victim of preoccupation and absentmindedness;my beloved Eva
whom I want to thank for her support and all the love and friendship we have shared
and will continue to share for many days to come.

Mikael Andersson
Stockholm, Sweden, 2011
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1
Basic Probability Theory

1.1 INTRODUCTION

Probability theory is the mathematics of randomness. This statement immediately
invites the question “What is randomness?” This is a deep question that we cannot
attempt to answer without invoking the disciplines of philosophy, psychology, math-
ematical complexity theory, and quantum physics, and stillthere would most likely
be no completely satisfactory answer. For our purposes, an informal definition of
randomness as “what happens in a situation where we cannot predict the outcome
with certainty” is sufficient. In many cases, this might simply mean lack of infor-
mation. For example, if we flip a coin, we might think of the outcome as random.
It will be either heads or tails, but we cannot say which, and if the coin is fair, we
believe that both outcomes are equally likely. However, if we knew the force from
the fingers at the flip, weight and shape of the coin, material and shape of the table
surface, and several other parameters, we would be able to predict the outcome with
certainty, according to the laws of physics. In this case we use randomness as a way
to describe uncertainty due to lack of information.1

Next question: “What is probability?” There are two main interpretations of
probability, one that could be termed “objective” and the other “subjective.” The first
is the interpretation of a probability as alimit of relative frequencies; the second, as
a degree of belief. Let us briefly describe each of these.

1To quote the French mathematician Pierre-Simon Laplace, one of the first to develop a mathematical
theory of probability: “Probability is composed partly of our ignorance, partly of our knowledge.”

1



2 BASIC PROBABILITY THEORY

For the first interpretation, suppose that we have an experiment where we are
interested in a particular outcome. We can repeat the experiment over and over and
each time record whether we got the outcome of interest. As weproceed, we count
the number of times that we got our outcome and divide this number by the number of
times that we performed the experiment. The resulting ratiois therelative frequency
of our outcome. As it can be observed empirically that such relative frequencies tend
to stabilize as the number of repetitions of the experiment grows, we might think of
the limit of the relative frequencies as the probability of the outcome. In mathematical
notation, if we considern repetitions of the experiment and ifSn of these gave our
outcome, then the relative frequency would befn = Sn/n, and we might say that
the probability equalslimn→∞ fn. Figure 1.1 shows a plot of the relative frequency
of heads in a computer simulation of100 hundred coin flips. Notice how there is
significant variation in the beginning but how the relative frequency settles in toward
1
2 quickly.

The second interpretation, probability as a degree of belief, is not as easily quan-
tified but has obvious intuitive appeal. In many cases, it overlaps with the previous
interpretation, for example, the coin flip. If we are asked toquantify our degree of
belief that a coin flip gives heads, where0 means “impossible” and1 means “with
certainty,” we would probably settle for12 unless we have some specific reason to
believe that the coin is not fair. In some cases it is not possible to repeat the experi-
ment in practice, but we can still imagine a sequence of repetitions. For example, in
a weather forecast you will often hear statements like “there is a30% chance of rain
tomorrow.” Of course, we cannot repeat the experiment; either it rains tomorrow or it
does not. The30% is the meteorologist’s measure of the chance of rain. There is still
a connection to the relative frequency approach; we can imagine a sequence of days
with similar weather conditions, same time of year, and so on, and that in roughly
30% of the cases, it rains the following day.

The “degree of belief” approach becomes less clear for statements such as “the
Riemann hypothesis is true” or “there is life on other planets.” Obviously these
are statements that are either true or false, but we do not know which, and it is not

0 20 40 60 80 100
0  

1/2 

1  

Fig. 1.1 Consecutive relative frequencies of heads in100 coin flips.
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unreasonable to use probabilities to express how strongly we believe in their truth. It is
also obvious that different individuals may assign completely different probabilities.

How, then, do we actuallydefinea probability? Instead of trying to use any of
these interpretations, we will state a strict mathematicaldefinition of probability. The
interpretations are still valid to develop intuition for the situation at hand, but instead
of, for example,assumingthat relative frequencies stabilize, we will be able toprove
that they do, within our theory.

1.2 SAMPLE SPACES AND EVENTS

As mentioned in the introduction, probability theory is a mathematical theory to
describe and analyze situations where randomness or uncertainty are present. Any
specific such situation will be referred to as arandom experiment. We use the term
“experiment” in a wide sense here; it could mean an actual physical experiment such
as flipping a coin or rolling a die, but it could also be a situation where we simply
observe something, such as the price of a stock at a given time, the amount of rain in
Houston in September, or the number of spam emails we receivein a day. After the
experiment is over, we call the result anoutcome. For any given experiment, there is
a set of possible outcomes, and we state the following definition.

Definition 1.2.1. The set of all possible outcomes in a random experiment is
called thesample space, denotedS.

Here are some examples of random experiments and their associated sample spaces.

Example1.2.1. Roll a die and observe the number.

Here we can get the numbers1 through6, and hence the sample space is

S = {1, 2, 3, 4, 5, 6}

Example1.2.2. Roll a die repeatedly and count the number of rolls it takes until the
first 6 appears.

Since the first6 may come in the first roll,1 is a possible outcome. Also, we may fail
to get6 in the first roll and then get6 in the second, so2 is also a possible outcome. If
we continue this argument we realize that any positive integer is a possible outcome
and the sample space is

S = {1, 2, ...}
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the set of positive integers.

Example1.2.3. Turn on a lightbulb and measure its lifetime, that is, the time until
it fails.

Here it is not immediately clear what the sample space shouldbe, since it depends on
how accurately we can measure time. The most convenient approach is to note that
the lifetime, at least in theory, can assume any nonnegativereal number and choose
as the sample space

S = [0,∞)

where the outcome 0 means that the lightbulb is broken to start with.

In these three examples, we have sample spaces of three different kinds. The first
is finite, meaning that it has a finite number of outcomes, whereas the second and
third are infinite. Although they are both infinite, they are different in the sense that
one has its points separated,{1, 2, ...} and the other is an entire continuum of points.
We call the first typecountable infinityand the seconduncountable infinity. We will
return to these concepts later as they turn out to form an important distinction.

In the examples above, the outcomes are always numbers and hence the sample
spaces are subsets of the real line. Here are some examples ofother types of sample
spaces.

Example1.2.4. Flip a coin twice and observe the sequence of heads and tails.

With H denoting heads andT denoting tails, one possible outcome isHT , which
means that we get heads in the first flip and tails in the second.Arguing like this,
there are four possible outcomes and the sample space is

S = {HH, HT, TH, TT }

Example1.2.5. Throw a dart at random on a dart board of radiusr.

If we think of the board as a disk in the plane with center at theorigin, an outcome is
an ordered pair of real numbers(x, y), and we can describe the sample space as

S = {(x, y) : x2 + y2 ≤ r2}
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Once we have described an experiment and its sample space, wewant to be able to
compute probabilities of the various things that may happen. What is the probability
that we get6 when we roll a die? That the first6 does not come before the fifth roll?
That the lightbulb works for at least1500 hours? That our dart hits the bull’s eye?
Certainly we need to make further assumptions to be able to answer these questions,
but before that, we realize that all these questions have something in common. They
all ask for probabilities of either single outcomes or groups of outcomes. Mathemat-
ically, we can describe these as subsets of the sample space.

Definition 1.2.2. A subset ofS, A ⊆ S, is called anevent.

Note the choice of words here. The terms “outcome” and “event” reflect the fact
that we are describing things that may happen in real life. Mathematically, these
are described as elements and subsets of the sample space. This duality is typical
for probability theory; there is a verbal description and a mathematical description
of the same situation. The verbal description is natural when real-world phenomena
are described and the mathematical formulation is necessary to develop a consistent
theory. See Table 1.1 for a list of set operations and their verbal description.

Example1.2.6. If we roll a die and observe the number, two possible events are that
we get an odd outcome and that we get at least4. If we view these as subsets of the
sample space we get

A = {1, 3, 5} and B = {4, 5, 6}

If we want to use the verbal description we might write this as

A = {odd outcome} and B = {at least4}

We always use “or” in its nonexclusive meaning; thus, “A or B occurs” includes the
possibility that both occur. Note that there are different ways to express combinations
of events; for example,A \ B = A ∩ Bc and(A ∪ B)c = Ac ∩ Bc. The latter is
known as one ofDe Morgan’s laws, and we state these without proof together with
some other basic set theoretic rules.
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Table 1.1 Basic set operations and their verbal description.

Notation Mathematical description Verbal description

A ∪ B The union ofA andB A or B (or both) occurs

A ∩ B The intersection ofA andB BothA andB occur

Ac The complement ofA A does not occur

A \ B The difference betweenA andB A occurs but notB

Ø The empty set Impossible event

Proposition 1.2.1. Let A, B, andC be events. Then

(a) (Distributive Laws) (A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C)

(A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C)

(b) (De Morgan’s Laws) (A ∪ B)c = Ac ∩ Bc

(A ∩ B)c = Ac ∪ Bc

As usual when dealing with set theory,Venn diagramsare useful. See Figure 1.2 for
an illustration of some of the set operations introduced above. We will later return to
how Venn diagrams can be used to calculate probabilities. IfA andB are such that
A ∩ B = Ø, they are said to bedisjoint or mutually exclusive. In words, this means
that they cannot both occur simultaneously in the experiment.

As we will often deal with unions of more than two or three events, we need more
general versions of the results given above. Let us first introduce some notation. If
A1, A2, ..., An is a sequence of events, we denote

n⋃

k=1

Ak = A1 ∪ A2 ∪ · · · ∪ An

the union of all theAk and

n⋂

k=1

Ak = A1 ∩ A2 ∩ · · · ∩ An

the intersection of all theAk. In words, these are the events thatat least oneof the
Ak occurs and thatall theAk occur, respectively. The distributive and De Morgan’s
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A B

A ∩ B

A B

B \ A

Fig. 1.2 Venn diagrams of the intersection and the difference between events.

laws extend in the obvious way, for example
(

n⋃

k=1

Ak

)c

=
n⋂

k=1

Ac
k

It is also natural to consider infinite unions and intersections. For example, in Example
1.2.2, the event that the first6 comes in an odd roll is the infinite union{1} ∪ {3} ∪
{5} ∪ · · · and we can use the same type of notation as for finite unions andwrite

{first 6 in odd roll} =

∞⋃

k=1

{2k − 1}

For infinite unions and intersections, distributive and De Morgan’s laws still extend
in the obvious way.

1.3 THE AXIOMS OF PROBABILITY

In the previous section, we laid the basis for a theory of probability by describing ran-
dom experiments in terms of the sample space, outcomes, and events. As mentioned,
we want to be able to compute probabilities of events. In the introduction, we men-
tioned two different interpretations of probability: as a limit of relative frequencies
and as a degree of belief. Since our aim is to build a consistent mathematical theory,
as widely applicable as possible, our definition of probability should not depend on
any particular interpretation. For example, it makes intuitive sense to require a prob-
ability to always be less than or equal to one (or equivalently, less than or equal to
100%). You cannot flip a coin10 times and get12 heads. Also, a statement such as “I
am 150% sure that it will rain tomorrow” may be used to expressextreme pessimism
regarding an upcoming picnic but is certainly not sensible from a logical point of
view. Also, a probability should be equal to one (or 100%), when there is absolute
certainty, regardless of any particular interpretation.

Other properties must hold as well. For example, if you thinkthere is a20% chance
that Bob is in his house, a30% chance that he is in his backyard, and a50% chance
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that he is at work, then the chance that he is at home is50%, the sum of20% and
30%. Relative frequencies are alsoadditivein this sense, and it is natural to demand
that the same rule apply for probabilities.

We now give a mathematical definition of probability, where it is defined as a real-
valued function of the events, satisfying three properties, which we refer to as the
axioms of probability. In the light of the discussion above, they should be intuitively
reasonable.

Definition 1.3.1. (Axioms of Probability). A probability measureis a
functionP , which assigns to each eventA a numberP (A) satisfying

(a) 0 ≤ P (A) ≤ 1

(b) P (S) = 1

(c) If A1, A2, ... is a sequence ofpairwise disjointevents, that is, ifi 6= j,
thenAi ∩ Aj = Ø, then

P

( ∞⋃

k=1

Ak

)
=

∞∑

k=1

P (Ak)

We readP (A) as “the probability ofA.” Note that a probability in this sense is a
real number between 0 and 1 but we will occasionally also use percentages so that,
for example, the phrases “The probability is0.2” and “There is a20% chance” mean
the same thing.2

The third axiom is the most powerful assumption when it comesto deducing prop-
erties and further results. Some texts prefer to state the third axiom for finite unions
only, but since infinite unions naturally arise even in simple examples, we choose
this more general version of the axioms. As it turns out, the finite case follows as
a consequence of the infinite. We next state this in a proposition and also that the
empty set has probability zero. Although intuitively obvious, we must prove that it
follows from the axioms. We leave this as an exercise.

2If the sample space is very large, it may be impossible to assign probabilities toall events. The class of
events then needs to be restricted to what is called aσ-field. For a more advanced treatment of probability
theory, this is a necessary restriction, but we can safely disregard this problem.
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Proposition 1.3.1. Let P be a probability measure. Then

(a) P (Ø) = 0

(b) If A1, ..., An are pairwise disjoint events, then

P (

n⋃

k=1

Ak) =

n∑

k=1

P (Ak)

In particular, ifA andB are disjoint, thenP (A ∪ B) = P (A) + P (B). In general,
unions need not be disjoint and we next show how to compute theprobability of
a union in general, as well as prove some other basic properties of the probability
measure.

Proposition 1.3.2. Let P be a probability measure on some sample spaceS
and letA andB be events. Then

(a) P (Ac) = 1 − P (A)

(b) P (A \ B) = P (A) − P (A ∩ B)

(c) P (A ∪ B) = P (A) + P (B) − P (A ∩ B)

(d) If A ⊆ B, thenP (A) ≤ P (B)

Proof. We prove (b) and (c), and leave (a) and (d) as exercises. For (b), note that
A = (A ∩ B) ∪ (A \ B), which is a disjoint union, and Proposition 1.3.1 gives

P (A) = P (A ∩ B) + P (A \ B)

which proves the assertion. For (c), we writeA ∪ B = A ∪ (B \ A), which is a
disjoint union, and we get

P (A ∪ B) = P (A) + P (B \ A) = P (A) + P (B) − P (A ∩ B)

by part (b).

Note how we repeatedly used Proposition 1.3.1(b), the finiteversion of the third ax-
iom. In Proposition 1.3.2(c), for example, the eventsA andB are not necessarily
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disjoint but we can represent their union as a union of other events that are disjoint,
thus allowing us to apply the third axiom.

Example1.3.1. Mrs Boudreaux and Mrs Thibodeaux are chatting over their fence
when the new neighbor walks by. He is a man in his sixties with shabby clothes and a
distinct smell of cheap whiskey. Mrs B, who has seen him before, tells Mrs T that he
is a former Louisiana state senator. Mrs T finds this very hardto believe. “Yes,” says
Mrs B, “he is a former state senator who got into a scandal longago, had to resign
and started drinking.” “Oh,” says Mrs T, “that sounds more probable.” “No,” says
Mrs B, “I think you mean less probable.”

Actually, Mrs B is right. Consider the following two statements about the shabby
man: “He is a former state senator” and “He is a former state senator who got into
a scandal long ago, had to resign, and started drinking.” It is tempting to think that
the second is more probable because it gives a more exhaustive explanation of the
situation at hand. However, this is precisely why it is alessprobable statement. To
explain this with probabilities, consider the experiment of observing a person and the
two events

A = {he is a former state senator}
B = {he got into a scandal long ago, had to resign and started drinking}

The first statement then corresponds to the eventA and the second to the eventA∩B,
and sinceA∩B ⊆ A, we getP (A∩B) ≤ P (A). Of course, what Mrs T meant was
that it was easier to believe that the man was a former state senator once she knew
more about his background.

In their bookJudgment under Uncertainty, Kahneman et al. [5], show empirically
how people often make similar mistakes when asked to choose the most probable
among a set of statements. With a strict application of the rules of probability we get
it right.

Example1.3.2. Consider the following statement: “I heard on the news that there is
a 50% chance of rain on Saturday and a 50% chance of rain on Sunday. Then there
must be a 100% chance of rain during the weekend.”

This is, of course, not true. However, it may be harder to point out precisely where
the error lies, but we can address it with probability theory. The events of interest are

A = {rain on Saturday} and B = {rain on Sunday}

and the event of rain during the weekend is thenA ∪ B. The percentages are refor-
mulated as probabilities so thatP (A) = P (B) = 0.5 and we get
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P (rain during the weekend) = P (A ∪ B)

= P (A) + P (B) − P (A ∩ B)

= 1 − P (A ∩ B)

which is less than 1, that is, the chance of rain during the weekend is less than 100%.
The error in the statement lies in that we can add probabilities only when the events
are disjoint. In general, we need to subtract the probability of the intersection, which
in this case is the probability that it rains both Saturday and Sunday.

Example1.3.3. A dart board has area of143 in.2 (square inches). In the center of
the board, there is the “bulls eye,” which is a disk of area 1 in.2. The rest of the board
is divided into20 sectors numbered1, 2, ..., 20. There is also a triple ring that has an
area of10 in.2 and a double ring of area 15 in.2 (everything rounded to nearest inte-
gers). Suppose that you throw a dart at random on the board. What is the probability
that you get(a) double14, (b) 14 but not double,(c) triple or the bull’s eye,(d) an
even number or a double?

Introduce the eventsF = {14}, D = {double}, T = {triple}, B = {bull’s eye},
andE = {even}. We interpret “throw a dart at random” to mean that any region
is hit with a probability that equals the fraction of the total area of the board that
region occupies. For example, each number has area(143 − 1)/20 = 7.1 in.2 so the
corresponding probability is7.1/143. We get

P (double14) = P (D ∩ F ) =
0.75

143
≈ 0.005

P (14 but not double) = P (F \ D) = P (F ) − P (F ∩ D)

=
7.1

143
− 0.75

143
≈ 0.044

P (triple or bulls eye) = P (T ∪ B) = P (T ) + P (B)

=
10

143
+

1

143
≈ 0.077

P (even or double) = P (E ∪ D) = P (E) + P (D) − P (E ∩ D)

=
71

143
+

15

143
− 7.5

143
≈ 0.55
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Let us say a word here about the interplay between logical statements and events. In
the previous example, consider the eventsE = {even} andF = {14}. Clearly, if
we get14, we also get an even number. As a logical relation between statements, we
would express this as

the number is14 ⇒ the number is even

and in terms of events, we would say “IfF occurs, thenE must also occur.” But this
means thatF ⊆ E and hence

{the number is14} ⊆ {the number is even}

and thus the set-theoretic analog of “⇒” is “⊆” which is useful to keep in mind.
Venn diagrams turn out to provide a nice and useful interpretation of probabilities.

If we imagine the sample spaceS to be a rectangle of area1, we can interpret the
probability of an eventA as the area ofA (see Figure 1.3). For example, Proposition
1.3.2(c) says thatP (A ∪ B) = P (A) + P (B) − P (A ∩ B). With the interpretation
of probabilities as areas, we thus have

P (A ∪ B) = area ofA ∪ B

= area ofA + area ofB − area ofA ∩ B

= P (A) + P (B) − P (A ∩ B)

since when we add the areas ofA andB, we count the area ofA∩B twice and must
subtract it (think ofA andB as overlapping pancakes where we are interested only
in how much area they cover). Strictly speaking, this is not aproof but the method
can be helpful to find formulas that can then be proved formally. In the case of three
events, consider Figure 1.4 to argue that

Area ofA ∪ B ∪ C = area ofA + area ofB + area ofC

− area ofA ∩ B − area ofA ∩ C − area ofB ∩ C

+ area ofA ∩ B ∩ C

Total area= 1

S

area ofA

P (A ) =

Fig. 1.3 Probabilities with Venn diagrams.



THE AXIOMS OF PROBABILITY 13

BA

C

Fig. 1.4 Venn diagram of three events.

since the piece in the middle was first added3 times and then removed3 times, so in
the end we have to add it again. Note that we must draw the diagram so that we get
all possible combinations of intersections between the events. We have argued for
the following proposition, which we state and prove formally.

Proposition 1.3.3. Let A, B, andC be three events. Then

P (A ∪ B ∪ C) = P (A) + P (B) + P (C)

− P (A ∩ B) − P (A ∩ C) − P (B ∩ C)

+ P (A ∩ B ∩ C)

Proof. By applying Proposition 1.3.2(c) twice — first to the two eventsA∪B and
C and secondly to the eventsA andB — we obtain

P (A ∪ B ∪ C) = P (A ∪ B) + P (C) − P ((A ∪ B) ∩ C)

= P (A) + P (B) − P (A ∩ B) + P (C) − P ((A ∪ B) ∩ C)

The first four terms are what they should be. To deal with the last term, note that by
the distributive laws for set operations, we obtain

(A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C)

and yet another application of Proposition 1.3.2(c) gives

P ((A ∪ B) ∩ C) = P ((A ∩ C) ∪ (B ∩ C))

= P (A ∩ C) + P (B ∩ C) − P (A ∩ B ∩ C)
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which gives the desired result.

Example1.3.4. Choose a number at random from the numbers1, ..., 100. What is
the probability that the chosen number is divisible by either 2, 3, or 5?

Introduce the events

Ak = {divisible byk}, for k = 1, 2, ...

We interpret “at random” to mean that any set of numbers has a probability that is
equal to its relative size, that is, the number of elements divided by 100. We then get

P (A2) = 0.5, P (A3) = 0.33, andP (A5) = 0.2

For the intersection, first note that, for example,A2 ∩A3 is the event that the number
is divisible by both2 and3, which is the same as saying it is divisible by6. Hence
A2 ∩ A3 = A6 and

P (A2 ∩ A3) = P (A6) = 0.16

Similarly, we get

P (A2 ∩ A5) = P (A10) = 0.1, P (A3 ∩ A5) = P (A15) = 0.06

and

P (A2 ∩ A3 ∩ A5) = P (A30) = 0.03

The event of interest isA2 ∪ A3 ∪ A5, and Proposition 1.3.3 yields

P (A2 ∪ A3 ∪ A5) = 0.5 + 0.33 + 0.2 − (0.16 + 0.1 + 0.06) + 0.03 = 0.74

It is now easy to believe that the general formula for a union of n events starts by
adding the probabilities of the events, then subtracting the probabilities of the pairwise
intersections, adding the probabilities of intersectionsof triples and so on, finishing
with either adding or subtracting the intersection of all the n events, depending on
whethern is odd or even. We state this in a proposition that is sometimes referred to
as theinclusion–exclusion formula. It can, for example, be proved by induction, but
we leave the proof as an exercise.
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Proposition 1.3.4. Let A1, A2, ..., An be a sequence ofn events. Then

P

(
n⋃

k=1

Ak

)
=

n∑

k=1

P (Ak)

−
∑

i<j

P (Ai ∩ Aj)

+
∑

i<j<k

P (Ai ∩ Aj ∩ Ak)

...

+ (−1)n+1P (A1 ∩ A2 ∩ · · · ∩ An)

We finish this section with a theoretical result that will be useful from time to time.
A sequence of events is said to beincreasingif

A1 ⊆ A2 ⊆ · · ·
anddecreasingif

A1 ⊇ A2 ⊇ · · ·
In each case we can define thelimit of the sequence. If the sequence is increasing,
we define

lim
n→∞

An =

∞⋃

k=1

Ak

and if the sequence is decreasing

lim
n→∞

An =

∞⋂

k=1

Ak

Note how this is similar to limits of sequences of numbers, with⊆ and⊇ correspond-
ing to≤ and≥, respectively, and union and intersection corresponding to supremum
and infimum. The following proposition states that the probability measure is acon-
tinuous set function. The proof is outlined in Problem 18.

Proposition 1.3.5. If A1, A2, ... is either increasing or decreasing, then

P ( lim
n→∞

An) = lim
n→∞

P (An)
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1.4 FINITE SAMPLE SPACES AND COMBINATORICS

The results in the previous section hold for an arbitrary sample spaceS. In this section
we will assume thatS is finite, S = {s1, ..., sn}, say. In this case, we can always
define the probability measure by assigning probabilities to the individual outcomes.

Proposition 1.4.1. Suppose thatp1, ..., pn are numbers such that

(a) pk ≥ 0, k = 1, ..., n

(b)
n∑

k=1

pk = 1

and for any eventA ⊆ S, define

P (A) =
∑

k:sk∈A

pk

ThenP is a probability measure.

Proof. Clearly, the first two axioms of probability are satisfied. For the third, note
that in a finite sample space, we cannot have infinitely many disjoint events, so we
only have to check this for a disjoint union of two eventsA andB. We get

P (A ∪ B) =
∑

k:sk∈A∪B

pk =
∑

k:sk∈A

pk +
∑

k:sk∈B

pk = P (A) + P (B)

and we are done. (Why are two events enough?)

Hence, when dealing with finite sample spaces, we do not need to explicitly give the
probability of every event, only for each outcome. We refer to the numbersp1, ..., pn

as aprobability distributiononS.

Example1.4.1. Consider the experiment of flipping a fair coin twice and counting
the number of heads. We can take the sample space

S = {HH, HT, TH, TT }

and letp1 = ... = p4 = 1
4 . Alternatively, since all we are interested in is the number

of heads and this can be0, 1, or 2, we can use the sample space

S = {0, 1, 2}



FINITE SAMPLE SPACES AND COMBINATORICS 17

and letp0 = 1
4 , p1 = 1

2 , p2 = 1
4 .

Of particular interest is the case when all outcomes are equally likely. If S hasn
equally likely outcomes, thenp1 = p2 = · · · = pn = 1

n , which is called auniform
distributiononS. The formula for the probability of an eventA now simplifies to

P (A) =
∑

k:sk∈A

1

n
=

#A

n

where#A denotes the number of elements inA. This formula is often referred to as
theclassical definition of probability, since historically this was the first context in
which probabilities were studied. The outcomes in the eventA can be described as
favorableto A and we get the following formulation.

Corollary 1.4.2. In a finite sample space with uniform probability distribution

P (A) =
# favorable outcomes
# possible outcomes

In daily language, the term “at random” is often used for something that has a uniform
distribution. Although our concept of randomness is more general, this colloquial
notion is so common that we will also use it (and already have). Thus, if we say “pick
a number at random from1, ..., 10,” we mean “pick a number according to a uniform
probability distribution on the sample space{1, 2, ..., 10}.”

Example1.4.2. Roll a fair die3 times. What is the probability that all numbers are
the same?

The sample space is the set of the216 ordered triples(i, j, k), and since the die is fair,
these are all equally probable and we have a uniform probability distribution. The
event of interest is

A = {(1, 1, 1), (2, 2, 2), ..., (6, 6, 6)}
which has six outcomes and probability

P (A) =
# favorable outcomes
# possible outcomes

=
6

216
=

1

36
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Example1.4.3. Consider a randomly chosen family with three children. Whatis
the probability that they have exactly one daughter?

There are eight possible sequences of boys and girls (in order of birth), and we get
the sample space

S = {bbb, bbg, bgb, bgg, gbb, gbg, ggb, ggg}

where, for example,bbg means that the oldest child is a boy, the middle child a boy,
and the youngest child a girl. If we assume that all outcomes are equally likely, we
get a uniform probability distribution onS, and since there are three outcomes with
one girl, we get

P (one daughter) =
3

8

Example1.4.4. Consider a randomly chosen girl who has two siblings. What isthe
probability that she has no sisters?

Although this seems like the same problem as in the previous example, it is not. If, for
example, the family has three girls, the chosen girl can be any of these three, so there
are three different outcomes and the sample space needs to take this into account. Let
g∗ denote the chosen girl to get the sample space

S = {g∗gg, gg∗g, ggg∗, g∗gb, gg∗b, g∗bg, gbg∗, bg∗g, bgg∗, g∗bb, bg∗b, bbg∗}

and since3 out of12 equally likely outcomes have no sisters we get

P (no sisters) =
1

4

which is smaller than the38 we got above. On average,37.5% of families with three
children have a single daughter and25% of girls in three-children families are single
daughters.

1.4.1 Combinatorics

Combinatorics, “the mathematics of counting,” gives rise to a wealth of probability
problems. The typical situation is that we have a set of objects from which we draw
repeatedly in such a way that all objects are equally likely to be drawn. It is often
tedious to list the sample space explicitly, but by countingcombinations we can find
the total number of cases and the number of favorable cases and apply the methods
from the previous section.

The first problem is to find general expressions for the total number of combi-
nations when we drawk times from a set ofn distinguishable objects. There are
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different ways to interpret this. For example, we can drawwith or without replace-
ment, depending on whether the same object can be drawn more than once. We can
also drawwith or without regard to order, depending on whether it matters in which
order the objects are drawn. With these distinctions, thereare four different cases,
illustrated in the following simple example.

Example1.4.5. Choose two numbers from the set{1, 2, 3} and list the possible out-
comes.

Let us first choose with regard to order. If we choose with replacement, the possible
outcomes are

(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)

and if we choose without replacement

(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)

Next, let us choose without regard to order. This means that,for example, the out-
comes(1, 2) and(2, 1) are regarded as the same and we denote it by{1, 2} to stress
that this is thesetof 1 and2, not the ordered pair. If we choose with replacement, the
possible cases are

{1, 1}, {1, 2}, {1, 3}, {2, 2}, {2, 3}, {3, 3}

and if we choose without replacement

{1, 2}, {1, 3}, {2, 3}

To find expressions in the four cases for arbitrary values ofn andk, we first need the
following result. It is intuitively quite clear, and we state it without proof.

Proposition 1.4.3. If we are to performr experiments in order, such that
there aren1 possible outcomes of the first experiment,n2 possible outcomes
of the second experiment, ..., nr possible outcomes of therth experiment, then
there is a total ofn1n2 · · ·nr outcomes of the sequence of ther experiments.

This is called thefundamental principle of countingor themultiplication principle.
Let us illustrate it by a simple example.
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Example1.4.6. A Swedish license plate consists of three letters followed by three
digits. How many possible license plates are there?

Although there are28 letters in the Swedish alphabet, only23 are used for license
plates. Hence we haver = 6, n1 = n2 = n3 = 23, andn4 = n5 = n6 = 10. This
gives a total of233 × 103 ≈ 12.2 million different license plates.

We can now address the problem of drawingk times from a set ofn objects. It turns
out that choosing with regard to order is the simplest, so letus start with this and first
consider the case of choosing with replacement. The first object can be chosen inn
ways, and for each such choice, we haven ways to choose also the second object,n
ways to choose the third, and so on. The fundamental principle of counting gives

n × n × · · · × n = nk

ways to choose with replacement and with regard to order.
If we instead choose without replacement, the first object can be chosen inn ways,

the second inn − 1 ways, since the first object has been removed, the third inn − 2
ways and so on. The fundamental principle of counting gives

n(n − 1) · · · (n − k + 1)

ways to choose without replacement and with regard to order.Sometimes the notation

(n)k = n(n − 1) · · · (n − k + 1)

will be used for convenience, but this is not standard.

Example1.4.7. From a group of20 students, half of whom are female, a student
council president and vice president are chosen at random. What is the probability
of getting a female president and a male vice president?

The set of objects is the20 students. Assuming that the president is drawn first, we
need to take order into account, since, for example, (Brenda, Bruce) is a favorable
outcome but (Bruce, Brenda) is not. Also, drawing is done without replacement.
Thus, we havek = 2 andn = 20 and there are20×19 = 380 equally likely different
ways to choose a president and a vice president. The sample space is the set of these
380 combinations and to find the probability, we need the number of favorable cases.
By the fundamental principle of counting, this is10 × 10 = 100. The probability of
getting a female president and male vice president is100

380 ≈ 0.26.

Example1.4.8. A human gene consists of nucleotide base pairs of four different
kinds,A, C, G, andT . If a particular region of interest of a gene has20 base pairs,
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what is the probability that a randomlychosen individual has no base pairs in common
with a particular reference sequence in a database?

The set of objects is{A, C, G, T }, and we draw20 times with replacement and with
regard to order. Thusk = 20 andn = 4, so there are420 possible outcomes, and
let us, for the sake of this example, assume that they are equally likely (which would
not be true in reality). For the number of favorable outcomes, n = 3 instead of 4
since we need to avoid one particular letter in each choice. Hence the probability is
320/420 ≈ 0.003.

Example1.4.9. (The Birthday Problem). This problem is a favorite in the proba-
bility literature. In a group of 100 people, what is the probability that at least two
have the same birthday?

To simplify the solution, we disregard leap years and assumea uniform distribution
of birthdays over the365 days of the year. To assign birthdays to100 people, we
choose100 out of365 with replacement and get365100 different combinations. The
sample space is the set of those combinations, and the event of interest is

A = {at least two birthdays are equal}

and as it turns out, it is easier to deal with its complement

Ac = {all 100 birthdays are different}

To find the probability ofAc, note that the number of cases favorable toAc is obtained
by choosing100 days out of365 withoutreplacement and hence

P (A) = 1 − P (Ac) = 1 − 365 × 364 × · · · × 266

365100
≈ 0.9999997

Yes, that is a sequence of six9s followed by a7! Hence, we can be almost certain
that any group of100 people has at least two people sharing birthdays. A similar
calculation reveals the probability of a shared birthday already exceeds12 at 23 peo-
ple, a quite surprising result. About50% of school classes thus ought to have kids
who share birthdays, something that those with idle time on their hands can check
empirically.

A check of real-life birthday distributions will reveal that the assumption of birthdays
being uniformly distributed over the year is not true. However, the already high proba-
bility of shared birthdays only gets higher with a nonuniform distribution. Intuitively,
this is because the less uniform the distribution, the more difficult it becomes to avoid
birthdays already taken. For an extreme example, suppose that everybody was born
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in January, in which case there would be only31 days to choose from instead of365.
Thus, in a group of100 people, there would be absolute certainty of shared birthdays.
Generally, it can be shown that the uniform distribution minimizes the probability of
shared birthdays (we return to this in Problems 55 and 56).

Example1.4.10. (The Birthday Problem continued). A while ago I was in a group
of exactly100 people and asked for their birthdays. It turned out that nobody had the
same birthday as I do. In the light of the previous problem, would this not be a very
unlikely coincidence?

No, because here we are only considering the case of avoidingone particular birthday.
Hence, with

B = {at least one out of99 birthdays is the same as mine}

we get
Bc = {99 birthdays are different from mine}

and the number of cases favorable toBc is obtained by choosing with replacement
from the364 days that do not match my birthday. We get

P (B) = 1 − P (Bc) = 1 − 36499

36599
≈ 0.24

Thus, it is actually quite likely that nobody shares my birthday, and it is at the same
time almost certain that at least somebody shares somebody else’s birthday.

Next we turn to the case of choosing without regard to order. First, suppose that we
choose without replacement and letx be the number of possible ways, in which this
can be done. Now, there aren(n − 1) · · · (n − k + 1) ways to choose with regard
to order and each such ordered set can be obtained by first choosing the objects and
then order them. Since there arex ways to choose the unordered objects andk! ways
to order them, we get the relation

n(n − 1) · · · (n − k + 1) = x × k!

and hence there are

x =
n(n − 1) · · · (n − k + 1)

k!
(1.4.1)

ways to choose without replacement, without regard to order. In other words, this is
the number of subsets of sizek of a set of sizen, called thebinomial coefficient, read
“n choosek” and usually denoted and defined as

(
n

k

)
=

n!

(n − k)!k!
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but we use the expression in Equation (1.4.1) for computations. By convention,
(

n

0

)
= 1

and from the definition it follows immediately that
(

n

k

)
=

(
n

n − k

)

which is useful for computations. For some further properties, see Problem 24.

Example1.4.11. In Texas Lotto, you choose five of the numbers1, ..., 44 and one
bonus ball number, also from1, ..., 44. Winning numbers are chosen randomly.
Which is more likely: that you match the first five numbers but not the bonus ball or
that you match four of the first five numbers and the bonus ball?

Since we have to match five of our six numbers in each case, are the two not equally
likely? Let us compute the probabilities and see. The set of objects is{1, 2, ..., 44}
and the first five numbers are drawn without replacement and without regard to order.
Hence there are

(
44
5

)
combinations and for each of these there are then44 possible

choices of the bonus ball. Thus, there is a total of
(
44
5

)
× 44 = 47, 784, 352 different

combinations. Introduce the events

A = {match the first five numbers but not the bonus ball}
B = {match four of the first five numbers and the bonus ball}

ForA, the number of favorable cases is1 × 43 (only one way to match the first five
numbers,43 ways to avoid the winning bonus ball). Hence

P (A) =
1 × 43(
44

5

)
× 44

≈ 9 × 10−7

To find the number of cases favorable toB, note that there are
(
5
4

)
= 5 ways to match

four out of five winning numbers and then
(
39
1

)
= 39 ways to avoid the fifth winning

number. There is only one choice for the bonus ball and we get

P (B) =
5 × 39 × 1(
44

5

)
× 44

≈ 4 × 10−6

soB is more than4 times as likely asA.
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Example1.4.12. You are dealt a poker hand (5 cards out of52 without replacement).
(a) What is the probability that you get no hearts?(b) What is the probability that
you get exactlyk hearts?(c) What is the most likely number of hearts?

We will solve this by disregarding order. The number of possible cases is the number
of ways in which we can choose5 out of 52 cards, which equals

(
52
5

)
. In (a), to get

a favorable case, we need to choose all5 cards from the39 that are not hearts. Since
this can be done in

(
39
5

)
ways, we get

P (no hearts) =

(
39

5

)

(
52

5

) ≈ 0.22

In (b), we need to choosek cards among the13 hearts, and for each such choice, the
remaining5 − k cards are chosen among the remaining39 that are not hearts. This
gives

P (k hearts) =

(
13

k

)(
39

5 − k

)

(
52

5

) , k = 0, 1, ..., 5

and for (c), direct computation gives the most likelynumberas1, which has probability
0.41.

The problem in the previous example can also be solved by taking order into account.
Hence, we imagine that we get the cards one by one and list themin order and note
that there are(52)5 different cases. There are(13)k(39)5−k ways to choose so that
we getk hearts and5− k nonhearts in a particular order. Since there are

(
5
k

)
ways to

choose position for thek hearts, we get

P (k hearts) =

(
5

k

)
(13)k(39)5−k

(52)5

which is the same as we got when we disregarded order above. Itdoes not matter
to the solution of the problem whether we take order into account, but we must be
consistent and count the same way for the total and the favorable number of cases. In
this particular example, it is probably easier to disregardorder.

Example1.4.13. An urn contains10 white balls,10 red balls, and10 black balls.
You draw5 balls at random without replacement. What is the probability that you do
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not get all colors?

Introduce the events

R = {no red balls}, W = {no white balls}, B = {no black balls}

The event of interest is thenR ∪ W ∪ B, and we will apply Proposition 1.3.3. First
note that by symmetry,P (R) = P (W ) = P (B). Also, each intersection of any two
events has the same probability and finallyR ∩ W ∩ B = Ø. We get

P (not all colors) = 3P (R) − 3P (R ∩ W )

In order to get no red balls, the5 balls must be chosen among the20 balls that are not
red and hence

P (R) =

(
20

5

)/(
30

5

)

Similarly, to get neither red, nor white balls, the5 balls must be chosen among the
black balls and

P (R ∩ W ) =

(
10

5

)/(
30

5

)

We get

P (not all colors) = 3

((
20

5

)
−
(

10

5

))/(
30

5

)
≈ 0.32

Example1.4.14.

The final case, choosing with replacement and without regardto order, turns out to
be the trickiest. As we noted above, when we choose without replacement, each
unordered set ofk objects corresponds to exactlyk! ordered sets. The relation is not
so simple when we choose with replacement. For example, the unordered set{1, 1}
corresponds to one ordered set(1, 1), whereas the unordered set{1, 2} corresponds
to two ordered sets(1, 2) and(2, 1). To find the general expression, we need to take
a less direct route.

Imagine a row ofn slots, numbered from1 to n and separated by single walls
where slot numberj represents thejth object.. Whenever objectj is drawn, a ball is
put in slot numberj. After k draws, we will thus havek balls distributed over then
slots (and slots corresponding to objects never drawn are empty). The question now
reduces to how many ways there are to distributek balls overn slots. This is equiv-
alent to rearranging then− 1 inner walls and thek balls, which in turn is equivalent
to choosing positions for thek balls from a total ofn − 1 + k positions. But this
can be done in

(
n−1+k

k

)
ways, and hence this is the number of ways to choose with

replacement and without regard to order.
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Example1.4.15. The Texas Lottery game “Pick 3” is played by picking three num-
bers with replacement from the numbers0, 1, ..., 9. You can play “exact order” or
“any order.” With the “exact order” option, you win when yournumbers match the
winning numbers in the exact order they are drawn. With the “any order” option, you
win whenever your numbers match the winning numbers in any order. How many
possible winning combinations are there with the “any order” option?

We haven = 10, k = 3, and the winning numbers are chosen with replacement and
without regard to order and hence there are

(
10 − 1 + 3

3

)
=

(
12

3

)
= 220

possible winning combinations.

Example1.4.16. Draw twice from the set{1, ..., 9} at random with replacement.
What is the probability that the two drawn numbers are equal?

We haven = 9 andk = 2. Taking order into account, there are9 × 9 = 81 possible
cases,9 of which are favorable. Hence the probability is981 = 1

9 . If we disregard
order, we have

(
9−1+2

2

)
= 45 possible cases and still9 favorable and the probability

is 9
45 = 1

5 . Since whether we draw with or without regard to order does not seem to
matter to the question, why do we get different results?

The problem is that in the second case, when we draw without regard to order, the
distribution is not uniform. For example, the outcome{1, 2} corresponds to the two
equally likely ordered outcomes(1, 2) and(2, 1) and is thus twice as likely as the
outcome{1, 1}, which corresponds to only one ordered outcome(1, 1). Thus, the
first solution1

9 is correct.

Thus, when we draw with replacement but without regard to order, we must be careful
when we compute probabilities, since the distribution is not uniform, as it is in the
other three cases. Luckily, this case is far more uncommon inapplications than are
the other three cases. There is one interesting application, though, that has to do with
the number of integer solutions to a certain type of equation. If we look again at the
way in which we arrived at the formula and letxj denote the number of balls in slot
j, we realize that we must havex1 + · · ·+xn = k and get the following observation.

Corollary 1.4.4. There are
(
n−1+k

k

)
non-negative integer solutions

(x1, ..., xn) to the equationx1 + · · · + xn = k.
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The four different ways of choosingk out ofn objects are summarized in Table 1.2.
Note that when we choose without replacement,k must be less than or equal ton,
but when we choose with replacement, there is no such restriction.

We finish with another favorite problem from the probabilityliterature. It com-
bines combinatorics with previous results concerning the probability of a union.

Example1.4.17. (The Matching Problem). The numbers1, 2, ..., n are listed in
random order. Whenever a number remains in its original position in the permuta-
tion, we call this a “match.” For example, ifn = 5, then there are two matches in the
permutation32541 and none in23451. (a) What is the probability that there are no
matches?(b) What happens to the probability in (a) asn → ∞?

Before we solve this, let us try to think about part (b). Does it get easier or harder to
avoid matches whenn is large? It seems possible to argue for both. With so many
choices, it is easy to avoid a match in each particular position. On the other hand,
there are many positions to try, so it should not be too hard toget at least one match.
It is not easy to have good intuition for what happens here.

To solve the problem, wefirst consider the complement of no matches and introduce
the events

A = {at least one match}
Ak = {match in thekth draw}, k = 1, 2, ..., n

so that

A =

n⋃

k=1

Ak

We will apply Proposition 1.3.4, so we need to figure out the probabilities of the
eventsAk as well as all intersections of two events, three events and so on.

Table 1.2 Choosingk out ofn objects

With replacement Without replacement

With regard to order nk n(n − 1) · · · (n − k + 1)

Without regard to order

(
n − 1 + k

k

) (
n

k

)
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First note that there aren! different permutations of the numbers1, 2, ..., n. To
get a match in positionk, there is only one choice for that number and the rest can be
ordered in(n − 1)! different ways. We get the probability

P (Ak) =
# favorable outcomes
# possible outcomes

=
(n − 1)!

n!
=

1

n

which means that the first sum in Proposition 1.3.4 equals1. To get a match in both
theith andjth positions, we have only one choice for each of these two positions and
the remainingn − 2 numbers can be ordered in(n − 2)! ways and

P (Ai ∩ Aj) =
(n − 2)!

n!
=

1

n(n − 1)

Since there are
(
n
2

)
ways to select two eventsAi andAj, we get, the following equation

for the second sum in Proposition 1.3.4:

∑

i<j

P (Ai ∩ Aj) =

(
n

2

)
1

n(n − 1)

=
n(n − 1)

2!
× 1

n(n − 1)
=

1

2!

Proceeding to the third sum, a similar argument gives that, for fixedi < j < k

∑

i<j<k

P (Ai ∩ Aj ∩ Ak) =

(
n

3

)
× 1

n(n − 1)(n − 2)
=

1

3!

and the pattern emerges. Thejth sum in Proposition 1.3.4 equals1/j!, and with the
alternating signs we get

P (at least one match) = 1 −
n∑

j=2

(−1)j

j!
= 1 −

n∑

j=0

(−1)j

j!

which finally gives

P (no matches) =

n∑

j=0

(−1)j

j!

This is interesting. First, the probability is not monotonein n, so we cannot say
that it gets easier or harder to avoid matches asn increases. Second, asn → ∞,
we recognize the limit as the Taylor expansion ofe−1 and hence the probability of
no matches converges toe−1 ≈ 0.37 asn → ∞. We can also note how rapid the
convergence is; already forn = 4, the probability is0.375. Thus, for all practical
purposes, the probability to get no matches is0.37 regardless ofn. In Problem 36,
you are asked to find the probability of exactlyj matches.
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1.5 CONDITIONAL PROBABILITY AND INDEPENDENCE

In this section we introduce the important notion ofconditional probability. The idea
behind this concept is that the value of a probability can change if we get additional
information. For example, the probability of contracting lung cancer is higher among
smokers than nonsmokers and the probability of voting Republican is higher in Texas
than in Massachusetts.

To arrive at a formal definition of conditional probabilities, we consider the ex-
ample with the dart board from Example 1.3.3. Suppose you throw darts repeatedly
at random on a dart board and consider only those darts that hit the number 14. In
the long run, what proportion of those will also be doubles? Since the area of 14 is
142/20 = 7.1 in.2 and the area of the double ring inside 14 is15/20 = 0.75 in.2, in the
long run we expect the proportion0.75/7.1 ≈ 0.11 of hits of 14 to also be doubles.
To express this as a statement about probabilities, we can say that if we know that
a dart hits 14, the probability that it is also a double is0.11. Since the probability
of 14 isP (F ) = 7.1/143 and of both double and 14 isP (F ∩ D) = 0.75/143, we
see that the probability that a dart hits a double if we know that it hits 14 is the ratio
P (F ∩ D)/P (F ).

Now consider a sample space in general and letA andB be two events. If we
know thatB occurred in an experiment, what is the probability that alsoA occurred?
We can draw a Venn diagram and apply the same reasoning as above. Since the
fraction of area ofA insideB is P (A∩B)/P (B), it seems reasonable that this is the
probability we seek. This is the intuition behind the following definition.

Definition 1.5.1. Let B be an event such thatP (B) > 0. For any eventA,
denote and define theconditional probability ofA givenB as

P (A|B) =
P (A ∩ B)

P (B)

We think of this as the probability ofA if we know thatB has occurred. Hence, to
compute a conditional probability means to compute a probability given additional
information.

Example1.5.1. Let us revisit Mrs B and Mrs T from Example 1.3.1. If we introduce
a third event

C = {he is shabby-looking}
then one way to interpret Mrs T’s comment “that sounds more probable” is that

P (A|B ∩ C) > P (A|C)
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that is, given that more of the background is known, it seems more likely that the
person is who Mrs B says he is.

Example1.5.2. Roll a die and observe the number. Let

A = {odd outcome} and B = {at least4}

What isP (A|B)?

We solve this in two different ways: (1) by using the definition and (2) by intuitive
reasoning. SinceP (A ∩ B) = P ({5}) = 1

6 andP (B) = 1
2 , the definition gives

P (A|B) =
P (A ∩ B)

P (B)
=

1/6

1/2
=

1

3

If we think about this intuitively, to condition on the eventB means that we get
the additional information that the outcome is at least4. Since one of these three
outcomes is also odd and outcomes are equally likely, the conditional probability of
odd is 1

3 .

There is no general rule for whether it is easier to use the definition or intuitive
reasoning. In the previous example, the “one out of three” approach works since
outcomes are equally likely but this is not always the case.

Conditional probabilities can make it easier to compute probabilities of intersec-
tions. Say that we want to computeP (A ∩ B) but that it is tricky to do so di-
rectly. However, if we can findP (B) andP (A|B), then the definition tells us that
P (A ∩ B) = P (A|B)P (B) and we are done. Let us look at some examples of this.

Example1.5.3. In Example 1.3.2, we had the eventsA = {rain on Saturday} and
B = {rain on Sunday}, whereP (A) = P (B) = 0.5. Now suppose that a rainy day
is followed by another rainy day with probability0.7. What is the probability of rain
during the weekend?

We already know that the probability of a rainy weekend is

P (A ∪ B) = 1 − P (A ∩ B)

where we can now computeP (A ∩ B) as

P (A ∩ B) = P (B|A)P (A) = 0.7 × 0.5 = 0.35

and we get
P (A ∪ B) = 0.65
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as the probability of rain during the weekend.

Example1.5.4. From a deck of cards, draw four cards at random, without replace-
ment. If you getj aces, drawj cards from another deck. What is the probability of
getting exactly two aces from each deck?

With

A = {two aces from the first deck}
B = {two aces from the second deck}

the event of interest isA∩B, and it is not that easy to figure out its probability directly.
However, if we use conditional probabilities, it is simple.We get

P (A) =

(
4

2

)(
48

2

)

(
52

4

) and P (B|A) =

(
4

2

)

(
52

2

)

and hence

P (A ∩ B) = P (B|A)P (A) =

(
4

2

)(
48

2

)

(
52

4

) ×

(
4

2

)

(
52

2

) ≈ 0.0001

Example1.5.5. The online bookseller amazon.com has a feature called the “Gold
Box.” When you enter this, you are presented with10 special offers to buy various
merchandise, anything from books and DVDs, to kitchenware and the “Panasonic
ER411NC nose and ear hair groomer.” The offers are presentedone at a time and
each time you have to decide whether to take it or to pass. If you take it, you are done
and will not get to see the rest of the offers. If you pass, thatoffer is gone and cannot
be retrieved. Suggest a strategy that gives you at least25% chance to win the best offer.

Let us assume that the offers are presented in random order. If your strategy is to
always take the first offer or if you choose at random, your chance to win is10%.
How can this be improved?

A better strategy is to let five offers pass, remember the bestthus far, and take the
next offer that is better. If this never happens, you are forced to take the last offer.
One case in which you will certainly win is if the second best offer is among the first
five and the best is among the remaining five. Thus, let

A = {second best offer is among the first five}
B = {best offer is among the last five}
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so that the event of interest isA ∩ B, which has probability

P (A ∩ B) = P (A|B)P (B)

Since the offers are randomly ordered, the best offer is equally likely to be in any
position and henceP (B) = 5

10 . Given that the best is among the last five, the second
best is equally likely to be any of the remaining nine, so the probability that it is
among the first five isP (A|B) = 5

9 and we get

P (get the best offer) =
5

9
× 5

10
≈ 0.28

which is larger than0.25. Note thatA ∩ B is not the only way in which you can get
the best offer, so the true probability is in fact higher than0.28.

Generally, if there aren offers, the same strategy gives a probability to get the best
offer that is at least

P (A ∩ B) = P (A|B)P (B) =
n/2

n − 1
× n/2

n
=

n

4(n − 1)

which is greater than14 regardless ofn [if n is odd, we can replacen/2 by (n+1)/2].
It is quite surprising that we can do so well and for example have at least25% chance
to find the best of10 million offers. It can be shown that an even better strategy is to
first discard roughlyne−1 offers and then take the next that is better. The probability
to win is then approximatelye−1 ≈ 0.37 (a number that also showed up in Example
1.4.17).

The way in which we have defined conditional probabilitymakes good intuitive sense.
However, remember that a probability is defined as somethingthat satisfies the three
axioms in Definition 1.3.1. We must therefore show that wheneverwe condition on an
eventB, the definition of conditional probability does not violateany of the axioms.
We state this in a proposition.

Proposition 1.5.1. For fixedB, P (A|B) satisfies the probability axioms:

(a) 0 ≤ P (A|B) ≤ 1

(b) P (S|B) = 1

(c) If A1, A2, ... is a sequence of pairwise disjoint events, then

P

( ∞⋃

k=1

Ak

∣∣∣∣ B

)
=

∞∑

k=1

P (Ak|B)
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Proof. SinceA ∩ B ⊆ B, we get0 ≤ P (A ∩ B) ≤ P (B) and part (a) follows.
For (b), note thatB ⊆ S so thatP (S ∩B) = P (B) and henceP (S|B) = 1. Finally,
for (c) first note that ( ∞⋃

k=1

Ak

)
∩ B =

∞⋃

k=1

(Ak ∩ B)

and sinceA1, A2, ... are pairwise disjoint, so are the eventsA1 ∩B, A2 ∩B, ..., and
we get

P

(( ∞⋃

k=1

Ak

)
∩ B

)
=

∞∑

k=1

P (Ak ∩ B)

Divide both sides withP (B) to conclude the proof.

It is easily realized thatP (B|B) = 1, and with this in mind, we can think of con-
ditioning onB as viewingB as the new sample space. The nice thing about the
proposition is that we now know that conditional probabilities have all the properties
of probabilities that we stated in Proposition 1.3.2. We restate these properties for
conditional probabilities in a corollary.

Corollary 1.5.2. Provided that the conditional probabilities are defined, the
following properties hold:

(a) P (Ac|B) = 1 − P (A|B)

(b) P (B \ A|C) = P (B|C) − P (A ∩ B|C)

(c) P (A ∪ B|C) = P (A|C) + P (B|C) − P (A ∩ B|C)

(d) If A ⊆ B, thenP (A|C) ≤ P (B|C)

It is important to keep in mind that properties of probabilities hold for events to the
left of the conditioning bar and that the event to the right isfixed (see Problem 37).

If we think of probability as a measure of degree of belief, wecan think of condi-
tional probability as an update of that degree, in the light of new information. Here
is an example of a logical oddity that philosophers of science love to toss around to
confuse the rest of us.

Example1.5.6. Consider the hypothesis “all swans are white.” We can say that each
observation of a white swan strengthens our belief in, orcorroborates, the hypothe-
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sis. Also, since the two statements “all swans are white” and“all nonwhite objects
are nonswans” are logically equivalent, the hypothesis is also corroborated by the
observation of something that is neither white nor a swan. Thus, every sighting of a
yellow dog corroborates the hypothesis that all swans are white.3

Weird, isn’t it? A zoologist trying to prove the hypothesis would certainly decide
to examine swans for whiteness, rather than checking various red, green, and blue
objects to make sure that they are not swans. Still, there is certainly nothing wrong
with the logic, so how can the paradox be resolved? Let us try aprobabilistic approach.

Suppose that we have all examinable objects in a big urn. Suppose that there are
n such objects,k of which are white, and that the othern− k are black (representing
“nonwhite”). Suppose further thatj of the objects are swans, and call the remaining
objects “ravens,” another favorite bird among philosophers of science. If we do not
know anything about the whiteness of swans, we may assume that the j swans are
randomly spread among then objects. Thus, when we choose a swan, the probability
that it is white isk

n (if we have very strong belief in the hypothesis to begin with, we
can just introduce a lot of white “dummy objects” to make thisprobability anything
we want). The probability that the hypothesis is true can nowbe thought of as the
probability to get only white objects when we draw without replacementj times
(assign the “swan property” toj objects). Our hypothesis is then the event

H = {all swans are white} = {getj white objects}

Let us choose with regard to order (which does not matter to the problem, but expres-
sions get less messy). Thus, the probability that all swans are white is

P (H) =
k(k − 1) · · · (k − j + 1)

n(n − 1) · · · (n − j + 1)

We now follow two different strategies: (a) to examine swans, and (b) to examine
black objects. Suppose that we get a corroborating observation. How does this affect
the probability ofH , now pertaining to the remainingn− 1 objects? LetCa andCb

be the events to get corroborating observations with the twostrategies, respectively.
With strategy (a), a corroborating observation means that one white swan has been
removed, and the conditional probability ofH becomes

P (H |Ca) =
(k − 1)(k − 2) · · · (k − j + 1)

(n − 1)(n − 2) · · · (n − j + 1)

With strategy (b), one black raven has been removed, and we get

P (H |Cb) =
k(k − 1) · · · (k − j + 1)

(n − 1)(n − 2) · · · (n − j)

3For ornithologists: This has nothing to do withCygnus atratus.
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Both these are larger than the originalP (H), so each corroborating observation
indeed strengthens belief in the hypothesis. But do they do so to equal extents? Let
us compare the two conditional probabilities. We get

P (H |Ca)

P (H |Cb)
=

n − j

k

If we now assume that the number of swans is less than the number of black objects,
certainly a reasonable assumption, we have thatj < n − k, which givesk < n − j,
and hence

P (H |Ca)

P (H |Cb)
> 1

so that the observation of a black raven does corroborate thehypothesis butnot as
muchas the sighting of a white swan. The intuition is simple; since there are fewer
swans than black objects, it is easier to check the swans. If insteadj > n−k, strategy
(b) would be preferable. If we, for example, were to corroborate the hypothesis “All
Volvo drivers live outside the Vatican,” it would be better to ask a thousand Vaticanos
what they drive, than to track down Volvo drivers in London and Paris to check if
they happen to be vacationing Swiss Guardsmen.

1.5.1 Independent Events

In the previous section we dealt with conditional probabilities and learned to interpret
them as probabilities that are computed given additional information. It is easy to
think of cases when such additional information is irrelevant and does not change
the probability. For example, if we are about to flip a fair coin, the probability to
get heads is12 . Now suppose that we get the additional information that thecoin
was flipped once yesterday and showed heads. Since our upcoming coin flip is not
affected by what happened yesterday and we know that the coinis fair, the condi-
tional probability given this information is still12 . With A = {heads in next flip}
andB = {heads yesterday} we thus haveP (A) = P (A|B); the unconditional and
conditional probabilities are the same. SinceP (A|B) = P (A∩B)/P (B) this means
thatP (A∩B) = P (A)P (B), and we call two events with this propertyindependent.

Definition 1.5.2. If A andB are two events such that

P (A ∩ B) = P (A)P (B)

then they are said to beindependent.

Not surprisingly, events that are not independent are called dependent. In the intro-
ductory motivation for the definition, we talked about conditional and unconditional
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probabilities being equal. We could take this as the definition of independence, but
since conditional probabilities are not always defined, we use the definition of inde-
pendence above and get the following consequence.

Corollary 1.5.3. If P (A|B) is defined, then the eventsA andB are indepen-
dent if and only ifP (A) = P (A|B).

When checking for independence, it might sometimes be easier to condition on the
eventBc instead ofB, that is, by supposing thatB did not occur. Intuitively, informa-
tion regardingB and information onBc are equivalent, since saying that one occurred
is the same as saying that the otherone did not occur. This is stated formally as follows.

Proposition 1.5.4. If A andB are independent, thenA andBc are also inde-
pendent.

Proof. By Proposition 1.3.2(b), we get

P (A ∩ Bc) = P (A \ B) = P (A) − P (A ∩ B)

and ifA andB are independent, this equals

P (A) − P (A)P (B) = P (A)(1 − P (B)) = P (A)P (Bc)

andA andBc are independent.

Example1.5.7. In Example 1.5.3, suppose that a rainy Saturday and a rainy Sunday
are independent events. What is the probability of rain during the weekend?

In this case
P (A ∩ B) = P (A)P (B) = 0.25

and hence
P (A ∪ B) = 0.75

which we note is higher than the0.65 we obtained if rainy Saturdays are more likely
to be followed by rainy Sundays. The reason is that under thisassumption, rainy
Saturdays and Sundays tend to come togethermore often than under the independence
assumption.
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Example1.5.8. A card is chosen at random from a deck of cards. Consider the
events

A = {the card is an ace} and H = {the card is a heart}
Are A andH independent?

Let us first solve this by using the definition. We haveP (A) = 4
52 , P (H) = 1

4 , and
P (A ∩ H) = P (ace of hearts) = 1

52 and hence

P (A ∩ H) = P (A)P (H)

so thatA andH are independent. Intuitively, the events give no information about
each other. The probability of drawing an ace is4

52 = 1
13 and if we are given the

information that the chosen card is a heart, the probabilityof an ace is still 113 . The
proportion of aces is the same in the deck as within the suit ofhearts.

Example1.5.9. Consider the previous example but suppose that we have removed
the2 of spades from the deck. Are the eventsA andH still independent?

At first glance, we might think that the answer is “Yes,” sincethe2 of spades has
nothing to do with either hearts or aces. However, the probabilities are nowP (A) =
4
51 , P (H) = 13

51 , andP (A ∩ H) = P (ace of hearts) = 1
51 and hence

P (A ∩ H) 6= P (A)P (H)

andA andH are no longer independent. Intuitively, although the2 of spades has
nothing to do with hearts or aces, its removal changes the proportion of aces in the
deck from 4

52 to 4
51 but does not change the proportion within the suit of hearts,where

it remains at 1
13 . Formulated as a statement about conditional probabilities, we have

that

P (A) =
4

51
and P (A|H) =

1

13

which are not equal.

Example1.5.10. Are disjoint events independent?

It seems that disjoint events have nothing to do with each other and should thus
be independent. However, this reasoning is faulty. The correct reasoning is that if
we condition on one event having occurred, then the other cannot have occurred,
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and hence its conditional probability drops to0. We can also see this from the
definition of independence since ifA andB are disjoint, thenA∩B = Ø and hence
P (A∩B) = P (Ø) = 0, which does not equal the productP (A)P (B) (assuming that
neither of these probabilities equal 0). Hence, the answer in general is “absolutely
not.”

In Example 1.5.9, the events{ace} and{hearts} are dependent. Computation yields
that P (A) = 0.078 andP (A|H) = 0.077, so the difference is negligible from a
practical point of view. We could say that although the events are dependent, the
dependence is not strong. Compare this with the case of disjoint events where the
conditionalprobability drops down to 0, which indicates a much strongerdependence.
Dependence could also go in different directions;P (A|B) could be either larger or
smaller thanP (A). We will later return to the problem of measuring the degree of
dependence in a more general context (see also Problem 42).

The following two examples illustrate how it is not always obvious which event
to condition on and how it is important to find the correct suchevent.

Example1.5.11. You know that your new neighbors have two children. Given that
they have at least one daughter, what is the conditional probability that they have two
daughters?

The sample space is
S = {bb, bg, gb, gg}

whereb represents boy,g represents girl, and the order is birth order. If we assume
that genders are equally likely and that genders of different children are independent,
each outcome has probability14 . Since the outcomebb is out of the question and
one out of the other three outcomes has two girls, the conditional probability is1

3 .
Formally

P (gg|bg, gb, gg) =
P (gg)

P (bg, gb, gg)
=

1/4

3/4
=

1

3

Example1.5.12. You know that your new neighbors have two children. One day
you see the mother taking a walk with a girl. What is the probability that the other
child is also a girl?

This looks like the same problem. On the basis of your observation, you rule out the
outcomebb and the conditional probability of another girl is13 . On the other hand,
since we assume that genders of different children are independent, the probability
ought to be1

2 .
Confusing? Let us clear it up. The first solution is incorrect, but why? While it is

true that the probability of two girls, given at least one girl, is 1
3 , this isnot the correct
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eventon which to condition in this case. We are not just observing “at least one
girl;” we are observing the mother walking with aparticular girl. This distinction is
important but quite subtle, and requires that we extend the sample space to be able to
also describe how the mother chooses which child to walk with.4 Thus, we split each
outcome into two, and if we denote the child that goes for the walk by an asterisk,
the new sample space is

S = {b∗b, bb∗, b∗g, bg∗, g∗b, gb∗, g∗g, gg∗}

where, for example,b∗g means that the older child is a boy, and the younger, a girl,
and that the mother takes a walk with the boy. If the mother chooses child at random,
each outcome has probability18 . It is now easy to see that four outcomes have the
mother walking with a girl and that two of these have another girl, and we arrive at
the solution1

2 once more (see also Problem 80).

We also want to define independence of more than two events. Toarrive at a reason-
able definition, let us first examine an example that highlights one of the problems
that must be addressed.

Example1.5.13. Flip two fair coins and consider the events

A = {heads in first flip} = {HH, HT }
B = {heads in second flip} = {HH, TH}
C = {different in first and second flip} = {HT, TH}.

Then, for example,P (A ∩ B) = P (HH) = 1
4 = P (A)P (B), so A andB are

independent. Similarly, it is easy to show that any two of theevents are independent.
Hence, these events arepairwise independent. However, it does not seem quite right
to say that the three eventsA, B, andC are independent since, for example,C is not
independent of the eventA ∩ B. Indeed,P (C) = 1

2 butP (C|A ∩ B) = 0, since if
A ∩ B has occurred, both flips showed heads andC is impossible.

This example indicates that in order to call three events independent, we want each
event to be independent of any combination of the other two. It turns out that the
following definition guarantees this (see Problem 53).

4Ironically, in the first edition of his excellent bookInnumeracy: Mathematical Illiteracy and Its Conse-
quences, John Allen Paulos described this problem a bit obscurely [4]. His terse formulation was “Consider
now some randomly selected family of four. Given that Myrtlehas a sibling, what is the conditional prob-
ability that her sibling is a brother?” and he went on to claimthat the probability is2

3
. This ambiguity was

clarified in the2001 edition.
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Definition 1.5.3. Three eventsA, B, and C are called independent if the
following two conditions hold:

(a) They are pairwise independent

(b) P (A ∩ B ∩ C) = P (A)P (B)P (C)

For more than three events, the definition is analogous and can also be extended to
infinitely many events.

Definition 1.5.4. The eventsA1, A2, ... are called independent if

P (Ai1 ∩ Ai2 ∩ · · · ∩ Aik
) = P (Ai1)P (Ai2 ) · · ·P (Aik

)

for all sequences of integersi1 < i2 < · · · < ik, k = 2, 3, ...

Sometimes events satisfying this definition are calledmutually independent, to dis-
tinguish frompairwise independent, which, as we have seen, is a weaker property.

Example1.5.14. Recall the experiment of rolling a die repeatedly until the first 6
appears. What is the probability that this occurs in thenth roll for n = 1, 2, ...?

The event of interest is

Bn = {first 6 in nth roll}, n = 1, 2, ...

and let us also introduce the events

Ak = {6 in kth roll}, k = 1, 2, ...

Note the difference:Bn is the event that thefirst 6 comes in thenth roll; Ak, the
event that we get6 in thekth roll but not necessarily for the first time. How do the
events relate to each other? Obviously,B1 = A1. For n = 2, note thatB2 is the
event that we do not get6 in the first roll and that we do get6 in the second roll. In
terms of theAk, this isAc

1 ∩ A2. In general

Bn = Ac
1 ∩ Ac

2 ∩ · · · ∩ Ac
n−1 ∩ An

To compute the probability ofBn, we make two reasonable assumptions: that the die
is fair and that rolls are independent. The first assumption means thatP (Ak) = 1

6 for
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all k and the second that probabilities of intersections equal products of probabilities.
Since independence carries over to complements, we get

P (Bn) = P (Ac
1 ∩ Ac

2 ∩ · · · ∩ Ac
n−1 ∩ An)

= P (Ac
1)P (Ac

2) · · ·P (Ac
n−1)P (An)

=
5

6
× 5

6
× · · · × 5

6
× 1

6

and we conclude that

P (Bn) =
1

6

(
5

6

)n−1

, n = 1, 2, ...

More generally, consider independent repetitions of a trial where the eventA occurs
with probabilityp > 0 and letE be the event that wenevergetA. With

Bn = {first occurrence ofA comes after thenth trial}

we have

E =
∞⋂

n=1

Bn

where
P (Bn) = P (the firstn trials giveAc) = (1 − p)n

by independence. TheBn are clearly decreasing (why?), so by Proposition 1.3.5 we
get

P (E) = lim
n→∞

P (Bn) = 0

and we summarize in the following corollary.

Corollary 1.5.5. In independent repetitions of a trial, any event with positive
probability occurs sooner or later.

From Example 1.4.11, we can compute the probability to win the Texas Lotto jackpot
(match all numbers including bonus ball) as1/47, 784, 352 = 2.1 × 10−8. This
is very small, but if you keep playing, the last result tells you that you will win
eventually.5 It may take some time, though; there are two drawings a week and if you
play every time for50 years, the probability that you never win is

(1 − 2.1 × 10−8)5200 ≈ 0.9999

5The subtle difference betweencertain occurrence and occurrencewith probability oneis important in a
more advanced study of probability theory but not for us at this point.
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The probability that you win in a drawing is very low, but since there are millions of
players in each drawing, the probability thatsomebodywins is much higher. Suppose
that5 million number combinations are played independently and at random for a
drawing. The probability that somebody wins is

1 − (1 − 2.1 × 10−8)5,000,000 ≈ 0.10

which is not that low, and it could be you.

Example1.5.15. (Reliability Theory). Consider a system of two electronic com-
ponents connected in series. Each component functions withprobabilityp and the
components function independently of each other. What is the probability that the
system functions?

If we interpret “functions” as the natural “lets current through,” then the system
functions if and only if both components function. Hence, with the events

A = {system functions}
A1 = {first component functions}
A2 = {second component functions}

we getA = A1 ∩ A2 and by independence

P (A) = P (A1)P (A2) = p2

If the components are instead connected in parallel, the system functions as long as
at least one of the components function, and we have

A = A1 ∪ A2

which gives

P (A) = P (A1 ∪ A2) = 1 − P (Ac
1 ∩ Ac

2)

= 1 − (1 − P (A1))(1 − P (A2)) = 1 − (1 − p)2

These are simple examples from the discipline ofreliability theorywhere the proba-
bility of functioning is referred to as thereliability of a system. Hence we have seen
that the reliability of a series system isp2 and that of a parallel system is1− (1−p)2.
An obvious generalization is ton components, where the reliability of a series system
is pn and that of a parallel system is1 − (1 − p)n. This does not have to be about
electronic components but applies to any situation where a complex system is depen-
dent on its individual parts to function. The series system is sometimes referred to as
a weakest-link model.
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1.6 THE LAW OF TOTAL PROBABILITY AND BAYES’ FORMULA

In this section we will address one of the most important usesof conditional probabil-
ities. The basic idea is that if a probability is hard to compute directly, it might help
to break the problem up in special cases, where in each special case the conditional
probability is easier to compute. For example, suppose thatyou buy a used car in
a city where street flooding due to heavy rainfall is a common problem. You know
that roughly5% of all used cars have previously been flood-damaged and estimate
that80% of such cars will later develop serious engine problems, whereas only10%
of used cars that are not flood-damaged develop the same problems. What is the
probability that your car will later run into this kind of trouble?

Here is a situation where you can compute the probability in each of two different
cases, flood-damaged or not flood-damaged (and no used-car dealer worth his salt
would ever let you know which).

Let us first think about this in terms of proportions. Out of every 1000 cars sold,
50 are previously flood-damaged and of those,80%, or 40 cars, will develop serious
engine problems. Among the950 that are not flood-damaged, we expect10%, or 95
cars, to develop the same problems. Hence, we get a total of40 + 95 = 135 cars out
of a thousand, and the probability of future problems is0.135.

If we introduce the eventsF = {flood-damaged} andT = {trouble}, we have
argued thatP (T ) = 0.135. We also know thatP (F ) = 0.05, P (F c) = 0.95,
P (T |F ) = 0.80, andP (T |F c) = 0.10 and the probability we computed is in fact
0.80 × 0.05 + 0.10 × 0.95 = 0.135. Our probability is a weighted average of the
probability in the two different cases, flood-damaged or not, and the weights are the
corresponding probabilities of the cases. The example illustrates the idea behind the
following important result.

Theorem 1.6.1(Law of Total Probability). Let B1, B2, ... be a sequence of
events such that

(a) P (Bk) > 0 for k = 1, 2, ...

(b) Bi andBj are disjoint wheneveri 6= j

(c) S =

∞⋃

k=1

Bk

Then, for any eventA, we have

P (A) =

∞∑

k=1

P (A|Bk)P (Bk)
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Condition (a) is a technical requirement to make sure that the conditional probabilities
are defined, and you may recall that a collection of sets satisfying (b) and (c) is called
a partition of S.

Proof. First note that

A = A ∩ S =

∞⋃

k=1

(A ∩ Bk)

by the distributive law for infinite unions. SinceA ∩ B1, A ∩ B2, ... are pairwise
disjoint, we get

P (A) =

∞∑

k=1

P (A ∩ Bk) =

∞∑

k=1

P (A|Bk)P (Bk)

which proves the theorem.

By virtue of Proposition 1.3.1, we realize that the law of total probability is also
true for a finite union of events,B1, ..., Bn. In particular, if we choosen = 2 and
B1 equal to some eventB, thenB2 must equalBc, and we get the following corollary.

Corollary 1.6.2. If 0 < P (B) < 1, then

P (A) = P (A|B)P (B) + P (A|Bc)P (Bc)

The verbal description of conditions (b) and (c) in Theorem 1.6.1 is that we are able
to find different cases thatexclude each otherandcover all possibilities. This way
of thinking about it is often sufficient to solve problems andsaves us the effort to
explicitly find the sample space and the partitioning events.

Example1.6.1. A sign reads HOUSTON. Two letters are removed at random and
then put back together again at random in the empty spaces. What is the probability
that the sign still reads HOUSTON?

There are two different cases to consider: the case where twoOs are chosen, in
which case the text will always be correct and the case when two different letters are
chosen, in which case the text will be correct when they are put back in their original
order. Clearly these two cases exclude each other and cover all possibilities and the
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assumptions in the law of total probability are satisfied. Hence, without spelling out
exactly what the sample space is, we can define the events

A = {the sign still reads HOUSTON}
B = {two Os are chosen}

and obtain
P (A) = P (A|B)P (B) + P (A|Bc)P (Bc)

If the two letters are different, they are put back in their original order with probability
1
2 . Hence, the conditional probabilities are

P (A|B) = 1 and P (A|Bc) =
1

2

andP (B) is obtained by noting that we are choosing two letters out of seven without
replacement and without regard to order. The total number ofways to do this is(
7
2

)
= 21, and since there is only one way to choose the two Os, we getP (B) = 1

21 .
This givesP (Bc) = 20

21 and we get

P (A) = 1 × 1

21
+

1

2
× 20

21
=

11

21

which is slightly larger than12 , as was to be expected.

Example1.6.2. In the United States, the overall risk of developing lung cancer is
about0.1%. Among the20% of the population who are smokers, the risk is about
0.4%. What is the risk that a nonsmoker will develop lung cancer?

Introduce the eventsC = {cancer} andS = {smoker}. The percentages above
give P (C) = 0.001, P (S) = 0.20, andP (C|S) = 0.004, and we wish to compute
P (C|Sc). The law of total probability gives

P (C) = P (C|S)P (S) + P (C|Sc)P (Sc)

which with our numbers becomes

0.001 = 0.004× 0.20 + P (C|Sc) × 0.80

which we solve forP (C|Sc) to get

P (C|Sc) = 0.00025

in other words, a250 in a million risk.
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Example1.6.3. Here is an example of a simple game of dice that does not seem to
be to your advantage but turns out to be so.

Consider three dice,A, B, andC, numbered on their six sides as follows:

Die A : 1, 1, 5, 5, 5, 5

Die B : 3, 3, 3, 4, 4, 4

Die C : 2, 2, 2, 2, 6, 6

The game now goes as follows. You and your opponent bet a dollar each,and you offer
your opponent to choose any die and roll it. Next, you choose one of the the remaining
dice and roll it, and whoever gets the higher number wins the money. It seems that
your opponent will have an edge, since he gets to choose first.However, it turns out
that once you know his choice, you can always choose so that your probability to win
is more than one half! The reason for this is that, when rolledtwo by two against
each other, these dice are such that on averageA beatsB, B beatsC, andC beatsA.
The probabilities are (usingA andC also to denote the numbers on diceA andC)

P (A beatsB) = P (A = 5) =
2

3

P (B beatsC) = P (C = 2) =
2

3

For the third case, we need to use the law of total probabilityand get

P (C beatsA) = P (C beatsA|A = 1) × 1

3
+ P (C beatsA|A = 5) × 2

3

= 1 × 1

3
+ P (C = 6) × 2

3
=

1

3
+

1

3
× 2

3
=

5

9

which is also greater than12 . Although you appear generous to let your opponent
choose first, this is precisely what gives you the advantage.6

Tree diagrams provide a nice way to illustrate the law of total probability. We represent
each different case with a branch and look at the leaves to seewhich cases are of
interest. We then compute the probability by first multiplying along each branch,
then adding across the branches. See Figure 1.5 for an illustration of the situation in
Example 1.6.3, where you roll dieC against dieA.

6A completely deterministic version of this is the game “rock, paper, scissors,” in which you would always
win if your opponent were to choose first. Games like these arecallednontransitive.
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lose

win

win

C=6

A=1

A=5

C=2

Fig. 1.5 Tree diagram when you roll die C against die A in Example 1.6.3

Sometimes we need to condition repeatedly. For example, to computeP (A|B), it may
be necessary to condition further on some eventC. Since a conditional probability
is a probability, this is nothing new, but the formula looks more complicated. We get

P (A|B) = P (A|B ∩ C)P (C|B) + P (A|B ∩ Cc)P (Cc|B) (1.6.1)

where we note that every probability has the eventB to the right of the conditioning
bar. In Problem 81 you are asked to prove this.

Example1.6.4. (Simpson’s Paradox). In a by now famous study of gender bias at
the University of California, Berkeley, it was noted that men were more likely than
women to be admitted to graduate school. In one year, in the six largest majors,45%
of male applicants but only30% of the female ones were admitted. To further study
the bias, we divide the majors into two groups “difficult” and“easy,” referring to
whether it is relatively difficult or easy to be admitted, notto the subjects themselves.
It then turns out that in the “difficult” category,26% of both men and women were
admitted (actually even slightly above26% for women and slightly below for men),
so the bias obviously has to be in the other category. However, in the “easy” category,
80% of women but only62% of men were admitted. Thus, there was no bias for dif-
ficult majors, a bias against men in easy majors, and an overall bias against women!
Clearly there must be an error somewhere?

Consider a randomly chosen applicant. LetA be the event that the applicant is
admitted, and letM andW be the events that the applicant is a man or a woman
respectively. We then haveP (A|M) = 0.45 and P (A|W ) = 0.30. Now also
introduce the eventsD andE, for “difficult” and “easy” majors. By Table 1.3 we
have, for men

P (A|M ∩ D) =
334

1306
≈ 0.26 and P (A|M ∩ E) =

864

1385
≈ 0.62
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Table 1.3 Numbers of admitted, and total numbers (in parentheses) of male and female
applicants in the two categories “easy” and “difficult” at UCBerkeley

Male Female

Easy major 864 (1385) 106 (133)

Difficult major 334 (1306) 451 (1702)

and for women

P (A|W ∩ D) ≈ 0.26 and P (A|W ∩ E) ≈ 0.80

and hence

P (A|M ∩ D) = P (A|W ∩ D) and P (A|M ∩ E) < P (A|W ∩ E)

but
P (A|M) > P (A|W )

Thus, the conditional probabilities of being admitted are equal or higher for women
in both categories but the overall probability for a woman tobe admitted is lower
than that of a man. Apparently there was no error, but it stillseems paradoxical. To
resolve this, recall Equation 1.6.1, by which

P (A|W ) = P (A|W ∩ D)P (D|W ) + P (A|W ∩ E)P (E|W )

and
P (A|M) = P (A|M ∩ D)P (D|M) + P (A|M ∩ E)P (E|M)

and we realize that the explanation lies in the conditional probabilitiesP (D|W ),
P (E|W ), P (D|M), andP (E|M), which reflect how men and women choose their
majors. The probabilities that a man chooses a difficult major and an easy major,
respectively, are

P (D|M) =
1306

2691
≈ 0.49 and P (E|M) ≈ 0.51

and the corresponding probabilities for women are

P (D|W ) =
1702

1835
≈ 0.93 and P (E|W ) ≈ 0.07

Thus, women almost exclusively applied for difficult majors, whereas men applied
equally for difficult and easy majors, and this is the resolution of the paradox. Was it
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harder for women to be admitted? Yes. Was this due to gender discrimination? No.
The effect on admission rates that was initially attributedto gender bias was really
due to choice of major, an example of what statisticians callconfounding of factors.
The effect of gender on choice of major is a completely different issue.

The last example is a version of what is known asSimpson’s paradox. If we formu-
late it as a mathematical problem, it completely loses its charm. The question then
becomes if it is possible to find numbersA, a, B, b, p andq, all between0 and1, such
that

A > a and B > b

and
pA + (1 − p)B < qa + (1 − q)b

No problems here. LetA > a > B > b, and choosep sufficiently close to0 andq
sufficiently close to1. Ask your mathematician friends this question, and also if there
is something strange about the Berkeley admissions data, and don’t be surprised if
you get the answer “Yes” to both questions!

1.6.1 Bayes’ Formula

We next turn to the situation when we know conditional probabilities in one direction
but want to compute conditional probabilities “backwards.” The following result is
helpful.

Proposition 1.6.3(Bayes’ Formula). Under the same assumptions as in the
law of total probability and ifP (A) > 0, then for any eventBj , we have

P (Bj |A) =
P (A|Bj)P (Bj)
∞∑

k=1

P (A|Bk)P (Bk)

Proof. Note that, by the law of total probability, the denominator is nothing but
P (A), and hence we must show that

P (Bj |A) =
P (A|Bj)P (Bj)

P (A)

which is to say that
P (Bj |A)P (A) = P (A|Bj)P (Bj)
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which is true since both sides equalP (A ∩ Bj), by the definition of conditional
probability.

Again, the obvious analog for finitely many conditioning events holds, and in partic-
ular we state the case of two such events,B andBc, as a corollary.

Corollary 1.6.4. If 0 < P (B) < 1 andP (A) > 0, then

P (B|A) =
P (A|B)P (B)

P (A|B)P (B) + P (A|Bc)P (Bc)

Example1.6.5. The polygraph is an instrument used to detect physiologicalsigns
of deceptive behavior. Although it is often pointed out thatthe polygraph is not a
lie detector, this is probably the way most of us think of it. For the purpose of this
example, let us retain this notion. It is debated how accurate a polygraph test is, but
there are several reports of accuracies above95% (and as a counterweight, a Web site
that gladly claims “Don’t worry, the polygraph can be beatenrather easily!”). Let
us assume that the polygraph test is indeed very accurate andthat it decides “lie” or
“truth” correctly with probability0.95. Now consider a randomly chosen individual
who takes the test and is determined to be lying. What is the probability that this
person did indeed lie?

First, the probability isnot0.95. Introduce the events

L = {the person tells a lie}
LP = {the polygraph reading says the person is lying}

and letT = Lc andTP = Lc
P . We are given the conditional probabilitiesP (LP |L) =

P (TP |T ) = 0.95, but what we want isP (L|LP ). By Bayes’ formula

P (L|LP ) =
P (LP |L)P (L)

P (LP |L)P (L) + P (LP |T )P (T )

=
0.95P (L)

0.95P (L) + 0.05(1 − P (L))

and to be able to finish the computation we need to know the probability that a
randomly selected person would lie on the test. Suppose thatwe are dealing with a
largely honest population; let us say that one out of a thousand would tell a lie in the
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given situation. ThenP (L) = 0.001, and we get

P (L|LP ) =
0.95 × 0.001

0.95 × 0.001 + 0.05 × 0.999
≈ 0.02

and the probability that the person actually lied is only0.02. Since lying is so rare,
most detected lies actually stem from errors, not actual lies. One way to understand
this is to imagine that a large number, say,100, 000, people are tested. We then
expect100 liars and of those,95 will be discovered. Among the remaining99, 900
truthtellers, we expect5%, or 4995 individuals to be misclassified as liars. Hence,
out of a total of95 + 4995 = 5090 individuals who are classified as liars, only95, or
2% actually are liars. A truth misclassified as a lie is called a “false positive” and in
this case, we say that thefalse-positive rateis 98%.

In the last example, there are two types of errors we can make:classifying a lie as
truth, and vice versa. The probabilityP (LP |L) to correctly classify a lie as a lie is
called thesensitivityof the procedure. Obviously, we want the sensitivity to be high
but with increased sensitivity we may risk to misclassify more truths as lies as well.
Another probability of interest is therefore thespecificity, namely, the probability
P (TP |T ) that a truth is correctly classified as truth. For an extreme but illustrative
example, we can achieve maximum sensitivity by classifyingall statements as lies,
however, the specificity is then 0. Likewise, we can achieve maximum specificity by
classifying all statements as truths but then instead getting sensitivity 0. The terms
are borrowed from the field of medical testing for illnesses where good procedures
should be both sensitive to detecting an illness but also be specific for that illness.
For example, using high fever to diagnose measles would havehigh sensitivity (not
many cases of measles will fo undetected) but low specificity(many other diseases
cause high fever and will be misclassified as measles).

Another probability of interest in any kind of testing situation is the false-positive
rate, mentioned above. In the lie-detector example, it isP (T |LP ), the probability
that a detected lie is actually a truth. Also, thefalse-begative rateis P (L|TP ), the
probability that a detected truth is actually a lie. The sensitivity, specificity, false-
positive rate, and false-negative rate are related via Bayes’ formula where we also
need to know thebase rate, namely, the unconditional probabilityP (T ) of telling a
lie (or having a disease, etc). For typical examples from medical testing, see Problem
92 and subsequent problems.

Example1.6.6. (The Monty Hall Problem). This problem has become a modern
classic and was hotly discussed after it first appeared in thecolumn “Ask Marilyn” in
Parade Magazinein 1991. The problem was inspired by the game show “Let’s Make
a Deal” with host Monty Hall, and it goes like this. You are given the choice of three
doors. Behind one door is a car; behind the others are goats. You pick a door without
opening it, and the host opens another door that reveals a goat. He then gives you the
choice to either open your door and keep what is behind it, or switch to the remaining
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door and take what is there. Is it to your advantage to switch?

At first glance, it would not seem to make a difference whetheryou stay or switch,
since the car is either behind your door, or the remaining door. However, this is
incorrect, at least if we make some reasonable assumptions.To solve the problem,
we assume that the car and goats are placed at random behind the doors and that
the hostalways opens a door and shows a goat. Let us further assume that in the
case where you have chosen the car, he chooses which door to open at random. Now
introduce the two events

C = {you chose the car}
G = {he shows a goat}

so that the probability to win after switching is1 − P (C|G). But

P (C|G) =
P (G|C)P (C)

P (G|C)P (C) + P (G|Cc)P (Cc)
= P (C) =

1

3

sinceP (G|C) = P (G|Cc) = 1. Thus, if you switch, you win the car with probability
2
3 , so switching is to your advantage. Note that the eventsG and C are in fact
independent.

Intuitively, since you know that the host will always show you a goat, there is no
additional information when he does. Since there are two goats and the host will
always show one of them, to choose a door and then switch is equivalent to choosing
the two other doorsand telling the host to open one of them and show you a goat.
Your chance of winning the car is then23 .

One variant of the problem that has been suggested to make it easier to understand
is to assume that there are not3 but 1000 doors. One has a car, and999 have goats.
Once you have chosen, the host opens998 doors and shows you998 goats. Given how
unlikely it is that you found the car in the first pick, is it notobvious that you should
now switch to the remaining door? You could also use one of theseveral computer
simulations that are available online, or write your own. Still not convinced? Ask
Marilyn.

Example1.6.7. (The Monty Hall Problem continued). Suppose that you are play-
ing “Let’s Make a Deal” and have made your choice when the hostsuddenly realizes
that he has forgotten where the car is. Since the show must go on, he keeps a straight
face, takes a chance, and opens a door that reveals a goat. Is it to your advantage to
switch?

Although the situation looks the same from your perspective, it is actually different
since it could have happened that the host revealed the car. With C andG as above,
Bayes’ formula now gives

P (C|G) =
P (G|C)P (C)

P (G|C)P (C) + P (G|Cc)P (Cc)
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=
1 × (1/3)

1 × (1/3) + (1/2)× (2/3)
=

1

2

so it makes no difference whether you stay or switch. In this case, the showing of a
goat behind the open door actually does give some additionalinformation, andG and
C are no longer independent.

Example 1.6.8. (The Island Problem). Probability theory is frequently used in
courts of law, especially when DNA evidence is considered. As an example, consider
the following situation. A person is murdered on an island, and the murderer must be
one of then remaining islanders. DNA evidence on the scene reveals thatthe mur-
derer has a particular genotype that is known to exist in a proportionp in the general
population, and we assume that the islanders’ genotypes areindependent. Criminal
investigators start screening all islanders for their genotypes. The first one who is
tested is Mr Joe Bloggs, who turns out to have the murderer’s genotype. What is the
probability that he is guilty?

To solve this, we introduce the events

G = {Mr Bloggs is guilty}
B = {Mr Bloggs’ genotype is found at the scene of the crime}

so that we are asking for the probabilityP (G|B). By Bayes’ formula

P (G|B) =
P (B|G)P (G)

P (B|G)P (G) + P (B|Gc)P (Gc)

Here,P (G) is the probability that Mr Bloggs is guilty before any genotypinghas been
done, and if we assume that there is no reason to suspect any particular person more
than anyone else, it is reasonable to letP (G) = 1

n . If Mr Bloggs is guilty, then his
genotype is certain to show up at the scene of the crime, and wehaveP (B|G) = 1.
If Mr Bloggs is innocent, his genotype can still show up by chance, which gives
P (B|Gc) = p, the proportion of his genotype in the population. All put together, we
get

P (G|B) =
1 × 1/n

1 × 1/n + p × (n − 1)/n
=

1

1 + (n − 1)p

as the probability that Mr Bloggs is guilty.

The last problem is a simple example of the general problem ofhow to quantify the
weight of evidence in forensic identification. This “islandproblem” has been ana-
lyzed and discussed by lawyers and probabilists and different approaches have shown
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to give different results (not all correct).7 We will return to this in more detail in Sec-
tion 2.5. For now, let us present a simple example that demonstrates how calculations
can go agley.

Example1.6.9. You know that your new neighbors have two children. One night
you hear a stone thrown at your window and you see a child running from your yard
into the neighbor’s house. It is dark, and the only thing you can see for certain is that
the child is a boy. The next day you walk over to the neighbor’shouse and ring the
doorbell. A boy opens the door. What is the probability that he is guilty?

We will do this in two different ways. First approach: If the other child is a girl, you
know that the boy is guilty and if the other child is a boy, the boy who opened the
door is equally likely to be guilty or not guilty. Thus, with

G = {child who opened door is guilty}

we condition on the gender of the other child and recall Example 1.5.12 to obtain

P (G) = P (G|boy)P (boy) + P (G|girl)P (girl)

=
1

2
× 1

2
+ 1 × 1

2
=

3

4
.

Second approach: Note how the situation is similar to that inthe previous example,
with genotype replaced by gender and Mr Bloggs replaced by the child who opened
the door. In that formulation we haven = 2 andp = 1

2 and we get

P (child who opened door is guilty) =
1

1 + 1 × (1/2)
=

2

3

There we go again; different methods give different results! As usual, we need to
be very careful with which events we condition on. Let us assume that each child
is equally likely to decide to go out and throw a stone at your window and that each
child is equally likely to open the door. For each gender combination of two children,
we thus choose at random who is guilty and who opens the door, so that each gender
combination is split up into four equally likely cases. Let us use the subscriptd for
the child who opened the door and the superscriptg for the child who is guilty. The
sample space consists of the16 equally likely outcomes

S = {bg
db, bdb

g, bgbd, bb
g
d, b

g
dg, bdg

g, bggd, bg
g
d,

gg
db, gdb

g, ggbd, gbg
d, g

g
dg, gdg

g, gggd, ggg
d}

7The island problem is made up (yes, really!), but there is a famous real case,People vs. Collins, in which a
couple in Los Angeles was first convicted of a crime, based on circumstantial evidence, and later acquitted
by the California Supreme Court. Both the initial verdict and the appeal were based on (questionable)
probability arguments.
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and the event that the child who opened the door is guilty is

G = {bg
db, bb

g
d, b

g
dg, gbg

d, bg
g
d, gg

db, gg
dg, ggg

d}

What event do we condition on? We know two things: that the guilty child is a boy
and that a boy opened the door. These events are

A = {bg
db, bdb

g, bgbd, bb
g
d, b

g
dg, bggd, gdb

g, gbg
d}

B = {bg
db, bdb

g, bgbd, bb
g
d, b

g
dg, bdg

g, ggbd, gbg
d}

and we condition on their intersection

A ∩ B = {bg
db, bdb

g, bgbd, bb
g
d, b

g
dg, gbg

d}

Since four of these six outcomes are inG and the distribution onS is uniform, we get

P (child who opened door is guilty) = P (G|A ∩ B) =
2

3

in accordance with the previous example.
The first approach gives the wrong solution but why? When we computed the

probabilitiesP (boy) andP (girl), we implicitly conditioned on eventB above but
forgot to also condition onA. What we need to do is to computeP (boy) as

P (other child is a boy|A ∩ B) =
2

3

and not12 . Note how the conditional probability that the other child is a boy is higher
now that we also know that the guilty child is a boy. This is quite subtle and resembles
the situation in Example 1.5.12, in the sense that we need to be careful to condition
on precisely the information we have, no more and no less. We can now state the
correct version of the first solution. Everything must be computed conditioned on the
eventA ∩B, but for ease of notation let us not write this conditioning out explicitly.
We get

P (G) = P (G|boy)P (boy) + P (G|girl)P (girl)

=
1

2
× 2

3
+ 1 × 1

3
=

2

3

just as we should. For a variant, see Problem 99.

Example1.6.10. Consider the previous example and also assume that on your way
over to the neighbor’s, you meet another neighbor who tells you that she saw the
mother of the family take a walk with a boy a few days ago. If a boy opens the door,
what is the probability that he is guilty?
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By now you know how to solve this. In the previous sample space, split each outcome
further into two, marking who the mother took a walk with, andproceed. The sample
space now has32 outcomes, and we will suggest a more convenient approach. We
can view the various sightings of a boy as repeated sampling with replacement from
a randomly chosen family. Let us convert this into a problem about black and white
balls in urns.

Consider three urns, containing two balls each, such that the kth urn containsk
black balls,k = 0, 1, 2. We first choose an urn according to the probabilities1

4 , 1
2 , and

1
4 (think of the gender combinations above) and then pick ballswith replacement and
note their colors. If we do thisj times and get only black balls, what is the probability
that we have chosen the urn with only black balls? Let

B = {get only black balls}
Uk = {thekth urn chosen}, k = 0, 1, 2

and computeP (U2|B). The reversed probabilities are

P (B|U0) = 0, P (B|U1) =
1

2j
, P (B|U2) = 1

and Bayes’ formula gives

P (U2|B) =
P (B|U2)P (U2)

P (B|U1)P (U1) + P (B|U2)P (U2)

=
1 × (1/4)

(1/2j) × (1/2) + 1 × (1/4)
=

2j−1

2j−1 + 1
.

In our examples with families and their children, we let urnsrepresent families and
black and white balls represent genders. Consider the probability that the other child
has the same gender as the observed child. In Example 1.5.12 we havej = 1, which
gives probability1

2 and in Example 1.6.9 we havej = 2, which gives probability23 .
Finally, in this example we havej = 3 and probability4

5 . The more observations we
have on boys, the stronger our belief that both children are boys.

1.6.2 Genetics and Probability

Genetics is a science where probability theory is extremelyuseful. Recall that genes
occur in pairs where one copy is inherited from the mother andone from the father.
Suppose that a particular gene has two differentalleles (variants) calledA anda.
An individual can then have either of the threegenotypesAA, Aa, andaa. If the
parents both have genotypeAa, what is the probability that their child gets the same
genotype?

We assume that each of the two gene copies from each parent is equally likely to
be passed on to the child and that genes from the father and themother are inherited
independently. There are then the four equally likely outcomes illustrated in Figure
1.6, and the probability that the child also has genotypeAa is 1

2 (order has no meaning
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here, soAa andaA are the same). Each of the genotypesAA andaa has probability
1
4 . The square in the figure is an example of aPunnett square.

Example1.6.11. An allele is said to berecessiveif it is required to exist in two copies
to be expressed anddominantif one copy is enough. For example, the hereditary dis-
easecystic fibrosis(CF) is caused by a recessive allele of a particular gene. Letus
denote this alleleC and the healthy alleleH so that only individuals with genotype
CC get the disease. Individuals with genotypeCH arecarriers, that is, they have
the disease-causing allele but are healthy. It is estimatedthat approximately1 in 25
individuals are carriers (among people of central and northern European descent; it
is much less common in other ethnic groups). Given this information, what is the
probability that a newborn of healthy parents has CF?

Introduce the events

D = {newborn has CF}
B = {both parents are carriers}

so that
P (D) = P (D|B)P (B)

sinceBc is the event that at least one parent has genotypeHH , in which case the
baby will also be healthy. Assuming that the mother’s and father’s genotypes are
independent, we get

P (B) =
1

25
× 1

25
=

1

625

and since the child will get the disease only if it inherits theC allele from each parent,
we getP (D|B) = 1

4 , which gives

P (D) =
1

625
× 1

4
=

1

2500

In other words, theincidenceof CF among newborns is1 in 2500, or 0.04%.

father:

From mother:

From

A

aaaA

Aa

a

A AA

a

Fig. 1.6 A Punnett square illustrating possible genotypes.
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Now consider a family with one child where we know that both parents are healthy,
that the mother is a carrier of the disease allele and nothingis known about the father’s
genotype. What is the probability that the child neither is acarrier nor has the disease?

Let E be the event we are interested in. The mother’s genotype isCH , and we
condition on the father’s genotype to obtain

P (E) = P (E|CH)P (CH) + P (E|HH)P (HH)

=
1

4
× 1

25
+

1

2
× 24

25
= 0.49

where we figure out the conditional probabilities with Punnett squares. See the
problem section at the end of the chapter for more on genetics.

1.6.3 Recursive Methods

Certain probability problems can be solved elegantly with recursive methods, involv-
ing the law of total probability. The general idea is to condition on a number of cases
that can either be solved explicitly or lead back to the original problem. We will
illustrate this in a number of examples.

Example 1.6.12. In the final scene of the classic1966 Sergio Leone movieThe
Good, the Bad, and the Ugly, the three title characters, also known as “Blondie,”
“Angel Eyes,” and “Tuco,” stand in a cemetery, guns in holsters, ready to draw. Let
us interfere slightly with the script and assume that Blondie always hits his target,
Angel Eyes hits with probability0.9, and Tuco with probability0.5. Let us also
suppose that they take turns in shooting, that whomever is shot at shoots next (unless
he is hit), and that Tuco starts. What strategy maximizes hisprobability of survival?

Introduce the events

S = {Tuco survives}
H = {Tuco hits his target}

Let us first suppose that Tuco tries to kill Blondie. If he fails, Blondie kills Angel
Eyes, and Tuco gets one shot at Blondie. We thus have

P (S) = P (S|H)P (H) + P (S|Hc)P (Hc) = P (S|H)
1

2
+

1

4

where we need to findP (S|H), the probability that Tuco survives a shootout with
Angel Eyes, who gets the first shot. If we assume an infinite supply of bullets (hey,
it’s a Clint Eastwood movie!), we can solve this recursively. Note how this is repeated
conditioning, as in Equation (1.6.1), but let us ease the notation and rename the event
that Tuco survives the shootoutT . Now let p = P (T ) and condition on the three
events

A = {Angel Eyes hits}
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B = {Angel Eyes misses, Tuco hits}
C = {Angel Eyes misses, Tuco misses}

to obtain
p = P (T |A)P (A) + P (T |B)P (B) + P (T |C)P (C)

whereP (A) = 0.9, P (B) = 0.1 × 0.5 = 0.05, P (C) = 0.1 × 0.5 = 0.05,
P (T |A) = 0, andP (T |B) = 1. To find P (T |C), note that if both Angel Eyes
and Tuco have missed their shots, they start over from the beginning and hence
P (T |C) = p. This gives

p = 0.05 + 0.05p

which givesp = 0.05/0.95, and with this strategy, Tuco has survival probability

P (S) =
0.05

0.95
× 0.5 + 0.25 ≈ 0.28

Next, suppose that Tuco tries to kill Angel Eyes. If he succeeds, he faces certain
death as Blondie shoots him. If he fails, Angel Eyes will try to kill Blondie to
maximize his own probability of survival. If Angel Eyes fails, Blondie kills him for
the same reason and Tuco again gets one last shot at Blondie. Tuco surviving this
scenario has probability0.5 × 0.1 × 0.5 = 0.025. If Angel Eyes succeeds and kills
Blondie, Tuco must again survive a shoot-out with Angel Eyesbut this time, Tuco
gets to start. By an argument similar to that stated above, his probability to survive the
shootout isp = 0.5+0.05pwhich givesp = 0.5/0.95and Tuco’s survival probability
is

P (S) = 0.025 + 0.5 × 0.9 × 0.5

0.95
≈ 0.26

not quite as good as with the first strategy.
Notice, however, that Tuco really gains from missing his shot, letting the two better

shots fight it out first. The smartest thing he can do is to miss on purpose! If he aims at
Blondie and misses, Blondie kills Angel Eyes and Tuco gets one last shot at Blondie.
His survival probability is0.5. An even better strategy is to aim at Angel Eyes, miss
on purpose, and give Angel Eyes a chance to kill Blondie. If Angel Eyes fails, he is a
dead man and Tuco gets one last shot at Blondie. If Angel Eyes succeeds, Tuco again
needs to survive the shootout which, as we just saw, has probability p = 0.5/0.95
and his overall survival probability is

P (S) = 0.1 × 0.5 + 0.9 × 0.5

0.95
≈ 0.52

When Fredric Mosteller presents a similar problem in his1965 bookFifty Challenging
Problems in Probability[1], he expresses some worry over the possibly unethical
dueling conduct to miss on purpose. In the case of Tuco, we cansafely disregard any
such ethical considerations.
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Example1.6.13. The shootout between Tuco and Angel Eyes in the previous ex-
ample is a special case of the following situation: Consideran experiment where the
eventsA andB are disjoint and repeat the experiment until eitherA or B occurs.
What is the probability thatA occurs beforeB?

First, by Corollary 1.5.5, we will sooner or later get eitherA orB. LetC be the event
thatA occurs beforeB, let p = P (C), and condition on the first trial. If we getA,
we haveA beforeB for certain and if we getB, we do not. If we get neither, that is,
get(A ∪ B)c, we start over. The law of total probability now gives

p = P (C|A)P (A) + P (C|B)P (B) + P (C|(A ∪ B)c)P (A ∪ B)c)

= P (A) + p(1 − P (A ∪ B))

= P (A) + p(1 − (P (A) + P (B)))

and we have established an equation forp. Solving it gives

p =
P (A)

P (A) + P (B)

Example1.6.14. Recall that a singlegamein tennis is won by the first player to
win four points but that it must also be won by a margin of at least two points. If
no player has won after six played points, they are atdeuceand the first to get two
points ahead wins the game. Suppose that Ann is the server andhas probabilityp of
winning a single point against Bob, and suppose that points are won independently of
each other. If the players are at deuce, what is the probability that Ann wins the game?

We are waiting for the first player to win two consecutive points from deuce, so let
us introduce the events

A = {Ann wins two consecutive points from deuce}
B = {Bob wins two consecutive points from deuce}

with the remaining possibility that they win a point each, inwhich case they are back
at deuce. By independence of consecutive points,P (A) = p2 andP (B) = (1− p)2,
and by Example 1.6.13 we get

P (Ann wins) =
p2

p2 + (1 − p)2

Example 1.6.15. The next sports application is to the game of badminton. The
scoring system is such that you can score a point only when youwin a rally as the
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server. If you win a rally as the receiver, the score is unchanged, but you get to serve
and thus the opportunity to score. Suppose that Ann wins a rally against Bob with
probabilityp, regardless of who serves (a reasonable assumption in badminton but
would, of course, not be so in tennis, where the server has a big advantage). What is
the probability that Ann scores the next point if she is the server?

If Ann is the server, the next point is scored either when she wins a rally as server or
loses two consecutive rallies starting from being server. In the remaining case, the
players will start over from Ann being the server with no points scored yet. Hence,
we can apply the formula from Example 1.6.13 to the events

A = {Ann wins a rally as server}
B = {Ann loses two consecutive rallies as server}

to obtain

P (Ann scores next point) =
P (A)

P (A) + P (B)
=

p

p + (1 − p)2

If the players are equally good, so thatp = 1
2 , the server thus has a23 probability to

score the next point.

Example1.6.16. (Gambler’s Ruin). Next, Ann and Bob play a game where a fair
coin is flipped repeatedly. If it shows heads, Ann pays Bob onedollar, otherwise Bob
pays Ann one dollar. If Ann starts witha dollars and Bob withb dollars, what is the
probability that Ann ends up winning all the money and Bob is ruined?

Introduce the event
A = {Ann wins all the money}

and letpa be the probability ofA if Ann’s initial fortune isa. A few minutes’ thought
makes us realize that it is quite complicated to computepa directly. Instead, let us
condition on the first flip and note that if it is heads, the gamestarts over with the new
initial fortunesa− 1 andb + 1, and if it is tails, the new fortunes area + 1 andb− 1.
Introduce the events

H = {heads in first flip} and T = {tails in first flip}

and apply the law of total probability to get

pa = P (A|H)
1

2
+ P (A|T )

1

2
=

1

2
(pa−1 + pa+1)

or equivalently
pa+1 = 2pa − pa−1



62 BASIC PROBABILITY THEORY

First note thatp0 = 0 and leta = 1 to obtain

p2 = 2p1

With a = 2 we get
p3 = 2p2 − p1 = 3p1

and we find the general relation
pa = ap1

Now,pa+b = 1, and hence

p1 =
1

a + b

which finally gives the solution

P (Ann wins all the money) =
a

a + b

By symmetry, the same argument applies to give

P (Bob wins all the money) =
b

a + b

Note that this means that the probability thatsomebodywins is1, which excludes the
possibility that the game goes on forever, something we cannot immediately rule out.

Thisgambler’s ruinproblem is an example of arandom walk. We may think of a
particle that in each step decides to go up or down (or, if you prefer, left/right), and
does so independently of its previous path.8 We can view the position aftern steps as
Ann’s total gain, so if the walk starts in0, Ann has won the game when it hitsb, and
she has lost when it hits−a. We refer to−a andb asabsorbing barriers(see Figure
1.7).

Example1.6.17. Consider the gambler’s ruin problem from the previous example,
but suppose that Ann only has one dollar and Bob is infinitely wealthy. What is the
probability that Ann eventually goes broke?

Since the range is infinite, we cannot use the technique from above, but let us still
condition on the first coin flip. If it shows heads, Ann’s fortune drops to zero and she
is ruined. If it shows tails, Ann’s fortune goes up to$2, and the game continues. If
Ann is to go broke, her fortune must eventually hit0, and before it does so, it must
first hit 1. Now, the probability to eventually hit1 starting from2 is the same as the
probability to eventually hit0 starting from1, and once her fortune is back at1, the

8A more romantic allegory is that of a drunken Dutchman who staggers back and forth until he either is
back in his favoritebruine cafeor falls into the canal.
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Fig. 1.7 Gambler’s ruin as a random walk.

game starts over from the beginning. If we letB = {Ann goes broke eventually} and
condition on the first flip being heads or tails, we thus get

P (B) = P (B|H)P (H) + P (B|T )P (T ) =
1

2
+ P (B|T )

1

2

Now let q = P (B). By the argument above,P (B|T ) = q2, and we get the equation

q =
1

2
+

q2

2

which we solve forq to getq = 1, so Ann will eventually go broke. Since the game
is fair, there is no trend that drags her fortune down toward ruin, only inevitable bad
luck.

Example1.6.18. Consider the gambler’s ruin problem but suppose that the game is
unfair, so that Ann wins with probabilityp 6= 1

2 in each round. If her initial fortune
is a and Bob’s initial fortune isb, what is the probability that she wins?

The solution method is the same as in the original gambler’s ruin: to condition on
the first flip and apply the law of total probability. Again, let A be the event that Ann
wins andpa the probability ofA if she starts witha dollars. For ease of notation, let
q = 1 − p, the probability that Ann loses a round. We get

pa = P (A|H)P (H) + P (A|T )P (T ) = pa−1q + pa+1p

which gives

pa+1 =
1

p
(pa − qpa−1)
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First leta = 1. Sincep0 = 0, we get

p2 =
1

p
p1

which we rewrite as

p2 =

(
1 +

q

p

)
p1

Fora = 2, we get

p3 =
1

p
(p2 − qp1)

=
1

p

(
1 +

q

p
− q

)
p1 =

(
1 +

q

p
+

(
q

p

)2
)

p1

and the general formula emerges as

pa =

(
1 +

q

p
+

(
q

p

)2

+ · · · +
(

q

p

)a−1
)

p1 =
1 − (q/p)a

1 − (q/p)
p1

Finally, we usepa+b = 1 to obtain

1 − (q/p)a+b

1 − (q/p)
p1 = 1

which gives

p1 =
1 − (q/p)

1 − (q/p)a+b

and the probability that Ann wins, starting from a fortune ofa dollars is thus

pa =
1 − (q/p)a

1 − (q/p)a+b

if p 6= 1
2 . The game is unfair to Ann ifp < 1

2 and to Bob ifp > 1
2 . It is interesting

to note that the change in winning probabilities can be dramatic for small changes of
p. For example, if the players start with20 dollars each andp = 1

2 , they are equally
likely to win in the end. Now changep to 0.55, so that Ann has a slight edge. Then

p20 =
1 − (0.45/0.55)20

1 − (0.45/0.55)40
≈ 0.98

so Ann is almost certain to win. See Problem 106 for an interesting application to
roulette.
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Example1.6.19. (Penney-ante). We finish the section with a game named for Walter
Penney, who in1969described it in an article inJournal of Recreational Mathematics.
If a fair coin is flipped3 times, there are eight outcomes

HHH, HHT, HTH, THH, HTT, THT, TTH, TTT

each of which has probability18 . You now suggest the following game to your friend
John.9 You bet$1 each, he gets to choose one of the eight patterns, and you choose
another. A coin is flipped repeatedly, and the sequence of heads and tails is recorded.
Whoever first sees his sequence come up wins. Since all patterns are equally likely
to come up in a sequence of three flips, this game seems fair. However, it turns out
that after John has chosen his pattern, you can always chooseso that your chance of
winning is at least23 !

The idea is to always let your sequence end with the two symbols that his begins
with. Intuitively, this means that whenever his pattern is about to come up, there is
a good chance that yours has come up already. For example, it he choosesHHH ,
you chooseTHH , and the only way in which he can win is if the first three flips give
heads. Otherwise, the sequenceHHH cannot appear without having aT before it,
and thus your patternTHH has appeared. With these choices, your probability to
win is 7

8 .
The general strategy is to let his first two be your last two, and never choose a

palindrome. Suppose that John choosesHTH so that according to the strategy, you
chooseHHT . Let us calculate your probability of winning.

Let A be the event that you win, and letp be the probability ofA. To findp, we
condition on the first flip. If this isT , the game starts over, and henceP (A|T ) = p.
If it is H , we condition further on the second flip. If this isH , you win (if we start
with HH , thenHHT must come beforeHTH), and if it isT , we condition further on
the third flip. If this isH , the full sequence isHTH , and you have lost. If it isT , the
full sequence isHTT and the game starts over. See the tree diagram in Figure 1.8
for an illustration of the possible cases. The law of total probability gives (ignoring
the case in which you lose)

p = P (A|T )P (T ) + P (A|HH)P (HH) + P (A|HTT )P (HTT )

= p × 1

2
+ 1 × 1

4
+ p × 1

8
=

2 + 5p

8

which we solve forp to getp = 2
3 . Just as in the dice game in Example 1.6.3, your

apparent generosity to let your opponent choose first is precisely what gives you the
advantage. See also Problem 108.

9Named after John Haigh, who in his splendid bookTaking Chances: Winning with Probability[3],
describes this game and names the loser Doyle after Doyle Lonnegan, victim in the1973 movieThe Sting.
I feel that Doyle has now lost enough and in this way let him geta small revenge. Hopefully, John’s book
has sold so well that he is able to take the loss.



66 BASIC PROBABILITY THEORY

H

lose

start overT

H

T

H

T start over

win

Fig. 1.8 The four possible cases in Penney-Ante whenHHT competes withHTH .

PROBLEMS

Section 1.2. Sample Spaces and Events

1 Suggest sample spaces for the following experiments:(a)Three dice are rolled and their
sum computed.(b) Two real numbers between0 and1 are chosen.(c) An American
is chosen at random and is classified according to gender and age. (d) Two different
integers are chosen between1 and10 and are listed in increasing order.(e)Two points
are chosen at random on a yardstick and the distance between them is measured.

2 Suggest a sample space for Example 1.3.2.

3 Consider the experiment to toss a coin three times and count the number of heads.
Which of the following sample spaces can be used to describe this experiment?

(a) S = {H, T}
(b) S = {HHH,TTT}
(c) S = {0, 1, 2, 3}
(d) S = {1, 2, 3}
(e)S = {HHH,HHT,HTH,THH,HTT, THT,TTH,TTT}

4 Let A,B, andC be three events. Express the following events in terms ofA, B, and
C: (a) Exactly one of the events occurs.(b) None of the events occurs.(c) At least one
of the events occurs.(d) All of the events occur.

5 The Stanley Cup final is played in best of seven games. Supposethat the good old days
are brought back and that the final is played between the Boston Bruins and Montreal
Canadiens. LetBk be the event that Boston wins thekth game and describe the following
events in terms of theBk: (a) Boston wins game1, (b) Boston loses game1 and wins
games2 and3, (c) Boston wins the series without losing any games,(d) Boston wins
the series with one loss,(e) Boston wins the first three games and loses the series.

Section 1.3. The Axioms of Probability
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6 A certain thick and asymmetric coin is tossed and the probability that it lands on the
edge is 0.1. If it does not land on the edge, it is twice as likely to show heads as tails.
What is the probability that it shows heads?

7 LetAandB be two events such thatP (A) = 0.3, P (A∪B) = 0.5andP (A∩B) = 0.2.
Find(a) P (B), (b) the probability thatA but notB occurs,(c) P (A∩Bc), (d) P (Ac),
(e) the probability thatB does not occur,(f) the probability that neitherA norB occurs.

8 Let A be the event that it rains on Saturday andB the event that it rains on Sunday.
Suppose thatP (A) = P (B) = 0.5. Further, letp denote the probability that it rains
on both days. Express the probabilities of the following events as functions ofp: (a) It
rains on Saturday but not Sunday.(b) It rains on one day but not the other.(c) It does
not rain at all during the weekend.

9 The probability in Problem 8(b) is a decreasing function ofp. Explain this intuitively.

10 People are asked to assign probabilities to the events “rainon Saturday,” “rain on Sun-
day,” “rain both days,” and “rain on at least one of the days.”Which of the following
suggestions are consistent with the probability axioms:(a) 70%, 60%, 40%, and80%,
(b) 70%, 60%, 40%, and90%, (c) 70%, 60%, 80%, and50%, (d) 70%, 60%, 50%,
and90%?

11 Two fish are caught and weighed. Consider the eventsA = {the first weighs more than
10 pounds}, B = {the second weighs more than10 pounds}, andC = {the sum of the
weights is more than20 pounds}. Argue thatC ⊆ A ∪ B.

12 LetA,B, andC be three events, such that each event has probability1
2
, each intersection

of two has probability1
4
, andP (A∩B ∩C) = 1

8
. Find the probability that(a) exactly

one of the events occurs,(b) none of the events occurs,(c) at least one of the events
occurs,(d) all of the events occur,(e) exactly two of the events occur.

13 (a)Let A andB be two events. Show that

P (A) + P (B) − 1 ≤ P (A ∪ B) ≤ P (A) + P (B)

(b) Let A1, ..., An be a sequence of events. Show that

n∑

k=1

P (Ak) − (n − 1) ≤ P

(
n⋃

k=1

Ak

)
≤

n∑

k=1

P (Ak)

14 A particular species of fish is known to weigh more than10 pounds with probability
0.01. Suppose that10 such fish are caught and weighed. Show that the probability that
the total weight of the10 fish is above100 pounds is at most0.1.

15 Consider the Venn diagram of four events below. If we use the “area method” to find
the probability ofA ∪ B ∪ C ∪ D we get

P (A ∪ B ∪ C ∪ D) = P (A) + P (B) + P (C) + P (D)

− P (A ∩ B) − P (A ∩ C) − P (B ∩ D) − P (C ∩ D)

+ P (A ∩ B ∩ C ∩ D)

However, this does not agree with Proposition 1.3.4 forn = 4. Explain!
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C D

A B

16 Choose a number at random from the integers 1,...,100. What is the probability that it
is divisible by(a) 2, 3, or 4, (b) i, j, or k?

17 Consider Example 1.3.3 where you throw a dart at random. Findthe probability that
you get(a) 14 or double,(b) 14, double, or triple,(c) even, double, a number higher
than10, or bull’s eye.

18 Prove Proposition 1.3.5 by considering disjoint eventsB1, B2, ... defined byB1 =
A1, B2 = A2 \ B1, ..., Bk = Ak \ Bk−1, ...

Section 1.4. Finite Sample Spaces and Combinatorics

19 You are asked to select a password for a Web site. It must consist of five lowercase
letters and two digits in any order. How many possible such passwords are there if(a)
repetitions are allowed,(b) repetitions are not allowed?

20 Consider the Swedish license plate from Example 1.4.6. Findthe probability that a
randomly selected plate has(a) no duplicate letters,(b) no duplicate digits,(c)all letters
the same,(d) only odd digits,(e) no duplicate letters and all digits equal.

21 “A thousand monkeys, typing on a thousand typewriters will eventually type the entire
works of William Shakespeare” is a statement often heard in one form or another.
Suppose that one monkey presses10 keys at random. What is the probability that he
types the word HAMLET if he is(a) allowed to repeat letters,(b) not allowed to repeat
letters?

22 Four envelopes contain four different amounts of money. Youare allowed to open them
one by one, each time deciding whether to keep the amount or discard it and open
another envelope. Once an amount is discarded, you are not allowed to go back and get
it later. Compute the probability that you get the largest amount under the following
different strategies:(a) You take the first envelope.(b) You open the first envelope,
note that it contains the amountx, discard it and take the next amount which is larger
thanx (if no such amount shows up, you must take the last envelope).(c) You open the
first two envelopes, call the amountsx andy, and discard both and take the next amount
that is larger than bothx andy.

23 In the early1970s, four talented Scandinavians named Agneta, Annifrid, Benny, and
Björn put a band together and decided to name it using their first name initials.(a) How
many possible band names were there? What if a reunion is planned and the reclusive
Agneta is replaced by some guy named Robert?(b) A generalization of (a): You are
given n uppercase letters such that the numbers ofA, B, ..., Z are nA, nB , ..., nZ ,
respectively (these numbers may be0). Show that you can create

n!

nA!nB ! · · ·nZ !



THE LAW OF TOTAL PROBABILITY AND BAYES’ FORMULA 69

different possible words. Compare with your answers in part(a).

24 Prove the following identities (rather than using the definition, try to give combinatorial
arguments):

(a)

(
n + 1

k + 1

)
=

(
n

k + 1

)
+

(
n

k

)
(b) k

(
n

k

)
= n

(
n − 1

k − 1

)

(c)

(
2n

n

)
=

n∑

k=1

(
n

k

)2

(d)
n∑

k=0

(
n

k

)
= 2n

25 On a chessboard (8 × 8 squares, alternating black and white) you place three chess
pieces at random. What is the probability that they are all(a) in the first row,(b) on
black squares,(c) in the same row,(d) in the same row and on the same color?

26 In a regular coordinate system, you start at(0, 0) and flip a fair coin to decide whether
to go sideways to(1, 0) or up to(0, 1). You continue in this way, and aftern flips you
have reached the point(j, k), wherej + k = n. What is the probability that(a) all the
j steps sideways came before thek steps up,(b) all the j steps sideways came either
before or after thek steps up,(c) all thej steps sideways came in a row?

27 An urn containsn red balls,n white balls, andn black balls. You drawk balls at random
without replacement (wherek ≤ n). Find an expression for the probability that you do
not get all colors.

28 You are dealt a bridge hand (13 cards). What is the probability that you do not get cards
in all suits?

29 Recall Texas Lotto from Example 1.4.11, where five numbers are chosen among 1,...,44
and one bonus ball number from the same set. Find the probability that you match(a)
four of the first five numbers but not the bonus ball,(b) three of the first five numbers
and the bonus ball.

30 You are dealt a poker hand. What is the probability of getting(a) royal flush,(b) straight
flush,(c) four of a kind,(d) full house,(e)flush,(f) straight,(g) three of a kind,(h) two
pairs,(i) one pair? (These are listed in order of descending value in poker, not in order
of difficulty!)

31 From the integers1, ..., 10, three numbers are chosen at random without replacement.
(a) What is the probability that the smallest number is4? (b) What is the probability
that the smallest number is4 and the largest is8? (c) If you choose three numbers from
1, ..., n, what is the probability that the smallest number isj and the largest isk for
possible values ofj andk?

32 An urn containsn white andm black balls. You draw repeatedly at random and without
replacement. What is the probability that the first black ball comes in thekth draw,
k = 1, 2, ..., n + 1?

33 In the “Pick 3” game described in Example 1.4.15, suppose that you choose the “any
order” option and play the numbers111. Since there are a total of220 cases and
one favorable case, you think that your chance of winning is1/220. However, when
playing this repeatedly, you notice that you win far less often than once every220 times.
Explain!

34 How many strictly positive, integer-valued solutions(x1, ..., xn) are there to the equa-
tion x1 + · · · + xn = k?
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35 Ann and Bob shuffle a deck of cards each. Ann wins if she can find acard that has the
same position in her deck as in Bob’s. What is the (approximate) probability that Ann
wins?

36 Consider the matching problem in Example 1.4.17 and letnj be the number of per-
mutations with exactlyj matches forj = 0, 1, ..., n. (a) Find an expression forn0.
Hint: How doesn0/n! relate to the probability computed in the example?(b) Find the
probability of exactlyj matches, forj = 0, 1, ..., n and its limit asn → ∞. Hint: You
need to findnj . First fix a particular set ofj numbers, for example,{1, 2, ..., j} and
note that the number of ways to match exactly those equals thenumber of ways to have
no matches among the remainingn − j numbers, which you can obtain from part (a).

Section 1.5. Conditional Probability and Independence

37 Let A andB be two events. Is it then true thatP (A|B) + P (A|Bc) = 1? Give proof
or counterexample.

38 Let A andB be disjoint events. Show that

P (A|A ∪ B) =
P (A)

P (A) + P (B)

39 Let A, B, andC be three events such thatP (B ∩ C) > 0. Show that

P (A ∩ B ∩ C) = P (A|B ∩ C)P (B|C)P (C)

and that

P (A|B ∩ C) =
P (A ∩ B|C)

P (B|C)

40 Let A andB be events, withP (A) = 1
2

andP (B) = 1
3
. Compute bothP (A∪B) and

P (A ∩ B) if (a) A andB are independent,(b) A andB are disjoint,(c) Ac andB are
independent,(d) Ac andB are disjoint.

41 A politician considers running for election and has decidedto give it two tries. He
figures that the current conditions are favorable and that hehas about a 60% chance of
winning this election as opposed to a 50–50 chance in the nextelection. However, if
he does win this election, he estimates that there ought to bea 75% chance of being
reelected.(a) Find the probability that he wins both elections.(b) Find the probability
that he wins the first election and loses the second.(c) If you learn that he won the
second election, what is the probability that he won the firstelection? (d) If he loses
the first election, what is the probability that he wins the second?

42 Consider two eventsA andB. We say thatB gives positive informationaboutA,
denotedB րA, if P (A|B) > P (A), that is if knowingB increases the probability
of A. Similarly, we say thatB gives negative information aboutA, denotedB ցA,
if P (A|B) < P (A). Are the following statements true or false?(a) If B րA, then
A ր B, (b) If A ր B andB ր C, thenA ր C, (c) If B ր A, thenB ց Ac, (d)
AցAc.

43 Show that bothØ and the sample spaceS are independent of any event. Explain
intuitively.
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44 Let S be a sample space withn equally likely outcomes wheren is a prime number.
Show that there are no independent events (unless one of themis S or Ø).

45 A coin has probabilityp of showing heads. Flip it3 times and consider the events
A = {at most one tails} andB = {all flips are the same}. For which values ofp areA
andB independent?

46 A fair coin is flipped twice. Explain the difference between the following: (a) the
probability that both flips give heads,(b) the conditional probability that the second flip
gives heads given that the first flip gave heads.

47 In December1992, a small airplane crashed in a residential area near Bromma Airport
outside Stockholm, Sweden. In an attempt to calm the residents, the airport manager
claimed that they should now feel safer than before, since the probability of two crashes
is much smaller than the probability of one crash and hence ithas now become less
likely that another crash will occur in the future.10 What do you think of his argument?

48 Bob and Joe are working on a project. They each have to complete their individual tasks
to complete the project and work independently of each other. When Bob is asked about
the chances of him getting his part done, Joe getting his partdone, and them both getting
the entire project done, he estimates these to be99%, 90%, and95% respectively. Is
this reasonable?

49 You roll a die and consider the eventsA: get an even outcome, andB: get at least 2.
FindP (B|A) andP (A|B).

50 You roll a die twice and record the largest number (if the two rolls give the same outcome,
this is the largest number).(a) Given that the first roll gives 1, what is the conditional
probability that the largest number is 3?(b) Given that the first roll gives 3, what is the
conditional probability that the largest number is 3?

51 Roll two fair dice. LetAk be the event that the first die givesk, and letBn be the event
that the sum isn. For which values ofn andk areAk andBn independent?

52 The distribution of blood types in the United States according to the “ABO classification”
is O:45%, A:40%, B:11%, and AB:4%. Blood is also classified according to Rh type,
which can be negative or positive and is independent of the ABO type (the corresponding
genes are located on different chromosomes). In the U.S. population, about84% is Rh-
positive. Sample two individuals at random and find the probability that (a) both are A
negative,(b) one of them is O and Rh positive, while the other is not,(c) at least one
of them is O positive,(d) one is Rh positive and the other is not AB,(e) they have the
same ABO type,(f) they have the same ABO type and different Rh types.

53 Let A, B, andC be independent events. Show thatA is independent of bothB ∩ C
andB ∪ C.

54 You are offered to play the following game: A roulette wheel is spun 8 times. If any of
the 38 numbers (0,00,1–36) is repeated, you lose $10, otherwise you win $10. Should
you accept to play this game? Argue by computing the relevantprobability.

55 Consider the following simplified version of the birthday problem in Example 1.4.9.
Divide the year into “winter half” and “summer half.” Suppose that the probability isp
that an individual is born in the winter half. What is the probability that two people are
born in the same half of the year? For which value ofp is this minimized?

10True story!
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56 Consider the birthday problem with two people and suppose that the probability distri-
bution of birthdays isp1, ..., p365. (a) Express the probability that they have the same
birthday as a function of thepk. (b) Show that the probability in (a) is minimized for
pk = 1

365
, k = 1, 2, ..., 365. If you are familiar with Lagrange multipliers, you can use

these. Alternatively, first show that
∑365

k=1
(pk − 1

365
+ 1

365
)2 ≥ 1

365
.

57 A certain text has one third vowels and two thirds consonants. Five letters are chosen at
random and you are asked to guess the sequence. Find the probability that all guesses
are correct if for each letter you(a) guess vowel or consonant with equal probabilities,
(b) guess vowel with probability1

3
and consonant with probability2

3
, (c) always guess

consonant.

58 Two eventsA andB are said to beconditionally independentgiven the eventC if

P (A ∩ B|C) = P (A|C)P (B|C)

(a) Give an example of eventsA, B, andC such thatA andB are independent but not
conditionally independent givenC. (b) Give an example of eventsA, B, andC such
thatA andB are not independent but conditionally independent givenC. (c) Suppose
thatA andB are independent events. When are they conditionally independent given
their unionA ∪ B? (d) Since the information inC andCc are equivalent (remember
Proposition 1.5.4 and the preceding discussion), we might suspect that ifA andB are
independent givenC, they are also independent givenCc. However, this is not true
in general. Give and example of three eventsA, B, andC such thatA andB are
independent givenC but not givenCc.

59 Roll a die twice and consider the eventsA = {first roll gives at least4 }, B = {second
roll gives at most4}andC = {the sum of the rolls is10}. (a)FindP (A), P (B), P (C),
andP (A ∩ B ∩ C). (b) Are A, B, andC independent?

60 Roll a dien times and letAij be the event that theith andjth rolls give the same number,
where1 ≤ i < j ≤ n. Show that the eventsAij are pairwise independent but not
independent.

61 You throw three darts independently and at random at a dart board. Find the probability
that you get(a) no bull’s eye,(b) at least one bull’s eye,(c) only even numbers,(d)
exactly one triple and at most one double.

62 Three fair dice are rolled. Given that there are no6s, what is the probability that there
are no5s?

63 You have three pieces of string and tie together the ends two by two at random.(a)
What is the probability that you get one big loop?(b) Generalize ton pieces.

64 Choosen points independently at random on the perimeter of a circle.What is the
probability that all points are on the same half-circle?

65 Do Example 1.4.13 assuming that balls are instead drawn withreplacement.

66 A fair coin is flippedn times. LetAk = {heads inkth flip}, k = 1, 2, ..., n, and
B = {the total number of heads is even}. Show thatA1, ..., An, B are not independent
but that if any one of them is removed, the remainingn events are independent (from
Stoyanov,Counterexamples in Probability[9]).

67 Compute the reliability of the two systems below given each component functioning
independently with probabilityp.
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68 A system is called a “k-out-of-n system” if it functions whenever at leastk of then
components function. Suppose that components function independently of each other
with probabilityp, and find an expression for the reliability of the system.

69 You play the following game: You bet$1, a fair die is rolled and if it shows6 you win
$4, otherwise you lose your dollar. If you must choose the number of rounds in advance,
how should you choose it to maximize your chance of being ahead (having won more
than you have lost) when you quit, and what is the probabilityof this?

70 Suppose that there is a one in a million chance that a person isstruck by lightning and
that there aren people in a city during a thunderstorm.(a) If n is 2 million, what is the
probability that somebody is struck?(b) How large mustn be for the probability that
somebody is struck to be at least1

2
?

71 A fair die is rolledn times. Once a number has come up, it is calledoccupied(e.g., if
n = 5 and we get2, 6, 5, 6, 2, the numbers2, 5, and6 are occupied). LetAk be the
event thatk numbers are occupied. Find the probability ofA1 (easy) andA2 (trickier).

Section 1.6. The Law of Total Probability and Bayes’ Formula

72 In the United States, the overall chance that a baby survivesdelivery is99.3%. For the
15% that are delivered by Cesarean section, the chance of survival is98.7%. If a baby
is not delivered by Cesarean section, what is its survival probability?

73 You roll a die and flip a fair coin a number of times determined by the number on the
die. What is the probability that you get no heads?

74 In a blood transfusion, you can always give blood to somebodyof your own ABO type
(see Problem 52). Also, type O can be given to anybody and those with type AB can
receive from anybody (people with these types are calleduniversal donorsanduniversal
recipients, respectively). Suppose that two individuals are chosen atrandom. Find the
probability that(a) neither can give blood to the other,(b) one can give to the other but
not vice versa,(c) at least one can give to the other.(d) both can give to each other.

75 You have two urns,10 white balls, and10 black balls. You are asked to distribute the
balls in the urns, choose an urn at random, and then draw a ballat random from the
chosen urn. How should you distribute the balls in order to maximize the probability to
get a black ball?

76 A sign reads ARKANSAS. Three letters are removed and then putback into the
three empty spaces again, at random. What is the probabilitythat the sign still reads
ARKANSAS?

77 A sign reads IDAHO. Two letters are removed and put back at random, each equally
likely to be put upside down as in the correct orientation. What is the probability that
the sign still reads IDAHO?

78 In the “Pick 3” game from Example 1.4.15, play the “any order”options and choose
your three numbers at random. What is the probability that you win?
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79 From a deck of cards, draw four cards at random without replacement. If you getk aces,
drawk cards from another deck. What is the probability to get exactly k aces from the
first deck and exactlyn aces from the second deck?

80 Recall Example 1.5.12, where you observe a mother walking with a girl. Find the
conditional probability that the other child is also a girl in the following cases:(a) The
mother chooses the older child with probabilityp. (b) If the children are of different
genders, the mother chooses the girl with probabilityp. (c) When do you get the second
solution in the example, that the probability equals1

2
?

81 LetA, B, andC be three events. Assuming that all conditional probabilities are defined,
show that

P (A|B) = P (A|B ∩ C)P (C|B) + P (A|B ∩ Cc)P (Cc|B).

82 Graduating students from a particular high school are classified as “weak” or “strong.”
Among those who apply to college, it turns out that56% of the weak students but only
39% of the strong students are accepted at their first choice. Does this indicate a bias
against strong students?

83 In Example 1.6.3, if all three dice are rolled at once, which is the most likely to win?

84 Consider the introduction to Section 1.6. If your car develops engine problems, how
likely is it that the dealer sold you a flood-damaged car?

85 Consider the Monty Hall problem in Example 1.6.6.(a) What is the relevance of the
assumption that Monty opens a door at random in the case whereyou chose the car?
(b) Suppose that there aren doors andk cars, everything else being the same. What is
your probability of winning a car with the switching strategy?

86 The three prisoners Shadrach, Mesach, and Abednego learn that two of them will be
set free but not who. Later, Mesach finds out that he is one of the two, and, excited, he
runs to Shadrach to share his good news. When Shadrach finds out, he gets upset and
complains “Why did you tell me? Now that there are only me and Abednego left, my
chance to be set free is only1

2
, but before it was2

3
.” What do you think of his argument?

What assumptions do you make?

87 A box contains two regular quarters and one fake two-headed quarter. (a) You pick a
coin at random. What is the probability that it is the two-headed quarter?(b) You pick
a coin at random, flip it, and get heads. What is the probability that it is the two-headed
quarter?

88 Two cards are chosen at random without replacement from a deck and inserted into
another deck. This deck is shuffled, and one card is drawn. If this card is an ace, what
is the probability that no ace was moved from the first deck?

89 A transmitter sends 0s and 1s to a receiver. Each digit is received correctly (0 as 0, 1 as
1) with probability0.9. Digits are received correctly independently of each otherand
on the average twice as many 0s as 1s are being sent.(a) If the sequence10 is sent,
what is the probability that10 is received?(b) If the sequence10 is received, what is
the probability that10 was sent?

90 Consider two urns, one with10 balls numbered1 through10 and one with100 balls
numbered1 through100. You first pick an urn at random, then pick a ball at random,
which has number5. (a) What is the probability that it came from the first urn?(b)
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What is the probability in (a) if the ball was instead chosen randomly from all the110
balls?

91 Smoking is reported to be responsible for about90% of all lung cancer. Now consider
the risk that a smoker develops lung cancer. Argue why this isnot 90%. In order to
compute the risk, what more information is needed?

92 The serious diseaseD occurs with a frequency of 0.1% in a certain population. The
disease is diagnosed by a method that gives the correct result (i.e., positive result for
those with the disease, and negative for those without it) with probability0.99. Mr
Smith goes to test for the disease and the result turns out to be positive. Since the
method seems very reliable, Mr Smith starts to worry, being “99% sure of actually
having the disease.” Show that this is not the relevant probability and that Mr Smith
may actually be quite optimistic.

93 You test for a disease that about one in 500 people have. If youhave the disease, the
test is always positive. If you do not have the disease, the test is 95% accurate. If you
test positive, what is the probability that you have the disease?

94 (a)Ann and Bob each tells the truth with probability1/3 and lies otherwise, indepen-
dently of each other. If Bob tells you something and Ann tellsyou Bob told the truth,
what is the probability Bob told you the truth?(b) Add a third person, Carol, who is as
prone to lying as Ann and Bob. If Ann says that Bob claims that Carol told the truth,
what is the probability Carol told the truth?

95 A woman witnesses a hit-and-run accident one night and reports to the police that the
escaping car was black. Since it was dark, the police test herability to distinguish black
from dark blue (other colors are ruled out) under similar circumstances and she is found
to be able to pick the correct color about90% of the time. One police officer claims that
they can now be90% certain that the escaping car was black, but his more experienced
colleague says that they need more information. In order to determine the probability
that the car was indeed black, what additional information is needed, and how is the
probability computed?

96 Joe and Bob are about to drive home from a bar. Since Joe is sober and Bob is not, Joe
takes the wheel. Bob has recently read in the paper that drunkdrivers are responsible
for 25% of car accidents, that about95% of drivers are sober, and that the overall risk
of having an accident is10%. “You sober people cause75% of the accidents,” slurs
Bob, “and there are so many of you too! You should let me drive!” Joe who knows his
probability theory has his answer ready. How does he respond?

97 Consider Example 1.6.8, where the murderer must be one ofn individuals. Suppose
that Joe Bloggs is initially considered the main suspect andthat the detectives judge
that there is a50–50 chance that he is guilty. If his DNA matches the DNA found at the
scene of the crime, what is then the probability that he is guilty?

98 Consider a parallel system of two components. The first component functions with
probabilityp and if it functions, the second also functions with probability p. If the first
has failed, the second functions with probabilityr < p, due to heavier load on the single
component.(a) What is the probability that the second component functions? (b) What
is the reliability of the system?(c) If the second component does not function, what is
the probability that the first does?

99 Recall Example 1.6.9, where you know that the guilty child isa boy, a boy opens the
door, and he has one sibling. Compute the probability that the child who opened the
door is guilty if the guilty child opens the door with probability p.
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100 Your new neighbors have three children.(a) If you are told about three independent
observations of a boy, what is the probability that they havethree boys?(b) If you get
two confirmations of an observed boy and one of an observed girl, what is the probability
that they have two boys and a girl?(c) If you getj ≥ 1 confirmations of an observed
boy andn − j ≥ 1 of an observed girl, what is the probability that they have two boys
and a girl?

101 Consider Example 1.6.11 about cystic fibrosis.(a) What is the probability that two
healthy parents have a child who neither is a carrier nor has the disease?(b) Given
that a child is healthy, what is the probability that both parents are carriers (you may
disregard parents with the disease)?

102 A genetic disease or condition is said to besex-linkedif the responsible gene is located on
either of the sex chromosomes,X andY (recall that women have twoX chromosomes
and men have one each ofX andY ). One example is red-green colorblindness for which
the responsible gene is located on theX chromosome. The allele for colorblindness
is recessive, so that one normal copy of the gene is sufficientfor normal vision. (a)
Consider a couple where the woman is colorblind and the man has normal vision. If
they have a daughter, what is the probability that she is colorblind? If they have a son?
(b) Compute the probabilities in (a) under the assumption that both parents have normal
vision and the woman’s father was color-blind.(c) It is estimated that about7% of men
are color blind but only about0.5% of women. Explain!

103 Tay–Sachs Diseaseis a serious genetic disease that usually leads to death in early
childhood. The allele for the disease is recessive andautosomal(not located on any of
the sex chromosomes).(a) In the general population, about1 in 250 is a carrier of the
disease. What incidence among newborns does this give?(b) Certain subpopulations
are at greater risk for the disease. For example, the incidence among newborns in the
Cajun population of Louisiana is1 in 3600. What proportion of carriers does this give?
(c) Generally, if a serious recessive disease has a carrier frequency of one inn and an
incidence among newborns of one inN , what is the relation betweenn andN? (Why
is it relevant that the disease is “serious?”)

104 Consider the game of badminton in Example 1.6.15.(a) Find the probability that Ann
scores the next point if she is currently the receiver.(b) Now suppose that Ann wins a
rally as server with probabilitypA and let the corresponding probability for Bob bepB.
If Ann serves, what is the probability that she is the next player to score?

105 In table tennis, a set is won by the first player to reach11 points, unless the score is
10–10, in which case serves are alternated and the player who first gets ahead by two
points win. Suppose that Ann wins a point as server with probability pA and Bob wins
a point as server with probabilitypB. If the score is10–10 and Ann serves, what is the
probability that she wins the set?

106 You are playing roulette, each time betting on “odd,” which occurs with probability18
38

and gives you even money back. You start with$10 and decide to play until you have
either doubled your fortune or gone broke. Compute the probability that you manage
to double your fortune if in each round you bet$10, $5, $2, and$1 dollar, respectively.
After you have found the best strategy, give an intuitive explanation of why it is the best
and why it is called “bold play.”

107 In Example 1.6.17, suppose that Ann wins each round with probability p > 1
2
. What is

the probability that she eventually goes broke?
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108 The game of Penney-ante can be played with patterns of any lengthn. In the casen = 1,
the game is fair (this is trivial); ifn = 2, it can be fair or to your advantage, depending
on the patterns chosen, and ifn ≥ 3, you can always choose a winning strategy.(a) Let
n = 2, so that the possible patterns areHH,HT, TH , andTT . Suggest a strategy and
compute your winning probability in the different cases.(b) Let n = 4 and suppose
that your opponent choosesHHHH . Suggest how you should choose your best pattern
and compute the winning probability.

109 In the game of craps, you roll two dice and add the numbers. If you get7 or 11 (a
natural) you win, if you roll2, 3, or12 (craps) you lose. Any other roll establishes your
point. You then roll the dice repeatedly until you get either7 or your point. If you get
your point first you win, otherwise you lose. Starting a new game of craps, what is the
probability that you win?





2
Random Variables

2.1 INTRODUCTION

We saw in the previous chapter that many random experiments have numerical out-
comes. Even if the outcome itself is not numerical, such as the case is Example 1.2.4,
where a coin is flipped twice, we often consider events that can be described in terms
of numbers, for example{the number of heads equals2}. It would be convenient to
have some mathematical notation to avoid the need to spell out all events in words.
For example, instead of writing{the number of heads equals1} and{the number of
heads equals2}, we could start by denoting the number of heads byX and consider
the events{X = 1} and{X = 2}. The quantityX is then something whose value is
not known before the experiment but becomes known after.

Definition 2.1.1. A random variableis a real-valued variable that gets its
value from a random experiment.

There is a more formal definition that defines a random variable as a real-valued
function on the sample space. IfX denotes the number of heads in two coin flips,
we would thus, for example, haveX(HH) = 2. In a more advanced treatment of
probability theory, this formal definition is necessary, but for our purposes, Definition
2.1.1 is enough.

A random variableX is thus something that does not have a value until after the
experiment. Before the experiment we can only describe the set of possible values,

79
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that is, therangeof X and the associated probabilities. Let us look at a simple ex-
ample.

Example2.1.1. Flip a coin twice and letX denote the number of heads. ThenX
has range{0, 1, 2} and the associated probabilities are

P (X = 0) =
1

4
, P (X = 1) =

1

2
, P (X = 2) =

1

4

and we refer to these probabilities as thedistributionof X .

In the last example, any three numbers between0 and1 that sum to1 is a possible
distribution (recall Section 1.4), and the particular choice in the example indicates
that the coin is fair. Let us next restate some of the examplesfrom Section 1.2 in
terms of random variables. In each case, we defineX and find its range.

Example2.1.2. Let X be the number of dots when a die is rolled. The range ofX
is {1, 2, ..., 6}.

Example2.1.3. Let X be the number of rolls of a die until the first6 appears. The
range ofX is {1, 2, ...}.

Example2.1.4. Let X be the lifetime of a lightbulb. The range ofX is [0,∞), the
nonnegative real numbers.

As noted in Section 1.2, the three sets above are different innature. The first is
finite, the second is countably infinite, and the third is uncountable. The formal
definition of a countably infinite set is one that can be put in aone-to-one corre-
spondence with the natural numbers. Examples of such sets are the natural num-
bers themselves{1, 2, 3, ...}, the odd natural numbers{1, 3, 5, ...}, and the integers
{...,−2,−1, 0, 1, 2, ...}. Countably infinite sets need not be sets of integers only; for
example, the set{ 1

n : n = 1, 2, ...} = {1, 1
2 , 1

3 , ...} is countably infinite. Hopefully
it is intuitively clear what a countably infinite set is, and we will not discuss the
complications and subtleties that arise in the study of cardinality of sets.

We use the termcountableto refer to a set that is either finite or countably infinite.
The reason for this is that in the study of random variables, the important distinction
turns out to be not between finite and infinite ranges, but between countable and
uncountable ranges.
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2.2 DISCRETE RANDOM VARIABLES

We distinguish primarily between random variables that have countable range and
those that have uncountable range. Let us examine the first case and start with a
definition.

Definition 2.2.1. If the range ofX is countable, thenX is called adiscrete
random variable.

For a discrete random variableX , we are interested in computing probabilities of the
typeP (X = xk) for various values ofxk in the range ofX . As we varyxk, the
probabilityP (X = xk) changes, so it is natural to viewP (X = xk) as a function of
xk. We now formally define and name this function.

Definition 2.2.2. Let X be a discrete random variable with range{x1, x2, ...}
(finite or countably infinite). The function

p(xk) = P (X = xk), k = 1, 2, ...

is called theprobability mass function(pmf) of X .

Sometimes we also use the notationpX for the pmf, if it is needed to stress which
the random variable is. When we represent a pmf as a bar chart,the height of a bar
equals the probability of the corresponding value on thex axis. SinceX cannot take
on values other thanx1, x2, ..., we can imagine bars of height0 at all other values
and could thus view the pmf as a function on all ofR (the real numbers) if we wish.
The numbersx1, x2, ... do not have to be integers, but they often are.

Example2.2.1. Let X be the number of daughters in a family with three children.
By Example 1.4.3, the range ofX is {0, 1, 2, 3} and the values of the pmf arep(0) =
1
8 , p(1) = 3

8 , p(2) = 3
8 , p(3) = 1

8 . The pmf is illustrated in Figure 2.1.

Now suppose that we have a discrete random variableX with pmf p and repeat the
experiment over and over to get a number, say,n, of outcomes ofX . We then expect
theabsolute frequency, that is, the number of times that we get the outcomexk, to be
approximately equal tonp(xk). We can plot the absolute frequencies in ahistogram,
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 0 

1/8 

 2/8 

3/8 

Fig. 2.1 Bar chart for the number of daughters in Example 2.2.1. The probability of 0
daughters is1

8
and so on.

which would then be expected to look similar in shape to the pmf (but different in
scale). In otherwords,we can think of the pmf as representing the “perfect histogram.”

Example2.2.2. If we roll a die and letX denote the outcome, thenX has pmf

p(k) = P (X = k) =
1

6
, k = 1, 2, ..., 6

which is plotted in Figure 2.2, together with a histogram of1000 simulated rolls of
the die. This is an example of auniform distribution(compare with Section 1.4),
characterized by the pmf having the same value for all the possible outcomes ofX .
Note that it is not possible to have a uniform distribution onan infinite set (why?), so
there is no immediately clear interpretation of a statementsuch as “choose an integer
at random.”

1 2 3 4 5 6

1/6 

1 2 3 4 5 6
0 

50 

 100 
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 200 

Fig. 2.2 Pmf and histogram of the roll of a fair die.
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Example2.2.3. If we roll a die and letX denote the number of rolls until the first6
appears, then Example 1.5.14 reveals that the pmf ofX is

p(k) = P (X = k) =
1

6

(
5

6

)k−1

, k = 1, 2, ...

which is plotted in Figure 2.3 togetherwith ahistogramof1000simulatedobservations
on X . The pmf has a bar at every positive integer, but the histogram must end
somewhere. In this case, the largest observed value ofX was44.

By the properties of probability measures, we have the following proposition.

Proposition 2.2.1. A function p is a possible pmf of a discrete random
variable on the range{x1, x2, ...} if and only if

(a) p(xk) ≥ 0 for k = 1, 2, ...

(b)
∞∑

k=1

p(xk) = 1

If the range ofX is finite, the sum in (b) is finite. So far we have considered events
of the type{X = k}, the event thatX equals a particular valuek. We could also
look at events of the type{X ≤ k}, the event thatX is less than or equal tok. For
example, when we roll a die we might ask for the probability that we get at most1,
at most2, and so on. This leads to another function to be defined next.

0 20 40 60
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 0.05 

0.1 

0 20 40 60
0 
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100 

150 

Fig. 2.3 Pmf and histogram of the number of rolls until the first6 appears.
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Definition 2.2.3. Let X be any random variable. The function

F (x) = P (X ≤ x), x ∈ R

is called the (cumulative) distribution function(cdf) of X .

The word “cumulative” appears in parentheses because it is rarely used other than for
the acronym cdf. Note that the cdf is a function on the entire real line. To get an idea
of what it typically looks like, let us return to Example 2.2.1.

Example2.2.4. In a family with three children, letX be the number of daughters.
The range ofX is {0, 1, 2, 3}, so let us start by computingF (k) for these values. We
get

F (0) = P (X ≤ 0) = p(0) =
1

8

since the only way to be less than or equal to0 is to be equal to0. For k = 1, we
first note that being less than or equal to1 means being equal to0 or 1. In terms of
events, we have

{X ≤ 1} = {X = 0} ∪ {X = 1}
and since the events are disjoint, we get

F (1) = P (X ≤ 1) = P (X = 0) + P (X = 1)

= p(0) + p(1) =
1

8
+

3

8
=

1

2

Continuing like this, we also getF (2) = 7
8 andF (3) = 1. Now we have the values

of F at the points in the range ofX . What about other values? Let us, for example,
consider the point0.5. Noting thatX ≤ 0.5 means thatX ≤ 0, we get

F (0.5) = F (0) =
1

8

and we realize thatF (x) = F (0) for all pointsx ∈ [0, 1). Similarly, all points
x ∈ [1, 2) haveF (x) = F (1) and all pointsx ∈ [2, 3) haveF (x) = F (2). Finally,
sinceX cannot take on any negative values, we haveF (x) = 0 for x < 0, and since
X is always at most3, we haveF (x) = 1 for x ≥ 3. This gives the final form ofF ,
which is illustrated in Figure 2.4.

The graph in Figure 2.4 is typical for the cdf of a discrete random variable. It jumps
at each value thatX can assume, and the size of the jump is the probability of that
value. Between points in the range ofX , the cdf is constant. Note how it is always
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Fig. 2.4 Graph of the cdf of the number of daughters in Example 2.2.4.

nondecreasing and how it ranges from0 to 1. Also note in which way the points are
filled whereF jumps, which can be expressed by saying thatF is right-continuous.
Some of these observed properties turn out to be true for any cdf, not only for that of
a discrete random variable. In the next section we shall return to this.

In Example 2.2.4,F assumes the values0 and1. If the range ofX is finite, this is
always the case but not necessarily if the range is countablyinfinite, as the following
example shows.

Example2.2.5. WhenX is the number of rolls until the first6 appears, the range is
{1, 2, ...} and the pmf is given in Example 1.5.14. The value of the cdf at an integer
n is

F (n) =

n∑

k=1

p(k) =
1

6

n∑

k=1

(
5

6

)k−1

=
1

6
× 1 − (5/6)n

1 − 5/6
= 1 −

(
5

6

)n

, n = 1, 2, ...

and the cdf approaches but never reaches1.

The cdf and the pmf are related according to the following proposition, which we
state without proof.
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Proposition 2.2.2. Let X be a discrete random variable with range
{x1, x2, ...}, pmfp, and cdfF . Then

(a) F (x) =
∑

k:xk≤x

p(xk), x ∈ R

(b) p(xk) = F (xk) − lim
y↑xk

F (y), k = 1, 2, ...

(c) ForB ⊆ R, P (X ∈ B) =
∑

k:xk∈B

p(xk)

Note how part (b) says that the probability of a point is the size of the jump ofF in
that point. IfF does not jump atx, the left-hand limitlimy↑x F (y) equalsF (x) and
the probability thatX equalsx is 0. Also note that part (a) is a special case of part
(c) with the particular choiceB = (−∞, x].

2.3 CONTINUOUS RANDOM VARIABLES

To introduce another type of random variable, letX be the lifetime of a lightbulb so
that it has range[0,∞). Since this is an uncountable set,X is not a discrete random
variable. However, we can still imagine computing probabilities of events of the
type {X ≤ x} for different values ofx, and we can define the cdf as previously,
F (x) = P (X ≤ x). Indeed, Definition 2.2.3 is stated for an arbitrary random
variable, not necessarily discrete. What doesF look like in this case?

Recall the cdf for a discrete random variable. This is a nondecreasing function,
ranging from0 to 1, which jumps precisely at the points thatX can assume. For
our lightbulb, the cdf should be nondecreasing (why?), range from0 to 1, and have
F (x) = 0 for x < 0. Finally, sinceX can assumeeverypositive value, there must
be an “infinitely small jump at every point,” and the only way for this to be possible
is if F is a continuous function. With the definition of cdf remaining the same as in
the previous section, we define the following.

Definition 2.3.1. If the cdfF is a continuous function, thenX is said to be a
continuous random variable.

The definitions of discrete and continuous random variablesare qualitatively different.
A discrete random variable is defined through its range;a continuous random variable,
through its cdf. Although a continuous random variable musthave an uncountable
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range, this is not the definition and as we will see later, a random variable can have
an uncountable range and still have discontinuities in its cdf.

In Example 2.2.4 and Figure 2.4, we observed some propertiesof the cdf. These
turn out to hold in general, and we state the following proposition.

Proposition 2.3.1. If F is the cdf of any random variable,F has the following
properties:

(a) It is nondecreasing.

(b) It is right-continuous.

(c) It has the limitsF (−∞) = 0 andF (∞) = 1 (where the limits may or
may not be attained at finitex).

Since these properties are intuitively reasonable,we omitthe technical proof. It should
be noted thatF (∞) is defined aslimx→∞ F (x) and isnot the same asP (X ≤ ∞)
but ratherP (X < ∞). This is so because, for any increasing sequence{xn} of real
numbers that is such thatxn → ∞, we have

{X < ∞} =
∞⋃

n=1

{X ≤ xn}

since if X is finite, it must be less thansomexn. By continuity of probabilities
(Proposition 1.3.5), we get

P (X < ∞) = lim
n→∞

P (X ≤ xn) = lim
n→∞

F (xn) = F (∞)

by definition (and similarly for−∞, using instead decreasing sequences). Right now,
this is no big deal since we do not allow random variables to beinfinite and hence
bothP (X < ∞) andP (X ≤ ∞) equal1. However, there are situations where it is
natural to let random variables also take on the value∞. Consider, for example, the
gambler’s ruin problem from Example 1.6.16, and let the random variableT be the
time until Ann is ruined. It is then natural to letT = ∞ mean that Bob was ruined
first, that is, Ann’s ruin never occurred. We will see more examples of infinite-valued
random variables in Chapter 8.

The properties listed in Proposition 2.3.1 are useful for a quick “sanity check” as
to whether a function is a cdf. If you have attempted to find a cdf and your candidate
violates any of (a) through (c) above, you have made an error somewhere. For com-
putations, the cdf can be used as follows.
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Proposition 2.3.2. Let X be any random variable with cdfF . Then

(a) P (a < X ≤ b) = F (b) − F (a), a ≤ b

(b) P (X > x) = 1 − F (x), x ∈ R

Proof. To prove (a), takea ≤ b and first note that

{X ≤ b} = {X ≤ a} ∪ {a < X ≤ b}

which is a disjoint union. Hence

P (X ≤ b) = P (a < X ≤ b) + P (X ≤ a)

which is to say that

P (a < X ≤ b) = P (X ≤ b) − P (X ≤ a) = F (b) − F (a)

by the definition of cdf. For part (b), note that the event{X > x} is the complement of
the event{X ≤ x}, so this follows from Proposition 1.3.2 together with the definition
of cdf. Alternatively, we can view this as a special case of (a) with b = ∞.

The cdf is thus defined in the same way for discrete and continuous random variables.
For discrete random variables we also defined the pmf,p(xk) = P (X = xk), for
valuesxk in the range ofX wherep(xk) measures the size of the jump of the cdf
atxk. In the continuous case, there are no such jumps, so there is no exact analogy.
However, instead of considering the jump size, let us consider theslopeof the cdf. A
large jump size in the discrete case then corresponds to a steep slope in the continuous
case. Since the size of the slope of a function is measured by its derivative, we present
the following definition.

Definition 2.3.2. The functionf(x) = F ′(x) is called theprobability density
function(pdf) of X .

For a continuous random variable, the pdf plays the role of a discrete random variable’s
pmf. Since the pdf is the derivative of the cdf, the fundamental theorem of calculus
gives that we can obtain the cdf from the pdf as

F (x) =

∫ x

−∞
f(t)dt
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Fig. 2.5 A pdf and corresponding cdf of a continuous random variable.Note how high values
of the pdf correspond to sharp increases in the cdf.

(see Figure 2.5). Compare with the discrete case where the relation between cdf and
pmf is

F (x) =
∑

k:xk≤x

p(xk)

We get the following analog of Proposition 2.2.2, stated without proof.

Proposition 2.3.3. Let X be a continuous random variable with pdff and
cdf F . Then

(a) F (x) =

∫ x

−∞
f(t)dt, x ∈ R

(b) f(x) = F ′(x), x ∈ R

(c) ForB ⊆ R, P (X ∈ B) =

∫

B

f(x)dx

The notation
∫

B
means that we compute the integral over the setB. Often B is

simply an interval but it could also be a union of intervals orpossibly some more
complicated set.1 The special case of an interval,B = (a, b], gives, for a continuous

1It turns out thatB cannot be any set but must be chosen among the so-called “Borel sets.” This is a
necessary restriction in a more advanced treatment of probability theory but is of no concern to us. The
sets that are not Borel sets are very bizarre and never arise in practice. It should also be pointed out
that the existence of a functionf satisfying part (c) of Proposition 2.3.3 is often taken as the definition
of a continuous random variable. In fact, our definition in terms of the continuity of the cdf is slightly
more restrictive since there exist continuous functions that are not differentiable anywhere. However, such
functions are of no practical use, so we stick with our definition.
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a b 

P(a<X≤ b) 

Fig. 2.6 Illustration of Proposition 2.3.3(c); the probability that X is betweena andb is the
area under the pdf.

random variable

P (a < X ≤ b) =

∫ b

a

f(x)dx

and combining this with Proposition 2.3.2(a) gives

F (b) − F (a) =

∫ b

a

f(x)dx

The probability thatX falls in the interval(a, b] is thus the area under the pdf between
a andb (see Figure 2.6).

SinceP (X ∈ R) = 1, we also get the following analog of Proposition 2.2.1.

Proposition 2.3.4. A functionf is a possible pdf of some continuous random
variable if and only if

(a) f(x) ≥ 0, x ∈ R

(b)
∫ ∞

−∞
f(x)dx = 1

Since the value of an integral does not change by the inclusion or exclusion of a single
point, we realize that we can alter the inequalities betweenstrict and nonstrict, and,
for instance, we get

P (a ≤ X ≤ b) =

∫ b

a

f(x)dx = F (b) − F (a) = P (a < X ≤ b)

and so on. Let us state this important fact as a corollary.
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Corollary 2.3.5. For a continuous random variableX , probabilities do not
change if strict and nonstrict inequalities are interchanged in events.

This is not true for discrete random variables. For example,if we roll a die there
is a difference betweenP (X ≤ 6) andP (X < 6). The intuition behind Corollary
2.3.5 is that the probabilities are so “smeared out” over therange ofX that it does
not matter if we add or remove single points.

Example2.3.1. Let X be the lifetime (in hours) of a lightbulb and suppose thatX
has pdf

f(x) =

{
0 if x < 0
0.001e−0.001x if x ≥ 0

Verify that this is a possible pdf and find(a)P (X < 1000), (b) P (100 ≤ X ≤ 1000),
(c) a numberx such that a lightbulb survives the agex with probability0.5.

First note that the fact thatX can assume only nonnegative values is reflected in the
pdf being0 for negativex. Clearlyf is nonnegative and also

∫ ∞

−∞
f(x)dx =

∫ ∞

0

0.001e−0.001xdx

=
[
−e−0.001x

]∞
0

= 1

andf is a possible pdf. To compute the probabilities, let us first find the cdf:

F (x) =

∫ x

−∞
f(t)dt =

∫ x

0

0.001e−0.001tdt

= 1 − e−0.001x, x ≥ 0

For (a) we get

P (X < 1000) = P (X ≤ 1000) = F (1000)

= 1 − e−0.001×1000 ≈ 0.63

and for (b)

P (100 ≤ X ≤ 1000) = F (1000)− F (100)

= 1 − e−1 − (1 − e−0.1) ≈ 0.54

and finally for (c), note that “surviving agex” is the event{X > x}, and we get

0.5 = P (X > x) = 1 − F (x) = e−0.001x
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which gives

x =
log 0.5

−0.001
≈ 693

This number is called themedianof X . If we have a large number of lightbulbs,
about half of them function longer than693 hours.

In the example, we formally integrate the pdf from−∞ to ∞, but the negative part
vanishes sincef equals0 there. From now on, we will give the functional expression
for a pdf only where it is positive and understand that it is0 everywhere else.

Now letX be a continuous random variable and consider a pointx in the range of
X . If X is less than or equal tox, then it is either strictly less thanx or exactly equal
to x, or in terms of events

{X ≤ x} = {X < x} ∪ {X = x}

This union is clearly disjoint and hence

P (X ≤ x) = P (X < x) + P (X = x)

which gives
P (X = x) = P (X ≤ x) − P (X < x)

and by Corollary 2.3.5 this equals0! The probability that a continuous random
variable equals any particular value is thus0, which at first sight may seem surprising
since we must getsomevalue ofX in the experiment. If we think about the underlying
mathematics, this becomes less mysterious since we know that the integral over an
interval can be positive even though the interval over each singlepoint is 0. We will
not delve any deeper into this; just remember that the range of a continuous random
variable is so large that we cannot assign positive probabilities to individual points,
only to intervals.

One consequence of the discussion above is that the interpretation of the pdf is
different from its discrete counterpart, the pmf. Recall that if X is discrete and has
pmf p, thenp(x) = P (X = x). If X is continuous, however,P (X = x) = 0 for all
x and is thus not equal to the pdff(x). How, then, should we interpretf(x)?

To get some feeling for what a pdf is, consider a continuous random variableX
with pdff and take two points,x1 andx2, in the range ofX such thatf(x1) > f(x2).
Now take a smallǫ > 0 and place symmetric intervals of lengthsǫ aroundx1 andx2

(see Figure 2.7). Let us call the intervalsI1 andI2, respectively. We get

P (X ∈ I1) =

∫ x1+ǫ/2

x1−ǫ/2

f(t)dt ≈ ǫf(x1)

and similarly
P (X ∈ I2) ≈ ǫf(x2)
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Fig. 2.7 Interpretation of the pdf. Sincef(x1) > f(x2), it is more likely thatX is nearx1

than nearx2.

Now, sincef(x1) > f(x2), the probability thatX belongs toI1 is the larger of the
two. This suggests an interpretation of the pdf in a pointx; it measures how likely it
is thatX is in the neighborhood ofx, not exactly equal tox. Although not exactly
the same as the pmf, the shape of the pdf still gives information on whereX is most
likely to assume its values.

Consider again the lightbulb with the pdf given in Example 2.3.1 above. In Figure
2.8, the pdf and a histogram of one thousand simulated valuesof X are plotted. To
construct a histogram for a continuous distribution, we divide thex axis intobinsand
count the number of observations in each bin. The number of bins depends on how
many observations we have and has to be decided in each case. (Think about what
the histogram would look like if we had too many or too few bins.) Note how the
shape of the histogram mirrors the shape of the pdf.

Whenever the pdf ofX is given, we say that it defines thedistributionof X . By
virtue of Proposition 2.3.3, we realize that the pdf is uniquely determined by the cdf

0 2000 4000 6000 0 2000 4000 6000

Fig. 2.8 Pdf of the lifetime of the lightbulb in Example 2.3.1 and histogram of1000 simulated
such lifetimes. Since we are interested only in comparing the shape, the scale on they axis has
been omitted.
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and vice versa, so either of the two specifies the distribution of X . The advantage
of stating the pdf is that it has the graphical interpretation mentioned above, and the
advantage of the cdf is that it is directly interpretable as aprobability.

2.3.1 The Uniform Distribution

Consider the experiment to choose a real number at random between 0 and 1. As
usual, the interpretation of “at random” is that no number ismore likely than any
other to be chosen. Since the range is an uncountable set, we now need to specify
what this means in terms of probabilities of intervals rather than single points. Call
the numberX , and consider an intervalIh ⊆ [0, 1] of lengthh. The interpretation of
“at random” is then that

P (X ∈ Ih) = h

regardless of the value ofh and where the intervalIh is located. This means that
the pdf must beconstantbetween 0 and 1 (and 0 otherwise), and since it must also
integrate to one, we realize that the pdf ofX is

f(x) = 1, 0 ≤ x ≤ 1

and we say thatX has auniform distributionon [0, 1]. To find the cdf ofX , take
x ∈ [0, 1] to obtain

F (x) =

∫ x

−∞
f(t)dt = x, 0 ≤ x ≤ 1

andF (x) = 0 for x < 0, andF (x) = 1 for x > 1. Note that the cdf is a continuous
function, soX is by definition a continuous random variable. With a similarargu-
ment, we can define the uniform distribution on any interval[a, b] as follows.

Definition 2.3.3. If the pdf ofX is

f(x) =
1

b − a
, a ≤ x ≤ b

thenX is said to have auniform distributionon [a, b], writtenX ∼ unif[a, b].

The corresponding cdf is

F (x) =

∫ x

a

f(t)dt =
x − a

b − a
, a ≤ x ≤ b

Since this is a continuous distribution, it does not matter if we include or exclude the
endpoints of the interval, since these have probability0. Thus, a uniform distribution
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on the open interval(a, b) is, from this perspective, the same as a uniform distribution
on the closed interval[a, b]. Also note how the cdfF is not differentiable at the points
a andb, which for the same reason does not matter.

Recall that we previously talked about the uniform distribution on a finite set (Sec-
tion 1.4 and Example 2.2.2). This was an example of thediscrete uniform distribution
characterized by a constant pmf on a finite set. What we have defined here is the con-
tinuous analog, characterized by a constant pdf on a finite interval. It is impossible
to have a uniform distribution on an infinite interval (why?). Hence, a statement such
as “choose a real number at random” does not have a clear interpretation.

The uniform distribution on[0, 1] is often referred to as thestandarduniform dis-
tribution. There is a simple relation between the general and the standard uniform
distribution, which we state next.

Proposition 2.3.6. Let X ∼ unif[0, 1] and define the random variableY by
Y = a + (b − a)X . ThenY ∼ unif[a, b].

Proof. Note thatY has range[a, b]. We need to show that the pdf ofY is of the
form in Definition 2.3.3. To do this, let us first consider the cdf of Y , FY . Take
x ∈ [a, b] to obtain

FY (x) = P (a + (b − a)X ≤ x)

= P

(
X ≤ x − a

b − a

)
= FX

(
x − a

b − a

)

the cdf of the random variableX evaluated at the point(x − a)/(b − a). Now we
can use the fact thatX ∼ unif[0, 1] and thusFX(t) = t, to obtain

FY (x) =
x − a

b − a
, a ≤ x ≤ b

from which we get the pdf

fY (x) = F ′Y (x) =
1

b − a
, a ≤ x ≤ b

which we recognize as the pdf of a uniform distribution on[a, b].

Thus we can transform a standard uniform distribution into any other uniform distri-
bution. Conversely, ifX ∼ unif[a, b], then the random variable(X − a)/(b − a) is
standard uniform. As we will see later, the standard uniformdistribution is a funda-
mental tool for computer simulation of random variables. Inthat context, observations
generated from the standard uniform distribution are called random numbers, and we
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see here that if we are given such random numbers, we can transform them to ob-
servations from a uniform distribution on[a, b] by multiplying each withb − a and
addinga (scaling and translating).

Finally, a word on terminology. The term used for the distribution may also be
applied directly to the random variable. Hence, we mean the same thing by saying
“X is a uniform random variable” and “X has a uniform distribution” and the phrase
“generate a couple of standard uniforms” is a quicker way to say “generate a couple
of random variables which have the uniform distribution on[0, 1].”

2.3.2 Functions of Random Variables

In Proposition 2.3.6 we started from a random variableX and defined a new random
variableY through the relationY = a + (b − a)X . We then managed to find the
distribution ofY from knowledge of the distribution ofX . More generally, suppose
that we are given a random variableX with known distribution and a functiong, and
define a new random variableY = g(X). Can we find the distribution ofY on the
basis of our knowledge of the distribution ofX?

We need to distinguish between the discrete and the continuous cases. The discrete
case is easy and can be treated with methods that we already know. Suppose that
X is discrete with range{x1, x2, ...} and pmfpX and letY = g(X). The range
of Y is then{y1, y2, ...}, the possible function values. Note that this range may be
strictly smaller than the range ofX , in the case thatg maps severalx values to the
samey value. In the extreme case thatg is constant,Y can only assume one value,
regardless of whatX is. Now consider the value of the pmf ofY in a pointyk,
pY (yk) = P (Y = yk). We can express the event{Y = yk} as a subset of the range
of X . Thus let

Bk = {xj : g(xj) = yk}

the set of values that are mapped toyk and apply Proposition 2.2.2(c) to obtain

pY (yk) = P (Y = yk) = P (X ∈ Bk) =
∑

j:xj∈Bk

pX(xj)

The continuous case is more complicated, since a distribution is defined through its
pdf. The trick here is to start with the cdf, and we illustratethis in a few examples.

Example2.3.2. Suppose thatX ∼ unif(−π/2, π/2) and letY = sin(X). Find the
pdf of Y .

First note that the range ofY is (−1, 1). Now take ay in this range and note that
{Y ≤ y} = {X ≤ sin−1(y)} to obtain

FY (y) = P (Y ≤ y) = P (X ≤ sin−1(y))

= FX(sin−1(y)) =
1

π
sin−1(y) +

1

2
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where we have used that the cdf ofX is FX(x) = (x + π/2)/π, −π/2 ≤ x ≤ π/2.
This gives the pdf

fY (y) = F ′Y (y) =
1

π

d

dy
sin−1(y) =

1

π
√

1 − y2
, −1 < y < 1

We chose to define the uniform distribution on the open interval rather than the closed
interval to avoid infinite values of the pdf, but as noted previously, this is merely a
cosmetic issue.

Example2.3.3. Road salt is spread on a road to melt snow and ice. Suppose that
the resulting water has a temperature ofX degrees Celsius, which has pdf

fX(x) =
1

25
(10 − 2x), 0 ≤ x ≤ 5

What is the pdf of the temperature if we convert it to degrees Fahrenheit?

The relation between FahrenheitY and CelsiusX is

Y = 1.8X + 32

so the range ofY is [32, 41]. Start with the cdf’s to obtain

FY (y) = P (1.8X + 32 ≤ y)

= P

(
X ≤ y − 32

1.8

)
= FX

(
y − 32

1.8

)

which we differentiate to get the pdf

fY (y) = F ′Y (y) =
d

dy
FX

(
y − 32

1.8

)

= fX

(
y − 32

1.8

)
× 1

1.8
=

1

45

(
10 − 2 × y − 32

1.8

)

=
1

81
(82 − 2y), 32 ≤ y ≤ 41.

These examples illustrate how to arrive at the desired pdf. Start with the cdf of one
random variable, express it in terms of the cdf of the other, and finally differentiate
to get the pdf. The last example deals with a linear transformation of the form
Y = aX + b, wherea > 0. By going through the same steps as in the example, we
realize that the pdf ofY is

fY (y) =
1

a
fX

(
y − b

a

)
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for y in the range ofY . Generally, ifY = g(X) whereg is a strictly increasing and
differentiable function, the event{g(X) ≤ y} is the same as{X ≤ g−1(y)}, and we
have the relation

FY (y) = FX(g−1(y))

which gives the pdf

fY (y) = fX(g−1(y))
d

dy
g−1(y)

If g is instead strictly decreasing and differentiable, the event{g(X) ≤ y} is the same
as{X ≥ g−1(y)} and we get

FY (y) = 1 − FX(g−1(y))

and

fY (y) = fX(g−1(y))

(
− d

dy
g−1(y)

)

We summarize in the following proposition.

Proposition 2.3.7. Let X be a continuous random variable with pdfX , let
g be a strictly increasing or strictly decreasing, differentiable function, and let
Y = g(X). ThenY has pdf

fY (y) =

∣∣∣∣
d

dy
g−1(y)

∣∣∣∣ fX(g−1(y))

for y in the range ofY .

Functions that are not strictly increasing or decreasing can usually be broken up into
pieces that are. In practice, it is often just as easy to startwith the cdf ofY and work
through the steps in the examples, as it is to apply the proposition.

Example2.3.4. Let X ∼ unif[−1, 1], and letA be the area of a square which has
one corner at the origin and the next at the pointX on thex axis. Find the pdf ofA.

The range ofA is [0, 1] and sinceA = X2 we get the cdf

FA(a) = P (X2 ≤ a) = P (−
√

a ≤ X ≤
√

a)

= FX(
√

a) − FX(−
√

a)

=

√
a + 1

2
− −√

a + 1

2
=

√
a, 0 ≤ a ≤ 1
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which gives the pdf

fA(a) = F ′A(a) =
1

2
√

a
, 0 ≤ a ≤ 1

It would be more cumbersome to try to apply Proposition 2.3.7by considering the
casesX > 0 andX ≤ 0 separately.

We finish with an example that shows that applying a functiong can turn a continuous
random variable into a discrete random variable.

Example2.3.5. Let X ∼ unif[0, 1] and letY = [6X ]+1, where[ · ] denotes integer
part. What is the distribution ofY ?

First note that the range ofY is {1, 2, ..., 6} so Y is a discrete random variable.
Second, fork in the range ofY , we obtain

{Y = k} = {k − 1 ≤ [6X ] < k} =

{
k − 1

6
≤ X <

k

6

}

which gives

P (Y = k) = P

(
k − 1

6
≤ X <

k

6

)
=

1

6
, k = 1, 2, ..., 6

andY has the discrete uniform distribution on{1, 2, ..., 6}. Thus, if we generate
random numbers and apply the functiong(x) = [6x] + 1 to each, we can simulate
rolls of a fair die. We will return to this in Chapter 5.

2.4 EXPECTED VALUE AND VARIANCE

In both daily language and scientific reporting, quantitative properties are often de-
scribed in terms of averages. For example, a tourist guide for a travel destination may
state average monthly temperatures. The stock market indices are weighted averages
of several individual stock prices. We talk about averages when we discuss salaries,
home prices, amounts of rainfall, and so on. Common for all these examples is that
instead of presenting the entire data set, a single number isgiven to summarize the
data. This is convenient, and if I plan to visit Honolulu in December, the information
that the average daily high temperature is 81°F is enough forme to plan my trip. It
probably would not give me any extra useful information to see the entire data set of
all the temperature measurements from which this number is computed.

With this in mind, it would be convenient to have a similar wayto describe random
variables. That is, instead of giving the entire distribution, we could give a single
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number that summarizes it, and gives useful information. How should we choose
this number? Let us consider the experiment of rolling a die.If we roll it repeatedly
and denote the consecutive outcomesX1, X2, ..., we can consider the average(X1 +
· · · + Xn)/n of then first rolls. If we further denote the number ofk’s by Nk for
k = 1, 2, ..., 6, we get

X1 + · · · + Xn

n
=

6∑

k=1

k
Nk

n

and ifn is large, we expect the relative frequenciesNk/n to be approximately equal
to the corresponding probabilities, which in this case are all 1

6 . But this means that
we expect

X1 + · · · + Xn

n
≈ 1

6
(1 + 2 + · · · + 6) = 3.5

and we expect the approximation to be better the larger the value ofn. Hence,3.5 is
a long-term average of the rolls of a die, and we can give this number as a summary
of the experiment. Inspired by this we state the following definition.

Definition 2.4.1. Let X be a discrete random variable with range{x1, x2, ...}
(finite or countably infinite) and probability mass functionp. The expected
valueof X is defined as

E[X ] =

∞∑

k=1

xkp(xk)

The expected value is thus a weighted average of the possiblevalues ofX , with the
corresponding probabilities as weights. It can be thought of as a theoretical spatial
average over the range ofX , whereas we can describe the consecutive averages
mentioned above as time-averages. Note that the expected value is a numbercomputed
from the distribution, whereas time-averages are computedfrom experiments and are
thus random. We will return to this discussion and make it strict in Chapter 4.

The termsexpectationandmeanare used as synonyms of expected value, and the
letterµ is often used to denote it. Let us look at some examples.

Example2.4.1. An American roulette table has the numbers1–36, plus0 and00.
Suppose that you bet $1 on “odd.” What is your expected gain?

If the winning number is odd, you win $1; if it is not, you lose $1, which we can
describe as a negative gain. Hence, ifX is your gain, we have

X =

{
1 with probability18/38

−1 with probability20/38
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and get

E[X ] = 1 × 18

38
+ (−1) × 20

38
= − 1

19

so on average you lose about5 cents for each dollar you bet.

Example 2.4.2. In the previous example, consider instead astraight bet, which
means that you bet on a single number. Which payout should thecasino choose for
you to have the same expected loss as when you bet on odd?

Again denote your gain byX . We have

X =

{
a with probability1/38

−1 with probability37/38

which has expected value

E[X ] = a × 1

38
+ (−1) × 37

38
=

a − 37

38

which we set equal to− 1
19 to obtaina = 35.

As you have noticed by now, the expected value is not necessarily a value thatX can
assume, so in this sense, the term “expected” is slightly misleading.

If the random variable is nonnegative, there is an alternative way to compute the
expected value according to the following proposition.

Proposition 2.4.1. Let X be a discrete random variable with range{0, 1, ...}.
Then

E[X ] =

∞∑

n=0

P (X > n)

Proof. Note thatk =
∑k

n=1 1, and use the definition of expected value to obtain

E[X ] =
∞∑

k=1

kP (X = k) =
∞∑

k=1

k∑

n=1

P (X = k)

=

∞∑

n=1

∞∑

k=n

P (X = k) =

∞∑

n=1

P (X ≥ n)

=
∞∑

n=0

P (X > n)
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Example2.4.3. What is the expected number of rolls of a fair die until we get the
first 6?

If we let the number beX , Example 2.2.5 gives

P (X > n) = 1 − F (n) =

(
5

6

)n

, n = 0, 1, ...

and the expected value is

E[X ] =

∞∑

n=0

P (X > n) =

∞∑

n=0

(
5

6

)n

=
1

1 − 5/6
= 6

so on average it takes6 rolls to get the first6. We leave it to the reader to ponder
whether this is intuitively clear.

We proceed to the definition of expected value in the continuous case. Remember
how sums are replaced by integrals, and the following definition should not come as
a surprise.

Definition 2.4.2. Let X be a continuous random variable with pdff . The
expected valueof X is defined as

E[X ] =

∫ ∞

−∞
xf(x)dx

The formal integral limits are−∞ and∞, but in reality the limits are determined by
the range ofX , which is wheref(x) is positive.

Example2.4.4. Let X ∼ unif[a, b]. FindE[X ].

By Definition 2.4.2,

E[X ] =

∫ ∞

−∞
xf(x)dx =

1

b − a

∫ b

a

xdx =
a + b

2

which is the midpoint of the interval[a, b].
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For nonnegative continuous random variables, there is an analog of Proposition 2.4.1.
We leave the proof as an exercise.

Proposition 2.4.2. LetX be a continuous random variable with range[0,∞).
Then

E[X ] =

∫ ∞

0

P (X > x)dx

Example2.4.5. Find the expected lifetime of the lightbulb in Example 2.3.1.

The pdf is
f(x) = 0.001e−0.001x, x ≥ 0

so we can find the expected value according to the definition as

E[X ] =

∫ ∞

0

xf(x)dx

Since the range ofX is [0,∞), we can also use Proposition 2.4.2. We know from the
example that

P (X > x) = e−0.001x, x ≥ 0

and get

E[X ] =

∫ ∞

0

e−0.001xdx =

[
−e−0.001x

0.001

]∞

0

= 1000

which, if done by hand, is a little bit simpler than using the definition directly, since
it avoids the partial integration.

One important property of the expected value is that it is linear, in the following sense.

Proposition 2.4.3. Let X be any random variable, and leta and b be real
numbers. Then

E[aX + b] = aE[X ] + b



104 RANDOM VARIABLES

Proof. We prove this in the continuous case, fora > 0. The discrete is analogous,
replacing integrals by sums. LetY = aX +b, and note thatY is a continuous random
variable, which by Proposition 2.3.7 has pdf

fY (y) =
1

a
fX

(
y − b

a

)

and by definition, the expected value ofY is

E[Y ] =

∫ ∞

−∞
yfY (y)dy =

1

a

∫ ∞

−∞
yfX

(
y − b

a

)
dy

where the variable substitutiony = ax + b givesdy = a dx and hence

E[Y ] =

∫ ∞

−∞
(ax + b)fX(x)dx

= a

∫ ∞

−∞
xfX(x)dx + b

∫ ∞

−∞
fX(x)dx = aE[X ] + b

and we are done.

In the proof we discovered the identity

E[aX + b] =

∫ ∞

−∞
(ax + b)fX(x)dx

which, as we shall see next, is a special case of a more generalresult.

2.4.1 The Expected Value of a Function of a Random Variable

In the previous section we considered the expected value of alinear transformation
aX + b. It is a natural extension to ask what can be said about the expected value of
an arbitrary functiong applied toX , E[g(X)]. In Section 2.3.2, we learned how to
find the pdf ofg(X), at least for strictly monotone functionsg, and this can be used
to find the expected value ofg(X) according to the definition, but there is a quicker
way. Let us start with an example.

Example2.4.6. Let X ∼ unif[0, 2]. What is the expected area of a square with
sidelengthX?

The random variable of interest isA = X2. To findE[A], we compute it according
to the definition of expected value. Let us first find the pdf ofA, fA. Since we are
dealing with a continuous random variable, we need to start with the cdf,FA. Note
that the range ofA is [0, 4], and take ana in this range to obtain

FA(a) = P (A ≤ a) = P (X ≤
√

a) =

√
a

2
, 0 ≤ a ≤ 4
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sinceX ∼ unif[0, 2]. We get the pdf

fA(a) = F ′A(a) =
1

4
√

a

and expected value

E[A] =

∫ 4

0

afA(a)da =
1

4

∫ 4

0

√
a da =

1

4

[
2

3
a
√

a

]4

0

=
4

3

This example is illuminating in several ways. First, note that the expected area is
notequal to the square of the expected sidelength. At first it might seem paradoxical
that the “typical square has side1 and area43 ,” but the situation clears up if we think
of expected values as averages of large numbers of observations. For the sidelength,
small values (near0) and large values (near2) average each other out around1.
However, when the values are squared, values near0 stay near0 but those near2 end
up closer to4. Thus, larger values have more impact when squared, and pushthe
expected area up.

Second, note that the distribution ofA is not uniform on its range[0, 4]. To
understand why, consider, for example, the two intervals[0, 0.25] and[3.75, 4], both
of length0.25. The probability thatA is in the first is the probability thatX is in
[
√

0,
√

0.25] = [0, 0.5] which is0.25, and the probability thatA is in the second is
the probability thatX is in [

√
3.75,

√
4] = [1.94, 2], which is only0.03.

Finally, if we make the variable substitutionx =
√

a in the expression forE[A]
above, we getda = 2xdx, the new integral limits[0, 2], and

E[A] =

∫ 4

0

afA(a)da =
1

4

∫ 4

0

√
a da =

1

2

∫ 2

0

x2dx

Since the pdf ofX is fX(x) = 1
2 , 0 ≤ x ≤ 2, we have shown that

E[X2] =

∫ 2

0

x2fX(x)dx

that is, in this case, we could have computed the expected value ofA without first
finding its pdf. Compare the two expressions

E[A] =

∫ 4

0

afA(a)da

E[X2] =

∫ 2

0

x2fX(x)dx

where the first is according to the definition, and uses the range and pdf ofA. In
contrast, the second expression uses the range and pdf of theoriginal random variable
X and plugs in the functionx2 in the integral. It turns out that this is no coincidence,
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and we have the following result.

Proposition 2.4.4. Let X be a random variable with pmfpX or pdf fX , and
let g : R → R be any function. Then

E[g(X)] =






∞∑

k=1

g(xk)pX(xk) if X is discrete with range{x1, x2, ...}

∫ ∞

−∞
g(x)fX(x)dx if X is continuous

Proof. The discrete case is straightforward. We will do the proof only for the
continuous case in the special case wheng is strictly increasing. By Proposition
2.3.7, the pdf ofY = g(X) is

fY (y) =

(
d

dy
g−1(y)

)
fX(g−1(y))

which gives

E[Y ] =

∫ ∞

−∞
yfY (y)dy =

∫ ∞

−∞
y

(
d

dy
g−1(y)

)
fX(g−1(y))dy

where we make the change of variablesx = g−1(y) which givesy = g(x), dx =
d
dyg−1(y)dy and

E[Y ] =

∫ ∞

−∞
g(x)fX(x)dx

as desired.

The general case of continuousX is more complicated. For instance, depending on
the functiong, g(X) may be discrete even ifX is continuous (recall Example 2.3.5).
Proposition 2.4.4 is true for any functiong, but the general proof is more involved
and we skip it here. We are fortunate to have this proposition, since it is generally
much easier to computeE[g(X)] according to this method than it is to go through
the procedure of first finding the distribution ofg(X).

In Example 2.4.6, we saw that the expected area did not equal the square of the
expected sidelength. In otherwords, withµ = E[X ], we hadE[X2] 6= µ2. Generally,
if g is a function andµ = E[X ], it is most often the case that

E[g(X)] 6= g(µ)
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with one important exception: the linear caseg(x) = ax + b, stated in Proposition
2.4.3.

Example2.4.7. Recall Example 2.3.5, whereX ∼ unif[0, 1] andY = [6X ] + 1.
FindE[Y ].

The function applied toX is g(x) = [6x] + 1 so it has expected value

E[g(X)] =

∫ 1

0

([6x] + 1)fX(x)dx =

∫ 1

0

[6x]dx + 1

and since[6x] = k if k
6 ≤ x < k+1

6 for k = 0, 1, ..., 5, we get

∫ 1

0

[6x]dx =
0 + 1 + · · · + 5

6
= 2.5

which givesE[X ] = 3.5, the mean of a fair die.

Example2.4.8. A chemical reaction in a solution in a test tube produces a certain
chemical compound. The amountX in grams thus created has pdf

f(x) = 2x, 0 ≤ x ≤ 1

Amounts below0.5 gram are considered too low, and in that case the solution is
discarded. After the reaction, what is the expected amount of the compound that is
kept?

We are looking forE[g(X)], whereg is the function

g(x) =

{
0 if x ≤ 0.5
x if x > 0.5

and Proposition 2.4.4 gives

E[g(X)] =

∫ 1

0

g(x)f(x)dx = 2

∫ 1

0.5

x2dx ≈ 0.58

Expected values do not have to be finite, as the following famous example shows.

Example2.4.9. (St Petersburg Paradox). Consider the following roulette strategy.
You bet$1 on odd, and if you win, you quit. If you lose, you bet$2 on odd, and in
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each subsequent round either quit if you win, or double your bet if you lose.(a) What
is the expected number of rounds until you win, and what is then your net gain?(b)
What is your expected loss before the first win?

In each round, you win with probability1838 , and in analogy with Example 2.4.3, the
expected number of rounds until your first win is38

18 ≈ 2.1. If you have hadn − 1
consecutive losses prior to the first win in thenth round, you have lost1 + 2 + · · ·+
2n−2 = 2n−1 − 1, and since you bet2n−1 in the nth round, your net gain is one
dollar. Hence, each time you quit, you have gained a dollar, and each dollar takes on
average2.1 rounds to gain. This sounds almost too good to be true, does itnot?

The problem with the strategy is revealed by solving (b). Letthe time of your first
win beT . In analogy with Example 2.2.3, the pmf ofT is

P (T = n) =
18

38

(
20

38

)n−1

, n = 1, 2, ...

and your accumulated loss before the first win is the random variableL = 2T−1 − 1
which has expected value

E[L] =

∞∑

n=1

(2n−1 − 1)P (T = n) =
18

38

∞∑

n=1

((
40

38

)n−1

−
(

20

38

)n−1
)

= ∞

so your expected loss before the first win is infinite! In practice, this means that
whatever fortune you start with, eventually you will go broke if you play this strategy.
It was indeed too good to be true, and Donald Trump is still wealthier than all the
world’s probabilists.

This example is one version of theSt Petersburg paradox, which dates back to the
eighteenth century, and occurs in many variants in the probability literature.

There is nothing strange about the random variableL in the last example. Each
outcome ofT gives an outcome ofL, and the range ofL is the set{0, 1, 3, 7, ...}.
Thus,L itself is always finite but its expected value is infinite. If we were to get
consecutive observations onL, the consecutive averages would tend to grow beyond
all bounds.

2.4.2 Variance of a Random Variable

We introduced the expected value as a number that summarizesthe distribution of a
random variableX . Since it gives an idea of whereX is on the average, the expected
value is often referred to as alocation parameter. The expected value does, however,
not give any information of the variability ofX , as the following example illustrates.

Example2.4.10. Suppose that we are about to weigh a piece of metal,and have atour
disposal two different scales, one that gives the correct weight with an error of±0.01
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gram, and the second with an error of±0.1 gram. If the true weight of the piece isw
grams, we thus assume that the scales give the weightsX ∼ unif[w−0.01, w+0.01]
andY ∼ unif[w − 0.1, w + 0.1], respectively. The expected values are

E[X ] = w and E[Y ] = w

that is, both scales give the correct weight on average. However, it is clear that the first
scale is preferred because of its better precision. This is not reflected in the expected
values.

If we, together with the expected value, also had a measure ofvariability, the two
numbers together would give more information about the distribution than would the
expected value alone. Since the expected valueµ measures location, we want to
somehow measure the random variable’s variability relative to the location, that is,
measure the average behavior ofX−µ. This is a random quantity, and we would like
to describe it by a single number. We could try to take the expected value ofX − µ,
but this would always give0, sinceE[X −µ] = E[X ]−µ = 0. Intuitively, values to
the left ofµ cancel values to the right. Another attempt would be to take the expected
value of|X−µ|, which would give us a nonnegative number that measures the extent
to whichX deviates fromµ on average. As it turns out, the following definition gives
a more convenient measure than using the absolute value.

Definition 2.4.3. Let X be a random variable with expected valueµ. The
varianceof X is defined as

Var [X ] = E
[
(X − µ)2

]

The variance is often denotedσ2. Notice that(X − µ)2 ≥ 0, so the variance is a
nonnegative measure of variability where large values indicate thatX tends to fluc-
tuate a lot aroundµ. Just like the mean, the variance can be infinite. Since we have
squared the values, the variance is not on the same scale asX andµ. For example, if
X andµ are weights in grams, the unit of measure of Var[X ] is square grams which
does not have a clear meaning. For this reason, we often use the following definition.

Definition 2.4.4. Let X be a random variable with varianceσ2 = Var[X ].
Thestandard deviationof X is then defined asσ =

√
Var[X ].
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To compute the variance, we can use Proposition 2.4.4 withg(x) = (x − µ)2, but it
is often easier to use the following formula.

Corollary 2.4.5.
Var[X ] = E[X2] − (E[X ])2

Proof. We prove the continuous case. The discrete is the obvious analog. By
Proposition 2.4.4, we have

Var[X ] = E[(X − µ)2] =

∫ ∞

−∞
(x − µ)2f(x)dx

=

∫ ∞

−∞
(x2 − 2xµ + µ2)f(x)dx

=

∫ ∞

−∞
x2f(x)dx − 2µ

∫ ∞

−∞
xf(x)dx + µ2

∫ ∞

−∞
f(x)dx

= E[X2] − 2µE[X ] + µ2 = E[X2] − (E[X ])2

Example2.4.11. Let X be the number when a die is rolled. Find Var[X ].

The pmf isp(k) = 1
6 , k = 1, 2, ..., 6 which gives expected value

E[X ] =

6∑

k=1

kp(k) =
1

6

6∑

k=1

k =
7

2

and by Proposition 2.4.4,

E[X2] =

6∑

k=1

k2p(k) =
1

6

6∑

k=1

k2 =
91

6

which gives

Var[X ] = E[X2] − (E[X ])2 =
35

12

Example2.4.12. In Example 2.4.1 we calculated the expected gain in roulette. Com-
pute the variance of your gain if you(a) bet on odd,(b) make straight bets.
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For (a), your gainX has distribution

X =

{
1 with probability18/38

−1 with probability20/38

which has meanE[X ] = − 1
19 . For the variance we needE[X2], which equals1

sinceX2 ≡ 1. Hence

Var[X ] = E[X2] − (E[X ])2 = 1 −
(
− 1

19

)2

=
360

361
≈ 0.997

For (b) denote the gain byY , which has distribution

Y =

{
35 with probability1/38
−1 with probability37/38

which has meanE[Y ] = − 1
19 . Further

E[Y 2] = 352 × 1

38
+ (−1)2 × 37

38
=

631

19

which gives

Var[Y ] = E[Y 2] − (E[Y ])2 =
631

19
−
(
− 1

19

)2

=
11988

361
≈ 33.2

Thus,X andY have the same mean, so on average you lose just as much with either
strategy. The variance ofY is much larger than the variance ofX , which reflects the
fact that you are more likely to lose a round with a straight bet, but when you win,
you win more.

Example2.4.13. Let X ∼ unif[a, b]. Find the variance ofX .

We already know thatE[X ] = (a + b)/2. For the variance, we needE[X2] and get

E[X2] =

∫ b

a

x2f(x)dx =
1

b − a

[
x3

3

]b

a

=
a2 + ab + b2

3

which gives

Var[X ] =
a2 + ab + b2

3
−
(

a + b

2

)2

=
(b − a)2

12

after some elementary algebra.
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Notice how these expressions for mean and variance are similar to those of the dis-
crete uniform distribution in Example 2.4.11. Let us state them separately.

Proposition 2.4.6. If X ∼ unif[a, b], then

E[X ] =
a + b

2
and Var[X ] =

(b − a)2

12

In mechanical engineering, these can be interpreted as the center of gravity and mo-
ment of inertia, respectively, of a solid bar with endpointsin a andb. The variance
formula in Corollary 2.4.5 can then be interpreted as Steiner’s theorem about moment
of inertia.

Example2.4.14. Recall Example 2.4.10 about the two scales, where one gives a
measurementX ∼ unif[w−0.01, w+0.01]and the other,Y ∼ unif[w−0.1, w+0.1].
They both have expected valuew, and by the formula given above, the variances are

Var[X ] = 3.3 × 10−5 and Var[Y ] = 3.3 × 10−3

and the first scale’s higher precision is reflected in its lower variance. The standard
deviations are0.006 and0.06 respectively, so we could say that the first scale has10
times better precision than the second.

Unlike the expected value, there is no immediate intuition behind the value of the vari-
ance. In the previous example, we can use the variances to compare the two scales,
but the actual numbers are not immediately interpretable. Even if we calculate the
standard deviations, it is not clear what these numbers mean. Some help is given by
the following result.

Proposition 2.4.7(Chebyshev’s Inequality). Let X be any random variable
with meanµ and varianceσ2. For any constantc > 0, we have

P (|X − µ| ≥ c σ) ≤ 1

c2
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Proof. Let us prove the continuous case. Fixc and letB be the set{x ∈ R :
|x − µ| ≥ c σ}. We get

σ2 = E[(X − µ)2] =

∫ ∞

−∞
(x − µ)2f(x)dx

≥
∫

B

(x − µ)2f(x)dx ≥ c2σ2

∫

B

f(x)dx = c2σ2P (X ∈ B)

which gives the desired inequality.

Chebyshev’s inequality tells us that the probability is at least1− 1/c2 that a random
variable is withinc standard deviations of its mean, regardless of what the distribution
of X is. For example,X is within two standard deviations of its mean with prob-
ability at least0.75, and within three standard deviations with probability at least0.89.

Example2.4.15. The IQ of a randomly sampled individual can be viewed as a ran-
dom variableX . It is known that this has mean100 and standard deviation15. The
highest recorded IQ is228, belonging to Marilyn vos Savant, mentioned in Example
1.6.6. What is the probability that a randomly sampled individual has an IQ that is at
least as high as Marilyn’s?

We apply Chebyshev’s inequality withµ = 100, σ = 15. Since

{|X − µ| ≥ cσ} = {X ≤ µ − cσ} ∪ {X ≥ µ + cσ}

we get

P (X ≥ µ + cσ) ≤ P (|X − µ| ≥ cσ) ≤ 1

c2

Settingµ + cσ = 228 givesc ≈ 8.5, which in turn gives

P (X ≥ 228) ≤ 0.014

In words, at most1.4% of the population has an IQ that is at least as high as Marilyn’s.
Note that this is only an upper bound, and the true number is likely to be smaller. See
also Problem 47.

Since Chebyshev’s inequality holds for all random variables, it is fairly coarse (as
you can see by plugging inc = 1) and we can get much better bounds if we know
the distribution ofX . This is, for example, the case in the IQ example above, and
we will return to it later (with better news for Marilyn). Chebyshev’s inequality is of
mostly theoretical use.



114 RANDOM VARIABLES

In the previous section we saw that the expected value is linear. This is not true
for the variance, but the following proposition holds.

Proposition 2.4.8. Let X be any random variable, and leta and b be real
numbers. Then

Var[aX + b] = a2Var[X ]

Proof. By the definition of variance applied to the random variableaX + b, we
obtain

Var[aX + b] = E
[
(aX + b − E[aX + b])2

]

= E
[
(aX + b − aE[X ] − b)2

]
= E

[
a2(X − E[X ])2

]

= a2E
[
(X − E[X ])2

]
= a2Var[X ]

where we have used Proposition 2.4.3 repeatedly.

Example2.4.16. Consider Example 2.3.3, where the temperatureX in degrees Cel-
sius has pdf

fX(x) =
10 − 2x

25
, 0 ≤ x ≤ 5

Find the mean and variance ofX , and the mean and variance ofY , which is the
temperature in degrees Fahrenheit.

The mean ofX is

E[X ] =
1

25

∫ 5

0

x(10 − 2x)dx =
5

3
≈ 1.7

and since

E[X2] =
1

25

∫ 5

0

x2(10 − 2x)dx =
25

6

we get

Var[X ] =
25

6
− 25

9
=

25

18
≈ 1.4

SinceY = 1.8X + 32, we get

E[Y ] = 1.8E[X ] + 32 = 35

and
Var[Y ] = 1.82Var[X ] = 4.5
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Note how adding the constantb does not affect the variance. This is intuitively clear
since addingb simply shifts the entire distribution, including the mean,b units but
does not affect howX varies around the mean. The following proposition is intu-
itively obvious.

Proposition 2.4.9. Let µ = E[X ]. Then Var[X ] = 0 if and only if X ≡ µ.

In words, if a random variable has variance0, it must be constant.2 The “if” part
follows immediately from the definition of variance; the “only if” part turns out to be
trickier, and we leave it for Problem 48.

Above we learned how to computeE[g(X)] for an arbitrary functiong. To find
the variance ofg(X), simply use the variance formula applied tog(X), that is

Var[g(X)] = E[g(X)2] − (E[g(X)])
2

whereE[g(X)] andE[g(X)2] are computed by applying Proposition 2.4.4 to the
functionsg(x) andg(x)2, respectively.

Example2.4.17. Let X ∼ unif[0, 2], and letA = X2, the area of a square with
sidelengthX . Find Var[A].

We already know thatE[A] = 4
3 and need to findE[A2]. Proposition 2.4.4 gives

E[A2] = E[X4] =
1

2

∫ 2

0

x4dx =
16

5

which gives

Var[A] = E[A2] − (E[A])2 =
16

5
− 16

9
=

64

45

2.5 SPECIAL DISCRETE DISTRIBUTIONS

In this section we examine some special discrete distributions. First, the term “dis-
crete” may be used to describe the random variable itself or its distribution. The same
goes for the name of the distribution. For example, if we rolla die, we may say that
“X has a uniform distribution on1, ..., 6” or “ X is uniform on1, ..., 6.”

2Strictly speaking, it must be constantwith probability one, but this is a subtle distinction that we need not
worry about.



116 RANDOM VARIABLES

2.5.1 Indicators

This is the simplest type of discrete random variable. Consider an experiment where
the eventA may occur.

Definition 2.5.1. Let A be an event. The random variableIA defined by

IA =

{
1 if A occurs
0 otherwise

is called theindicatorof the eventA.

This type of random variable is also called aBernoulli random variable. If the event
A has probabilityp, the pmf ofIA is

p(k) =

{
p for k = 1
1 − p for k = 0

and the mean and variance are

E[IA] = 1 × p + 0 × (1 − p) = p

Var[IA] = E[I2
A] − (E[IA])2 = p(1 − p)

sinceI2
A = IA. Indicators are much more useful than they may seem at first glance.

In more advanced treatments of probability theory they function as “building blocks”
that are used to define random variables and expected values in greater generality
than we have done. We will later see how indicators are also very useful in problem
solving.

2.5.2 The Binomial Distribution

Consider an experiment where we are interested in some particular eventA, where
the probability ofA is p. Suppose that we repeat the experiment independentlyn
times and count how many times we getA. Denote this number byX which is then
a discrete random variable with range0, 1, ..., n. What is the pmf ofX?

Let us call an occurrence ofA a “success” (S) and a nonoccurrence a “failure”
(F ). The event{X = k} then means that we have a sequence ofk successes and
n − k failures, which can, for example, be

S F S S F · · · F S F

By independence, this particular sequence has probability

p × (1 − p) × p × p × (1 − p) × · · · × (1 − p) × p × (1 − p) = pk(1 − p)n−k
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Fig. 2.9 The pmf’s of two binomial distributions with parametersn = 10, p = 0.5 and
n = 10, p = 0.8, respectively.

But this is only one possible configuration ofk successes andn − k failures, and

since the position for thek Ss can be chosen in

(
n

k

)
ways, we get

P (X = k) =

(
n

k

)
pk(1 − p)n−k, k = 0, 1, ..., n

and we give this probability distribution a name.

Definition 2.5.2. If X has probability mass function

p(k) =

(
n

k

)
pk(1 − p)n−k, k = 0, 1, ..., n

it is said to have abinomial distributionwith parametersn andp, and we write
X ∼ bin(n, p).

The binomial distribution thus describes the experiment tocount successes in inde-
pendent trials and is defined through its pmf. The parameterp is often called the
success probability. In Figure 2.9, a binomial pmf withn = 10 andp = 0.5 and
another withn = 10 andp = 0.8 are plotted. Note how the pmf withp = 0.5 is
symmetric, which for this value ofp is the case for any value ofn.

Proposition 2.5.1. If X ∼ bin(n, p), then

E[X ] = np and Var[X ] = np(1 − p)
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Proof. First note that, by Problem 24(b) in Chapter 1

kp(k) = np

(
n − 1

k − 1

)
pk−1(1 − p)n−k

and we get

E[X ] =

n∑

k=0

kp(k) = np

n∑

k=1

(
n − 1

k − 1

)
pk−1(1 − p)n−k = np

since the terms in the sum are the probabilities in a binomialdistribution with param-
etersn − 1, andp and hence the sum equals1. The proof of the variance formula is
left for Problem 65.

Example2.5.1. Consider the following two sequences of heads and tails. Only one
of them was obtained by repeatedly flipping a fair coin. Let uscall this sequence
“random.” Which one is it? For better readability, we represent heads byX and tails
byO:

X O O X X O O X X X O X O O X X O O X X O O O X O O O O X X

X X O X O X O O X O X O X O X X O O X O X O X X O X O X X O

This is, of course, impossible to answer with certainty. Thesecond sequence seems a
little better “mixed,” whereas the first has some suspiciousoccurrences of long runs
of tails at the end, but we need to come up with some more formalway to make a
decision.

Let us try to figure out which sequence is most unlikely to be random. Since each
particular sequence of heads and tails has the same probability (1

2 )30, this will not
help us. Let us consider the number of heads. The expected number is15, and the
sequences have14 and16 heads, respectively, so this does not help us, either. Let
us instead consider the number of changes fromX to O and vice versa. A count
reveals that the first sequence has14 changes and the second23. Which is closer to
the expected?

Since each change has probability1
2 , we can denote the number of changes byX

and thus have

X ∼ bin

(
29,

1

2

)

which hasE[X ] = 14.5. Thus, the second sequence has far more changes than what
is expected. But how extreme is it? The probability to get a values as large as23 or
larger, is

P (X ≥ 23) =
29∑

k=23

(
29

k

)(
1

2

)29

≈ 0.001
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which is a very small probability. In other words, only once in 1000 experiments of
30 independent coin flips would we get an outcome this extreme, and we decide that
this sequence is not random.

So, what is the answer? The first sequence is random, and the second was ob-
tained by letting the probability of a change be0.7. The number of changes is then
bin(29, 0.7), which has expected value29 × 0.7 = 20.3, and our outcome of23 is
not at all extreme.

That the second sequence looks “better mixed” is precisely why we shouldnotbe-
lieve that it is random. Considerations like these are important when testing random-
number generators, which use deterministic algorithms to produce numbers that seem
to be random. It is quite typical that people, when asked to write down a random
sequence, are likely to come up with something similar to thesecond rather than
the first sequence. Most human brains are not forgetful enough to be good random
number generators.

Example2.5.2. Let us revisit Mr Bloggs from Example 1.6.8 and give an alternative
computation of the probability of his guilt.

Suppose that each person on the island has the genotype with probabilityp, indepen-
dently of other people. We know that Mr Bloggs has the genotype, so if there are a
total ofk people with it, he is guilty with probability1k , for k = 1, 2, ..., n. LetX be
the total number of individuals with the genotype. We already know that Mr Bloggs
has the genotype, and among the remainingn − 1 individuals, the number with the
genotype should thus be binomial with parametersn − 1 andp. Let G be the event
that Mr Bloggs is guilty and condition on the events{X = k}, k = 1, 2, ..., n to
obtain

P (G) =

n∑

k=1

P (G|X = k)P (X = k)

=
n∑

k=1

1

k

(
n − 1

k − 1

)
pk−1(1 − p)n−k =

1 − (1 − p)n

np

after some algebra. In Example 1.6.8, we found that the probability that he is guilty
is 1/(1 + (n− 1)p), which is not the same answer. What is wrong this time? Just as
in the case of the stonethrowing boys from Example 1.6.9, we forgot to condition on
all the information we have. We know not only that Mr Bloggs has the genotype but
also that the murderer has it and under these two conditions,the proposed binomial
distribution is not correct. What, then, is the distribution of X?

Initially and unconditionally, the number of people on the island with the genotype
is X ∼ bin(n, p). Given the eventA = {both the murderer and Mr Bloggs have the
genotype}, what is the conditional distribution ofX? We can think of observations
on genotypes as sampling with replacement, just as we did in Example 1.6.10. Thus,
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if there arek individuals with the genotype, then the conditional probability of A is
k2/n2, since we have sampled twice and gotten the genotype both times. We can
now apply Bayes’ formula to obtain

P (X = k|A) =
P (A|X = k)P (X = k)

n∑

j=0

P (A|X = j)P (X = j)

=

k2

n2

(
n

k

)
pk(1 − p)n−k

n∑

j=0

j2

n2

(
n

j

)
pj(1 − p)n−j

=

k2

(
n

k

)
pk(1 − p)n−k

E[X2]

and the probability that Mr Bloggs is guilty becomes

P (G|A) =

n∑

k=1

P (G|A ∩ {X = k})P (X = k|A)

=

n∑

k=1

1

k
×

k2

(
n

k

)
pk(1 − p)n−k

E[X2]
=

E[X ]

E[X2]

=
np

n2p2 + np(1 − p)
=

1

1 + (n − 1)p

where we used the variance formulaE[X2] = (E[X ])2 + Var[X ]. Thus we got the
same solution as in Example 1.6.8 once more. The conditionaldistribution ofX
we computed is an example of asize-biaseddistribution; for more on this topic, see
Problem 32.

2.5.3 The Geometric Distribution

Consider again the situation of successive independent trials where the eventA occurs
with probabilityp. This time letX be the number of trials untilA first occurs. Then
X is discrete with range1, 2, ..., and the event{X = k} means that we have the
sequence

F F · · · F S

of k − 1 failures and success in thekth trial. By independence, this has probability

(1 − p)(1 − p) · · · (1 − p)p = p(1 − p)k−1

and we state the following definition.
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Definition 2.5.3. If X has probability mass function

p(k) = p(1 − p)k−1, k = 1, 2, ...

it is said to have ageometric distributionwith parameterp, and we write
X ∼ geom(p).

The parameterp is again called the success probability. If we instead countthe number
of trials beforethe first occurrence ofA and denote this byY , thenY has pmf

p(k) = p(1 − p)k, k = 0, 1, ...

The difference is that the range includes0. We refer to this as a “geometric distribution
including0” and note thatY = X − 1. In Example 2.2.5 we found the cdf of a
geometric distribution withp = 1

6 by using the definition of cdf. There is, however,
a quicker way, if we instead consider the probability thatX is strictly greater thann.
Since this is equivalent to saying that the firstn trials resulted in failure we get

P (X > n) = P (n consecutive failures) = (1 − p)n

which gives the cdf
F (n) = 1 − (1 − p)n, n = 1, 2, ...

which is also what we got in the special case in the example.

Proposition 2.5.2. If X ∼ geom(p), then

E[X ] =
1

p
and Var[X ] =

1 − p

p2

Proof. By Proposition 2.4.1 we get

E[X ] =

∞∑

n=0

P (X > n) =

∞∑

n=0

(1 − p)n =
1

p

which is certainly quicker than using the definition directly. We will prove the variance
formula in Section 3.7.4.

The expression for the mean makes good sense. In a large number of trials, the pro-
portionp are successes, and hence they come on average every(1/p)th trial. The
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mean in the geometric distribution including0 is 1/p− 1 = (1 − p)/p.

Example2.5.3. If you play the Texas Lotto twice a week, how long is your expected
wait to win the jackpot?

According to Example 1.4.11, the probability to win is1/47, 784, 352, so your ex-
pected wait is47, 784, 352 drawings or about459 thousand years. Good luck.

Example2.5.4. The government of a war-torn country decides that the proportion
of males in the population needs to be increased. It therefore declares that families
are allowed to keep having children as long as the newborn babies are boys, but as
soon as they have a daughter, they are not allowed any more children. Will the goal
be achieved?

Consider a family that has no children yet, and letX be the number of children they
will have. With the rule to stop after the first daughter,X ∼ geom(1

2 ), and hence the
expected number of children is2. GivenY as the numberof sons, we haveY = X−1
and henceE[Y ] = E[X ]−1 = 1, so the expected number of sons is1, the same as the
expected number of daughters. The suggested policy will notchange the long-term
sex ratio. See also Problem 60.

2.5.4 The Poisson Distribution

The distribution we investigate in this section is different from those discussed previ-
ously, in the sense that it does not primarily describe a particular experiment. Rather,
it is a distribution that has been observed empirically in many different applications.

Definition 2.5.4. If X has probability mass function

p(k) = e−λ λk

k!
, k = 0, 1, ...

it is said to have aPoisson distributionwith parameterλ > 0, and we write
X ∼ Poi(λ).

Since we have not derived this expression from any particular experiment, let us first
check that it is indeed a pmf according to the two criteria in Proposition 2.2.1. Clearly
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Fig. 2.10 Histogram of Pacific tropical cyclones1988–2003. (Source: U.S. National
Oceanic and Atmospheric Administration, www.noaa.gov), and pmf of a Poisson distribu-
tion with mean15. Since we are interested only in the shapes, the scales on they axes have
been omitted.

it is nonnegative and by Taylor’s theorem

∞∑

k=0

λk

k!
= eλ

so thep(k) sum to one. The Poisson distribution tends to arise when we count the
number of occurrences of some unpredictable event over a period of time. Typical
examples are earthquakes, car accidents, incoming phone calls, misprints in a news-
paper, radioactive decay, and hits of a Web site.3 These all have in common the fact
that they are rare on a short timescale but more frequent if wecount over a longer
period of time. For some real data, consider Figure 2.10, which is a histogram over
the annual numbers of tropical cyclones (tropical storms orhurricanes) that were
formed off the U.S. Pacific coast during the years1988–2003. The average number
is 15, and we also plot the pmf of a Poisson distribution withλ = 15 (we will soon
see thatλ is the mean in the distribution). With so few observations, we cannot
expect the histogram to look exactly like the pmf, but there is certainly nothing that
contradicts the assumption of a Poisson distribution. Thus, both the physical nature
of cyclones (unpredictable, rare on a short timescale) and actual observations support
the assumption.

Example2.5.5. Suppose that the annual number of tropical cyclones that areformed
off the U.S. Pacific coast has a Poisson distribution with mean 15. What is the prob-
ability that a given year has at most5 cyclones?

3It would be a shame not to also mention Siméon Poisson’s original use of the distribution that would later
bear his name, the classical application to the number of Prussian soldiers annually kicked to death by
their horses in the nineteenth century. The fit to a Poisson distribution is remarkably good (and the term
“success probability” takes on an interesting meaning).
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Let X be the number of cyclones, so thatX ∼ Poi(15). The probability of at most5
cyclones is

P (X ≤ 5) = e−15

(
1 + 15 +

152

2!
+

153

3!
+

154

4!
+

155

5!

)
≈ 0.003

It should be stressed that the events must be not only rare butalso random. Compare
the two statements “large asteroids hit Earth every thousand years” and “a millennium
year occurs every thousand years.” The first statement is about the average behavior
of a random phenomenon, whereas there is no randomness at allin the second. Even
with randomness, we must make sure that there is “enough” of it. For example, if
buses are supposed to arrive at a bus stop every10 minutes, there will be some random
variation in their arrival times. However, since the bus drivers attempt to follow a
schedule, there is too much regularity to assume a Poisson distribution for the number
of arriving buses in a given time interval.

Proposition 2.5.3. If X ∼ Poi(λ), then

E[X ] = λ and Var[X ] = λ

Proof. First note that the pmf satisfies the relation

kp(k) = λp(k − 1)

for k ≥ 1, which gives

E[X ] =

∞∑

k=0

kp(k) =

∞∑

k=1

kp(k) = λ

∞∑

k=1

p(k − 1) = λ

The proof of the variance expression is left for Problem 65.

Example2.5.6. A microliter of normal human blood contains on average about7000
white blood cells and5 million red blood cells, as well as platelets, plasma, and other
matter. In a diluted blood sample, distributed in hundreds of test tubes, it was ob-
served that about1% of the test tubes contained no white blood cells. What is the
mean number of white blood cells per test tube?

Since white blood cells are comparatively rare, we assume a Poisson distribution (and
here we are describing events in space rather than time). More specifically, letX
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denote the number of white blood cells in a test tube and assume thatX ∼ Poi(λ),
and the question is whatλ = E[X ] equals. That1% of the tubes had no white blood
cells at all means that we estimatep(0) = P (X = 0) to be0.01. Since

p(0) = e−λ

we get
λ = − log p(0)

which in our case equals− log 0.01 ≈ 4.6. Hence, the mean is4.6 white blood cells
per test tube.

The Poisson distribution can be used as an approximation to the binomial distribution.
To illustrate why, consider a newspaper page withn letters and assume that each
letter is misprinted with probabilityp, independently of other letters. The number of
misprints is then binomial with parametersn andp. On the other hand, sincen is
large andp is small, we are dealing with a rare and unpredictable event,and this fits
the situation for a Poisson distribution. Since the mean in the binomial distribution
is np, we can argue that the number of misprints is approximately Poi(np). It is also
possible to argue directly that

(
n

k

)
pk(1 − p)n−k ≈ e−np (np)k

k!

for largen and smallp and in Section 4.4, we will state a limit result that warrants
the use of the approximation.

How good is the approximation? One obvious difference between the binomial
and the Poisson distributions is that the former has finite range{0, 1, ..., n} and the
latter, infinite range{0, 1, ...}. This is also reflected in the variances, which for the
binomial distribution isnp(1−p) and for the approximating Poisson distributionnp,
slightly larger because of the wider range. There are various rules of thumb for when
approximation is allowed, but since this is really a numerical problem, depending on
how many correct decimals we are satisfied with, we will not address it here. Let us,
however, point out that the approximation is good enough to be of practical use. In
Figure 2.11, pmf’s are plotted forn = 10 andp = 0.1.

2.5.5 The Hypergeometric Distribution

Consider a set ofN objects,r of which are of a special type. Suppose that we choose
n objects, without replacement and without regard to order. What is the probability
that we get exactlyk of the special objects?

Let X denote the number of special objects that we get. This is a discrete random
variable with range0, 1, ..., n, and its pmf is easily found by combinatorial methods.
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Fig. 2.11 Pmf’s of a binomial distribution withn = 10, p = 0.1 (left) and the approximating
Poisson distribution withλ = 1 (right).

Definition 2.5.5. If X has probability mass function

p(k) =

(
r

k

)(
N − r

n − k

)

(
N

n

) , k = 0, 1, ..., n

it is said to have ahypergeometric distributionwith parametersN, r, andn,
writtenX ∼ hypergeom(N, r, n).

The parameters must be such thatn ≤ r andn − k ≤ N − r, which we assume
implicitly without spelling it out. In Example 1.4.12, we had a hypergeometric dis-
tribution with parametersN = 52, r = 13, andn = 5. We next state expressions for
the mean and variance and defer the proof to Section 3.6.2.

Proposition 2.5.4. If X ∼ hypergeom(N, r, n), then

E[X ] =
nr

N
and Var[X ] = n × N − n

N − 1
× r

N

(
1 − r

N

)

Now suppose thatN is large andr is moderate and letp = r/N , the proportion of
special objects. Ifn is small relative toN , we would expect that drawing without
replacement would not be very different from drawing with replacement. For exam-
ple, if the first object drawn is of the special type, the proportion changes fromr/N
to (r − 1)/(N − 1), which is then still approximately equal top. But drawing with
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replacement gives a binomial distribution with success probability p, and we have
argued that the hypergeometric distribution can be approximated by the binomial dis-
tribution for suitable parameter values. Also compare the means and variances for
the two distributions.

2.5.6 Describing Data Sets

The concepts of mean,variance, and standard deviation thatwe use to describe random
variables are often used to describe data sets. For example,the mean and standard
deviation may be given to describe the performance by a school class on a test or to
summarize a survey of home prices in a neighborhood. Supposethat we have a data
set

D = {x1, x2, ..., xn}
where thexk are not necessarily different from each other. We then definethe mean
of this set as the arithmetic average

x̄ =
1

n

n∑

k=1

xk

and the variance is defined as4

s2
x =

1

n

n∑

k=1

(xk − x̄)2

How does this fit into the framework of random variables? If wechoose a valueX at
random from the data set, thenX is a discrete random variable whose range isS, the
set of distinct values inD. The pmf ofX is precisely the histogram of the data set:

pX(x) =
#{k : xk = x}

n
, x ∈ S

The expected value is

µ =
∑

x∈S

xpX(x) =
∑

x∈S

x
#{k : xk = x}

n
=

1

n

n∑

k=1

xk = x̄

and the variance

σ2 =
∑

x∈S

(x − x̄)2pX(x) =
1

n

n∑

k=1

(xk − x̄)2 = s2
x

and the standard deviation as usual is the square root of the variance. Thus, we can
describe data sets in a way that is commonly done and view thisas a special case of

4It is also common to divide byn − 1 rather thann, and we will address the reason for this in detail in
Chapter 6.
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our theory of random variables and their distributions. Note thatx̄ ands2
x change if

we add more data toD, so this corresponds to defining a new random variable. Alter-
natively, we could think ofX as an ideal random variable over all possible values that
could belong to the data set, in which caseX could be either discrete or continuous
and would have unknown mean and variance. We can then view thehistogram as an
approximation of the true but unknown pmf or pdf, andx̄ ands2

x as approximations
of the true meanµ and varianceσ2. We will return to this view in Chapter 6.

Example 2.5.7. A survey of salaries at a company with11 employees gave the
following values: D = {30, 30, 30, 30, 30, 40, 40, 60, 70, 150, 220} (1000 dollars
per year). The mean is̄x = (30 + 30 + · · · + 220)/11 = 66.4 and the variance

s2
x =

1

11

11∑

k=1

(xk − x̄)2 = 3514

which gives standard deviations ≈ 59.3. In this case, there is no more data to be
collected, so the mean and variance are exact. Note that onlythree salaries are above
the mean and8 below, and merely stating the mean as a summary of the data does
not reveal this fact. We say that the data set is skewed (to theleft).

Example2.5.8. A die was rolled7 times and gaveD = {2, 2, 2, 2, 4, 5, 5}. The
mean of this data set is̄x = (2 + 2 + · · · + 5)/7 = 3.1, and the variance

s2
x =

1

7

7∑

k=1

(xk − x̄)2 = 1.8

If we choose at random fromD and call the numberX , the distribution ofX is

P (X = 2) =
4

7
, P (X = 4) =

1

7
, P (X = 5) =

2

7

In this case it is more natural to think ofx̄ ands2
x as approximations to the true mean

and variance, which if the die is fair are3.5 and 35
12 ≈ 2.9 respectively. If the die

is rolled repeatedly to increase the data set, the approximations become increasingly
more accurate.

2.6 THE EXPONENTIAL DISTRIBUTION

We will introduce several named continuous distributions.In analogy with the dis-
crete case, these are defined in terms of the pdf, and we may apply the name to
the distribution or the random variable itself. Also as in the discrete case, there are
essentially two different types of distribution: those whodescribe a clearly defined
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experiment or mathematical model from which we can derive the pdf and those who
have been empirically determined to fit certain types of datasets. We have already
seen one distribution of the first category; the uniform distribution describes how to
choose a point at random from an interval. We continue with another distribution in
this category.

Let X be a continuous random variable that denotes the lifetime ofsomething
(e.g., an electronic component) thatdoes not agein the sense that the probability of
functioning yet another time unit does not depend on its current age. We can describe
this in a formula as

P (X > x + y|X > y) = P (X > x) (2.6.1)

for x, y ≥ 0. This means that the probability of surviving anotherx time units does
not depend on how many time unitsy that the component has survived so far. For the
left-hand side we get

P (X > x + y|X > y) =
P ({X > x + y} ∩ {X > y})

P (X > y)
=

P (X > x + y)

P (X > y)

where the last equality follows sinceX > x + y ⇒ X > y that is, the event
{X > x + y} is included in the event{X > y}. Hence, if we let

G(x) = P (X > x), x ≥ 0

we get the equation
G(x + y) = G(x)G(y)

for x, y ≥ 0. Note that the functionG at a pointx gives the probability that the
component survives the agex andG is therefore called thesurvival function. Also
note thatG(x) = 1 − F (x) whereF is the cdf ofX . It can be shown (see Problem
75) that the only possible solutions to the equation are

(a) G(x) ≡ 0

(b) G(x) ≡ 1

(c) G(x) = e−λx whereλ is any constant

From a practical point of view, (a) and (b) are uninteresting. The solutionG(x) ≡ 0
would mean that the component has probability 0 of survivingany time, which means
that it does not function to begin with. The solutionG(x) ≡ 1, on the other hand,
means that it functions forever. These two solutions also contradict the assumption
thatX is a continuous random variable, and we are left with (c) as the only possibility.
The cdf ofX is therefore

F (x) = 1 − G(x) = 1 − e−λx, x ≥ 0

and by differentiation we get the pdf

f(x) = F ′(x) = λe−λx, x ≥ 0



130 RANDOM VARIABLES

For this to be a possible pdf, the constantλ must be strictly positive.

Definition 2.6.1. If the pdf ofX is

f(x) = λe−λx, x ≥ 0

then X is said to have anexponential distributionwith parameterλ > 0,
writtenX ∼ exp(λ).

In Example 2.3.1, we thus had an exponential distribution withλ = 0.001. Note how
we started by making one seemingly innocent assumption, that there is no aging and
how this forced on us only one possible form of the pdf. The property in Equation
(2.6.1) is called thememoryless property. Hence we have the following result.

Proposition 2.6.1. A continuous random variable has the memoryless prop-
erty if and only if it has an exponential distribution.

It is the shape of the pdf that is connected to the memoryless property, so this property
holds for any value ofλ. To investigate the role ofλ, we note that largerλ means
that the pdf is higher near 0, which indicates that values ofX tend to be smaller. By
computing the expected value, we can see that this is indeed the case.

Proposition 2.6.2. If X ∼ exp(λ), then

E[X ] =
1

λ
and Var[X ] =

1

λ2

Proof. Direct computation gives

E[X ] =

∫ ∞

0

xλe−λxdx =
1

λ

by partial integration. For the variance we needE[X2]:

E[X2] =

∫ ∞

0

x2λe−λxdx =
2

λ2
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This gives

Var[X ] = E[X2] − (E[X ])2 =
1

λ2

Example2.6.1. The technique ofcarbon 14 datingis based on decay of the isotope
carbon 14 into nitrogen 14. Thehalf-life, that is, the time required for half of the
atoms in the sample to decay, of carbon 14 is approximately5700 years. What is the
expected lifetime of a single carbon 14 atom?

Since lifetimes are random, we need to interpret half-life.If we start with a numbern0

of atoms, the half-lifeh is the time when there are roughlyn0/2 atoms left. Thus, half
of the atoms have “survived”h, and half have not, which indicates that the probability
to survive ageh is 1

2 . Let T be the lifetime of an individual atom and leth be the
number that satisfies

P (T > h) =
1

2

and from Example 2.3.1 we recognizeh as themedianlifetime.
Next, we assume thatT has an exponential distribution. This is certainly reason-

able as an atom decays spontaneously, not as a result of old age or wear and tear.
Thus,T ∼ exp(λ), and we get

P (T > 5700) = e−5700λ =
1

2

which givesλ = log 2/5700 and the expected lifetime

E[T ] =
1

λ
=

5700

log 2
≈ 8200 years

We will examine the problem of half-life in radioactive decay more closely in Section
3.10.1.

The parameterλ is often referred to as thefailure rateor hazard rateand is a measure
of how likely failure is at any given age. It is a natural extension to allow the failure
rate to depend on age and thus define thefailure rate function, a concept to which
we return in Section 2.10. The exponential distribution is characterized by having a
constant failure rate function.

The exponential distribution is also used to model times between random events
such as earthquakes, customer arrivals to a store, or incoming jobs to a computer.
Recall how we previously used the Poisson distribution to model the number of
such events in a fixed time period. There is an interesting connection between the
exponential and Poisson distributions, which we describe briefly here and return to
address in detail in Section 3.12.
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Suppose that events occur in such a way that the time between two events isexp(λ).
Suppose further that the occurrence of an event is independent of the occurrences of
other events. It can then be shown that the number of occurrences in a time interval
of lengtht is a random variable that has a Poisson distribution with mean λt. Such a
stream of events is called aPoisson process.

Example2.6.2. According to the U.S. Geological Survey, earthquakes with mag-
nitude at least7 occur on average18 times a year (worldwide).(a) What is the
probability that two consecutive such earthquakes are at least2 months apart?(b)
What is the probability that there are no earthquakes in a2-month period?

Suppose that earthquakes occur according to a Poisson process with rateλ = 1.5
earthquakes per month. LetT be the time between two consecutive earthquakes and
X the number of earthquakes in a2-month period. Then we haveT ∼ exp(1.5) and
X ∼ Poi(3) and we get, for (a)

P (T > 2) = e−1.5×2 ≈ 0.05

and for (b)
P (X = 0) = e−3 ≈ 0.05

Note that the two events{T > 2} and{X = 0} are identical.

2.7 THE NORMAL DISTRIBUTION

The next distribution falls into the second category, thosewho are motivated primarily
by empirical observations rather than describing a particular experiment or mathe-
matical model. Let us first define it.

Definition 2.7.1. If X has pdf

f(x) =
1

σ
√

2π
e−(x−µ)2/2σ2

, x ∈ R

it is said to have anormal distributionwith parametersµ and σ2, written
X ∼ N(µ, σ2).

This is also often called theGaussiandistribution, after German mathematician Carl
Friedrich Gauss, who used it to describe errors in astronomical measurements. The
typical bell-shaped pdf is shown in Figure 2.12. The normal distribution shows up
naturally in many situations where there are measurement errors or fluctuations due to
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µ µ

Fig. 2.12 Thd pdf’s of two normal distributions with the same mean. Theone on the left has
higher variance.

randomness, noise, and other factors, and it is the most widely used of all distributions.
It is used in models of signal processing, the velocities of gas molecules, and the
movement of stock market prices. It also arises in the study of many biological
phenomena, where the randomness is typically composed of different components.
As an example, consider taking the blood pressure of a person. First, there is the
variation that occurs between individuals, which gives rise to randomness due to the
selection of individual. Then there is variation over time within each individual, and
finally there is uncertainty in the actual measuring procedure.

Note that the pdf is symmetric aroundµ. By computing the usual integrals, it is
easily shown that

Proposition 2.7.1. If X ∼ N(µ, σ2), thenE[X ] = µ and Var[X ] = σ2.

A word of caution regarding notation is due here. We have chosen to giveσ2 as the
second parameter, so that if we writeN(0, 4), we mean that the variance is4 (and the
standard deviation2). Some texts prefer to give the standard deviation as the second
parameter, as does, for example, Matlab, so you need to pay attention.

Since we cannot find a primitive function of the pdf, there is no hope of an explicit
expression for the cdf, and it must be computed numerically.The normal distribution
with µ = 0 andσ2 = 1 is of particular interest and is called thestandardnormal dis-
tribution. For the standard normal distribution, we use thefollowing special notation
for the pdf and cdf:

ϕ(x) =
1√
2π

e−x2/2, x ∈ R

Φ(x) =

∫ x

−∞
ϕ(t)dt, x ∈ R
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The significance of the standard normal distribution is spelled out in the next propo-
sition.

Proposition 2.7.2. Suppose thatX ∼ N(µ, σ2) and letZ = (X − µ)/σ.
ThenZ ∼ N(0, 1).

Proof. Let FZ denote the cdf ofZ. Then

FZ(x) = P (Z ≤ x) = P (X ≤ µ + σx) =

∫ µ+σx

−∞

1

σ
√

2π
e−(t−µ)2/2σ2

dt

Making the variable substitutiony = (t−µ)/σ givesdt = σdy, and the new integral
limits −∞ andx and the expression equals

∫ x

−∞

1

σ
√

2π
e−(σy+µ−µ)2/2σ2

σdy =

∫ x

−∞
ϕ(y)dy = Φ(x)

Hence, any normal distribution can be brought back to the standard normal distri-
bution by subtracting the mean and dividing by the standard deviation, a procedure
sometimes referred to as computing theZ scoreof X . We state in a corollary how
this is used in computations.

Corollary 2.7.3. Let X ∼ N(µ, σ2). For anyx, a, b ∈ R, we have

(a) P (X ≤ x) = Φ

(
x − µ

σ

)

(b) P (a ≤ X ≤ b) = Φ

(
b − µ

σ

)
− Φ

(
a − µ

σ

)

Proof. (a) If X ∼ N(µ, σ2), then

P (X ≤ x) = P

(
X − µ

σ
≤ x − µ

σ

)
= Φ

(
x − µ

σ

)

where the first equality holds since we subtracted and divided by the same quantities
on both sides of the inequality in the probability statement, whereσ > 0, thus not
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changing the inequality. The second equality holds by Proposition 2.7.2. Part (b) is
true because of Proposition 2.3.2(a) .

By Corollary 2.7.3, we have to compute only the cdf of the standard normal distribu-
tion, and Table A.1 gives numerical values ofΦ(x). Note that only values for positive
x are given; for negativex, we use the following result.

Corollary 2.7.4. For anyx ∈ R

Φ(−x) = 1 − Φ(x)

Proof. Note thatϕ is symmetric around0, which gives

Φ(−x) =

∫ −x

−∞
ϕ(t)dt =

∫ ∞

x

ϕ(t)dt = 1 − Φ(x)

Another immediate consequence of Proposition 2.7.2 is thata linear transformation
of a normal distribution is normal, in the following sense.

Corollary 2.7.5. Let X ∼ N(µ, σ2), leta, b ∈ R, and letY = aX + b. Then

Y ∼ N(aµ + b, a2σ2)

Proof. Let us do the casea > 0. Start with the cdf ofY .

P (Y ≤ x) = P (aX + b ≤ x) = P

(
X ≤ x − b

a

)

= Φ

(
(x − b)/a − µ

σ

)
= Φ

(
x − (aµ + b)

aσ

)

which is precisely the cdf of a random variable, which isN(aµ + b, a2σ2). The case
a < 0 is similar.
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Let us look at a few examples.

Example2.7.1. The IQ of a randomly selected individual is often supposed tofollow
a normal distribution with mean100 and standard deviation15. Find the probability
that an individual has an IQ(a) above140 and(b) between120 and130, and(c) find
a valuex such that99% of the population has IQ at leastx.

We haveX ∼ N(100, 152) and get, for (a)

P (X > 140) = 1 − P (X ≤ 140) = 1 − Φ

(
140 − 100

15

)

= 1 − Φ(2.67) ≈ 0.004

For (b), we get

P (120 ≤ X ≤ 130) = Φ

(
130 − 100

15

)
− Φ

(
120 − 100

15

)

= Φ(2) − Φ(1.33) ≈ 0.07.

For the last part, we need to findx such thatP (X > x) = 0.99. By Corollary 2.7.4
we get

P (X > x) = 1 − Φ

(
x − 100

15

)
= Φ

(
100 − x

15

)
= 0.99

and Table A.2 gives
100 − x

15
= 2.33

which givesx ≈ 65. The valuex is called the99th percentile

Example 2.7.2. A power source gives an output voltage of12 (volts). Because
of random fluctuations, the true voltage at any given time isV = 12 + X , where
X ∼ N(0, 0.1). The voltage is measured once an hour, and if it is outside theinterval
[11.5, 12.5] the power source needs to be adjusted. What is the probability that no
adjustment is needed during a24-hour period?

Let us first note that by Corollary 2.7.5,V ∼ N(12, 0.1). At any given hour, the
probability that the voltage is within bounds is

P (11.5 ≤ V ≤ 12.5) = Φ

(
11.5 − 12√

0.1

)
− Φ

(
12.5 − 12√

0.1

)

≈ Φ(1.58) − Φ(−1.58) = 2Φ(1.58)− 1 ≈ 0.89
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and hence the probability that it is out of bounds is0.11. Now consider the experiment
to check the voltage every hour for24 hours. Assuming that hours are independent,
the number of hours that has the voltage out of bounds is a binomial random variable
with n = 24 andp = 0.11. Call this numberY to obtain the probability that no
adjustment is needed as

P (Y = 0) = (1 − 0.11)24 ≈ 0.06

For values ofx larger than those in Table A.1, the approximation

Φ(x) ≈ 1 − ϕ(x)

x

can be used. See Problems 89 and 90.

2.8 OTHER DISTRIBUTIONS

So far we have seen the uniform, exponential, and normal distributions as examples
of continuous distributions. In this section we list a number of other continuous
distributions, as well as some of their properties. We will also encounter a type of
random variable that is neither discrete nor continuous.

2.8.1 The Lognormal Distribution

Sometimes observations do not follow a normal distributionbut their logarithms do.
This may simply be an empirically observed fact but can also be argued theoretically.
The normal distribution arises in situations such as those mentioned in the previous
section because the randomness has anadditiveeffect. It may instead be the case that
randomness has amultiplicativeeffect. This is true in many applications in science
and engineering, for example, reliability and material fatigue analysis, and also in
models for financial markets where it is more realistic to model a price change by
multiplying by a percentage than to add a dollar amount.

Definition 2.8.1. Let X ∼ N(µ, σ2) and letY = eX . ThenY is said to have
a lognormal distributionwith parametersµ andσ2.

For practical reasons, this time we deviated from our usual convention of defining a
continuous distribution in terms of its pdf. The reason is that we can always compute
probabilities in the lognormal distribution by referring to the normal distribution. We
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leave it as an exercise to show the following.

Corollary 2.8.1. Let Y be lognormal with parametersµ andσ2. ThenY has
pdf

fY (x) =
1

xσ
√

2π
e(log x−µ)2/2σ2

, x > 0

Note that the parametersµ andσ2 are the mean and variance of the underlying normal
random variableX , not of the lognormal random variableY . By computing the usual
integrals, it can be shown that the mean and variance are

E[Y ] = eµ+σ2/2 and Var[Y ] = e2µ+σ2
(
eσ2 − 1

)

Example2.8.1. Suppose that the priceY of a particular stock at closing has a log-
normal distribution withE[Y ] = 20 dollars and Var[Y ] = 4. What is the probability
that the price exceeds$22?

First we need to findµ andσ. By the expressions above we have

eµ+σ2/2 = 20

and
e2µ+σ2

(
eσ2 − 1

)
= 4

where the first equation gives

µ +
σ2

2
= log 20

which we substitute in the second equation to get

e2 log 20
(
eσ2 − 1

)
= 4

which gives
σ2 = log(1.01) ≈ 0.01

and

µ = log 20 − log 1.01

2
≈ 3.0

Finally, sincelog Y is normal, we get

P (Y > 22) = 1 − P (Y ≤ 22) = 1 − P (log Y ≤ log 22)

= 1 − Φ

(
log 22 − 3.0√

0.01

)
≈ 0.18.
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2.8.2 The Gamma Distribution

The gamma distribution is flexible, fits many different typesof real-world data sets,
and can be used as an alternative to the normal distribution when data are nonnegative
and not exactly symmetric. Before we define the gamma distribution, let us introduce
thegamma function, which is defined as

Γ(α) =

∫ ∞

0

e−ttα−1dt

If α is a positive integer,n, this reduces to

Γ(n) = (n − 1)!

so the gamma function can be regarded as an extension of the factorial to the entire
real line. We are now ready to define the gamma distribution.

Definition 2.8.2. If X has pdf

f(x) = e−λxλα xα−1

Γ(α)
, x ≥ 0

it is said to have agamma distributionwith parametersα > 0 andλ > 0,
writtenX ∼ Γ(α, λ).

Note thatα = 1 gives the exponential distribution with parameterλ. The parameter
α is called theshape parameterandλ is called thescale parameter. Figure 2.13 gives
the pdf’s for three gamma distributions withλ = 1 and different values ofα. Notice
how the shape changes with the value ofα; asα increases, it increasingly resembles
the normal distribution. Changing the parameterλ corresponds to changing the unit
of measure and does not affect the shape qualitatively (see Problem 95). In particular,
if α is an integer,n, we get the pdf

f(x) = e−λxλn xn−1

(n − 1)!
, x ≥ 0

This has an interpretation to which we will return in Section3.10.5. In this case, we
can get an explicit expression for the cdf as

F (x) = 1 − e−λx
n−1∑

k=0

λkxk

k!
, x ≥ 0

which can be shown by partial integration and induction. By computing the usual
integrals and using some special properties of the gamma function, it can be shown
that
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Fig. 2.13 Pdf’s of the gamma distribution with fixedλ and different values ofα. Note the
increasing resemblance to the pdf of a normal distribution.

E[X ] =
α

λ
and Var[X ] =

α

λ2

In Section 3.6.2 we will show this for the integer caseα = n.

2.8.3 The Cauchy Distribution

We finish with a distribution that does not have much practical use. It is, however,
derived from an easily described experiment and turns out tohave some interesting
properties, which makes it a favorite in various counterexamples in the probability
and statistics literature.

In an ordinary coordinate system, start at the point(0, 1), choose an angle between
−π/2 andπ/2 at random and at this angle draw a line to thex axis (the angle0 gives
a line to the origin). LetX be the point where you hit thex axis (Figure 2.14). The
range ofX is (−∞,∞) and we next find the pdf ofX . Denote the angle byΘ and
assume thatΘ ∼ unif(−π/2, π/2). ThenX = tan Θ and has cdf

FX(x) = P (tan Θ ≤ x) = P (Θ ≤ tan−1 x)

= FΘ(tan−1 x) =
tan−1 x + π/2

π
, x ∈ R

Differentiation gives

fX(x) = F ′X(x) =
1

π(1 + x2)
, x ∈ R

This is called theCauchy distribution. Something interesting happens when we at-
tempt to compute its expected value:

E[X ] =
1

π

∫ ∞

−∞

x

1 + x2
dx =

1

2π

[
log(1 + x2)

]∞
−∞
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This is not well defined since it is of the form “∞ −∞.” In this case, we say that
the expected valuedoes not exist. If the experiment were to be repeated over and
over and consecutive averages computed, these would not converge but keep jumping
around thex axis forever, which is somewhat surprising since the pdf is symmetric
around0.

2.8.4 Mixed Distributions

The distinction between discrete and continuous random variables is fundamental but
not exhaustive. There are random variables that belong to neither of the two cate-
gories, as the following example shows.

Example2.8.2. Jobs arrive to a computer. With probability 0.8, the computer is
busy and the incoming job must wait in queue for a time (in seconds), which has an
exponential distribution with parameter1. LetX be the waiting time for an incoming
job and find the cdf ofX .

The crux here is that the waiting time is0 if the computer is free and has an exponential
distribution otherwise. LetB be the event that the computer is free and fix anx ≥ 0.
The law of total probability gives

P (X ≤ x) = P (X ≤ x|B)P (B) + P (X ≤ x|Bc)P (Bc)

whereP (X ≤ x|B) = 1 andP (X ≤ x|Bc) = 1 − e−x. SinceP (B) = 0.2 and
P (Bc) = 0.8, the cdf becomes

F (x) = 1 − 0.8e−x, x ≥ 0

The cdf is shown in Figure 2.15. Clearly the range is uncountable, so this is not a
discrete distribution. On the other hand, since the cdf has adiscontinuity at0, it is
not a continuous distribution either. This is an example of amixed distribution(and
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Fig. 2.14 If Θ is chosen at random between−π/2 andπ/2, X has the Cauchy distribution.
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Fig. 2.15 The cdf of a mixed distribution with a discrete part at 0 and a continuous part on
(0,∞).

X is called amixed random variable) which has a discrete part at0 and a continuous
part on(0,∞).

Let us conclude this section by mentioning that there are even stranger creatures in
the world of probability, namely, distributions that are neither discrete, nor contin-
uous, nor a mixture of the two. These so-called singular distributions are strange
mathematical constructions and of no use in any of the applications we consider.

2.9 LOCATION PARAMETERS

The mean is not the only possible location parameter and in some cases may not be
the best choice. For example, in Problem 40, we learn that ifX ∼ unif(0, 1), then
E[1/X ] = ∞. Since we always get finite values of1/X , the mean may not be the
best way to summarize the distribution. Another location parameter is themedian,
which can be considered the midpoint of the distribution in the sense that, on average,
half of the observations fall below and half above it. We state the formal definition.

Definition 2.9.1. LetX be a random variable. Any numberm that is such that

P (X ≥ m) ≥ 1

2
and P (X ≤ m) ≥ 1

2

is called amedianof X .

Note that the median is not necessarily unique. For example,if X is the number
when we roll a fair die, both3 and4 are medians, as are all numbers in-between. If
the distribution is continuous with cdfF , a median always satisfiesF (m) = 1

2 , and
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if the range ofX does not have any “holes,” the median is also unique. We statethe
following result without proof.

Corollary 2.9.1. Let X be a continuous random variable with pdff and cdf
F , such thatf is strictly positive in an entire interval(a, b) and0 otherwise,
where−∞ ≤ a < b ≤ ∞. Then the medianm is the unique number that
satisfies

F (m) =
1

2

The mean is thus the average and the median the midpoint of a distribution. IfX is
continuous with a unique median and its pdf is symmetric aroundµ, then the mean
and median are equal.

Example2.9.1. Consider the random variableY = 1/X , whereX ∼ unif(0, 1).
What is the median ofY ?

We need to find the cdf ofY . Takey > 1 to obtain

FY (y) = P (Y ≤ y) = P

(
X ≥ 1

y

)

= 1 − FX

(
1

y

)
= 1 − 1

y
, y > 1.

Solving the equationFY (m) = 1
2 gives the medianm = 2. On average, half of the

observations are less than2 and half are larger. Values that are larger have a good
chance to be much larger, in fact so much that the mean is infinite.

For a data set, the median is defined as the value that is in the middle. If the number of
observations is even, it is the average of the two middle values (note that the median
for a data set is always unique). Consider the following example.

Example2.9.2. A survey of salaries at a small company with11 employees gives
the following values:30, 30, 30, 30, 30, 40, 40, 60, 70, 150, 220 (×1000 dollars per
year). This gives a mean salary of66, 364 and a median of40, 000 dollars per year. If
the manager doubles his salary from220, 000 to 440, 000, the mean goes up to over
86, 000, whereas the median stays the same. It is probably fair to saythat the median
better represents the data set.



144 RANDOM VARIABLES

The distribution in the example is skewed, and in such a case it is common to give the
median instead of the mean. Also note how the median is less sensitive to extreme
values; it does not change with the manager’s doubled salary, whereas the mean in-
creases significantly. Yet another location parameter is the following.

Definition 2.9.2. LetX be a random variable with pmf or pdff . Any number
xm with the property

f(xm) ≥ f(x) for all x ∈ R

is called amodeof X .

Whereas the mean is the average and the median the midpoint, the interpretation of
the mode is that it is themost likely valueof X . It need not be unique in either the
discrete or continuous case. For example, for a uniform distribution, any number in
the range is a mode. We can also definelocal modes, which have the property that
the pdf or pmf has a local but not necessarily global maximum.Depending on the
number of such local modes, distributions can be classified as unimodal, bimodal,
and so on. For example, the pdf in Figure 2.5 is bimodal.

Example2.9.3. Let X ∼ exp(λ). Find the mean, median, and mode ofX .

We already know that the mean isµ = 1/λ. For the median, we need to solve the
equation

1 − e−λm =
1

2

which gives

m =
log 2

λ
≈ 0.69µ

which means that the median is smaller than the mean for the exponential distribution.
The intuition behind this is that the range above the mean is infinite and large values
tend to push the average up. This distribution is said to be skewed to the right. The
modexm is thex value that maximizes the pdf

f(x) = λe−λx, x ≥ 0

which givesxm = 0. It seems strange that0 is the “most likely value,” but since this is
a continuous distribution, we need to think of the mode as thevalue that observations
are most likely to be near, not exactly equal to.
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For a data set, the mode is simply the most frequent value, which may not be unique.

Example2.9.4. In the example of salaries above, the mode is30, 000, the “typical”
salary for an employee. Like the median, it does not change with the manager’s
doubled salary.

2.10 THE FAILURE RATE FUNCTION

In this section we study nonnegative, continuous random variables, with the interpre-
tation that they are lifetimes of some object. We use the notation T for “time” rather
thanX , and the argument of cdf’s and pdf’s ist.

Definition 2.10.1. Let T be a random variable with cdfF and pdff . The
failure rate functionis defined as

r(t) =
f(t)

1 − F (t)
, t ≥ 0

Some alternative terms forr(t) arehazard rate functionanddeath rate function. The
interpretation ofr(t) is that it is a measure of how likely failure is at timet of an
object that is alreadyt time units old. Compare this with the pdff(t), which is a
measure of how likely failure is att of a brand-new object. Hence the failure rate is
a conditionalmeasure of failure and the pdf an unconditional such measure.

This is easier to understand if we instead think of a discretecase. Consider a
human lifespan measured in years, and lett = 100 years. The pmfp(100) is the
probability that a newborn individual dies at age100, which is pretty low. The failure
rater(100), on the other hand, is the conditional probability that an individual who is
already100 dies before turning101, which is much higher. WithL denoting lifespan,
we thus have

p(100) = P (L = 100)

r(100) = P (L = 100|L ≥ 100)

Indeed, ast gets large, we havep(t) going to0 butr(t) going to1. As we discussed
already in Example 1.2.3, it is convenient to model lifetimes as continuous, even
though we always have a discrete timescale in practice. We will therefore treat only
the continuous case, but see Problem 107 for more on the discrete failure rate function.
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Example2.10.1. Let T ∼ exp(λ). Find the failure rate function ofT .

From the definition we get

r(t) =
f(t)

1 − F (t)
=

λe−λt

1 − (1 − e−λt)
= λ, t ≥ 0

so the exponential function has constant failure rate. Thiswas to be expected since
we introduced the exponential distribution as the lifetimeof something that does not
age.

Example2.10.2. Let T ∼ Γ(2, 1). Find the failure rate function ofT .

From Section 2.8.2 we have
f(t) = e−tt, t ≥ 0

and
F (t) = 1 − (1 + t)e−t, t ≥ 0

which gives the failure rate function

r(t) =
f(t)

1 − F (t)
=

t

1 + t
, t ≥ 0

Note howr(t) in Example 2.10.2 is an increasing function oft. This means that failure
becomes more and more likely with time; that is, unlike the exponential distribution,
aging is present. This is an example of a distribution withincreasing failure rate
(IFR). We could also imagine that aging is beneficial so that failure is most likely
early on, and becomes less likely as time passes. This is the case ofdecreasing failure
rate (DFR). Constant failure rate is appropriately labeled CFR.

In reality, most failure rate functions are combinations. Consider, for example,
a human life. There is certainly an elevated risk of death both at and shortly after
birth. After a couple of years, the risk of death is fairly constant, mainly due to
accidents and other unpredictable causes. Then aging starts to kick in (around the
time you start college), and the risk of dying starts to increase. This is typically true
for mechanical objects as well. First there is a certain “break-in” period during which,
for example, manufacturing errors may cause failure. Afterthis is over, there is a
period of fairly constant failure rate, and after a while material fatigue starts to have
an impact, thus causing the failure rate to increase. Such failure rate functions are
said to be “bathtub-shaped,” as shown in Figure 2.16.
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When the standard of living in different countries are compared, one summary
statistic that is often given is thelife expectancy. In our terms, this is the expected
value of the lifetime of a newborn individual, and it varies greatly between first world
and third world countries. For example, life expectancy in Japan is81 years, and in
Angola, only37 years. What does this mean? Are there no old people in Angola?One
important explanatory factor is theinfant mortality, measured in deaths per thousand
live births, or in our terminology, the probability that a newborn child survives. In
Japan this number is3.3 and in Angola193.8! Thus, the probability that a newborn
Angolan does not survive its first year is almost0.2, and this brings the expected
lifetime down significantly. Instead of just comparing the expected lifetimes, we can
compare the failure rate functions, which would be more informative, and we would
then notice a large gap in the beginning, corresponding to infant mortality.

If we still want a single number to describe lifetime, ratherthan the entire failure
rate function, it might be more appropriate to use the medianfrom Section 2.9, since
this is less sensitive to a skewed distribution. We discussed human lifespans above,
but the same problems are present in any kind of lifetime analysis, or, as it is more
commonly termed,survival analysis.

2.10.1 Uniqueness of the Failure Rate Function

As we will soon see, the failure rate function uniquely determines the distribution.
This is convenient, since when we model lifetimes, it is mucheasier to figure out
what the failure rate function should look like, than it is todescribe the cdf or pdf.
For example, the bathtub shape shown in Figure 2.16(b) makesperfect sense, but it
is not easy to figure out what this means for the pdf or cdf.

When lifetimes are studied, it is often convenient to consider the probability that
T is greater thant instead of less thant. We therefore introduce the following function.
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Fig. 2.16 Different types of failure rate functions: (a) decreasing,constant, and increasing;
(b) bathtub-shaped.
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Definition 2.10.2. Let T be a nonnegative, continuous random variable with
cdf F . The function

G(t) = 1 − F (t), t ≥ 0

is called thesurvival functionof T .

Thus, the survival function is decreasing withG(0) = 1 andG(∞) = 0. In terms of
G, the failure rate function is

r(t) =
f(t)

G(t)

and we have the following relation.

Proposition 2.10.1. LetT be a nonnegative, continuous random variable with
failure rate functionr. ThenT has survival function

G(t) = exp

(
−
∫ t

0

r(u)du

)
, t ≥ 0

Proof. First note that

r(u) =
f(u)

1 − F (u)
= − d

du
log(1 − F (u))

and integrate both sides to obtain

∫ t

0

r(u)du = − log(1 − F (t)) = − log G(t)

which gives

G(t) = exp

(
−
∫ t

0

r(u)du

)

and we are done. We have implicitly used the boundary conditionF (0) = 0 which
always holds for a nonnegative continuous random variable.

Example2.10.3. In the late1990s it was reported that flu shots cut the death rate in
half among elderly people in the United States and Canada. Suppose that an unvacci-
nated70-year old person has probability0.8 to survive another10 years. How much
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(in percent) does this probability increase for a vaccinated person?

Denote the lifespan for an unvaccinated person byU and a vaccinated person byV .
Denote the corresponding failure rate functions and cdf’s by rU , rV , FU , andFV ,
respectively. Hence,rU (t) = 2 rV (t), and the desired probability is

P (V > 80|V > 70) =
P (V > 80)

P (V > 70)

= exp

(
−
∫ 80

0

rV (u)du

)/
exp

(
−
∫ 70

0

rV (u)du

)

= exp

(
−
∫ 80

70

rV (u)du

)
= exp

(
−1

2

∫ 80

70

rU (u)du

)

=
√

P (U > 80|U > 70) =
√

0.8 ≈ 0.894

which constitutes a12% increase in the10-year survival probability.

Example2.10.4. Consider a certain type of ball bearing that wears down gradually
at a slow but steady rate. To model this, we suppose that its failure rate function is
linearly increasing,r(t) = at for somea > 0. It has been observed that the median
lifetime is3 years. What is the probability that such a ball bearing lastsfor more than
4 years?

Let T be the lifetime. ThenT has survival function

G(t) = exp

(
−
∫ t

0

au du

)
= exp

(
−at2

2

)

and since the medianm = 3 satisfiesG(3) = 1
2 , we getexp(−9a/2) = 1

2 which
givesa = 2 log 2/9 and

P (T > 4) = exp

(
−2 log 2 × 42

18

)
≈ 0.29

If we differentiateF (t) = 1 − G(t) in the previous example, we get the pdf

f(t) = ate−at2/2, x ≥ 0

which is a special case of the following distribution.
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Definition 2.10.3. If T has pdf

f(t) = λα tα−1e−λtα

, t ≥ 0

it is said to have aWeibull distributionwith parametersα > 0 andλ > 0.

The parameterα is called theshape parameterandλ, thescale parameter. In the
example we hadλ = a/2 andα = 2. The cdf of the Weibull distribution is

F (t) = 1 − e−λtα

, t ≥ 0

and the failure rate function

r(t) = λα tα−1, t ≥ 0

Thus, by choosing different values ofα we can model increasing failure rate (α >
1), decreasing failure rate (α < 1), or constant failure rate (α = 1, exponential
distribution). This makes the Weibull distribution one of the most commonly used
distributions for lifetime modeling. Note howα determines the shape of the failure
rate function, and how the other parameter,λ, can be varied to change the scale, for
example to change between different units of measure.

Example2.10.5. Let T ∼ unif[0, 1]. Find the failure rate function ofT .

This is straightforward. Sincef(t) = 1 andF (t) = t, we get

r(t) =
1

1 − t
, 0 ≤ t ≤ 1

where we notice thatr(t) → ∞ ast approaches1. If we think of this as a lifetime
distribution, then failure will always occur before age1. Thus, as the age approaches
1, failure becomes more and more likely, which is reflected in the failure rate going
to infinity. Compare with the argument for human lifespans inthe introduction, but
remember thatr(t) is now a rate and not a probability.

PROBLEMS

Section 2.2. Discrete Random Variables

1 The discrete random variableX has cdfF that is such thatF (x) = 0, x < 1, F (x) =
1
3
, 1 ≤ x < 3, andF (x) = 1, x ≥ 3. Find (a) F (2), (b) P (X > 1), (c) P (X = 2),

(d) P (X = 3).
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2 The discrete random variableX has cdf

F (x) =





0 for x < 1
1/4 for 1 ≤ x < 2
3/4 for 2 ≤ x < 3
1 for x ≥ 3

Find (a) P (X = 1) (b ) P (X = 2) (c) P (X = 2.5) (d) P (X ≤ 2.5)

3 Roll two dice and find the pmf ofX if X is (a) the smallest number,(b) the difference
between the largest and the smallest numbers.

4 The random variableX has pmfp(k) = ck, k = 1, 2, 3. Find(a) the constantc, (b) the
cdf F , (c) P (X ≤ 2), (d) P (X > 1).

5 The random variableX has pmfp(k) = c/2k , k = 0, 1, ... Find (a) the constantc, (b)
P (X > 0), (c) the probability thatX is even.

6 Five cards are drawn at random from a deck of cards. LetX be the number of aces.
Find the pmf ofX if the cards are drawn(a) with replacement,(b) without replacement.

7 A fair coin is flipped twice. LetX be the number of heads minus the number of tails.
Find the pmf and sketch the cdf ofX.

8 Cards are drawn one by one at random from a deck of cards. LetX be the number
of draws needed to draw the ace of spades. Find the pmf ofX if we draw (a) with
replacement,(b) without replacement.

9 Let the random variableX have pmfp(k) = 1/2k, k = 1, 2, ..., and letY = 1/X.
Find the cdf ofY .

Section 2.3. Continuous Random Variables

10 LetX andY be nonnegative random variables with the same cdfF . Show that, for any
x ≥ 0

1 − 2F (x) ≤ P (X + Y > 2x) ≤ 2(1 − F (x))

Hint: Problem 13, Chapter 1.

11 The concept of a random variable can be extended to allow for infinite values as was
mentioned in the text following Proposition 2.3.1. Supposethat X is a nonnegative
random variable such thatP (X = ∞) = p > 0. Show thatF (x) → 1− p asx → ∞.

12 Let f be the pdf of a continuous random variableX. Is it always true thatf(x) ≤ 1 for
all x in the range ofX? Does it have to be true for somex in the range ofX?

13 The functionf is defined asf(x) = cx2, 0 ≤ x ≤ 1. (a) Determine the constant
c so that this becomes a pdf of a random variableX. (b) Find the cdf and compute
P (X > 0.5). (c) Let Y =

√
X and find the pdf ofY .

14 Which of the following functions are possible pdf’s for continuous random variables?
For those that are, also find the cdf.
(a) f(x) = |x|, −1 ≤ x ≤ 1 (b) f(x) = 3

2
(x2 − 1), 0 ≤ x ≤ 2

(c) f(x) = 1, −1 ≤ x ≤ 0 (d) f(x) = 1/x2, x ≥ 1.

15 Consider the functionf(x) = ax + b, 0 ≤ x ≤ 1. For which values ofa andb is this
a possible pdf for a continuous random variable?
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16 The random variableX has pdff(x) = 1/x3, x ≥ a. Find (a) the value ofa, (b)
P (X > 3), (c) a valuex such thatP (X > x) = 1

4
.

17 Suppose that the rate of growth of striped bass (Morone saxatilis) is constant between
the ages of5 and15 years. LetA be the age andW the weight in pounds of a randomly
sampled bass from this age interval, and suppose thatW = 2A + 3. Let the pdf ofA
be

fA(x) = a(20 − x), 5 ≤ x ≤ 15

Find (a) the constanta, (b) the pdf ofW .

18 The continuous random variableX has pdf

f(x) =

{
1/2 if 0 < x ≤ 1
1/(2x2) if x ≥ 1

(a) Show that this is a possible pdf of a continuous random variable. (b) Find the cdf of
X and sketch its graph.(c) Let Y = 1/X. Find the pdf ofY .

19 Let X ∼ unif(0, 1). What is the distribution of1 − X?

20 Let X ∼ unif(0, 1). Find the pdf’s and sketch their graphs of the following random
variables (be careful with the ranges):(a) Y = 1/X, (b) Y = 1/

√
X, (c) Y = log X.

21 Let X have pdff(x) = e−x, x ≥ 0. Find the pdf ofe−X . What is this distribution
called?

22 Let X have pdff(x) = e−x, x ≥ 0, and letY =
√

X. Find the pdf ofY .

23 We have seen that ifX is continuous andg is a function,g(X) can be discrete. Is it
possible to have discreteX and continuousg(X)?

Section 2.4. Expected Value and Variance

24 Roll two dice and findE[X] if X is (a) the smallest number,(b) the difference between
the largest and the smallest numbers.

25 (a)Considera randomly chosen family with three children. Whatis the expected number
of daughters?(b) Consider a randomly chosen girl who has two siblings. What isher
expected number of sisters? (Recall Example 1.4.4.)

26 Draw three cards without replacement from a deck of cards andlet X be the number of
spades drawn. FindE[X].

27 One hundred people are to have their blood drawn to be tested for a disease. Instead
of immediately analyzing each individual sample, a pooled sample of all individuals is
analyzed first. If the pooled sample is negative, everybody is declared healthy; if it is
positive, each individual blood sample is analyzed. Suppose that individuals have the
disease with probabilityp, independently of each other. LetX be the number of blood
sample analyses that are done; findE[X] and for which value ofp this is≤ 100.

28 In a “street bet” in roulette you bet on three numbers. If any of these come up, you win
11 times your wager, otherwise lose your wager. LetX be your gain if you bet one
dollar on a street bet. Find the mean and variance ofX.

29 In a “five number bet” in roulette you win if any of the numbers 00, 0, 1, 2, or 3 come
up. (a) In order to get the usual expected gain of−2/38, what should the payout be
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if you wager a dollar?(b) The actual payout on this bet is 6:1. What is your expected
gain?

30 The game of chuck-a-luck is played with three dice, rolled independently. You bet one
dollar on one of the numbers1 through6 and if exactlyk of the dice show your number,
you win k dollarsk = 1, 2, 3 (and keep your wagered dollar). If no die shows your
number, you lose your wagered dollar. What is your expected loss?

31 You are given two envelopes containing money and are told that one contains twice as
much as the other. You choose one at random, open it, and find$100. You are now
given the options to either keep the money or switch to the other envelope and take what
is inside. Since you chose at random, you figure that the otherenvelope with equal
probabilities contains$50 or $200. If you switch and it contains$50, you lose$50 and
if it contains$200, you gain$100. Since the average of−50 and100 is 25, you figure
that your expected gain is positive and that it makes sense toswitch. Now you realize
that you would reach the same conclusion regardless of the amount you found in the
first envelope, so you did not even have to open it, just take itand immediately switch
to the other. So, you might as well just pick the other envelope to start with. But then,
by the same argument, you should switch to the first! This obviously does not make
any sense. Where is the error?

32 In the island problem in Example 1.6.8, letX be the number of individuals on the island
with the genotype, letpk = P (X = k), k = 0, 1, ..., n, and letµ = E[X]. (a)
Suppose that we know that the murderer has the genotype. Showthat the conditional
distribution ofX given this fact is given by

p̂k =
kpk

µ
, k = 0, 1, ..., n

and explain why this is called asize-biaseddistribution.(b) Suppose that we have an old
report stating that an islander has the genotype but that thename has been erased, and that
we also find out that Mr Bloggs has it (so that we have three observations of genotype,
which could be from one, two, or three individuals). Find theconditional distribution
of X, and show that the probability that Mr Bloggs is guilty isE[X2]/E[X3]. (c)
Generalize (b) toj independent observations of the genotype.

33 There aren families living in a neighborhood. Of these,nk havek children, where
k = 0, 1, ..., 4. Let pk = nk/n, the probability that a randomly chosen family hask
children and letµ be the mean number of children. You observe a child playing inthe
street. Show that the probability that this child belongs toa family with k children is
kpk/µ. Explain how both this and Problem 32(a) can be explained by a“balls in urns”
model.

34 You bid on an object at a silent auction. You know that you can sell it later for$100 and
you estimate that the maximum bid from others is uniform on[70, 130] (for convenience,
you assume that it is continuous, thus disregarding the possibility of two equal bids).
How much should you bid to maximize your expected profit, and what is the maximum
expected profit?

35 A stick measuring one yard in length is broken into two piecesat random. Compute the
expected length of the longest piece.

36 A European roulette table has the numbers1–36 plus0 (but no00), and the payout is
the same as for the American table. What is the mean and variance of the gain if you
(a) bet on odd,(b) make a straight bet?
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37 Compute the means and variances ofA andW in Problem 17.

38 The random variableX has pdff(x) = 3x2, 0 ≤ x ≤ 1. (a) ComputeE[X] and
Var[X]. (b) Let Y =

√
X and computeE[Y ] and Var[Y ].

39 Let X ≥ 0 be continuous. Show thatE[X] =
∫∞
0

P (X > x)dx andE[X2] =

2
∫∞
0

xP (X > x)dx. Hint: x =
∫ t

0
dt andx2 = 2

∫ x

0
t dt.

40 Let X ∼ unif(0, 1), let Y = 1/X, and letZ = 1/
√

X. Compute the expected values
and variances ofY andZ where possible.

41 Let R ∼ unif[0, 1] V be the volume of a sphere with radiusR. ComputeE[V ] and
Var[V ].

42 Let X ∼ unif[0,2] and letV be the volume of a cube with sideX. Find E[V ] and
Var[V ].

43 The continuous random variableX has pdff(x) = 2x, 0 ≤ x ≤ 1. Find (a) E[X]
and Var[X] (b) the expected volume of a sphere with radiusX.

44 The random variableX has pdff(x) = c sin x, 0 ≤ x ≤ π. Find (a) The constantc
(b) The cdfF (x) of X (c) E[csc X].

45 Let X have meanµ and varianceσ2. (a) What are the mean and variance of−X?
Explain intuitively. (b) Find constantsa andb such that the random variableY = aX+b
has mean0 and variance1 (this is calledstandardization).

46 Thecoefficient of variationfor a nonnegative random variable is defined asc = σ/µ.
(a) Let X ∼ unif[a, b] and findc. (b) In (a), if a = n andb = n + 1, what happens to
c asn → ∞?

47 Let X be a nonnegative random variable with meanµ and varianceσ2. Prove the
following inequalities and compute the bounds they give in Example 2.4.15.

(a) Markov inequality:P (X ≥ c) ≤ µ/c

(b) One-sided Chebyshev inequality:P (X ≥ µ + a) ≤ σ2/(σ2 + a2)

48 Prove Proposition 2.4.9 by lettingcσ = 1/k in Chebyshev’s inequality, and apply
Proposition 1.3.5.

Section 2.5. Special Discrete Distributions

49 Let A andB be events. Show that(a) I2
A = IA, (b) IAc = 1− IA, (c) IA∩B = IAIB,

(d) IA∪B = IA + IB − IA∩B.

50 Suppose that the probability of a rainy day in Seattle in December is 0.8. If a day is
not rainy, call it sunny. In which of the following cases is itreasonable to assume a
binomial distribution? Argue why/why not and give the parameter values where you
have a binomial distribution.(a) You count the number of rainy days on Christmas Eve
for ten consecutive years.(b) You count the number of rainy days in December next
year. (c) You count the number of rainy days on the first of each month fora year.(d)
You count the number of sunny days on Christmas Eve for ten consecutive years.

51 The random variableX has a binomial distribution withE[X] = 1 and Var[X] = 0.9.
ComputeP (X > 0).
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52 Roll a die10 times. What is the probability of getting(a) no6s, (b) at least two6s, (c)
at most three6s.

53 Let X be the number of6s when a die is rolled6 times, and letY be the number of
6s when a die is rolled12 times. Find(a) E[X] andE[Y ], (b) P (X > E[X]) and
P (Y > E[Y ]).

54 A fair coin is flippedn times. What is the probability of getting a total ofk heads if(a)
the first flip shows heads,(b) the first flip shows tails,(c) at least one flip shows heads?

55 Ann and Bob flip a fair coin10 times. Each time it shows heads, Ann gets a point;
otherwise Bob gets a point.(a) What is the most likely final result?(b) Which is more
likely: that it ends5–5 or that somebody wins6–4? (c) If Ann wins the first three
rounds, what is the probability that she ends up the winner?(d) If Ann wins the first
four rounds, what is the probability that Bob never takes thelead? (e) What is the
probability that the lead changes4 times?

56 A multiple-choice test consists of six questions, each withfour alternatives. At least
four correct answers are required for a passing grade. What is the probability that you
pass if you(a) guess at random,(b) know the first three answers, and guess on the rest,
(c) for each question know the correct answer with probability1

2
, otherwise guess at

random?(d) In (c), to ensure at least95% certainty that you will pass, how high must
the probability that you know an answer be?(e)For (a)–(c), find the mean and variance
of the number of correct answers.

57 A restaurant has15 tables, and it is known that70% of guests who make reservations
actually show up. To compensate for this, the restaurant hasa policy of taking more than
15 reservations, thus running a risk to become overbooked. Howmany reservations can
they take to limit this risk to at most5%?

58 Let X ∼ bin(n, p) andY ∼ geom(p). (a) Show thatP (X = 0) = P (Y > n).
Explain intuitively. (b) Express the probabilityP (Y ≤ n) as a probability statement
aboutX.

59 You flip each ofn coins repeatedly until it shows heads. LetX be the number of coins
that require at least five flips. FindP (X = 0) andE[X].

60 In Example 2.5.4, letS be the number of sons andD the number of daughters. Find
P (D > S), P (D = S), andP (D < S).

61 Consider a sequence of independent trials that result in either success or failure. Fix
r ≥ 1 and letX be the number of trials required until therth success. Show that the
pmf of X is

p(k) =

(
k − 1

r − 1

)
pr(1 − p)k−r, k = r, r + 1, ...

This is called anegative binomialdistribution with parametersr andp, written X ∼
negbin(r, p). What is the special caser = 1?

62 Each workday (Monday–Friday) you catch a bus from a street corner. You have esti-
mated that you arrive too late and miss the bus on average every 5 days. Consider a new
workweek. (a) What is the probability that the next missed bus will be on Friday? (b)
You decide to start biking after you have missed the bus5 times. What is the probability
that this happens on Friday the next week?

63 The number of customersX that call a certain toll-free number in a minute has a Poisson
distribution with mean2. A minute is classified as “idle” if there are no calls and “busy”
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otherwise. (a) What is the probability that a given minute is busy?(b) Let Y be the
number of calls during a busy minute. Find the pmf ofY andE[Y ]. (c) If a minute is
idle, what is the expected number of busy minutes before the next idle minute? What
assumptions are you making?

64 Insects of a certain type lay eggs on leaves such that the number of eggs on a given leaf
has a Poisson distribution with mean1. For any given leaf, the probability is0.1 that it
will be visited by such an insect, and leaves are visited independently of each other.(a)
What is the probability that a given leaf has no eggs?(b) If a leaf is inspected and has
no eggs, what is the probability that it has been visited by aninsect?(c) If 10 leaves are
inspected and none have any eggs, what is the probability that at least one leaf has been
visited by an insect?

65 Prove the expressions for the variances of the binomial and the Poisson distributions by
first finding useful recursive expressions fork(k − 1)p(k) and then using the fact that
E[X2] = E[X(X − 1)] + E[X].

66 (a)Flip a coin10 times and letX be the number of heads. ComputeP (X ≤ 1) exactly
and with the Poisson approximation.(b) Now instead flip four coins10 times and letX
be the number of times you get four heads. ComputeP (X ≤ 1) exactly and with the
Poisson approximation.(c) Compare (a) and (b). Where does the approximation work
best and why?

67 Do Example 1.4.12 with the binomial approximation to the hypergeometric distribution
and compare with the exact probabilities.

68 Compare the variance of the hypergeometric distribution with the variance of the bino-
mial approximation. Which is smaller, and why?

69 Let X be hypergeometric with parametersN, r, andn. Argue thatX can be approxi-
mated by a Poisson distribution. What is required of the parameters for the approxima-
tion to be good.

Section 2.6. The Exponential Distribution

70 Jobs arrive at a computer such that the timeT between two consecutive jobs has an
exponential distribution with mean10 seconds. Find(a) Var[T ], (b) P (T ≤ 5), (c) the
probability that the next job arrives within5 seconds given that the last job arrived 25
seconds ago,(d) P (T > E[T ]).

71 A large number of lightbulbs are turned on in a new office building. A year later,80%
of them still function, and2 years later,30% of the original lightbulbs still function.
Does it seem likely that the lifetimes follow an exponentialdistribution?

72 Let X ∼ exp(λ) and letY = λX. Show thatY ∼ exp(1).

73 The elementnobeliumhas a half-life of58minutes. LetX be the lifetime of an individual
nobelium atom. Find(a)P (X > 30), (b), P (X ≤ 60|X > 30), (c)E[X] and Var[X].

74 Let T ∼ exp(λ) and letX = [T ] + 1 (“ [ · ]” denoting integer part). Show thatX ∼
geom(1 − e−λ) (success probability1 − e−λ). If T is the lifetime of a component,
what could be the interpretation ofX?

75 Prove Proposition 2.6.1 by first subtractingG(y) and dividing byx in the equation
G(x + y) = G(x)G(y). Solve the resulting differential equation.
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76 You are at a post office where there are two clerks, you are being served by one of them,
the other clerk serves another customer, and one customer iswaiting in line. If service
times are independent andexp(λ), what is the probability that you are the last of the
three customers to leave the post office?

Section 2.7. The Normal Distribution

77 Let X have a normal distribution with meanµ = 200 and standard deviationσ = 10.
Find (a) P (X ≤ 220) (b) P (X ≤ 190) (c) P (X > 185) (d) P (X > 205) (e)
P (190 ≤ X ≤ 210) (f) P (180 ≤ X ≤ 210)

78 Let X have a normal distribution with meanµ and standard deviationσ. (a) Find an
expression involvingΦ for the probability thatX is within c standard deviations of its
mean wherec is a positive real number.(b) If you want the probability in(a) to be 0.99,
what value ofc do you get?

79 Suppose that heights in a population follow a normal distribution with mean 70 and
standard deviation 3 (inches). Find the 10th and the 90th percentiles.

80 Suppose thatX ∼ N(µ, σ2). Find theZ-score corresponding to theX-valueµ + cσ
wherec is any real number (negative or positive).

81 Two species of fish have weights that follow normal distributions. Species A has mean
20 and standard deviation 2; species B has mean 40 and standard deviation 8. Which is
more extreme: a 24-pound A-fish or a 48-pound B-fish?

82 Jane takes a test and scores 80 points. The test results in herclass follow a normal
distribution with mean 70 and standard deviation 10. On a second test, the mean is
instead 150 and the standard deviation is 30. How much must she score to do as well
as on the first test?

83 The number of free electrons in a metal fragment is measured with a measurement error
that is normally distributed. More specifically, if there aren free electrons, the number
Y = n + X is recorded whereX has a normal distribution with mean0 and standard
deviationσ = 0.43. If Y is rounded to the nearest integer, what is the probability that
we get the correct answer?

84 A manually operated stopwatch is used to clock times in a 100 meter track race. If the
true time of a runner ist seconds, the watch will show the timeT = t+0.1+X, where
X has a normal distribution with mean0 and variance0.01. (a) For a givent, what is
the distribution ofT? (b) If the true timet is 11.5 seconds, what isP (T ≤ 11.5)? (c)
What is the probability thatT is within 0.05 seconds of the true timet?

85 Let X ∼ N(0, 1). Express the pdf’s of the following random variables in terms of the
standard normal pdfϕ(x): (a) −X, (b) |X|, (c) X2, (d) eX .

86 Let H andW be the height and weight of a randomly chosen individual. In the light of
the previous problem, is it reasonable to assume that they are both normal?

87 A type of metal rod is desired to have a length of100 cm. It is first cut crudely by a
machine and then finished by hand. It is known that the machinegives lengths that are
normal with meanµ and variance2, whereµ can be set by the operator. If a machine-cut
rod is shorter than100, it is wasted and if it is longer than100, the excess material is
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wasted.(a) If the length of a rod isX, which function ofX describes the amount of
waste?(b) How shouldµ be chosen in order to minimize the expected waste?

88 The random variableX has cdfF (x) = 1−e−x2

, x ≥ 0. Use properties of the normal
distribution together with Proposition 2.4.2 to findE[X].

89 If X has a normal distribution, what is the probability that it deviates more thank
standard deviations from its mean fork = 1, 2, ...? Compare with the bounds given by
Chebyshev’s inequality.

90 Use the approximation formula given in Section 2.7 to find theprobability that a ran-
domly selected person has an IQ at least as high as Marilyn’s (see Example 2.4.15).

91 Let X ∼ N(0, 1). Show thatP (X > x + ǫ|X > x) ≈ e−xǫ for largex and smallǫ.

Section 2.8. Other Distributions

92 Let X be lognormal with parametersµ andσ2. Find the distributions ofX2 andX3.

93 Let W and H be the weight and height of a randomly chosen individual. IfH is
lognormal, is it reasonable to assume thatW is also lognormal?

94 Let X be lognormal with parametersµ = 0 andσ2 = 1. Find (a) P (X ≤ 2), (b)
P (X2 ≤ 2), (c) P (X > E[X]), (d) the medianm of X.

95 Let X ∼ Γ(α, λ), and letY = λX. Show thatY ∼ Γ(α, 1).

96 Let X have the Cauchy distribution.(a) Find the cdf ofX. (b) Let Y = 1/X. Show
thatY also has the Cauchy distribution.

97 On my drive to work from home, I have a left turn where there is astoplight. About
80% of the time it is red, in which case my waiting time until itturns green is uniform
on (0,30) seconds. LetX be my waiting time when I arrive at the stoplight. Find the
cdf of X and sketch its graph. IsX discrete? Continuous? Why or why not?

98 A box contains equally many electronic components of two types, I and II. A type I
component has a lifetime that isexp(1); a type II component has a lifetime that is
exp(2). Consider a randomly chosen component and letX be its lifetime.(a) Find the
cdf of X. Is X exponential?(b) Given that a component works aftert hours, what is
the probability that it is of type I?

Section 2.9. Location Parameters

99 For the following pdf’s, find means, medians, and modes wherepossible. Compare
them and argue which best represents the distribution.(a) f(x) = 1/x2, x ≥ 1, (b)
f(x) = 1

2
, x ∈ [0, 1]∪ [2, 3], (c)f(x) = 2(1−x), x ∈ [0, 1], (d) f(x) = −x, −1 ≤

x ≤ 0 andf(x) = x, 0 ≤ x ≤ 1, (e)f(x) = 1/(π(1 + x2)), x ∈ R.

100 For the following pairs of expressions, explain the difference in terms of location pa-
rameters:(a) “taller than average” and “taller than most people,”(b) “typical new home
price” and “average new home price,”(c)“a majority of the salaries are between$50, 000
and$60, 000” and “a plurality of the salaries are between$50, 000 and$60, 000”.
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101 Let X be a random variable. If there exists a constanta such thatP (X ≥ a + x) =
P (X ≤ a − x) for all x ≥ 0, X is said to have asymmetricdistribution. (a) Which of
the following distributions are symmetric? (i)N(0, 1), (ii) exp(λ), (iii) unif [0, 1], (iv)
Poi(λ), (v) bin(n, 1

2
), (vi) bin(n, p), wherep 6= 1

2
. (b) What does the pmf or pdf look

like for a symmetric distribution?(c)Suppose thatX is continuous and has a symmetric
distribution with meanµ. Show thata = µ, and that the median equals the mean (under
the assumptions of Corollary 2.9.1).

102 Let X have meanµ and varianceσ2. The skewnessof X is defined as skw[X] =
E[(X − µ)3]/σ3 and is a measure of the asymmetry of the distribution. Show that
skw[X] = (E[X3] − 3µE[X2] + 2µ3)/σ3 (compare Corollary 2.4.5).

103 Find skw[X] if (a) X ∼ exp(λ) (Note: E[X3] = 6/λ3), (b) X ∼ Poi(λ) (Note :
E[X3] = λ3 + 3λ2 + λ). (c) What happens in (a) and (b) asλ increases? Explain!

104 Let X have meanµ and varianceσ2. The kurtosisof X is defined as kur[X] =
E[(X − µ)4]/σ4 and is a measure of the peakedness of the pdf. Show that kur[X] =
(E[X4] − 4E[X3]µ + 6E[X2]µ2 − 3µ4)/σ4 (compare with Corollary 2.4.5).

105 Find kur[X] if (a)X ∼ N(µ, σ2) (Note: E[Z4] = 3 if Z ∼ N(0, 1)), (b) S ∼ exp(λ)
(Note: E[X4] = 24/λ4), (c) X ∼ unif[0, 1], (d) X ∼ Poi(λ) (Note: E[X4] =
λ4 + 6λ3 + 7λ2 + λ).

106 The kurtosis can be used to check for deviations from the normal distribution. For this
purpose, theexcess kurtosiscan be defined as xkur[X] = kur[X] − 3. Find xkur[X]
for the distributions in the previous problem and interpretin terms of deviations from
normality.

Section 2.10. The Failure Rate Function

107 Let X be a discrete random variable with range{0, 1, 2, ...}. The (discrete) failure rate
function is then defined as

r(k) =
P (X = k)

P (X ≥ k)

(a) Show thatr(k) = P (X = k|X ≥ k). (b) LetX be the number when you roll a fair
die. Find the failure rate function ofX. Sketch the pmf and the failure rate function of
X and explain the difference between the two graphs. Also suggest an interpretation in
terms of lifetimes.

108 Let T be a nonnegative, continuous random variable. ExpressE[T ] as an integral that
includes the failure rate functionr(t) but not the pdf, cdf, or survival function.

109 Find the failure rate function of the random variableT if it has pdf(a) f(t) = 2t, 0 ≤
t ≤ 1, (b) f(t) = 1/t2, t ≥ 1, (c) f(t) = 2t exp(−t2), t ≥ 0.

110 Find the cdf’s of the nonnegative continuous random variables with the following failure
rate functions:(a) r(t) = 1/(1 + t), (b) r(t) = 2t, (c) r(t) = t3, (d) r(t) = e−t.

111 A certain type of lightbulb has failure rate functionr(t). The probability is0.2 that
such a lightbulb functions for more than5000 hours. Suppose that we want to double
this probability by decreasing the failure rate function bya factorc < 1, to cr(t). How
should we choosec?
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112 The lifetimeL of a certain insect has median2 months and failure rate function

r(t) = at2, t ≥ 0

Find(a) the constanta, (b) the probability that a newborn insect lives at least3 months.

113 The timeT in seconds between consecutive jobs arriving to a computer has failure rate
function

r(t) =

{
1 − t if 0 ≤ t ≤ 1
t − 1 if t ≥ 1

Find (a) P (0.5 ≤ T ≤ 1.5), (b) the pdff and the medianm of T .

114 The lifetimeT in years of a lawn mower has failure rate function

r(t) =

{
1/2 if 0 ≤ t ≤ 2
t/4 if 2 ≤ t ≤ 6
9 if t ≥ 6

Find (a) the probability that a new mower breaks down within6 months,(b) the prob-
ability that a2-year-old mower works for yet another year,(c) the probability that a
seven year old mower breaks down within a month,(d) the median life-length of a new
mower,(e) the median remaining life-length of a2-year-old mower.

115 The lifetime T in hours of a type of electronic component is a continuous random
variable with failure rate functionr(t) that equals the constantc for t ≤ 100. For
t ≥ 100, r(t) is such that the failure rate doubles every2 hours andr(t) is continuous
at100. Find(a) the expression forr(t), (b) the value ofc if it is known that the median
lifetime is110 hours,(c) the probability that a lifetime is at most100 hours.



3
Joint Distributions

3.1 INTRODUCTION

In the previous chapter, we introduced random variables to describe random exper-
iments with numerical outcomes. We restricted our attention to cases where the
outcome is a single number, but there are many cases where theoutcome is a vector
of numbers. We have already seen one such experiment, in Example 1.2.5, where a
dart is thrown at random on a dart board of radiusr. The outcome is a pair(X, Y )
of random variables that are such thatX2 + Y 2 ≤ r2. For another example, suppose
that we measure voltage and current in an electric circuit with known resistance. Due
to random fluctuations and measurement error, we can view this as an outcome(V, I)
of a pair of random variables.

These examples have in common that there is a relation between the random
variables that we measure, and by describing them only one byone, we do not get
all the possible information. The dart coordinates are restricted by the board, and
voltage and current are related by Ohm’s law. In this chapterwe extend the notion of
random variables to random vectors.

3.2 THE JOINT DISTRIBUTION FUNCTION

We will focus primarily on random vectors in two dimensions.Let us begin by for-
mally defining our fundamental object of study.

161
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Definition 3.2.1. Let X andY be random variables. The pair(X, Y ) is then
called a (two-dimensional)random vector.

Our aim is to describe random vectors in much the same way thatwe described ran-
dom variables in Chapter 2, and we will thus define analogs of the cdf, pmf, and pdf.
For a given random vector(X, Y ), we will often be interested in events of the type
{X ∈ A} ∩ {Y ∈ B}, that is, the event thatX belongs to the setA andY at the
same time belongs to the setB. To ease the notation, we writeP (X ∈ A, Y ∈ B)
instead ofP ({X ∈ A} ∩ {Y ∈ B}). With this in mind, we can state the following
definition.

Definition 3.2.2. Thejoint distribution function(joint cdf) of(X, Y ) is defined
as

F (x, y) = P (X ≤ x, Y ≤ y)

for x, y ∈ R.

The joint cdf is a function of two variables. It has properties similar to those of
the one-dimensional cdf, but since it requires three dimensions to plot, it is more
difficult to visualize. It also turns out to be somewhat less central for computation
of probabilities than its one-dimensional analog. The reason for this is that in one
dimension, virtually any event involving a random variableis of the form{X = x}
or {a < X ≤ b}, and the probabilities of these events can be directly expressed in
terms of the cdf according to Propositions 2.2.2 and 2.3.2.

In two dimensions, things become more difficult. The cdf in a point (x, y) is the
probability thatX ≤ x andY ≤ y, that is, the probability that(X, Y ) is in the set
(−∞, x]×(−∞, y], the infinite rectangle “southwest” of the point(x, y). For a finite
rectangleB = (a, b] × (c, d], it is easy to show (Problem 1) that

P (a < X ≤ b, c < Y ≤ d) = F (b, d) − F (b, c) − F (a, d) + F (a, c)

and we can find probabilities of other types of rectangular sets in a similar way.
However, in two dimensions, there are many other types of sets. For example, if
C is the unit circle disk,C = {(x, y) : x2 + y2 ≤ 1}, then we cannot express
P ((X, Y ) ∈ C) directly by the joint cdf. (Try it!) The same problems arise for
events such as{X ≤ Y } or {|X − Y | > 1}. The planeR2 is so much more
complicated than the nicely ordered real line.

If we are given the joint cdfF of (X, Y ), we can obtain the individual cdf’s ofX
andY by noticing that the event{X ≤ x} is the same as the event{X ≤ x, Y < ∞},
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which puts no restrictions onY . Since this has probability

P (X ≤ x, Y < ∞) = F (x,∞)

we get the following result.

Proposition 3.2.1. If (X, Y ) has joint cdfF , thenX andY have cdf’s

FX(x) = F (x,∞) and FY (y) = F (∞, y)

for x, y ∈ R.

The cdf’s ofX andY are called themarginalcdf’s of (X, Y ).

3.3 DISCRETE RANDOM VECTORS

Just as in the one-dimensional case, we make the distinctionbetween discrete and
continuous random vectors.

Definition 3.3.1. If X andY are discrete random variables, then(X, Y ) is
called adiscrete random vector.

If the range ofX is {x1, x2, ...} and the range ofY is {y1, y2, ...}, then the range of
(X, Y ) is {(xj , yk), j, k = 1, 2, ...}, which is also a countable set. Hence, a discrete
random vector(X, Y ) is characterized by a countable range, in the same way as is
a discrete random variable. In analogy with the one-dimensional case we state the
following definition.

Definition 3.3.2. If (X, Y ) is discrete with range{(xj , yk) : j, k = 1, 2, ...},
the function

p(xj , yk) = P (X = xj , Y = yk)

is called thejoint pmfof (X, Y ).
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Example3.3.1. Roll a die twice. LetX be the first andY the second number. Find
the joint pmf of(X, Y ).

The range is{(j, k) : j = 1, 2, ..., 6, k = 1, 2, ..., 6}, and for any pair(j, k), we get

p(j, k) = P (X = j, Y = k)

= P (X = j)P (Y = k) =
1

36

since the events{X = j} and{Y = k} are independent. We say that(X, Y ) has a
uniform distribution on{(j, k) : j = 1, 2, ..., 6, k = 1, 2, ..., 6}.

Example3.3.2. Phone calls arrive to a mail order company such that the number
of phone calls in a minute has a Poisson distribution with mean 4. A given caller is
female with probability0.5, independently of other callers. In a given minute, letX
be the number of female callers andY the total number of callers. Find the joint pmf
of (X, Y ).

Unlike the previous example, events pertaining toX and toY are not independent,
which is clear sinceX is always less than or equal toY . However, we can use
conditional probabilities by noting that ifY = k, then the number of female callers
is binomial with parametersk and0.5, and we get

p(j, k) = P (X = j|Y = k)P (Y = k)

=

(
k

j

)
0.5j0.5k−je−4 4k

k!

= e−4 2k

j!(k − j)!
, 0 ≤ j ≤ k, k = 0, 1, 2, ...

The joint pmf’s for the two examples are depicted in Figure 3.1.
If we are given the pmf of(X, Y ), we might be interested in finding the marginal

(one-dimensional) pmf’s of the random variablesX andY . Since the event{X = xj}
can be described in terms of(X, Y ) as{X = xj , “Y =anything”}, we get

pX(xj) =

∞∑

k=1

P (X = xj , Y = yk) =

∞∑

k=1

p(xj , yk)

with the obvious analog forpY . We have the following result.
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Fig. 3.1 Joint pmf’s for Examples 3.3.1 and 3.3.2, respectively.

Proposition 3.3.1. If (X, Y ) has joint pmfp, then the marginal pmf’s ofX
andY are

pX(xj) =
∞∑

k=1

p(xj , yk), j = 1, 2, ...

pY (yk) =

∞∑

j=1

p(xj , yk), k = 1, 2, ....

Example3.3.3. Find the marginal pmf’s in Example 3.3.2.

From the problem it is given thatY ∼ Poi(4). To find the pmf ofX , start from the
joint pmf

p(j, k) = e−4 2k

j!(k − j)!
, 0 ≤ j ≤ k, k = 0, 1, 2, ...

and note that for fixedj, k ranges fromj to∞. This gives

pX(j) = e−4
∞∑

k=j

2k

j!(k − j)!

= e−4 2j

j!

∞∑

k=j

2k−j

(k − j)!
= e−2 2j

j!
, j = 0, 1, ...

which means thatX ∼ Poi(2).
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3.4 JOINTLY CONTINUOUS RANDOM VECTORS

Definition 3.4.1. If there exists a functionf such that

P ((X, Y ) ∈ B) =

∫∫

B

f(x, y)dx dy

for all subsetsB ⊆ R2, thenX andY are said to bejointly continuous. The
functionf is called thejoint pdf.

We may also say simply that the vector(X, Y ) is continuous. The notation
∫∫

B
means that we integrate over the two-dimensional regionB.1 In particular, the choice
B = {(s, t) : s ≤ x, t ≤ y} = (−∞, x] × (−∞, y] gives

F (x, y) =

∫ y

−∞

∫ x

−∞
f(s, t)dsdt

which also gives the following proposition.

Proposition 3.4.1. If X andY are jointly continuous with joint cdfF and
joint pdf f , then

f(x, y) =
∂2

∂x∂y
F (x, y), x, y ∈ R

The intuition is the same as in the one-dimensional case;f(x, y) is a measure of how
likely it is that (X, Y ) is in the neighborhood of the point(x, y), not exactly equal
to (x, y). Again, the probability that(X, Y ) equals(x, y) is 0 for all x andy. Even
more holds in the jointly continuous case. Since lines and curves inR2 have area0,
integrating the joint pdf over them also gives0 and hence the probability that(X, Y )
takes values on any fixed line or curve is0. In particular,P (X = Y ) = 0.

Since probabilities are always nonnegative andP ((X, Y ) ∈ R2) = 1, we get the
following analog of Proposition 2.3.4.

1As in the one-dimensional case, some restrictions must in general be imposed on the class of possible
subsetsB, but we can again safely disregard this problem.
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Proposition 3.4.2. A function f is a possible joint pdf for the random
variablesX andY if and only if

(a) f(x, y) ≥ 0 for all x, y ∈ R

(b)
∫ ∞

−∞

∫ ∞

−∞
f(x, y)dx dy = 1

Example3.4.1. The random vector(X, Y ) has joint pdf

f(x, y) = c(x + 2y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

Find (a) the constantc, (b) the joint cdfF (x, y).

For part (a) we use Proposition 3.4.2. Clearly,f ≥ 0 and since
∫ 1

0

∫ 1

0

f(x, y)dx dy = c

∫ 1

0

∫ 1

0

(x + 2y)dx dy

= c

∫ 1

0

(
1

2
+ 2y

)
dy =

3c

2

we getc = 2
3 . For part (b), we get

F (x, y) =

∫ y

0

∫ x

0

2

3
(s + 2t)ds dt =

∫ y

0

(
x2

3
+

4xt

3

)
dt

=

[
tx2

3
+

4xt2

6

]y

t=0

=
1

3

(
x2y + 2xy2

)
, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

In analogy with the result regarding marginal pmf’s, we havethe following result in
the jointly continuous case.

Proposition 3.4.3. Suppose thatX andY are jointly continuous with joint
pdf f . ThenX andY are continuous random variables with marginal pdf’s

fX(x) =

∫ ∞

−∞
f(x, y)dy, x ∈ R

fY (y) =

∫ ∞

−∞
f(x, y)dx, y ∈ R
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Example3.4.2. Find the marginal pdf’s in Example 3.4.1.

The joint pdf is

f(x, y) =
2

3
(x + 2y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

which gives

fX(x) =
2

3

∫ 1

0

(x + 2y)dy

=
2

3

[
xy + y2

]1
y=0

=
2

3
(x + 1), 0 ≤ x ≤ 1

and

fY (y) =
2

3

∫ 1

0

(x + 2y)dx

=
2

3

[
x2

2
+ 2xy

]1

x=0

=
1

3
(1 + 4y), 0 ≤ y ≤ 1

Example3.4.3. Choose a point(X, Y ) at random in the unit disk{(x, y) : x2+y2 ≤
1}. Find the joint pdf and the marginal pdf’s.

In analogy with the one-dimensional case, “at random” meansthat the joint pdf must
be constant on the unit disk (and 0 outside). Since the joint pdf must also integrate to
one and the area of the unit disk isπ, we realize that(X, Y ) has joint pdf

f(x, y) =
1

π
, x2 + y2 ≤ 1

We call this a uniformdistribution on the unit disk. Since the boundaryhas probability
0, we can replace “≤” by “ <” if we wish and thus it makes no difference whether we
consider the closed or open disk (compare the one-dimensional uniform distribution).

What is the marginal distribution ofX? First note that the range ofX is [−1, 1]. Is
X uniform on this range? To find the marginal pdf ofX , fix x ∈ [−1, 1] and compute

fX(x) =

∫ ∞

−∞
f(x, y)dy

The integral limits are determined by where the joint pdff(x, y) is strictly positive,
which is where the point(x, y) is inside the unit disk. For fixedx, this happens when
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y is between−
√

1 − x2 and
√

1 − x2. Hence we get

fX(x) =
1

π

∫ √1−x2

−
√

1−x2

dy =
2

π

√
1 − x2, −1 ≤ x ≤ 1

and by symmetry,Y has the same marginal distribution asX . Now, this is certainly
not the pdf of a uniform distribution on[−1, 1]. To understand whyX is not uniform,
consider an intervalIh of a fixed lengthh inside[−1, 1]. For a uniform distribution,
the probabilityP (X ∈ Ih) is the same regardless of where the interval is located, but
in our case this probability is larger the closer the interval is to the origin. Remember
that we are choosing a point uniformly in the unit disk, and getting X in a specific
interval corresponds to(X, Y ) being in a specific region. For a fixed interval length,
this region is larger the closer the interval is to 0 (draw a figure).

3.5 CONDITIONAL DISTRIBUTIONS AND INDEPENDENCE

Recall the concept of conditional probability from Section1.5. The intuition behind
P (A|B) is that this is the probability ofA if we know that the eventB has occurred.
Now suppose that the eventA is related to a discrete random variableY , for example,
A = {Y = y}. The conditional probability of the event{Y = y} givenB can then
be regarded as theconditional pmfof Y , given the eventB, evaluated in the pointy.
If also the eventB is related to a discrete random variable, say,X , we can state the
following definition.

Definition 3.5.1. Let X and Y be discrete random variables with ranges
{x1, x2, ...} and{y1, y2, ...}, respectively, and joint pmfp. Theconditional
pmfof Y givenX = xj is defined as

pY (yk|xj) =
p(xj , yk)

pX(xj)
for yk in the range ofY

We view this as a function ofyk where the valuexj is fixed. An application of the
law of total probability gives

pY (yk) =

∞∑

j=1

pY (yk|xj)pX(xj)

for yk in the range ofY , which is the same formula as in Proposition 3.3.1. To get
the conditional cdf, we compute the sum

FY (y|xj) =
∑

k:yk≤y

pY (yk|xj)
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for y ∈ R.

Example3.5.1. Consider Example 3.3.2, whereX is the number of female callers
andY the total number. Find the conditional pmf ofY givenX = j.

We computed the joint pdf and found it to be

p(j, k) = e−4 2k

j!(k − j)!
, 0 ≤ j ≤ k, k = 0, 1, 2, ...

and in Example 3.3.3, we found thatX ∼ Poi(2). Conditioned onX = j, the range
of Y is j, j + 1, ... and we get the conditional pmf

pY (k|j) =
e−4 2k/(j!(k − j)!)

e−2 2j/j!
= e−2 2k−j

(k − j)!
, k = j, j + 1, ...

which means that, given that there arej female callers, the total number of callers is
j plus a number that has a Poisson distribution with mean2, which is of course the
number of male callers.

The continuous case is similar, but we have to be careful since pdf’s are not proba-
bilities. Let us first consider what we should mean by the conditional pdf ofY given
an eventB. Intuitively it is clear that this should be a pdf that is computed given the
information that the eventB has occurred. IfY were discrete, we would simply go
ahead according to the definition above, but for continuousY , the event{Y = y}
has probability0 for all y, and we need to proceed differently. Since the pdf is not a
probability but the cdf is, let us first define theconditional cdfas

F (y|B) = P (Y ≤ y|B) =
P ({Y ≤ y} ∩ B)

P (B)

and then the conditional pdf ofY givenB as

f(y|B) =
d

dy
F (y|B)

This is fine as long asB is an event withP (B) > 0, but what ifB is also related to
a continuous random variable, of the formB = {X = x} so thatB has probability
0? Clearly, it still makes intuitive sense to talk about the “distribution ofY given that
X = x,” but if X is continuous, we cannot use the definition of conditional proba-
bility as we did above. Our definition of conditional pdf instead mimics its discrete
counterpart, and we state the following.
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Definition 3.5.2. Let (X, Y ) be jointly continuous with joint pdff . The
conditional pdf ofY givenX = x is defined as

fY (y|x) =
f(x, y)

fX(x)
, y ∈ R

We interpret this as the pdf ofY if we know thatX = x. Note thatx is a fixed
value and the argument of the pdf isy. To define the conditional cdf, we integrate the
conditional pdf and get

FY (y|x) = P (Y ≤ y|X = x) =

∫ y

−∞
fY (t|x)dt

for y ∈ R. More generally, for any setB ⊆ R, we have

P (Y ∈ B|X = x) =

∫

B

fY (y|x)dy

Example3.5.2. Consider again Example 3.4.3, where a point(X, Y ) is chosen uni-
formly in the unit disk. What is the conditional pdf ofY givenX = x?

The joint pdf is

f(x, y) =
1

π
, x2 + y2 < 1

and the marginal pdf ofX is

fX(x) =
2

π

√
1 − x2, −1 ≤ x ≤ 1

For a fixedx, the range ofY is (−
√

1 − x2,
√

1 − x2), and the conditional pdf is

fY (y|x) =
f(x, y)

fX(x)
=

1

2
√

1 − x2
, −

√
1 − x2 ≤ y ≤

√
1 − x2

But this functional expression does not depend ony, so we conclude thatfY (y|x) is
constant as a function ofy (remember thatx is a fixed value). Hence, the conditional
distribution ofY given thatX = x is uniform on(−

√
1 − x2,

√
1 − x2), which we

may write as

Y |X = x ∼ unif
(
−
√

1 − x2,
√

1 − x2
)

and by symmetry we also get

X |Y = y ∼ unif
(
−
√

1 − y2,
√

1 − y2
)
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In the example above, we started by describing(X, Y ) and found the marginals and
conditional distributions. It is also possible to go the other way, that is, to first define
the marginal pdf ofX and then the conditional pdf ofY givenX = x. This is natural
if the experiment is performed in stages, as the following example shows.

Example3.5.3. Choose a pointX uniformly on [0, 1] and givenX = x, chooseY
uniformly on [0, x]. Find the joint pdf of(X, Y ).

First note that the range of(X, Y ) is the triangle{(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ x}.
The pdf ofX is

fX(x) = 1, 0 ≤ x ≤ 1

and the conditional pdf ofY givenX = x is

fY (y|x) =
1

x
, 0 ≤ y ≤ x

which gives joint pdf

f(x, y) = fY (y|x)fX(x) =
1

x
, 0 ≤ x ≤ 1, 0 ≤ y ≤ x

Note that this is not a uniform distribution on the triangle,since values tend to be
more likely near the origin. Think about why this is the case.

The following proposition is a continuous version of the lawof total probability.

Proposition 3.5.1. Let X andY be jointly continuous. Then

(a) fY (y) =

∫ ∞

−∞
fY (y|x)fX(x)dx, y ∈ R

(b) P (Y ∈ B) =

∫ ∞

−∞
P (Y ∈ B|X = x)fX(x)dx, B ⊆ R

Proof. For (a), just combine Proposition 3.4.3 with the definition of conditional
pdf and for (b), part (a) gives

P (Y ∈ B) =

∫

B

fY (y)dy =

∫

B

∫ ∞

−∞
fY (y|x)fX(x)dx dy
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=

∫ ∞

−∞

∫

B

fY (y|x)fX(x)dy dx

=

∫ ∞

−∞
P (Y ∈ B|X = x)fX(x)dx

as desired.

Note again how intuition is quite clear. To find for exampleP (Y ∈ B), we condition
on a particular value,X = x, and computeP (Y ∈ B|X = x). Then we compute
a weighted average over all possible values ofX and use the pdf ofX to find the
weights. SinceX is continuous, the averaging is done by an integral instead of a sum.
In particular, withB = (−∞, y], we get

FY (y) =

∫ ∞

−∞
FY (y|x)fX(x)dx

Another version of the law of total probability that we statewithout proof can be
helpful for computing probabilities of events involving both X andY .

Proposition 3.5.2. Let X andY be jointly continuous. Then, forB ⊆ R2

P ((X, Y ) ∈ B) =

∫ ∞

−∞
P ((x, Y ) ∈ B|X = x)fX(x)dx

Note howP ((x, Y ) ∈ B|X = x) is in fact the probability of a statement aboutY
alone, for fixedx. The usefulness of the proposition is best illustrated by anexample.

Example3.5.4. Let X ∼ unif[0, 1], and givenX = x, let Y ∼ unif[0, x]. Find
P (Y ≤ X2).

The regionB is the set{(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ x2}, and we have

P ((x, Y ) ∈ B|X = x) = P (Y ≤ x2|X = x) = x

since givenX = x, Y has cdfP (Y ≤ t|X = x) = t/x. We get

P (Y ≤ X2) = P ((X, Y ) ∈ B) =

∫ 1

0

xdx =
1

2
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Part (b) in Proposition 3.5.1 is valid also ifY is discrete andX continuous. In this
case, the pair(X, Y ) is neither jointly discrete nor jointly continuous,but it still makes
sense to talk about conditional distributions. We illustrate this in an example.

Example3.5.5. Let X ∼ unif[0, 1] and givenX = x, let Y ∼ geom(x). Thus, we
consider a geometric distribution where the success probability is chosen at random
from [0, 1]. Find the distribution ofY .

The quickest way is to note thatP (Y > k|X = x) = (1 − x)k, which gives

P (Y > k) =

∫ 1

0

(1 − x)kdx =
1

k + 1
, k = 0, 1, 2, ...

which in turn gives

P (Y = k) = P (Y > k − 1) − P (Y > k) =
1

k(k + 1)
, k = 1, 2, ...

and it is interesting to note that this is not a geometric distribution.

3.5.1 Independent Random Variables

Recall Example 3.4.3, where a point(X, Y ) is chosen uniformly in the unit disk.
When we computed the marginal pdf ofX , we saw thatX tends to be more likely to
be near the midpoint0 than the endpoints−1 and1. By symmetry,Y has the same
marginal distribution asX on they axis and hence alsoY tends to be more likely to
be near0. But this seems to indicate that the pair(X, Y ) is more likely to be near the
origin (0, 0), which would contradict the assumption that(X, Y ) is uniform on the
unit disk. How is this possible?

The solution to this apparent paradox is thatX andY do tend to be concentrated
near0 when considered one by one butnot at the same time. Recall the conditional
distributions, which state that if, for example,X = x, theY is uniform on the interval
(−

√
1 − x2,

√
1 − x2). Hence, ifX is near0, there is a lot of room for variability in

Y , but if X is far from0, there is less room andY must be near0.
It would be natural to say thatX andY aredependent, since knowing the value

of one of them gives us information on the possible values andhence the distribution
of the other. We next state the formal definition of independence of random variables.

Definition 3.5.3. The random variablesX andY are said to beindependentif

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B)

for all A, B ⊆ R.
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Note that this means that{X ∈ A} and{Y ∈ B} are independent events. It can
be difficult to check this for all possible setsA andB, but it turns out that there is a
simpler characterization of independence.

Proposition 3.5.3. The random variablesX andY are independent if and only
if

F (x, y) = FX(x)FY (y)

for all x, y ∈ R.

The proof of the proposition is beyond the scope of this book.If X and Y are
independent andg andh are any functions, it can be shown thatg(X) andh(Y ) are
also independent. While intuitively reasonable, the proofis quite advanced and we
will not give it. For some special cases, see Problem 37.

In the case whenX andY are discrete, independence can be easily characterized
directly in terms of the probability mass functions,as the following proposition shows.

Proposition 3.5.4. Suppose that(X, Y ) is discrete with joint pmfp. ThenX
andY are independent if and only if

p(x, y) = pX(x)pY (y)

for all x, y ∈ R.

Proof. Suppose thatX andY are independent. In the definition of independence,
chooseA = {x} andB = {y} to obtain

p(x, y) = P (X = x, Y = y) = P (X = x)P (Y = y) = pX(x)pY (y)

Conversely, suppose thatp(x, y) = pX(x)pY (y) and take two subsets ofR, A and
B. Then

P (X ∈ A, Y ∈ B) =
∑

x∈A

∑

y∈B

p(x, y) =
∑

x∈A

pX(x)
∑

y∈B

pY (y)

which equalsP (X ∈ A)P (Y ∈ B), and henceX andY are independent.

Not surprisingly, an analogous relation characterizes independence in the jointly con-
tinuous case. The proof, which relies on Proposition 3.5.3,is left as an exercise.
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Proposition 3.5.5. Suppose thatX andY are jointly continuous with joint
pdf f . ThenX andY are independent if and only if

f(x, y) = fX(x)fY (y)

for all x, y ∈ R.

Thus, there are several equivalent characterizations of independence, depending on
what type of random variables we are dealing with. Regardless of whether we are
talking about cdf’s, pmf’s, or pdf’s, we can keep the following informal description
in mind.

Corollary 3.5.6. The random variablesX andY are independent if and only
if “the joint is the product of the marginals.”

It also follows from the definitions that independence is equivalent to equality between
conditional and unconditional distributions. Thus, all our intuition from independent
events carries over to independent random variables.

Example3.5.6. Recall Example 3.4.3, where a point(X, Y ) is chosen uniformly in
the unit disk. The joint pdf is

f(x, y) =
1

π
, x2 + y2 ≤ 1

and the marginals

fX(x) =
2

π

√
1 − x2, −1 ≤ x ≤ 1

and

fY (y) =
2

π

√
1 − y2, −1 ≤ y ≤ 1

and sincef(x, y) 6= fX(x)fY (y), X andY are not independent,as was to be expected
from the discussion at the beginning of this section.

In the last example, it is immediately clear thatX andY cannot be independent
since if we know the value of one of them, this changes the range of possible values
of the other. This leads us to realize that two random variablesX andY can be
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independent only if the range in two dimensions of the pair(X, Y ) has a shape such
that the ranges ofX andY individually do not change in this way. Thus, only ranges
that are shaped like rectangles (possibly infinite) parallel with the axes are possible
in order to get independent random variables. Note that thisis a necessary but not
sufficient condition. Even if the shape is rectangular, the joint pdf may still not equal
the product of the marginals (as in Example 3.4.1).

When we compute probabilities pertaining to independent random variables, the
following corollary to Proposition 3.5.2 can be very useful.

Corollary 3.5.7.

P ((X, Y ) ∈ B) =

∫ ∞

−∞
P ((x, Y ) ∈ B)fX(x)dx

Proof. By independence

P ((x, Y ) ∈ B|X = x) = P ((x, Y ) ∈ B)

and everything else follows from Proposition 3.5.2.

Example3.5.7. (Buffon’s Needle). A table is ruled by equidistant parallel lines,
one inch apart. A needle of length one inch is tossed at randomon the table. What is
the probability that it intersects a line?

We describe the needle’s position by the distanceD from the center of the needle to
the nearest line and the (smallest) angleA between the needle and that line. In Figure
3.2, we see how the left needle and the line form a triangle that has a hypotenuse
of lengthD/ sinA. The right needle does not intersect the line but would also form
such a triangle if extended toward the line. Thus, we realizethat the needle intersects
the line if and only if

D

sinA
≤ 1

2

where the range ofD is [0, 1/2] and that ofA is [0, π/2]. If we interpret “tossed at
random” asD andA being independent and uniform on their respective ranges, we
can apply Corollary 3.5.7 to obtain the probability of an intersection as

P

(
D

sin A
≤ 1

2

)
=

∫ π/2

0

P

(
D

sin a
≤ 1

2

)
fA(a)da

=
2

π

∫ π/2

0

P

(
D ≤ sin a

2

)
da
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A A

DD

Fig. 3.2 Buffon’s needle. The needle to the left hasD/ sin A ≤ 1
2

and thus intersects a line.

=
2

π

∫ π/2

0

sin a da =
2

π

yet another of the many appearances of the numberπ in mathematics.2

3.6 FUNCTIONS OF RANDOM VECTORS

Just as in the one-dimensional case, we may be interested in afunctiong of (X, Y ).
There are two principal cases of interest:g : R2 → R, resulting in a random variable;
andg : R2 → R2, resulting in another random vector. We start with the first of these.

3.6.1 Real-Valued Functions of Random Vectors

The typical situation here is that we have a random vector(X, Y ) and apply a real-
valued functiong to get the random variableg(X, Y ). To compute probabilities of
the typeP (g(X, Y ) ∈ B) for B ⊆ R, we need to identify the outcomes of(X, Y )
that are mapped toB. Let us illustrate this with a couple of examples.

Example3.6.1. Let X andY be independent and unif[0, 1], and letA be the area of
a rectangle with sidesX andY . Find the pdf ofA.

HereA = XY and the range ofA is [0, 1]. Takea in this range and start with the cdf
to obtain

FA(a) = P (XY ≤ a) =

∫∫

B

f(x, y)dx dy

2In the late eighteenth century, Count de Buffon, French naturalist and avid needle tosser, designed this
experiment to estimate a numerical value ofπ. We will return to this aspect of the problem in Chapter 4.
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whereB is the two-dimensional region

B = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, xy ≤ a}

andf(x, y) = fX(x)fY (y) = 1 by independence. Draw a picture to realize that

FA(a) = a +

∫ 1

a

∫ a/x

0

dy dx

= a + a

∫ 1

a

1

x
dx = a − a log a, 0 ≤ a ≤ 1

which we differentiate to get the pdf

fA(a) = F ′A(a) = − log a, 0 ≤ a ≤ 1

Example3.6.2. Let X andY be independent andexp(λ), and letZ = X/(X +Y ).
Find the pdf ofZ.

First note that the range ofZ is [0, 1]. Takez in this range and consider the cdf

FZ(z) = P

(
X

X + Y
≤ z

)
= P

(
Y ≥

(
1

z
− 1

)
X

)

This means that we integrate the joint pdf over the region

B =

{
(x, y) : y ≥

(
1

z
− 1

)
x

}

By independence, the joint pdf is

f(x, y) = λe−λxλe−λy, x ≥ 0, y ≥ 0

and witha = 1/z − 1 we get

FZ(z) =

∫ ∞

0

∫ ∞

ax

λe−λyλe−λxdy dx

=

∫ ∞

0

λe−λaxe−λxdx =
1

a + 1

in which we substitutea by 1/z − 1 to obtain

FZ(z) =
1

1/z − 1 + 1
= z, 0 ≤ z ≤ 1
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which we recognize as the uniform distribution on[0, 1]. It is tempting to believe
that this has nothing to do with the exponential distribution and thatX/(X + Y ) is
uniform on[0, 1] as long asX andY are independent and have the same distribution.
However, this is not the case; see, for example, Problem 43(b). In fact, it is a special
property of the exponential distribution that gives this result, and we return to this in
Section 3.12.

Sometimes two-dimensional methods can be used even if thereis seemingly nothing
two-dimensional in the problem. Here is one typical example.

Example3.6.3. Choose two points at random on a yardstick. What is the probability
that they are at most half a yard apart?

Let us first formulate this strictly as a probability problem. Thus, we letX andY be
independent unif[0, 1], and wish to findP (|X − Y | ≤ 1

2 ). Although there is nothing
two-dimensional in this problem from a physical point of view, we can solve it by
viewing (X, Y ) as a random vector in two dimensions. By independence, the joint
pdf is

f(x, y) = fX(x)fY (y) = 1, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

and the region of interestB = {(x, y) : |x − y| ≤ 1
2}, which is illustrated in Figure

3.3. Sincef(x, y) ≡ 1, the integral off overB is equal to the area ofB, which gives

P

(
|X − Y | ≤ 1

2

)
=

3

4

0  1/2 1  
0 

1/2 

1 

|x−y| ≤ 1/2 

Fig. 3.3 Illustration of Example 3.6.3. Every outcome of(X, Y ) in the region bounded by
the axes and the lines has|X − Y | at most half a yard apart.
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We have seen examples of how to find the distribution of a function g(X, Y ) of a
random vector(X, Y ). If all we are interested in is the expected valueE[g(X, Y )],
we do not need to find the distribution, according to the following two-dimensional
analog of Proposition 2.4.4, which we state without proof.

Proposition 3.6.1. Let (X, Y ) be a random vector with joint pmfp or joint
pdf f and letg : R × R → R be any function. Then

E[g(X, Y )] =





∞∑

j=1

∞∑

k=1

g(xj , yk)p(xj , yk) if (X, Y ) is discrete

∫ ∞

−∞

∫ ∞

−∞
g(x, y)f(x, y)dx dy if (X, Y ) is continuous

Example3.6.4. Choose a point at random in the unit disk. What is its expected
distance to the origin?

If the point is(X, Y ), the distance isR =
√

X2 + Y 2. We thus haveg(x, y) =√
x2 + y2 in the proposition above, and the joint pdf of(X, Y ) is

f(x, y) =
1

π
, x2 + y2 ≤ 1

which by Proposition 3.6.1 gives

E[R] = E
[√

X2 + Y 2
]

=
1

π

∫ ∫

x2+y2≤1

√
x2 + y2dx dy

which we solve by changing to polar coordinates. Thus letx = r cos θ, y = r sin θ,
which gives region of integration0 ≤ r ≤ 1 and0 ≤ θ ≤ 2π. The Jacobian matrix
for the transformation(r, θ) → (x, y) is

J =




∂x

∂r

∂x

∂θ

∂y

∂r

∂y

∂θ


 =

(
cos θ −r sin θ
sin θ r cos θ

)

which has determinant

|J | = cos θ × r cos θ − (−r sin θ) × sin θ

= r(cos2 θ + sin2 θ) = r
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which givesdx dy = r dr dθ and

E[R] =
1

π

∫ 2π

0

∫ 1

0

√
r2 r dr dθ =

1

π

∫ 2π

0

dθ

∫ 1

0

r2dr =
2

3

3.6.2 The Expected Value and Variance of a Sum

We can use Proposition 3.6.1 to show that expected values arelinear in the sense that
the expected value of a sum is the sum of the expected values.

Proposition 3.6.2. Let X andY be any random variables. Then

E[X + Y ] = E[X ] + E[Y ]

Proof. Let us do the jointly continuous case. By Proposition 3.6.1,with the
functiong(x, y) = x + y, we get

E[X + Y ] =

∫ ∞

−∞

∫ ∞

−∞
(x + y)f(x, y)dx dy

=

∫ ∞

−∞

∫ ∞

−∞
xf(x, y)dx dy +

∫ ∞

−∞

∫ ∞

−∞
yf(x, y)dx dy

=

∫ ∞

−∞
xfX(x)dx +

∫ ∞

−∞
yfY (y)dy = E[X ] + E[Y ]

where the second to last equality follows from Proposition 3.4.3. The discrete case
is similar, replacing integrals by sums.

Combining Propositions 3.6.2 and 2.4.3 gives the followingresult.

Corollary 3.6.3. Let X andY be any random variables, and leta andb be
real numbers. Then

E[aX + bY ] = aE[X ] + bE[Y ]

From Proposition 2.4.8, we alreadyknow that the variance isnot linearsinceVar[aX ] =
a2Var[X ], but the question remains whether the variance is additive,that is, if
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Var[X + Y ] = Var[X ] + Var[Y ]. The following simple example shows that there
might be a problem.

Example3.6.5. Let X ∼ unif[0, 1], and letY = −X . By Propositions 2.4.6 and
2.4.8, we have

Var[X ] = Var[Y ] =
1

12

and hence

Var[X ] + Var[Y ] =
1

6

However,X + Y ≡ 0, so by Proposition 2.4.9, Var[X + Y ] = 0 and

Var[X + Y ] 6= Var[X ] + Var[Y ]

in this case.

The problem in the example is that there is no variability at all in the sumX +Y , even
thoughX andY have variability individually. Intuitively, this is because variation
in X is canceled by variation inY in the opposite direction. Note thatX andY are
dependent (and very strongly so), and it turns out that independence is an assumption
that allows us to add variances. We state this next, togetherwith a result about the
expected value of a product.

Proposition 3.6.4. Let X andY be independent random variables. Then

(a) E[XY ] = E[X ]E[Y ]

(b) Var[X + Y ] = Var[X ] + Var[Y ]

Proof. Let us again consider the continuous case only. First note that whenX and
Y are independent, thenf(x, y) = fX(x)fY (y) by Proposition 3.5.5. By Proposition
3.6.1, we get

E[XY ] =

∫ ∞

−∞

∫ ∞

−∞
xyf(x, y)dx dy

=

∫ ∞

−∞
xfX(x)dx

∫ ∞

−∞
yfY (y)dy = E[X ]E[Y ]
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which proves part (a). For part (b), use Corollary 2.4.5 together with linearity of
expected values to obtain

Var[X + Y ] = E
[
(X + Y )2

]
−
(
E[X + Y ]

)2

= E[X2] + 2E[XY ] + E[Y 2] − E[X ]2 − 2E[X ]E[Y ] − E[Y ]2

= E[X2] − E[X ]2 + E[Y 2] − E[Y ]2 = Var[X ] + Var[Y ]

where we used part (a) for the second to last equality.

Finally, combining Propositions 2.4.8 and 3.6.4(b), we getthe following corollary.

Corollary 3.6.5. LetX andY be independent random variables, and leta and
b be real numbers. Then

Var[aX + bY ] = a2Var[X ] + b2Var[Y ]

Example 3.6.6. You have an instrument to measure length, which gives a small
measurement error. If the true length isl, the instrument gives the estimated length
L = l + ǫ, whereǫ is a random variable with mean0 and varianceσ2. You have two
rods of different lengths and are allowed a total of two measurements to determine
their lengths. Can you do better than one measurement of each?

Yes, you can. Let the true lengths bea and b, wherea > b. If you take one
measure of the longer rod, you get the measurementA = a + ǫ which has mean
E[A] = a + E[ǫ] = a and variance Var[A] = Var[ǫ] = σ2. Similarly, the shorter rod
is measured to beB, with meanb and varianceσ2.

Instead, put the rods side by side and measure the differenceD, then put them
end to end and measure the sumS. To estimatea andb, let A = (S + D)/2 and
B = (S −D)/2. SinceS = a + b + ǫ1 andD = a− b + ǫ2 whereǫ1 andǫ2 are the
two errors which we assume are independent, Corollary 3.6.3gives

E[A] =
1

2
E[S + D] =

1

2
(a + b + a − b) = a

and similarlyE[B] = b, so your estimates are correct on average. The precision of
A andB are measured by their variances, and Corollary 3.6.5 gives

Var[A] =
1

22
(Var[S] + Var[D]) =

σ2

2

Var[B] =
1

22
(Var[S] + (−1)2Var[D]) =

σ2

2
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and the precision is better than that of two individual measurements. The reason is
that in effect we get two measurements on each rod instead of one. We are assuming
that there is no error in the alignment of the rods side by side; see Problem 49 for a
variant of this.

Example3.6.7. Let X andY be independent and uniform on[0, 1], and letC be
the circumference of a rectangle with sidesX andY . Find the mean and variance ofC.

SinceC = 2X + 2Y , Propositions 3.6.3 and 3.6.5 give

E[C] = 2E[X ] + 2E[Y ] = 2

Var[C] = 4Var[X ] + 4Var[Y ] =
2

3

If we have a sequenceX1, ..., Xn of random variables, Corollary 3.6.3 and induction
give the general result about linearity of expected values:

Proposition 3.6.6. Let X1, X2, ..., Xn be random variables and let
a1, a2, ..., an be real numbers. Then

E

[
n∑

k=1

akXk

]
=

n∑

k=1

akE[Xk]

We will look at several examples. The first two examples concern repeated rolls of a
die and are special cases of more general problems. The first is acoupon collecting
problemand the second, anoccupancy problem.

Example3.6.8. Roll a die repeatedly, and letX be the number of rolls it takes to get
all the numbers. FindE[X ].

The first number comes in the first roll. Then we wait for any number that is different
from the first. Since the probability of this in each roll is56 , the time it takes has
a geometric distribution with success probability5

6 . Once the second number has
appeared, we start waiting for the third one, and now the waiting time is geometric
with success probability46 and so on. Hence

X = 1 +
6∑

k=2

Xk
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whereXk ∼ geom
(

7−k
6

)
and

E[X ] = 1 +
6∑

k=2

E[Xk] = 1 +

(
6

5
+

6

4
+ · · · + 6

1

)
≈ 14.7

To explain the term “coupon collecting problem,” replace the die with coupons num-
bered1, 2, ..., 6, which are collected until we have all of them. For a general version,
see Problem 54.

Example3.6.9. Roll a die6 times and letX be the number of different numbers that
are represented. For example, if you get1, 6, 3, 5, 3, 5, thenX = 4, since1, 3, 5, and
6 are represented. What isE[X ]?

Note that the range ofX is 1, 2, ..., 6. It is possible to find the pmf ofX and compute
E[X ] according to the definition, but it is much quicker to use indicators. Let

Ik =

{
1 if k is represented
0 otherwise

so that

X =

6∑

k=1

Ik

and

E[X ] =

6∑

k=1

E[Ik]

Now, Ik equals1 unless all six rolls gave numbers different fromk. The probability
in one roll to get a number different fromk is 5

6 and hence

E[Ik] = P (Ik = 1) = 1 −
(

5

6

)6

which gives

E[X ] = 6

(
1 −

(
5

6

)6
)

≈ 3.99

If we call a number “occupied” once it has been rolled, we understand the term
“occupancy problem.” See also Problem 55.

Example3.6.10. Recall the matching problem from Example 1.4.17. What is the
expected number of matches?
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Again, let us use indicators. Thus, let

Ik =

{
1 if there is a match atk
0 otherwise

so that

X =

n∑

k=1

Ik

Following the calculations in Example 1.4.17, we get

E[Ik] = P (Ik = 1) =
1

n

for all Ik. Hence

E[X ] =

n∑

k=1

E[Ik] = n × 1

n
= 1

so on average one match is expected, regardless of the value of n.

To deal with more than two random variables, let us first statethe obvious general-
ization of the independence concept.

Definition 3.6.1. The random variablesX1, X2, ... are said to beindependent
if

P (Xi1 ∈ B1, Xi2 ∈ B2, ..., Xik
∈ Bk) =

k∏

i=1

P (Xik
∈ Bk)

for all choices ofi1 < · · · < ik and setsB1, ..., Bk ⊆ R, k = 2, 3, ...

Note that we have defined independence for an infinite sequence, exactly as we did
for events in Definition 1.5.4. As in the two-dimensional case, independence can
be characterized in terms of joint and marginal distributions, and we return to this
in Section 3.10. For now, let us concentrate on the general variance formula. By
Proposition 3.6.4, Corollary 3.6.5, and induction, we get the following result.

Proposition 3.6.7. If X1, ..., Xn are independent, then

(a) E[X1X2 · · ·Xn] = E[X1]E[X2] · · ·E[Xn]

(b) Var

[
n∑

k=1

akXk

]
=

n∑

k=1

a2
kVar[Xk]
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Example3.6.11. Let X ∼ bin(n, p). Find the mean and variance ofX .

Recall that a binomial distribution counts the number of successes inn independent
trials. By introducing the indicators

Ik =

{
1 if the kth trial gives a success
0 otherwise

we can write

X =

n∑

k=1

Ik

where theIk are independent and have meanE[Ik] = p and variance Var[Ik] =
p(1 − p); see Section 2.5.1. Hence

E[X ] =

n∑

k=1

E[Ik] = np

and

Var[X ] =

n∑

k=1

Var[Ik] = np(1 − p)

which is in agreement with Proposition 2.5.1, but note how much simpler it was to
use indicators.

3.6.3 Vector-Valued Functions of Random Vectors

Above we saw how we can apply a real-valued functiong to map(X, Y ) to a ran-
dom variableg(X, Y ). The following example illustrates a situation where(X, Y )
is mapped to another two-dimensional random vector.

Example3.6.12. Choose a point(X, Y ) at random in the unit disk, and let its polar
coordinates be(R, Θ). What is the joint distribution ofR andΘ?

First note that the random radiusR and the random angleΘ relate toX andY through

X = R cosΘ and Y = R sinΘ

where the range ofR is [0, 1] and the range ofΘ is [0, 2π]. Are they uniform on these
ranges? Let us try to find the joint cdf of(R, Θ), that is

F (r, θ) = P (R ≤ r, Θ ≤ θ)
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C

θr

Fig. 3.4 A point in the disk has angle less thanθ and radius less thanr if it is chosen in the
regionC.

for fixedr in [0, 1] andθ in [0, 2π]. Now let

C =
{

(x, y) : 0 ≤
√

x2 + y2 ≤ r, 0 ≤ tan−1
( y

x

)
≤ θ
}

so that we have
F (r, θ) = P ((X, Y ) ∈ C)

(see Figure 3.4). Since(X, Y ) is uniform, the probability that it belongs to the sector
C is simply the area ofC divided by the area of the unit disk, and we get

F (r, θ) = P ((X, Y ) ∈ C) =
πr2θ/2π

π
=

θr2

2π

By differentiating, we get the joint pdf

f(r, θ) =
∂2

drdθ
F (r, θ) =

r

π
, 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π

which has marginals

fR(r) =
r

π

∫ 2π

0

dθ = 2r, 0 ≤ r ≤ 1

and

fΘ(θ) =
1

π

∫ 1

0

rdr =
1

2π
, 0 ≤ θ ≤ 2π

Hence,Θ is uniform butR is not, which should not be too surprising. It is easier to
get a radius near1 than near0, since a ring of fixed width has larger area near1. There
is no reason why any particular angle would be more likely than any other, though.
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Note also thatf(r, θ) = fR(r)fΘ(θ), which means that the radius and the angle are
independent. Think about why this makes sense.

The following is a two-dimensional analog of Proposition 2.3.7, which is stated with-
out proof.

Proposition 3.6.8. Let (X, Y ) be jointly continuous with joint pdff(X,Y ).
Further, let(U, V ) = (u(X, Y ), v(X, Y )), where the map(x, y) → (u, v) is
invertible. The pair(U, V ) then has joint pdf

f(U,V )(u, v) = f(X,Y )(x(u, v), y(u, v)) |J(x(u, v), y(u, v))|

where|J(x(u, v), y(u, v))| is the absolute value of the Jacobian determinant
of the inverse map(u, v) → (x(u, v), y(u, v)).

Example3.6.13. Let X andY be independent standard normal random variables
and consider the pair(X, Y ) in its polar representation(R, Θ). Find the joint pdf of
(R, Θ) and the marginal distributions ofR andΘ.

By independence, the joint pdf of(X, Y ) is

f(X,Y )(x, y) = fX(x)fY (y) =
1

2π
e−(x2+y2)/2

and(X, Y ) is mapped to(R, Θ) according to

R =
√

X2 + Y 2, and Θ = tan−1

(
Y

X

)

The inverse map is
X = R cosΘ and Y = R sinΘ

and we apply Proposition 3.6.8. We know from before that|J | = r and get

f(R,Θ)(r, θ) = f(X,Y )(r cos θ, r sin θ) × r

=
1

2π
re−r2/2, r ≥ 0, 0 ≤ θ ≤ 2π

The marginals are easily found to be

fR(r) = re−r2/2, r ≥ 0
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and

fΘ(θ) =
1

2π
, 0 ≤ θ ≤ 2π

so thatR andΘ are independent andΘ is uniform on[0, 2π]. If we considerR2, the
squared distance to the origin, Proposition 2.3.7 withg(r) = r2 gives

fR2(x) =
1

2
√

x
fR(

√
x) =

1

2
e−x/2, x ≥ 0

which we recognize as an exponential distribution with parameterλ = 1
2 . We will

later see that this observation is useful in order to simulate observations from a normal
distribution.

3.7 CONDITIONAL EXPECTATION

Once we have defined conditional distributions, it is a logical step to also definecon-
ditional expectations. The intuition is clear; these are simply the expected values in
the conditional distributions, and the definitions are straightforward. We start with
conditioning on an event.

Definition 3.7.1. Let Y be a random variable andB an event withP (B) > 0.
Theconditional expectationof Y givenB is defined as

E[Y |B] =






∞∑

k=1

ykP (Y = yk|B) if Y is discrete with range{y1, y2, ...}

∫ ∞

−∞
yfY (y|B)dy if Y is continuous

Now recall the law of total probability which allows us to compute probabilities by
finding suitable conditioning events. There is an analog forexpected values, a “law
of total expectation,” which states that

E[Y ] =

∞∑

k=1

E[Y |Bk]P (Bk)

under the same conditions as the law of total probability. Asusual, the sum may be
finite or infinite. We omit the proof and illustrate with an example.

Example 3.7.1. Consider the computer from Example 2.8.2, which is busy with
probability0.8, in which case an incoming job must wait for a time that isexp(1).
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Find the expected waiting time of an incoming job.

The two cases pertain to whether the computer is busy, so letB be the event that it is
busy to obtain

E[Y ] = E[Y |B]P (B) + E[Y |Bc]P (Bc)

whereE[Y |Bc] = 0 since there is no wait if the computer is free andE[Y |B] = 1
since the expected wait is1 second if it is busy. Hence, the expected waiting time is

E[Y ] = 0 × 0.2 + 1 × 0.8 = 0.8 seconds

Next, we condition on the outcome of a random variable. If this random variable is
discrete, the situation is the same as above, with events of the typeBj = {X = xj}.

Definition 3.7.2. Suppose thatX andY are discrete. We define

E[Y |X = xj ] =

∞∑

k=1

ykpY (yk|xj)

The law of total expectation now takes the form

E[Y ] =

∞∑

j=1

E[Y |X = xj ]pX(xj)

where the sum is over the range ofX . Finally, we consider the continuous case where,
as usual, sums are replaced by integrals.

Definition 3.7.3. Suppose thatX andY are jointly continuous. We define

E[Y |X = x] =

∫ ∞

−∞
yfY (y|x)dy

Following the usual intuitive interpretation, this is the expected value ofY if we know
thatX = x. The law of total expectation now takes the following form.
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Proposition 3.7.1. Suppose thatX andY are jointly continuous. Then

E[Y ] =

∫ ∞

−∞
E[Y |X = x]fX(x)dx

Proof. By definition of expected value and Proposition 3.5.1

E[Y ] =

∫ ∞

−∞
yfY (y)dy =

∫ ∞

−∞

∫ ∞

−∞
yfY (y|x)fX(x)dxdy

where we change the order of integration to obtain

E[Y ] =

∫ ∞

−∞

∫ ∞

−∞
yfY (y|x)dyfX(x)dx

where the inner integral equalsE[Y |X = x] by definition, and we are done.

Example3.7.2. Consider Example 3.5.3 whereX ∼ unif[0, 1] and the conditional
distribution ofY is Y |X = x ∼ unif[0, x]. What isE[Y ]?

There are two possible ways to solve this; using the definition of expected value or
using Proposition 3.7.1.

The first solution is as follows. By definition

E[Y ] =

∫ 1

0

yfY (y)dy

where

fY (y) =

∫ ∞

−∞
f(x, y)dx =

∫ 1

y

1

x
dx

since for fixedy, the joint pdf is strictly positive whenx is betweeny and 1. Hence

fY (y) = [log x]
1
y = − log y, 0 < y ≤ 1

The expected value is

E[Y ] = −
∫ 1

0

y log y dy

which can be shown to equal1
4 .
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The second solution is as follows. SinceY |X = x ∼ unif[0, x], we have

E[Y |X = x] =
x

2

and by Proposition 3.7.1 we obtain

E[Y ] =

∫ 1

0

E[Y |X = x]fX(x)dx =

∫ 1

0

x

2
dx =

1

4

Example3.7.3. A Geiger counteris an instrument used to detect radiation, such
as emission of alpha particles. When a particle is detected,a so-called dead period
follows, during which the counter cannot register anything. Dead periods are often
given as single numbers, but it is more realistic to assume that they are random.
Suppose that alpha particles are emitted at a rate of10, 000 per second and that a dead
period lasts for a random time that has pdf

f(t) = 6t(1 − t), 0 ≤ t ≤ 1

where we take the basic time unit to be100 microseconds. What is the expected
number of particles that go undetected during a dead period?

Let us denote the numberofparticles in an interval of fixed lengtht×100microseconds
by X(t) and assume thatX(t) has a Poisson distribution with meant (emissions per
100 microseconds). Since the length of a dead period is not fixed but random, say,
T , the number of emissions during this period isX(T ), and we condition to obtain

E[X(T )] =

∫ 1

0

E[X(T )|T = t]fT (t)dt

= 6

∫ 1

0

t × t(1 − t)dt =
1

2

so on average, we miss one particle for every two that are detected.

We have considered jointly discrete and jointly continuousrandom vectors. It is also
possible to have a mixture in the sense that, for example,X is discrete andY is
continuous. In that case, neither a joint pmf nor a joint pdf exists, but we can still use
conditional distributions and expectations.

Example3.7.4. Let Y ∼ unif[0, 1] and independently choose one of the endpoints0
and1 such that0 is chosen with probabilityp. What is the expected distance between
Y 2 and the chosen point?
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Let X be the point so thatP (X = 0) = p andP (X = 1) = 1 − p, and we are
looking forE[|Y 2 − X |]. Now,X is discrete andY continuous, so we solve this by
conditioning onX . First note that

|Y 2 − X | =

{
Y 2 if X = 0
1 − Y 2 if X = 1

This means that

E
[
|Y 2 − X |

∣∣X = 0
]

= E[Y 2|X = 0] = E[Y 2]

sinceX andY are independent. Similarly,

E
[
|Y 2 − X |

∣∣X = 1
]

= 1 − E[Y 2]

and sinceE[Y 2] = 1
3 we get

E
[
|Y 2 − X |

]
= E

[
|Y 2 − X |

∣∣X = 0
]
P (X = 0)

+ E
[
|Y 2 − X |

∣∣X = 1
]
P (X = 1)

= E[Y 2]p + (1 − E[Y 2])(1 − p) =
2 − p

3

3.7.1 Conditional Expectation as a Random Variable

In the previous section we learned that the conditional expectationE[Y |X = x] is
the expected value ofY if we know thatX = x. We can therefore viewE[Y |X = x]
as a function ofx, g(x), and it is natural to define a random variableg(X) that is such
that it equalsE[Y |X = x] wheneverX = x. We use the notationE[Y |X ] for this
random variable and get the following definition.

Definition 3.7.4. The conditional expectationof Y given X , E[Y |X ], is a
random variable that equalsE[Y |X = x] wheneverX = x.

To get a better understanding, let us reconsider Example 3.7.2. There we had
E[Y |X = x] = x/2 and hence

E[Y |X ] =
X

2

the conditional expectation ofY givenX . We also showed that

E[Y ] =

∫ 1

0

x

2
dx
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and since the integral is the expected value of the random variableX/2, we see that
we have

E[Y ] = E

[
X

2

]

In fact, it is a simple consequence of the laws of total expectation that we always have
this type of relation.

Corollary 3.7.2.
E[Y ] = E

[
E[Y |X ]

]

We can now restate Example 3.7.2 in a more compact way. LetY ∼ unif[0, X ] where
X ∼ unif[0, 1]. Then it is clear thatE[Y |X ] = X/2, the midpoint, and by Corollary
3.7.2 we get

E[Y ] = E

[
X

2

]
=

1

4

Make sure that you understand the difference between conditioning on theevent
{X = x} and therandom variableX . In the first case, the conditional expectation is
a number (dependent onx) and in the second case it is a random variable (dependent
on X). When we condition onX , we can think ofX as a known quantity, and the
following result, stated without proof, is easy to believe.

Corollary 3.7.3.

(a) E[XY |X ] = XE[Y |X ]

(b) If X andY are independent, thenE[Y |X ] = E[Y ]

(c) For any functiong, E[g(X)|X ] = g(X)

Note that (b) and (c) are the two extremes of independence andtotal dependence. The
conditional expectation changes from being equal toE[Y ] (no information fromX)
to g(X) (complete information fromX).

Example3.7.5. Let X ∼ unif[0, 1] and letY |X ∼ unif[0, X2]. LetA be the area of
a rectangle with sidelengthsX andY , and findE[A].
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By Corollary 3.7.2 we getE[A] = E[E[A|X ]], and sinceA = XY , Corollary
3.7.3(a) gives

E[A|X ] = E[XY |X ] = XE[Y |X ]

whereE[Y |X ] = X2/2, and we get

E[A] =
1

2
E[X3] =

1

2

∫ 1

0

x3dx =
1

8

3.7.2 Conditional Expectation and Prediction

A common problem in many applications is that we are interested in one random
variable but observe another. For example, if a signal is received and we know that
there is noise that distorts the transmission, we wish to predict the most likely signal
that was sent. Another application might be that we are interested in the concentration
of a chemical compound in a solution but can measure only the concentration of a
byproduct of the reaction that creates the compound. A thirdapplication could be a
company predicting sales figures for next year, based on thisyear’s sales.

In all of these cases, we are interested in a random variableY but observe another
X and want to predictY by a function ofX , g(X), called apredictorof Y . Clearly,
we wantg(X) to be as close toY as possible and to be able to quantify this idea, we
need a “measure of closeness.” The following is the most common.

Definition 3.7.5. Let g(X) be a predictor ofY . Themean-square erroris
defined as

E
[
(Y − g(X))2

]

It turns out that the best predictor ofY is the conditional expectationE[Y |X ] in the
following sense.

Proposition 3.7.4. Among all predictorsg(X) of Y , the mean square error is
minimized byE[Y |X ].

We omit the proof and instead refer to an intuitive argument.Suppose that we want
to predictY as well as possible by a constant valuec. Then we want to minimize
E[(Y − c)2], and withµ = E[Y ] we get

E
[
(Y − c)2

]
= E

[
(Y − µ + µ − c)2

]

= E
[
(Y − µ)2

]
+ 2(µ − c)E[(Y − µ)] + (µ − c)2

= Var[Y ] + (µ − c)2
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sinceE[Y − µ] = 0. But the last expression is minimized whenc = µ and hence
µ is the best predictor ofY among all constants. This is not too surprising; if we
do not know anything aboutY , the best guess should be the expected valueE[Y ].
Now, if we observe another random variableX , the same ought to be true:Y is best
predicted by its expected value given the random variableX , that is,E[Y |X ].

Note here how we view the conditional expectation as a randomvariable. If we
observe a particular valuex, the best predicted value ofY is E[Y |X = x]. Thus, if
we plot observations on(X, Y ), the curvey = E[Y |X = x] gives the best fit to the
data.

3.7.3 Conditional Variance

Once we have introduced conditional expectation, the next logical definition is that
of conditional variance.

Definition 3.7.6. Theconditional varianceof Y givenX is defined as

Var[Y |X ] = E
[
(Y − E[Y |X ])2|X

]

Note that the conditional variance is also a random variableand we think of it as the
variance ofY given the valueX . In particular, if we have observedX = x, then we
can denote and define

Var[Y |X = x] = E
[
(Y − E[Y |X = x])2

∣∣∣X = x
]

Also note that ifX andY are independent,E[Y |X ] = E[Y ], and the definition boils
down to the regular variance. There is an analog of Corollary2.4.5, which we leave
to the reader to prove.

Corollary 3.7.5.

Var[Y |X ] = E
[
Y 2|X

]
− (E[Y |X ])2

There is also a “law of total variance,” which looks slightlymore complicated than
that of total expectation.
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Proposition 3.7.6.

Var[Y ] = Var
[
E[Y |X ]

]
+ E

[
Var[Y |X ]

]

Proof. Take expected values in Corollary 3.7.5 to obtain

E
[
Var[Y |X ]

]
= E[Y 2] − E

[
(E[Y |X ])2

]
(3.7.1)

and sinceE[E[Y |X ]] = E[Y ], we have

Var
[
E[Y |X ]

]
= E

[
(E[Y |X ])2

]
− (E[Y ])2 (3.7.2)

and the result follows by adding Equations (3.7.1) and (3.7.2).

The first term in the formula in Proposition 3.7.6 accounts for how much of the vari-
ability in Y that is explained byY ’s dependence onX ; the second, how much that
is explained by other sources. To understand this, note thatif X andY are highly
dependent, then it should make little difference whether weconsiderY or E[Y |X ],
so their variances should be about the same. On the other hand, if the dependence is
weak, thenE[Y |X ] should not change much as a result of variation inX , and thus
have a small variance. The extreme cases are ifY is a function ofX , in which case
the second term is0 and ifX andY are independent, in which case the first term is0
(see Problem 76). For all cases in-between, the size of the first term relative to Var[Y ]
measures how goodX is at predictingY . We will formalize the idea of strength of
dependence in Section 3.8.

Example3.7.6. Let us revisit Example 3.7.2 again and use the proposition tofind
Var[Y ]. SinceY ∼ unif[0, X ], Proposition 2.4.6 gives

E[Y |X ] =
X

2
and Var[Y |X ] =

X2

12

and we get

Var[Y ] = Var

[
X

2

]
+ E

[
X2

12

]
=

1

4
× 1

12
+

1

12

∫ 1

0

x2dx =
7

144

3.7.4 Recursive Methods

In Section 1.6.3, we saw several examples of how the law of total probability can be
used to compute probabilities with recursive methods. The same type of technique
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can be applied to compute expected values and variances, andwe start by a simple
illustration of this.

Example3.7.7. Let X ∼ geom(p). Show thatE[X ] = 1/p.

Recall that the geometric distribution counts the number ofindependent trials needed
to get the first success. We condition on the first trial, whichcan be either success
(S) or failure (F ). Let µ = E[X ] to obtain

µ = E[X ] = E[X |S]P (S) + E[X |F ]P (F )

whereP (S) = p andP (F ) = 1−p. For the conditional expectations, note that if the
first trial is a success, then we know thatX = 1 and henceE[X |S] = 1. If the first
trial is a failure, one trial has gone by and we start over to wait for the first success
and henceE[X |F ] = 1 + µ. We get

µ = 1 × p + (1 + µ)(1 − p) = 1 + µ − µp

which givesµ = 1/p as desired. There was a little bit of handwaving in the argument.
To make it strict, we should letIS andIF be the indicators of success or failure in
the first trial and letY be a random variable with the same distribution asX . Then
we have the relation

X = IS + IF (1 + Y ) (3.7.3)

and by linearity of expected values and independence ofIF andY , we get

µ = E[IS ] + E[IF ](1 + E[Y ]) = p + (1 − p)(1 + µ)

which is the same equation as above. We will generally not be this picky since it is
intuitively clear what we are doing. In Problem 77, you are asked to compute the
variance with a recursive argument, and then Equation (3.7.3) comes in handy.

Example3.7.8. A fair coin is flipped repeatedly and we count the number of flips
required until the first occurrence of the patternHH . Let X be this number and find
the expected value ofX .

To computeE[X ] directly, we would need to find the probabilitiesP (X = k), which
leads to a challenging combinatorial problem. Instead, letus use a recursive approach.
There are three different possibilities: (1) the first flip givesT and we start over, (2)
the first two flips giveHT and we start over, and (3) the first two flips giveHH and
we are done (see Figure 3.5). Withµ = E[X ] we get

µ = E[X |T ]× 1

2
+ E[X |HT ]× 1

4
+ E[X |HH ] × 1

4
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done in2 flips

start over, wait anotherµ flips

H

T

T

start over, wait anotherµ flips

H

Fig. 3.5 Waiting forHH

Clearly,E[X |HH ] = 2, and for the other conditional expectations, note that in each
case we have already spent a number of flips and then start overto wait for HH ,
which takes an additional number of flips with meanµ. Hence

µ = (1 + µ)
1

2
+ (2 + µ)

1

4
+ 2 × 1

4
=

6

4
+

3

4
µ

which givesµ = 6. Hence, on average we have to wait six flips until the first
occurrence ofHH (see also Problem 80).

Now let us instead consider the same problem for the patternTH . Since the
probability to getTH in any two flips is1

4 , the same as the probability to getHH , we
might guess that the mean number of flips is still6. Let us compute it by conditioning
on the first flip. If this isH , we have spent one flip and start over. If it isT , we have
spent one flip and wait for the firstH , which takes a number of flips with mean2 (the
mean of a geometric distribution with success probability1

2 ). We get

µ = (1 + µ)
1

2
+ (1 + 2) × 1

2
=

µ

2
+ 2

which givesµ = 4. Although the two patternsHH andTH are equally likely to
occur in any particular two flips,TH tends to show up beforeHH after repeated
flipping. To compensate for its tardiness,HH has the possibility of repeating itself
immediately in the next flip (inHHH there are two occurrences ofHH) whereas we
must wait at least an additional two flips before we can seeTH repeat itself. Hence,
in a large number of flips, we see on average equally many occurrences ofHH and
HT , butHH tends to come in bursts andTH more evenly spread out.

This “pattern of patterns” becomes more pronounced the longer our pattern se-
quence is. Recall the game of Penney-ante from Example 1.6.19,which is constructed
so that the inherent asymmetries work to your advantage. It can be shown that the
expected number of flips untilHHH is 14, whereas the same number forHTH is 10
and forHTT andHHT only 8 (see Problem 82).

It turns out that the key in determining the length of the waiting time for a particular
pattern is how muchoverlapit has (with itself) . For example, the patternHTH has
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an overlap of length1 since the last letter can be the first letter of another occurrence
of the pattern. For the same reason, the patternHHH has one overlap of length
1 but also one of length2 since the last two letters can be the first two in another
occurrence of the pattern. Finally, the patternsHHT andHTT have no overlap at
all. The higher the amount of overlap, the longer the waitingtime and there is a nice
and simple formula that expresses the expected waiting timein terms of the amount
of overlap. In Problem 83, you are asked to find this formula ina special case. For
a general overview of waiting times for patterns and plenty of other good stuff, see
Problems and Snapshots from the World of Probabilityby Blom et al. [2].

Example3.7.9. Recall Example 1.6.17, the gambler’s ruin problem when Ann starts
with a dollar and plays against the infinitely wealthy Bob. Wesaw that she eventually
goes broke, and we now address the question of how long the game can be expected
to last.

Let N be the time when Ann goes broke, and letµ = E[N ]. Again, we condition on
the first flip. If this is heads, Ann goes broke immediately, and henceE[N |H ] = 1.
If the first flip is tails, one round of the game has passed and Ann’s fortune is$2. In
order for her to go broke eventually, she must first arrive at afortune of$1 which
takes a time that has meanµ. Then she starts over, and the remaining time until ruin
has meanµ. Hence, the total time until ruin, given that the first flip gives tails, is
E[N |T ] = 1 + µ + µ and we get

µ = E[N |H ]P (H) + E[N |T ]P (T )

= 1 × 1

2
+ (1 + 2µ)

1

2
= 1 + µ

and since the only possible solution to the equationµ = 1 + µ is µ = ∞, we have
shown that the expected time until ruin is infinite! Note thatit is the mean ofN that
is infinite, not the random variableN itself (compare with the St. Petersburg paradox
in Example 2.4.9). Ann will eventually go broke, but it may take a long time.

3.8 COVARIANCE AND CORRELATION

So far we have distinguished between random variables that are independent and
those that are not. This is a crude distinction, and in the case of dependent random
variables, we would like to be able to quantify the strength of the dependence. Another
consideration is that dependence can go in different directions. For example, consider
the ideal-gas law from chemistry. This states that in one mole of gas, the pressureP ,
volumeV , and temperatureT are related through the formula

P =
RT

V
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whereR is the universal gas constant. Hence, pressure increases with increasing
temperature but decreases with increasing volume. We couldexpress this as having
a “positive” dependence betweenP andT but a “negative” dependence betweenP
andV .

It would be convenient to have a quantitative measure of the degree and direction
of dependence. IfX andY are two random variables, it is reasonable to require such
a measure to

• Be0 if X andY are independent

• Be> 0 if largerX values on average correspond to largerY values

• Be< 0 if largerX values on average correspond to smallerY values

• Be higher (in absolute value) the “stronger” the dependencebetweenX andY .

Only the first requirement is mathematically precise, but hopefully there is a clear
intuition for what we want to achieve. Our first attempt at a measure of dependence
is the following.

Definition 3.8.1. Thecovarianceof X andY is defined as

Cov[X, Y ] = E
[
(X − E[X ])(Y − E[Y ])

]

To compute the covariance, we can use Proposition 3.6.1, butit is often easier to use
the following formula, which is easily proved by repeated use of Corollary 3.6.3.

Proposition 3.8.1.

Cov[X, Y ] = E[XY ] − E[X ]E[Y ]

The covariance satisfies the requirements that we stated above. For example, by
Proposition 3.6.4(a), we get

Corollary 3.8.2. If X andY are independent, then Cov[X, Y ] = 0.
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In the next section we will see that the converse is not true; the covariance can be0
even ifX andY are dependent. The covariance satisfies the other requirements as
well. Suppose, for example, thatX andY are “positively dependent,” that is, that
largerX values tend to correspond to largerY values. This means that when the
factorX − E[X ] is positive, the factorY − E[Y ] also tends to be positive and so is
the product. On the other hand, if largerX values correspond to smallerY values,
then positive values ofX − E[X ] correspond to negative values ofY − E[Y ], and
the product is negative. Hence, we have Cov[X, Y ] > 0 in the first case and< 0 in
the second.

In the same way, we can argue that “strong positive dependence” means that large
values ofX −E[X ] correspond closely to large values ofY −E[Y ] and the product
becomes large as well. A weak positive dependence means thatthe correspondence
is less precise and the product, while still positive, may not be as large.

Example3.8.1. Let X andY be independent and uniform on[0, 1]. Let C be the
circumference andA the area of a rectangle with sidesX andY . Find the covariance
of A andC.

SinceA = XY andC = 2X + 2Y , we getAC = 2X2Y + 2XY 2 and hence

E[AC] = 2E[X2]E[Y ] + 2E[X ]E[Y 2] = 2 × 1

3
× 1

2
+ 2 × 1

2
× 1

3
=

2

3

which gives

Cov[A, C] = E[AC] − E[A]E[C] =
2

3
− 1

4
× 2 =

1

6

One important use of the covariance is that it allows us to state a general formula for
the variance of a sum of random variables.

Proposition 3.8.3.

Var[X + Y ] = Var[X ] + Var[Y ] + 2 Cov[X, Y ]

Proof. By the definitions of variance and covariance and repeated use of properties
of expected values, we get

Var[X + Y ] = E
[
(X + Y − E[X + Y ])2

]
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= E
[
(X − E[X ] + Y − E[Y ])2

]

= E
[
(X − E[X ])2 + (Y − E[Y ])2 + 2(X − E[X ])(Y − E[Y ])

]

= Var[X ] + Var[Y ] + 2 Cov[X, Y ]

and we are done.

Note that Proposition 3.6.4(b) is a special case of this withCov[X, Y ] = 0.

Example3.8.2. In Example 3.6.5, we hadX ∼ unif[0, 1] andY = −X . Verify that
Var[X + Y ] = 0.

We have Var[X ] = Var[Y ] = 1
12 and covariance

Cov[X, Y ] = Cov[X,−X ] = E[X(−X)] − E[X ]E[−X ] = −Var[X ]

and Proposition 3.8.3 gives Var[X + Y ] = 0.

Let us investigate some of the properties of the covariance.We start with the case of
two random variables and proceed to a more general result. The proof of the follow-
ing proposition is a straightforward application of the definition and the properties of
expected values.

Proposition 3.8.4. Let X, Y , andZ be random variables, and leta andb be
real numbers. Then

(a) Cov[X, X ] = Var[X ]

(b) Cov[aX, bY ] = ab Cov[X, Y ]

(c) Cov[X + Y, Z] = Cov[X, Z] + Cov[Y, Z]

By Proposition 3.8.4 and induction, we can now show that covariances arebilinear,
in the following sense.
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Proposition 3.8.5. LetX1, ..., Xn andY1, ..., Ym be random variables and let
a1, ..., an andb1, ..., bm be real numbers. Then

Cov




n∑

j=1

ajXj ,

m∑

k=1

bkYk



 =

n∑

j=1

m∑

k=1

ajbkCov[Xj, Yk]

We also get the following general variance formula, proved by combining Proposi-
tions 3.8.4(a) and 3.8.5.

Proposition 3.8.6. Let X1, ..., Xn be random variables and leta1, ..., an be
real numbers. Then

Var

[
n∑

k=1

akXk

]
=

n∑

k=1

a2
kVar[Xk] +

∑

i6=j

aiajCov[Xi, Xj ]

Example3.8.3. LetX have a hypergeometricdistribution with parametersN, r, and
n. Prove Proposition 2.5.4 about the mean and variance ofX .

Recall thatX is the number of special objects, when we drawn out of N objects,
r of which are special. Just as for the binomial distribution,we can solve this by
introducing indicators. Thus let

Ik =

{
1 if the kth draw gives a special object
0 otherwise

to obtain

X =

n∑

k=1

Ik

It is easily realized that theIk have the same distribution and that

P (Ik = 1) =
r

N

which is the proportion of special objects. This gives the mean ofX as

E[X ] =
n∑

k=1

E[Ik] =
n∑

k=1

r

N
=

nr

N
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which proves the first part of Proposition 2.5.4. TheIk are not independent this time
since, for example

P (I2 = 1) =
r

N
but

P (I2 = 1|I1 = 1) =
r − 1

N − 1
since repeated drawing without replacement changes the proportion of special objects.
In order to find the variance ofX , we thus need to use the general formula from
Proposition 3.8.6. The variance ofIk is

Var[Ik] =
r

N

(
1 − r

N

)

and we also need to find the covariances Cov[Ij , Ik]. By symmetry, we realize that
these are the same for allj 6= k, so let us find Cov[I1, I2]. We have

Cov[I1, I2] = E[I1I2] − E[I1]E[I2]

where
E[I1I2] = P (I1 = 1, I2 = 1)

since this is the only case whenI1I2 6= 0. But

P (I1 = 1, I2 = 1) = P (I2 = 1|I1 = 1)P (I1 = 1) =
r − 1

N − 1
× r

N

and we get

Cov[I1, I2] =
r − 1

N − 1
× r

N
− r

N

r

N
= − r(N − r)

N2(N − 1)

which finally gives

Var[X ] =

n∑

k=1

Var[Ik] +
∑

i6=j

Cov[Ij , Ik]

= n
r

N

(
1 − r

N

)
− n(n − 1)

r(N − r)

N2(N − 1)

= n × N − n

N − 1
× r

N

(
1 − r

N

)

after doing some algebra. Note that if we drawwith replacement, we get a binomial
distribution with parametersn andp = r/N . The mean is the same, but the variance
is changed by a factor(N − n)/(N − 1). If N is large relative ton, this factor is
approximately1, which indicates that the hypergeometricdistribution in that case can
be approximated by a binomial distribution.

Note how the general variance formula shows that the assumptions of independence
in Propositions 3.6.4 and 3.6.7 can be replaced by Cov[Xj , Xk] = 0, j 6= k, a weaker
assumption. However, since independence is a central concept, we stick with the
formulations that we have.
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3.8.1 The Correlation Coefficient

The covariance is an important and widely used concept in probability theory, but
it turns out that it has shortcomings as a measure of dependence. To see where
the problem lies, consider the experiment of measuring the weight and height of a
randomly chosen individual. LetX be the weight in pounds andY the height in
inches. The degree of dependence betweenX andY is then Cov[X, Y ]. Now let us
instead use the metric system, and letS denote the weight in kilograms andT the
height in centimeters. ThenS = 0.45X andT = 2.5Y and Proposition 3.8.4(b)
gives

Cov[S, T ] = Cov[0.45X, 2.5Y ] = 1.12 Cov[X, Y ]

so if covariance measures the degree of dependence, we wouldthus have “12%
stronger dependence” if we use kilograms and centimeters than if we use pounds
and inches. If we further change from centimeters to millimeters, the covariance
increases by another factor of 100! Clearly this makes no sense, and we realize that
any reasonable measure of dependence must bedimensionless, that is, not be affected
by such changes in units of measure. It turns out that we can achieve this by scaling
the covariance by the standard deviations, and we state the following definition.

Definition 3.8.2. Thecorrelation coefficientof X andY is defined as

ρ(X, Y ) =
Cov[X, Y ]√
Var[X ]Var[Y ]

The correlation coefficient is dimensionless. To demonstrate this, takea, b > 0 and
note that

ρ(aX, bY ) =
Cov[aX, bY ]√
Var[aX ]Var[bY ]

=
abCov[X, Y ]√

a2Var[X ]b2Var[Y ]
= ρ(X, Y )

We also callρ(X, Y ) simply thecorrelation3 betweenX andY . Here are some
further good properties of the correlation coefficient.

3In the electrical engineering literature, the term “correlation” is used in a slightly different meaning,
namely, to denoteE[XY ]. Statisticians refer to this quantity as theproduct moment.
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Proposition 3.8.7. The correlation coefficient of any pair of random variables
X andY satisfies

(a)−1 ≤ ρ(X, Y ) ≤ 1

(b) If X andY are independent, thenρ(X, Y ) = 0

(c) ρ(X, Y ) = 1 if and only if Y = aX + b, wherea > 0

(d) ρ(X, Y ) = −1 if and only if Y = aX + b, wherea < 0.

Proof. Let Var[X ] = σ2
1 and Var[Y ] = σ2

2 . For (a), first apply Proposition
3.8.3 to the random variablesX/σ1 andY/σ2 and use properties of the variance and
covariance to obtain

0 ≤ Var

[
X

σ1
+

Y

σ2

]
=

Var[X ]

σ2
1

+
Var[Y ]

σ2
2

+
2Cov[X, Y ]

σ1σ2
= 2 + 2ρ

which givesρ ≥ −1. To show thatρ ≤ 1, instead useX/σ1 and−Y/σ2. Part (b)
follows from Corollary 3.8.2, and parts (c) and (d) follow from Proposition 2.4.9,
applied to the random variablesX/σ1 −Y/σ2 andX/σ1 +Y/σ2, respectively. Note
that this also givesa andb expressed in terms of the means, variances, and correlation
coefficient (see Problem 90).

The correlation coefficient is thus a numberbetween−1 and1, where−1 and1 denote
the maximum degrees of dependence in the sense thatY can be computed fromX
with certainty. Part (b) states that independent random variables have correlation0,
but it turns out that the converse of this is not true; the correlation coefficient can be
0 even if the random variables are dependent, as we will see in an example.

Example3.8.4. Choose a point(X, Y ) uniformly in the unit disk. What isρ(X, Y )?

The joint pdf isf(x, y) = 1/π. Denote the unit disk byD to obtain

E[XY ] =
1

π

∫∫

D

xy dx dy

which we realize must equal0 by symmetry. Also by symmetry,E[X ] = E[Y ] = 0,
so we get Cov[X, Y ] = 0 and hence alsoρ(X, Y ) = 0. Thus the correlation is0, but
we know from before thatX andY are dependent random variables.
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ρ>0 ρ=0 ρ<0 

Fig. 3.6 Simulated observations on pairs(X, Y ) that are positively correlated, uncorrelated,
and negatively correlated, respectively.

The explanation is that the correlation coefficient measures only the degree oflinear
dependence. Thus, if we have a number of observations on(X, Y ), the correlation
coefficient measures how well the observations fit a straightline. If ρ(X, Y ) > 0, X
andY are said to bepositively correlated; if ρ(X, Y ) < 0, they arenegatively cor-
related; and ifρ(X, Y ) = 0, they areuncorrelated. See Figure 3.6 for an illustration
with simulated values. We have seen that

X, Y independent⇒ X, Y uncorrelated

but not the converse. In the case of the uniform points in the disk, althoughX andY
are dependent, there is no linear dependence. See Figure 3.7for an illustration with
simulated values. Note how the boundaries of the disk are clear but how there is no
particular straight line that would fit better than any other. Thus, there is no linear
dependence and, in fact, no functional dependence at all.

The following example shows how there can be functional dependence (in this
case quadratic) and how the correlation coefficient can failto detect it but how the de-
pendence structure can still be revealed by an appropriate change of random variables.

Fig. 3.7 One hundred simulated points, uniform in a disk. Note how theboundary is clearly
discernible, indicating dependence, but how there is no obvious way to fit a straight line,
indicating uncorrelatedness.
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Example3.8.5. Let X ∼ unif[0, 1], and letA be the area of a disk with radiusX .
What isρ(X, A)?

We haveE[X ] = 1
2 , Var[X ] = 1

12 , and sinceA = πX2, we get

E[A] = π

∫ 1

0

x2dx =
π

3
, E[A2] = π2

∫ 1

0

x4dx =
π2

5

which gives Var[A] = 4π2/45. We also obtain

E[XA] = πE[X3] = π

∫ 1

0

x3dx =
π

4

which gives Cov[X, A] = E[XA] − E[X ]E[A] = π/12. We get

ρ(X, A) =
π/12√

(1/12)× (4π2/45)
≈ 0.97

which is certainly high but does not reveal the fact thatA is completely determined by
X . However, if we instead compute the correlation coefficientof A and the random
variableY = X2, we haveA = πY , and by Proposition 3.8.7 (c),ρ(A, Y ) = 1.
Hence, by changing the random variable, we can view the quadratic dependenceonX
as linear dependence onX2 and reveal the completely deterministic relation between
X andA.

Example3.8.6. If X ∼unif[0, 1] and givenX = x, Y ∼unif[0, x], what isρ(X, Y )?

From previous treatment of this example, we know that the means are

E[X ] =
1

2
and E[Y ] =

1

4

and the variances

Var[X ] =
1

12
and Var[Y ] =

7

144

so all we need to find is the covariance Cov[X, Y ] and since

Cov[X, Y ] = E[XY ] − E[X ]E[Y ]

all that remains is to computeE[XY ]. A direct application of Proposition 3.6.1 gives

E[XY ] =

∫ 1

0

∫ x

0

xy
1

x
dy dx =

1

6

which gives the correlation

ρ(X, Y ) =
1/6 − (1/2) × (1/4)√

(1/12)× (7/144)
≈ 0.65
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A logical next question is “What is a high correlation?” We can understand the
extremes of correlations of0,−1, or 1 and also values near these, as in Example
3.8.5. But how about intermediate values? For example, is the0.65 we got in the last
example a high correlation? What does it tell us about the strength of the relationship
betweenX andY ? To come up with an interpretation of the value ofρ, we revisit
the concept of prediction from Section 3.7.2.

Recall how we argued thatE[Y |X ] is the best predictor ofY , based on observing
X . To compute the conditional expectation, we need to know thejoint distribution of
(X, Y ). This is not necessarily the case, and even if we do, the calculations may be
intractable. If we restrict our goal to finding the bestlinear predictor, that is, of the
form l(X) = aX +b, we need to know only the means, variances, and the correlation
coefficient, as the following result shows.

Proposition 3.8.8. LetX andY be random variables with meansµX andµY ,
variancesσ2

X andσ2
Y , and correlation coefficientρ. Thebest linear predictor

of Y based onX is
l(X) = µY + ρ

σY

σX
(X − µX)

Proof. Suppose first thatµX = µY = 0 andσ2
X = σ2

Y = 1. The mean-square
error is then

E[(Y − (aX + b))2] = E[Y 2] + a2E[X2] + b2 − 2aE[XY ] = 1 + b2 + a(a− 2ρ)

which is minimized forb = 0 anda = ρ. For the general case, consider the random
variables(X − µX)/σX and(Y − µY )/σY , which have means0 and variances1,
and apply the result we just proved.

Thus, for any two random variablesX andY , the correlation coefficient can be re-
garded as a parameter that is chosen so that the relation betweenX andY becomes
“as linear as possible.” If we have a number of observations on (X, Y ), we can regard
the liney = l(x) as the best linear fit, whereas the curvey = E[Y |X = x] is the best
possible fit among all functions.

Example3.8.7. Let X ∼ unif[0, 1] and givenX = x, let Y ∼ unif[0, x2]. Find
E[Y |X = x] andl(x).

It is clear from the description thatE[Y |X = x] = x2/2. For l(x) we need to find
all the parameters involved in its definition. We haveE[X ] = 1

2 and Var[X ] = 1
12 ,
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and to find the mean ofY , as well as the correlation coefficient, we use conditional
expectations and variances. Since

ρ
σY

σX
=

Cov[X, Y ]

σ2
X

we do not need to compute the variance ofY . We haveE[Y |X ] = X2/2, which
gives

µY = E[Y ] = E

[
X2

2

]
=

1

2

∫ 1

0

x2dx =
1

6

and for the covariance we also needE[XY ], which equals18 , by Example 3.7.5. We
get

Cov[X, Y ] = E[XY ] − E[X ]E[Y ] =
1

24

which finally gives

l(x) =
1

6
+

1/24

1/12

(
x − 1

2

)
=

x

2
− 1

12

which is depicted in Figure 3.8 together withE[Y |X = x] and100 simulated obser-
vations. Overall, the fits are both pretty good, but the detail to the right shows that
the linear fit is poor near the origin.

In the previous example, the linel(x) is computed from the values of the parameters
µX , µY , and so on, and we can see how well the line fits the observations. In practice
the situation is usually the reverse; we start from a set of observations, do not know
the values of the parameters, and wish to find the straight line that fits the data best.
This means that we are trying to find the ideal linel(x) by finding approximations of

0 0.5 1
0 

0.5 

1 

0 0.1 0.2
0 

0.02 

0.04 

Fig. 3.8 One hundred simulated values of(X, Y ) in Example 3.8.7 together with the curve
y = E[Y |X = x] (dashed), and the liney = l(x) (solid). To the right is a detail of the region
near the origin.
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the parameters on basis of the data. We will return to this connection between theory
and data in Chapter 6.

We still do not know what a particular value ofρ means, so let us now finally
address this question. One way to evaluate the linear fit is tocompare the variances
of Y andl(X). The random variableY has a certain varianceσ2

Y . If Y is strongly
correlated withX , thenY is closely approximated by the straight linel(X), and most
of the variation inY can be attributed to variation inX . By computing the variance
of l(X), we get

Var[l(X)] = ρ2 σ2
Y

σ2
X

Var[X ] = ρ2σ2
Y

and see that Var[l(X)] ≤ Var[Y ] always holds. Moreover, we see that

Var[l(X)]

Var[Y ]
= ρ2

which gives an interpretation ofρ2; it measures how much of the variation inY can
be explained by a linear relationship toX . The numberρ2 is called thecoefficient
of determination. Hence, a value ofρ = 0.65 as in Example 3.8.6 givesρ2 = 0.42
with the interpretation thatX explains about42% of the variation inY , whereas the
rest is due to other sources of randomness. The following example is illustrative and
good to remember.

Example 3.8.8. Roll two fair dice, lettingX and Y be the numbers and letting
Z = X + Y , the total number. What isρ(X, Z)?

First, we find the covariance ofX andZ. By Proposition 3.8.4 and Example 2.4.11,
we have

Cov[X, Z] = Cov[X, X + Y ] = Var[X ] + Cov[X, Y ] =
35

12

sinceX andY are independent and hence Cov[X, Y ] = 0. Further, by Proposition
3.6.4(b)

Var[Z] = Var[X ] + Var[Y ] =
35

6

and we get

ρ(X, Z) =
Cov[X, Z]√
Var[X ]Var[Z]

=
1√
2

and if we square this, we get the coefficient of determinationρ2 = 1
2 . Thus, half

of the variation inZ is explained by variation inX , which is intuitively clear since
Z = X + Y , whereX andY are independent and on average contribute equally to
the sum. See also Problem 99.
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Recall from Section 2.5.6 how we can summarize a data set by stating its mean and
variance and how this can be viewed in the context of random variables. The same is
true for the correlation. Given a data setD = {(x1, y1), ..., (xn, yn)}, we define its
correlation as

r =

n∑

k=1

(xk − x̄)(yk − ȳ)

√√√√
n∑

k=1

(xk − x̄)2
n∑

k=1

(yk − ȳ)2

Again, we can think of this as an approximation of the true butunknown correlation,
computed from a set of observations.

Example3.8.9. The following data are eight of astronomer Edwin Hubble’s1929
measurements on a galaxy’s distance from Earth (megaparsecs) and recession veloc-
ity (kilometers per second).

Distance:0.032, 0.263, 0.45, 0.63, 0.90, 1.00, 1.4, 2.0
Velocity: 170, −70, 200, 200, 650, 920, 500, 850

Computing the sums in the expression above givesr = 0.78. We view this as an
approximation of the true value, an approximation that would get better the more data
we have. We will return to Hubble’s data in Chapter 6.

It is important to realize that the correlation coefficient does not measurecausation,
only associationbetween random variables. This means that even if there is a high
correlation, it does not necessarily follow that large values of one random variable
causeslarge values of the other, only that such large values tend toappear together.
One amusing example is to letX be the number of firefighters sent to a fire andY the
economic damage in dollars of the fire. It can then be observedthat there is a positive
correlation betweenX andY . Conclusion? To keep your economic loss down in
case of a fire, don’t call the fire department? In this case there is a third variable that
explains the correlation: the size of the fire. The correlation is thus caused by an
underlying factor that affects bothX andY .

A similar effect can also be caused by an intermediate factor, for example in the
Berkeley admissions data from Example 1.6.4 where a correlation between gender
and admission rate was demonstrated, but the real cause was that female students
applied for majors that were more difficult to be admitted to.Thus, gender affected
choice of major, which in turn affected the chance of being admitted.
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3.9 THE BIVARIATE NORMAL DISTRIBUTION

In Section 2.7, the importance of the normal distribution was pointed out. In this
section, its two-dimensional analog is introduced.

Definition 3.9.1. If (X, Y ) has joint pdf

f(x, y) =
1

2πσ1σ2

√
1 − ρ2

× exp

{
− 1

2(1 − ρ2)

(
(x − µ1)

2

σ2
1

+
(y − µ2)

2

σ2
2

− 2ρ(x − µ1)(y − µ2)

σ1σ2

)}

for x, y ∈ R, then(X, Y ) is said to have abivariate normal distribution.

The formula is ugly, but the pdf itself is beautiful (see Figure 3.9). The bivariate
normal distribution has five parameters:µ1, µ2 ∈ R, σ1, σ2 > 0, and−1 < ρ < 1.
The center of the bell in Figure 3.9 is above the point(µ1, µ2), and its shape is deter-
mined by the other three parameters. The notation suggests that these are the means,
variances, and the correlation coefficient ofX andY , but we need to prove that this
is actually the case.

Proposition 3.9.1. Let (X, Y ) have a bivariate normal distribution with
parametersµ1, µ2, σ1, σ2, ρ. Then

(a) X ∼ N(µ1, σ
2
1) andY ∼ N(µ2, σ

2
2)

(b) ρ is the correlation coefficient ofX andY

Proof. (a) Letf(x, y) be the joint pdf of(X, Y ). To find the pdf ofX , we need
to integrate the joint pdf with respect toy. We first make the change of variables
u = (x − µ1)/σ1 andv = (y − µ2)/σ2, so thatdy = σ2 dv and the integral limits
remain−∞ and∞. We get

fX(x) =

∫ ∞

−∞
f(x, y)dy

=
1

2πσ1

√
1 − ρ2

∫ ∞

−∞
exp

(
− 1

2(1 − ρ2)
(u2 + v2 − 2ρuv)

)
dv
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Now note thatu2 + v2 − 2ρuv = (v − ρu)2 + u2(1 − ρ2) and hence

fX(x) =
1

σ1

√
2π

exp

(
−u2

2

)

×
∫ ∞

−∞

1√
1 − ρ2

√
2π

exp

(
− 1

2(1 − ρ2)
(v − ρu)2

)
dv

Now note that the integrand in the last integral is the pdf of anormal distribution with
meanρu and variance1−ρ2, and hence this integral equals one. Finally, substituting
backu = (x − µ1)/σ1 gives

fX(x) =
1

σ1

√
2π

exp

(
− (x − µ1)

2

2σ2
1

)

which we recognize as the pdf of a normal distribution with meanµ1 and variance
σ2

1 . We prove (b) in Example 3.9.1.

It is instructive to consider thecontoursof the joint pdf, that is, the sets of points
(x, y) for whichf(x, y) equals some fixed constant. These contours are ellipses that
reflect how observations are typically spread in the plane. Such an ellipse is centered
in (µ1, µ2), and its shape and direction depend on the other parameters.If ρ = 0,
the ellipse is parallel with the axes, and if, in addition,σ2

1 = σ2
2 , it is in fact a circle.

See Figure 3.10 for an illustration of some different cases.Each plot shows100

Fig. 3.9 The joint pdf of a bivariate normal distribution.
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(a) (b) (c)

Fig. 3.10 Simulated observations from bivariate normal distributions: (a)ρ = 0, σ2
1 = σ2

2 ;
(b) ρ = 0, σ2

2 > σ2
1 ; (c) ρ < 0.

simulated observations from a bivariate normal distribution, displayed together with
two contours.

We have seen that a bivariate normal distribution has normalmarginals. Is the
converse also true, that is, ifX andY are normal, then the pair(X, Y ) is bivariate
normal? The answer is “almost,” but ifY is a linear function ofX , the pair(X, Y )
is concentrated on a straight line and there is no joint pdf. We can also see this in the
expression forf(x, y) above, sinceρ would then be−1 or 1. It is also possible to
construct a non-normal joint pdf such that both marginals are normal, but this is not
of much practical interest and we will not address it further. A nice property of the
bivariate normal distribution is that not only the marginals but also the conditional
distributions are normal.

Proposition 3.9.2. Let (X, Y ) be bivariate normal. Then, for fixedx ∈ R

Y |X = x ∼ N

(
µ2 + ρ

σ2

σ1
(x − µ1), σ

2
2(1 − ρ2)

)

Proof. Carry out the division in

fY (y|x) =
f(x, y)

fX(x)

and identify the expression with the desired normal pdf.

Note that Proposition 3.9.2 states that

E[Y |X ] = µ2 + ρ
σ2

σ1
(X − µ1)
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which we note is a linear function ofX . Hence, in the case of a bivariate normal
distribution, the best predictor ofY givenX is linear (see also Proposition 3.8.8).
This indicates that all the dependence that exists betweenX andY can be attributed
to linear dependence, and the following result shows that this is indeed so.

Proposition 3.9.3. Let (X, Y ) be bivariate normal. ThenX andY are inde-
pendent if and only if they are uncorrelated.

Proof. Simply note that the joint pdf equals the product of the marginal pdf’s if
and only ifρ = 0.

This is a convenient result since it says that if we cannot findany linear dependence
structure in observations that are bivariate normal, then there is no dependence struc-
ture at all. Another ramification of Proposition 3.9.2 is that we can easily prove
Proposition 3.9.1(b), thatρ is the correlation coefficient ofX andY .

Example3.9.1. Let (X, Y ) be bivariate normal. Show thatρ(X, Y ) = ρ.

Let firstZ andW be standard normal. By Corollaries 3.7.2 and 3.7.3, we obtain

Cov[Z, W ] = E[ZW ] = E
[
E[ZW |Z]

]

= E
[
ZE[W |Z]

]
= ρE[Z2] = ρ

and since both variances are1, this is also the correlation coefficient. Next, consider
the random variablesX = µ1 + σ1Z andY = µ2 + σ2W . ThenX ∼ N(µ1, σ

2
1)

andY ∼ N(µ2, σ
2
2), and since

Cov[X, Y ] = Cov[X − µ1, Y − µ2]

we get
ρ(X, Y ) = ρ(σ1Z, σ2W ) = ρ(Z, W ) = ρ

Example3.9.2. At a measuring station for air pollutants, the amounts of ozone and
carbon particles are recorded at noon every day. LetX be the concentration of car-
bon (µg/m3), andY the concentration of ozone (ppm), and suppose that(X, Y ) has
a bivariate normal distribution such thatX ∼ N(10.7, 29.0), Y ∼ N(0.1, 0.02), and
ρ = 0.72. The ozone level is considered unhealthy if it exceeds0.30. Suppose that
the equipment used to measure ozone fails, so that we can measure only the carbon
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level. If this turns out to be20.0 µg/m3, what is(a) the predicted ozone level and(b)
the probability that the ozone level is unhealthy?

We have observedX = 20.0. For (a), we need to findE[Y |X = 20]. From
Proposition 3.9.2, we know thatY is normal with mean

E[Y |X = 20] = 0.1 + 0.72

√
0.02√
29.0

(20 − 10.7) ≈ 0.28

so this is the predicted ozone level asked for in part (a). For(b), we wish to find the
probability

P (Y > 0.30|X = 20.0)

and also need the conditional variance, which is

Var[Y |X = 20] = 0.02(1 − 0.722) ≈ 0.01

which gives

P (Y > 0.30|X = 20.0) = 1 − P (Y ≤ 0.30|X = 20)

= 1 − Φ

(
0.30 − 0.28√

0.01

)
≈ 0.42

The line
y = E[Y |X = x] = µ2 + ρ

σ2

σ1
(x − µ1)

is called theregression line. For an observed valueX = x, it is the best predicted
value ofy, in the sense discussed in Section 3.7.2. It might be tempting to believe
that the regression line is an axis of the ellipses describing the pdf, but this is not the
case. The reason why is probably best understood by considering a plot of observed
values. Figure 3.11 shows500 simulated values from a bivariate normal distribution
with means0, variances1, and correlationρ = 0.5. The major axis is the dashed line
y = x and the regression line, the solid liney = 0.5x. Since the regression line in a
pointx is the conditional mean ofY , givenX = x, it has roughly the same number
of points above and below for any givenx. Look, for example, atx in the vicinity of
2. Note how the regression line cuts through the points roughly in the middle, and
compare with the ellipse axis, which is entirely above all the points.

There is an interesting observation to be made here. Suppose, for example, that
the points represent standardized test scores (µ = 0, σ = 1) for students whereX
is the score on the first test andY the score on the second. The positive correlation
reflects that students with high scores on one test are expected to have high scores
on the other as well. Now consider students with good scores on the first test, say,
above1. On the second test, most of them did worse! What happened? Well, this is
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3

Fig. 3.11 Simulated observations on(X, Y ), with the corresponding regression line (solid)
and major ellipse axis (dashed).

completely normal. If your test score isX = 1 on the first test, your predicted score
on the second test isE[Y |X = 1] = 0.5. In the same way, those who did poorly on
the first test are expected to do better on the second. It is important to understand that
such changes are natural and do not necessarily indicate anything in particular. The
phenomenon is calledregression to the mean4 and is frequently misinterpreted.

By working through more tedious calculations, it can be shown that linear combi-
nations are also normal. More specifically, consider the following proposition.

Proposition 3.9.4. Let (X, Y ) be bivariate normal, and leta andb be real
numbers. Then

aX + bY ∼ N
(
aµ1 + bµ2, a

2σ2
1 + b2σ2

2 + 2abρσ1σ2

)

In particular, ifX andY are independent, this leads to the following corollary.

Corollary 3.9.5. If X ∼ N(µ1, σ
2
1), Y ∼ N(µ2, σ

2
2), andX and Y are

independent, then

aX + bY ∼ N
(
aµ1 + bµ2, a

2σ2
1 + b2σ2

2

)

4The British aristocrat and scientist Sir Francis Galton, who was one of the first to use linear regression
methods, used the term “regression to mediocrity.”
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The noteworthy property of the bivariate normal distribution is not that the means and
variances add the way they do; we know that this holds generally. What is noteworthy
is that the normal distribution is retained by taking a linear combination ofX andY ,
independent or not. This is not true for most distributions;for example, the uniform
and exponential distributions do not have this property. With induction, we get the
following immediate extension.

Corollary 3.9.6. If X1, ..., Xn are independent withXk ∼ N(µk, σ2
k) and

a1, ..., an are constants, then

n∑

k=1

akXk ∼ N

(
n∑

k=1

akµk,
n∑

k=1

a2
kσ2

k

)

Example3.9.3. Two different types of diets are used on a salmon farm. Suppose
that one group of fish is given diet A and the other diet B. To check if there is a dif-
ference in weights,n salmon from each group are weighed, and the average weight
is computed for each group. Suppose that the weights areN(20, 5) andN(18, 4)
(kilograms) in the two groups. How large mustn be in order for us to be at least99%
certain to determine that diet A yields bigger salmon?

Call the weightsX1, ..., Xn andY1, ..., Yn, and letX̄ and Ȳ be the two averages.
Corollary 3.9.6 witha1 = · · · = an = 1

n gives

X̄ ∼ N

(
20,

5

n

)
and Ȳ ∼ N

(
18,

4

n

)

and Corollary 3.9.5 witha = 1, b = −1 gives

X̄ − Ȳ ∼ N

(
2,

9

n

)

We get

0.99 ≤ P (X̄ ≥ Ȳ ) = P (X̄ − Ȳ ≥ 0) = 1 − Φ

(
0 − 2

3/
√

n

)
= Φ

(
2

3/
√

n

)

which gives2
√

n/3 ≥ 2.33, so thatn must be at least 13.
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3.10 MULTIDIMENSIONAL RANDOM VECTORS

Everything we have done for two-dimensional random variables in the previous sec-
tions generalizes in an obvious way ton dimensions as well. Thus, ifX1, ..., Xn are
random variables, we call(X1, ..., Xn) ann-dimensional random vector. If theXk

are discrete, we define the joint pmf asp(x1, ..., xn) = P (X1 = x1, ..., Xn = xn),
and if there is a functionf : Rn → R such that

P ((X1, ..., Xn) ∈ B) =

∫
· · ·
∫

B

f(x1, ..., xn)dx1 · · · dxn

for setsB ∈ Rn, thenX1, ..., Xn are said to be jointly continuous with joint pdff .
The joint cdf is defined as

F (x1, ..., xn) = P (X1 ≤ x1, ..., Xn ≤ xn)

and we have the relations

F (x1, ..., xn) =

∫ xn

−∞
· · ·
∫ x1

−∞
f(t1, ..., tn)dt1 · · · dtn

and

f(x1, ..., xn) =
∂n

∂x1 · · · ∂xn
F (x1, ..., xn)

for x1, ..., xn ∈ R, in the jointly continuous case. The marginals for theXk are
obtained by summing the joint pmf or integrating the joint pdf over the othervariables.
Note, however, that whenn ≥ 3, we also get “multidimensional marginals,” for
example, the joint distribution of(X, Y ) when we start from(X, Y, Z). Independence
between random variables now means that all possible joint distributions are products
of the possible marginals.

Rather than stating formal multidimensional analogs of thetwo-dimensional re-
sults, we illustrate these in an example that deals with a uniform distribution in three
dimensions.

Example3.10.1. Suppose that we choose a point(X, Y, Z) uniformly in the unit
sphere{(x, y, z) : x2 +y2 +z2 ≤ 1}. By an argument similar to that for the uniform
distribution in one or two dimensions, we must have the jointpdf

f(x, y, z) =
3

4π
, x2 + y2 + z2 ≤ 1

since the volume of the sphere is4π/3. We might now wonder what the joint dis-
tribution of X andY is. Is it the uniform distribution on the unit disk in the(x, y)
plane? We need to integrate overz, so let us first note that for fixedx andy, z ranges
from−

√
1 − x2 − y2 to

√
1 − x2 − y2 and we get

f(X,Y )(x, y) =
3

4π

∫ √
1−x2−y2

−
√

1−x2−y2

dz =
3

2π

√
1 − x2 − y2, x2 + y2 ≤ 1
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which is certainly not a uniform distribution. The intuition is that a region of fixed
size in the(x, y) plane is more probable if it is near the origin(0, 0), because it
then corresponds to a larger volume to pick(X, Y, Z) from. With the experience
from Example 3.4.3, this was to be expected. We also expect that the conditional
distribution of(X, Y ) givenZ = z is uniform on the disk with radius

√
1 − z2. Let

us verify this. The conditional pdf of(X, Y ) givenZ = z is defined in the obvious
way:

f(X,Y )(x, y|z) =
f(x, y, z)

fZ(z)
, x2 + y2 ≤ 1 − z2

and we must thus find the marginal pdffZ(z). We get

fZ(z) =

∫ ∫

x2+y2≤1−z2

f(x, y, z)dx dy =
3

4π

∫ ∫

x2+y2≤1−z2

dx dy

where we change to polar coordinates to obtain

fZ(z) =
3

4π

∫ 2π

0

∫ √1−z2

0

r dr dθ

=
3

4π
× 2π

[
r2

2

]√1−z2

0

=
3

4
(1 − z2), −1 ≤ z ≤ 1

We now get

f(X,Y )(x, y|z) =
1

π(1 − z2)
, x2 + y2 ≤ 1 − z2

and it is reassuring to note that this is indeed a uniform distribution on the disk with
center in0 and radius

√
1 − z2.

If the random variablesX1, X2, ... can be regarded as repeated measurements on
some quantity, they can be assumed to be independent, and they also all have the
same distribution. If this is the case we use the following terminology.

Definition 3.10.1. If X1, X2, ... are independent and have the same distribu-
tion, we say that they areindependent and identically distributedor i.i.d. for
short.

Example3.10.2. (Waiting Time Paradox). Bob often catches a bus from a street
corner to go downtown. He arrives at different timepoints during the day but has
estimated that his average wait is17 minutes. His friend Joe, who can see the bus
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stop from his living room window, assures Bob that the buses run on average every
half hour. But then Bob’s average wait ought to be15 minutes, not17. Explain!

This is an example of thewaiting time paradox, and the explanation is simple. The
times between consecutive arrivals are i.i.d. random variables with mean30 minutes.
If Bob arrives at an arbitrary timepoint, he is more likely toarrive in a time-interval
between buses that is longer than usual. For example, suppose that three consecutive
buses arrive at1:00, 1:40, and2:00. The time intervals are40 and20 minutes, which
have the average30 minutes. However, if Bob arrives at a uniform time between1:00
and2:00, the probability that he arrives in the first interval is2

3 , in which case his
expected wait is20 minutes and with probability13 , his expected wait is10 minutes.
This gives the expected wait20 × 2

3 + 10 × 1
3 ≈ 17 minutes. Hence, it is perfectly

normal that buses run on average every half hour but Bob’s expected wait is more
than15 minutes.

Call the times between successive arrivals in the exampleT1, T2, ..., which are i.i.d.
random variables. This is an example of arenewal process. Now let µ = E[T ],
the meaninterarrival time, and consider the timeT ′ until the next arrival at some
arbitrary timepointt. We argued above thatE[T ′] does not equalµ/2. It can be
shown that for larget (the process has been going on for a while), this expected time
is

E[T ′] =
E[T 2]

2µ

For example, if theTk are uniform[0, 1], the mean isµ = 1
2 andE[T 2] = 1

3 , which
givesE[T ′] = 1

3 . Note that this means that the expected length of the interval that
containst is E[T 2]/µ, which is reminiscent of the size-biased distributions studied
in Problems 32 and 33 in Chapter 2. If you sample a person at random, this person is
more likely to belong to a large family. If you arrive at random at a bus stop, you are
more likely to arrive in a long time-interval and we might call this a length-biased
distribution.

3.10.1 Order Statistics

As we know from many applications and real-life situations,it is often of practical
interest to order observations by size. In terms of random variables, we have the
following definition.

Definition 3.10.2. Let X1, ..., Xn be independent and denote byX(j) thejth
smallest of theXk. The random variablesX(1) ≤ X(2) ≤ · · · ≤ X(n) are
called theorder statisticsof the random variablesX1, ..., Xn.
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Note that theXk are independentbut theX(k) are obviouslynot. Of particular interest
areX(1) andX(n), the smallest and largest of theXk.

Example3.10.3. LetX1, ..., Xn be independent whereXk ∼ exp(λk), k = 1, ..., n.
What is the distribution ofX(1)?

First note thatX(1) > x if and only if X1 > x, X2 > x, ..., Xn > x. Hence, using
independence, we obtain

P (X(1) > x) = P (X1 > x, ..., Xn > x)

= P (X1 > x) · · ·P (Xn > x)

= e−λ1x · · · e−λnx = e−(λ1+···+λn)x, x ≥ 0

which gives the cdf

FX(1)
(x) = 1 − e−(λ1+···+λn)x, x ≥ 0

which we recognize from Section 2.8.2 as the cdf of an exponential distribution with
parameterλ1 + · · · + λn. Hence

X(1) ∼ exp(λ1 + · · · + λn)

Example3.10.4. Recall Example 2.6.1, where the concept of half-life of a radioac-
tive material was first introduced informally as the time required until half of the
atoms have decayed, and then defined as the median lifetime ofan individual atom.
Let us now examine this more closely.

Suppose that we start from a number2n of atoms. The half-life is then the time it
takes until we haven atoms left. If we assume that lifetimes are i.i.d.exp(λ) for
someλ, the time until the first decay isT(1), the minimum of2n exponentials. We
then start over with2n − 1 atoms and wait for the next decay. The time until this
is T(2), which by the memoryless property is the minimum of2n − 1 exponentials
(note that this is also the second smallest among the original 2n lifetimes if T(1) is
subtracted from all of them; hence the subscript). The time until half of the atoms
have decayed is then

T =
n∑

k=1

T(k)

which is a random time. To describe this by a number, we define half-life as the
expectedtime until half of the atoms have decayed:

h = E[T ]
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Now, by Example 3.10.3,T(1) ∼ exp(2nλ), ..., T(n) ∼ exp((n + 1)λ), which gives

h =
n∑

k=1

E[T(k)] =
1

λ

2n∑

k=n+1

1

k
=

1

λ

(
2n∑

k=1

1

k
−

n∑

k=1

1

k

)

It is a well known result that the harmonic seriesHn = 1+ 1
2+· · ·+ 1

n is approximately
equal tolog n for largen, and we get5

h ≈ 1

λ
(log(2n) − log n) =

1

λ
log 2

which is precisely the median ofT . Thus, if the radioactive sample is large, the
interpretation of half-life as the median in the individuallifetime distribution works
fine. However, as the sample gets smaller, this becomes less and less accurate and
the decay tends to speed up. Consider the extreme case when only two atoms remain.
The time until only one is left is then the minimum of two exponentials, which gives
h = 1/(2λ), which is smaller than the medianlog 2/λ.

The definition of half-life as “the time until half of the atoms have decayed” is a
deterministicdescription, and our approachwith exponential lifetimes isprobabilistic
(or stochastic). We have seen that they agree when the number of atoms is large, but
only the probabilistic description is accurate for small numbers.

If the random variables are not just independent but also have the same distribu-
tion, there are some nice and simple formulas for the distribution of individual order
statistics, as well as their joint distribution. We start bya result that gives the cdf’s
of the minimum and maximum.

Proposition 3.10.1. Let X1, ..., Xn be i.i.d. with cdfF . ThenX(1) andX(n)

have cdf’s

F(1)(x) = 1 − (1 − F (x))n, x ∈ R

F(n)(x) = F (x)n, x ∈ R

Proof. We do the maximum and leave the minimum as an exercise. First note that

{X(n) ≤ x} = {X1 ≤ x, ..., Xn ≤ x}

5The exact result is that the difference between the harmonicseriesHn andlog n approaches a numberγ
asn → ∞. The numberγ is known asEuler’s constantand is approximately equal to0.58.
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that is, the maximum is less than or equal tox if and only if all theXk are less than
or equal tox. We get

F(n)(x) = P (X(n) ≤ x) = P (X1 ≤ x, ..., Xn ≤ x)

= P (X1 ≤ x) · · ·P (Xn ≤ x) = F (x)n, x ∈ R

where the second to last equality is due to independence of theXk. For the minimum,
instead start with the event{X(1) > x}.

This result is valid for both discrete and continuous randomvariables, but there are
some differences between the two cases when it comes to further properties of order
statistics. In the discrete case we may get duplicate values, and the order statistics are
not necessarily unique. Thus, we can, for example, have maximum values attained
at two or more differentXk, and computing the joint pmf of the order statistics is
complicated by this fact. In the continuous case, however, duplicate values are im-
possible [recall from Section 3.4 thatP (Xj = Xk) = 0 for all j 6= k], so there is
only one possible set of order statistics.

Example3.10.5. You are selling your car and receive consecutive bids. The bidders
do not know each other bids, and for each bid you need to decideimmediately whether
or not to take it. If you decline, you cannot accept the offer later. Your strategy is to
decline the very first bid, then accept the first bid which is larger. How long can you
expect to wait?

Let us assume that the consecutive bids,X1, X2, ..., are i.i.d. continuous random
variables. You are thus waiting for the first timen such that

X1 > X2, ..., X1 > Xn−1, X1 < Xn

which means thatXn is the largest andX1 the second largest among theXk. We
thus define

N = min{n : X(n) = Xn, X(n−1) = X1}
and wish to findE[N ]. The assumption of continuousXk means that all theXk are
different from each other, and since they are i.i.d., eachXk is equally likely to be the
maximum. Once a maximum is decided, each of the remainingXk is equally likely
to be the second largest. Hence, the probability thatN equals a particularn is

P (N = n) = P (X(n) = Xn, X(n−1) = X1)

= P (X(n−1) = X1|X(n) = Xn)P (X(n) = Xn)

=
1

n − 1
× 1

n
=

1

n(n − 1)
, n = 2, 3, ...

and the expected value ofN is

E[N ] =

∞∑

n=2

nP (N = n) =

∞∑

n=2

1

n − 1
= ∞
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so you can definitely expect to wait for a long time! See Problem 109 for a strategy
that enables you to sell your car faster.

In the continuous case, it turns out that it is easy to find the marginal pdf’s of the
order statistics, as well as their joint pdf. We start by the following corollary, which
follows immediately by differentiating the expressions inProposition 3.10.1.

Corollary 3.10.2. Let X1, ..., Xn be i.i.d. and continuous with pdff and cdf
F . ThenX(1) andX(n) have pdf’s

f(1)(x) = nf(x)(1 − F (x))n−1 and f(n)(x) = nf(x)F (x)n−1

for x ∈ R.

In Problem 113, you are asked to find the pdf’s for the remaining order statistics.
In the case of i.i.d. continuous random variables, we can easily find not only the
marginals but also the entire joint distribution of the order statistics.

Proposition 3.10.3. LetX1, X2, ..., Xn be i.i.d. and continuouswith the com-
mon pdffX . Then the vector of order statistics(X(1), X(2), ..., X(n)) has joint
pdf

f(x1, x2, ..., xn) = n! fX(x1)fX(x2) · · · fX(xn)

for −∞ < x1 ≤ x2 ≤ · · · ≤ xn < ∞

The intuition behind the expression in the proposition is quite clear, if we skip the
strict definition of the joint pdf for a moment, and instead think of it as a proba-
bility. Then, the “probability” that the orderedXk values equal the particular vec-
tor (x1, x2, ..., xn) is simply the “probability” that the unordered random variables
X1, X2, ..., Xn equal the numbersx1, x2, ..., , xn, in any order. Since there aren!
different ways to order these numbers and the “probability”of any particular order is
fX(x1)fX(x2) · · · fX(xn), the expression follows.

Proof. We will do the proof only in the casen = 2. Thus, fixx ≤ y and consider
the joint cdf of(X(1), X(2)):

F (x, y) = P (X(1) ≤ x, X(2) ≤ y), x ≤ y
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In terms of the unorderedX1 andX2, this means that both must be less than or equal
to y but that at most one can be betweenx andy. Denoting the cdf of theXk by FX ,
we thus get

F (x, y) = P (X1 ≤ y, X2 ≤ y) − P (x < X1 ≤ y, x < X2 ≤ y)

= FX(y)2 − (FX(y) − FX(x))2

which we differentiate twice to get the joint pdf of(X(1), X(2)):

f(x, y) =
∂2

∂x ∂y

(
FX(y)2 − (FX(y) − FX(x))2

)

=
d

dy
2(FX(y) − FX(x))fX(x) = 2fX(y)fX(x)

as desired. The general case is proved in the same way, only keeping track of more
different cases.

3.10.2 Reliability Theory

Recall Example 1.5.15, where we defined the reliability of a system as the probabil-
ity that it functions, given that its components function independently of each other.
We will now instead consider this as a process in time. Thus, suppose that each
component has a random lifetime that has some continuous distribution, and consider
the timeT until failure of the system. Let us first consider the case of two components.

Example3.10.6. Suppose that the individual lifetimes areT1 andT2, which are i.i.d.
continuous and nonnegative random variables with pdff and cdfF . What is the pdf
of the lifetimeT for a series system and for a parallel system?

Since a series system functions as long as both components function, the time until
failure is the minimum ofT1 andT2. Hence, by Corollary 3.10.2

fT (x) = 2f(x)(1 − F (x)), x ≥ 0

The parallel system functions as long as at least one component functions, and hence
T = T(2), the largest ofT1 andT2. We get

fT (x) = 2f(x)F (x), x ≥ 0

(see Figure 3.12). In particular, if we assume that lifetimes areexp(λ), we get

fT (x) = 2λe−2λx, x ≥ 0

for the series system and

fT (x) = 2λ(e−λx − e−2λx), x ≥ 0
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T = min(T1, T2)

T1 T2

T2

T1

T = max(T1, T2)

Fig. 3.12 Systems in series and parallel.

for the parallel system. Note how the lifetime for the seriessystem isexp(2λ). See
also Problem 112.

Example3.10.7. Recall the failure rate function from Section 2.10. Consider a se-
ries system where thekth component has failure rate functionrk and components
function independently of each other. What is the failure rate function of the system?

Denote the lifetimes byX1, ..., Xn, and let the corresponding survival functions be
G1, ..., Gn. Then the lifetime of the system is the minimumX(1), whose survival
function and failure rate function we denote byG(1) andr(1), respectively. We get

G(1)(t) = P (X1 > t, ..., Xn > t) = G1(t) · · ·Gn(t)

by independence. By Proposition 2.10.1, we obtain

G(1)(t) =

n∏

k=1

exp

(
−
∫ t

0

rk(u)du

)
= exp

(
−
∫ t

0

n∑

k=1

rk(u)du

)

and since also

G(1)(t) = exp

(
−
∫ t

0

r(1)(u)du

)

we identify the exponents to conclude that

r(1)(u) =

n∑

k=1

rk(u), u ≥ 0

Note how Example 3.10.3 was a special case of this for exponential lifetimes.

Example3.10.8. In Example 2.10.4 we considered a type of ball bearing whose
failure rate functionr(t) = at was chosen to describe an increasing risk of failure
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due to continuing wear and tear. Now suppose that in additionto this, a ball bearing
may also suddenly break as a result of external factors such as explosions or other
accidents, which occur at random. What failure rate function does this give?

We need to interpret the expression “at random.” If we assumethat this means that
the time until the next accident is independent of the age of the ball bearing, then the
time until failure because of an accident is exponential with some parameterb > 0.
Thus, if we denote the time until failure due to wear byT1 and the time until failure
due to an accident byT2, the timeT until failure of the ball bearing satisfies

T = min(T1, T2)

whereT1 andT2 are independent. By Example 3.10.7,T has failure rate function

rT (t) = rT1(t) + rT2(t) = at + b, t ≥ 0

Adding a constant to a failure rate function thus corresponds to introducing failure
due to random incidents.

3.10.3 The Multinomial Distribution

Recall how the binomial distribution counts the numberof successes inn independent
trials, where each trial can result in success or failure. Animmediate extension of
this is to consider the case where each trial has more than twodifferent outcomes.
For example, consider a soccer match and the three outcomes “win,” “loss,” and
“tie” for the home team. Suppose that we considern matches and that we let the
vector (W, L, T ) be the numbers of wins, losses, and ties, respectively. Whatis
the joint distribution of(W, L, T ), expressed in terms ofn and the probabilities
p = P (W ), q = P (L), andr = P (T )? Let us consider the joint pmf in a point
(w, l, t), that is

p(w, l, t) = P (W = w, L = l, T = t)

wherew + l + t = n and the probabilitiesp, q andr add to one. First note that each
configuration ofw wins,l losses, andt ties has probabilitypwqlrt, so the issue is how
many such configurations there are. First, there are

(
n
w

)
ways to choose positions for

thew wins. For each such choice, there are then
(
n−w

l

)
ways to choose positions for

the l losses. Once this is done, thet ties are put in the remaining positions. Hence
the probability is

p(w, l, t) =

(
n

w

)(
n − w

l

)
pwqlrt

for w ≥ 0, l ≥ 0, t ≥ 0 andw + l + t = n. Now note that
(

n

w

)(
n − w

l

)
=

n!

w!(n − w)!
× (n − w)!

l! (n − w − l)!
=

n!

w! l! t!

a quantity that is called themultinomial coefficient. We generalize tor dimensions.
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Definition 3.10.3. If (X1, ..., Xr) has joint pmf

p(n1, ..., nr) =
n!

n1! n2! · · ·nr!
pn1
1 pn2

2 · · · pnr
r

for n1 + · · ·+ nr = n andp1 + · · ·+ pr = 1, then(X1, ..., Xr) is said to have
a multinomial distributionwith parameters(n, p1, ..., pr).

Note that the binomial distribution is a special case withr = 2, p1 = p, andp2 = 1−p.

Example3.10.9. Roll a die12 times. What is the probability that you get exactly
two of each number1, ..., 6?

With Xk = the number ofk values, we have a multinomial distribution withr = 6
and parameters(12, 1

6 , 1
6 , ..., 1

6 ) and get

p(2, 2, ..., 2) =
12!

2! 2! · · · 2!

(
1

6

)2(
1

6

)2

· · ·
(

1

6

)2

≈ 0.003

What are the one-dimensional marginal distributions in a multinomial distribution?
If we considerXk, this is the number of times we get thekth outcome, and it is
easy to realize that the distribution ofXk is binomial with parametersn andpk.
To prove this formally, we would have to sum over all the othervariables in the
joint pmf, but we will not do this. Thus, eachXk is binomial when considered
individually, but clearly theXk are not independent; for example,P (X1 = n) = pn

1 ,
butP (X1 = n|X2 > 0) = 0. In Problem 124, you are asked to find the covariance
and correlation.

3.10.4 The Multivariate Normal Distribution

In Section 3.9, we introduced the bivariate normal distribution. Notice how the expo-
nent in Definition 3.9.1 is a quadratic form, which we will nowrewrite in convenient
matrix notation. Introduce the column vectors

X =

(
X
Y

)
and x =

(
x
y

)
for x, y ∈ R

and define themean vectorµ andcovariance matrixΣ as

µ =

(
µ1

µ2

)
and Σ =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
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Note that all entries inΣ are covariances, since Cov[X, Y ] = Cov[Y, X ] = ρσ1σ2,
Cov[X, X ] = Var[X ] = σ2

1 , and Cov[Y, Y ] = σ2
2 . The covariance matrix has

determinant
|Σ| = σ2

1σ2
2 − ρ2σ2

1σ2
2 = σ2

1σ2
2(1 − ρ2)

and inverse

Σ−1 =
1

σ2
1σ2

2(1 − ρ2)

(
σ2

2 −ρσ1σ2

−ρσ1σ2 σ2
1

)

and we get, with the superscriptT denoting matrix transposition,

(x − µ)T Σ−1(x − µ)

=
1

1 − ρ2

(
(x − µ1)

2

σ2
1

+
(y − µ2)

2

σ2
2

− 2ρ(x − µ1)(y − µ2)

σ1σ2

)

and taken altogether, we can write the joint pdf of the bivariate normal distribution as

fX(x) =
1

2π
√
|Σ|

exp

(
−1

2
(x − µ)T Σ−1(x − µ)

)
, x ∈ R2

We can now generalize and define ann-dimensional multivariate normal distribution.
Let X1, X2, ..., Xn be random variables with meansµ1, µ2, ..., µn, and let

X =




X1

X2

...
Xn


 and µ =




µ1

µ2

...
µn




Further, letΣ be an× n matrix where the(i, j)th entry isΣij = Cov[Xi, Xj]. This
means that the diagonal elements are the variances of theXi and the off-diagonal
elements can be written asΣij = ρσiσj .

Definition 3.10.4. If X hasn-dimensional joint pdf

f(x) =
1√

(2π)n|Σ|
exp

(
−1

2
(x − µ)T Σ−1(x − µ)

)

for x = (x1, x2, ..., xn)T ∈ Rn, it is said to have amultivariate normal
distributionwith parametersµ andΣ, writtenX ∼ Nn(µ,Σ).

As in the bivariate case,marginals are normal,keeping in mind that marginals can now
themselves be multidimensional. Linear combinations and conditional distributions
are also normal.
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3.10.5 Convolution

We have seen how to find the expected value and variance of a sumof random
variables. Sometimes we want to know more, and in the case of independent random
variables, it turns out that we can establish nice formulas for the entire distribution
of their sum. We will start with the discrete case, for which we already possess the
necessary tools.

Let us start by examining random variables with finite ranges. Suppose thatX
andY are independent discrete random variables, both with range{1, 2, ..., n} and
pmf’s pX andpY , respectively. We wish to find the pmf of the sumX + Y . First,
note that the range ofX + Y is {2, 3, ..., 2n}, take a valuek in this range, and apply
the law of total probability to obtain

P (X + Y = k) =

n∑

j=1

P (X + Y = k|X = j)P (X = j)

=

n∑

j=1

P (Y = k − j|X = j)P (X = j)

=

n∑

j=1

P (Y = k − j)P (X = j)

where we used the independence ofX andY in the last equality. In terms of the
pmf’s, we have thus shown that

pX+Y (k) =

n∑

j=1

pY (k − j)pX(j), k = 2, 3, ..., 2n

This is called theconvolutionof the two pmf’spX andpY . The assumption of finite
range was made only to simplify things a little, but it does not change anything vital,
and we have the following general result.

Proposition 3.10.4. Let X andY be independent discrete random variables,
with ranges{x1, x2, ...} and{y1, y2, ...}, respectively, and pmf’spX andpY .
The sumX + Y then has pmf

pX+Y (x) =

∞∑

j=1

pY (x − xj)pX(xj) for x in the range ofX + Y

Once we have established the formula in the discrete case, wecan guess that the
corresponding formula in the continuous case is similar, with pdf’s instead of pmf’s
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and that the sum is replaced by an integral.

Proposition 3.10.5. LetX andY be independent continuous random variables
with pdf’s fX andfY , respectively. The pdf of the sumX + Y is then

fX+Y (x) =

∫ ∞

−∞
fY (x − u)fX(u)du, x ∈ R

For a formal proof, start with the cdf ofX +Y , and use Corollary 3.5.7 to express this
as an integral involvingFY andfX . It can be shown that it is allowed to interchange
differentiation and integration; use this fact to obtain the pdf ofX + Y and finish the
proof.

Just as in the discrete case, this is called theconvolutionof fX andfY . The actual
limits of the integral are determined according to where theintegrand is positive,
which means that we must have bothfX(u) > 0 andfY (x − u) > 0.

Example3.10.10. Let X andY be independent and uniform on[0, 1]. Find the pdf
of the sumX + Y .

By Proposition 3.10.5

fX+Y (x) =

∫ ∞

−∞
fY (x − u)fX(u)du

where we need to determine what the actual integral limits are. First we note that the
range ofX +Y is [0, 2], so we need to pick ourx from that interval. Now,fX(u) = 1
if u is between 0 and 1 and 0 otherwise. For the other factor in the integrand, note
thatfY (x − u) = 1 if its argumentx − u is between 0 and 1, that is,0 ≤ x − u ≤ 1
and 0 otherwise. Sincex is fixed andu is the variable of integration, we rewrite this
asx − 1 ≤ u ≤ 1. Hence, for anyx ∈ [0, 2], the two inequalities

0 ≤ u ≤ 1 and x − 1 ≤ u ≤ x (3.10.1)

must be satisfied and if they are, the integrand equals 1. We need to distinguish be-
tween two cases:

Case 1: x ∈ [0, 1]. In this case, the two conditions in Equation (3.10.1) are satisfied
if 0 ≤ u ≤ x. Hence, for0 ≤ x ≤ 1

fX+Y (x) =

∫ x

0

du = x, 0 ≤ x ≤ 1
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Case 2: x ∈ [1, 2]. Here, the conditions are satisfied ifx − 1 ≤ u ≤ 1, and we get

fX+Y (x) =

∫ 1

x−1

du = 2 − x, 1 ≤ x ≤ 2

and the pdf ofX + Y is therefore

fX+Y (x) =

{
x if 0 ≤ x ≤ 1
2 − x if 1 ≤ x ≤ 2

This is for obvious reasons called atriangular distribution.

Example3.10.11. Consider radioactive decay that is such that times between con-
secutive emissions are independent andexp(λ). Find the pdf of the time between the
first and third emissions.

This example asks for the pdf ofX +Y , whereX andY are independent andexp(λ).
We have

fX(u) = λe−λu if u ≥ 0

and
fY (x − u) = λe−λ(x−u) if x − u ≥ 0

Recalling thatx is fixed andu the variable of integration, we get

fX+Y (x) =

∫ x

0

λe−λuλe−λ(x−u)du

= e−λxλ2

∫ x

0

du = e−λxλ2x, x ≥ 0

which we recognize from Section 2.8.2 as the gamma distribution with n = 2, that
is, X + Y ∼ Γ(2, λ).

The last example can be extended to sums of more than one random variable. For
example, ifX, Y, andZ are independent and exponential with parameterλ, then
X + Y ∼ Γ(2, λ), and we can apply Proposition 3.10.5 to the random variables
X + Y andZ to obtain

fX+Y +Z(x) =

∫ ∞

−∞
fZ(x − u)fX+Y (u)du

=

∫ x

0

λe−λ(x−u)e−λuλ2u du

= e−λxλ3

∫ x

0

u du = e−λxλ3 x2

2
, x ≥ 0
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by integration by parts of the last integral. Again, we recognize a gamma distribution,
this time with parametersn = 3 andλ. By induction it is easily shown that this holds
generally, and we get the following nice result.

Proposition 3.10.6. LetX1, ..., Xn be i.i.d. variables that have the exponential
distribution with parameterλ, and letS =

∑n
k=1 Xk. ThenS ∼ Γ(n, λ).

This means that in the case of integer values of the parameterα, we have a direct
interpretation of the gamma distribution as the sum of independent exponentially
distributed random variables.

3.11 GENERATING FUNCTIONS

Generating functions, or transforms, are very useful in probability theory, as in other
fields of mathematics. Several different generating functions are used, depending
on the type of random variable. We will discuss two, one that is useful for discrete
random variables and one for continuous random variables.

3.11.1 The Probability Generating Function

When we study nonnegative, integer-valued random variables, the following function
proves to be a very useful tool.

Definition 3.11.1. Let X be nonnegative and integer-valued. The function

GX(s) = E[sX ], 0 ≤ s ≤ 1

is called theprobability generating function(pgf) of X .

Note that by Proposition 2.4.4 we computeGX as the power series

GX(s) =
∞∑

k=0

skpX(k), 0 ≤ s ≤ 1

wherepX is the pmf ofX . If the range ofX is finite, the sum is finite. Note that

GX(s) = pX(0) +
∞∑

k=1

skpX(k)
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which immediately gives the following corollary.

Corollary 3.11.1. Let X be nonnegative and integer-valued with pgfGX .
Then

GX(0) = pX(0) and GX(1) = 1

Before we examine further properties of the pgf, let us find the pgf for two of our
common distributions.

Example3.11.1. X ∼ bin(n, p). The pgf is

GX(s) =
n∑

k=0

(
n

k

)
(ps)k(1 − p)n−k = (1 − p + ps)n, 0 ≤ s ≤ 1

by the binomial theorem.

Example3.11.2. X ∼ Poi (λ). The pgf is

GX(s) = e−λ
∞∑

k=0

(λs)k

k!
= eλ(s−1), 0 ≤ s ≤ 1

by Taylor’s theorem.

One important property of the pgf is that it uniquely determines the distribution. In
other words, if we are given a pgf, exactly one pmf corresponds to it and we can
compute this pmf explicitly. Above, we saw thatpX(0) = GX(0), and to obtain
pX(1), we first differentiate the pgf

G′X(s) =
d

ds

(
pX(0) +

∞∑

k=1

skpX(k)

)

=

∞∑

k=1

ksk−1pX(k) = pX(1) +

∞∑

k=2

ksk−1pX(k)

where we have used a result from calculus that says that this power series may be
differentiated termwise. We now see that if we are given the pgf, we have

pX(1) = G′X(0)
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To see the general pattern, let us differentiate once more:

G′′X(s) =
d

ds

(
pX(1) +

∞∑

k=2

ksk−1pX(k)

)

=

∞∑

k=2

k(k − 1)sk−2pX(k)

= 2pX(2) +

∞∑

k=3

k(k − 1)sk−2pX(k)

which gives

pX(2) =
G′′X(0)

2

If we continue to differentiate, we get the general formula which we state as a propo-
sition.

Proposition 3.11.2. Let X be nonnegative and integer-valued with pgfGX .
Then

pX(k) =
G

(k)
X (0)

k!
, k = 0, 1, ...

whereG
(k)
X denotes thekth derivative ofGX .

Another property of the pgf is that we can obtain the mean and variance, also by
differentiating. From the formulas for the derivatives above, we get

G′X(1) = E[X ]

G′′X(1) = E[X(X − 1)]

and we get the following result.

Proposition 3.11.3. If X has pgfGX , then

E[X ] = G′X(1) and Var[X ] = G′′X(1) + G′X(1) − G′X(1)2

Let us check the formulas for the Poisson distribution. IfX ∼ Poi(λ), then it has pgf

G(s) = eλ(s−1)
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which has first and second derivatives

G′(s) = λeλ(s−1) and G′′(s) = λ2eλ(s−1)

which gives
G′(1) = λ and G′′(1) = λ2

and
E[X ] = λ and Var[X ] = λ2 + λ − λ2 = λ

which is in accordance with Proposition 2.5.3 (or, if you wish, a proof of the propo-
sition). Note how it is simpler to find the mean and variance using pgf’s than to work
directly with the definition. Another central property of the pgf is that it turns sums
into products, in the following sense.

Proposition 3.11.4. LetX1, X2, ..., Xn be independent random variables with
pgf’s G1, G2, ..., Gn, respectively, and letSn = X1 + X2 + · · · + Xn. Then
Sn has pgf

GSn(s) = G1(s)G2(s) · · ·Gn(s), 0 ≤ s ≤ 1

Proof. SinceX1, ..., Xn are independent, the random variablessX1 , ..., sXn are
also independent for eachs in [0, 1], and we get

GSn(s) = E[sX1+X2+···+Xn ]

= E[sX1 ]E[sX2 ] · · ·E[sXn ]

= G1(s)G2(s) · · ·Gn(s)

and we are done.

This result is useful for proving results for sums of random variables. Let us look at
one example.

Example3.11.3. Let X1, ..., Xn be independent such thatXk ∼ Poi (λk). What is
the distribution ofSn = X1 + · · · + Xn?

By Proposition 3.11.4 and Example 3.11.2,Sn has pgf

GSn(s) = eλ1(s−1) · · · eλn(s−1) = e(λ1+···+λn)(s−1)

which we recognize as the pgf of a Poisson distribution with parameterλ1 + · · ·+λn.
We have shown that the sum of independent Poisson is again Poisson. We could
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have done this with the convolution methods from Section 3.10.5, but note how much
quicker it is to use generating functions.

In particular, if theXk are i.i.d. with pgfG(s), then the sum has pgfG(s)n. We look
at one example of this.

Example3.11.4. Let X ∼ bin(n, p). ThenX can be written as
∑n

k=1 Ik, where the
Ik are i.i.d. indicators withP (Ik = 1) = p. The pgf of eachIk is

G(s) = s0(1 − p) + s1p = 1 − p + ps

and henceX has pgf(1 − p + ps)n, in accordance with Example 3.11.1.

A different situation arises if the number of summands is notfixed but random,
which is a very natural assumption in many applications. Suppose, for example, that
customers arrive at a convenience store and each customer buys a number of lottery
tickets. How many tickets are sold in a day? We can suppose that the number of
customers is a random variableN and that thekth customer buysXk tickets, where
X1, X2, ... are i.i.d. nonnegative integer-valued random variables, independent ofN .
The total number of tickets sold is then

SN =
N∑

k=1

Xk

which is the sum of a random number of random variables, wherewe interpretSN

as0 if N = 0. If we are given distributions ofN and theXk, we can find the dis-
tribution ofSN via probability generating functions according to the following result.

Proposition 3.11.5. Let X1, X2, ... be i.i.d. nonnegative and integer-valued
with common pgfGX , and letN be nonnegative and integer-valued, and inde-
pendent of theXk, with pgf GN . ThenSN = X1 + · · · + XN has pgf

GSN (s) = GN (GX(s))

the composition ofGN andGX .

Proof. We condition onN to obtain

GSN (s) =

∞∑

n=0

E
[
sSN |N = n

]
P (N = n) =

∞∑

n=0

E
[
sSn
]
P (N = n)
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sinceN andSn are independent. Now note that

E
[
sSn
]

= GX(s)n

by Proposition 3.11.4 and we get

GSN (s) =

∞∑

n=0

GX(s)nP (N = n) = GN (GX(s))

the pgf ofN evaluated at the pointGX(s).

Note the similarity between the cases of fixed and random numbers of summands:

GSn(s) = GX(s)n

GSN (s) = E
[
GX(s)N

]

Example3.11.5. Suppose that customers arrive at a rural conveniencestore such that
the number of customers in a not-so-busy hour has a Poisson distribution with mean
5. Each customer buys a number of lottery tickets, independently of other customers,
and this number has a Poisson distribution with mean2. For this hour find(a) the pgf
of the total number of tickets sold,(b) the probability that no tickets are sold,(c) the
expected number of tickets sold.

We have the situation in Proposition 3.11.5 with the pgf’s

GX(s) = e2(s−1)

GN (s) = e5(s−1)

and get

GSN (s) = exp
(
5(e2(s−1) − 1)

)

which answers (a). For (b), we lets = 0 to obtain

P (SN = 0) = exp
(
5(e−2 − 1)

)
≈ 0.01

and for (c), we differentiate and get

G′SN
(s) = 10e2(s−1) exp

(
5(e2(s−1) − 1)

)

and plugging ins = 1 gives
E[SN ] = 10
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There are two interesting observations to be made in the lastexample: (1)SN does
not have a Poisson distribution, so “the sum of independent Poisson is Poisson” from
Example 3.11.3 is not true for random sums; and (2) we can notethatE[SN ] = 10
equals the product ofE[N ] = 5 andE[X ] = 2. This is no coincidence, and we next
state a general result for the mean and variance of a random sum.

Corollary 3.11.6. Under the assumptions of Proposition 3.11.5 it holds that

E[SN ] = E[N ]µ

Var[SN ] = E[N ]σ2 + Var[N ]µ2

whereµ = E[Xk] andσ2 = Var[Xk].

Proof. First note that

G′SN
(s) =

d

ds
GN (GX(s)) = G′N (GX(s))G′X(s)

by the chain rule. Combining this with Propositions 3.11.3 and 3.11.5 now gives

E[SN ] = G′SN
(1) = G′N (GX(1))G′X(1) = G′N (1)G′X(1) = E[N ]µ

where we also used the fact thatGX(1) = 1. We leave the proof of the variance
formula as an exercise.

Recall from Section 3.6.2 that for a sum ofn i.i.d. random variables, we have
E[Sn] = nµ and Var[Sn] = nσ2. In the case of a random number of summandsN ,
we can thus replacen by E[N ] for the mean, but things are a little more complicated
for the variance. The first term in the variance formula accounts for the variability of
theXk and the second, for the variability ofN .

3.11.2 The Moment Generating Function

The probability generating function is an excellent tool for nonnegative and integer-
valued random variables. Forother random variables, we caninsteaduse the following
more general generating function.

Definition 3.11.2. Let X be a random variable. The function

MX(t) = E[etX ], t ∈ R

is called themoment generating function(mgf) of X .
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If X is continuous with pdffX , we compute the mgf by

MX(t) =

∫ ∞

−∞
etxfX(x)dx

and for discreteX , we get a sum instead. Note that ifX is nonnegative integer-valued
with pgf GX , then

MX(t) = GX(et)

which immediately gives the mgf for the distributions for which we computed the pgf
above. Let us look at some continuous distributions.

Example3.11.6. Let X ∼ unif[0, 1]. Find the mgf ofX .

We get

MX(t) =

∫ 1

0

etxdx =
et − 1

t
, t ∈ R

where we interpretMX(0) as the limitlimt→0 MX(t) = 1.

Example3.11.7. Let X ∼ exp(λ). Find the mgf ofX .

We get

MX(t) =

∫ ∞

0

etxλe−λxdx = λ

∫ ∞

0

e(t−λ)xdx =
λ

λ − t
, t < λ

Note that the integral in the calculation above is infinite ift ≥ λ, and hence the mgf
of the exponential distribution is defined only fort < λ. In general, the mgf is not
necessarily defined on all ofR, and for some random variables it turns out that the
mgf does not exist at all (Problem 146). Before the next example, we state a useful
property of the mgf. We leave the proof as an exercise.

Corollary 3.11.7. Let X be a random variable that has mgfMX , and let
Y = aX + b. ThenY has mgf

MY (t) = ebtMX(at)
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Example3.11.8. Let X ∼ N(µ, σ). FindMX(t).

Let us start with the standard normal distribution. Thus, let Z ∼ N(0, 1), and find
MZ(t). We get

MZ(t) =

∫ ∞

−∞
etxϕ(x)dx =

1√
2π

∫ ∞

−∞
e(t2/2−(x−t)2/2)dx

= et2/2

∫ ∞

−∞

1√
2π

e−(x−t)2/2dx = et2/2, t ∈ R

where the last equality follows since the integrand is the pdf of a normal distribution
with meant and variance1, and hence the integral equals1. Now letX = µ + σZ
so thatX ∼ N(µ, σ2), to obtain

MX(t) = etµMZ(σt) = etµ+σ2t2/2, t ∈ R

by an application of Corollary 3.11.7.

The moment generating function has many properties that areanalogous to those of
the probability generating function. Thus, the mgf uniquely determines the distribu-
tion of X , a fact that we will not prove. We can also obtain the mean and variance
from the mgf, according to the following formula.

Corollary 3.11.8. If X has mgfMX(t), then

E[X ] = M ′
X(0) and Var[X ] = M ′′

X(0) − (M ′
X(0))2

Proof. By differentiatingMX(t) with respect tot we get

M ′
X(t) =

d

dt
E[etX ] = E[XetX ]

where we assumed that we can interchange differentiation and expectation. Note how
t is the variable of differentiation and we viewX as fixed. In the case of a discreteX ,
this amounts to differentiating a sum termwise, and in the case of a continuousX , it
means that we can differentiate under the integral sign. This is by no means obvious
but can be verified. We will not address this issue further. Differentiating once more
gives

M ′′
X(t) =

d

dt
E[XetX ] = E[X2etX ]
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which gives

Var[X ] = E[X2] − (E[X ])2 = M ′′
X(0) − (M ′

X(0))2

as desired.

Note that we get the general result

E[Xn] = M
(n)
X (0), n = 1, 2, ...

whereM
(n)
X is the nth derivative ofMX . The numberE[Xn] is called thenth

momentof X ; hence the term moment generating function. Compare with the proba-
bility generating function which generates probabilitiesby differentiating and setting
s = 0. The moment generating function also turns sums into products, according to
the following proposition, which you may prove as an exercise.

Proposition 3.11.9. LetX1, X2, ..., Xn be independent random variables with
mgf’s M1, M2, ..., Mn, respectively, and letSn = X1 + · · · + Xn. ThenSn

has mgf
MSn(t) = M1(t)M2(t) · · ·Mn(t), t ∈ R

Example3.11.9. Let X ∼ N(µ1, σ
2
1) andY ∼ N(µ2, σ

2
2), and suppose thatX and

Y are independent. Show thatX + Y ∼ N(µ1 + µ2, σ
2
1 + σ2

2).

By Proposition 3.11.9 and Example 3.11.8, the mgf ofX + Y is

MX+Y (t) = exp

(
tµ1 +

σ2
1t

2

2

)
exp

(
tµ2 +

σ2
2t

2

2

)

= exp

(
t(µ1 + µ2) +

(σ2
1 + σ2

2)t2

2

)

which we recognize as the mgf of a normal distribution with parametersµ1 + µ2 and
σ2

1 + σ2
2 , and by uniqueness of the mgf we are done.

We have seen how summation of independent random variables corresponds to multi-
plication of their pgf’s or mgf’s. Also, we have previously learned that the distribution
of the sum of independent random variables can be obtained asthe convolution of
their distributions, in both the discrete and continuous cases. We summarize this
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observation in an informal statement that can be useful to remember.

The following are equivalent:

(a) Summation of independent random variables

(b) Convolution of distributions

(c) Multiplication of generating functions

3.12 THE POISSON PROCESS

Suppose that we are observing some system where changes occur randomly in time.
For example, we could be observing incoming jobs to a computer, customers arriving
at a store, accidents occurring on a certain highway, earthquakes, or emission of
radioactive particles. Each of these examples have in common that we can represent
them as points on a timeline; see Figure 3.13, where each “×” marks the time when
something was observed.

We call this apoint process. To be able to investigate the behavior of this point
process, we need to make assumptions on how the points are distributed. We therefore
assume that the times between consecutive points are independent random variables
T1, T2, ..., which have exponential distributions with the same parameterλ. Assum-
ing an exponential distribution means that we assume that the process is very unpre-
dictable. TheTk are called theinter-arrival times. By the memoryless property, this
means that at any fixed time, the time until the next point isexp(λ) regardless of
when the previous point came. Such a process is sometimes referred to ascompletely
randombut we use another term, already mentioned in Section 2.6.

Definition 3.12.1. A point process where times between consecutive points
are i.i.d. random variables that areexp(λ) is called aPoisson processwith rateλ.

The rateλ has unit mean number of points per time unit. Hence, larger values ofλ
correspond to more points per time unit, which is also clear since the expected time
between points is1/λ.

One random variable of interest is the number of points in a interval. Fixt ≥ 0,
and define the random variable

X(t) = the number of points in a time interval of lengtht
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time
× × × × × ×

0

Fig. 3.13 A point process in time. Each “×” marks the occurrence of some event of interest.

and note thatX(t) is a discrete random variable with range{0, 1, 2, ...}. Also note
that by the memoryless property, it does not matter where theinterval is located,
since at any given time, the time until the next point has the same distribution. Thus,
we can without loss of generality consider the interval[0, t]. Let us first investigate
P (X(t) = 0). If we denote the time for the first point byT1, we realize thatX(t) = 0
if and only if T1 > t (see Figure 3.14). Hence we get

P (X(t) = 0) = P (T1 > t) = e−λt

For generalk, note thatX(t) = k if and only if thekth point came beforet and the
(k + 1)th point, aftert. With Sk = T1 + · · ·+ Tk, the time for thekth point, we can
express this in terms of events as

{X(t) = k} = {Sk ≤ t} \ {Sk+1 ≤ t}

the event that thekth but not the(k +1)th point came beforet. Also, sinceSk+1 ≤ t
implies thatSk ≤ t, we have{Sk+1 ≤ t} ⊆ {Sk ≤ t}, and we get

P (X(t) = k) = P (Sk ≤ t) − P (Sk+1 ≤ t)

and by Proposition 3.10.6,Sk ∼ Γ(k, λ) for all k. From Section 2.8.2 we now get

P (X(t) = k) = 1 − e−λt
k−1∑

j=0

λjtj

j!
−



1 − e−λt
k∑

j=0

λjtj

j!





= e−λt (λt)k

k!
, k = 0, 1, 2, ...

which we recognize as the Poisson distribution from Section2.5.4. Hence we arrive
at the following proposition.

×
0 T1 > ttX(t) = 0

Fig. 3.14 The relation between the random variablesX(t) andT1
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Proposition 3.12.1. Consider a Poisson process with rateλ, whereX(t) is
the number of points in an interval of lengtht. Then

X(t) ∼ Poi(λt)

Recall that the parameter in the Poisson distribution is also the expected value. Hence,
we have

E[X(t)] = λt

which makes sense sinceλ is the mean number of points per time unit andt is the
length of the time interval. In practical applications, we need to be careful to use the
same time units forλ andt.

Now consider two disjoint time intervals. By the memorylessproperty, we realize
that the number of points in one of the intervals is independent of the numberof points
in the other. Thus, in a Poisson process with intensityλ, the numbers of points in
disjoint time intervals are independent and have Poisson distributions with meansλ
times the interval lengths. Formally, letI1, I2, ... be any sequence of disjoint time
intervals of lengthst1, t2, ..., and letX(tj) denote the number of points inIj . Fur-
ther, letT1, T2, ... be the times between points defined above. We have the following
proposition.

Proposition 3.12.2. In a Poisson process with rateλ

(a) T1, T2, ... are independent andexp(λ)

(b) X(t1), X(t2), ... are independent andX(tj) ∼ Poi(λtj), j = 1, 2, ...

We have used (a) as the definition of the Poisson process and argued that (b) follows.
In fact, we could as well use (b) as the definition and argue that (a) follows. The
independence assumption in (b) implies the memoryless property for times between
points and the relation above between numbers of points and times between consec-
utive points gives the exponential distribution. Hence

The properties (a) and (b) in Proposition 3.12.2 are equivalent.
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We know that the number of points in the interval[0, t] in a Poisson process with rate
λ has a Poisson distribution with meanλt. Now suppose that we know that there is
exactly one point in the interval. What is the distribution of its position?

By the memoryless property, it does not matter whether thereis also a point exactly
at timet, so we can assume that the second point arrived att. What is the distribution
for the position of the first point? In terms of the interarrival times, we ask for
the conditional distribution ofT1 given T1 + T2 = t. To find this, consider the
transformation

S1 = T1, S2 = T1 + T2

that is,S1 andS2 are simply the arrival times of the first and second points respectively.
We wish to find the conditional distribution ofS1 givenS2 = t. The joint distribution
of (T1, T2) is, by independence

f(T1,T2)(t1, t2) = λ2e−λ(t1+t2), t1, t2 ∈ R

The joint pdf of(S1, S2) is obtained by noting that the Jacobian matrix for the trans-
formation(t1, t2) → (t1, t1 + t2) has determinant1 (and so does its inverse), and
Proposition 3.6.8 gives

f(S1,S2)(s, t) = f(T1,T2)(s, t − s) = λ2e−λt, 0 ≤ s ≤ t

We already know thatS2 ∼ Γ(2, λ), so thatS2 has pdf

fS2(t) = λ2te−λt

which gives the conditional pdf

fS1(s1|t) =
f(S1,S2)(s, t)

fS2(t)
=

1

t
, 0 ≤ s ≤ t

which is a uniform distribution on[0, t]. Thus, given that the second point arrives at
time t, the position for the first is uniform between0 andt. Considering the memo-
rylessness of the exponential inter-arrival times, this comes as no big surprise. Also,
by the memoryless property, it is equivalent to condition onthe fact that the second
point arrived att and that there is exactly one point in the interval[0, t]. Whether
there is in fact a point at timet does not matter. More generally, if we condition onn
points in[0, t] or equivalently, that the(n + 1)th point arrived at timet, then points
are distributed as independent uniforms on the interval. Let us state this formally.

Proposition 3.12.3. Consider a Poisson process with rateλ. If there aren
points in the time interval[0, t], their joint distribution is the same as that ofn
i.i.d. random variables that are unif[0, t].
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The property in the proposition is called theorder statistic propertyof the Poisson
process, since the points are distributed liken order statistics from a uniform distri-
bution on[0, t]. The proof is similar to what we did above in the casen = 1, invoking
Proposition 3.10.3.

Example3.12.1. Suppose that earthquakes in a region occur according to a Poisson
process with an average of104 earthquakes per year. Find the probability that(a)
a given week has at most one earthquake,(b) three consecutive earthquakes are at
least one week apart from each other,(c) a week with two earthquakes has them on
different days.

The rate is104 earthquakes per year. (a) WithX as the number of earthquakes in a
week, we haveλ = 104 andt = 1

52 and henceX ∼ Poi(2) and get

P (X ≤ 1) = P (X = 0) + P (X = 1) = e−2(1 + 2) ≈ 0.41

For (b), the timesT1 andT2 between consecutive earthquakes are independent and
exp(2), which gives

P (T1 > 1, T2 > 1) = P (T1 > 1)P (T2 > 1) = e−4 ≈ 0.02

For (c), by the order statistic property, the two earthquakes are distributed as two
independent uniform random variables over the week. Hence,any given day has
probability 1

7 , and the probability that the other falls on another day is6
7 (formally,

condition on the day of one of the quakes).

3.12.1 Thinning and Superposition

Suppose now that we have a Poisson process with rateλ, where we do not observe
every point, either by accident or on purpose. For example, phone calls arrive as a
Poisson process, but some calls are lost when the line is busy. Hurricanes are formed
according to a Poisson process but we are interested only in those that make landfall.
These are examples ofthinningof a Poisson process (see Figure 3.15).

We assume that each point is observed with probabilityp and that different points
are observed independently of each other. Then it turns out that the thinned process
is also a Poisson process.

×××× × ××

Fig. 3.15 The original Poisson process with observed points encircled and the resulting
thinned process.
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Proposition 3.12.4. The thinned process is a Poisson process with rateλp.

Proof. We work with characterization (b) in Proposition 3.12.2. Clearly, the
numbers of observed points in disjoint intervals are independent. To show the Poisson
distribution, we use probability generating functions. Consider an interval of length
t, letting X(t) be the total number of points andXp(t) be the number of observed
points in this interval. Then

Xp(t) =

X(t)∑

k=1

Ik

whereIk is 1 if the kth point was observed and0 otherwise. By Proposition 3.11.5,
Xp(t) has pgf

GXp(s) = GX(t)(GI(s))

where
GX(t)(s) = eλt(s−1)

and
GI(s) = 1 − p + ps

and we get
GXp(s) = eλt(1−p+ps−1) = eλpt(s−1)

which we recognize as the pgf of a Poisson distribution with parameterλpt.

It is definitely reasonable that the expected number of observed points in the thinned
process isλpt. The more interesting aspect of Proposition 3.12.4 is that the Poisson
process properties are retained. It is important, though, that the thinning is done in
the independent way described above; otherwise the Poissonprocess properties are
ruined. The following result is not only interesting but surprising.

Proposition 3.12.5. The processes of observed and unobserved points are
independent.

Proof. Fix an interval of lengtht, letX(t) be the total number of points, andXp(t)
andX1−p(t), the number of observed and unobserved points, respectively. Hence
X(t) = Xp(t) + X1−p(t) and by Proposition 3.12.4, we obtain

Xp(t) ∼ Poi(λpt) and X1−p(t) ∼ Poi(λ(1 − p)t)
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Also, given thatX(t) = n, the number of observed points has a binomial distribution
with parametersn andp. We get

P (Xp(t) = j, X1−p(t) = k) = P (Xp(t) = j, X(t) = k + j)

= P (Xp(t) = j|X(t) = k + j)P (X(t) = k + j)

=

(
k + j

j

)
pj(1 − p)ke−λt (λt)k+j

(k + j)!

=
(k + j)!

k!j!
pj(1 − p)ke−λt (λt)k+j

(k + j)!

= e−λpt (λpt)j

j!
e−λ(1−p)t (λ(1 − p)t)k

k!

= P (Xp(t) = j)P (X1−p(t) = k)

This result should end with an exclamation mark instead of a mere period. For ex-
ample, suppose that we have a Poisson process such that we expect 10 points per
hour. If in one hour we observe20 points and in another no points at all, it seems that
the second hour ought to have more unobserved points. However, the last result tells
us that this is not so, but the distribution of unobservedpoints is the same in both cases.

Example3.12.2. Consider the earthquakes in Example 3.12.1, occurring on aver-
age twice a week. Each time there is an earthquake, it is of category “major” with
probability0.01; otherwise, “minor.” (a) What is the probability that there are no
major earthquakes in a given year?(b) What is the probability that there are no major
earthquakes and at least one minor quake in a given week?

For (a), note that the numberX of major earthquakes in a year has a Poisson distri-
bution with meanλp = 104 × 0.01 = 1.04 and hence

P (X = 0) = e−1.04 ≈ 0.35

For (b), the mean ofX is instead0.02 (quakes per week) and if we letY be the number
of minor quakes, thenY has a Poisson distribution with mean2 × 0.99 = 1.98 and
by independence ofX andY , we obtain

P (X = 0, Y > 0) = P (X = 0)(1 − P (Y = 0)) = e−0.02(1 − e−1.98) ≈ 0.84
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Let us finally consider a situation which is in a sense the opposite of thinning. In-
stead of removing points from a Poisson process, we add points according to another
Poisson process. Hence we are considering a situation wherewe have two Poisson
processes and observe the total number of points in both of them; that is, we observe
thesuperpositionof the two. For example, jobs may arrive at a computer according
to Poisson processes from different sources or cars pass a point on a road according
to two Poisson processes, one in each direction (see Figure 3.16 for an illustration).
Just as in the case of thinning, the Poisson process properties are retained, provided
the two processes are independent.

Proposition 3.12.6. Consider two independent Poisson processes with rates
λ1 andλ2, respectively. The superposition of the two processes is a Poisson
process with rateλ1 + λ2.

Proof. For this we use characterization (a) in Proposition 3.12.2.Fix a time where
there is a point in either of the two processes. Denote the time until the next point
in the first process byS and the corresponding time in the second byT . Since the
two processes are independent,S andT are independent random variables. Also,
by the memoryless property, the distributions areS ∼ exp(λ1) andT ∼ exp(λ2),
regardless of which of the two processes the last point came from. Hence the time
until the next point in the superposition process is the minimum ofS andT , and by
Example 3.10.3, this isexp(λ1 + λ2). Thus, the superposition process is a Poisson
process with rateλ1 + λ2 and we are done.

× × × ×××

× × × ×××

Fig. 3.16 Two independent Poisson processes and their superposition.
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PROBLEMS

Section 3.2. The Joint Distribution Function

1 Let (X, Y ) have joint cdfF . Show that

P (a < X ≤ b, c < Y ≤ d) = F (b, d) + F (a, c) − F (a, d) − F (b, c)

2 Let (X, Y ) have joint cdfF , and letx ≤ y. For which set do we get the probability if
we computeF (y, y) − F (x, x)?

3 Let F be a joint cdf. Find the limit asx → ∞ of (a) F (x, x), (b) F (−x, x), (c)
F (−x,−x).

4 Are the following statements true or false in general?(a) F (x, y) ≤ FX(x) for all
x, y ∈ R, (b) P (X > x,Y > y) = 1 − F (x, y) for all x, y ∈ R.

5 Let (X, Y ) have joint cdfF , and letG be the cdf of the random variableX +Y . Show
thatF (x, x) ≤ G(2x) for all x ∈ R.

6 Find the marginal cdf’s ofX and Y for the following joint cdf’s: (a) F (x, y) =
1 − e−x − e−y + e−(x+y), x, y ≥ 0, (b) F (x, y) = x2√y, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,
(c) F (x, y) = 2xy, 0 ≤ x ≤ 1

2
, 0 ≤ y ≤ 1, (d) F (x, y) = 1

3
(x2y + 2xy2), 0 ≤ x ≤

1, 0 ≤ y ≤ 1.

Section 3.3. Discrete Random Vectors

7 Let (X, Y ) be uniform on the four points(0, 0), (1, 0), (1, 1), (2, 1). (a) Find the
marginal pmf’s ofX andY . (b) For which joint pmf of(X, Y ) areX andY uniform
on their respective ranges?

8 Is it true in general thatp(x, y) ≤ pX(x) for all x, y?

9 Consider a family with three children. LetX be the number of daughters andY the
number of sons. Find the joint pmf of(X, Y ).

10 Roll a die twice and letY be the sum of the two rolls. Find the joint pmf of(X, Y ) if
X is (a) the number on the first roll,(b) the smallest number.

11 Draw three cards without replacement from a deck of cards. Let H be the number of
hearts andS the number of spades drawn.(a) Find the joint pmf of(H, S). (b) Find
P (H = S).

12 Draw one card from a deck of cards. LetH be the number of hearts andA the number
of aces drawn.(a) Find the joint pmf of(H,A). (b) FindP (H ≤ A).

13 Consider a population of individuals that reproduce in sucha way that the number of
children of an individual has probability distribution( 1

4
, 1

2
, 1

4
) on the set{0, 1, 2} and

that individuals reproduce independently. Consider a randomly chosen individual, let
X be the number of children andY the number of grandchildren of this individual, and
let p be the joint pmf of(X, Y ). Find (a) p(0, 0), (b) p(2, 2), (c) P (Y = 0).
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Section 3.4. Jointly Continuous Random Vectors

14 Show that the following functions are possible joint pdf’s:(a)f(x, y) = e−y, 0 ≤ x ≤
y < ∞, (b) f(x, y) = xe−x(y+1), x, y ≥ 0, (c) f(x, y) = 1/(x2y2), x, y ≥ 1, (d)
f(x, y) = x/

√
y, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

15 Which of the following functions are possible joint pdf’s on[0, 1]×[0, 1]: (a)f(x, y) =
xy, (b) f(x, y) = 4y − 2x, (c) f(x, y) = 3|y − x|, (d) f(x, y) = 2x?

16 The random variablesX andY have joint pdf

f(x, y) = c(x − y), 0 ≤ y ≤ x ≤ 1

Find (a) the constantc, (b) P (X > 1
2
, Y ≤ 1

2
), (c) P (X ≤ 2Y ), (d) the marginal

pdf’s of X andY .

17 The random variablesX andY have joint cdfF (x, y) = 1
2
(x2y + xy2), 0 ≤ x ≤

1, 0 ≤ y ≤ 1. Find the joint pdf and the marginal pdf’s ofX andY .

18 Let X ∼ unif[0, 1] and letA be the area of a square with sidelengthX. Show thatX
andA are continuous when viewed one by one but that(X, A) is not jointly continuous.

19 Let (X, Y ) be uniform on the set([0, 1
2
] × [0, 1

2
]) ∪ ([ 1

2
, 1] × [ 1

2
, 1]) (draw a figure).

Find the marginals ofX andY .

20 Consider a dart thrown at a dart board with radius 1. Suppose that the player aims
at the center and that this is reflected in the joint pdf of(X, Y ) being f(x, y) =
c(1− (x2 + y2)), x2 + y2 ≤ 1. Find(a) the constantc, (b) the probability that the dart
hits within distanced of the center.

21 Are the following statements true in general for a joint pdf:(a) f(x, y) ≤ fX(x) for all
x, y ∈ R, (b) f(x, y) ≤ fX (x) for somex, y ∈ R, (c) f(x, y) ≤ 1 for all x, y ∈ R,
(d) f(x, y) ≤ 1 for somex, y ∈ R?

Section 3.5. Conditional Distributions and Independence

22 Eggs are delivered to a restaurant by the gross (1 gross =12 dozen). From each gross,
a dozen eggs is chosen at random. If none are cracked, the gross is accepted, and if
more than one egg is cracked, the gross is rejected. If exactly one egg is cracked, an
additional dozen eggs from the same gross is inspected. If this has no cracked eggs, the
entire gross is accepted, otherwise it is rejected. Supposethat a gross has eight cracked
eggs. What is the probability that it is accepted?

23 Customers arrive to a store such that the number of arriving customers in an hour has a
Poisson distribution with mean4. A customer is male or female with equal probabilities.
Let X be the number of female customers in an hour and findP (X = 0).

24 Let X be a random variable andc a constant. Show thatX andc are independent.

25 Let X andY be independent and have Poisson distributions with meansλ1 andλ2,
respectively. Show that the conditional distribution ofX givenX +Y = n is binomial
and identify the parameters.

26 Let X andY be independent and have the same binomial distribution withparameters
n andp. Show that the distribution ofX givenX +Y = n is hypergeometric and does
not depend onp. Explain intuitively.
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27 Let X andY be independent and have the same geometric distribution with success
probability p. Find the conditional distribution ofX given X + Y = n. Explain
intuitively.

28 A salesman has a weekly net income that is uniform on[−1, 2] ($1000; a negative
number means a net loss). LetX be his income in a week when he makes a profit. Find
the pdf ofX.

29 Consider Example 2.4.8 where the amountX of the compound has pdff(x) = 2x, 0 ≤
x ≤ 1 and is kept ifX ≥ 0.5. What is the conditional pdf of the compound in a test
tube that is kept?

30 Let(X, Y )be jointlycontinuous. Is it thenalways true thatFY (y|x) = F (x, y)/FX(x)?
If not, give a condition for when it is true.

31 For the joint pdf’s in Problem 14, find the conditional pdf ofY givenX = x.

32 Let X have a uniform distribution on(0, 1), and given thatX = x, let the conditional
distribution ofY be uniform on(0, 1/x). (a) Find the joint pdff(x, y) and sketch the
region where it is positive.(b) FindfY (y), the marginal pdf ofY and sketch its graph.
(c) ComputeP (X > Y ).

33 Let X ∼ unif[0, 1]. Find the pmf ofY if the conditional distribution ofY given
X = x is bin(n, x). DoesY have a binomial distribution?Note:

∫ 1

0
xa(1 − x)bdx =

a!b!/(a + b + 1)!

34 Adam and Billy Bob have agreed to meet at 12:30. Assume that their arrival times
are independent random variables, Adam’s uniformly distributed between12:30 and
1:00 and Billy Bob’s uniformly distributed between12:30 and1:15. (a) Compute the
probability that Billy Bob arrives first.(b) Compute the probability that the one who
arrives first must wait more than10 minutes.

35 Let X andY be nonnegative, independent continuous random variables.(a) Show that

P (X < Y ) =

∫ ∞

0

FX(x)fY (x)dx

(b) What does this become ifX ∼ exp(λ1) andY ∼ exp(λ2)?

36 Decide whetherX andY are independent if(X, Y ) has the following joint pdf’s on
[0, 1] × [0, 1]: (a) f(x, y) = 4xy, (b) f(x, y) = x + y, (c) f(x, y) = x(2y + 1), (d)
f(x, y) = 6xy2, (e)f(x, y) = 2y.

37 (a) Let X andY be independent random variables. Show thatX2 andY 2 are also
independent.(b) The converse of (a) is not true. LetX, Y , andU be independent such
thatX andY areexp(1) andU is −1 or 1 with equal probabilities. LetS = UX and
T = UY . Show thatS2 andT 2 are independent but thatS andT are not independent.
(c) Let X andY be independent random variables andg andh be two functions that
are strictly monotone. Show thatg(X) andh(Y ) are independent.

38 Let R1 andR2 be independent and unif[0, 1], and letV1 be the volume of a sphere with
radiusR1 andV2 the volume of a cube with side2R2. FindP (V1 > V2).

39 Consider the quadratic equationx2 + Bx + C = 0 whereB andC are independent
and have uniform distributions on[−n, n]. Find the probability that the equation has
real roots. What happens asn → ∞?
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40 Consider the bass from Problem 17 in Chapter 2. A more realistic model is that the
weight at ageA is W = 2A + 3 + X, whereX is a random variable, independent
of A, accounting for the fact that not all fish of a particular age have exactly the same
weight. Suppose thatX ∼ unif[−2, 2] and find the probability that(a) a 10-year-old
bass weighs less than22 pounds,(b) a randomly chosen bass is older than8 years and
weighs more than20 pounds,(c) two randomly chosen bass of the same age differ in
weight by at least2 pounds.

41 Let f andg be two pdf’s, letp ∈ (0, 1) and leth(x) = pf(x) + (1 − p)g(x), x ∈ R.
(a) Show thath is a pdf. (b) If X has pdff andY has pdfg, what does the pdfh
describe?

Section 3.6. Functions of Random Vectors

42 Let X andY have the same distribution (but not necessarily be independent) and let
Z = X − Y . Show thatZ has a symmetric distribution (see Problem 101 in Chapter
2).

43 LetX andY be independent and unif[0, 1]. Find the cdf and pdf of the random variables
(a) |X − Y |, (b) X/(X + Y ).

44 A current ofI amperes flows through a resistance ofR ohms, thus generating the power
W = I2R watts. Suppose thatI has pdff(x) = 2x, 0 ≤ x ≤ 1, R ∼ unif[0, 1] and
thatI andR are independent. Find the pdf ofW .

45 In Problem 34, compute the expected time that(a) Billy Bob must wait for Adam,(b)
the first person to arrive must wait for the second.

46 Water flows in and out of a dam such that the daily inflow is uniform on[0, 2] (megaliters)
and the daily outflow is uniform on[0, 1], independently of the inflow. Each day the
surplus water (if there is any) is collected for an irrigation project. Compute the expected
amount of surplus water in a given day.

47 Let X andY be independent andexp(1). FindE[e−(X+Y )/2].

48 Let X and Y be independent and unif[0, 1]. Find (a) E[XY ], (b) E[X/Y ], (c)
E[log(XY )], (d) E[|Y − X|].

49 Consider the two rods in Example 3.6.6. Suppose that there isan errorX when we lay
the rods side by side that is independent of the measurementsand such thatE[X] = 0
and Var[X] = τ 2. Now measure the sum and differenceS andD and estimatea by
A = (S + D)/2. (a) Find the mean and variance ofA. (b) When is the precision with
this method better than taking one single measurement of thelonger rod?

50 Let X1, X2, ..., Xn be i.i.d. random variables with meanµ and varianceσ2, let Sn =
X1 + · · ·+ Xn, and letX̄ = Sn/n (called thesample mean). FindE[X̄] and Var[X̄ ].

51 LetX1, ..., Xn be independent with the same meanµ and the same varianceσ2 . Express
the following expected values in terms ofn, µ, andσ2: (a) E[X2

1 + · · · + X2
n], (b)

E[(X1 + · · · + Xn)2].

52 Let X have a negative binomial distribution with parametersr andp (see Problem 61,
Chapter 2). FindE[X] and Var[X] without using the definition; instead, consider how
X can be written as a sum of independent random variables.
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53 Recall the concepts of skewness and kurtosis from Problems 102 and 104, in Chapter
2. LetX1, ..., Xn be independent and have the same distribution with skewnesss and
kurtosisc, and letSn =

∑n

k=1
Xk. (a) Show that skw[Sn] = s/

√
n. (b) Show that

kur[Sn] = 3 + (c − 3)/n. (c) Find skw[X] and kur[X] if X ∼ bin(n, p).

54 Consider coupons numbered1, 2, ..., n, which you collect until you have all numbers.
Each time you get a coupon, its number is independent of previous numbers and all
numbers are equally likely. LetN be the number of coupons you need, and show that
(a) E[N ] = n

∑n

k=1
(1/k) ≈ n log n for largen, (b) there is a constantc such that

Var[N ] ≈ cn2 for largen. What isc?

55 In the previous problem, letX be the number of different coupons when you have
collectedk coupons. (a) Find E[X]. Hint: Let Ij be the indicator that there is at
least one coupon with numberj, among thek coupons.(b) Show that, for largen and
k = cn, E[X] ≈ n(1 − e−c), c = 1, 2, . . . .

56 You roll a die repeatedly until all numbers have shown up. What is the expected number
of 6s? Hint: Let Nk be the expected number ofk’s andN as in Problem 54 and argue
thatE[N1] + · · · + E[N6] = E[N ].

57 You throw darts at random on a chessboard (64 squares). Aftern throws, letX be the
number of squares that are not hit. FindE[X], and show thatE[X] ≈ ne−1/64 for
largen. For which values ofn is the approximation useful?

58 ConsiderN married couples. If there aren deaths, what is the expected number of
married couples remaining?

59 Consider a sample containing2n carbon-14 atoms (see Example 2.6.1). Show that the
expected time until all have decayed is approximately5700 log n/ log 2 years. How
can you come up with this number in the deterministic description?

60 Consider the inclusion–exclusion formula in Proposition 1.3.4. Prove this by first ex-
pressing the indicator of the union in terms of indicators ofintersections, then take
expected values.

61 Let X andY be nonnegative and have joint pdff , and letZ = Y/X. (a) Express the
joint pdf of (X, Z) in terms off . (b) If X andY are independentexp(1), find the joint
pdf of (X, Z) and the marginal pdf ofZ.

62 Let X andY be independent and unif[0, 1]. Find the joint pdf ofU = X + Y and
V = X/(X + Y ).

63 Let X andY be independentN(0, 1) and letU = X −Y , V = X +Y . Find the joint
pdf of (U, V ).

64 A point (X, Y ) is chosen in the unit disk by letting its polar coordinatesR andΘ be
independent and uniform on their respective ranges. Find the joint pdf of(X, Y ).

65 A battery with voltageU volts is connected to a resistance ofR ohms, thus creating
a current ofI = U/R amperes and a power ofW = U2/R watts. Suppose thatU
has pdff(u) = 2u, 0 ≤ u ≤ 1, R has pdff(r) = 1/r2, r ≥ 1 and thatU andR
are independent. Find the joint pdf of(I, W ) and the marginal pdf’s ofI andW (be
careful with the ranges).

66 Let (X, Y ) have joint pdff(x, y) = x + y, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 and letU = 2X,
V = X + Y . Find the joint pdf of(U, V ) (be careful with the range).
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67 Let (X, Y ) have joint pdf

f(x, y) =
1

π
√

3
e−2(x2+y2−xy)/3, x, y ∈ R

and letU = X + Y , V = X − Y . Find the joint pdf of(U,V ).

Section 3.7. Conditional Expectation

68 Let X be a continuous random variable with pdff and letb be a real number. Show
that

E[X|X > b] =

∫∞
b

xf(x)dx

P (X > b)

69 A saleswoman working for a company sells goods forX $1000 per week, whereX is
unif[0, 2]. Of this, she must pay the company back up to$800 and gets to keep the rest.
Compute her expected profit(a) in a given week,(b) in a week when she makes a profit.

70 In Problem 10 (a) and (b), computeE[Y |X = k] for k = 1, ..., 6.

71 Compute the conditional expectationsE[Y |X = x] in Problem 14.

72 Let X ∼ unif[0, 1]. ComputeE[Y ] if the conditional distribution ofY givenX = x is
(a) unif[0, x2], (b) unif[0, sin(πx)], (c) unif[0, 1/x], (d) exp(1/x).

73 Let X ∼ exp(1). ComputeE[Y ] if the conditional distribution ofY givenX = x is
(a) unif[0, x], (b) unif[x, x + 2], (c) exp(x).

74 Let X ∼ unif[0, 1]. ComputeE[Y ] if the conditional distribution ofY givenX = x is
(a) geom(x), (b) bin(n, x) (recall Example 3.5.5 and Problem 33).

75 Suppose thatX andY are such thatE[Y |X] = 2X. Thus, if we knowX, we would
expectY to be twice as much. Does this imply thatE[X|Y ] = Y/2?

76 Consider the variance formula Var[Y ] = Var[E[Y |X]] + E[Var[Y |X]]. (a) Show that
Var[E[Y |X]] = 0 if X andY are independent.(b) Show thatE[Var[Y |X]] = 0 if X
andY are totally dependent in the sense thatY = g(X) for some functiong (recall
Corollary 3.7.3).

77 Let X ∼ geom(p). Use a recursive argument to show that Var[X] = (1 − p)/p2.
Hint: First, letτ = E[X2] and obtain an equation forτ by using Equation (3.7.3) and
properties of indicators.

78 Recall Example 1.6.14, where Ann and Bob play tennis and Ann wins a point as server
with probabilityp. Suppose that the players are at deuce and that Ann serves. What is
the expected number of played points until the game is over?

79 Recall Example 1.6.15, where Ann and Bob play badminton and Ann wins a rally with
probabilityp. If Ann is about to serve, what is the expected number of rallies until the
next point is scored?

80 In Example 3.7.8, we arrived at the equationµ = 6
4

+ 3
4
µ, which has solutionµ = 6.

However,µ = ∞ also is a solution, so we need to argue why this can be ruled out.
Show thatµ can be at most8 (think about coins flipped two by two).

81 In Example 3.7.8, compute the variances of the waiting timesfor the patternsHH and
TH .
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82 Flip a fair coin repeatedly and verify the expected number offlips until the first occur-
rence ofHHH , HHT , HTH , andHTT , as given in Example 3.7.8.

83 Flip a fair coin repeatedly and wait for the first occurrence of n consecutive heads,
HH · · ·H . Find an expression for the expected number of flips until this occurs.

84 Roll a die repeatedly. What is the expected number of rolls until the first occurrence of
the pattern(a) 36, (b) 666?

Section 3.8. Covariance and Correlation

85 LetU andV be independentandunif[0, 1]and letX = min(U,V )andY = max(U, V ).
Find Cov[X, Y ] and comment on its sign.

86 Find the variance of the number of matches in Example 3.6.10.First argue that theIk

are not independent but that Cov[Ij , Ik] is the same for allj 6= k, then compute it.

87 Draw three cards without replacement form a deck of cards. Let H be the number of
hearts andS, the number of spades drawn. Findρ(H,S) and comment on its sign.

88 In Definition 3.8.2, it is necessary that Var[X]> 0 and Var[Y ] > 0. If this is not the
case, what value is reasonable to assign to the correlation?

89 Let ρ be the correlation betweenX andY . What is the correlation betweenX + a and
Y + b wherea andb are constants?

90 Prove Proposition 3.8.7 (c) using the method suggested in the proof, and also expressa
andb in terms ofµ1, µ2, σ

2
1 , σ2

2 andρ.

91 Computeρ(Ij , Ik) in Example 3.8.3. What is its sign, and how does it depend on the
parameters of the hypergeometric distribution? Explain intuitively.

92 Let (X, Y ) be uniformly distributed on the triangle with corners in(0, 0), (0, 1), and
(1, 0). (a) Compute the correlation coefficientρ(X,Y ). (b) If you have done (a)
correctly, the value ofρ(X, Y ) is negative. Explain intuitively.

93 Let A andB be two events. The degree of dependence betweenA andB can then
be measured by the correlation between their indicatorsIA andIB . SupposeP (A) =
P (B) = 1

2
and express the correlation coefficientρ(IA, IB) as a function ofP (A|B).

Give an intuitive interpretation.

94 LetA andB be independent events. Show thatIA +IB and|IA−IB| are uncorrelated.
Are they independent?

95 For the following random variables,X andY , determine whether they are uncorrelated
and independent.(a) X ∼ unif[0, 1] andY = X2, (b) X ∼ unif[−1, 1] andY = X2,
(c) X = cos(U) andY = sin(U), whereU ∼ unif[0, 2π], (d) X ∼ N(0, 1) and
Y = X2.

96 Let X and Y be independent and uniform on[0, 1]. Let A be the area andC the
circumference of a rectangle with sidesX andY . Find the correlation coefficient ofA
andC.

97 Let X andY be independent with the same varianceσ2, and letS = X + Y and
T = XY . Under what conditions areS andT uncorrelated?

98 Let (X, Y ) be uniform on the region{(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ x2}. FindE[Y |X]
and the best linear predictorl(X).
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99 Let X andY be independent, with the same meanµ and the same varianceσ2, and
let Z = X + Y . Find ρ(X, Z). Explain intuitively in terms of the coefficient of
determination.

100 You are dealt a bridge hand (13 cards). LetX be the number of aces andY , the number
of hearts. Show thatX andY are uncorrelated but not independent.Hint: Write both
X andY as sums of indicators and show that indicators in one sum are independent of
indicators in the other.

101 Recall the sample mean̄X from Problem 50.(a) Show that Cov[X1, X̄ ] = σ2/n and
find ρ(X1, X̄). Interpret the value ofρ in terms of the coefficient of determination.(b)
Show thatX̄ andXk − X̄ are uncorrelated for eachk = 1, 2, ..., n.

Section 3.9. The Bivariate Normal Distribution

102 Which of the following are plots from a bivariate normal distribution? For those that
are, what can you say about variances and correlation? For those that are not, what
looks wrong?

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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103 A company manufactures rectangular metal plates of size 5× 10 (inches). Due to
random fluctuations, a randomly selected plate has a size ofX × Y in. where(X, Y )
follows a bivariate normal distribution with means5 and10, variances0.01 and0.04,
and correlation coefficient0.8. LetC be the circumference andA the area of a plate.(a)
FindE[C] andE[C|X = x]. (b) FindE[A] andE[A|X = x]. (c) A plate is useless
if C is less than29 or more than31 in. What is the probability that this happens?(d)
If the sidelengthX of a plate is measured to be5.1 in., what is the probability that the
plate is useless?(e)One way to improve the process is to reduce the variances ofX and
Y . Suppose that we can calibrate the process so that both variances are reduced by a
factorc (so thatX has variance0.01c andY 0.04c). To get the probability in (c) down
below0.01, how small mustc be?

104 Suppose that the weights (in kilograms) of Norwegian salmonof a certain age follow
a normal distribution with mean20 and variance15 and that those of Canadian salmon
of the same age are normal with mean22 and variance21. What is the probability that
a randomly chosen Norwegian salmon weighs more than a randomly chosen Canadian
one?

105 Lead fishing sinkers of two types are being manufactured. Onetype has weightsN(5, 1)
and the otherN(7, 1) (ounces). Choose one of each, and letX andY be their weights.
Find (a) P (X ≥ Y ) (b) P (Y ≥ 2X). (c) Let X̄ andȲ be the average weights ofn
sinkers of the two types. How large mustn be forP (Ȳ ≥ X̄) to be at least0.99?

106 Let X ∼ N(0, 1), and letY be a random variable such that

Y =

{
X if |X| ≤ 1

−X if |X| > 1

(a) Show thatY ∼ N(0, 1). (b) Is (X, Y ) bivariate normal?

107 Let (X, Y ) be bivariate normal with means 0, variances 1, and correlation coefficient
ρ > 0, and letU = X + Y , V = X − Y . What is the joint distribution of(U, V )?

108 Two types of lightbulbs are being manufactured, one whose lifetime isN(1000, 100)
and one whose lifetime isN(800, 81) (hours). (a) Choose one of each type, and let
Z be the average lifetime. Express the pdf ofZ in terms of the standard normal pdf
ϕ. (b) Choose a lightbulb at random, so that it is equally likely to be of either type,
and letW be its lifetime. Express the pdf ofX in terms of the standard normal pdf
ϕ. DoesW have a normal distribution? What does its pdf look like?Hint: Write W
asIX + (1 − I)Y , whereI is a suitably chosen indicator.(c) Find the means and
variances ofZ andW . Compare.

Section 3.10. Multidimensional Random Vectors

109 Consider the following variation of Example 3.10.5. Instead of accepting the first bid
that is higher than the first, you decide to accept the first bidthat is higher than the
one immediately preceding it. LetN be the number of the bid you accept. DefineN
formally and findE[N ].

110 In the previous problem, suppose that you instead decide to take the first offer that
exceedsc dollars. If the independent bids have cdfF , what isE[N ]?
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111 TheOld Faithful geyser in Yellowstone National Park is so named for its regular erup-
tions, about once an hour on average. However, most touristshave to wait for more than
half an hour, which they think indicates that the geyser is slowing down. (a) Explain
why their longer waiting times do not contradict hourly eruptions. (b) Suppose that
times between eruptions are i.i.d. random variables that are uniform between30 and90
minutes. What is the expected wait for an arriving tourist (recall Example 3.10.2)?

112 Consider a parallel system ofn components whose lifetimes are i.i.d.exp(λ). Find the
pdf of the lifetime of the system.

113 Let X1, ..., Xn be i.i.d. and continuous with cdfF and pdff . Find the pdf ofX(j), the
jth smallest order statistic.Hint: Let N(x) be the number ofXk that are less than or
equal tox and express the event{X(j) ≤ x} in terms ofN(x). What is the distribution
of N(x)?

114 Consider the sinkers from Problem 105 with weights that areN(5, 1) andN(7, 1),
respectively. Choose one of each and letM be the maximum weight of the two.(a)
Express the pdf ofM in terms of the standard normal cdfΦ and pdfϕ. (b) Find
P (M ≤ 6).

115 Let X1, ..., Xn be i.i.d. exponential with parameterλ. Show that the expected value of
the maximumX(n) is approximatelylog n/λ for largen. Hint: Example 3.10.4.

116 LetX1, ..., Xn be independent such thatXk has cdfFk(x) and pdffk(x). Find the cdf
and pdf ofX(1) andX(n).

117 Let X, Y , Z, andW be i.i.d. continuous random variables. Find the probability that
(a) X > Y andZ < W , (b) X < Y < Z < W , (c) X < Y < Z > W , (d)
X < Y > Z > W .

118 You and four other people are bidding at a silent auction. Thebids are independent and
you assume that the other bids are uniform on[100, 200] dollars. How much must you
bid to be at least90% sure to win the bidding?

119 An electronic component has failure rate functionr(t) = a + r1(t) + r2(t) wherea
is a constant,r1(t) is an increasing function, andr2(t) is decreasing. What does the
failure rate functionr(t) describe?

120 Consider a parallel system of two components that have lifetimes that areexp(1). When
one of them breaks down, the other has to take more stress and has a remaining lifetime
that isexp(2). Find the failure rate function of the system.

121 A machine manufactures two types of components with exponential lifetimes, one with
mean 1 and one with mean1

2
year. Find the failure rate function of the lifetime of a

randomly chosen component.

122 Let X1 andX2 be jointly continuous with joint pdff (not necessarily independent).
Find an expression for the joint pdf of(X(1), X(2)) in terms off .

123 Consider the ABO classification of blood types from Problem 52 in Chapter 1. If you
choose eight people at random, what is the probability that you get two of each type?

124 Let (X1, ..., Xr) have a multinomial distribution with parametersn and(p1, ..., pr).
Use indicators to show that

Cov[Xj , Xk] = −npjpk

for j 6= k. Why is it intuitively clear that the covariance is negative? What is the
correlation coefficient?
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125 Let X, Y , andZ be independent andN(1, 1). Find the probability thatX + Y ≥ 3Z.

126 Jobs arrive to a computer. When the computer is free, the waiting timeW until the next
incoming job has an exponential distribution with mean 1 millisecond. The timeC it
takes to complete a job has a uniform distribution with mean0.5 millisecond. Consider
a time when the computer is free, and letT be the time until the next job is completed.
Find the pdf ofT and sketch its graph.

127 Recall the Geiger counter from Example 3.7.3. Consider a time when the counter
registers a particle and letT be the time until the next registration. Find the pdf ofT .

128 Let X andY be independent, both with pdff(x) = exp(1 − x), x ≥ 1. Find the pdf
of X + Y .

129 Let X ∼ exp(λ1) andY ∼ exp(λ2) be independent. Find the pdf ofX + Y .

130 Let (X, Y ) have joint pdff(x, y). Show that the pdf of the sumX + Y is

fX+Y (x) =

∫ ∞

−∞
f(u, x − u)du

131 Let (X, Y ) have joint pdf

f(x, y) =
1

2
(x + y)e−(x+y), x, y ≥ 0

Find the pdf ofX + Y .

Section 3.11. Generating Functions

132 Describe the random variables that have the following pgf’s: (a) G(s) ≡ 1, (b)
G(s) = s, (c) G(s) = 1

2
(s + s2).

133 LetG be the pgf of a random variableX. Show thatG is increasing and convex. When
is it strictly increasing? Strictly convex?

134 (a)Let X be the number when a fair die is rolled. Find the pgf ofX. (b) Let S be the
sum when5 fair dice are rolled. Find the pgf ofS and describe how you can use it to
find the probabilityP (S = 20).

135 (a)Let X ∼ geom(p). Find the pgf ofX. (b) Let Y ∼ negbin(r, p) (see Problem 61,
Chapter 2). Use (a) and Proposition 3.11.4 to find the pgf ofY .

136 Let X andY be independent random variables with range{1, 2, ...} and pgf’sGX and
GY . Show that

E
[

X

X + Y

]
=

∫ 1

0

G′
X(s)GY (s)ds

137 Let X1, X2, ... be i.i.d. nonnegative and integer-valued, and letN ∼ Poi(λ), indepen-
dent of theXk. If the random sumSN = X1 + · · · + XN has a Poisson distribution
with meanµ, what is the distribution ofXk?

138 In the department I am currently in, there is a self-service coffee bar downstairs from
my office. Each week I go down for coffee a number of timesN , which has a Poisson
distribution with mean20. Each time, I am equally likely to choose the small size for75
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cents or the medium for one dollar, and I am equally likely to pay directly or to record
my purchase to pay later. At the end of a week, what is my expected debt?

139 Jobs arrive to a computer at a rate of 1.8 jobs/day. Each job requires an execution time
(in milliseconds) which has a binomial distribution withn = 10 andp = 0.5 (where a
zero execution time means that the job is rejected). Find(a) the probability that the total
execution time in a day for this type of job is at least2 milliseconds,(b) the expected
total execution time in a day.

140 Cars arrive at a park entrance such that the number of cars in one hour has a Poisson
distribution with mean4. Each car is equally likely to contain one, two, three, or four
people. LetY be the number of people that arrive at the park during an hour,and find
(after making appropriate assumptions)(a) the pgf ofY , (b) P (Y = 0), (c) E[Y ] and
Var[Y ].

141 Roll a fair die repeatedly and keep track of the numbers. Whenthe first6 shows up,
you add what you have thus far, not including the6. Hence, we haveX1, X2, ... i.i.d
die rolls,N ∼ geom(1/6), and observe

Y =

N−1∑

k=1

Xk

whereY is 0 if we get6 in the first roll. We wish to find the expected value ofY . By
Proposition 3.11.6, we getE[Y ] = E[N − 1]E[X] which equals5 × 3.5 = 17.5. We
could also argue that the values we add cannot contain any6s and are thus uniform on
1, 2, ..., 5, which would instead giveE[Y ] = 5 × 3 = 15. Which of the answers is
correct? Does Proposition 3.11.6 apply?

142 Let X1, X2, ... be i.i.d. nonnegative with cdfF and letN be nonnegative and integer-
valued with pgfG, independent of theXk . LetMN = max(X1, ..., XN )withMN = 0
if N = 0. (a) Show thatP (MN ≤ x) = G(F (x)). If the Xk are continuous, what
type of distribution doesMN have?(b) You are bidding on a silent auction where the
number of other bidders has a Poisson distribution with mean2. Bids are independent
and uniform on[0, 100] dollars. What is the minimum amount that you would need to
bet to be at least90% sure to win the bidding?

143 If we allow random variables to take on infinite values, the pgf can still be defined in the
same way, but many of the results are no longer valid. LetX take values in{0, 1, ...,∞}
and have pgfG, and letp = P (X = ∞) > 0. (a) Show thatG(1) = 1 − p
(recall Problem 11 in Chapter 2).(b) Give an example to show that we may have
E[X] 6= G′(1).

144 Let X have mgfM(t). Show that

M(t) =

∞∑

k=0

tk

k!
E[Xk]

145 Let X ∼ N(0, 1). Use the mgf to findE[X3] andE[X4].

146 Let X have the Cauchy distribution from Section 2.8.3. Show that the mgf ofX does
not exist (in the sense that the integral defining it is of the form “∞−∞”).

147 There is an analog to Proposition 3.11.5 that deals with mgf’s. Thus, letX1, X2, ...
be i.i.d. random variables with common mgfMX and common meanµ, and letN be
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nonnegative and integer-valued, and independent of theXk, with pgfGN (note that this
is the pgf).(a) Show thatSN has mgf

MSN (t) = GN (MX(t)), t ∈ R

(b) Let Xk ∼ exp(λ), and letN ∼ geom(p). Show thatSN ∼ exp(λp). (c) Show
thatE[SN ] = E[N ]µ.

148 Let X1, X2, ... be i.i.d.N(0, 1), and letSn = X1 + · · ·+Xn, in which case we know
thatSn ∼ N(0, n). Now roll a die to decide how manyXk to sum. Find the mgf of
the resulting sum. Is it normal, and if so, what are the parameters?

149 If X andY are nonnegative and integer-valued, the functionG(s, t) = E[sXtY ], 0 ≤
s ≤ 1, 0 ≤ t ≤ 1 is called thejoint pgf of X andY . (a) Express the pgf’s ofX andY
in terms ofG. (b) Use differentiation to find formulas for expected values, variances,
and the covariance ofX andY . (c) Show that the joint pgfG uniquely determines the
joint pmf p of (X, Y ) and thatX andY are independent if and only ifG = GXGY .
(d) Suggest how to define the joint mgf and do (a) and (b) in this case.

Section 3.12. The Poisson Process

150 Alaska has over half of all earthquakes in the United States .In particular, earthquakes
with magnitude> 8 on the Richter scale occur in Alaska on average every13 years.
Suppose that these occur according to a Poisson process, andcompute the probability
that (a) a decade has no such earthquakes,(b) two consecutive such earthquakes are
at least5 years apart,(c) a 13-year period has exactly one such earthquake,(d) three
consecutive decades have exactly one such earthquake each.

151 Traffic accidents in a town occur according to a Poisson process at a rate of two accidents
per week.(a) What is the probability that a given day has no accidents?(b) Whenever
there is an accident, the risk is1 in 10 that it will cause personal injury. What is the
probability that a given month has at least one such accident? (c) Let N be the number
of accident-free weeks in a year. What is the distribution ofN?

152 In any given hurricane season (6 months from June to November), there is about a 50-50
chance that the Gulf Coast will be hit by a hurricane. Assume aPoisson process with
rateλ and use time unit “months.”(a) Find the value ofλ. (b) Let X be the number of
hurricanes that hit the Gulf Coast during the months of August and September. What is
the distribution ofX (name and parameter(s))?(c) Let Y be the number of months that
have no hits during one season. What is the distribution ofY (name and parameter(s))?

153 Large meteorites hit Earth on average once every 1,000 years. Find (a) the probability
that Earth gets hit within the next 1,000 years(b) the probability that Earth gets hit more
than once within the next 1,000 years(c) the probability that there are no hits within the
next 100 years.

154 Consider a radioactive sample that decays at rateλ. You turn on the Geiger counter,
wait for the first registered emission, and wonder how long this takes on average. Since
the timepoint at which you turned it on is completely arbitrary and independent of the
decay process, you figure that you ought to be on average in themiddle between two
consecutive emissions, and since the average time between two emissions is1/λ, you
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decide that the average wait must be1/(2λ). However, experience tells you that the
average wait is longer. Explain! What is the average wait?

155 Explain Problem 147 (b) in terms of thinning of Poisson processes.

156 Consider two independent Poisson processes with ratesλ1 andλ2. Given that a total of
n points are observed in the interval[0, t], what is the probability thatk of those came
from the first process?Hint: Problem 25.

157 Southbound and northbound cars pass a point on a rural highway according to two
independent Poisson processes, at rates two and three cars per minute, respectively.
(a) What is the probability that exactly two cars passes in a given minute? (b) What
is the probability that exactly one northbound car and one southbound car pass in a
given minute? (c) If two cars pass in a minute, what is the probability that theyare
both northbound?(d) If four cars pass between11:55 am and12:05 pm, what is the
probability that two pass before and two after noon.

158 Accidents in a town occur according to a Poisson process at a rate of two accidents per
week. Two towing companies, Adam’s Towing and Barry’s Wrecker, have agreed to
take turns in dealing with the accidents on a weekly basis. Adam, who has been in town
longer, takes care of the first accident of the week, Barry thesecond, and so on.(a)
Consider the process of accidents that Adam takes care of. Isthis a Poisson process? If
so, what is the rate?(b) What is the probability that Barry gets no business in a given
week?(c) What is the probability that Adam and Barry get an equal amount of business
in a given week?

159 Consider the superposition of two independent Poisson processes with ratesµ andλ,
respectively. LetX be the number of points in the first between two consecutive points
in the second. Show thatX has a geometric distribution including0 (see Section 2.5.3)
and identify the success probability. Explain intuitively. You may need to utilize the
fact that

∫∞
0

e−axxkdx = k!/ak+1, or you can use generating functions.





4
Limit Theorems

4.1 INTRODUCTION

In advanced studies of probability theory, limit theorems form the most important
class of results. A limit theorem typically starts with a sequence of random variables,
X1, X2, ... and investigates properties of some function ofX1, X2, ..., Xn asn → ∞.
From a practical point of view, this allows us to use the limitas an approximation to
an exact quantity that may be difficult to compute.

When we introduced expected values, we argued that these could be consid-
ered averages of a large number of observations. Thus, if we have observations
X1, X2, ..., Xn and we do not know the meanµ, a reasonable approximation ought
to be thesample mean

X̄ =
1

n

n∑

k=1

Xk

in other words, the average ofX1, ..., Xn. Suppose now that theXk are i.i.d. with
meanµ and varianceσ2. By the formulas for the mean and variance of sums of
independent random variables, we get

E[X̄] = E

[
1

n

n∑

k=1

Xk

]
=

n∑

k=1

1

n
E[Xk] = µ

and

Var[X̄] = Var

[
1

n

n∑

k=1

Xk

]
=

n∑

k=1

1

n2
Var[Xk] =

σ2

n

271
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that is, X̄ has the same expected value as each individualXk and a variance that
becomes smaller the larger the value ofn. This indicates that̄X is likely to be close
to µ for large values ofn. Since the variance goes to0, we might want to say that “̄X
converges toµ asn → ∞,” but exactly what does this mean? For a sequence of real
numbers,an → a means that for anyǫ > 0, we can always make|an − a| < ǫ if n
is large enough. This cannot be true forX̄ andµ, though. SinceX̄ is random, we
can never say for certain that we will have|X̄ − µ| < ǫ from somen on. We need to
come up with a definition of what convergence means for randomquantities such as
X̄, and in the next section we address this issue.

4.2 THE LAW OF LARGE NUMBERS

Although we can never guarantee that|X̄ − µ| is smaller than a givenǫ, we can say
that it is very likely that|X̄ − µ| is small if n is large. That is the idea behind the
following result.

Theorem 4.2.1(The Law of Large Numbers). Let X1, X2, ... be a sequence
of i.i.d. random variables with meanµ, and letX̄ be their sample mean. Then,
for everyǫ > 0

P (|X̄ − µ| > ǫ) → 0 as n → ∞

Proof. Assume that theXk have finite variance,σ2 < ∞. Apply Chebyshev’s
inequality toX̄ and letc = ǫ

√
n/σ. SinceE[X̄] = µ and Var[X̄] = σ2/n, we get

P (|X̄ − µ| > ǫ) ≤ σ2

nǫ2
→ 0 as n → ∞

The assumption of finite variance is necessary for this proofto work. However, the
law of large numbers is true also if the variance is infinite, but the proof in that case
is more involved and we will not give it.

We say thatX̄ converges in probabilityto µ and write

X̄
P→ µ as n → ∞

The law of large numbers thus states that although we can never be certain that̄X is
within ±ǫ of µ, the probability that this happens approaches one asn increases.1

1More precisely, for fixedǫ > 0 we can never be certain that̄X is inµ± ǫ for anyfixedn. However, it can
be shown that the probability is one thatX̄ will eventually be inµ± ǫ but this occurs at arandomN so in
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In general, ifY1, Y2, ... is any sequence of random variables anda a constant,

Yn
P→ a means thatP (|Yn − a| > ǫ) → 0 asn → ∞ for all ǫ > 0. It is also possible

to have a random variableY in the limit instead of the constanta but we will not
consider any such examples.

To illustrate the law of large numbers let us consider the example of rolling a die. In
the left plot in Figure 4.1, consecutive averages in a total of 200 rolls are plotted. Note
the typical wild fluctuations in the beginning, followed by afairly rapid stabilization
around the mean3.5. After about130 rolls, the average appears to have settled, but
then there is a sudden decline after roll160. By pure chance, between rolls160 and
180, there were unusually large numbers of ones and twos which dragged the average
down. In the right plot in Figure 4.1, the sequence is continued to5000 rolls. The
dip around180 is visible, as are a a few subsequent excursions above and below 3.5,
but after that, all deviations are significantly smaller in size. If another sequence of
20 rolls similar to that between160 and180 would occur after5000 rolls, it would
have no visible impact.

A consequence of the law of large numbers is that we can now prove that the prob-
ability of an event is the limit of the relative frequencies.Recall how we mentioned
this as a source of inspiration for the axioms of probabilityand how we have often
argued that we can think of a probability as a relative frequency in a large number of
trials.

Corollary 4.2.2. Consider an experiment where the eventA occurs with prob-
ability p. Repeat the experiment independently, letSn be the number of times
we get the eventA in n trials, and letfn = Sn/n, the relative frequency. Then

fn
P→ p as n → ∞

Proof. Define the indicators

Ik =

{
1 if we getA in thekth trial
0 otherwise

for k = 1, 2, ..., n. Then theIk are i.i.d. and we know from Section 2.5.1 that they
have meanµ = p. Sincefn is the sample mean of theIk, the law of large numbers

givesfn
P→ p asn → ∞.

practice we never know whether it has actually occurred. Theexact formulation isP (X̄ → µ) = 1, a type
of convergence calledconvergence almost surely, which is stronger than convergence in probability. The
distinction between these two convergence concepts is crucial in a more advanced treatment of probability
theory; we will consider only convergence in probability.
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Fig. 4.1 Consecutive averages of200 (left) and5000 (right) simulated rolls of a fair die.

The law of large numbers is also popularly known as the “law ofaverages” and is
frequently misunderstood. Let us illustrate some of the common misperceptions by
considering the experiment of flipping a fair coin.

The first mistake we examine is the confusion betweenrelativeandabsolutefre-
quencies. If we flip the coinn times and letSn be the number of heads, this is the
absolute frequency andfn = Sn/n is the relative frequency. The expected value of
Sn is n

2 , and the expected value offn is 1
2 . The law of large numbers states thatfn

gets close to12 , not thatSn gets close ton2 . In fact, the difference|Sn − n
2 | tends to

increase withn, which is illustrated in Figure 4.2. In the next section we will see that
the rate of increase is on the order of

√
n.

The second mistake is the incorrect notion that extreme occurrences in onedirection
are compensated by extreme occurrences in the other. As an illustration, look at
Figure 4.3, where the consecutive relative frequencies in atotal of200 coin flips are
plotted. This is a sequence of coin flips that had an unusuallylarge number of tails
in the beginning. After100 flips, there had only been39 heads, quite far from the
expected number of50, and thus the relative frequencyf100 is only0.39. The relative
frequencies slowly but steadily work their way up toward0.5, and after200 flips we
are getting quite close. Now, this must mean that the unusually low number of heads
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Fig. 4.2 Successive relative frequenciesfn (left) and absolute differences|Sn − n
2
| (right)

of repeated coin flips. Note the stabilization to the left andthe increase to the right.
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Fig. 4.3 Successive relative frequencies of repeated coin flips.

in the first100 flips was compensated for by an unusually high number of headsin
the last100 flips, right?

Wrong! Actually, there were54 heads in the last100 flips, not far from the
expected number of50. If we had had exactly50 heads in the last100 flips, the
relative frequencyf200 would have been89200 = 0.445, significantly higher than0.39.
Even if we got a little bitlessthan the expected number of heads, say,45, the relative
frequency would still go up, to0.42. As we keep flipping, the unusual number of
heads in the first100 flips will have less and less impact on the relative frequency.
Thus, there is no trend to compensate, only the persistence of completely normal
behavior that in the long run erodes the effects of any abnormalities.2

Sometimes we are interested in a function ofX̄ rather thanX̄ itself. The following
result is useful.

Corollary 4.2.3. Let g be a continuous function. Under the conditions of the
law of large numbers

g(X̄)
P→ g(µ) as n → ∞

It certainly feels reasonable that if̄X is close toµ, theng(X̄) by continuity must be
close tog(µ). However, since “close” now refers to convergence in probability, it
must be shown thatP (|g(X̄) − g(µ)| > ǫ) → 0. We omit the technical proof.

2My good friend, the eminent probabilist Jeff Steif, once pointed out to me over a roulette table that it is
sometimes better to be completely ignorant than to have onlya little bit of knowledge. After seven straight
occurrences of red, the ignorant gambler does not blink (nordoes Jeff), whereas he who has heard of, but
not understood, the law of large numbers believes that more occurrences of black must follow.
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Example4.2.1. In Example 3.5.7, we examined Buffon’s needle tossing scheme
which can be used as a primitive way to estimateπ, based on the law of large numbers.
We saw that the probability that the needle intersects a lineis 2/π, and if we letfn

be the relative frequency of intersections inn tosses, the law of large numbers tells
us that

fn
P→ 2

π
as n → ∞

and by Corollary 4.2.3 withg(x) = 2/x we get

2

fn

P→ π as n → ∞

which suggests the estimate2/fn of π. We will later investigate how good an estimate
this is.

We finish this section with an example of convergence in probability that does not
involve the sample mean.

Example4.2.2. Let X1, X2, ... be i.i.d. exp(λ), and as usual letX(1) denote the

minimum ofX1, ..., Xn. Show thatX(1)
P→ 0 asn → ∞.

By Example 3.10.3 we haveX(1) ∼ exp(nλ) and hence for fixedǫ > 0

P (|X(1) − 0| > ǫ) = P (X(1) > ǫ) = e−nλǫ → 0

asn → ∞.

4.3 THE CENTRAL LIMIT THEOREM

In the previous section we saw thatX̄
P→ µ asn → ∞ or in other words, that̄X ≈ µ

if n is large. It would be good to also have an idea of how accurate this approximation
is, that is, have an idea of the extent to whichX̄ tends to deviate fromµ. The next
result gives the answer.

Theorem 4.3.1(The Central Limit Theorem). LetX1, X2, ... be i.i.d. random
variables with meanµ and varianceσ2 < ∞ and letSn =

∑n
k=1 Xk. Then,

for eachx ∈ R, we have

P

(
Sn − nµ

σ
√

n
≤ x

)
→ Φ(x)

asn → ∞, whereΦ is the cdf of the standard normal distribution.
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Before the proof, let us point out that this is a truly remarkable result. It states that
the cdf’s of the random variables(Sn − nµ)/σ

√
n converge to the cdf of a standard

normal distribution. In other words, for largen

P

(
Sn − nµ

σ
√

n
≤ x

)
≈ Φ(x)

which we can also write as
Sn − nµ

σ
√

n

d≈ N(0, 1)

where “
d≈” is notation for approximate distribution. SinceSn has meannµ and

variancenσ2, we can also write this as

Sn
d≈ N(nµ, nσ2)

Thus, the central limit theorem states that the sum of i.i.d.random variables has an
approximate normal distributionregardless of the distribution of theXk! The Xk

do not even have to be continuous random variables; if we justadd enough random
variables, the sum becomes approximately normal anyway.

The central limit theorem gives theoretical justification for why the normal distri-
bution tends to show up so often in practice. If a quantity is the result of many small
independent contributions, it is likely to be approximately normal. For example, the
weight of a bag of potato chips is the sum of the weights of manyindividual chips.
Whatever the distribution of the weight of a single chip, thesum has an approximate
normal distribution. For another example, consider the change in location of a dust
particle in the air. This is due to the bombardment of a huge number of air molecules
from different directions, and when added up, the changes incoordinates are likely
to follow normal distributions.

Proof. We will only outline the proof and skip the details. The main idea is to
work with moment generating functions instead of working directly with the dis-
tribution functions. Thus, we will show that the moment generating function of
(Sn − nµ)/σ

√
n converges to the moment generating function of a standard normal

distribution.
Let us first assume thatµ = 0 andσ2 = 1. LetYn = Sn/

√
n, and letM(t) be the

mgf of theXk. Combining Corollary 3.11.7 and Proposition 3.11.9, we seethatYn

has mgf

MYn(t) =

(
M

(
t√
n

))n

(4.3.1)

Now do a Taylor expansion ofM(s) arounds = 0 to obtain

M(s) = M(0) + sM ′(0) + s2 M ′′(0)

2
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where we have neglected the error term. By Corollary 3.11.8,we get

M(s) = 1 +
s2

2

(remember thatµ = 0 andσ2 = 1). Inserting this into Equation (4.3.1) we obtain

MYn(t) =

(
1 +

t2

2n

)n

→ et2/2, as n → ∞

which we recognize from Example 3.11.8 as the mgf of the standard normal distri-
bution. The result for generalµ andσ2 follows by considering the random variables
X∗k = (Xk − µ)/σ, which have mean0 and variance1, and we leave it to the reader
to finish the proof.

The details that we have omitted include an explanation of why convergence of
the mgf’s is the same as convergence of the distribution functions (which is a fairly
deep result and not exactly a detail) and why the error term inthe Taylor expansion
can be neglected asn → ∞.

Example4.3.1. You play 1000 rounds of roulette, each time betting$1. What is
the probability that you end up with a gain if you(a)bet on odd,(b) play straight bets?

Denote your gain in roundk by Xk so that your total gain inn rounds is

Sn =

n∑

k=1

Xk

By the central limit theorem,Sn has an approximate normal distribution with mean
nµ and variancenσ2. We computed the means and variances in Example 2.4.12, and
for (a) we have

µ = − 1

19
and σ2 =

360

361

and withn = 1000 we get

P (Sn > 0) = 1 − P (Sn ≤ 0)

≈ 1 − Φ

(
0 − 1000× (−1/19)√

1000× 360/361

)

= 1 − Φ(1.67) ≈ 0.05.

For (b) we have

µ = − 1

19
and σ2 =

11988

361
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which gives

P (Sn > 0) ≈ 1 − Φ

(
0 − 1000 × (−1/19)√

1000 × 11988/361

)
≈ 0.39

so you are much more likely to be ahead with the straight bet strategy. Now, the
expected gains are the same for the two strategies, so the strategy to bet on odd must
have some other advantage instead. To illustrate this, let us compute the probability
that you lose more than$100. With the straight bet strategy this is

P (Sn ≤ −100) ≈ Φ

(
−100− 1000 × (−1/19)√

1000 × 11988/361

)
≈ 0.40

and with the strategy to bet on odd

P (Sn ≤ −100) ≈ Φ

(
−100− 1000 × (−1/19)√

1000× 360/361

)
≈ 0.07

so you are more likely to lose more money with the straight betstrategy. The smaller
variance of the strategy to bet on odd means that your loss is likely to be fairly close
to the expected loss of1000 × 1

19 ≈ 53 dollars. With the straight bet strategy, there
is more fluctuation and you take a greater risk for the chance to gain more.

Example4.3.2. We have previously seen that the binomial distribution can be rep-
resented as a sum of indicators. Thus, ifX ∼ bin(n, p), the central limit theorem
states that

X − np√
np(1 − p)

d≈ N(0, 1)

or equivalently

X
d≈ N(np, np(1 − p))

Historically, this was among the first versions of the central limit theorem that was
proved. It is often called thede Moivre–Laplace theorem. Figure 4.4 shows the pmf’s
of three binomial distributions withp = 0.8 andn = 5, 10, and100, respectively.
The pdf’s of the corresponding approximating normal distributions are plotted for
comparison. Note how the binomial pmf forn = 5 is quite asymmetric but how the
pmf’s become more symmetric asn increases. This suggests that the accuracy of the
normal approximation depends not only onn but also onp; the more symmetric the
binomial pmf is to start with, the better the approximation.This is indeed true; for
fixedn, the approximation works best ifp = 1

2 and gets worse asp approaches0 or
1. A general rule of thumb for a decent approximation is that both np andn(1 − p)
should be at least 5.
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0 1 2 3 4 5 6 7 8 4 8 12 70 80 90

Fig. 4.4 The central limit theorem in action; pmf’s for three binomial distributions with
parametersp = 0.8 and n = 5, 10, and 100, respectively. The dashed curve shows the
corresponding normal pdf.

If we divideSn by n we get

X̄
d≈ N

(
µ,

σ2

n

)

or in the case of relative frequencies

fn
d≈ N

(
p,

p(1 − p)

n

)
(4.3.2)

Hence we have two results about the sample meanX̄: the law of large numbers,
which states that

X̄ ≈ µ

and the central limit theorem which states that

X̄
d≈ N

(
µ,

σ2

n

)

Note how the first result talks about thevalueof X̄ whereas the second talks about its
distribution. The type of convergence in the central limit theorem is therefore called
convergence in distribution, and we will return to this in Section 4.4.

We can now get an idea of how closēX tends to be toµ. The central limit theorem
gives

P (|X̄ − µ| > ǫ) ≈ 2

(
1 − Φ

(
ǫ
√

n

σ

))

regardless of the distribution of theXk.

Example4.3.3. Consider again Buffon’s needle problem. Recall that the probability
that the randomly tossed needle intersects a line is2/π and how we argued in the
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previous section that2/fn
P→ π asn → ∞. Let π̂ denote our estimate ofπ aftern

tosses:

π̂ =
2

fn

As mentioned previously, Buffon himself actually intendedthat this experiment be
used to estimateπ. Let us say that on some occasion he tossed the needle1000 times.
What is the probability that he got the estimate correct to two decimals?

We wish to find

P (|π̂ − 3.14| ≤ 0.005) = P

(
2

3.145
≤ fn ≤ 2

3.135

)

where, by Equation (4.3.2) withp = 2/π

fn
d≈ N

(
2

π
,
2(π − 2)

nπ2

)

With n = 1000 we now get

P (|π̂ − 3.14| ≤ 0.005) = P

(
2

3.145
≤ f1000 ≤ 2

3.135

)

= Φ

(
2/3.135− 2/π√
2(π − 2)/1000π2

)
− Φ

(
2/3.145− 2/π√
2(π − 2)/1000π2

)

= Φ(0.09) − Φ(−0.05) ≈ 0.06

which is not a very good reward for all that needle tossing.

4.3.1 The Delta Method

We have learned that the sample meanX̄ has an approximate normal distribution. It
is often the case that we are interested in some function of the sample mean,g(X̄),
and we already know from Corollary 4.2.3 thatg(X̄) converges in probability to
g(µ). It would be useful to also supplement this with a result about the approximate
distribution of g(X̄). The following proposition, usually referred to as thedelta
method, gives the answer. Although it should formally be stated as alimit result, we
state it as an approximation, which is how it is useful to us.
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Proposition 4.3.2(The Delta Method). Let X1, X2, ... be i.i.d. with meanµ
and varianceσ2, and letX̄ be the sample mean. Let furtherg be a function
such thatg′(µ) 6= 0. Then

g(X̄)
d≈ N

(
g(µ),

σ2(g′(µ))2

n

)

for largen.

Proof. A first-order Taylor expansion ofg aroundµ gives

g(X̄) ≈ g(µ) + (X̄ − µ)g′(µ)

where we know that

X̄
d≈ N

(
µ,

σ2

n

)

and sinceg(X̄) is (approximately) a linear function of̄X, we know that it has (ap-
proximately) a normal distribution. The mean is

E[g(X̄)] ≈ g(µ) + g′(µ)E[X̄ − µ] = g(µ)

sinceE[X̄ − µ] = E[X̄] − µ = 0. The variance is

Var[g(X̄)] ≈ (g′(µ))2Var[X̄] =
σ2(g′(µ))2

n

as was to be shown.

Note how there are two factors in the variance ofg(X̄): σ2/n, which measures how
muchX̄ deviates fromµ, and(g′(µ))2, which measures how sensitive the functiong
is to deviations fromµ. The smaller these quantities are, the better the approximation.

Example4.3.4. LetX1, X2, ..., Xn be i.i.d. random variables. Thegeometric mean
Gn is defined as

Gn = (X1X2 · · ·Xn)1/n

Suppose that theXk are unif[0, 1]. Find the limit ofGn and its approximate distri-
bution for largen.

To be able to apply the law of large numbers, we need to transform the product into
a sum. Thus, letYk = log Xk to obtain

log Gn =
1

n

n∑

k=1

Yk
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that is
Gn = eȲ

By the law of large numbers,̄Y
P→ µ, where

µ = E[Yk] = E[log Xk] =

∫ 1

0

log xdx = −1

Hence,Ȳ
P→ −1, and since the functiong(x) = ex is continuous, Proposition 4.2.3

gives

Gn
P→ e−1

asn → ∞. To get the approximate distribution, we apply the delta method toȲ and
the functiong(x) = ex. We haveg′(x) = ex which gives(g′(µ))2 = e−2, and since
σ2 = Var[Yk] = 1, we get the approximate distribution

Gn
d≈ N

(
e−1,

e−2

n

)

4.4 CONVERGENCE IN DISTRIBUTION

In the previous sections we looked at two limit results: the law of large numbers and
the central limit theorem. As we pointed out, these are different in the sense that the
first deals with convergence of̄X itself and the second, with its distribution. In this
section we take a closer look at this second type of convergence.

4.4.1 Discrete Limits

We first consider the case of discrete random variables and state the following defi-
nition.

Definition 4.4.1. Let X1, X2, ... be a sequence of discrete random variables
such thatXn has pmfpXn . If X is a discrete random variable with pmfpX and

pXn(x) → pX(x) asn → ∞ for all x

then we say thatXn converges in distributionto X , writtenXn
d→ X .

This limit result is used much in the same way as we used our previous limit results,
as the approximationP (Xn = x) ≈ P (X = x). The largest and most useful class
of limit theorems for discrete random variables is when the limiting random variable
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has a Poisson distribution. Let us look at the simplest example of this: the Poisson
approximation of the binomial distribution. In Section 2.5.4, we learned that ifX is
bin(n, p), wheren is large andp small, thenX is approximately Poi(np). We will
now state a limit result that motivates the approximation.

Proposition 4.4.1. LetX1, X2, ... be a sequence of random variables such that
Xn ∼ bin(n, pn), wherenpn → λ > 0 asn → ∞, and letX ∼ Poi(λ). Then

Xn
d→ X .

Proof. We sketch a proof based on probability generating functions. Let Gn(s)
be the pgf ofXn so that

Gn(s) = (1 − pn + pns)n

of which we take the logarithm to obtain

log Gn(s) = n log(1 + pn(s − 1))

Now, by a Taylor expansion around0, we obtain

log(1 + x) ≈ x (4.4.1)

for smallx. Sincenpn → λ > 0, we must havepn → 0, and the approximation in
Equation (4.4.1) can be used to get

log Gn(s) = n log(1 + pn(s − 1))

≈ npn(s − 1) → λ(s − 1) as n → ∞
Hence

Gn(s) → eλ(s−1) as n → ∞
where we recognize the limit as the pgf of a Poisson distribution with parameterλ.
It is true but not trivial that convergence of the pmf’s is equivalent to convergence of
the pgf’s. We will not prove this.

Hence, the informal statement “largen and smallp” can be formalized asnpn → λ,
and the limit result legitimizes the use of the approximation.

Another approximation was suggested in Section 2.5.5, where the hypergeometric
distribution was considered. We argued that under some circumstances, sampling
with or without replacement ought to give approximately thesame result. Thus, if
X ∼ hypergeom(N, r, n), then

P (X = k) =

(
r

k

)(
N − r

n − k

)

(
N

n

) ≈
(

n

k

)( r

N

)k (
1 − r

N

)n−k
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The limit result that justifies the approximation is stated in the following proposition.
It is proved by a direct computation according to Definition 4.4.1 and we leave the
proof as an exercise.

Proposition 4.4.2. Let XN ∼ hypergeom(N, r, n), whereN → ∞ and
r/N → p > 0, and letX ∼ bin(n, p). Then

XN
d→ X asN → ∞

In words, the approximation works well ifn is small andr is moderate relative toN .
We leave it to the reader to contemplate what may go wrong ifn is too large or ifr
is either too large or too small.

4.4.2 Continuous Limits

Let us next consider the case when the limiting random variable is continuous. As
we already know from the de Moivre–Laplace theorem, the limit can be continuous
even if the random variables themselves are not.

Definition 4.4.2. Let X1, X2, ... be a sequence of random variables such that
Xn has cdfFn. If X is a continuous random variable with cdfF and

Fn(x) → F (x) asn → ∞ for all x ∈ R

we say thatXn converges in distributionto X , writtenXn
d→ X .

The most important result of this type is the central limit theorem. Another class of
important results regarding convergence in distribution deals with so calledextreme
values, for example, the minimum or maximum in a sequence of random variables.

Example4.4.1. Let X1, X2, ... be i.i.d. random variables that are unif[0, 1], and let
X(1) = min(X1, ..., Xn), the minimum of then first Xk. As n increases,X(1) can
only get smaller so asn → ∞, we expectX(1) to go to0. However, if we adjust for
this by multiplyingX(1) by a suitable factor, we can get something interesting in the

limit. Thus, letYn = nX(1) and letY ∼ exp(1). ThenYn
d→Y asn → ∞.
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Note that the range ofYn is [0, n] and that ofY is [0,∞). We need to find the cdf of
Yn and get

FYn(x) = P (nX(1) ≤ x) = P
(
X(1) ≤

x

n

)

In Section 3.10.1 we studied order statistics, and by Proposition 3.10.1 we have

P (X(1) ≤ t) = 1 − (1 − t)n, 0 ≤ t ≤ 1

which gives

FY(n)
(x) = 1 −

(
1 − x

n

)n

→ 1 − e−x as n → ∞

which is the cdf ofY ∼ exp(1). Note that this holds for anyx since eventually,n will

be large enough so thatx is in the range ofYn. Thus, we have thatnX(1)
d≈ exp(1),

which can be used to approximate probabilities forX(1), for example as

P (X(1) ≤ x) = P (nX(1) ≤ nx) ≈ 1 − e−nx, 0 ≤ x ≤ 1

PROBLEMS

Section 4.2. The Law of Large Numbers

1 Let X1, X2, ... be a sequence of random variables with the same meanµ and variance

σ2, which are such that Cov[Xj , Xk] < 0 for all j 6= k. Show thatX̄
P→ µ asn → ∞.

2 Let X1, X2, ... andY1, Y2, ... be two sequences of random variables anda andb two

constants such thatXn
P→ a andYn

P→ b. Show thatXn +Yn
P→ a+b. Hint: Problem

10 in Chapter 2.

3 Let X1, X2, ... be i.i.d. unif[0, 1], and letg : [0, 1] → R be a function. What is the
limit of

∑n

k=1
g(Xk)/n asn → ∞? How can this result be used?

4 Let X1, X2, ..., Xn be i.i.d. random variables. Theharmonic meanis defined as

Hn =

(
1

n

n∑

k=1

1

Xk

)−1

Suppose that the pdf of theXk is f(x) = 3x2, 0 ≤ x ≤ 1, and find the limit ofHn

asn → ∞.

5 Let X1, X2, ... be i.i.d. continuous with a pdf that is strictly positive in some interval

[0, a]. Show thatX(1)
P→ 0 asn → ∞.

6 Let X1, X2, ... be i.i.d. exp(1). Show thatX(n)/ log n
P→ 1 asn → ∞.
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Section 4.3. The central limit theorem

7 In Problem 53 (a), and (b), Chapter 3, what happens asn → ∞? Explain this in the
light of the central limit theorem.

8 Use the central limit theorem to argue that the following random variables are approxi-
mately normal; also give the parameters:(a) X ∼ Γ(n, λ) for largen, (b) X ∼ Poi(λ)
for largeλ.

9 Radioactive decay of an element occurs according to a Poisson process with rate10, 000
per second. What is the approximate probability that the millionth decay occurs within
100.2 seconds?

10 In any given day, a certain email account gets a number of spamemails that has a Poisson
distribution with mean200. What is the approximate probability that it receives less
than190 spam emails in a day?

11 How many times do you need to roll a die to be at least≈ 99% certain that the sample
mean is between3 and4?

12 Let X ∼ bin(5, 0.8). ComputeP (X ≤ k) for k = 4, 5, and6, both exactly and with
the approximate normal distribution. Compare and comment.

13 A multiple-choice test has100 questions, each with four alternatives. At least80 correct
answers are required for a passing grade. On each question, you know the correct
answer with probability3

4
, otherwise you guess at random. What is the (approximate)

probability that you pass?

14 In Buffon’s needle problem, what is the probability that thevalue ofπ is correct to one
decimal?

15 A parking lot is planned for a new apartment complex with200 apartments. For each
apartment it is assumed that the number of cars is0, 1, or2, with probabilities0.1, 0.6,
and0.3, respectively. In order to be approximately95% certain that there is room for
all cars, how many spaces must the parking lot have?

16 Let X be a random variable with meanµ and varianceσ2, and letg be a differentiable
function. Use the idea in the proof of the delta method to deduce the two approximations

E[g(X)] ≈ g(µ) and E[g(X)] ≈ g(µ) +
σ2g′′(µ)

2

Compare these ifX ∼ unif[0, 1] for (a) g(x) = x (b) g(x) = x2 (c) g(x) = x4 (d)
g(x) = ex (e)g(x) = e−x (f) g(x) = sin(πx) (g) g(x) = sin(2πx).

17 Consider Buffon’s needle problem. Use the delta method to compute how may times
we must toss the needle in order to be at least95% certain to be within±0.01 of π?

18 Consider Problem 4. Find the approximate distribution ofHn for largen.

Section 4.4. Convergence in Distribution

19 Let X ∼ hypergeom(N, r, n). Argue thatX has an approximate Poisson distribution
and what is required of the parameters for the approximationto be justified. Try to both
state a formal limit result and give an intuitive argument.
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20 Let X1, X2, ... be a sequence of random variables such thatXn is uniform on the set

{0, 1, ..., n}, and letX ∼ unif[0, 1]. Show thatXn/n
d→ X asn → ∞.

21 Let X1, X2, ... be a sequence of random variables such thatXn ∼ geom(1/n), and let

X ∼ exp(1). Show thatXn/n
d→ X asn → ∞.

22 Let X1, X2, ... be i.i.d. unif[0, 1], let Yn = n(1−X(n)) whereX(n) is the maximum,

and letY ∼ exp(1). Show thatYn
d→ Y asn → ∞.

23 Let X1, X2, ... be i.i.d. exp(λ), and letY ∼ exp(1). Show thatX1/X̄
d→ Y as

n → ∞. Hint: Let theXk be inter-arrival times in a Poisson process, and use the order
statistic property from Proposition 3.12.3.

24 Let X1, X2, ... be i.i.d. random variables with pdff(x) = 2x, 0 ≤ x ≤ 1. Show that
the sequence of random variablesYn =

√
nX(1) converges in distribution to a random

variableY that has a Weibull distribution. What are the parameters?

25 Let X1, X2, ... be i.i.d.random variables with pdff(x) = 3x2, 0 ≤ x ≤ 1. Find a
sequencean such that the random variablesYn = anX(1) converges in distribution to
a random variableY , and identify the distribution ofY .



5
Simulation

5.1 INTRODUCTION

Simulationis one of the most commonly used techniques to gain information about
complicated systems, but the term simulation is used to convey many different mean-
ings. According to theMerriam-Webster Online Dictionary, simulation is “the im-
itative representation of the functioning of one system or process by means of the
functioning of another.” We probably think of simulation assomething involving
computers, but it does not have to be so. For example, airplanes flying in specific
parabolic patterns are used in astronaut training to simulate weightless conditions in
space. Even when we restrict our attention to computer simulation, there are many
different meanings. For example, an airline pilot in training sits in a flight simulator,
and a mathematician may simulate a numerical solution to a differential equation by
plugging in different starting values in an algorithm. For us, however, simulation
will always mean “imitating randomness,” and for this reason the termstochastic
simulationis often used. The termMonte Carlo simulationis also common.

The main use of stochastic simulation is to approximate quantities that are difficult
to obtain analytically. To take a frivolous example from theworld of gambling, in
roulette it is easy to specify a probability model and compute probabilities of winning,
expected gains and so on. But what about the game of blackjack? This is a card game
played against a dealer where you are dealt cards one by one and after each card
decide whether to stop or take another card. The dealer has one card face up that you
can see. If you go above21, you lose. If you stop below21 , the dealer draws cards
and must stop at or above 17. If the dealer goes over21, you win, otherwise whoever
has the higher total wins. It is difficult to find exact answersto questions such as “If

289
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I adopt a particular strategy, what is the probability that Iwin?” but it is easy to run
a computer simulation of the game.

When we use simulations, we rely on the law of large numbers. Suppose, for
instance, that we wish to find an approximate value ofp, the probability of winning
in blackjack using some particular strategy. We run a numbern of simulated rounds
of the game and observe wins inX of them. The relative frequencyX/n is our
approximation ofp, and we know by the law of large numbers that this gets close top
for largen (and “largen” is something we can often guarantee in simulation studies).
If we are interested in the expected gain,µ, save the gain in each round to obtain a
sequenceY1, Y2, ..., Yn of gains and use the sample meanȲ to approximateµ.

We have already seen how simulated data can be used to illustrate concepts such
as pmf, pdf, and expected value. Such data can be generated for a wide variety
of distributions by using ready-made routines in any of the major mathematical or
statistical software packages (Matlab has been used in our examples). In this chapter
we take a closer look at how such simulated data are generated.

5.2 RANDOM-NUMBER GENERATION

The most fundamental object in simulation is the standard uniform distribution. Even
simple calculators can often generate what are usually calledrandom numbers, which
are precisely simulated observations from the standard uniform distribution. So how
do we simulate the standard uniform distribution?

There are several issues, and we will not address them all. Animmediate problem
that comes to mind is that[0, 1] is an entire interval, but a computer has only finite
precision. Hence, we must be satisfied with values on some lattice{0, 1

m , ..., m−1
m , 1},

which is not too serious a restriction ifm is large. One way to do this is to generate
random integers between 0 andm and divide them bym. In other words, ifY has the
discrete uniform distribution on{0, 1, ..., m}, thenU = Y/m has the discrete uniform
distribution on{0, 1

m , ..., m−1
m , 1}, which for largem is an acceptable approximation.

But this only shifted the problem to how to generate random integers. How do we do
that?

Here is where we must admit that random number generators seldom produce
“truly” random numbers. Instead, deterministic algorithms are used that produce
sequences that “look random.” For this reason, the termpseudorandomnumbers is
often used.1 We want to achieve two main goals: that the numbers seem to have a
uniform distribution and that they seem independent. One common way to generate
random integers is bycongruentialrandom-number generators (orpower residue
generators). These start with a valueY0, theseed, and generate a sequence of integers
by computing the next from the previous according to the formula

Yn+1 = aYn + b (mod(m + 1))

1Incidentally, Merriam-Webster also gives the alternativemeaning of simulation as “a sham object.”
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wherea, b, andm are fixed integers. Note that the sequence is periodic since once
a value is repeated, the entire sequence will be repeated. Let us now takem = 19,
a = b = 1, andY0 = 0. We get

Y1 = 1 × Y0 + 1 (mod20) = 1

Y2 = 1 × Y1 + 1 (mod20) = 2

...

Y19 = 1 × Y18 + 1 (mod20) = 19

Y20 = 1 × Y19 + 1 (mod20) = 20 (mod20) = 0

which gives the sequence0, 1, 2, ..., 19, 0, 1, 2, ..., 19, 0, 1, 2, ..., where each number
in the long run shows up with relative frequency120 , so the distribution would look
uniform. However, the observations do not look independent. Indeed, if we are
presented this sequence, we would quickly figure out the algorithm that produced it.
Not good. Let us instead trym = 19, a = 5, b = 3, andY0 = 0. We now get

Y1 = 5 × 0 + 3 (mod20) = 3

Y2 = 5 × 3 + 3 (mod20) = 18

Y3 = 5 × 18 + 3 (mod20) = 93 (mod20) = 13

Y4 = 5 × 13 + 3 (mod20) = 8

Y5 = 5 × 8 + 3 (mod20) = 3

which gives the sequence0, 3, 18, 13, 8, 3, 18, 13, 8, 3, ..., where thepattern3, 18, 13, 8
is repeated indefinitely. This is an improvement since thereis no immediately clear
structure for short pieces of the sequence. On the other hand, when a period is com-
pleted, most numbers between0 and19 have not shown up at all, so we do not get
the uniform distribution. A problem here is that the period is too short.

These calculations illustrate some potential problems with random-number gen-
eration. We will not address this further but mention that nice results can be obtained
from number theory that give criteria for how to choosem, a, andb to avoid these
problems and get a good random-looking sequence. For practical purposes,m must,
of course, be much larger than in the two examples above.

Assuming thus that we can generate observations from the standard uniform dis-
tribution, how can we transform these to observations from other distributions? In
the following sections we will investigate this.

5.3 SIMULATION OF DISCRETE DISTRIBUTIONS

Let us start with the simplest of discrete random variables,indicators. Recall that
an indicator functionIA assumes the value1 if the eventA occurs and0 otherwise.
Suppose that the probability ofA is p so thatIA assumes the values0 or 1 with
probabilities1 − p andp respectively. How can we generate an observation onIA if
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we are givenU ∼ unif[0, 1]? The idea is simple. Let

IA =

{
1 if U ≤ p
0 if U > p

which gives the correct distribution because

P (IA = 1) = P (U ≤ p) = p

which also givesP (IA = 0) = 1 − p. Note that it does not matter what the eventA
is since we are not simulating the underlying experiment directly. We are interested
only in getting the right distribution forIA.

Any discrete distribution can be simulated by a similar idea. If X assumes the
valuesx1, x2, ... with probabilitiesp1, p2, ..., we divide the interval[0, 1] into subin-
tervals where thekth sub-interval has lengthpk, and ifU falls there, we setX = xk.
It does not matter whether the range ofX is finite or countably infinite. To express
X explicitly as a function ofU , we state the following proposition.

Proposition 5.3.1. Consider the pmfp on the range{x1, x2, ...} and let

F0 = 0, Fk =
k∑

j=1

p(xj), k = 1, 2, ...

Let U ∼ unif[0, 1] and letX = xk if Fk−1 < U ≤ Fk. ThenX has pmfp.

Proof. Note thatX = xk if and only if U ∈ (Fk−1, Fk], which has probability

P (X = xk) = P (Fk−1 < U ≤ Fk) = Fk − Fk−1 = p(xk), k = 1, 2, ...

as desired. If the range is finite,{x1, ..., xn}, we getFn = 1.

The numberFk is in factFX(xk), the distribution function ofX in the pointxk (and
we can letx0 = −∞). In the next section we will see how this is a special case of a
more general method.

For certain special discrete distributions, there are alternative and more attractive
ways to simulate. We will look at one example and leave othersfor the Problems
section.

Example5.3.1. Let X ∼ bin(n, p). We can use Proposition 5.3.1 to generate an
observation onX , but we can also use the fact that the binomial distribution can be
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represented as a sum of indicators

X =

n∑

k=1

Ik

where theIk are i.i.d. withP (Ik = 1) = p. Thus we simulate standard uniforms
U1, ..., Un, for each of these letIk = 1 if Uk ≤ p and add theIk. One advantage of
this method compared to using Proposition 5.3.1 is that if weneed to changen from
100 to 200, for example, we simply simulate100 more indicators, which is easier
than having to start over and recalculate all theFk.

5.4 SIMULATION OF CONTINUOUS DISTRIBUTIONS

From previous results we know that ifU ∼ unif[0, 1] and we letX = (b − a)U + a,
thenX ∼ unif[a, b]. Hence it is clear how to generate observations from any uniform
distribution, starting from a standard uniform distribution: simply multiply each ob-
servation byb − a and adda. As it turns out, this is a special case of a more general
result that we state next.

Proposition 5.4.1 (The Inverse Transformation Method). Let F be a dis-
tribution function that is continuous and strictly increasing. Further, let
U ∼ unif[0, 1] and define the random variableY = F−1(U). ThenY has
distribution functionF .

Proof. Start withFY , the distribution function ofY . Takex in the range ofY to
obtain

FY (x) = P (F−1(U) ≤ x)

= P (U ≤ F (x)) = FU (F (x)) = F (x)

where the last equality follows sinceFU (u) = u if 0 ≤ u ≤ 1. The argument here is
u = F (x), which is between 0 and 1 sinceF is a cdf.

In order to generate observations from a distribution with cdf F , we thus findF−1,
generate i.i.d. uniform [0,1] variablesU1, ..., Un, and letXk = F−1(Uk) for
k = 1, ..., n. Note that the assumptions onF , continuous and strictly increasing,
together guarantee thatF−1 exists as a function on the entire interval[0, 1].

Example5.4.1. Generate an observation from an exponential distribution with pa-
rameterλ.
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Here
F (x) = 1 − e−λx, x ≥ 0

To find the inverse, as usual solveF (x) = u, to obtain

x = F−1(u) = − 1

λ
log(1 − u), 0 ≤ u < 1

Hence, ifU ∼ unif[0, 1], the random variable

X = − 1

λ
log(1 − U)

is exp(λ). We can note here that since also1 − U is uniform on[0, 1] (see Problem
19 in Chapter 2), we might as well takeX = − log U/λ.

Example5.4.2. Generate an observation(X, Y ) from a uniform distribution on the
triangle with corners in(0, 0), (0, 1) and(1, 0) (see Problem 92 in Chapter 3).

Our approach will be to first generateX , and then, given the valueX = x, we will
generateY from the conditional distribution. Since the triangle has area 1

2 , the joint
pdf is

f(x, y) = 2, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 − x

which gives the marginal pdf

fX(x) = 2

∫ 1−x

0

dy = 2(1 − x), 0 ≤ x ≤ 1

which in turn gives the cdf

FX(x) =

∫ x

0

2(1 − t)dt = 2x − x2, 0 ≤ x ≤ 1

Next we find the inverse,F−1. Solve

u = 2x − x2

to obtain
x = F−1(u) = 1 −

√
1 − u, 0 ≤ u ≤ 1

Note that solving the quadratic gives two solutions but onlythe one with “−” is correct
(why?). We also need the conditional distribution forY givenX = x, which is

fY (y|x) =
f(x, y)

fX(x)
=

1

1 − x
, 0 ≤ y ≤ 1 − x
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that is,Y |X = x ∼ unif[0, 1− x]. Now letU andV be independent and uniform on
[0, 1], and let

X = 1 −
√

1 − U

Y = V (1 − X)

to get a pair(X, Y ) with the desired distribution. Figure 5.1 shows the outcomeof
100 generated such pairs(X, Y ). Note that we cannot use the same random number
U for bothX andY . This would give the correctmarginaldistributions ofX andY
but not the correctjoint distribution, sinceY would become a deterministic function
of X . Also note that sinceX andY are dependent, we need to pair eachX value
with its correspondingY value.

The assumptions onF are that it is continuous and strictly increasing. If there are
parts whereF is constant, these parts correspond to values thatX cannot assume,
so this is not a problem. If there are points whereF jumps, these are points thatX
can assume with strictly positive probability. In particular, if X is a discrete random
variable,F consists entirely of jumps and constant parts, but also remember that there
are random variables that are mixtures of discrete and continuous parts. For a general
cdf F , we can introduce the generalized inverse, orquantile function, F←, defined
by

F←(u) = inf{x : F (x) ≥ u}
This has the property that

F←(u) ≤ x ⇔ u ≤ F (x)

and in the case of strictly increasingF , we haveF−1 = F←. It can be shown that if
U ∼ unif[0, 1] and we letX = F←(U), thenX has cdfF . In principle, this solves
the problem of simulating any distribution, discrete or continuous. For example, the
random variableX in Proposition 5.3.1 is merelyF←(U) in disguise.

0 0.5 1

0.5 

1 

Fig. 5.1 One hundred simulated observations, uniform on a triangle.
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If we do not know the functional form of the cdfF , we cannot use the inverse
transformation method. This is, for example, the case for the normal distribution and
since we have pointed out the importance of this distribution, we would certainly like
to have a way for generating observations from it. We next describe a clever method
to generate observations from a continuous distribution that requires that we know
the pdf but not the cdf.

We want to generate observations on a continuous random variableX which has
pdf f . Suppose that there is another random variableY with pdf g, from which we
know how to generate observations and that there is a constant c > 1 such that

f(x) ≤ cg(x) for all x

We can then use consecutive generated observations onY to create observations on
X according to a certain algorithm, which we state as a proposition.

Proposition 5.4.2(The Rejection Method).

1. GenerateY andU ∼ unif[0, 1] independently of each other.

2. If U ≤ f(Y )

cg(Y )
, setX = Y . Otherwise return to step 1.

The random variableX generated by this algorithm has pdff .

When the criterion is satisfied in step 2 and we setX = Y , we say that weacceptY
and otherwisereject it. Hence the name of the method.

Proof. Let us fist make sure that the algorithm terminates. The probability in any
given step 2 to acceptY is, by Corollary 3.5.7

P

(
U ≤ f(Y )

cg(Y )

)
=

∫

R

P

(
U ≤ f(y)

cg(y)

)
g(y)dy

=

∫

R

f(y)

cg(y)
g(y)dy =

1

c

∫

R

f(y)dy =
1

c

where we used the independence ofU andY and the fact thatU ∼ unif[0, 1]. Hence
the number of iterations until we accept a value has a geometric distribution with
success probability1/c. The algorithm therefore always terminates, in a number of
steps with meanc from which it also follows that we should choosec as small as
possible.

Next we turn to the question of why this gives the correct distribution. To show
this, we will show that the conditional distribution ofY , given acceptance, is the same
as the distribution ofX . Recalling the definition of conditional probability and the
fact that the probability of acceptance is1/c, we get
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P

(
Y ≤ x

∣∣∣∣U ≤ f(Y )

cg(Y )

)
= c P

(
Y ≤ x, U ≤ f(Y )

cg(Y )

)

By independence, the joint pdf of(U, Y ) isf(u, y) = g(y), and the expression above
becomes

c P

(
Y ≤ x, U ≤ f(Y )

cg(Y )

)
= c

∫ x

−∞

∫ f(y)/cg(y)

0

g(y)du dy

= c

∫ x

−∞

f(y)

cg(y)
g(y)dy = P (X ≤ x)

which is what we wanted to prove.

Let us now see how this applies to the normal distribution.

Example5.4.3. Let X ∼ N(0, 1) so thatX has pdf

ϕ(x) =
1√
2π

e−x2/2, x ∈ R

We will use the pdf of an exponential distribution as the function g. However, the
normal distribution can take on values on the entire real line and the exponential, only
positive values, so we have to make some adjustments. Since the standard normal
distribution is symmetric around0, we can get the right distribution ofX by first
generating a value of|X | and then choosing “+” or “−” with equal probabilities.
According to Problem 85 in Chapter 2, the pdf of|X | is

f(x) = 2ϕ(x) =
2√
2π

e−x2/2, x ≥ 0

Now letY ∼ exp(1). By Example 5.4.1, we know how to generate observations on
Y that has pdf

g(x) = e−x, x ≥ 0

and we will proceed to find the constantc. Note that

f(x)

g(x)
=

√
2

π
exp

(−(x2 − 2x)

2

)
=

√
2e

π
exp

(−(x − 1)2

2

)

after completing the square (note that we use “exp” in two different meanings: the
exponentialdistributionand the exponentialfunction; do not confuse these). Since
the second factor is at most1, we can takec =

√
2e/π to obtainf(x) ≤ cg(x). To

apply the method, we follow the two steps

1. GenerateU ∼ unif[0, 1] andY ∼ exp(1) independently of each other
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2. If U ≤ exp(−(Y − 1)2/2), set|X | = Y . Otherwise repeat step 1.

Finally, to choose the sign ofX , generateV ∼ unif[0, 1]. If V ≤ 1
2 , setX = |X |,

otherwise setX = −|X |.
The mean number of steps until acceptance isc ≈ 1.32, so the algorithm terminates

quickly. There are ways to improve the efficiency of the method, but we will not
address them here.

We conclude this section with another way to simulate the standard normal distribu-
tion.

Example5.4.4. (Box–Muller Method). Recall from Example 3.6.13 that ifX andY
are independent and have standard normal distributions, then their polar coordinates
R andΘ are independent withR2 ∼ exp(1

2 ) andΘ ∼ unif[0, 2π]. Since we know
how to generate the uniform and exponential distributions,we should be able to use
this to generate observations onX andY .

Suppose that we haveU andV independent uniform on[0, 1]. The inverse trans-
formation method gives that−2 logU ∼ exp(1

2 ), and hence observations onR and
Θ are generated by

R =
√

−2 logU

Θ = 2πV

and sinceX = R cosΘ andY = R sin Θ, we get

X =
√
−2 logU cos(2πV )

Y =
√
−2 logU sin(2πV )

which are independent, and each has the standard normal distribution. Hence, with
this method we get two observations at a time, so(X, Y ) is bivariate normal with
correlationρ = 0. In Problem 17 we investigate how to generate observations on the
bivariate normal distribution in general.

Note the somewhat surprising fact thatX andY are independent even though they
are both functions of the same random variablesU andV (but recall Problem 95(c)
in Chapter 3).

5.5 MISCELLANEOUS

A nice use of simulation is that it can help us suggest what an analytical formula
should look like, which we can then set out to formally prove.We look at an example
of this.
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Example5.5.1. Recall the gambler’s ruin problem, where two players, Ann and
Bob, take turns flipping a fair coin and the winner in each round gets a dollar from the
other player. Suppose that the players start witha andb dollars, respectively. How
long can we expect the game to last?

Let T be the duration of the game. If we denote Ann’s fortune after thenth round by
Sn, we thus have

T = min{n : Sn = −a or Sn = b}
and we want to findE[T ]. To use the definition, we need the distribution ofT , and
this is quite tricky to find. (Just try!) However, we can investigate the problem with a
computer simulation for different values ofa andb and see if we can guess a formula
for E[T ]. Table 5.1 shows average values ofT obtained from simulations for different
values ofa andb. It seems thatE[T ] = ab is a good guess. Of course, this is not a
proof, but now that we have an expression, we can try to prove it.

Let us follow the idea from Example 1.6.16 and condition on the first flip or in
the random-walk interpretation, the first stepS1. Let µa,b be the expected number
of rounds until the game is over when the initial fortunes area andb. After the first
round we are at either−1 or 1 with equal probabilities, so the law of total expectation
gives

µ = E[T |S1 = −1]P (S1 = −1) + E[T |S1 = 1]P (S1 = 1)

= (1 + µa−1,b+1)
1

2
+ (1 + µa+1,b−1)

1

2

= 1 +
1

2
(µa−1,b+1 + µa+1,b−1)

and since

1 +
1

2

(
((a − 1)(b + 1) + (a + 1)(b − 1)

)
= ab

our suggested expression satisfies the equation. Thus, the expected duration of the
game is the same in the casea = 1, b = 100 as in the casea = 10, b = 10. Since the
game can be over already after one round in the first case (and will be so half of the
time) but there must be at least10 rounds (and most likely many more) in the second,

Table 5.1 Average simulated duration times̄T until ruin and their standard deviationssT̄

for different values ofa andb

a b T̄ sT̄ ab

2 3 6.5 0.7 6

3 4 11.0 1.1 12

3 5 15.4 1.5 15

4 6 22.2 2.0 24
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we realize that although the means are the same, the distributions in the two cases
must be different.

Finally, an example that shows how simulation can help us guess better than random.

Example 5.5.2. In an urn there are two slips of paper, each with a real number
written on it. You do not know how the numbers have been chosen, only that they
are different. You pick a slip at random, look at the number, and are asked to guess
whether it is the larger or smaller of the two. Can you do this and be correct with a
probability strictly greater than12?

Surprisingly, you can! Call the two numbersa andb and suppose thata < b. Call the
number you pickedX so thatX equalsa or b with probability 1

2 each. Now generate
an observationY from a continuous distribution with rangeR, for example, a normal
distribution, independently ofX . Your rule to decide is to pretend that the number on
the other slip in the urn isY . Hence, ifX < Y , you guess that you have the smaller
number; ifX > Y , you guess that you have the larger. It is easy to realize thatyou
will guess correctly if eitherX = a andY > a, or if X = b andY < b. (SinceY is
continuous, we rule out the possibility thatY is exactlyequal toa or b. In the actual
simulation, we are limited by finite precision, but with sufficiently many decimals in
our observation onY , it is very unlikely thatY equalsa or b.) LetF be the cdf ofY .
SinceX andY are independent, the probability to guess correctly is

p = P (X = a, Y > a) + P (X = b, Y < b)

= P (X = a)P (Y > a) + P (X = b)P (Y < b)

=
1

2
(1 − F (a) + F (b)) >

1

2

sinceF (b) > F (a). The value ofp of course depends ona, b, andF , but in any
case, the probability of guessing correctly is always strictly greater than12 . Since the
simulation ofY has nothing to do with the problem of choosing and guessing, this is
really mysterious, isn’t it?

PROBLEMS

Section 5.3. Simulation of Discrete Distributions

1 A family with three children is chosen at random and the number X of daughters is
counted. Show how to simulate an observation onX based onU ∼ unif[0, 1].

2 A girl who has two siblings is chosen at random and the numberX of her sisters is
counted. Show how to simulate an observation onX based onU ∼ unif[0, 1].
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3 Let Y ∼ Poi(λ) and suppose that you can simulateX1, X2, ... that are independent
exp(1). Suggest how theXk can be used to simulate observations onY .

4 Suppose that you know how to generate the uniform and the Poisson distribution. De-
scribe how you can use this to simulate a Poisson process on a given interval[0, t]. Hint:
The order statistic property.

5 Let X have a negative binomial distribution with parametersr andp. Describe how to
simulate observations onX. Hint: Problem 52, Chapter 3.

Section 5.4. Simulation of Continuous Distributions

6 Let U ∼ unif[0, 1] and letX = (b − a)U + a. From previously we know thatX ∼
unif[a, b], which can be used to simulate values ofX. Show that this is a special case
of the inverse transformation method.

7 The random variableX has pdff(x) = 3x2, 0 ≤ x ≤ 1. Describe how to generate
an observation onX based onU ∼ unif[0, 1].

8 Let X have a Cauchy distribution (see Section 2.8.3).(a) Describe how to generate an
observation onX based onU ∼ unif[0, 1]. (b) Use the result from (a) to create repeated
samples of some large size, for example,n = 100, 000, and each time compute the
sample mean. What do you observe, and why?

9 Let X have a Weibull distribution (see Section 2.10). Describe how to generate an
observation onX based onU ∼ unif[0, 1].

10 Let X have a geometric distribution with success probabilityp. Demonstrate how you
can simulate an observation onX based onU ∼ unif[0, 1] using Problem 74 in Chapter
2.

11 The mixed random variableX in Example 2.8.2 has cdfF (x) = 1 − 0.8e−x, x ≥ 0.
Describe how to generate an observation onX based onU ∼ unif[0, 1].

12 Suppose that you have a random-number generator, a fair coin, and Table A.1. Describe
how you can use these to generate observations on the standard normal distribution.

13 Let X ∼ exp(1). Use simulation to determine an approximate value ofE[log X].

14 Let X ∼ N(0, 1). Use simulation to determine an approximate value ofE[sin X].

15 Let X, Y , andZ be independent and uniform[0, 1]. Use simulation to find an approx-
imate value ofP (X + Y + Z ≤ 2.5).

16 Let g : [0, 1] → R be a function whose integralI =
∫ 1

0
g(x)dx is impossible to

compute explicitly. How can you approximateI by simulation of standard uniforms
U1, U2, ...?

17 The Box-Muller method gives you a pair(X, Y ) of independent standard normals. De-
scribe how you can use these to generate observations on a bivariate normal distribution
with parametersµ1, µ2, σ

2
1 , σ2

2 , andρ.

18 Describe how to generate observations on a pair(X, Y ) that is uniform on the unit disk
{(x, y) : x2 + y2 ≤ 1}. Hint: Use polar coordinates.

19 LetX have pdff(x) = 4x2e−x2

/
√

π, x ≥ 0. Apply the rejection method to generate
observations onX.





6
Statistical Inference

6.1 INTRODUCTION

In the previous chapters, we developed a theory of probability that allows us to model
and analyze random phenomena in terms of random variables and their distributions.
While developing this theory we often referred to real-world observations and data
sets, for example, in the assumption that the tropical cyclones in Example 2.5.5 follow
a Poisson distribution with mean15. Although we might be able to argue that the
distribution should be Poisson from purely physical and meteorological principles,
where did the number15 come from? It is simply the average number of cyclones per
year that has been observed during the years1988–2003, so we used this measured
value as our parameter. This is a typical situation in any application of probability
theory. We formulate a model by making assumptions about distributions and their
parameters, but in order to be able to draw any useful conclusions, we need data. In
this chapter we outline the field ofstatistical inference, or statisticsfor short, which
ties together probability models and data collection.

6.2 POINT ESTIMATORS

Suppose that we manufacture lightbulbs and want to state theaverage lifetime on the
box. Let us say that we have the following five observed lifetimes (in hours)

983, 1063, 1241, 1040, 1103

which have the average1086. If this is all the information we have, it seems reasonable
to state1086 as the average lifetime (although “at least1000 hours” might sound

303
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better from a commercial point of view). Let us now describe this in terms of random
variables.

Let the random variableX be the lifetime of a lightbulb, and letµ = E[X ]. Here
µ is anunknown parameter. We decide to repeat the experiment to measure a lifetime
5 times and will then get an outcome on the five random variablesX1, ..., X5 that are
i.i.d. We nowestimateµ by

X̄ =

5∑

k=1

Xk

which we recall from Section 4.1 as the sample mean. We can think of this as the
way we would describe it before having actually performed the experiment. TheXk

are random, and so is̄X . After the experiment, we get observed values, and with the
values given above we get the outcomeX̄ = 1086. We now generalize the idea of
this example, for which we need the following definition.

Definition 6.2.1. If the random variablesX1, ..., Xn are i.i.d., we refer to them
collectively as a (random) sample.

Note that it is the entire collectionX1, ..., Xn which is called “a sample,” which may
be a bit different from the way the word “sample” is used in everyday language. In
practice, it is not necessarily the case that observations are independent or have the
same distribution and we will later use the term “sample” in such more general cases
as well. For now, however, we will stick with the i.i.d. observations.

Suppose now that we want to use a random sample to gain information about an
unknown parameterθ. The following definition is central.

Definition 6.2.2. A random variableθ̂, which is a function of a random
sample and is used to estimate an unknown parameterθ, is called anestimator
of θ. The observed value of̂θ is called anestimateof θ.

Thus, if we have a sampleX1, ..., Xn, an estimator is a random variable of the type
g(X1, ..., Xn) for some functiong : Rn → R. It is important to understand that a
parameterθ is a fixed but unknown number and an estimatorθ̂ is a random variable
to be computed from a sample. We will stick to the distinctionbetween estimator and
estimate, although these terms are sometimes used interchangeably in the statistics
literature.

In the lightbulb example we have the parameterµ and the functiong(X1, ..., Xn) =
(X1 + · · · + Xn)/n, which gives the estimator̂µ = X̄ and the estimate1086. If



POINT ESTIMATORS 305

we repeat the experiment with five new lightbulbs, the estimator is the same but the
estimate will change.

It is natural to estimate the meanµ by the sample mean̄X, but how do we know
that there are no other estimators that are better? What does“better estimator” mean,
anyway? The intuitive general criterion for a good estimator θ̂ is simply that it is “as
close toθ as possible.” How can we formalize this intuition?

Since an estimator̂θ is a random variable, it has an expected valueE[ θ̂ ]. Since
this is a number and we use the estimator to estimate the unknown numberθ, it seems
reasonable to require that the two be equal.

Definition 6.2.3. The estimator̂θ is said to beunbiasedif

E[ θ̂ ] = θ

If E[ θ̂ ] 6= θ, θ̂ is said to bebiased. Thus, an unbiased estimator “aims at the true
value ofθ” or is “correct on average.” For an illustration of the idea,consider Figure
6.1, where histograms are given for unbiased and biased estimators. Each histogram
is computed from1000 values ofθ̂, and each such value is computed from a new
sample of a fixed sizen.

From Section 4.1 we know thatE[X̄ ] = µ, andX̄ is thus an unbiased estimator of
µ. It is not the only unbiased estimator of the meanµ, though. We could also useX1,
the first observation, and disregard all the others. SinceE[X1] = µ, this is also an
unbiased estimator, and in the lightbulb example we get the estimateX1 = 983. Intu-
itively X̄ ought to be a better estimator thanX1 since it uses all the information in the
sample. To extend this argument, if we would increase the number of observations in
the sample we would increase the amount of available information and, consequently,

θ θ 

Fig. 6.1 A parameterθ and histograms of repeated observations on its estimatorθ̂. On the
left, the estimator is unbiased and on the right, it is biasedwith E[ θ̂ ] < θ.
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should obtain an even better estimator. This brings us to another important property
of estimators.

Definition 6.2.4. The estimator̂θn based on the sampleX1, . . . , Xn is said to
beconsistentif

θ̂n
P→ θ

asn → ∞.

This property can often be difficult to verify for a given estimator, so the following
result is very useful.

Proposition 6.2.1. Let θ̂n be an estimator based on the sampleX1, . . . , Xn.
If

Var[ θ̂n ] → 0

asn → ∞, thenθ̂n is consistent.

Proof. Apply Chebyshev’s inequality tôθn and letc = ǫ/

√
Var[ θ̂n ]. This yields

that

P (|θ̂n − θ| > ǫ) ≤ Var[ θ̂n ]

ǫ2

Now, if Var[ θ̂n ] → 0 asn → ∞, we see that

P (|θ̂n − θ| > ǫ) → 0

asn → ∞ for all ǫ > 0, which completes the proof.

Hence, unbiasedness and consistency are two desirable properties that we should look
for when considering estimators. This invites the following question: If we have two
unbiased and consistent estimatorsθ̂ andθ̃, which should we choose? Intuitively, we
should choose the one that tends to be closer toθ, and sinceE[ θ̂ ] = E[ θ̃ ] = θ, it
makes sense to choose the estimator with the smaller variance.
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Definition 6.2.5. Suppose that̂θ andθ̃ are two unbiased estimators ofθ. If

Var[ θ̂ ] < Var[ θ̃ ]

thenθ̂ is said to bemore efficientthanθ̃.

Let us again return to the lightbulb example and the two estimatorsX̄ andX1. If σ2

is the variance of an individual lifetime, we thus have

Var[X̄] =
σ2

5
and Var[X1] = σ2

soX̄ is more efficient thanX1. Since the sample mean is a natural estimator of the
mean, regardless of distribution, let us restate its properties from Section 4.1.

Proposition 6.2.2. Let X1, ..., Xn be a sample with meanµ and varianceσ2.
Then the sample mean̄X has mean and variance

E[X̄] = µ and Var[X̄] =
σ2

n

There are numerous other ways to construct unbiased estimators, and it can be shown
that the sample mean is the most efficient among a large class of unbiased estimators
(see Problem 1).

When two estimators,̂θ and θ̃, are given, one is not necessarily more efficient
than the other. The reason for this is that the variances of the estimators typically
depend on unknown parameters (most notablyθ itself), and it may well happen that
Var[ θ̂ ] < Var[ θ̃ ] for some parameter values and Var[ θ̂ ] > Var[ θ̃ ] for others.

Example6.2.1. Let X1, ..., Xn be a random sample from a uniform distribution
on [0, θ] whereθ is unknown. Since the mean isθ/2, one reasonable estimator is
θ̂ = 2X̄. Also, since the maximum valueX(n) ought to be close toθ but is always

smaller, another reasonable estimator isθ̃ = cnX(n), wherecn > 1. Determinecn

so that̃θ becomes unbiased and compare the two estimators.

We need to findcn such that

E[ θ̃ ] = cnE[X(n)] = θ
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To computeE[X(n)], we recall Corollary 3.10.2, which states that the pdf ofX(n) is

f(n)(x) = nf(x)F (x)n−1

where in our casef(x) = 1/θ andF (x) = x/θ, and we get

f(n)(x) =
nxn−1

θn
, 0 ≤ x ≤ θ

This now gives

E[X(n)] =

∫ θ

0

xf(n)(x)dx =
n

θn

∫ θ

0

xndx =
n

n + 1
θ

which givescn = (n + 1)/n and the estimator

θ̃ =
n + 1

n
X(n)

Let us compare the two estimators. We already know thatθ̃ is unbiased and since

E[ θ̂ ] = 2E[X̄] = 2
θ

2
= θ

alsoθ̂ is unbiased. Let us next compare the variances of the two estimators. For̂θ we
have,

Var[ θ̂ ] = 4Var[X̄ ] = 4
θ2

12n
=

θ2

3n

where we got the variance for the uniform distribution from Proposition 2.4.6. For̃θ
we have

Var[ θ̃ ] = E[ θ̃2 ] − (E[ θ̃ ])2 =

(
n + 1

n

)2

E[X2
(n)] − θ2

so we need to findE[X2
(n)]. The pdf ofX(n) is given above, and we get

E[X2
(n)] =

n

θn

∫ θ

0

xn+1dx =
n

n + 2
θ2

which finally gives

Var[ θ̃ ] =

(
n + 1

n

)2
n

n + 2
θ2 − θ2 =

θ2

n(n + 2)

Since
Var[ θ̃ ] < Var[ θ̂ ]

for n ≥ 2, θ̃ is the more efficient estimator. Note that the difference in variance is
quite substantial sincẽθ hasn2 in the denominator whereaŝθ has onlyn.
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When given two (or more) alternative estimators, Definition6.2.5 thus gives a cri-
terion to use for selecting the most efficient one. However, it does not say anything
about optimality, i.e. is it good enough or should we keep looking for something even
better? To answer that question, we need the following result.

Proposition 6.2.3(Cramér-Rao Lower Bound1). Let θ̂ be an unbiased esti-
mator of the parameterθ based on the sampleX1, . . . , Xn. Then

Var[ θ̂ ] ≥ 1

nI(θ)

where

I(θ) = −E

[
∂2

∂θ2
log fθ(X)

]

is theFisher information2.

The proof of Proposition 6.2.3 is rather involved and falls beyond the scope of this
book.

This result gives us the smallest possible variance of an unbiased estimator for a
given sample distribution, so if we manage to attain this, orcome sufficiently close,
we can be confident that we have a good estimator. We can also use it to obtain an
absolute measure of efficiency.

Definition 6.2.6. Theefficiencyof an unbiased estimator̂θ is

e(θ̂) =
1

nI(θ)Var[ θ̂ ]

We can interpret the efficiency as the ratio of the variance ofthe best possible unbiased
estimator (if it exists) and the variance of the givenθ̂ and from Proposition 6.2.3 we

1Named after the Swedish mathematician Harald Cramér (1893–1985) and the Indian statistician C. R.
Rao (1920–).
2Named after the English statistician Sir Ronald A. Fisher (1890–1962), who, among other things, intro-
duced the method of maximum likelihood (see Section 6.4.2).
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get thate(θ̂) ≤ 1.

Example6.2.2. Let us assume that we have a sampleX1, . . . , Xn, which is nor-
mally distributed with meanµ and varianceσ2. Proposition 6.2.2 says that the point
estimatorµ̂ = X̄ is an unbiased estimator ofµ. Let us now see how efficient this
estimator is. The Fisher information of the normal distribution with respect toµ is

I(µ) = −E

[
∂2

∂µ2
log

(
1

σ
√

2π
e−(X−µ)2/2σ2

)]

= −E

[
∂2

∂µ2

(
− log(σ

√
2π) − (X − µ)2

2σ2

)]
= −E

[
− 1

σ2

]
=

1

σ2

The Cramér-Rao Lower Bound hence becomes1/nI(µ) = σ2/n, which, by Propo-
sition 6.2.2, is equal to the variance of̄X. This shows that there does not exist any
other unbiased estimator ofµ with a higher efficiency than the sample mean.

Efficiency is thus a criterion that we can use to choose between estimators. To get a
better idea of what the actual numbers mean, rather than using the variance, we use
the standard deviation that has the correct unit of measure.For an estimator, there is
a special piece of terminology.

Definition 6.2.7. The standard deviation of an estimator,σ
θ̂

=

√
Var[ θ̂ ], is

called thestandard error.

In practice, the standard error typically depends on unknown parameters, and by
estimating these, we get theestimated standard error, denoted bys

θ̂
. This is also

sometimes referred to as the standard error if there is no risk of confusion. Let us
revisit our examples.

Example6.2.3. In Example 6.2.1, suppose that we have the following10 observa-
tions, ordered by size:

0.94, 1.56, 2.52, 3.54, 3.91, 4.16, 4.49, 6.50, 7.42, 8.69

which gives the estimates
θ̂ = 2X̄ = 8.8

and

θ̃ =
n + 1

n
X(n) =

11

10
× 8.69 = 9.6



POINT ESTIMATORS 311

The standard errors are

σ
θ̂

=
θ√
3n

and σ
θ̃

=
θ√

n(n + 2)

which, as we can see, depend on bothθ andn. For the estimated standard errors we
insertn = 10 and the values of̂θ andθ̃ to obtain

s
θ̂

=
θ̂√
3n

=
8.8√
30

= 2.6 and s
θ̃

=
θ̃√

n(n + 2)
=

9.6√
120

= 0.77

Example 6.2.4. In the lightbulb example, the estimators arēX and X1 and the
standard errors are

σX̄ =
σ√
5

and σX1 = σ

which depend on the unknown parameterσ. Thus, in order to estimate the standard
errors, we need to know how to estimateσ from the sample. We address this in the
next section.

6.2.1 Estimating the Variance

We have learned that the sample mean is a good estimator of themean. Now suppose
that we also wish to estimate the varianceσ2. Recall the definition

σ2 = E
[
(X − µ)2

]

whereµ is the mean. Thus, the variance is the mean of the random variable(X −µ)2

and a good estimator is the sample mean of the random variables

(X1 − µ)2, ..., (Xn − µ)2

that is, we could use

σ̂2 =
1

n

n∑

k=1

(Xk − µ)2

as our estimator ofσ2. One obvious problem is that this requires that we know the
meanµ, and this is rarely the situation. However, we can replaceµ by its estimator
X̄ and hopefully still get a good estimator ofσ2. It turns out that this results in an
estimator that is slightly biased, and instead the following is most often used.

Definition 6.2.8. Let X1, ..., Xn be a random sample. Thesample variance
is defined as

s2 =
1

n − 1

n∑

k=1

(Xk − X̄)2
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For computations, it is easier to use the following formula,easily proved by expand-
ing the square and doing some simple algebra.

Corollary 6.2.4.

s2 =
1

n − 1

(
n∑

k=1

X2
k − nX̄2

)

It may seem strange to divide byn−1 when there aren terms in the sum. The reason
for this is that it gives an unbiased estimator.

Proposition 6.2.5. The sample variances2 is an unbiased and, ifE[X4
i ] is

finite, consistent estimator ofσ2.

Proof. By Corollary 6.2.4, we obtain

E[s2] =
1

n − 1

(
n∑

k=1

E[X2
k ] − nE[X̄2]

)

=
1

n − 1

(
n(σ2 + µ2) − n

(
σ2

n
+ µ2

))
= σ2

where we used the variance formula from Corollary 2.4.5. Theproof of consistency
is left as an exercise.

Dividing byn would thus give an estimator that is on average too small. Theintuitive
reason for this is that theXk tend to be closer tōX than they are toµ itself. The
square root ofs2 is denoted bys and called thesample standard deviation. While s2

is an unbiased estimator ofσ2, s is not an unbiased estimator ofσ but is nevertheless
commonly used (see Problem 11).

Example6.2.5. Find the sample standard deviations in the lightbulb example and
use it to estimate the standard errors of the estimatorsX1 andX̄ .
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Our observed sample is983, 1040, 1063, 1103, 1241, which has observed sample
meanX̄ = 1086 and

5∑

k=1

X2
k = 5, 934, 548

which gives

s2 =
1

4
(5, 934, 548− 5 × 10862) = 9392

which finally givess = 96.9. This is also the estimated standard error ofX1. The
estimated standard error of̄X is

sX̄ =
96.9√

5
= 43.3

which is less than half of that ofX1. Note how the estimation ofσ achieves two
things: (1) we get an estimate of the variation of individuallifetimes and (2) we get
an estimate of the standard error ofX̄.

By comparing standard errors, we can compare estimators. Itis still not clear, how-
ever, what the actual value of the standard error means. It somehow measures the
accuracy of our estimator and we would like to use it to geterror bounds. In the light-
bulb example, we have the estimatēX = 1086, which has estimated standard error
43. Perhaps we could summarize this as1086±43, but exactly what does this mean?
The meanµ is unknown, so either it is in the interval[1043, 1129] or it is not. Note,
however, that the interval is an outcome of therandom interval[X̄ − sX̄ , X̄ + sX̄ ],
so what we can do is to find the probability that this random interval containsµ. We
could then further supplement our error bounds with a probability that tells how much
we believe in the bounds. Instead of taking±sX , we could take±2sX̄ , ±3sX̄ , or
±c sX̄ for some other constantc. The probability of catchingµ changes withc, and
in the next section we introduce a systematic way to determine error bounds.

6.3 CONFIDENCE INTERVALS

As discussed in the previous section, it is desirable to be able to supplement an esti-
mator with error bounds, to get an idea of its accuracy. The following definition gives
the formal description.
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Definition 6.3.1. Let X1, ..., Xn be a random sample andθ an unknown pa-
rameter. IfT1 andT2 are two functions of the sample such that

P (T1 ≤ θ ≤ T2) = q

we call the interval[T1, T2] aconfidence intervalfor θ with confidence levelq.
We write this

T1 ≤ θ ≤ T2 (q)

A confidence interval is thus a random interval that containsthe parameterθ with
probabilityq. Note that the probability statement in the definition seemsto be a bit
“backward” from what we are used to, since there is a constantθ in the middle and
random variables at the ends. Once we have numerical observations on our sample,
we get numerical values ofT1 andT2 and refer to this as anobserved confidence
interval. We often refer to the confidence level as a percentage, and instead of saying
“a confidence interval with confidence level0.95,” we may say “a95% confidence
interval.” We can regard a confidence interval as an estimator that is an entire interval
instead of a single point, and for this reason, the distinction betweenpoint estimation
andinterval estimationis often made.

Example6.3.1. Let us return to Example 6.2.1 where we used the estimator

θ̃ =
n + 1

n
X(n)

to estimateθ from a uniformly distributed sample on the interval[0, θ]. To find
a confidence interval ofθ, we first need to determine the distribution of the order
statisticX(n). SinceX(n) is the maximum of then independent random variables
X1, . . . , Xn, we can write the distribution function

FX(n)
(x) = P (X(n) ≤ x) = P (X1 ≤ x, . . . , Xn ≤ x)

= P (Xi ≤ x)n =
(x

θ

)n

(6.3.1)

The next step is to find valuesx1 andx2 such that

P (x1 ≤ X(n) ≤ x2) = q

This can be done in several ways (infinitely many, actually) so let us also require the
interval to besymmetric, i.e.

P (X(n) < x1) = P (X(n) > x2) =
1 − q

2
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Equation (6.3.1) implies that (x1

θ

)n

=
1 − q

2

whose solution is

x1 = θ

(
1 − q

2

)1/n

Correspondingly, we get the upper limit as the solution to

1 −
(x2

θ

)n

=
1 − q

2

which is

x2 = θ

(
1 + q

2

)1/n

A confidence interval is now obtained from the inequality

θ

(
1 − q

2

)1/n

≤ X(n) ≤ θ

(
1 + q

2

)1/n

by dividing byθ andX(n) and finally taking the reciprocal. The final result can then
be expressed

X(n)

(
1 + q

2

)−1/n

≤ θ ≤ X(n)

(
1 − q

2

)−1/n

(q)

(Note that the upper and lower limits switch when we take the reciprocal.)
Let us now apply this to the observed sample in Example 6.2.3 for q = 0.95. The

maximum observation wasx(n) = 8.69 in a sample of sizen = 10. The lower limit
will then become

8.69 × 0.975−1/10 = 8.71

and the upper limit
8.69 × 0.025−1/10 = 12.57

Hence, we can claim with 95 % confidence that the actual value of θ lies somewhere
between 8.7 and 12.6.

This example illustrates the most common way to calculate confidence intervals,
namely to first determine the distribution of an efficient estimator (or a related statis-
tic), use this to obtain an interval for the estimator and finally transform this into a
confidence interval. However, it is often the case that the interval is of the form

[ θ̂ − R, θ̂ + R ]

whereθ̂ is an estimator ofθ andR is an error bound determined such that

P (θ̂ − R ≤ θ ≤ θ̂ + R) = q
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We then usually write the interval in the form

θ = θ̂ ± R (q)

where the error boundR may be deterministic or random. A general observation is
that we want the confidence interval to be as short as possible, since this means that
our estimator has high accuracy. On the other hand, we also want the confidence level
q to be as high as possible, since this means that we have strongbelief that we have
caught the true parameterθ in our interval. However, these two wishes are conflicting,
and there is the trade-off that higher confidence levels correspond to longer intervals.
It is more important to have high values ofq, since it would not be of much use to
have a very short interval if we did not have any confidence in it. For that reason, the
value ofq is typically determined in advance and the interval then computed. Some
standard values ofq are0.90, 0.95, and0.99.

Finding a confidence interval requires computation of a probability, and this, in
turn, means that we must know something about the distribution of our sample. To
be able to compute the probabilityP (θ̂ − R ≤ θ ≤ θ̂ + R), we need to know the
distribution of the estimator̂θ and ofR if it is random. We next look at one important
special case, when the observations come from a normal distribution

6.3.1 Confidence Interval for the Mean in the Normal Distribu tion with
known Variance

Suppose thatX1, . . . , Xn is a sample from a normal distribution with unknown mean
µ and known varianceσ2. As usual, we estimateµ with X̄, but how can we find a
confidence interval of the formµ = X̄ ±R? This means that we need to findR such
that

P (X̄ − R ≤ µ ≤ X̄ + R) = q

By transformation we obtain the equivalent inequality

− R

σ/
√

n
≤ X̄ − µ

σ/
√

n
≤ R

σ/
√

n

where we know that the quantity in the middle isN(0, 1). With z = R
√

n/σ, we get
the equation

q = P

(
−z ≤ X̄ − µ

σ/
√

n
≤ z

)
= Φ(z) − Φ(−z) = 2Φ(z) − 1

by symmetry. This implies the following proposition.
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Proposition 6.3.1. If X1, ..., Xn is a sample from aN(µ, σ2) distribution
whereσ2 is known, a100q% confidence interval forµ is

µ = X̄ ± z
σ√
n

(q)

wherez is such thatΦ(z) = (1 + q)/2.

Example6.3.2. Consider the lightbulb example and find a95% confidence interval
for µ under the assumption thatσ = 100.

Since(1+q)/2 = 0.975 we need to findz such thatΦ(z) = 0.975. Table A.2, which
is specifically constructed for confidence intervals, givesusz = 1.96, which yields
the confidence interval

µ = 1086± 1.96 × 100√
5

= 1086± 88 (0.95)

This result is mostly of theoretical interest since, in mostpractical situations, the
variance is usually not known beforehand. It is possible, however, to generalize
this for unknown variance, but it requires some additional mathematics and will be
deferred to the next chapter.

6.3.2 Confidence Interval for an Unknown Probability

Suppose that we are interested in the probabilityp of some eventA, repeat the experi-
mentn times, and observeA in X of these. ThenX ∼ bin(n, p), and a good estimator
is the relative frequencŷp = X/n (in Section 4.2 denotedfn). Thus, by Equation
(4.3.2), a consequence of the normal approximation to the binomial distribution is
that

p̂
d≈ N

(
p,

p(1 − p)

n

)

which means that

P

(
−z ≤ p̂ − p√

p(1 − p)/n
≤ z

)
≈ q

whereΦ(z) = (1+ q)/2. Although we could get an interval forp from the preceding
expression, we make yet another simplifying approximationand replacep by p̂ in the
denominator, which gives

P

(
−z ≤ p̂ − p√

p̂ (1 − p̂ )/n
≤ z

)
≈ q
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which in turn gives the following result.

Proposition 6.3.2. An approximate100q% confidence interval forp is given
by

p = p̂ ± z

√
p̂ (1 − p̂ )

n
(≈ q)

whereΦ(z) = (1 + q)/2.

Let us comment on the substitution ofp̂ for p. Since

p̂ − p√
p̂ (1 − p̂ )/n

=
p̂ − p√

p(1 − p)/n

√
p(1 − p)

p̂ (1 − p̂ )

where the first factor is approximatelyN(0, 1) and by Corollary 4.2.3 the second
factor is approximately1, the product should also be approximatelyN(0, 1). We are
not spelling out the exact asymptotic results that are needed here, but hopefully this
gives some intuition as to why the substitution is valid. We cannot substitutêp for p
just anywhere; if we do it in the numerator, for instance, we get0.

An application where the approximation works well is political opinion polls. Let
p be the unknown proportion of supporters of a particular candidate, draw a sample of
n individuals, and ask if they favor this candidate. If this number isX , we can estimate
p by p̂ = X/n as usual. Now, the distribution ofX is not exactly binomial since we
sample without replacement but by Proposition 4.4.2, on thebinomial approximation
to the hypergeometric, we can assume thatX is binomial for all practical purposes.3

The total population sizeN is typically on the order of many millions; the sample
sizen, typically around1000. The confidence interval is, as above

p = p̂ ± z

√
p̂ (1 − p̂ )

n
(≈ q)

where the quantity±z
√

p̂ (1 − p̂ )/n is referred to as themargin of erroror thesam-
pling error.

Example6.3.3. As an illustrative example, let us consider a historical opinion poll
from October2000, regarding the upcoming presidential election. In this poll, 2207

3This “two-step” approximation suggests that we can approximate the hypergeometric distribution directly
by the normal, without going via the binomial distribution.This is indeed true, and we could then use the
slightly lower variance of the hypergeometric distribution instead. In the current example, there is nothing
to gain from this.
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likely voters were asked whom they would vote for. The results were George Bush
47%, Al Gore 44%, Ralph Nader2%, and Pat Buchanan1%; the rest were either
undecided or supporting other candidates. The poll was reported to have a±2%
margin of error.

Let us take confidence levelq = 0.95, which givesz = 1.96. The four confidence
intervals are

pBush = 0.47 ± 1.96

√
0.47(1 − 0.47)

2207
= 0.47 ± 0.02

pGore = 0.44 ± 1.96

√
0.44(1 − 0.44)

2207
= 0.44 ± 0.02

pNader = 0.02 ± 1.96

√
0.02(1 − 0.02)

2207
= 0.02 ± 0.006

pBuchanan = 0.01 ± 1.96

√
0.01(1 − 0.01)

2207
= 0.01 ± 0.004

or in terms of percentage points,pBush = 47 ± 2 and so on. Note how the margins
of error differ because the length of the confidence intervaldepends on̂p. When the
margin of error is stated as±2%, this is correct for Bush’s and Gore’s numbers, but
for the smaller numbers of Nader and Buchanan, the margin of error is significantly
smaller. See Problem 21 for more on this.

Note that the margin of error does not depend on the population sizeN , only the
sample sizen. Obviously this is an effect of the approximation and not true in
general; if we ask the25 inhabitants of Luckenbach, Texas if they are feeling any
pain, our margin of error will be0. However, as long asn is small relative toN , the
size of the population does not matter. Thus, if we ask2000 people, the poll will be
as valid in the United States as in Canada, Chile, or China.

Another remark is that the margin of error also depends on theconfidence level,
and this is rarely reported in the media. A confidence level of95% is supposedly the
standard for the polling companies and a reasonable choice.Too much lower, and
the results are not trustworthy, too much higher and the margin of error may become
too large to be useful.

The theory of opinion polls is part of the area ofsurvey sampling, an important sub-
discipline of statistics. There are many ways to improve theestimates and confidence
intervals, such as by ensuring that different population subgroups are proportionally
represented in the sample, but we will not discuss this further. Instead, we will focus
on a common question regarding opinion polls; if there is a change in support for a
candidate between two consecutive polls, does this indicate a real change in the pop-
ulation? The question can be answered with a confidence interval for the difference
between two probabilities,p1 andp2. In short, suppose that we have observed that
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p̂2 > p̂1. We then conclude thatp2 > p1 if the confidence interval for̂p2 − p̂1 does
not include0. We call the differencestatistically significant, a concept that will be
further clarified in Section 6.5. If the interval includes0, we cannot rule out that
p2 ≤ p1 and that the observed difference was due only to chance. Let us revisit the
election year2000.

Example6.3.4. Shortly after the October2000 poll described in Example 6.3.3, an-
other poll was taken where2167 individuals were surveyed and the percentages were
48% for Bush,43% for Gore,3% for Nader, and1% for Buchanan. Thus, two of the
candidates had gained support in the second poll. Does this indicate a real change in
the population?

Let us start with Bush’s numbers, denote byp1 the support in the population at the
time of the first poll andp2 the support at the time of the second. The estimators are
p̂1 andp̂2, and we have

p̂1
d≈ N

(
p1,

p1(1 − p1)

n

)
, p̂2

d≈ N

(
p2,

p2(1 − p2)

m

)

wheren andm are the sizes of the two polls. If we assume that the second poll is
done independently of the first, this means thatp̂1 andp̂2 are independent, and thus

p̂2 − p̂1
d≈ N

(
p2 − p1,

p2(1 − p2)

m
+

p1(1 − p1)

n

)

and we can construct a confidence interval forp2 − p1 with methods similar to those
used before. If we thus substitutep1 andp2 with their estimators in the expression
for the variance, we get the confidence interval

p2 − p1 = p̂2 − p̂1 ± z

√
p̂2(1 − p̂2)

m
+

p̂1(1 − p̂1)

n
(≈ q)

where as usualΦ(z) = (1 + q)/2. Again takingq = 0.95 gives

p2 − p1 = 0.48 − 0.47 ± 1.96

√
0.48(1 − 0.48)

2167
+

0.47(1 − 0.47)

2207

= 0.01 ± 0.03

which is the interval(−0.02, 0.04). Since this includes0, the change is not large
enough to rule out randomness and the change is thus not statistically significant. For
Nader’s numbers we get

p2 − p1 = 0.03 − 0.02 ± 1.96

√
0.03(1 − 0.03)

2167
+

0.02(1 − 0.02)

2207
= 0.01 ± 0.009
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which is an interval entirely above0, so this change is statistically significant, albeit
just barely, and roundoff errors may also play a role here. The important point, though,
is that an increase by one percentage point in the polls is much more significant for
Nader’s numbers in the single digits, than for Bush’s, whichare in the40–50 percent
range.

Another obvious question is whether the difference betweenBush’s and Gore’s num-
bers of47% and44% in the first poll is statistically significant. Again, this can be
answered with a confidence interval for the difference between two probabilities,pB

andpG, but note that the estimatorŝpB andp̂G are not independent since they come
from the same sample. You are asked to investigate this in Problem 24.

In the media, we often hear statements like “candidate A leads candidate B in
the poll,” and later it is mentioned that the difference is within the margin of error.
Such statements are meaningless. To “lead in the poll” in thesense that the estimated
proportion is higher has no value unless the confidence interval for the difference is
entirely above0.

6.3.3 One-Sided Confidence Intervals

Our confidence intervals thus far have been of the typeT1 ≤ θ ≤ T2 or θ = θ̂ ± R,
which we calltwo-sided. Sometimes it is more desirable to haveone-sidedintervals,
of the typeθ ≤ θ̂ +R or θ ≥ θ̂−R. For instance, consider Example 6.3.2, where the
confidence interval for the mean lifetime of a lightbulb was1086± 88 hours. Instead
of claiming that the mean lifetime is between998 and1174, we may be interested
in claiming only that it is at least998. Thus, we are interested only in one of the
confidence limits and in such a case, it is a “waste of confidence level” to construct a
two-sided interval by splitting1 − q in two (equal) parts. Let us say that we want an
interval with only a lower bound. In the lightbulb example, this can be expressed

µ ≥ X̄ − z
σ√
n

(q)

whereΦ(z) = q. For q = 0.95, Table A.2 gives usz = 1.64, which yields the
interval

µ ≥ 1086 − 1.64
100√

5
= 1086 − 73 = 1013 (0.95)

We see that if we are only interested in a lower bound of life expectancy we can make
a slightly stronger statement than before.

6.4 ESTIMATION METHODS

The estimators that we have come up with so far have been basedon common sense,
such as estimating the mean by the sample mean. In more complicated situations,
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there might not be an obvious estimator, and the question is how to find one. In
this section we will examine two general methods to find estimators, based on two
different principles. Both methods work in great generality, and in simple cases they
give estimators that are intuitively reasonable.

6.4.1 The Method of Moments

We have seen that the sample meanX̄ is a natural estimator of the meanµ = E[X ] and
that it has good properties. Suppose instead that the parameter we wish to estimate is
θ = E[X2]. Since this is the expected value of the random variableX2, it is logical
to estimate it by the sample mean of the squared observations:

θ̂ =
1

n

n∑

k=1

X2
k

In the same way, we can estimate any expected value of the typeE[Xr] by the corre-
sponding sample mean of the observations raised to therth power. Let us state some
definitions.

Definition 6.4.1. LetX be a random variable. Therth momentof X is defined
as

µr = E[Xr]

Henceµ1 = E[X ], µ2 = E[X2] and so on. Next we define the correspondingsample
means to be used as estimators.

Definition 6.4.2. X1, ..., Xn be a random sample. Therth sample momentis
defined as

µ̂r =
1

n

n∑

k=1

Xr
k

In particular,µ̂1 = X̄, the sample mean. Note that the moments are parameters
computed from the distribution and that the sample moments are estimators computed
from the sample. Also note that for eachr, µ̂r has mean and variance

E[ µ̂r] = µr, Var[ µ̂r] =
1

n
Var[Xr]
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so that each sample moment is an unbiased estimator of the corresponding moment
and has a variance that is small for largen (unless Var[Xr] = ∞). Now, our parame-
ter of interest may not be one of the moments, but if it can be expressed as a function
of moments, it can be estimated by replacing moments by the corresponding sample
moments. This is the main idea behind the following definition.

Definition 6.4.3. Suppose that we can express the unknown parameterθ
as a function of the firstj moments,θ = g(µ1, ..., µj). The estimator
θ̂ = g(µ̂1, ..., µ̂j) is then called themoment estimatorof θ.

The representationθ = g(µ1, ..., µj) is not necessarily unique since parameters may
often be written as different functions of different moments. The convention is to
start by computing the first momentµ1. If θ can be expressed as a function ofµ1,
we are done. If not, we go on to compute the second moment and soon, until we
get the desired expression. Let us look at a few examples to illustrate the method,
appropriately named themethod of moments.

Example6.4.1. Let X1, ..., Xn be a sample from an exponential distribution with
unknown parameterλ. Find the moment estimator ofλ.

We start by computing the first moment

µ1 = E[X ] =
1

λ

and henceλ = 1/µ1. In the terminology of Definition 6.4.3, we havej = 1 and
g(x) = 1/x. The moment estimator is therefore

λ̂ =
1

µ̂1
=

1

X̄

In the last example, it was sufficient to find the first moment. Let us next look at a
few examples where this is not the case. The first of these alsoillustrates the fact that
we do not always need to know the distribution of theXk to find moment estimators.

Example6.4.2. Let X1, ..., Xn be any random sample with meanµ and variance
σ2. Find the moment estimators ofµ andσ2.

Sinceµ1 = µ, the moment estimator ofµ is µ̂1 = X̄ . For the variance, note that

σ2 = E[X2] − (E[X ])2 = µ2 − µ2
1
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so the moment estimator is

σ̂2 = µ̂2 − µ̂2
1 =

1

n

n∑

k=1

X2
k − X̄2 =

1

n

n∑

k=1

(Xk − X̄)2

after some algebra. Note that this is not equal to the unbiased estimators2. Moment
estimators are not necessarily unbiased but can sometimes be adjusted to be so. In
this case, we can multiplŷσ2 by n/(n − 1) to obtain an unbiased estimator.

Example6.4.3. The following is an observed sample from a uniform distribution on
[−θ, θ] whereθ is unknown. Find the moment estimate ofθ:

−6.9, 2.8, 3.4, 6.4, 6.7, 8.0

Let us first find the moment estimator for a sampleX1, ..., Xn. The first moment
is µ1 = E[X ] = 0, which does not help us, so we need to proceed to the second
moment. We get

µ2 =

∫ θ

−θ

x2f(x)dx =
1

2θ

[
x3

3

]θ

−θ

=
θ2

3

which gives
θ =

√
3µ2

The moment estimator is therefore

θ̂ =
√

3µ̂2 =

√√√√ 3

n

n∑

k=1

X2
k

and in our case this becomes

θ̂ =

√
3

6
× 217 = 10.4

which is an estimate that we would certainly have been unableto figure out by intuition
alone.

6.4.2 Maximum Likelihood

The method of moments from the previous section was based on the simple idea of
estimating each moment by its corresponding sample moment.In this section we
consider another estimation principle, which is based on the idea of choosing the
most likely parameter value for a given sample. We illustrate this in an example.

Example6.4.4. A digital communication system transmits0s and1s. We know that
on average, one of the bits is sent twice as often as the other,but we do not know which
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one. In order to try to decide which,we have the following four observations:1, 1, 0, 1
(independent transmissions and no transmission error). Ofcourse, our immediate
observation is that there are more1s than0s and hence we ought to believe that1
is the more common. We now formalize this intuitive reasoning as an estimation
problem.

Letp be the probability that 1 is sent. Then we know thatp is either13 or 2
3 . Hence

we can viewp as an unknown parameter with possible values in{ 1
3 , 2

3}. Let us now
compute the probability to get the outcome that we actually got. By independence

P (1, 1, 0, 1) = p × p × p × (1 − p) × p = p3(1 − p)

If p = 1
3 , this equals0.025, and ifp = 2

3 , it equals0.099. Sincep must be either of
the two andP (1, 1, 0, 1) is higher ifp is 2

3 , we may say that23 is amore likelyvalue
of p than 1

3 and choose23 as our estimate ofp.

Note the idea in the example. We look at the outcome we got and then ask which
value of the parameter we think it came from. The parameter that maximizes the
probability of the outcome is chosen as the estimate. Let us return to the example.

Example6.4.5. Now assume that we do not know anything aboutp and wish to esti-
mate it on the basis of the same observations and the same principle. The probability
of our outcome is a function ofp, say,L(p), where

L(p) = p3(1 − p), 0 ≤ p ≤ 1

just as above butp can now be any number in[0, 1]. On the basis of the same principle
as above, we wish to find the most likely value ofp, and to that extent we find the
maximum ofL(p) by the usual method of differentiation. We get

L′(p) = 3p2 − 4p3 = p2(3 − 4p)

Setting this to 0 yieldsp = 0 or p = 3
4 , and since the second derivative is

L′′(p) = p(6 − 12p) < 0 for p =
3

4

we see thatp = 3
4 gives the maximum (the valuep = 0 is also unreasonable since we

have1s in our sample). Our estimate iŝp = 3
4 , the relative frequency of1s.

Let us now generalize the method from the example. First, letus restate the example
in terms of random variables. Thus, letX be a random variable that describes a
transmitted bit. ThenX = 1 with probabilityp andX = 0 with probability1 − p,
and the probability mass function ofX is therefore

fp(0) = 1 − p, fp(1) = p
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The indexp emphasizes that the probability mass function depends on the parameter
p (and it looks better to usef rather than the previousp for the pmf). We now realize
that the functionL in Example 6.4.5 can be written as

L(p) = fp(1)fp(1)fp(0)fp(1)

the product of the probability mass function evaluated at the observed values. We
can now easily generalize to the case where we have a sampleX1, ..., Xn of 0s and
1s with probability mass function as above. The functionL becomes

L(p) =
n∏

k=1

fp(Xk)

where we note that there areXk in the arguments soL(p) is actually random. How-
ever, we view it as a function ofp, and for that purpose we can view theXk as fixed.
When we maximize, the maximum is attained at some pointp̂ that must then be a
function of theXk andp̂ is a random variable exactly as we want an estimator to be.
To find out what̂p is in this case, see Problem 33.

The method described above can be directly generalized to any discrete distribu-
tion. If X1, ..., Xn is a sample from a discrete distribution with pmffθ, we can define
L(θ) as the productfθ(X1) · · · fθ(Xn), which again describes how likely different
parameter values are to produce the sampleX1, ..., Xn. For a continuous distribution,
the probability mass function is replaced by the pdf, which,as we already know, is
not directly interpretable as a probability. It is still a measure of howX is distributed
over its range, in the sense that large values off correspond to regions whereX is
more likely to be. Hence we can still define the functionL(θ) and interpret it as a
measure of how likely a parameter valueθ is to produce the sampleX1, ..., Xn. We
now formalize this.

Definition 6.4.4. Let X1, ..., Xn be a random sample from a distribution that
has pmf or pdffθ. The function

L(θ) =

n∏

k=1

fθ(Xk)

is called thelikelihood function. The valuêθ whereL attains its maximum is
called themaximum likelihood estimator(MLE) of θ.

To find the MLE, we thus viewX1, ..., Xn as fixed and find the maximum of the
functionL(θ), by common techniques from calculus. As it is most often easier to
maximize a sum than a product, we define thelog-likelihood functionas

l(θ) = log L(θ)
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and maximize this instead ofL. Since the logarithm is a strictly increasing function,
l andL attain maximum for the same argument. To find the MLE, the following
algorithm often works:

1. FindL(θ) andl(θ) = log L(θ).
2. Differentiatel(θ) with respect toθ and set equal to0.
3. Solve forθ and denote the solution̂θ.
4. Check thatl′′(θ̂) < 0 to ensure maximum. If this holds, then̂θ is the MLE.

AlthoughL(θ) could have several local maxima, it can be shown that the MLE exists
and is unique under some fairly general assumptions. The second derivative check
in step 4 is also often superfluous, as the functionl(θ) is often strictly concave. We
will not address these issues here and instead turn to some examples.

Example6.4.6. Let X1, ..., Xn be a sample from an exponential distribution with
unknown parameterλ. Find the MLE ofλ.

The pdf is
fλ(x) = λe−λx, x ≥ 0

which gives likelihood function

L(λ) =

n∏

k=1

λe−λXk = λn exp

(
−λ

n∑

k=1

Xk

)

The log-likelihood function is

l(λ) = log L(λ) = n log λ − λ

n∑

k=1

Xk

which has derivative

d

dλ
l(λ) =

n

λ
−

n∑

k=1

Xk = n

(
1

λ
− X̄

)

and the equation
d

dλ
l(λ) = 0

has solution

λ̂ =
1

X̄

which is the MLE (the second derivative is always negative),and we note that it is
the same as the moment estimator from the previous section.
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Example6.4.7. Let X1, ..., Xn be a sample from a Poisson distribution with mean
λ. Find the MLE ofλ.

This time the random variable is discrete with pmf

fλ(k) = e−λ λk

k!
, k = 0, 1, ...

which gives

L(λ) =

n∏

k=1

e−λ λXk

Xk!
= Ce−nλλnX̄

whereC = (X1! · · ·Xn!)−1. We get

l(λ) = log C − nλ + nX̄ log λ

which has derivative
d

dλ
= −n + n

X̄

λ

which set equal to0 gives the MLE

λ̂ = X̄

the sample mean.

Note how there is no difference between the discrete and continuous cases in the
way the method is applied. The next example is a case where differentiating the
log-likelihood function does not work.

Example6.4.8. Let X1, ..., Xn be a sample from a uniform distribution on[0, θ].
Find the MLE ofθ.

The pdf is

fθ(x) =

{
1/θ if 0 ≤ x ≤ θ
0 otherwise

When we write down the likelihood function, we need to remember that we view the
Xk as fixed andθ as the parameter. We get the following expression.

L(θ) =

{
1/θn if θ ≥ all Xk

0 otherwise

We may first try to take the logarithm and differentiate with respect toθ, but this leads
nowhere. In Figure 6.2 we can see thatL attains its maximum precisely where the



ESTIMATION METHODS 329

X
(1)

 X
(3)

       

X
(2)

 θ
      

L(θ) 

Fig. 6.2 The likelihood functionL(θ) for a sample of sizen = 3 from a uniform distribution
on [0, θ]. The maximum is attained at the largest observationX(3).

largestX value is. Recalling theorder statisticsfrom Definition 3.10.2, we realize
that

θ̂ = X(n)

the maximum value in the sample. Note that this estimator is different from the one
obtained previously by the method of moments, and also recall Example 6.2.1.

We will next find the MLEs ofµ andσ2 in the N(µ, σ2) distribution. If one of
the parameters is known, it is straightforward to estimate the other, and if both are
unknown, we can view them as a two-dimensional parameterθ = (µ, σ2). In the
definition of maximum likelihood, we simply maximize over two variables instead
of one, everything else remaining the same. We could argue whether we should find
the MLE of σ or σ2, but it turns out that we can find either one and then square or
take the square root to find the other. This is by virtue of the following proposition,
which we state without proof.

Proposition 6.4.1. If θ̂ is the MLE ofθ andg is a one-to-one function, then
g(θ̂) is the MLE ofg(θ).

Example6.4.9. Let X1, ..., Xn be a random sample from aN(µ, σ2) distribution
where bothµ andσ2 are unknown. Find the MLEs ofµ andσ2.
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By virtue of Proposition 6.4.1, we can view the likelihood function as a function of
µ andσ, rather thanµ andσ2. The likelihood function is

L(µ, σ) =

n∏

k=1

fµ,σ(Xk) =

n∏

k=1

1

σ
√

2π
e−(Xk−µ)2/2σ2

=

(
1√
2π

)n
1

σn
exp

(
− 1

2σ2

n∑

k=1

(Xk − µ)2

)

and the log-likelihood function

l(µ, σ) = −n log
√

2π − n logσ − 1

2σ2

n∑

k=1

(Xk − µ)2

We set the partial derivative with respect toµ equal to0 to obtain

∂l

∂µ
=

1

σ2

n∑

k=1

(Xk − µ) =
1

σ2

(
n∑

k=1

Xk − nµ

)
= 0

which givesµ̂ = X̄. The partial derivative with respect toσ, with µ replaced byX̄ ,
gives

∂l

∂σ
=

1

σ

(
−n +

1

σ2

n∑

k=1

(Xk − X̄)2

)
= 0

which gives the MLEs

µ̂ = X̄

σ̂2 =
1

n

n∑

k=1

(Xk − X̄)2

which are the same as the moment estimators. By virtue of Proposition 6.4.1, the
MLE of the standard deviationσ is

σ̂ =

√√√√ 1

n

n∑

k=1

(Xk − X̄)2

The maximum likelikood principle is central in statistics and can be used to solve
various estimation problems, even for quite complex models. Besides being general,
it can also be shown to produce good estimates. In fact, MLEs are in a sense optimal,
at least asymptotically, which the following result formalizes.
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Proposition 6.4.2. Let θ̂n be the MLE ofθ based on the sampleX1, . . . , Xn

and assume that the Fisher informationI(θ) exists. Then

i) E[ θ̂n ] → θ

ii) θ̂n is consistent.

iii) e(θ̂n) → 1

iv)
√

nI(θ)(θ̂n − θ)
d→ N(0, 1)

asn → ∞.

The first and the third part says that an MLE isasymptotically unbiasedandasymp-
totically efficient, which implies that, for large samples, there is (practically) no better
estimator. The last part is very useful when deriving approximateconfidence intervals
based on MLEs. It can be reformulated as

θ̂n
d≈ N

(
θ,

1

nI(θ)

)

for largen, which can be used in a similar way as in Section 6.3.1 to obtain the interval

θ = θ̂n ± z√
nI(θ̂n)

(≈ q)

wherez satisfiesΦ(z) = (1 + q)/2. Note thatI(θ) is replaced byI(θ̂n) in the error
bound. Sinceθ is unknown, we cannot computeI(θ) but if n is sufficiently large we
know thatθ ≈ θ̂n and, consequently, thatI(θ) ≈ I(θ̂n) One has to be aware that this
interval is probably slightly narrower than an exact interval or, correspondingly, that
the true confidence level is lower thanq since Var(θ̂n) ≥ 1/nI(θ), but for largen
this will be negligible.

Example6.4.10. Let us apply this to Example 6.4.6 to derive an approximate con-
fidence interval forλ in the exponential distribution. The Fisher information inthis
case becomes

I(λ) = −E

[
∂2

∂λ2
log(λe−λX)

]
=

1

λ2

Replacingλ with λ̂ = 1/X̄ yields

λ =
1

X̄
± z√

nX̄2
=

1 ± z/
√

n

X̄
(≈ q)
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However, the exponential distribution is notoriously difficult to approximate by the
normal distribution because of its heavily skewed nature, so n would have to be really
large for this interval to be accurate. In this case, it is actually preferable to use the
Central Limit Theorem

X̄
d≈ N

(
µ =

1

λ
,
σ2

n
=

1

nλ2

)

to derive an approximate confidence interval forµ as

µ = X̄ ± z√
nλ̂2

= X̄ ± z
X̄√
n

(≈ q)

and then taking the reciprocal to obtain

1

X̄(1 + z/
√

n)
≤ λ ≤ 1

X̄(1 − z/
√

n)
(≈ q)

6.4.3 Evaluation of Estimators with Simulation

Estimators derived with the method of moments or maximum likelihood method can
have complicated expressions as functions of the sample. If, for example, we want to
check unbiasedness or compute the standard error for quality assessment, this may be
difficult or even impossible. One way to evaluate such estimators is to use simulation.

Example6.4.11. Let X1, X2, ..., Xn be a random sample from a distribution with
pdf

f(x) = θxθ−1, 0 ≤ x ≤ 1

whereθ is an unknown parameter. Find the moment estimator ofθ and examine its
properties.

The first moment is

µ =

∫ 1

0

xf(x)dx = θ

∫ 1

0

xθdx =
θ

1 + θ

which gives

θ =
µ

1 − µ

and the moment estimator

θ̂ =
X̄

1 − X̄

It is difficult to compute the mean and variance ofθ̂, so let us instead examine its
properties by simulation. To do so, we first choose a value ofθ and a sample sizen,
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then run repeated simulations of samplesX1, ..., Xn and each time computêθ. This
gives us a samplêθ1, ..., θ̂N , whereN is the number of simulated samples. Now we
can use the sample mean (let us call itθ̃ to avoid putting a bar on top of a hat)

θ̃ =
1

N

N∑

k=1

θ̂k

and sample variance

s2 =
1

N − 1

N∑

k=1

(θ̂k − θ̃)2

to estimateE[ θ̂ ] and Var[ θ̂ ] (where as usual it is more informative to take the square
root to get the standard deviations). Note that each observation on̂θ is computed
from n observations, so we simulate a total ofN × n X values. We also need to
repeat this for various values ofθ andn.

To simulate observations onX , we use the inverse transform method from Propo-
sition 5.4.1. The cdf ofX is

F (x) =

∫ x

0

f(t)dt = θ

∫ x

0

tθ−1dt = xθ, 0 ≤ x ≤ 1

the inverse of which is
F−1(x) = x1/θ, x ≥ 0

Let us takeθ = 2. If if U1, ..., Un are i.i.d. standard uniform, our sample is

X1 =
√

U1, ..., Xn =
√

Un

and from this we compute

θ̂ =
X̄

1 − X̄

This gives us one observation on̂θ, and we repeat the procedureN times to get our
sample of observations on̂θ. Let us takeN = 1000andn = 10. A Matlab simulation
gave the estimated meañθ = 2.18, which we compare with the true mean2, so it
looks pretty good. The standard error wass = 0.85. Make sure not to confuse the
two sample sizes;n is the “real” sample size andN is the number of simulations that
we decide to run. To investigate the effect of the sample sizen, simulations were run
with n = 5, 10, 50, 100, and1000. The results are summarized in Table 6.1.

We can see that̂θ tends to overestimateθ a little but that it is pretty accurate and
becomes more so the larger the value ofn. This last observation is not surprising
sinceθ̂ is based onX̄ , and we can invoke the law of large numbers and Corollary
4.2.3. These results are of no help when it comes to smaller values ofn, though.
Figure 6.3 gives histograms for the casesn = 10 andn = 1000. We will stop here,
but to continue the investigation we would need to run simulations for many different
values ofθ. If we have reason to believe thatθ is in some particular range, this can
help us reduce the number of simulations.
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Table 6.1 Estimated means̃θ and standard deviationss of the estimator̂θ, based on simula-
tions of sample sizen and true parameter valueθ

n θ θ̃ s

5 2 2.32 1.33

10 2 2.18 0.85

50 2 2.01 0.30

100 2 2.02 0.21

1000 2 2.00 0.07

6.4.4 Bootstrap Simulation

The simulation method presented in the previous section onlyworks whenwe have full
knowledge about the underlying distribution of an actual sample, something which is
rarely true in reality. Let us assume that we have the observed samplex1, . . . , xn and
we want to say something about the point estimatorθ̂ = g(X1, . . . , Xn). The general
idea that the properties of estimators may be evaluated by generating new random
samples can still be used but instead of the true distribution we use theempirical
distribution function

F̂n(x) =
1

n

n∑

i=1

I{xi≤x}

whereIA denotes the indicator of the eventA. In practice, it simply means that a
simulated sampleX1, . . . , Xn is obtained by pickingn values at random from the
observed sample with replacement. Finally, we obtain a simulated sample of values
of θ̂ by repeating this procedureN times as in the previous section. Ifn is large, the
empirical distributionF̂n(x) approximates the true distributionF (x), which means
that the obtained sample ofθ̂ values will reflect the true distribution reasonably well.
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Fig. 6.3 Histograms from simulations of the estimatorθ̂ for θ = 2, n = 10 andθ = 2,
n = 1000, respectively. Note the different scales on thex axis.
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This method of simulating random samples from an unknown distribution is called
bootstrap simulation4.

Example6.4.12. The concentrations of antibodies against pertussis (whoopingcough)
in the blood of umbilical cords of 30 randomly chosen mothersin Sweden from 2007
are presented below.

0.0 0.0 0.0 0.0 1.7 2.3 2.9 3.3 4.0 4.5
5.3 6.1 6.7 7.9 8.9 10.3 11.1 12.2 13.1 14.4

16.0 17.4 21.0 24.4 29.4 33.5 42.1 52.2 93.9 353.7

Let us say that we want to estimate the mean concentration andgive a 95 % confidence
interval based on the sample. The observed sample mean and sample variance are
x̄ = 26.6 ands2 = 4201. Since we have a rather large sample size, we can hope that
the approximate confidence interval

µ = x̄ ± z
s√
n

= 26.6 ± 1.96

√
4201

30
= 26.6 ± 23.2

or
3 ≤ µ ≤ 50 (95%)

is somewhat reliable. Now, let us instead generateN = 1000 independent bootstrap
samples of size 30 by resampling the original data set and calculate the sample mean
of each one. This produces a samplex̄1, . . . , x̄N that hopefully represents the true
sampling distribution ofX̄. We then get the bootstrap mean as

¯̄x =
1

N

N∑

i=1

x̄i = 26.8

and bootstrap variance as

s2
x̄ =

1

N − 1

N∑

i=1

(x̄i − ¯̄x)2 = 141

The latter quantity corresponds to the standard error, which also can be estimated as

s2

n
=

4201

30
= 140

which is reassuring. However, since the simulated means canbe regarded as a random
sample from the underlyingsampling distribution ofX̄ , we can calculate a confidence

4Using a distribution we know nothing about is like lifting ourselves by the bootstraps much like the 18th
century nobleman and adventurer Baron Münchhausen.
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interval by taking the 2.5 and 97.5 percentiles, i.e. the 25th smallest valuēx(25) and
the 25th largest valuēx(975). In this case we get the bootstrap confidence interval

10 ≤ µ ≤ 55 (95%)

Note that this yields an asymmetric interval, which reflectsthe asymmetrical nature
of the observed sample.

Since this procedure can be applied to any estimator, we can also get a confidence
interval for the variance. Again, generateN = 1000 bootstrap samples as before (or
recycle the old ones) and calculate the sample variancess2

1, . . . , s
2
N for all of them.

It turns out that we get the bootstrap mean

s̄2 =
1

N

N∑

i=1

s2
i = 4074

and bootstrap variance

s2
s2 =

1

N − 1

N∑

i=1

(s2
i − s̄2)2 = 1.216 · 107

Again, the second value is an estimate of the sampling variance ofS2, which usually
is difficult to obtain analytically. Finally, we find the 25thsmallests2

(25) and 25th

largests2
(975) to get a 95 % confidence interval as

108 ≤ σ2 ≤ 11100 (95%)

In Section 6.4.3, we could increase the number of simulations to achieve any desired
precision in our estimates since we used the exact sample distribution. Here, we are
limited by the size of our original observed sample and increasing the number of
bootstrap samples beyond some level does not improve the results very much. In this
example we usedN = 1000, which is quite sufficient for a sample of sizen = 30. It
makes no sense to put a lot of simulation power into a bootstrap analysis if the results
only refer to the empirical distribution, which is just an approximation of the true
underlying distribution.

6.5 HYPOTHESIS TESTING

We have learned how to find estimators and confidence intervals for unknown param-
eters, based on observed data. Once this has been done, we arealso often interested
in drawing some particular conclusion about the underlyingdistribution. Let us look
at a simple example to illustrate the main problem and idea.
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Example6.5.1. Suppose that we have a coin and want to test whether it is fair.To
do so, we flip it100 times and count the number of heads. How can we decide if the
coin is fair?

First, if the coin is fair, the expected number of heads is50. Now, we do not require
to get exactly50 heads, since there is variability due to randomness, so the question is
whether our outcome is easily explained by such natural variability or indicates that
the coin is unfair. What if we get55 heads? What if we get70, 80, or 100 heads?
Certainly all of these outcomes arepossible, so the only criterion we can use is how
probablethey are, and to assess this, we need to invoke the distribution of the number
of heads.

Let us first restate the problem in terms of the unknown parameterp, the probability
of getting heads in a single flip. Our estimate ofp is the observed relative frequency
p̂, and if the coin is fair, thenp = 0.5. The question is now whether the value ofp̂
deviates too much from0.5 for us to believe in fairness. We need to quantify “too
much” and decide how much deviation we can accept. Let us say that an outcome
that has probability as small as0.05 is acceptable but not any smaller. Thus, we first
assume thatp = 0.5 and will change our mind and decide that the coin is unfair ifp̂
deviates from0.5 by more thand, where

P (| p̂ − 0.5 | ≥ d) = 0.05

By the central limit theorem, we know thatp̂ has an approximate normal distribution
with mean0.5 and standard deviation

√
0.5(1 − 0.5)/100 = 0.05. Thus, we choose

d such that

0.05 = P (| p̂ − 0.5 | ≥ d) = 1 − P

(
− d

0.05
≤ p̂ − 0.5

0.05
≤ d

0.05

)

= 2

(
1 − Φ

(
d

0.05

))

which givesΦ(d/0.05) = 0.975 which in turn givesd = 1.96×0.05 = 0.098. Thus,
if p̂ is less than0.402 or greater then0.598, we decide that this is not due to random
variation but rather that the coin is not fair. In this case wesay that wereject the
hypothesis of fairness. In terms of the number of heads, this means that we reject the
hypothesis of fairness if there are≤ 40 or ≥ 60 heads. There is a possibility that
such a conclusion is wrong and we know that the probability ofthis is0.05. We are
thus taking a5% risk of classifying a fair coin as unfair.

This example illustrates the main idea inhypothesis testing. We set up a hypothesis
about an unknown parameter and test it by estimating the parameter. According to
how extreme the estimate comes out, we eitherrejector acceptthe hypothesis.

Note how this is reminiscent of mathematical proof by contradiction. In such
a proof, we start by making an assumption, and if we arrive at acontradiction, we
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conclude that the assumption was false. In hypothesis testing we make an assumption,
and if we observe a very unlikely outcome, we decide that the assumption was false,
realizing that there is a small risk that we are wrong.

Let us introduce some concepts and notation. Suppose thatθ is an unknown
parameter and we want to decide whetherθ equals some specific valueθ0. We then
formulate thenull hypothesisthatθ = θ0, written

H0 : θ = θ0

In conjunction with the null hypothesis, we also have analternative hypothesis, de-
notedHA. This could, for example, be

H0 : θ = θ0 versus HA : θ > θ0

Such an alternative hypothesis is said to beone-sided(as isHA : θ < θ0). A test
against atwo-sidedalternative has the form

H0 : θ = θ0 versus HA : θ 6= θ0

It has to be decided in each case whether a one-sided or two-sided alternative hypoth-
esis is reasonable. To testH0 versusHA, we need the following concepts.

Definition 6.5.1. A test statisticT is a function of the sample, used to testH0.
Thesignificance levelα and thecritical regionC are determined such that

P (T ∈ C) = α

under the assumption thatH0 is true. IfT ∈ C, we rejectH0 in favor ofHA.

The critical region is often an interval of the formC = (−∞, c ] or something similar.
The numberc is then called thecritical value. The test statistic5 is typically based on
an estimator̂θ. It could beθ̂ itself or some function of̂θ. Two things are important
for the test statistic: that it indicates whether we should believe more inHA than in
H0 and that its distribution is completely known. The significance levelα is the risk
we are willing to take to reject a hypothesis that is in fact true, and some standard
values ofα are0.05, 0.01, and0.001 or as percentage points,5%, 1%, and0.1%. If
we cannot rejectH0, we say that weacceptit. This does not mean that weprove
it, only that the data do not support a rejection. In the coin flip example, even if we
cannot reject fairness, the coin may still be unfair but to such a small extent that it is

5Generally, the termstatisticis used for any function of a random sample. Thus, an estimator is a statistic
used to estimate an unknown parameter, and we have previously introduced order statistics.
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hard to detect. This is a typical problem in hypothesis testing, and we will return to
it later.

In the coin flip example above, we have the null and alternative hypotheses

H0 : p = 0.5 versus HA : p 6= 0.5

Here we want a two-sided alternative, since we are not interested primarily in any
particular “direction of unfairness.” The estimator ofp is p̂, the relative frequency.
Large deviations of̂p from 0.5 indicate thatH0 is not true. Rather than usinĝp
directly, let us use the test statisticT defined as

T =
p̂ − 0.5

0.05

which is approximatelyN(0, 1) if H0 is true and we proceed to finding the critical
regionC. We should rejectH0 if the observed value ofT deviates too much from0.
The critical region should be of the formC = (−∞,−c ]∪ [ c,∞), and if we choose
significance level0.05, we get

0.05 = P (T ∈ C) = 2(1 − Φ(c))

which givesΦ(c) = 0.975, which finally givesc = 1.96. Thus, we rejectH0 in favor
of HA on the5% level if |T | ≥ 1.96.

Example6.5.2. The IQ of a randomly chosen individual in a population is,as pointed
out in Example 2.7.1, constructed to be normally distributed with mean 100 and stan-
dard deviation 15. Assume that a group of eight pupils have tested a new pedagogical
method, designed to increase IQ, for one semester. To evaluate the method, they take
an IQ test after the study period, which yields the results

87, 92, 97, 110, 115, 120, 121, 122

The main question is now: Does this sample provide enough evidence to conclude
that the method works? Clearly, five out of eight pupils recorded IQs above average,
some of them quite far above. On the other hand, can we call thetest successful when
three pupils ended up below average? Since we want to draw general conclusions
about the method and not just how these eight pupils performed, we can consider this
as an observed sample from some underlying distribution. But which distribution? If
the method does not work, i.e. it does not affect the IQ, we would expect the sample
to be normally distributed with parametersµ = 100 andσ = 15. On the other hand,
if it had been effective, we would expect that the pupils had increased their IQs by
some quantity. If we assume that the individual variation isthe same, we can then
assume that it is normally distributed with someµ larger than 100 andσ = 15. To
formalize this, we want to test the hypotheses

H0 : µ = 100 versus HA : µ > 100
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Since we estimateµ by the sample mean̄X, we can use that as a test statistic or,
equivalently,

Z =
X̄ − µ0

σ/
√

n
=

X̄ − 100

15/
√

8

Now, we are looking for evidence to rejectH0 in favour ofHA, so we should only

reject if Z is large enough. Under the assumption thatH0 is true,Z
d
= N(0, 1),

which means that
α = P (Z > c) = 1 − Φ(c)

For α = 0.10, for example, we get thatc = 1.28. In this case, the value of the test
statistic becomes

Z =
108 − 100

15/
√

8
= 1.51

which means that we can reject the null hypothesis and claim that the method indeed
works.

The IQ example illustrates a typical situation in hypothesis testing—it is often the
alternativehypothesis that we want to prove, and we therefore set up a null hypothesis
that we wish to reject in favor of the alternative. From a scientific point of view, it is
easier tofalsifya hypothesis than to prove it, and the philosophy of hypothesis testing
reflects this principle.6 If we cannot reject the null hypothesis, we say that we accept
it, which does not mean that it is proven, only that we cannot show it to be false.
In legal terminology, the null hypothesis is “innocent until proven guilty.” The two
examples illustrate the general procedure to perform a hypothesis test:

1. State the null and alternative hypotheses,H0 andHA.
2. Find the test statisticT and decide for which type of values (large, small, pos-

itive, negative,...) it rejectsH0 in favor ofHA. Make sure that the distribution
of T is completely known under the assumption thatH0 is true (often expressed
“underH0”).

3. Choose a significance levelα. Find the critical regionC by assuming thatH0

is true and setP (T ∈ C) = α. The general form ofC was determined in 2,
now you get the numbers.

4. ComputeT and compare with the critical region. IfT ∈ C, rejectH0 in favor
of HA, otherwise acceptH0.

Although the method of hypothesis testing seems somewhat different than calculat-
ing confidence intervals they are in fact two sides of the samecoin, which can be
formalized as follows.

6Recall our discussion in Example 1.5.6 regarding the hypothesis “All swans are white.” To falsify this, we
only need to observe a single black swan, but to prove it we would need to observe all swans and note that
they are white. As long as all hitherto observed swans are white, we may say that we accept the hypothesis
but it has not been proved.
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Proposition 6.5.1(Correspondence Theorem). LetX1, . . . , Xn be a random
sample andθ an unknown parameter.

i) Let I be a confidence interval forθ such thatP (θ ∈ I) = q. Thenθ0 6∈ I
is a rejection rule for the test ofH0 : θ = θ0 on significance level1 − q.

ii) Let C be a critical region for the test statisticT such thatP (T ∈ C) = α
under the assumption thatH0 : θ = θ0 holds. ThenI = {θ0 : T 6∈ C}
is a confidence interval ofθ on confidence level1 − α.

The proof is rather straightforward and is left as an exercise.
More informally, the correspondence theorem says that a confidence interval con-

sists of exactly those parameter values that cannot be rejected in a hypothesis test
and vice versa. This means that a hypothesis test can always be carried out by first
calculating a confidence interval and then checking ifθ0 is included, if not,H0 can
be rejected. However, it is the second part that is most useful because there are sit-
uations where it is easier to come up with a good hypothesis test than a confidence
interval so then the former can be used to construct the latter. This will be used in
Section 6.9 where some alternative methods of hypothesis testing will be introduced
and where it is not obvious how confidence intervals for the parameters involved
should be constructed.

6.5.1 Large Sample Tests

In Section 6.4 we introduced an approximate method of calculating confidence in-
tervals for MLEs. The same result can also be used to obtain anapproximate test
procedure.

Proposition 6.5.2. Let θ̂ be an MLE of the unknown parameterθ based on the
large sampleX1, . . . , Xn. We wish to test the null hypothesis

H0 : θ = θ0 versus HA : θ 6= θ0

The test statistic is
Z =

√
nI(θ0)(θ̂ − θ0)

whereI(θ0) is the Fisher information atθ0, and we rejectH0 on level≈ α if

|Z| ≥ c

whereΦ(c) = 1 − α/2.
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Proof. Proposition 6.4.2 implies that

Z =
√

nI(θ0)(θ̂ − θ0)
d≈ N(0, 1)

for largen under the condition thatH0 holds. The approximate significance level is
then

P (|Z| ≥ c) = P (Z ≤ −c) + P (Z ≥ c) ≈ Φ(−c) + 1 − Φ(c)

= 2(1 − Φ(c)) = α

Example6.5.3. Let X1, . . . , Xn be a random sample from the Poisson distribution
with parameterλ. We want to test the hypotheses

H0 : λ = λ0 versus HA : λ 6= λ0

on the 5 % level under the assumption thatn is large. In Example 6.4.7, the MLE of
λ was derived aŝλ = X̄. The Fisher information for the Poisson distribution is

I(λ) = −E

[
∂2

∂λ2
log

(
e−λ λX

X !

)]
= −E

[
−X

λ2

]
=

1

λ

This yields the test statistic

Z =

√
n(λ̂ − λ0)√

λ0

and the rejection rule|Z| ≥ 1.96.

6.5.2 Test for an Unknown Probability

The coin flip example also fits into a general test situation. Suppose that we want to
test whether an unknown probabilityp equals a specific valuep0. We can then test
H0 : p = p0 based on the estimator̂p.
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Proposition 6.5.3. Let p be an unknown probability, estimated by the relative
frequencŷp based onn independent trials. We wish to test the null hypothesis

H0 : p = p0 versus HA : p 6= p0

The test statistic is

T =
p̂ − p0√

p0(1 − p0)/n

and we rejectH0 on level≈ α if

|T | ≥ c

whereΦ(c) = 1 − α/2.

Proof. UnderH0, we know that

p̂
d≈ N

(
p0,

p0(1 − p0)

n

)

and henceT
d≈ N(0, 1) and

α = P (|T | ≥ c) ≈ 2(1 − Φ(c))

For one-sided alternatives, we reject ifT ≥ c (or T ≤ −c) whereΦ(c) = 1 − α, in
analogy with previous results. Note that we are using the normal approximation, so
the significance level can be reported to be only≈ α. If there is reason to suspect
that the normal approximation does not work well, a test could be derived from the
binomial distribution instead.

Example6.5.4. A company makes plastic paper clips and the manufacturing pro-
cess needs to be adjusted if the probability that a clip is defective exceeds10%. To
investigate whether adjustment is needed,500 randomly selected clips are checked
and55 of these are found to be defective. Test on the5% level whether adjustment is
needed.

The hypotheses are
H0 : p = 0.1 versus HA : p > 0.1

and we use the test statistic

T =
p̂ − 0.1√

0.1 × 0.9/500
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and reject ifT ≥ c whereΦ(c) = 0.95 (one-sided alternative). Table A.2 gives
c = 1.64, and since we have observedp̂ = 55/500 = 0.11, we getT = 0.75 and
cannot rejectH0. There is no need for adjustment.

6.6 FURTHER TOPICS IN HYPOTHESIS TESTING

In this section we will address some topics related to testing methodology, potential
problems and errors, and quality criteria for hypothesis tests. We start with a closer
examination of significance levels.

6.6.1 P-values

The choice of significance level is quite arbitrary, although certain values have
emerged as being typical. Still, it is not always satisfactory to fix α in advance.
Let us revisit Example 6.5.2 about the IQ test to see an example of this. We chose
α = 0.10, which gave the critical valuec = 1.28, and since we observedT = 1.51,
we could rejectH0. Now, 1.51 is not much higher than1.28, so we might not have
been able to reject also on the levelα = 0.05. For thisα, Table A.2 givesc = 1.64, so
we cannot indeed reject on the5% level. There is still some room for improvement,
and we realize that we can reject on any level as long as the correspondingc does not
exceed1.51. With c = 1.51 and Table A.1, we get

P (Z ≥ 1.51) = 1 − Φ(1.51) = 0.066

which is the lowest significance level on which we can rejectH0 from the observed
data. By stating this number instead of merely testing on some fixed significance
level, we have given a measure of how strong evidence the datagive againstH0.

Definition 6.6.1. The P -value of a test is the lowest significance level on
which we can rejectH0 for a given data set.

Thus, if we compute theP -valuep, we reject on levelα if p ≤ α. It is common
to state theP -value when a hypothesis test is performed. This is desirable since the
reader of a scientific report can in this way evaluate the strength of evidence against
a hypothesis, rather than just being told that it was rejected on a particular level.
The reason for using significance levels is historical; before the days of computers,
values needed to be computed by hand and tabulated for easy access and the standard
significance levels emerged. There is nothing sacred about5% as opposed to4.7%
or 5.2% but in practice, conclusions must be drawn and actions takenand using nice
round numbers such as1% or 5% is easier on the ear and mind.
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Example6.6.1. Consider Example 6.5.4, where55 out of500 examined clips were
defective and we could not rejectH0 on the5% level. Since the estimate is0.11,
above the limit of10% defective, there might still be some suspicion that the process
is not correct. To get a measure of how bad it is, compute theP -value.

The observed value of the test statistic wasT = 0.75 and sinceT ∼ N(0, 1) and the
test is one-sided and rejects for large values ofT , theP -value is

p = P (T ≥ 0.75) = 1 − Φ(0.75) = 0.23

which is not likely small enough to arouse anybody’s suspicion.

6.6.2 Data Snooping

For a hypothesis test to be meaningful, it is important that the hypotheses be formu-
lated before the data are analyzed as the following example illustrates.

Example6.6.2. On the Texas Lottery Web site, number frequencies for the various
games are published. When I looked at the number frequenciesfor “Pick 3” (recall
Example 1.4.15) during the year2003, I noticed that the number7 seemed to be
overrepresented on Wednesdays. Out of150 numbers drawn on a Wednesday,22
were7s. Are7s overrepresented? Test on the5% level.

Let p be the probability that7 is drawn on a Wednesday. If the drawing procedure is
fair, we should havep = 0.1, and we test

H0 : p = 0.1 versus HA : p > 0.1

We havêp = 0.147, and from Section 6.5.2 we get the test statistic

T =
0.147− 0.1√

0.1(1 − 0.1)/150
= 1.91

The critical value is the valuec for which Φ(c) = 0.95, which givesc = 1.64. We
rejectH0 and conclude that Wednesdays give more7s.

Why are7s overrepresented? Note that Wednesday is the third day of the week and
since the numbers3 and7 are often assumed to have mystical powers, maybe we are
onto something here.

Sorry to get your hopes up, but we are not about to prove numerology to be helpful
in playing the lottery. This is a typical example ofdata snooping: to first look at the
data and then formulate and test the hypothesis. TheP -value, that is, the probability
of getting at least twenty-two7s on a Wednesday, is

P (T ≥ 1.91) = 0.028
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which is certainly quite low. However, the probability of getting at least twenty-two
7s onsomeday of the week is

1 − (1 − 0.028)12 = 0.29

(numbers are drawn twice a day Monday–Saturday). Now, this is not a very small
probability. The probability thatsomenumber is overrepresentedsomeday of the
week is even larger. Thus, if we look at the lottery data, it isnot at all unlikely that we
find some number that is overrepresented on some day of the week, and after we have
found it, we can easily prove the claim in a hypothesis test. If we look specifically
for 7 and Wednesday, we can go through the last10 years and have a25% chance of
finding at least one year with overrepresentation. In this case, I was lucky enough to
find it the first year I looked at; now what are the odds of that...?

This example may be frivolous but the problem that it illustrates is real. If a
hypothesis is formulated after examination of a data set, then it cannot be tested on
the same data set. Indeed, if you keep generating various hypotheses from the same
data set, eventually you will find one that you can reject, or as statisticians put it: “If
you torture data long enough, it will confess.” This is also related to the problem of
multiple hypothesis testing, which we address in the Problems section.

6.6.3 The Power of a Test

When a hypothesis test is performed, the significance level is the probability that a true
null hypothesis is rejected. This is not the only error that we can commit, however;
it could also happen that the null hypothesis is false and should have been rejected
but that our test fails to do so. These two types of error are referred to astype Iand
type II errors, respectively. By choosing a low significance level, we haveensured a
low probability of committing a type I error but what about the other type, to accept
a false null hypothesis?

Let us consider Example 6.5.1, to test whether a coin is fair on the basis of100
flips and the relative frequencŷp. The hypotheses are

H0 : p = 0.5 versus HA : p 6= 0.5

the test statistic isT = ( p̂−0.5)/0.05, and we rejectH0 on the5% level if |T | ≥ 1.96,
which is to say that̂p ≤ 0.402 or p̂ ≥ 0.598. If H0 is true, the probability that we
reject it in error is0.05.

So far so good, but now suppose thatH0 is false andHA is true. What is the
probability that we fail to rejectH0? This cannot be answered immediately sinceHA

specifies a whole range of parameter values, not just one value asH0 does. Thus, the
probability of rejectingH0 depends on “how false” it is or, more precisely, which of
the values in the range ofHA is the true parameter value. Let us for example assume
that the true value ofp is 0.6. Thenp̂ is approximately normal with mean0.6 and
variance0.6(1 − 0.6)/100 = 0.0024, and the probability of rejectingH0 is

1 − P (0.402 ≤ p̂ ≤ 0.598) = 1 −
(

Φ

(
0.598 − 0.6√

0.0024

)
− Φ

(
0.402 − 0.6√

0.0024

))



FURTHER TOPICS IN HYPOTHESIS TESTING 347

= 1 − (Φ(−0.04) − Φ(−4.04)) = 0.52.

If instead the true value isp = 0.7, a similar computation gives the probability to
rejectH0 as0.99, which is higher, since it is easier to rejectH0 the farther the truep
is from0.5. Generally, if the true value isp, the probability of rejectingH0 is

1 −
(

Φ

(
0.598− p√
p(1 − p)/100

)
− Φ

(
0.402 − p√
p(1 − p)/100

))

which we note is a function ofp. This function is called thepower function, or simply
thepower, of the test. If we denote it byg(p), we thus haveg(0.5) = 0.05 (that is
how the significance level is defined),g(0.6) = 0.60, andg(0.8) = 0.94. Let us state
a general definition.

Definition 6.6.2. Suppose that we test the null hypothesisH0 : θ = θ0. The
function

g(θ) = P (rejectH0 if the true parameter value isθ)

is called thepower functionof the test.

Note thatg(θ0) = α, the significance level. If we have a one-sided alternative,for
example,HA : θ > θ0, we want the power function to increase as quickly as possible
as soon asθ increases aboveθ0. Belowθ0 we want the power function to take on low
values. If we instead have a two-sided alternative,HA : θ 6= θ0, we want the power
function to increase on both sides ofθ0. See Figure 6.4 for an illustration.

The power function can be used to choose between tests. Suppose that we have
two test procedures that both have significance levelα. If the power functionsg1 and

θ 
α 

g(θ) 
1 

θ
0

θ
0
 

α 

1 

θ 

g(θ)
         

Fig. 6.4 Power functions for test ofH0 : θ = θ0. To the left, the alternative is one-sided,
θ > θ0, and to the right, the alternative is two-sided.
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g2 are such thatg1(θ) > g2(θ) for all θ such thatHA is true, we say that the first test
is more powerfulthan the second and is preferable since it is more likely to detect
deviations fromH0. If we have two test procedures, it is not necessarily the case that
one is more powerful than the other since we can haveg1(θ) > g2(θ) for some values
of θ andg1(θ) < g2(θ) for others (see Problem 59). In particular, if one test is more
powerful than any other test, it is said to beuniformly most powerfuland according
to what we just stated, such a test does not necessarily exist. The power function can
also be used to determine sample sizes (see Problem 60).

6.6.4 Multiple Hypothesis Testing

By carefully chosing the appropriate level of significance we can, as pointed out in
the previous section, control the risk of rejecting a true null hypothesis in a statistical
hypothesis test. This works well when we have one single parameter of interest, but
in many situations we typically have many different parameters and, consequently,
many different hypotheses we want to test.

Let us say that we want to investigate the effect of a new drug on the human body
and therefore administer the drug to a group of randomly selected individuals and
monitor their well-being by measuring blood pressure, heart rate, body temperature,
oxygen uptake, amount of sleep, you name it. For comparison,we measure the same
variables by monitoring a control group of comparable individuals that did not get
the drug or, preferably, a placebo to minimize the well-known placebo effect. The
natural next step is to carry out a series of test of each measured variable separately
to investigate whether the drug had any significant effect onthe body. The problem is
that if we choose significance levelα for each single test, the overall risk of rejecting
at least one true null hypothesis ususally becomes much larger than we want.

Let us for example say that we carry out 20 independent tests on levelα = 0.05,
we get the multiple significance level

αm = 1 − P (A1 ∩ . . . ∩ A20) = 1 −
20∏

i=1

P (Ai) = 1 − (1 − 0.05)20 = 0.64

whereAi denotes the event of accepting the null hypothesis in testi. Hence, even if
not one single null hypothesis is true, it is quite likely that we will still reject at least
one of them and risk drawing wrong conclusions.

As long as we carry out independent tests, it is easy to chooseα so that we get
the right level ofαm (Problem 61), but often the tests are dependent as in the drug
example above where we measure different variables but on the same individuals.
However, there is a simple procedure calledBonferroni correctionthat guarantees
that the multiple significance level at least does not exceeda desired value.

Assume that we want to carry out a sequence ofn dependent tests, each on the
same significance levelα, so that the multiple significance levelαm does not exceed
the valueα′. The inequality in Problem 10 in Chapter 1 yields that

αm = 1 − P (A1 ∩ . . . ∩ An) = P (Ac
1 ∪ . . . ∪ Ac

n)
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≤ P (Ac
1) + . . . + P (Ac

n) = nα

Consequently, if we chooseα = α′/n, we guarantee thatαm ≤ α′.
The advantage of this procedure is that it always works no matter what kind of

tests we are performing, but the major disadvantage is that it is quite conservative
especially for largen. Again, let us say that we wish to carry out 20 different test
and that the multiple significance level should not exceed 5 %. Then we end up with
α = 0.05/20 = 0.0025, which means that it is much more difficult to rejectanynull
hypothesis, even the false ones.

Luckily, there is an extension of this method called theBonferroni-Holm correction
that remedies this to some extent. First, calculate thep-value for every single test
and order them asp(1) ≤ . . . ≤ p(n). Then, reject the null hypothesis of the test
with the smallestp-value if p(1) ≤ α′/n. If this is true, move on and reject the null
hypothesis of the test with the second smallestp-value if p(2) ≤ α′/(n − 1). If this
is also true, reject the null hypothesis of the test with the third smallestp-value if
p(3) ≤ α′/(n − 2) and so on until you get to a test whose null hypothesis cannot be
rejected, where you stop and accept all other null hypotheses.

6.7 GOODNESS OF FIT

In the previous sections, we tested hypotheses that were stated in terms of unknown
parameters. To be able to do this, we had to assume that our observations came
from some specific distribution, for example, normal or binomial. Sometimes this
assumption is precisely what we wish to test: whether our data actually do come from
a specific distribution. In this section we will look at one method of doing this. Let
us start with an example.

Example6.7.1. A transmitter sends0s and1s and is supposed to do so such that
1s are twice as likely as0s. It has been observed that out of1500 independently
transmitted bits,470 were0s and1030 were1s. Does this support the claim that1s
are twice as likely as0s?

We can describe the null hypothesis as a hypothesis about an entire distribution as

H0 : the distribution is

(
1

3
,
2

3

)
on{0, 1}

against the alternative thatH0 is not true. Let us start by arguing intuitively. Suppose
that we have observedX 0s andY 1s. We should then rejectH0 if the observed
frequenciesX andY deviate too much from the expected frequencies of500 and
1000, respectively. The deviation ofX from 500 can be measured by the squared
difference

(X − 500)2
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but since we would expect this to be quite large even by pure chance because the
number of trials is large, we account for this by also dividing by the expected num-
ber,500. TreatingY in a similar manner suggests the summary measureZ2 of the
deviation, defined as

Z2 =
(X − 500)2

500
+

(Y − 1000)2

1000

(we will soon see why we denote it as a square). We should now rejectH0 for large
values ofZ2 and need to figure out its distribution. SinceY = 1500− X , we get

(Y − 1000)2 = (1500 − X − 1000)2 = (X − 500)2

which gives

Z2 =
(X − 500)2

500
+

(X − 500)2

1000
=

(X − 500)2

1000/3

and sinceX ∼ bin(1500, 1/3), we know that

X
d≈ N

(
500,

1000

3

)

and hence the quantityZ2 is the square of a random variable that is approximately
N(0, 1). Thus, we rejectH0 on levelα if Z2 ≥ x whereΦ(

√
x) = 1 − α. With

α = 0.05, Table A.2 givesx = 1.962 = 3.84. Our observed value ofZ2 is

(470 − 500)2

500
+

(1030 − 1000)2

1000
= 2.70

and since this is less than3.84, we cannot rejectH0. The observed values of
(470, 1030) are close enough to the expected(500, 1000) to fit the suggested dis-
tribution well.

Note how the test statistic in this example is the sum of two squared random variables
but how we can rewrite it as the square of one random variable,which is approximately
N(0, 1). This illustrates a general principle and result. Suppose that our observations
are such that there arer possible different outcomes (which need not necessarily be
numerical) and that we wish to test for a particular distribution. We calculate the
squared differences between observed and expected frequencies and divide by the
expected frequencies for each of ther outcomes. When we add these together, the
sum can be rewritten as the sum of the squares ofr−1 independentN(0, 1) variables.
The general proof is beyond the scope of this text, but we state the result.
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Proposition 6.7.1. Suppose that in an experiment, an observation can fall into
either ofr different categories, with probabilitiesp1, ..., pr, respectively. If the
experiment is repeatedn times andXk denotes the number of observations that
fall into categoryk, for k = 1, ..., r, then

r∑

k=1

(Xk − npk)2

npk

d≈ χ2
r−1

an approximate chi-square distribution withr − 1 degrees of freedom.7

Note that the random vector(X1, ..., Xr) has a multinomial distribution with pa-
rameters(n, p1, ..., pr), and a more formal statement of the proposition would be
as an asymptotic result regarding such a distribution. The random variable in the
proposition is often denotedχ2 and written in the alternative form

χ2 =

r∑

k=1

(Ok − Ek)2

Ek
(6.7.1)

where “O” and “E” stand for “observed” and “expected,” respectively. As a rule of
thumb, the approximation is valid wheneverEk ≥ 5 for all k. As indicated above,
our interest in the proposition is to test the hypothesis of some specified distribution,
and next we state the test.

Corollary 6.7.2. To test the null hypothesis

H0 : the distribution is(p1, ..., pr)

against the alternative thatH0 is not true, we use the test statisticχ2 above and
rejectH0 on levelα if

χ2 ≥ x

whereFχ2
r−1

(x) = 1 − α.

This is one example of a so calledgoodness-of-fit test, where we test whether a pro-
posed distribution fits the observed data well. The intent isnot necessarily to reject

7The chi-square distribution will be defined and treated in more detail in Chapter 7. For the present
exposition it suffices to know that critical values can be obtained from Table A.4.
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the null hypothesis, but we may also wish to argue that a particular distribution is rea-
sonable. The test is one-sided since we reject the null hypothesis for large deviations
from what is expected. Sometimes, however, it can be argued that we should also
reject for small values, since these could indicate that thefit is “too good to be true”
and that data may have been manipulated to fit the desired distribution.8 We will not
address this in the text, but see the Problems section.

Example6.7.2. Recall that in the lottery game “Pick 3,” the winning three-digit
number is chosen by picking at random3 times from0, 1, ..., 9. The following tabu-
lation shows the observed and expected number frequency for2070 drawn numbers.
Is the drawing procedure fair? Test on the5% level.

Number 0 1 2 3 4 5 6 7 8 9

Observed 182 201 211 184 212 199 209 241 214 217

Expected 207 207 207 207 207 207 207 207 207 207

If the drawing procedure is fair, each integer should have probability1/10, and our
null hypothesis is

H0 : the distribution is

(
1

10
, ...,

1

10

)

and the chi-square statistic

χ2 =
10∑

k=1

(Ok − Ek)2

Ek
=

(182 − 207)2

207
+ · · · + (217 − 207)2

207
= 12.6

which we compare with the valuex, which is such thatFχ2
9
(x) = 0.95, which gives

x = 19.92, and we cannot rejectH0. TheP -value isP (χ2 ≥ 12.6) = 1−Fχ2
9
(12.6)

which can be computed in Matlab as “1-cdf( ’chi2’,12.6, 9)” and equals0.18; thus
the drawing procedure shows no signs of unfairness (but see Problem 63).

If the expected frequency in a class is too small, this can be fixed by lumping classes
together. For instance, if we have only30 observations in the Texas Lottery ex-
ample above, the expected frequencies are3, which is below the number5 in our

8A famous example is Gregor Mendel’s experiments with gardenpeas, which lead him to discover the
fundamental laws of genetics. His data fit his hypotheses so well that foul play seems hard to rule out. It
has been suggested that an overzealous gardener who knew what results Mendel wanted, manipulated the
data.
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rule of thumb. If we lump the classes together two by two, we get the five classes
{0, 1}, {2, 3}, ..., {8, 9}, each with expected frequency6, so we can go ahead and
do the goodness-of-fit test on these classes and the resulting chi-square statistic has
4 degrees of freedom. This idea of lumping classes together makes it possible to
do goodness-of-fit tests also for distributions with infinite range. Let us look at an
example.

Example6.7.3. A “great earthquake” is defined as one that has magnitude≥ 8.0 on
the Richter scale. Suppose that it has been claimed that the number of great earth-
quakes worldwide is on average1.5 per year. The tabulation below gives the numbers
of great earthquakes between the years of1969 and2001. Do the data support the
claim? Test on the5% significance level.

Number of earthquakes 0 1 2 3 4 5 . . .

Number of years 15 13 4 1 0 0 . . .

Thus, there were15 years with no earthquakes,13 years with one earthquake, and so
on. No year had more than three earthquakes. If we assume thatearthquakes occur
according to a Poisson process, the claim is that the number of earthquakes in a given
year is Poi(1.5). Let us thus do a goodness-of-fit test of the null hypothesis

H0 : data come from a Poi(1.5) distribution

against the alternative thatH0 is false. Since the range is infinite, we have to lump
classes together, so let us look at the expected frequencies. The probabilities are

pk = e−1.5 1.5k

k!
, k = 0, 1, ...

and withn = 33, we get the following expected frequencies

E0 = 7.4, E1 = 11.0, E2 = 8.3, E3 = 4.1, E4 = 1.6

and there is a rapid decline as we continue. To get expected frequencies that are at
least5, we create a new class, “≥ 3.” If X ∼ Poi(1.5), this new class has expected
frequency

nP (X ≥ 3) = n(1 − P (X ≤ 2)) = 33(1 − (p0 + p1 + p2)) = 6.3

The four classes with their observed and expected frequencies are

Class 0 1 2 ≥ 3

Observed 15 13 4 1

Expected 7.4 11.0 8.3 6.3
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The chi-square statistic isχ2 = 14.9 which we compare with the numberx, which
is such thatFχ2

3
(x) = 0.95, and a look at Table A.4 reveals thatx = 7.82, and hence

we rejectH0 on the5% level. TheP -value is

P (χ2 ≥ 14.9) = 1 − F3(14.9) = 0.002

and thus the fit to a Poisson distribution with mean1.5 is poor.

In the last example, we rejected the hypothesis that the datacame from a Poi(1.5)
distribution. Since the alternative in a goodness-of-fit test is simply “H0 is false,” this
means that it could be the claim of a Poisson distribution that was rejected or only
that it did not have the right mean. Suppose that we want to test whether the data
come fromsomePoisson distribution but not with a specified mean.

The idea is to simultaneously estimate the meanλ from the data and testH0 with
the estimated values of the probabilities (which we recall are all functions ofλ). We
can think of this as testing the Poisson distribution that fits the data the best, and if
this is rejected, so is any other Poisson distribution. Hereis the general result.

Proposition 6.7.3. Under the assumptions of Proposition 6.7.1, suppose that
the probabilities depend on an unknown parameter, say,p1(θ), ..., pr(θ). If θ̂
is the MLE ofθ and thepk(θ) satisfy certain technical conditions, then

r∑

k=1

(Xk − npk( θ̂ ))2

npk( θ̂ )

d≈ χ2
r−2

a chi-square distribution withr − 2 degrees of freedom.

The technical conditions are assumptions of differentiability of the pk(θ), which are
always satisfied in our examples. A more general result is that if there arej un-
known parameters, we replace them by their MLEs and the resulting distribution is
chi-square withr − 1 − j degrees of freedom. Thus, we lose one degree of freedom
for each estimated parameter. In Equation (6.7.1), theEk are nowestimatedexpected
frequencies,Ek = npk( θ̂ ), and for the goodness-of-fit test, we should make sure
that all thenpk( θ̂ ) ≥ 5. We should also point out that it is not necessary to use the
MLEs; the result is true for any estimators that satisfy certain asymptotic properties.
We will, however, stick with MLEs.

Example6.7.4. In the earthquake example above, test whether the data come from
a Poisson distribution.



GOODNESS OF FIT 355

The pmf for a Poisson distribution is

pk(λ) = e−λ λk

k!

where we need to estimateλ. From Section 6.4 we know that the MLE ofλ is λ̂ = X̄ .
We have the observed value

λ̂ =
0 × 15 + 1 × 13 + 2 × 4 + 3 × 1

33
= 0.73

which gives the estimated probabilities

pk( λ̂ ) = e−0.73 0.73k

k!
, k = 0, 1, 2, ...

and estimated expected frequencies

Ek = 33e−0.730.73k

k!
, k = 0, 1, 2, ...

Again, we need to make sure to define classes such that theEk are at least5 and
computation gives the following classes and numbers.

Class 0 1 ≥ 2

Observed 15 13 5

Expected 15.9 11.6 5.5

This time, the chi-square statistic is

χ2 = 0.27

which we need to compare withx which is such thatFχ2
1
(x) = 0.95, since there

are now three classes and one estimated parameter and hence3 − 1 − 1 = 1 degree
of freedom. Table A.4 givesx = 3.84, and we cannot rejectH0. TheP -value is
1 − F1(0.27) = 0.60, which means that we cannot reject on any reasonable level.
The fit to a Poisson distribution is good, so the rejection in Example 6.7.3 was due to
the fact that the suggested mean was wrong.

This is a good place to remind the reader that accepting a nullhypothesis is not
the same as proving it. Even if the fit to a Poisson distribution is good, the true
distribution may still be something else, but the difference is too subtle to detect. All
we can conclude is that it is not unreasonable to assume a Poisson distribution. It
gives a good fit and unless it is rejected, we can keep using it as a working model.
See Problem 66 for more.
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In the previous example, it is important to note that we donot test the null hypothesis
that the data come from a Poisson distributionwith mean0.73, only that they come
from some Poisson distribution. The estimation ofλ is part of the test. If we first
estimateλ by 0.73 and then testH0 : Poi(0.73) with Proposition 6.7.2, we are guilty
of data snooping since we let the data generate our hypothesis. But since we still need
the estimate ofλ to do the test, what is the difference? One degree of freedom!The
fact that the estimation is part of the test gives usr − 2 degrees of freedom instead
of r − 1, and this makes the null hypothesis a little easier to reject. Thus, the proper
test takes into account the fact that there is variability also in the estimation, whereas
data snooping would make the fit seem better than it really is.

The goodness-of-fit test can be used also to test for continuous distribution. All
we have to do is to divide the range into classes, compute the probability of each class
and go on as before. See Problem 70 for an example.

6.7.1 Goodness-of-Fit Test for Independence

A special case of the goodness-of-fit test from the precious section is to test for
independence between certain characteristics. If we consider two characteristics,A
andB, we can think of these as events that may occur when an object is sampled at
random. There are then four possibilities:A ∩ B, A ∩ Bc, Ac ∩ B, andAc ∩ Bc.
Our null hypothesis is

H0 : A andB are independent

and if we letp = P (A) andq = P (B), H0 specifies the probabilities

Category A ∩ B A ∩ Bc Ac ∩ B Ac ∩ Bc

Probability pq p(1 − q) (1 − p)q (1 − p)(1 − q)

If p andq are known, we have the situation from the previous section with r = 4
and can do a chi-square test based on observed frequencies inthe four categories.
More commonly, however, the probabilities are not known andmust be estimated
from the data. According to the comments following Proposition 6.7.3, the degrees
of freedom will be reduced by one for each estimated parameter. Here, we need to
estimate two parameters,p andq, and get4− 1− 2 = 1 degree of freedom. Suppose
that we examinen objects and classify them into each of the four categories and that
we get the numbersX11, X12, X21, andX22, respectively. It is practical to display
these types of data in acontingency table:
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B Bc

A X11 X12

Ac X21 X22

The estimators ofp andq are the relative frequencies

p̂ =
X11 + X12

n
and q̂ =

X11 + X21

n

and the chi-square statistic

χ2 =
(X11 − np̂ q̂ )2

np̂q̂
+

(X12 − np̂ (1 − q̂ ))2

np̂ (1 − q̂ )

+
(X21 − n(1 − p̂ )q̂ )2

n(1 − p̂ )q̂
+

(X22 − n(1 − p̂ )(1 − q̂ ))2

n(1 − p̂ )(1 − q̂ ))

which has aχ2
1 distribution.

Example6.7.5. Recall the Berkeley admissions data from Example 1.6.4. Below is
a contingency table of the numbers of male and female applicants in the categories
“easy” and “difficult,” respectively. Is choice of major independent of gender? Test
on the5% level.

Male Female

Easy major 1385 133

Difficult major 1306 1702

We haven = 4526, and the observed numbers areX11 = 1385, X12 = 133, X21 =
1306, andX22 = 1702. This gives the estimates

p̂ =
1385 + 133

4526
= 0.34 and q̂ =

1385 + 1306

4526
= 0.59

and the chi-square statistic

χ2 =
(1385 − 4526 × 0.34 × 0.59)2

4526× 0.34 × 0.59
+

(133 − 4526 × 0.34 × 0.41)2

4526 × 0.34 × 0.41

+
(1306− 4526 × 0.66 × 0.59)2

4526 × 0.66 × 0.59
+

(1702− 4526 × 0.66 × 0.41)2

4526 × 0.66 × 0.41

= 957.1
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which we compare withx, which is such thatFχ2
1
(x) = 0.95, which givesx = 3.84,

and we can reject independence. Since our observed value is huge, it would be
interesting to compute theP -value. Recall the relation between the chi-square and
normal distributions to realize that our chi-square statistic is the square of aN(0, 1)
variable. Thus, for anyx

P (χ2 ≥ x) = 1 − P (−
√

x ≤ χ ≤
√

x) = 2(1 − Φ(
√

x))

and by the approximation at the end of Section 2.7, we get

P (χ2 ≥ x) ≈ 2ϕ(
√

x)/
√

x

which, with x = 957.1, equals3.8 × 10−210! Quite impressive evidence against
independence.

The characteristics do not necessarily have to be binary (male/female, easy/difficult,
etc.). Suppose that the first characteristic defines then1 categoriesA1, A2, ..., An1

with corresponding probabilitiesp1, ..., pn1 and the second characteristic then2 cat-
egoriesB1, B2, ..., Bn2 with probabilitiesq1, ..., qn2 . There are thenn1n2 categories
total, and we still wish to test for independence between thetwo characteristics, and
hence our null hypothesis is

H0 : Ai andBj are independent for alli andj

Suppose that we have a total ofn classified objects; let the observed number in
category(i, j) be Xij , so that the contingency table hasn1 rows andn2 columns.
UnderH0, the expected number of objects in category(i, j) is npiqj . Assuming that
thepi andqj are unknown, we estimate them by relative frequencies as

p̂i =
1

n

n2∑

j=1

Xij and q̂j =
1

n

n1∑

i=1

Xij

and define the chi-square statistic

χ2 =

n1∑

i=1

n2∑

j=1

(Xij − np̂iq̂j)
2

np̂iq̂j

and need to figure out how many degrees of freedom it has. In thenotation of the
previous section we haver = n1n2, and we need to estimate thepi andqj . Since
each set of probabilities adds to one, we have to estimate only n1 − 1 of thepi and
n2 − 1 of theqj . Thus, the resulting chi-square distribution has

n1n2 − 1 − (n1 − 1) − (n2 − 1) = (n1 − 1)(n2 − 1)

degrees of freedom. We may need to lump classes together to make sure thatnp̂iq̂j

are≥ 5 for all i, j and also make sure that this is done in a sensible manner.
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Example6.7.6. The following contingency table shows the classification of1031
blood donors, according to blood type (A, B, AB, or O) and according to Rh factor
(Rh+ or Rh-). Are blood type and Rh factor independent? Test on level5%.

A B AB O

Rh+ 320 96 40 412

Rh- 66 23 9 65

The estimated probabilities are

p̂1 =
320 + 96 + 40 + 412

1031
= 0.84, p̂2 = 1 − p̂1 = 0.16

q̂1 =
320 + 66

1031
= 0.37, q̂2 =

96 + 23

1031
= 0.12

q̂3 =
40 + 9

1031
= 0.05, q̂4 = 1 − (q̂1 + q̂2 + q̂3) = 0.46

and the chi-square statistic becomes

χ2 = 3.54

We haven1 = 4 andn2 = 2, which gives the number of degrees of freedom as
(n1 − 1)(n2 − 1) = 3. The critical value is thus thex, which hasFχ2

3
(x) = 0.95,

which givesx = 7.8 so we cannot reject independence.

6.7.2 Fisher’s Exact Test

As long as we have sufficiently many observations, the test above is quite reliable, but
what can we do if the rule of thumbnp̂iq̂j ≥ 5 cannot be satisfied even after lumping
classes together? For2 × 2-tables, there is an alternative approach calledFisher’s
exact test.

First, let us introduce the convenient notationXi· = Xi1 + Xi2, wherei = 1, 2,
for the row sums andX·j = X1j + X2j , wherej = 1, 2, for the column sums in the
contingency table

B Bc

A X11 X12

Ac X21 X22
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Next, we condition on the observed row and column sums, i.e. the events{X1· =
x1·} and{X·1 = x·1}. Under the null hypothesis that the two classifications are
independent, we can interpret the variableX11 as the number of objects with property
A we get when randomly selectingx·1 objects from a set ofn objects. This means
that X11 follows the hypergeometric distribution introduced in Section 2.5.5 with
parametersn, x1· andx·1 and we get the probability mass function

P (X11 = x11) =

(
x1·
x11

)(
n − x1·

x·1 − x11

)

(
n

x·1

) =

(
x1·
x11

)(
x2·
x21

)

(
n

x·1

) (6.7.2)

Note that whenX11 = x11 the rest of the table is determined automatically.
If the null hypothesis is false, we get an unbalanced table with an unusually small

or unususally large value ofX11. Hence,X11 can be used as a test statistic in a test of
independence and the hypergeometric distributioncanbe used to obtaincritical values.

Example6.7.7. Crohn’s disease is a serious chronic inflammatory disease ofthe
intestines that may cause severe symptoms like abdominal pain, diarrhea, vomiting
and weight loss. It is believed that specialized diets may mitigate symptoms, so 20
hospitalized patients were randomly assigned to two groupsof 10 patients each where
one group (control) had a regular diet and the other group (treatment) were given a
diet without some of the food items that were believed to aggravate the disease. After
six months it was found that 7 of the 10 in the treatment group remained in remission
compared to none in the control group, which was reduced to 8 since two patients
had to undergo surgery. We can summarize the trial in the table

Remission No remission

Treatment 7 3

Control 0 8

If the two diets do not affect the chance of remission, the number of patients in the
treatment group that would be in remission follows the hypergeometric distribution
with parameters 18, 7 and 10. The probability mass function is given in Figure 6.5.

In order to find appropriate critical values, we have to calculate the probabilities of
the most extreme outcomes. Using equation (6.7.2) with these parameter values yields
thatP (X11 = 0) = 0.0003, P (X11 = 1) = 0.0088 andP (X11 = 7) = 0.0038. A
rejection region consisting of the values 0, 1 and 7 thus gives us a confidence level
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Fig. 6.5 The probability mass function ofX11 in Example 6.7.7.

of α = 0.013. Including the value with the next smallest probability (6)would add
0.053 toα and produce a significance level larger than 5 %. In any case, since our
observed value falls into the rejection region, we can reject the hypothesis that diet
and remission are independent and conclude that the specialized diet indeed affects
the chance of remission of patients suffering from Crohn’s disease.

6.8 BAYESIAN STATISTICS

The field of Bayesian statisticshas a starting point that differs from those of the
methods we have encountered so far. It is inspired by Bayes’ formula, which in its
simplest form (Corollary 1.6.4) says that

P (B|A) =
P (A|B)P (B)

P (A)

As an example, consider Example 1.6.8, where there aren equally suspected poten-
tial murderers. In particular, Mr Bloggs is considered to beguilty with probability
P (G) = 1

n . After he has been screened and found to have the murderer’s genotype,
the probability of his guilt is updated to

P (G | same genotype) =
1

1 + (n − 1)p

Now, either Mr Bloggs is guilty or he is not, and this fact doesnot change after his
genotype has been found, so the probabilities reflect our belief in his guilt before and
after screening. One way to think about this is that Mr Bloggscomes with a “guilt
parameter” that is either0 for innocent or1 for guilty. We can describe our initial
degree of belief in his guilt by assigning probabilities to the two outcomes0 and1.
As new evidence is gathered, we update these probabilities.
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The fundamental idea in Bayesian statistics is similar. By interpreting probability
as a measure of the degree of belief, we can view an unknown parameter as aran-
dom variableinstead of an unknown constant. We can then assign it a distribution
that describes how likely we think different parameter values are, and after we have
gathered the data, we update the distribution of the parameter to the conditional dis-
tribution given the data, using some variant of Bayes’ formula. The methods we have
previously developed, where parameters are viewed as fixed but unknown constants,
are often referred to asfrequentist statistics.9

Example6.8.1. A digital communicationsystem transmits0s and1s where the prob-
ability that1 is sent isp, which is either13 or 2

3 . The four observed values are1, 1, 0, 1.
In Example 6.4.4 we viewedp as an unknown parameter to be estimated from these
observations. We will now apply the Bayesian reasoning.

We viewp as a random variable with range{ 1
3 , 2

3}. Thusp has a distribution and as-
suming that before the experiment we have no reason to believe more in any particular
one of the values, it is natural to assume thatp is uniform on its range. Thus

P

(
p =

1

3

)
=

1

2
and P

(
p =

2

3

)
=

1

2

We now observe1, 1, 0, 1 and wish to update our distribution. This means that we
compute the conditional distribution ofp given the observations. WithD denoting
“data” (i.e.,1, 1, 0, 1), Bayes’ formula gives

P

(
p =

1

3

∣∣∣∣D
)

=
P (D|p = 1/3)P (p = 1/3)

P (D|p = 1/3)P (p = 1/3) + P (D|p = 2/3)P (p = 2/3)

=
(1/3)3(2/3)(1/2)

(1/3)3(2/3)(1/2) + (2/3)3(1/3)(1/2)
=

1

5

which also givesP (p = 2
3 |D) = 4

5 . Thus, the new distribution is(1
5 , 4

5 ) on the
range{ 1

3 , 2
3}. The data made us believe more in2

3 than 1
3 , but the latter is not ruled

out. The uniform distribution we started with, before we gotany data, is called the
prior distribution(orprior for short), and the conditional distribution given the datais
called theposterior distribution. If we were to collect more data, it would make sense
to use the distribution(1

5 , 4
5 ) as the new prior and thus take previous measurements

into account.

9Or “classical statistics,” which is somewhat ironic since these methods were developed mainly in the
twentieth century, whereas early Bayesian methods, as we will soon see, were used by Laplace100 years
earlier. However, modern Bayesian methods have been provenuseful only relatively recently, since they
often involve substantial computational problems.
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The use of Bayes’ formula is what gives this methodology its name. Generally, ifθ
is the parameter and we denote the data byD, we have

P (θ|D) =
P (D|θ)P (θ)

P (D)

HereP (θ) is the prior distribution, that is, the probability distribution before the
experiment andP (θ|D) the posterior distribution, that is, the distribution conditioned
on the data. The other probabilities areP (D|θ), the probability of the data if the
parameter value isθ andP (D), the unconditional probability of the data. To compute
P (D), we sum or integrate overθ in the numerator, dependingon whetherθ is discrete
or continuous.

Note that we useθ to denote both the random variable and its value. Although not
strictly in line with how we usually formulate probability statements, this is convenient
and is also the standard notation.

In Bayesian analysis, the posterior distribution containsall the relevant information
about the parameters. If we want to summarize the information with a single number,
we may, for example, use the mean in the posterior distribution. Thus, computing the
posterior mean can be regarded as the Bayesian equivalence of point estimation.

Definition 6.8.1. Let θ be a parameter andD a set of data. The posterior
meanE[θ|D] is then called aBayes estimatorof θ.

This is not the only way to define a Bayes estimator but the onlyone that we will
consider. As before, we refer to this as anestimatorif data are described in terms of
random variables and anestimateif data are actual numerical observations on these
random variables.

Note that “estimator ofθ” does not have the same meaning in the Bayesian as in
the frequentist setting. In frequentist theory, an estimator is a random variable used to
approximate the unknown constantθ; in Bayesian theory it is the mean of the random
variableθ conditioned on data.

Example6.8.2. Reconsider the previous example but suppose that we know nothing
at all aboutp. Suggest a prior, then find the posterior distribution and the Bayes
estimate ofp.

If we do not know anything aboutp, we would tend to to let the prior be uniform on
[0, 1], that is, letp have pdf

f(p) = 1, 0 ≤ p ≤ 1

and with the same data as above we get

f(p|D) =
P (D|p)f(p)

P (D)
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Herep is a continuous random variable and the observations come from a discrete
distribution. Thus,P (D|p) andP (D) are actual probabilities, and we get

P (D|p) = p3(1 − p)

and

P (D) =

∫ 1

0

P (D|p)f(p)dp =

∫ 1

0

p3(1 − p)dp =
1

20

which gives the posterior pdf

f(p|D) = 20p3(1 − p), 0 ≤ p ≤ 1

The mean in this distribution is

E[p] =

∫ 1

0

pf(p|D)dp = 20

∫ 1

0

(p4 − p5)dp =
2

3

which is the Bayes estimate. Compare this with the frequentist estimate of the un-
known parameterp, which is the observed relative frequency3

4 . The Bayes estimate
is smaller since it can be thought of as a weighted average of the prior mean, which
is 1

2 and the sample mean34 . For more on this, see Problems 77 and 78.

Example6.8.3. (Laplace’s Rule of Succession) Consider an experiment where an
event occurs with unknownprobabilityp. The experiment is repeatedn times, and the
event is observed every time. Assume a uniform prior; find theposterior distribution
and Bayes estimate.

With p ∼ unif[0, 1], we havef(p) = 1, P (D|p) = pn, andP (D) = 1
n+1 , which

gives posterior distribution

f(p|D) =
P (D|p)f(p)

P (D)
= (n + 1)pn, 0 ≤ p ≤ 1

The mean in this distribution is

E[p|D] =

∫ 1

0

pf(p|D)dp = (n + 1)

∫ 1

0

pn+1dp =
n + 1

n + 2

When Laplace computed this value, he interpreted it as the probability that something
that has always occurred will occur once more; hence the expression “Laplace’s rule
of succession.” The example he chose as an illustration was the event that the sun will
rise again tomorrow, knowing that it has risen every day so far. Probably realizing
that this was not the best chosen example, he quickly added that the probability would
be much higher for “he who, seeing the principle regulating the days and seasons,
realizes that nothing at the present moment can arrest the course of it.” In probability
terms, consecutive observations regarding sunrise are notindependent.
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The uniform prior in this example is reasonable if we have no prior knowledge ofp
whatsoever. In practice, it is likely that we know at least something. We might have
previous data from some similar experiment or other information that make some
values ofp more likely than others. A useful distribution on[0, 1] is the following.

Definition 6.8.2. If X has pdf

f(x) =
1

B(α, β)
xα−1(1 − x)β−1, 0 ≤ x ≤ 1

it is said to have abeta distributionwith non-negative parametersα andβ.

The functionB(α, β) is thebeta function, defined as

B(α, β) =

∫ 1

0

xα−1(1 − x)β−1dx

which for integer values ofα andβ equals

B(α, β) =
(α − 1)!(β − 1)!

(α + β − 1)!

and can otherwise be expressed in terms of the gamma function. Note thatα = β
gives a beta distribution that is symmetric around0.5, and in particularα = β = 1
gives the standard uniform distribution. By computing the usual integrals and using
some additional properties of the beta function, it can be shown that

E[X ] =
α

α + β
and Var[X ] =

αβ

(α + β)2(α + β + 1)

Example6.8.4. Reconsider Example 6.8.2, where we have observed1, 1, 0, 1 and
choose as prior forp a beta distribution withα = β = 10. Find the posterior distri-
bution and the Bayes estimate ofp.

This choice of prior means that we believe thatp is centered at, and symmetric
around,0.5 but that we do not have strong belief in extreme deviations. The posterior
distribution is

f(p|D) =
P (D|p)f(p)

P (D)

where, as usual,P (D|p) = p3(1 − p) and

f(p) =
p9(1 − p)9

B(10, 10)
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0 0.2 0.4 0.6 0.8 1

Fig. 6.6 The pdf’s of the prior (solid) and posterior (dashed) ofp, as in Example 6.8.4.

which gives

f(p|D) =
p3(1 − p) × p9(1 − p)9

P (D)B(10, 10)
=

p12(1 − p)10

P (D)B(10, 10)

We could compute the denominator explicitly but instead note that if it were equal to
B(13, 11), then this would be a beta distribution withα = 13 andβ = 11. But then
this must be the case, for otherwisef(p|D) would not be a pdf. Hence, we conclude
that the posterior pdf is

f(p|D) =
p12(1 − p)10

B(13, 11)

a beta distribution withα = 13 andβ = 11. See Figure 6.6 for a plot of the prior and
posterior distributions. By the formula for the mean, the Bayes estimate is

E[p|D] =
13

11 + 13
≈ 0.54

In the previous example we recognized the principal form of the beta distribution and
therefore we did not have to compute the denominator explicitly. This is typical for
these types of calculations and it is common to write

f(p|D) ∝ P (D|p)f(p)

that is, the posterior is proportional to the probability ofthe data times the prior.
We can also note thatP (D|p) is in fact the likelihood function, so the fundamental
equation in Bayesian statistics becomes

Posterior∝ likelihood× prior

Computation of the proportionality constant1/P (D) is one of the most challenging
problems in Bayesian statistics. In complex models it is impossible, and sophisticated
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simulation methods, calledMarkov chain Monte Carlo(MCMC) methods, have been
developed in order to get approximate solutions. For a nice introduction to such meth-
ods in a nonstatistical setting, see Häggström,Finite Markov Chains and Algorithmic
Applications[8].

In the last example, the number of1s in the sample has a binomial distribution. It
is easy to see that if the prior ofp is beta, then the posterior is also beta, regardless
of the sample size or the outcome. We say that the beta distribution is conjugate
to the binomial distribution. To choose a conjugate distribution as prior has several
advantages. As we saw in Example 6.8.4, a conjugate prior distribution means that
we do not have to calculate the proportionality constant explicitly but can identify the
posterior distribution by examining the functional form ofthe product of the prior and
the likelihood with respect to the parameter. Another greatadvantage is that it sim-
plifies comparisons between priors and posteriors as illustrated in Figure 6.6. Since
the prior distribution is a quantification of our knowledge about a parameter before
observing data, we want to see how this change when we includethe information
given in a sample.

So, when we have chosen a model for the sample, how do we find thecorrespond-
ing family of conjugate distributions? For most standard distributions we can use the
following result.

Proposition 6.8.1. Consider a sampleX1, . . . , Xn with pmf p(x|θ) or pdf
f(x|θ) wherex = (x1, . . . , xn). If p(x|θ) or f(x|θ) can be written in the
form10

c(x)g(θ)neh(θ)t(x)

wherec, g, h andt are arbitrary functions, the conjugate distribution can be
expressed

f(θ) ∝ g(θ)aeh(θ)b

wherea andb are arbitrary constants.

Proof. Let us consider a prior distribution of the form above. Then the posterior
distribution can be written

f(θ|x) ∝ p(x|θ)f(θ) ∝ c(x)g(θ)neh(θ)t(x) × g(θ)aeh(θ)b

∝ g(θ)n+aeh(θ)(t(x)+b) = g(θ)a′

eh(θ)b′

wherea′ = n + a andb′ = t(x) + b. The proof of pdf’s is completely analogous.

10Any class of distributions that can be written in this form iscalled anexponential family. There are
several statistical advantages in expressing distributions in this form, which we will not develop further
here. It suffices to say that most standard distributions arein fact exponential families.
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Let us assume that we do not know that the beta distribution isconjugate to the
binomial distribution. The probability mass function of the binomial distribution can
be written

p(x|p) =

(
n

x

)
px(1 − p)n−x =

(
n

x

)
(1 − p)nex log(p/(1−p))

where we identifyc(x) =
(
n
x

)
, g(p) = 1 − p, t(x) = x andh(p) = log(p/(1 − p).

Hence, the prior pdf can be written

f(p) ∝ (1 − p)aeb log(p/(1−p)) = pb(1 − p)a−b

and by settinga = α + β − 2 and b = α − 1, we can identify this as the beta
distribution. For more, see the Problems section.

In the examples thus far, the data have been discrete and the parameter continuous.
Let us next consider an example where both data and parameterare continuous and
all probability statements must be made in terms of pdf’s.

Example6.8.5. Consider a normal distribution with unknown meanµ and known
variance1 where the prior distribution ofµ is N(0, 1), the standard normal. Suppose
that we have observed the valuesx1, ..., xn; find the posterior distribution and the
Bayes estimate.

Let x = (x1, ..., xn) to get the posterior pdf

f(µ|x) =
f(x|µ)f(µ)

f(x)
(6.8.1)

Let us look at the factors one by one. First note that

f(µ) =
1√
2π

e−µ2/2

Next, the observations are i.i.d.N(µ, 1), and we get

f(x|µ) =
n∏

k=1

f(xk|µ) =
n∏

k=1

1√
2π

e−(xk−µ)2/2

=

(
1√
2π

)n

exp

(
−1

2

n∑

k=1

(xk − µ)2

)

The numerator in Equation (6.8.1) becomes

f(x|µ)f(µ) =

(
1√
2π

)n+1

exp

(
−1

2

(
n∑

k=1

(xk − µ)2 + µ2

))
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where we will rewrite the exponent of the exponential. Firstnote that

n∑

k=1

(xk − µ)2 + µ2 =

n∑

k=1

x2
k − 2µ

n∑

k=1

xk + (n + 1)µ2

= (n + 1)

(
1

n + 1

n∑

k=1

x2
k − 2µ

∑n
k=1 xk

n + 1
+ µ2

)

= (n + 1)

(
µ − 1

n + 1

n∑

k=1

xk

)2

+ R

whereR is what is left over after we complete the square and depends on n and
x1, ..., xn. Since

∑n
k=1 xk = nx̄, we now get the posterior pdf

f(µ|x) =

(
1√
2π

)n+1
e−R/2

f(x)
exp

(
−1

2
(n + 1)

(
µ − nx̄

n + 1

)2
)

= C exp

(
−1

2
(n + 1)

(
µ − nx̄

n + 1

)2
)

whereC does not depend onµ. Now comes the neat part. We know thatf(µ|x)
is a pdf as a function ofµ (remember thatx is fixed). Also, we recognize that with
C = (n + 1)/

√
2π, the last expression is the pdf of a normal distribution withmean

nx̄/(n + 1) and variance1/(n + 1). Thus, there is no other possible value forC (or
f(µ|x) would not be a pdf), and the posterior distribution is

µ|x ∼ N

(
nx̄

n + 1
,

1

n + 1

)

The Bayes estimate is thus

E[µ|D] =
nx̄

n + 1

which we can compare with the standard frequentist estimate

µ̂ = x̄

Note how the Bayes estimate is closer to 0. This reflects the influence from the prior
distribution in which the mean is 0. The posterior mean can inthis case be regarded
as a weighted average of the prior mean0 and the observed sample meanx̄, with the
weights being1/(n + 1) andn/(n + 1). Note that a much larger weight is put on
the sample mean and that for largen, E[µ|D] ≈ x̄. This suggests that the choice of
prior is less important than what the data support, and this observation reduces some
of the arbitrariness in the choice of prior. See also Problem84.
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6.8.1 Non-informative priors

The greatest strength of Bayesian statistics is that it enables us to incorporate prior
knowledge in a statistical analysis in a mathematically stringent way. However, we
also need to address the issue of what to do if we do not know anything whatsoever
beforehand or if we do not want our prior belief to affect our results. In Example
6.8.2, we introduced a uniform prior to account for lack of information, but is this
really the best choice?

If we do not know the value of a certain parameter in a given distribution it does
makes sense to spread out the probability mass uniformly over the parameter space
because no particular parameter value will then get a largerdensity than any other
value. As long as the parameter space is bounded, this works well, but most parameters
in the standard probability distributions are actually defined on unboundedspaces like
λ in the Poisson distribution andµ andσ2 in the normal distribution. One way of
getting around that is to choose a so calledvague prior, which is some distribution
that gives almost equal weight to all parameter values like the uniform distribution
on a really large interval or a normal distribution with a really large variance. This
solves the practical problem but is still somewhat unsatisfactory from a theoretical
point of view. However, it turns out that we can still use Bayes’ formula if we pretend
that uniform distributions on unbounded spaces do exist.

Since any uniform distribution, by definition, gives equal weight to all parameter
values and, consequently, should have a constant pdf, we canexpress a uniform prior
on θ asf(θ) ∝ 1. If the parameter space is unbounded, the proportionality constant
cannot be positive, but let us disregard that for the moment.The posterior density
can then be written

Posterior∝ likelihood× prior ∝ likelihood

and as long as the likelihood has finite and positive integralwith respect toθ, we have
a correct posterior distribution.11

Example6.8.6. Let us return to Example 6.8.5 and see what happens if we choose
a non-informative priorf(µ) ∝ 1 for µ. Then, we get the posterior

f(µ|x) ∝ f(x|µ)f(µ) ∝ f(x|µ) =

(
1√
2π

)n

exp

(
−1

2

n∑

k=1

(xk − µ)2

)

∝ exp
(
−n

2
(µ − x̄)2

)

11This argument can be put in correct mathematical form by considering a sequence of correct priorsfν(θ)
where the probability mass is gradually spread out uniformly on the parameter space asν → ∞, i.e. the
normal distributionN(0, ν). The posterior can then be expressed as

f(θ|D) = lim
ν→∞

P (D|θ)fν(θ)

P (D)
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where the last step follows from the fact that

n∑

k=1

(xk − µ)2 = n(µ − x̄)2 + C

We recognize the posterior as the normal distributionN(x̄, 1/n), which means that the
Bayes estimate becomesE[µ|D] = x̄. Using a non-informative prior thus produces
a Bayes estimate identical to the frequentist estimate, which is logical since no prior
belief should affect our results in any direction. Moreover, the posterior variance
coincides with the frequentist variance of the meanX̄, which implies that the statistical
error is the same in the two approaches.

As we have seen, the uniform distribution works in many situation as a reasonable
model for the absence of prior information about parameter values, even for un-
bounded parameter spaces. But that depends on what parameter we are interested
in.

Let us for example say that we have observed a sample of lifelengths that are
assumed to be exponentially distributed. One alternative is to choose a uniform prior
for the parameterλ, but if we are interested in the mean lifelength it would perhaps be
more natural to consider the parameterµ = 1/λ instead. To see that these approaches
are incompatible, assume a uniform priorf(λ) ∝ 1 and compute the distribution of
µ as

f(µ) = f(λ)

∣∣∣∣
dµ

dλ

∣∣∣∣ ∝ 1 · 1

µ2

which is definitely not uniform.
Consequently, the choice of a non-informative prior shouldnot be dependent on

the choice of parametrization.

Proposition 6.8.2(Jeffrey’s prior ). The prior density

f(θ) ∝
√

I(θ)

where

I(θ) = −E

[
d2

dθ2
log f(X |θ)

]

is the Fisher information, is invariant under parameter transformation.

What Proposition 6.8.2 says is essentially that if we have analternative parametriza-
tion φ = g(θ), it does not matter if we choosef(θ) ∝

√
I(θ) or f(φ) ∝

√
I(φ), we
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will still get the same result.

Example6.8.7. Let us return to the binomial distribution and see what happens if
we use Jeffrey’s prior forp. We first calculate the Fisher information

I(p) = −E

[
d2

dp2
log p(X |p)

]
= −E

[
−X

p2
− n − X

(1 − p)2

]
=

n

p(1 − p)

This yields the prior

f(p) ∝
√

I(p) ∝ 1√
p(1 − p)

= p−1/2(1 − p)−1/2

which we identify as the beta distribution with parametersα = 1/2 andβ = 1/2.
Since we know that the beta distribution is conjugate to the binomial distribution, we
immediately get that the posterior is the beta distributionwith parametersα = x+1/2
andβ = n− x + 1/2. If we, for instance, apply this to Example 6.8.2, we would get
a Bayes estimate of

E(p|D) =
3 + 1/2

4 + 1
=

7

10

This is closer to the frequentist estimate3
4 than the Bayes estimate obtained from the

uniform prior (23 ) but still not equal.

This example clearly illustrates the problematicnatureoftheconcept of non-informative
priors. In a nutshell, introducing a prior distribution always brings some subjective
information into the analysis and the two intuitive choicesof uniform or Jefferey’s
prior to minimize the impact of the prior sometimes coincideand sometimes differ.

6.8.2 Credibility intervals

When we have obtained an estimate, the next natural step, as in the frequentist case, is
to try to get an idea about the accuracy of this value. Since the posterior distribution is
interpreted as our knowledge about a parameter, as a combination of our prior belief
and the information contained in the observed data, the posterior standard deviation
is the obvious choice of uncertainty measure analogous to the standard error. There
is also a Bayesian analog to confidence interval calledcredibility intervaldefined as
[x1, x2], where

P (x1 ≤ θ ≤ x2|D) = q

Note that it is the parameter and not the interval limits, conditioned on the dataD, that
is random in this framework. This makes a credibility interval more intuitive because
now we can interpretq as a (posterior) probability given an observed data set. In the
frequentist setting, a given confidenve interval is either right or wrong sinceθ is fixed.
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The confidence level only tells us what proportion of confidence intervals would be
correct if we would repeat our calculations using new independent samples from the
same underlying distribution, which many non-statisticians find confusing.

Example6.8.8. Let us again consider the important special case where we want
to estimate the probabilityp based on a binomial responseX and a beta prior. If
the parameters of the prior distribution are denotedα andβ, we have seen that the
posterior is also beta with parametersα + x andβ + n − x. The posterior standard
deviation is then

√
Var(p|X) =

1

α + β + n

√
(α + x)(β + n − x)

α + β + n + 1

and the limits of a symmetric credibility interval can be obtained as the solution to

P (p < x1|X) = P (p > x2|X) =
1 − q

2

which has to be calculated numerically. In earlier exampleswe have used three
different priors for the communication system example wherex = 3 andn = 4. For
the uniform prior, which can be seen as a beta distribution with α = β = 1, we got
the Bayes estimate23 . The posterior standard deviation for this case becomes

√
Var(p|X) =

1

6

√
4 × 2

7
= 0.178

and a 95 % credibility interval turns out to be[0.28, 0.95]. The informative prior with
α = β = 10 yields the Bayes estimate0.54, the posterior standard deviation

√
Var(p|X) =

1

24

√
13 × 11

25
= 0.100

and the credibility interval[0.34, 0.73]. Not surprisingly, we see that an informative
prior yields a smaller posterior standard deviation and, consequently, a narrower
credibility interval.

6.9 NONPARAMETRIC METHODS

All the methods we have developed in this chapter have been based onparametric
models: assumptions of specific distributions and their parameters. In this section
we will investigate methods used to construct tests that make no assumptions other
than that the distribution is continuous and sometimes alsosymmetric. Such methods
are said to benonparametric12 and are widely used when it is not obvious what
distribution to assume.

12A perhaps more correct term isdistribution-free, but the term nonparametric is so well established that
we will use it here.
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6.9.1 Nonparametric Hypothesis Testing

Suppose that we are interested in testing a hypothesis aboutsome location parameter
of a data set and do not know anything about its distribution other than that it is
continuous. It is then suitable to use the medianm as the location parameter, recalling
from Section 2.9 that this has the property

P (X ≤ m) = P (X ≥ m) =
1

2

Our null hypothesis isH0 : m = m0 and if H0 is true, we expect to have roughly
the same number of observations above and belowm0 and if our sample deviates too
much from this, we rejectH0. The test is usually described as assigning a plus sign
to those observations that are abovem0 and a minus sign to those that are below (the
assumption of a continuous distribution rules out observations that are exactly equal
to m0, at least in theory). In this formulation, letN+ be the number of plus signs:

N+ = #{k : Xk > m0}

Suppose that the alternative is two-sided,HA : m 6= m0. We then rejectH0 if N+ is
either too large or too small, and the resulting test is called thesign test. Let us state
the test formally.

Proposition 6.9.1(The Sign Test). Suppose thatX1, ..., Xn is a sample from
a continuous distribution with medianm and we wish to test

H0 : m = m0 versus HA : m 6= m0

We rejectH0 if
N+ ≤ k or N+ ≥ n − k

on significance level

α =
1

2n−1

k∑

j=0

(
n

j

)

Proof. UnderH0, N+ ∼ bin(n, 1
2 ), which means that the random variablen−N+

(the number of minus signs) is also bin(n, 1
2 ) and hence

P (N+ ≤ k) = P (N+ ≥ n − k) =
1

2n

k∑

j=0

(
n

j

)

which gives the significance levelα in the proposition.
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Since the significance level can be expressed in terms of the cdf of the bin(n, 1
2 )

distribution, it is easy to compute. For largen, we can use the normal approximation
to the binomial, and for one-sided alternatives, the obvious adjustments are made,
rejecting for only one of the inequalitiesN+ ≤ k andN+ ≥ n − k and getting
significance level

α =
1

2n

k∑

j=0

(
n

j

)

Previously, we set the significance level in advance, usually at5%. Since the distribu-
tion of N+ is discrete, we are seldom able to achieve those levels exactly but choose
k so that we come as close as possible.

Example6.9.1. Laboratory rats run through a maze, and the time until exit ismea-
sured. It is known that they either manage to exit relativelysoon or they get lost and
it takes a long time to exit, thus making intermediate times rare. The distribution of
times can be assumed to be symmetric. It has been claimed thatthe mean exit time
is more than100 seconds. Use the following data to test this on level≈ 5%:

26, 31, 43, 163, 171, 181, 193, 199, 206, 210

Since the distribution is symmetric, the meanµ and medianm are equal. The hy-
potheses areH0 : µ = 100 versusHA : µ > 100, and we rejectH0 if N+ ≥ n − k
wheren = 10 andk satisfies

1

210

k∑

j=0

(
10

j

)
≈ 0.05

which givesk = 2. Thus, we reject ifN+ ≥ 8, and since the observed value is
N+ = 7, we cannot rejectH0.

Take a look at the data in the previous example. Since there were only seven ob-
servations above100, the sign test could not rejectH0. However, the observations
above100 tend to deviate more from100 than those below. Since the distribution is
symmetric, this might indicate that the mean is more than100 but the sign test does
not take into account the values themselves, only whether they are greater than100.
We will introduce a more refined test that also takes into account the magnitudes of the
deviations from the median but requires a symmetric distribution. If the distribution
is symmetric, the mean and median are equal and we state hypotheses in terms of the
meanµ instead. Suppose thus that we wish to test

H0 : µ = µ0

based on the observationsX1, ..., Xn, a sample from a continuous and symmetric
distribution. Consider the absolute deviations fromµ0

|X1 − µ0|, ..., |Xn − µ0|,
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and order these by size, from smallest to largest. This giveseachXk a rankRk, such
thatRk = j if Xk has thejth smallest absolute deviation fromµ0. Also for eachXk,
keep track of which side ofµ0 it is on by assigning to it an indicator function

Ik =

{
1 if Xk > µ0

0 otherwise

Thus, for each observationXk we have a pair(Rk, Ik), a rank, and an indicator for
which side ofµ0 it is on. The test statistic we will use is

W =

n∑

k=1

RkIk (6.9.1)

which is simply the sum of the ranks of all the observations that are aboveµ0. Note
thatW ranges from0 (all observations belowµ0) to n(n + 1)/2 (all observations
aboveµ0). If H0 is true, it is not too difficult to realize that the distribution ofW is
symmetric with meann(n + 1)/4, and we rejectH0 if W deviates too much from
its mean. As usual, we need the distribution ofW to be able to quantify “too much.”
This turns out to be a nice exercise in the use of probability generating functions, and
you are asked to do it in Problem 93.

Proposition 6.9.2. The probability mass function ofW , defined above, is

P (W = r) =
a(r)

2n
, r = 0, 1, ...,

n(n + 1)

2

wherea(r) is the coefficient ofsr in the expansion of
∏n

k=1(1 + sk).

By summing probabilitiesP (W = r), we can find critical values and significance
levels. For example, in a one-sided test ofH0 : µ = µ0 againstHA : µ > µ0, we
reject if W ≥ C and get significance level

n(n+1)/2∑

r=C

P (W = r)

which we can choose to be close to the desiredα or put in the observed value ofW
to get theP -value. Since the distribution ofW is symmetric around its mean, the
identity

P (W = r) = P

(
W =

n(n + 1)

2
− r

)

can be used for computations and the significance level can instead be computed as

n(n+1)/2−C∑

r=0

P (W = r)
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Corollary 6.9.3 (Wilcoxon Signed Rank Test). Suppose thatX1, ..., Xn is a
sample from a continuous and symmetric distribution with meanµ and we wish
to test

H0 : µ = µ0 versus HA : µ 6= µ0

With the test statisticW in Equation (6.9.1),H0 is rejected if

W ≤ c or W ≥ C

whereC = n(n + 1)/2 − c. The significance level is

2P (W ≤ c) = 2

c∑

r=0

P (W = r)

If the alternative is one-sided, we make the obvious adjustments. Thus, if the al-
ternative isHA : µ < µ0, we reject ifW ≤ c and forHA : µ > µ0, we reject
if W ≥ C. In both cases, the significance level isP (W ≤ c). The test is called
the Wilcoxon signed rank test. Table A.7 lists critical values that give significance
levels approximately equal to0.05 for one-sided and two-sided tests. Note that if we
remove the ranks and only sum the indicators, we get the sign test. The assumption
of a symmetric distribution makes it possible to replace themedian by the mean, but
even if we test for the median, it is still important to have a symmetric distribution.
If this is not the case, it is natural to have larger deviations on one side of the median
than the other so that such behavior does not necessarily indicate anything suspicious.

Example6.9.2. For the lab rats in Example 6.9.1, we wish to test

H0 : µ = 100 versus HA : µ > 100

on level≈ 5%, and from Table A.7 we getc = 11, which givesC = 10×11/2−11 =
44, so we rejectH0 in favor ofHA if W ≥ 44. The observed values are

26, 31, 43, 163, 171, 181, 193, 199, 206, 210

The absolute differences|Xk − 100| are

74, 69, 57, 63, 71, 81, 93, 99, 106, 110

and if we order these by size we get

57, 63, 69, 71, 74, 81, 93, 99, 106, 110
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where the underlined numbers belong to positive deviations. The ranks of the under-
lined values are

2, 4, 6, 7, 8, 9, 10

and if we sum these, the value of our test statistic becomesW = 46 and we can reject
the null hypothesis, something the sign test failed to do.

Note how the test statisticW is based on the ranks of the deviations fromµ, not the
values of the deviations themselves. Thus, in the last example, if the largest three
values were instead299, 306, and310, the value ofW remains the same, so although
this would be even stronger reason to reject,W does not take this into account. For
large sample sizes, we can use the following normal approximation forW . The proof
is left for Problem 94.

Proposition 6.9.4. If H0 is true, the mean and variance ofW are

E[W ] =
n(n + 1)

4

Var[W ] =
n(n + 1)(2n + 1)

24

and for large values ofn

T =
W − n(n + 1)/4√

n(n + 1)(2n + 1)/24

d≈ N(0, 1)

Example6.9.3. The density of Earth is usually reported to be5.52 g/cm3. In a
famous experiment in1798, Henry Cavendish used a clever apparatus to measure the
density. Cavendish’s29 observations were

4.07, 4.88, 5.10, 5.26, 5.27, 5.29, 5.29, 5.30, 5.34, 5.34, 5.36, 5.39

5.42, 5.44, 5.46, 5.47, 5.50, 5.53, 5.55, 5.57, 5.58, 5.61, 5.62, 5.63

5.65, 5.75, 5.79, 5.85, 5.86

which have sample mean5.42. Let µ be the true mean of Cavendish’s data and test

H0 : µ = 5.52 versus HA : µ 6= 5.52

on the5% level.
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We will use the statisticT and the normal approximation from above. Withα =
0.05, we thus reject if|T | ≥ 1.96, and we haven = 29. The absolute deviations
|Xk − 5.52|, k = 1, ..., 29, ordered by size, with positive deviations underlined are

0.01, 0.02, 0.03, 0.05, 0.05, 0.06, 0.06, 0.08, 0.09, 0.10, 0.10, 0.11

0.13, 0.13, 0.16, 0.18, 0.18, 0.22, 0.23, 0.23, 0.23, 0.25, 0.26, 0.27

0.33, 0.34, 0.42, 0.64, 1.45

This is a good place to comment on the problem ofties. Note for example how
there are two occurrences of0.05, coming from the two measurements5.47 and
5.57. Under our assumption of a continuous distribution, this isimpossible but in real
life we are limited by the accuracy of our measurements. Whenwe put the values
together, the value of the test statistic will depend on which we decide to underline,
which is an arbitrary decision. Since the two0.05s should really have the same rank,
we assign them both themean rank(4 + 5)/2 = 4.5 and proceed as before. If
there are not too many ties, this is no big deal, but in generalthis is a problem that
cannot be ignored. The test statistic and its distribution must then be adjusted to
account for ties, but we will not address this issue further.Using mean ranks we get
W = 1 + 3 + 4.5 + 6.5 + 9 + 10.5 + 12 + 13.5 + 20 + 24 + 25 + 26 = 155 which
gives the test statistic

T =
155 − 29 × 30/4√

29 × 30 × (2 × 29 + 1)/24
= −1.35

and with|T | = 1.35 we cannot rejectH0.

If we compare the two nonparametric tests we have seen so far,we can note that the
sign test is a very crude test and it is therefore often unableto detect deviations from
the null hypothesis, especially for small samples (see Problem 90). If it is reasonable
to assume a symmetric distribution, the signed rank test is preferable as it takes more
information into account and is thus better able to detect deviations from the null
hypothesis. In the terminology of Section 6.6.3, the signedrank test is more powerful
than the sign test.

If we want to test the stronger statement that the sample comes from a particular
continuous distribution, we can use the so calledKolmogorov-Smirnov test. Let
us assume that we have a random sampleX1, . . . , Xn with continuous distribution
functionF (x) and we want to test the hypotheses

H0 : F (x) = F0(x) for all x

HA : F (x) 6= F0(x) for somex

for a givenF0(x).
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As an estimator ofF (x), we use theempirical distribution function

F̂n(x) =
1

n

n∑

i=1

I{Xi≤x}

whereIA denotes the indicator of the eventA, and the maximum distance

Dn = max
x

|F̂n(x) − F0(x)|

as test statistic.
SinceF̂n(x) andF0(x) are non-decreasing and̂Fn(x) is a step function that only

jumps at the pointsX1, . . . , Xn, the test statistic can be somewhat simplified as

Dn = max
1≤i≤n

{
max

(∣∣∣∣
i − 1

n
− F0(X(i))

∣∣∣∣ ,
∣∣∣∣
i

n
− F0(X(i))

∣∣∣∣
)}

(6.9.2)

whereX(1) ≤ . . . ≤ X(n) are the order statistics. SinceF0(Xi) ∼ unif[0, 1] under
H0, we can actually rewrite (6.9.2) as

Dn = max
1≤i≤n

{
max

(∣∣∣∣
i − 1

n
− U(i)

∣∣∣∣ ,
∣∣∣∣
i

n
− U(i)

∣∣∣∣
)}

whereU(1) ≤ . . . ≤ U(n) are the order statistics from a sample from the uniform
distribution on[0, 1]. This implies that the null distribution ofDn is actually inde-
pendent ofF0(x) and we can use the properties of the uniform distribution to derive
this distribution. However, although it is possible to obtain analytical expressions for
the density and distribution function forDn for different values ofn, they are much
too complex to be of any practical use, especially for largen. Instead, critical values
for significance levels 0.01 and 0.05 can be found in Table A.9for n ≤ 30. For large
n, it is possible to use the limiting distribution

P (
√

nDn ≤ x) → 1 − 2

∞∑

k=1

(−1)k−1e−2(kx)2 (6.9.3)

asn → ∞, to calculate approximate critical values or, somewhat easier, p-values.
For instance, the condition for rejection on the 5 % level becomesDn > 1.358/

√
n

and on the 1 % level it becomesDn > 1.628/
√

n.

Example6.9.4. In 2009, a comparative study used different scales to test IQscores
of a group of 12 randomly selected pupils. The results for onescale were

78, 93, 95, 96, 99, 100, 104, 105, 110, 113, 124, 127

A correct IQ scale should, by definition, give a normally distributed score with mean
100 and standard deviation 15. Does the data above support this claim?
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Fig. 6.7 The empirical distribution function (solid line) for the data in Example 6.9.4 and
the distribution function (broken line) of the normal distribution with mean 100 and standard
deviation 15. The Kolmogorov-Smirnov test statisticD12 is also shown.

The empirical distribution function̂F12(x) for the data and distribution functionF0(x)
for the normal distribution with mean 100 and standard deviation 15 are shown in
Figure 6.7 together with the test statisticD12.

It turns out that the maximum difference is attained atx = 93, which yields

D12 = |F̂12(93) − F0(93)| = Φ

(
93 − 100

15

)
− 1

12
= 0.237

From Table A.9 we get the critical value 0.375 on the 5 % level,which means that
we cannot reject the null hypothesis. If we use the limiting distribution above, we get
the approximate critical value1.358/

√
12 = 0.392, which is quite close to the exact

value.

6.9.2 Comparing Two Samples

There are two different situations for comparisons of two samples: pairwise observa-
tions and independentsamples. If we have paired observations(X1, Y1), ..., (Xn, Yn)
and wish to testH0 : µ1 = µ2, we can base this on the differencesDk = Yk − Xk

and the nice thing is that as long as theXk andYk have the same distribution,Dk

has a symmetric distribution even ifXk andYk do not (see Problem 42 in Chapter
3). Thus, in this case, we can use the signed rank test to test whether the differences
have mean0.

The other two-sample situation is when we compare the means of two indepen-
dent samples. We assume that we have two continuous distributions that have the
same spread and shape and that the only possible difference is the mean (this is
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called atranslation model). The distributions do not have to be symmetric. Now let
X1, ..., Xm andY1, ..., Yn be the samples, wherem ≤ n. The fundamental idea is to
putX andY values together in a big sample, sort this combined sample bysize, and
consider the positions of theX values (the smaller sample). IfH0 : µ1 = µ2 is true,
theX values should be uniformly spread within the combined sample, so if they tend
to concentrate too much to the either left or right, this indicates thatH0 is false.

Let W be the sum of the ranks ofX1, ..., Xm in the combined sample. ThenW
ranges from1+2+ · · ·+m = m(m+1)/2 (all X values smaller than allY values)
to (n + 1)+ (n + 2)+ · · ·+ (n + m) = m(m + 2n + 1)/2 (all X values larger than
all Y values) and ifH0 is true, the distribution ofW is symmetric around its mean
m(m + n + 1)/2. Let us state the test based onW .

Proposition 6.9.5(Wilcoxon Rank Sum Test). In the translation model above,
we wish to test

H0 : µ1 = µ2 versus HA : µ1 6= µ2

and rejectH0 if
W ≤ c or W ≥ C

whereC = m(m + n + 1) − c. The significance level is

2P (W ≤ c) = 2

c∑

r=m(m+1)/2

P (W = r)

The usual adjustments are done for one-sided tests. The probabilitiesP (W = r) are
more complicated to compute than in the signed rank test, andwe will only consider
an example in Problem 98. Table A.8 can be used to find criticalvalues for signifi-
cance levels approximately equal to0.05 for one-sided and two-sided tests.

Example6.9.5. When oil companies drill in the North Sea, they charter drilling rigs.
After bidding and negotiating, a deal is struck with a contractor and a daily rate is set.
The following data are daily rates ($1000, rounded to integer values) for two different
regions, Denmark and the Netherlands, from the year2002. (The data were kindly
provided by Dr. Patrick King of ODS-Petrodata, Inc., Houston, Texas.) Test on level
≈ 5% whether there is a difference in rates between the two regions.

Netherlands:58, 62, 63, 68, 69, 70, 77
Denmark: 50, 52, 52, 60, 60, 63, 64, 70, 82
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With µD andµN as the two means, our hypotheses are

H0 : µD = µN versus HA : µD 6= µN

We havem = 7 andn = 9, and Table A.8 givesc = 41, which givesC = 7(7 + 9 +
1) − 41 = 78 (remember that the test is two-sided so the significance level equals
2P (W ≤ c)). We thus rejectH0 in favor of HA if W ≤ 41 or W ≥ 78. The data
put together and ordered by size, with the Netherlands values underlined, are

50, 52, 52, 58, 60, 60, 62, 63, 63, 64, 68, 69, 70, 70, 77, 82

Since there are some ties, we use mean ranks and get the sum of the Netherlands
ranks

W = 4 + 7 + 8.5 + 11 + 12 + 13.5 + 15 = 71

and we cannot rejectH0.

Example6.9.6. The drilling rigs in the previous example are of two different types:
“jackup” and “semisubmersible.” It is assumed that the semisubmersible rigs are
more expensive to charter. Do the following data support this hypothesis?

Semisubmersible:72, 89, 90, 94, 100, 104, 127, 155
Jackup: 50, 58, 60, 64, 68, 70, 77, 83, 103, 125

The hypotheses are, in obvious notation,

H0 : µS = µJ versus HA : µS > µJ

We havem = 8 and n = 10, and Table A.8 givesc = 57, which givesC =
8(8 + 10 + 1) − 57 = 95, so we rejectH0 in favor ofHA if W ≥ 95. The data put
together with values for semisubmersible rigs underlined are:

50, 58, 60, 64, 68, 70, 72, 77, 83, 89, 90, 94, 100, 103, 104, 125, 127, 155

which gives the rank sum

W = 7 + 10 + 11 + 12 + 13 + 15 + 17 + 18 = 103

and we rejectH0 on the5% level and conclude that the semisubmersible rigs are
indeed more expensive.

For large values ofm andn, there is a normal approximation, which is slightly more
complicated than the one for the signed rank test. SinceW is a sum of ranks, the
meanE[W ] is straightforward, but since the ranks are not independent, the variance
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requires a bit more work, using the general formula for the variance of a sum. As
for the normal approximation, our central limit theorem does not apply since the
summands are not independent, but more general versions of the theorem can be
applied. We will not address this further but just state the result. For an application,
see Problem 102.

Proposition 6.9.6. If H0 is true, then

T =
W − m(m + n + 1)/2√

mn(m + n + 1)/12

d≈ N(0, 1)

When comparing samples from two continuous distributions,we can also apply the
ideas behind the Kolmogorov-Smirnov test introduced in Section 6.9.1. Let us
denote the distribution function forsampleX1, . . . , Xm byFX(x)and the distribution
function for sampleY1, . . . , Yn by FY (x). The relevant hypotheses can now be
expressed

H0 : FX(x) = FY (x) for all x

HA : FX(x) 6= FY (x) for somex

and we use the test statistic

Dm,n = sup
x

|F̂X
m (x) − F̂Y

n (x)|

whereF̂X
m (x) andF̂Y

n (x) are the empirical distribution functions for the samples.
Since all empirical distribution functions are non-decreasing step functions,we realize
that the supremum distance is attained in one of the points inthe combined sample.

Dm,n = max

(
max

1≤i≤m
|F̂X

m (Xi) − F̂Y
n (Xi)|, max

1≤j≤n
|F̂X

m (Yj) − F̂Y
n (Yj)|

)

Furthermore, it turns out that it suffices to know the relative order, i.e. the ranks,
of the variables in the combined sample to be able to determine the value ofDm,n.
Unfortunately, the actual calculations are somewhat more involved, especially for
large samples, compared to the Wilcoxon rank sum test and arebest left to a computer.
Under the null hypothesis, we can again use the conclusion from above that the ranks
are uniformlyspread out on the combinedsample to calculatethe distribution ofDm,n

and, consequently, critical values, which are given in Table A.10. For large samples,
the limiting distribution

P

(√
mn

m + n
Dm,n ≤ x

)
→

∞∑

i=−∞
(−1)ie−2(ix)2
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Table 6.2 The maximal absolute distance between daily rates in the Netherlands and Den-
mark (denoted in boldface).

F̂X
7 (x) F̂Y

9 (x) |F̂X
7 (x) − F̂Y

9 (x)|
x < 50 0 0 0

50 ≤ x < 52 0 1/9 1/9
52 ≤ x < 58 0 3/9 1/3
58 ≤ x < 60 1/7 3/9 4/21
60 ≤ x < 62 1/7 5/9 26/63
62 ≤ x < 63 2/7 5/9 17/63
63 ≤ x < 64 3/7 6/9 5/21
64 ≤ x < 68 3/7 7/9 22/63
68 ≤ x < 69 4/7 7/9 13/63
69 ≤ x < 70 5/7 7/9 4/63
70 ≤ x < 77 6/7 8/9 2/63
77 ≤ x < 82 1 8/9 1/9

x ≥ 82 1 1 0

can be used to obtain critical values orp-values. The condition for rejecting on the
5 % level can be expressed

Dm,n > 1.358

√
m + n

mn

Example6.9.7. Let us apply this test to Examples 6.9.5 and 6.9.6 and see if weget
similar results. We first consider the daily rates of the Netherlands versus Denmark
and calculate the test statisticD7,9. This is easiest done in tabular form, which is
displayed in Table 6.2.

We see that the maximal distance isD7,9 = 26/63 = 0.413, which is smaller than
the critical valuec = 0.667 from Table A.10 so we cannot reject the null hypothesis
using the Kolmogorov-Smirnov test either.

Again, caution is adviced in the presence of ties, especially when the two empirical
distribution functions compared jumps simultaneously. Consider for instance what
happens in the pointx = 63. If daily rates had been measured more accurately, it is
quite possible that̂FY

9 (x) would assume the value 6/9 beforêFX
7 (x) jumps to 3/7.

In that case the absolute difference would have been|2/7 − 6/9| = 8/21 before it
would decrease to 5/21. In this particular example it does not matter since the maximal
absolute difference is 26/63 anyway, but in general there isa risk of underestimating
Dm,n in the presence of ties.

In Example 6.9.6, there are no ties, so we can be confident thatthe result is correct.
Without going into details, it turns out that the test statistic becomesD8,10 = 27/40 =
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0.675 and since the critical value from Table A.10 isc = 0.6, we can rejectH0 on
the 5 % level.

6.9.3 Nonparametric Confidence Intervals

It is not obvious how to construct confidence intervals in theabsence of a distribution
assumption or even for what parameter. To approach this problem, Proposition 6.5.1
turns out to be quite useful. It claims that if we can formulate a hypothesis test for a
specific problem, we can always translate that into a confidence interval for a required
confidence level.

Let us first consider the sign test, introduced in the previous section, where we
only make the assumption that a given sample comes from a continuous distribution.
Proposition 6.5.1 basically says that we can obtain a confidence interval by including
all parameter values that cannot be rejected in the corresponding hypothesis test. Let
us therefore assume that we have chosen a particulark so that we reject the null
hypothesism = m0 if and only if N+ ≤ k or N+ ≥ n − k, whereN+ is the
number of positive differencesXi − m0. This naturally implies that we accept the
parameter valuem0 if and only if k < N+ < n − k. The condition thatN+ has to
be larger thank means that at leastk + 1 sample points has to be larger thanm0 or
thatm0 < X(n−k), whereX(1) ≤ . . . ≤ X(n) are the order statistics. By symmetry,
we conclude that the lower limit can be writtenm0 > X(k+1).

To summarize, we can express a two-sided confidence intervalfor the medianm
as

X(k+1) ≤ m ≤ X(n−k) (q)

where

q = 1 − 1

2n−1

k∑

j=0

(
n

j

)
(6.9.4)

Note that we switched from strict to weak inequalities, which does not make a dif-
ference in this case since we have assumed a continuous distribution. As for the sign
test, we cannot hope to get exactly the confidence level we want, say 5 %, but have
to find the value ofk that brings us as close as possible. If a one-sided confidence
interval is required, the lower or upper limit can be droppedand the confidence level
adjusted accordingly.

Example6.9.8. Consider once more the lab rat data of Example 6.9.1 and assume
that we want a 95 % confidence interval of the median time untilexit. The test
procedure in Example 6.9.1 can be translated directly into the one-sided confidence
interval

m ≥ X(3) = 43 (≈ 0.95)
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Since the aim of the test was to establish that the median timewas larger than 100
seconds, it is natural to calculate only a lower bound. If we want a two-sided interval
on the same level, we have to choosek so that (6.9.4) becomes approximately 95 %.
In this example it is difficult to achieve this, but the valuek = 1 gives usq ≈ 0.98
which is as close as we can get. Now, our interval becomes

31 ≤ m ≤ 206 (≈ 0.95)

If we can assume that the sample distribution is symmetric, we can use the
Wilcoxon Signed Rank Test to obtain a, hopefully, more precise confidence inter-
val. However, it is less straightforward to transform critical values of ranks, which
this test is based on, into interval limits.

First, we have to calculate pairwise averages

X̄ij =
Xi + Xj

2
1 ≤ i ≤ j ≤ n

based on the sample. Note that we include averages wherei = j so thatX̄ii = Xi.
Then we order them as̄X(1) ≤ X̄(2) ≤ . . . ≤ X̄(n(n+1)/2). In the previous section
the test statisticW was defined as the sum of the ranks of the positive differences
Xi−µ0. By symmetry, under the assumption thatµ = µ0, we can instead consider the
sum of the ranks of the negative differences, which somewhatsimplifies the following
argument.

Let us now begin by considering a parameter valueµ0 so thatµ0 < X̄(1). This
means that all differences are positive and thatW = 0. By increasingµ0 so that
X̄(1) < µ0 < X̄(2) we obtain one negative difference whose absolute value is smaller
than any other so thatW = 1.

The valueX̄(2) has to be the average of the two smallest values in the original
sample (why?), so whenµ0 is increased one more step, i.e.X̄(2) < µ0 < X̄(3), the
difference|X(1) − µ0| becomes larger than|X(2) − µ0| and gets the rank 2 so that
W = 2.

In the next step when̄X(3) < µ0 < X̄(4) there are two possibilities. Either̄X(3)

is an average of two distinct values, which means that the difference|X(1) −µ0| gets
rank 3, or it is equal toX̄(2), which means that we get one more negative difference
with rank 1. In either case, we getW = 3. By following the same kind of argument
we can show thatW = k if and only if X̄(k) < µ0 < X̄(k+1), whereX̄(0) = −∞
andX̄(n(n+1)/2+1) = ∞.

Since the Wilcoxon Signed Rank Test rejects the parameter valueµ0 if W ≤ c or
W ≥ n(n + 1)/2 − c, wherec is the critical value, we can express the confidence
interval

X̄(c+1) ≤ µ ≤ X̄(n(n+1)/2−c) (q)

where

q = 1 − 2

c∑

r=0

P (W = r)
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Table 6.3 All pairwise averages.

26 31 43 163 171 181 193 199 206 210

26 26
31 28.5 31
43 34.5 37 43
163 94.5 97 103 163
171 98.5 101 107 167 171
181 103.5 106 112 172 176 181
193 109.5 112 118 178 182 187 193
199 112.5 115 121 181 185 190 196 199
206 116 118.5 124.5 184.5 188.5 193.5 199.5 202.5 206
210 118 120.5 126.5 186.5 190.5195.5 201.5 204.5 208 210

Example6.9.9. Let us look at the data in Example 6.9.1 one last time. When we
have a small sample, the pairwise averages can be listed in tabular form (Table 6.3).

If we want a two-sided interval, we get the critical valuec = 9 from Table A.8,
which yields

X̄(10) ≤ µ ≤ X̄(46) (≈ 0.95)

or

101 ≤ µ ≤ 195.5 (≈ 0.95)

It is clear that we get a narrower interval than in Example 6.9.8. The upper limit
becomes slightly smaller but the lower limit is increased quite substantially. Actually,
this is a bit misleading in this particular example since themajor improvement is due
more to the large gap in the data than to the methods used. However, it is possible to
show that the interval based on the Wilcoxon Sign Rank test isalways smaller than
the interval based on the Sign Test, but the degree of improvement depends on the
particular data set.

PROBLEMS

Section 6.2. Point Estimators

1 Let X1, ..., Xn be a sample with meanµ and varianceσ2 and consider thelinear
estimator

L =

n∑

k=1

akXk
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where theak are nonnegative and sum to1. (a) Show thatL is unbiased.(b) Show that
L is consistent.(c) Show thatX̄ has the smallest variance among all linear estimators
(compare with Problem 56 in Chapter 1).

2 Let X1, ..., Xn andY1, ..., Ym be two independent samples with meansµ1 andµ2 and
variancesσ2

1 andσ2
2 . Suggest an unbiased estimator of the differenceµ2 − µ1 and find

its standard error.

3 Let p be the unknown probability of an eventA. Repeat the experimentn times and let
X be the number of times thatA occurred. Show that the relative frequencyp̂ = X/n
is an unbiased and consistent estimator ofp and find its standard error.

4 Suppose that we want to estimate the proportionp of men with some characteristic that
is considered embarrassing and not readily admitted. To deal with this, each questioned
individual is given a fair coin and is asked if he has the characteristic. He is then
instructed to flip the coin out of sight of the investigator. If it shows heads, he must
answer truthfully, and if it shows tails he must answer “Yes.” Suppose that we getX
out of n “Yes” answers. Suggest an unbiased estimator ofp and compute its standard
error.

5 Capture/recapture.To estimate the sizeN of a fish population in a lake,k fish are
caught, tagged, and released. Suggest estimators ofN and investigate for unbiasedness
if you at a later time(a) catchn fish and getX tagged,(b) catch fish repeatedly with
replacement and get the first tagged fish in catch numberX. (c) What assumptions are
you making?

6 To estimate the sizeS of an underground well, one gallon of a dye is poured into the well
and is allowed to mix. Later, a water sample of one gallon is taken and the dye is found
to have concentrationC. Suggest an estimator ofS and investigate for unbiasedness.
What assumptions are you making?

7 Consider a Poisson process with rateλ. Suppose thatX points are observed in an
interval of lengtht. Suggest an unbiased estimator ofλ and compute its standard error.

8 Calculate the Cramér-Rao lower bound forλ in the previous problem and show that
e(λ̂) = 1.

9 How doX̄ ands2 change if a constanta is added to all observations in the sample?

10 Show thats2 is a consistent estimator ofσ2 if E[X4
i ] < ∞.

11 Show that the sample standard deviations is a biased estimator ofσ. Hint: Sinces is
random, Var[s] > 0. Now apply the variance formula from Corollary 2.4.5.

12 Consider the following sample of size8 from an unknown distribution. Use the inequal-
ities from Problem 47, Chapter 2, to get two estimated upper bounds on the probability
P (X ≥ 5):

1.2, 1.5, 2.2, 3.1, 3.4, 3.7, 4.0, 4.4

13 On the basis of the following data, estimate the coefficient of variationc (see Problem
46 in Chapter 2). Is it likely that the data are from an exponential distribution?

9.4, 9.6, 9.8, 10.0, 11.0, 11.2, 11.4, 11.6, 12.9

14 The following is a sample from a normal distribution.
7.6, 9.6, 10.4, 10.7, 11.9, 14.1, 14.6. 18.5

(a) Let X have this normal distribution, and letp = P (X ≥ 20). If we estimatep by
the relative frequency, we just get0. Suggest another estimate.(b) Let x be the95th
percentile, that is, a value such thatP (X ≤ x) = 0.95. Suggest an estimate ofx.
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15 In a sample of size100 from a normal distribution, it was observed that23 values were
below80 and19 above120. Use this to find estimates ofµ andσ.

16 Let θ̂ be an estimator ofθ. Thebias of θ̂ is defined asB = E[θ̂] − θ. If B = 0, θ̂

is unbiased, and ifB → 0 asn → ∞, θ̂ is said to beasymptotically unbiased. (a)
Consider the estimator ofσ2 that is given in Example 6.4.9. Find its bias and show that it
is asymptotically unbiased.(b) Consider the estimatorX(n), the maximum observation,
of θ in a unif[0, θ] distribution. Find its bias and show that it is asymptotically unbiased.
(c)Consider a binomial distribution with knownn and unknownp, whereX is observed.
Let p̂ = X/n andp̃ = (X + 1)/(n + 1). Find their respective biases and investigate
for asymptotic unbiasedness.

Section 6.3. Confidence Intervals

17 Below are two sets of IQ scores from two different universities, A and B. Find a95%
symmetric confidence interval for the difference between the means ifσ = 15.

A: 106, 114, 116, 123, 124, 133

B: 99, 113, 114, 121, 126

18 A scale is known to give measurement errors that are normal with mean0 and variance
1. A piece of metal is weighed5 times, and the following weights in grams are observed:

999.4, 999.8, 1000.4, 1000.8, 1001.0

Find an observed symmetric confidence interval for the true weightµ with confidence
level0.95.

19 Headlines like this from1999 are typical: “Majority favors U.S. troops in Kosovo.”
This was based on an opinion poll, where547 out of 1014 said they favored troops in
Kosovo. Find a95% symmetric confidence interval for the true proportion that favors
troops. Does this support the headline?

20 Here is another headline from Sweden in1994: “Majority of Swedes support joining
the European Union.” This was based on a poll of1000 people, where505 were in
favor. In order to consider it significant that a majority wanted to join, what confidence
level would be needed for a symmetric confidence interval?

21 Consider the confidence interval for an unknown probabilityp. Suppose that we want
confidence level0.95 and that we want the length of the interval to be at most0.1
(margin of error at most±0.05). How should we choosen if (a) we know thatp is at
most0.2, (b) we do not know anything aboutp? (c) In the light of (b), argue why it is
reasonable to state the margin of error in an opinion poll as±1/

√
n.

22 To answer the age-old question “Coke or Pepsi?” there are several opinion polls on
the Web where people are encouraged to vote. In one such poll145 out of 275 people
preferred Coke. Should the Coca-Cola company use this in their commercials to claim
that Coke is more popular? From a methodological point of view, what problems are
there with online opinion polls of this kind?

23 A September2004 opinion poll showed support for President Bush in Florida at52%,
compared to47% in another poll earlier in the month. If the margin of error inthe last
poll is±3%, can it be argued that the change is significant since the confidence interval
from the second poll is[49, 55], which is entirely above47?
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24 Consider the opinion poll in Example 6.3.3 where Bush had47% and Gore44%. Is the
difference statistically significant? Let the size of the sample ben, and letB andG be
the numbers of supporters of Bush and Gore, respectively, and letpB andpG be the true
proportions. We need a confidence interval forpB − pG, based on the estimatorŝpB

andp̂G, which are not independent.(a) Show that Cov[p̂B, p̂G] = −pBpG/n (recall
Problem 124 in Chapter 3).(b) State the approximate normal distribution ofp̂B−p̂G and
use this to find a confidence interval forpB −pG by replacing unknown probabilities with
their estimators in suitable places.(c) With the numbers given in Example 6.3.3, what
is the observed confidence interval?(d) A quick way to decide whether the difference is
significant is to see if the individual confidence intervals overlap. Since Bush had47±2
and Gore44 ± 2, which do overlap, we conclude that the difference is not significant.
This is equivalent to adding the margins of error, which gives the difference0.03±0.04.
What is the principal flaw in this? In practice, what is the difference from the interval
in part (c)?

25 Assume thatX1, . . . Xn is a sample from an arbitrary distribution with unknownµ and
knownσ. Derive an approximate confidence interval with confidence levelq under the
assumption thatn is large.Hint: Use the central limit theorem.

26 For large normal samples, it can be shown that

s
d≈ N

(
σ,

σ2

2n

)

Use this to derive an approximate confidence interval with confidence levelq for σ.

27 Consider a Poisson process with rateλ. If X points are observed in an interval of length
t, argue that an approximate confidence interval forλ with confidence levelq is given
by

λ = X/t ± z
√

X/t

whereΦ(z) = (1 + q)/2. Hint: Problem 8, Chapter 4.

28 In a clinical trial for a new drug, patients were divided intotwo groups, one of size
n = 503 receiving the drug and one of sizem = 430 receiving placebo. One of the
side effects studied was headaches. In the drug group,200 experienced headaches and
in the placebo group,156. Find a95% one-sided confidence interval to investigate
whether the drug increases the risk of developing headaches.

29 Let θ1, θ2, ..., θn ben parameters, and letI1, I2, ..., In be their corresponding confi-
dence intervals, each with confidence levelq. Thesimultaneous confidencelevel, qs,
is defined as the probability that all intervals contain their respective parameters.(a)
Show thatqs = qn if the intervals are independent.(b) Suppose that a president has
approval ratings that are statistically significant above50% in 10 consecutive polls. If
each poll has confidence level0.95, what is the simultaneous confidence level?(c) In
general, show thatqs ≥ 1 − n(1 − q). Hint: Problem 13 in Chapter 1.(d) If you
want a simultaneous confidence level of at least0.95 and have10 intervals that are not
necessarily independent, what confidence level do you need for each individual interval?

30 Prediction intervals.Suppose that we have observedX1 , ..., Xn in a normal distribution
with known varianceσ2 and that we wish to predict the outcome of a future observation,
say,X (remember Section 3.7.2) that is independent of the otherXk and with the same
distribution. A natural predictor is̄X , and in order to measure its accuracy, we need
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error bounds such that
P (X̄ − R ≤ X ≤ X̄ + R) = q

for a given probabilityq. The interval[X̄ − R, X̄ + R] is called a100q% prediction
interval for X. (a) Show that the prediction interval is given by

X = X̄ ± zs

√
1 +

1

n

whereΦ(z) = (1 + q)/2. (b) Compare this with the100q% confidence interval for
µ. What is the difference in interpretation? Which interval is longer?(c) Consider the
lightbulb data from Section 6.2. Find a95% prediction interval for the next lifetimeX.
(d) Compare the95% prediction interval with the95% confidence interval forµ. What
happens asn → ∞? Explain!

Section 6.4. Estimation Methods

31 Let X1, ..., Xn be a random sample from a gamma distribution with unknown parame-
tersα andλ. Show that the moment estimators are

λ̂ = X̄/(n − 1)s2 and α̂ = X̄λ̂

32 Consider a Poisson process with unknown rateλ. Suppose that thenth point arrives at
timeT . Find the moment estimator ofλ.

33 Find the MLE in Example 6.4.4 assuming that we have observedX 1s inn trials.

34 Let X1, ..., Xn be a sample from a uniform distribution on(a, b) where the parameter
a is known. Find the MLE and moment estimator ofb.

35 In the previous problem, suppose that botha andb are unknown. Find the MLE and
moment estimator ofa andb.

36 Let X1, ..., Xn be a random sample from a uniform distribution on[−θ, θ]. Find the
MLE of θ.

37 Let X1, ..., Xn be a random sample from a distribution with pdf

f(x) = e−(x−θ), x ≥ θ

Find the MLE and moment estimator ofθ.

38 Let X1, X2, ..., Xn be a random sample from a distribution with pdf

fθ(x) = θxθ−1, 0 ≤ x ≤ 1

(a)Find the moment estimator ofθ. (b) Find the MLE ofθ. (c)Calculate an approximate
confidence interval forθ.

39 Let X1, X2, ..., Xn be a random sample from a normal distribution with mean 0 and
unknown varianceθ. Find the MLE and moment estimator ofθ.

40 Let X1, X2, ..., Xn be a sample from a distribution with pdf

f(x) = ax e−ax2/2, x ≥ 0
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(a)Find the moment estimator ofa. (b) Find the MLE ofa. (c)Calculate an approximate
confidence interval fora.

41 Let X1, X2, ..., Xn be a sample from a uniform distribution[θ − 1, θ + 1], whereθ
is unknown. (a) Find the moment estimator ofθ. (b) Show that any point between
X(n) − 1 andX(1) + 1 is an MLE of θ. This shows that MLEs are not necessarily
unique.

42 Let X1, X2, ..., Xn be a sample from a distribution with pdf

f(x) =
1

2σ
e−|x−µ|/σ x ∈ R

(a) Show thatX̄ is the moment estimator ofµ. (b) Show that the sample medianX(k)

is the MLE ofµ for oddn = 2k − 1.

Section 6.5. Hypothesis Testing

43 Ann suspects that her coin may be manipulated so that it does not give heads and tails
with equal probability when she flips it. She decides to test this by flipping the coin 8
times and conclude that it is unfair if she gets all heads or all tails. Formulate hypotheses
and calculate the level of significance. Find another critical region so thatα ≤ 0.10.

44 A climate scientist believes that the mean number of hurricanes in the Mexican Gulf
is five during a normal year. He wants to test if this is true forthe period 2005–08 or
if the mean has increased. Assume that the number of hurricanes in a year is Poisson
distributed with meanλ. (a) Formulate hypothesis in a statistical test.(b) Determine
the largest critical region so thatα ≤ 0.10. (c) In the period 2005–08, there were 15,
5, 6 and 8 hurricanes recorded per year. Is this sufficient evidence to reject the null
hypothesis?Hint: Problem 8(b) in Chapter 4.

45 Consider a sampleX1, ..., Xn from a normal distribution with unknown meanµ and
known varianceσ2 (compare with Problem 18).(a) Describe how to test the null
hypothesisH0 : µ = µ0. (b) Use the data in Problem 18 to test on the5% level if the
true weight is1000 grams.

46 Show that Proposition 6.5.1 holds.

47 Let X1, . . . , Xn be a sample from the exponential distribution with parameter λ. (a)
Use Proposition 6.5.1 and Example 6.4.10 to derive a test ofH0 : λ = λ0 against
HA : λ 6= λ0. (b) Use Proposition 6.5.2 to derive a test of the same hypotheses. Which
test do you prefer?

48 Here is a headline from the Libertarian Party Web site in2003: “Thompson could have
doubled vote in Wisconsin race, according to poll.” Wisconsin gubernatorial candidate
Ed Thompson won10.5% of the vote in2002, and in a poll of1000 voters shortly after
the election,23% said that they would have voted for him, had they thought he could
win. Does this support the claim of (at least) doubling his vote? State the appropriate
hypotheses, and test on the5% level.

49 In a poll before the2004 presidential election, the support for John Kerry was78% in
Washington, DC and38% in Texas. Suppose that both polls had sample size1000. Can
you conclude that the support in DC is at least twice as big as in Texas? How is this
situation different from that in the previous problem.
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50 In 2010, there were 266 persons killed in traffic accidents inSweden compared to 358
in the previous year. Carry out a hypothesis test to see if this decrease can be considered
statistically significant. What assumptions do you need to make?

51 Use Propositions 6.5.1 and 6.5.3 to derive an alternative confidence interval for the
unknown probabilityp than the one in Proposition 6.3.2.

Section 6.6. Further Topics in Hypothesis Testing

52 You are asked to decide whether males are less likely than females to call a particular toll-
free number and are presented the following sequence of callers:FFFFFM . With p
as the probability of a male caller, you thus wish to testH0 : p = 1

2
versusHA : p < 1

2

and decide to compute theP -value. Consider the following two test methods: (a) the
sample size isn = 6, and since the number of male callersX is bin(6, 1

2
) underH0,

theP -value isP (X ≥ 1); (b) the first male caller was in the sixth call, and since the
number of trialsN until the first male caller is geometric withp = 1

2
underH0, the

P -value isP (N ≥ 6). Compute the twoP -values and show that method (b) rejects on
the5% level, whereas method (a) accepts. What further information would you need
in regard to how the data were collected?

53 Consider a study that compares test results of two groups of students from two universi-
ties, A and B, which are known to be of comparable quality. Thenull hypothesis of no
difference is therefore tested versus the two-sided alternative that there is a difference.
Suppose that the test statistic isN(0, 1) underH0 and that we test on the5% level,
which means thatH0 is rejected if|T | ≥ 1.96. The observed value turned out to be
1.68 soH0 cannot be rejected. However, a representative from university A notices that
positive values ofT is in their favor and that the null hypothesis can be rejectedin favor
of the alternative “HA : A is better” since this test rejects on the5% level if T ≥ 1.64.
How would you persuade the representative that publishing this would be dubious?

54 If you read a research report that claims that men are better drivers than women and that
this has been confirmed in a study with a givenP -value, you should probably double
thatP -value. Why? (Compare with the previous problem.)

55 A certain type of disease occurs in a small fractionp of the population and is known
to occur fairly uniformly across the United States. In2004, each state screens for the
disease and tests on the5% level whether it occurs in a fraction higher thanp. A
significant result is found in California. How would you persuade the Governor of
California that there is no immediate reason to panic?

56 Suppose that we test and reject five different null hypotheses, each on the5% level. If
the tests are independent of each other andk of the null hypotheses are true, what is the
probability of rejectingsometrue null hypothesis? For which value ofk = 0, 1, ..., 5
is this probability largest?

57 In July 2004, a special opinion poll was done regarding the upcoming presidential
election. In this poll, the outcome in the Electoral Collegewas targeted and a separate
poll was done in each of the50 U.S. states. If a multiple level of5% was desired, what
would the significance level have to be in each state?

58 Consider the two extreme test procedures toalwaysreject the null hypothesis and to
neverreject the null hypothesis, regardless of data. What are thesignificance levels and
power functions of the two tests?
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59 Consider the test ofH0 : p = 1
2

versusHA : p 6= 1
2

for an unknown probabilityp
based onn repetitions of the trial. The relative frequency isp̂ and the test statistic is
T = 2

√
n(p̂− 1

2
) which is approximatelyN(0, 1) underH0 (verify this). Now consider

the two5% level test procedures: (a) reject ifT ≥ 1.64 and (b) reject if|T | ≥ 1.96.
Compare the powers of the two tests and argue that (a) is more powerful than (b) for
some values of the true probabilityp, whereas (b) is more powerful than (a) for other
values. Which test makes more sense?

60 (a)Consider the test ofH0 : p = 1
2

versusHA : p > 1
2

which rejects on the5% level if
2
√

n(p̂− 1
2
) ≥ 1.64, and suppose that the true probability is0.6. Suppose further that

we want to be at least90% certain to detect this with our test. How large mustn be?
(b) Generally, suppose that the true probability isp > 0.5 and that we want to have at
least probabilityq to detect this. What equation in terms of the standard normalcdf Φ
do we need to solve forn?

61 Assume that you are about to carry out two independent tests and you want the multiple
significance level to be 0.05. What level of significance should you choose in each
individual test? How does the result change form = 3, 5, 10, 20 independent tests?

62 Show that the Bonferroni-Holm correction yields a correct multiple significance level.

Section 6.7. Goodness of Fit

63 Consider the Texas Lottery data from Example 6.7.2. On a closer look, it seems that the
number7 is overrepresented. Letp be the probability to get7 and test the hypothesis
H0 : p = 0.1 versusHA : p > 0.1 on the5% level. Compare with the conclusion of
the goodness-of-fit test in the example. Comment!

64 A store owner classifies each day as “good” or “bad,” depending on sales. Each week
(6 workdays) the number of good days are counted. Use the data from one year below
to test on the5% level if good and bad days are equally likely.Hint: The number of
good days in a week has a binomial distribution withn = 6.

Number of good days 0 1 2 3 4 5 6

Number of weeks 1 9 12 13 11 5 1

65 The weekly number of accidents on a particular highway was studied. Use the data
below to test on the5% level whether the number of accidents is better described bya
Poisson distribution or a geometric distribution including 0.

Number of accidents 0 1 2 3 4 5 6 ≥ 7

Number of weeks 24 14 4 1 4 1 2 0

66 Consider the earthquake data in Example 6.7.3. Test whetherthe number of earthquakes
in a given year has a binomial distribution with parametersn = 25 andp = 0.03. After
you have done the test, what would you like to ask the person who suggested the
distribution?
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67 Sometimes we want to reject also for very small values of the chi-square statistic in a
goodness-of-fit test. The reason is to rule out data snoopingand other manipulation that
may render the fit “too good to be true.” Show that such a test rejects on levelα if

χ2 ≤ x1 or χ2 ≥ x2

whereFχ2
r−1

(x1) = α/2 andFχ2
r−1

(x2) = 1 − α/2.

68 In Gregor Mendel’s famous experiment with peas, the two types “smooth” and “wrin-
kled” were identified. Mendel argued that the smooth seed trait was dominant and the
wrinkled, recessive (recall Section 1.6.2) and in a population of peas there should thus
be 75% smooth and25% wrinkled. Out of a total of7324 peas, Mendel got5474
smooth and1850 wrinkled. (a) Test the dominant/recessive claim on the1% level. (b)
Do a two-sided test on the1% level according to the previous problem. What do you
conclude?

69 We might not want to put equal weight on “poor fit” and “too goodto be true fit.”
Suppose that we want level1% in a two-sided test and that we accept a close fit as long
as it is not less probable than0.1%. Give the critical valuesx1 andx2 for this test for
Mendel’s data and do the test.

70 Metal bars of length100 cm are manufactured. They are first cut crudely, somewhere
between100 and101, and then refined to achieve the desired length. The following is
a set of26 measured deviations from100 cm. Does this cutoff waste follow a uniform
distribution on[0, 1]? Test on the5% level.

0.11, 0.18, 0.28, 0.33, 0.42, 0.42, 0.47, 0.48, 0.49, 0.49, 0.51, 0.52, 0.59

0.61, 0.62, 0.63, 0.66, 0.68, 0.74, 0.74, 0.75, 0.76, 0.78, 0.79, 0.81, 0.83

71 In the previous problem, test if the data come fromsomeuniform distribution. Hint:
The MLEs are the minimum and the maximum.

72 In a study of bats, it was investigated whether a tendency to bite people was associated
with carrying rabies. [Source: Emerging Infectious Diseases 5:433–437 (1999)] Out
of 233 bats who bit people,69 were found to have rabies, and out of4237 that did
not bite people,613 had rabies. Describe the data in a contingency table and testfor
independence on the5% level.

73 In Example 6.7.5, after we have rejected independence, can we conclude from the
chi-square test that females are less likely to be admitted?

74 In a study of voting behavior in the2000 presidential election, it was investigated how
voting was associated with education level. Use the contingency table below to test on
the5% level whether voting is independent of education level.

No degree High school Some college College degree

Voter 26 223 215 387

Nonvoter 168 432 221 211

75 Eight men and ten women tried a new diet for a month. Five men but only two women
lost more than ten pounds. Use Fisher’s exact test to test if the diet is equally effective
for men and women.
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Section 6.8. Bayesian Statistics

76 Consider Example 6.8.1 and suppose thatp has prior distributionP (p = 1
3
) = q,

P (p = 2
3
) = 1 − q. Find the posterior distribution and its mean.

77 Consider Example 6.8.1 where the data are1, 1, 0, 1 and the prior uniform on[0, 1].
Compare the mode (recall Section 2.9) in the posterior distribution and the MLE ofp.

78 Consider Example 6.8.1 where the data are1, 1, 0, 1, and suppose thatp has prior
f(p) = 2p, 0 ≤ p ≤ 1. Find the posterior distribution and the posterior mean and
mode. Compare with the MLE.

79 Microhips are being produced, and there is a certain probability p that a chip is defective
and thus useless. To estimatep, 100 chips are checked and4 of these are defective. In
the archives you find the results of four previous studies, where the estimated values
of p are0.05, 0.06, 0.08, and0.10. Suggest a way to use this information to choose a
prior beta distribution, and then find the posterior distribution and the Bayes estimate of
p. Compare with the frequentist estimate0.04. From a frequentist point of view, how
can the previous estimates be used?

80 When tossing a fair coin repeatedly, it turned up tails 2 times. The total number of tosses
was however unknown and therefore considered as a positive integer-valued random
parameterθ. (a) Use a uniform prior on the integers1, . . . , 6 and calculate the posterior
distribution ofθ. (b) Calculate the mean and variance of the posterior distribution. (c)
Calculate a two-sided credibility interval forθ with approximate probability 70 %.

81 Show that the gamma distribution is conjugate to the Poissondistribution.

82 Show that the gamma distribution is conjugate to the exponential distribution.

83 Assume thatX is exponentially distributed with parameterλ and that the prior ofλ
is the gamma distribution with parametersα = 2 andβ = 10. (a) If we make the
observationX = 5, calculate the posterior mean and variance.(b) If we only get the
information thatX > 5, calculate the posterior mean and variance. Can you explain
the difference?

84 Consider a normal distribution with unknown meanµ and known varianceσ2 where
the prior distribution ofµ is N(µ0, σ

2
0). Suppose that we have observed the values

x1, ..., xn. (a) Show that the posterior distribution is normal with mean andvariance

E[µ|D] =
σ2

0σ2

σ2 + nσ2
0

(
µ0

σ2
0

+
nx̄

σ2

)
Var[µ|D] =

σ2
0σ2

σ2 + nσ2
0

(b) Express the posterior mean as a weighted average of the priormean and the sample
mean. What happens asn → ∞? What happens to the posterior variance?(c) How
do the weights in (b) depend on the variancesσ2 andσ2

0? Explain this intuitively if we
interpret a small prior variance as strong belief that the prior mean is correct.

85 Calculate Jeffrey’s prior for the Poisson distribution.

86 Calculate Jeffrey’s prior for the exponential distribution.

87 Let X1, . . . , Xn be a sample from the geometric distribution with pmf

p(x) = θ(1 − θ)x−1 x = 1, 2, . . .
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(a) Find the conjugate family of prior distributions.(b) Let us assume that we have
observed the sample

2, 9, 4, 6, 7

Calculate posterior mean and standard deviation for a uniform prior. (c) Calculate
posterior mean and standard deviation for Jeffrey’s prior.

Section 6.9. Nonparametric Methods

88 Below is a set of15 IQ scores. Find parametric (based on the normal distribution) and
nonparametric≈ 95% observed confidence intervals for the median. For the parametric
interval, assume that the scores are normal withσ = 15. Compare the lengths of the
intervals and comment.

88, 90, 93, 96, 98, 106, 109, 111, 113, 113, 114, 116, 119, 126, 140

89 Below is a set of10 measured service times (milliseconds) for a particular type of job
arriving at a computer.

23.2, 27.3, 41.3, 56.6, 82.8, 83.7, 118.5, 210.8, 263.9, 621.8

Find the nonparametric95% observed confidence intervals for the median.

90 Consider a sample of sizen = 5. Show that the sign test cannot rejectH0 : m = m0

on significance level5% in a two-sided test and not on level1% in a one-sided test.
What are the smallest possible levels for which the sign testcan do these rejections and
what is then required of the test statisticN+?

91 In Problem 89, use a one-sided sign test to test whether the median time is100 versus
the alternative that it is< 100.

92 Below is a data set of the annual change in the last reading of the Dow index each year
between1972 and2002 (1.06 means that it went up by6%, 0.84 that it went down by
16% and so on). Do a two-sided sign test to investigate if the “NewYear’s Eve Dow”
tends to stay constant.

1.06, 0.84, 0.89, 1.30, 0.97, 0.80, 1.10, 1.07, 1.08, 0.89, 1.32, 1.06, 1.12, 1.29

1.34, 0.90, 1.14, 1.13, 1.13, 1.11, 1.30, 1.14, 1.05, 1.38, 1.25, 1.18, 1.14, 1.42

0.94, 0.95, 0.83

93 This problem outlines the proof of Proposition 6.9.2, wherethe pmf of the test statistic
W =

∑n

k=1
RkIk is given. First argue that ifH0 is true, the distribution ofW is the

same as that ofU =
∑n

k=1
Uk, where theUk are independent andP (Uk = 0) =

P (Uk = k) = 1
2
. Next, use the fact that the pgf ofU , which is the same as the pgf of

W , is the product of the pgf’s of theUk. Then argue thatP (W = r) = a(r)/2n, where
a(r) is the number of ways in which0s and1s can be assigned to theIk so thatW = r
(and underH0, all such ways are equally likely), and finally, identifyP (W = r) with
the appropriate coefficient in the pgf ofW .

94 UseU in the previous problem to find the mean and variance ofW . It can be shown
thatW is asymptotically normal but more general versions of the central limit theorem
than ours are needed. Why does our central limit theorem (Theorem 4.3.1) not apply?

95 ForW as above, findP (W = 3) if n = 5.
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96 A company manufactures metal plates. Each plate gives a certain amount of cutoff
waste, and the process needs to be adjusted if this exceeds100 mg per plate. Below are
11 measured weights of waste. Do they call for adjustment? Teston the5% level.

88, 98, 99, 110, 118, 121, 123, 129, 136, 140, 149

97 We have probably all wondered from time to time whether it rained more in St. Louis
or Minneapolis during the1970s. Below are the annual total amounts (inches) for the
two cities, for the years1970–1979. Decide what type of two-sample procedure to
use (pairwise differences or independent samples) and teston the5% level if there is a
difference.

Minneapolis:30.5, 29.4, 23.8, 21.1, 19.1, 35.1, 16.5, 34.9, 30.3, 31.0

St. Louis: 36.2, 33.7, 33.7, 39.8, 36.8, 40.2, 23.5, 43.4, 37.7, 29.5

98 Consider the Wilcoxon rank sum test withm = 2 andn = 5. Find the range ofW and
P (W = 7).

99 Execution times for a particular type of numerical computation were measured using
two different algorithms, A and B. The times in millisecondswere

A: 2, 4, 4, 8, 9, 14, 21, 25

B: 7, 13, 25, 43, 47

Use the rank sum test to test on level5% whether there is a difference between the
algorithms.

100 Use Kolmogorov-Smirnov’ s test to test the difference in theprevious problem.

101 The following data are the number of murders (in thousands) in the United States
during the1980s (starting1984) and 1990s (Source: FBI Uniform Crime Reports,
www.fbi.gov) ordered by size. Is there a difference betweenthe two decades?

1980s: 18.7, 19.0, 20.1, 20.6, 20.7, 21.5

1990s: 15.5, 17.0, 18.2, 19.6, 21.6, 23.3, 23.4, 23.8, 24.5, 24.7

102 Recall Cavendish’s density data from Example 6.9.3. It is known that six of his29
measurements were taken before he changed his experimentalapparatus. These mea-
surements were

5.42, 5.47, 5.50, 5.53, 5.57, 5.61

Did the change make a difference? Test on the5% level (use the normal approximation).





7
Linear Models

7.1 INTRODUCTION

When the normal distribution was introduced in Section 2.7 and, particularly, when
the Central Limit Theorem was presented in Section 4.3, its importance in statistics
was pointed out. Since the Central Limit Theorem basically says that any quantity
that can be seen as a sum of a large number of indendent random contributions can
be considered to be, at least approximately, normally distributed, it was argued that
many quantities that we tend to study in practice satisfy this.

We have already looked at IQ as an example, but this is a somewhat artificial
measure that is specifically constructed to be normally distributed. For another,
more relevant example, consider body length of a randomly chosen individual. We
can easily come up with dozens of factors that affect a persons length like parents’
lengths, intake of various nutrients during childhood, exercise, sleep habits, whether
the mother smoked or consumed alcohol during pregnancy, access to proper medical
care and so on.1

Therefore, it is quite common to make the assumption that random samples come
from normal distributions with unknown mean and variance and in this chapter we
will present a number of inference methods that are specifically developed to handle
this case. Models that include normally distributed variation are usually calledlinear
models, a term that hopefully will become clearer as we go along.

1Age and sex are also important factors but they influence bodylength somewhat differently and cannot as
easily be described as random contributions. For simplicity, let us assume that we consider body lengths
of individuals in the same age group and of the same sex.

401
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7.2 SAMPLING DISTRIBUTIONS

Before going into the various inference methods of normallydistributed samples, we
need to introduce some new distributions that will be usefulin deriving confidence
intervals and hypothesis tests. Since they can be used to describe the properties of
sample means̄X and sample variancess2, they are usually referred to assampling
distributions.

The first distribution is defined as follows.

Definition 7.2.1. If the random variableY has pdf

f(x) =
1

2r/2Γ(r/2)
xr/2−1e−x/2, x ≥ 0

thenY is said to have achi-square distributionwith r degrees of freedom,
writtenY ∼ χ2

r.

The chi-square distribution is related to the normal distribution in the following way.

Proposition 7.2.1. Let X1, ..., Xr be i.i.d. random variables that areN(0, 1)
and letY =

∑r
k=1 X2

k . ThenY ∼ χ2
r.

Proof. We begin by deriving the following useful equation.

∫ ∞

0

e−kxxα−1 dx =

∫ ∞

0

e−t

(
t

k

)α−1
dt

k
=

Γ(α)

kα
(7.2.1)

using the variable substitutiont = kx and the definition of the gamma functionΓ(α)
from Section 2.8.2. This can now be used to obtain the moment generating function,
introduced in Section 3.11.2, of the chi-square distribution as

MY (t) = E[etY ] =

∫ ∞

0

etx 1

2r/2Γ(r/2)
xr/2−1e−x/2 dx

=
1

2r/2Γ(r/2)

∫ ∞

0

xr/2−1e−(1/2−t)x dx

=
1

2r/2Γ(r/2)
× Γ(r/2)

(1
2 − t)r/2

=
1

(1 − 2t)r/2
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The next step is to derive the moment generating function of theX2
k variables as

MX2
k
(t) = E[e−tX2

k ] =

∫ ∞

−∞
e−tx2 1√

2π
e−x2/2 dx

=
1√

1 − 2t

∫ ∞

−∞

1

(1 − 2t)−1/2
√

2π
e−x2/(2(1−2t)−1) dx =

1√
1 − 2t

where the last equality follows from the observation that the integrand is the pdf of a
normal distribution with mean 0 and variance(1 − 2t)−1 and therefore integrates to
one. The result now follows from Proposition 3.11.9 as

MY (t) = MX2
1
(t) · · ·MX2

r
(t) =

(
MX2

k
(t)
)r

=

(
1√

1 − 2t

)r

=
1

(1 − 2t)r/2
(7.2.2)

It is clear from the definition and, particularly, from Proposition 7.2.1 that a chi-
squared variable is always non-negative. Since we mainly will use the chi-square
distribution for confidence intervals and hypothesis testswe will not go further into
the theoretical properties of this distribution. Criticalvalues can be calculated nu-
merically using Definition 7.2.1 and some of them are presented in Table A.4.

The second sampling distribution is defined as follows.

Definition 7.2.2. If the random variableZ has pdf

f(x) =
Γ((r + s)/2)

Γ(r/2)Γ(s/2)

(r

s

)r/2

xr/2−1
(
1 +

rx

s

)−(r+s)/2

, x ≥ 0

then Z is said to have anF distribution with r and s degrees of freedom,
writtenZ ∼ Fr,s.

TheF distribution can in turn be characterized in terms of the chi-square distribution.

Proposition 7.2.2. Let X ∼ χ2
r andY ∼ χ2

s be independent and let

Z =
X/r

Y/s

ThenZ ∼ Fr,s.
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Proof. Let fX(x) andfY (y) denote the pdf’s ofX andY , respectively. Then we
can use Corollary 3.5.7 to express the cdf ofZ ′ = X/Y as

FZ′(z) = P

(
X

Y
≤ z

)
=

∫ ∞

0

P (X ≤ yz)fY (y) dy =

∫ ∞

0

FX(yz)fY (y) dy

Taking the derivative with respect toz yields the pdf

fZ′(z) =

∫ ∞

0

yfX(yz)fY (y) dy

=

∫ ∞

0

y × 1

2r/2Γ(r/2)
(yz)r/2−1e−yz/2 × 1

2s/2Γ(s/2)
ys/2−1e−y/2 dy

=
zr/2−1

2(r+s)/2Γ(r/2)Γ(s/2)

∫ ∞

0

y(r+s)/2−1e−(1+z)y/2 dy

=
Γ((r + s)/2)zr/2−1

Γ(r/2)Γ(s/2)(1 + z)(r+s)/2

where the last equality follows from equation (7.2.1). Finally, using the methods of
Section 2.3.2 yields the pdf ofZ as

fZ(x) =
r

s
fZ′

(r

s
x
)

=
Γ((r + s)/2)

Γ(r/2)Γ(s/2)

(r

s

)r/2

xr/2−1
(
1 +

rx

s

)−(r+s)/2

Again, it is obvious that the ratio of two non-negative chi-square variables is also
non-negative. Critical values of theF distribution are given in Table A.5

We have now come to the last sampling distribution.

Definition 7.2.3. If the random variableZ has pdf

f(x) =
Γ((r + 1)/2)√

rπ Γ(r/2)

(
1 +

x2

r

)−(r+1)/2

, x ∈ R

it is said to have at distributionwith r degrees of freedom, writtenZ ∼ tr.

This can also be characterized in terms of the previous distributions.
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Proposition 7.2.3. Let X ∼ N(0, 1) andY ∼ χ2
r be independent and let

Z =
X√
Y/r

ThenZ ∼ tr.

Proof. SinceX2 is chi-square distributed with one degree of freedom, we realize
thatV = Z2 ∼ F1,r and, conversely, that

Z =





√
V with probability1/2.

−
√

V with probability1/2.

because of symmetry of the normal distribution. We can now express the cdf ofZ as

FZ(x) =
1

2
P (−

√
V ≤ x) +

1

2
P (

√
V ≤ x) =

1

2
P (

√
V ≥ −x) +

1

2
P (

√
V ≤ x)

Whenx < 0, we get that

FZ(x) =
1

2
P (V ≥ x2) + 0 =

1

2
(1 − FV (x2))

and ifx > 0, we get that

FZ(x) =
1

2
+

1

2
P (V ≤ x2) =

1

2
(1 + FV (x2))

Taking the derivative with respect tox yields the pdf

fZ(x) = |x|fV (x2) = |x| Γ((r + 1)/2)

Γ(1/2)Γ(r/2)

(
1

r

)1/2

(x2)−1/2

(
1 +

x2

r

)−(r+1)/2

=
Γ((r + 1)/2)√

rπ Γ(r/2)

(
1 +

x2

r

)−(r+1)/2

where we used the propertyΓ(1/2) =
√

π.

Just like the standard normal distribution, thet distribution is symmetric around0.
Indeed, it looks very similar to the standard normal distribution; the main difference
is that it hasheavier tails(see Figure 7.1). The difference gets smaller the larger the
value ofr, and asr → ∞, thet distribution converges to the normal distribution.
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Fig. 7.1 The pdf’s of the standard normal distribution (dashed line)and at distribution with
r = 2 degrees of freedom.

7.3 SINGLE SAMPLE INFERENCE

In this chapter, we are going to develop inference methods for µ andσ2 based on
a sampleX1, . . . , Xn of i.i.d. normally distributed variables with unknown meanµ
and varianceσ2. Many of the methods will be similar to those introduced in Chapter
6. What remains to be done is to derive new distributions of relevant statistics based
on the sampling distributions of the previous section.

7.3.1 Inference for the Variance

It turns out that it is more logical to start with the varianceσ2 in this setting. Let us
go directly to the key result.

Proposition 7.3.1. LetX1, . . . , Xn be a sample from aN(µ, σ2) distribution.
Then

(n − 1)s2

σ2
∼ χ2

n−1

a chi-square distribution withn − 1 degrees of freedom.

Proof. We first expand the expression

n∑

i=1

(Xi − µ)2
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=

n∑

i=1

(
(Xi − X̄) + (X̄ − µ)

)2

=

n∑

i=1

(Xi − X̄)2 + n(X̄ − µ)2 +

n∑

i=1

(XiX̄ − X̄2 − Xiµ + X̄µ)

= (n − 1)s2 + n(X̄ − µ)2 + nX̄2 − nX̄2 − nX̄µ + nX̄µ

= (n − 1)s2 + n(X̄ − µ)2

Dividing this byσ2 yields that

(n − 1)s2

σ2
+

(
X̄ − µ

σ/
√

n

)2

=

n∑

i=1

(
Xi − µ

σ

)2

The second term on the left hand side is the square of a standard normal variable
and, hence, chi-square distributed with one degree of freedom. The expression on the
right hand side is the sum of the squares ofn independent standard normal variables
and, hence, chi-square distributed withn degrees of freedom. It can be shown thatX̄
ands2 are independent for normal samples so Proposition 3.11.9 and (7.2.2) together
imply that

M(t) × 1√
1 − 2t

=
1

(1 − 2t)n/2

whereM(t) is the moment generating function of(n − 1)s2/σ2. This means that

M(t) =
1

(1 − 2t)(n−1)/2

which is the mgf of the chi-square distribution withn − 1 degrees of freedom.

We can use this result to find the confidence interval forσ2. If we want confidence
levelq, we need to findx1 andx2 such that

P

(
x1 ≤ (n − 1)s2

σ2
≤ x2

)
= q

that is

P

(
(n − 1)s2

x2
≤ σ2 ≤ (n − 1)s2

x1

)
= q

The interval we get is not unique; in fact, there are infinitely many ways to choosex1

andx2 so that the last equation is satisfied for a givenq. One additional requirement
that is often used is that the interval issymmetricin the sense that we are equally
likely to miss the parameter to the right and to the left. Thenwe must choosex1 and
x2 such that

P

(
(n − 1)s2

σ2
≤ x1

)
= P

(
(n − 1)s2

σ2
≥ x2

)
=

1 − q

2
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1
 

Fig. 7.2 The pdf of a chi-square distribution and how to choosex1 andx2 in order to obtain
a symmetric confidence interval forσ2 with confidence levelq.

(see Figure 7.2). Since1 − (1 − q)/2 = (1 + q)/2, we get the following confidence
interval.

Proposition 7.3.2. Let X1, ..., Xn be a random sample from aN(µ, σ2) dis-
tribution whereµ is unknown. A100q% symmetric confidence interval forσ2

is
(n − 1)s2

x2
≤ σ2 ≤ (n − 1)s2

x1
(q)

whereFχ2
n−1

(x1) = (1 − q)/2 andFχ2
n−1

(x2) = (1 + q)/2.

Note how this interval is not of the form “estimator± something,” which is because
the chi-square distribution is not symmetric like the normal distribution ort distribu-
tion.

Example7.3.1. Find the observed symmetric95% confidence interval for the stan-
dard deviationσ in the lightbulb example.

From Example 6.2.5 we haves2 = 9392. Withn−1 = 4and(1+q)/2 = 0.975, Table
A.4 givesx1 = 0.48 andx2 = 11.14, which gives(n−1)s2/x2 = 4×9392/11.14 =
3372 and(n− 1)s2/0.48 = 78, 267. These are the bounds forσ2 and in order to get
bounds forσ, take square roots to get the confidence interval

58 ≤ σ ≤ 280 (0.95)
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We can also use Proposition 7.3.1 to come up with a test procedure.

Proposition 7.3.3. Suppose thatX1, ..., Xn is a sample from a normal distri-
bution where we wish to test

H0 : σ = σ0 versus HA : σ 6= σ0

The test statistic is

X2 =
(n − 1)s2

σ2
0

andH0 is rejected on levelα if

X2 ≤ c1 or X2 ≥ c2

whereFχ2
n−1

(c1) = α/2 andFχ2
n−1

(c2) = 1 − α/2.

7.3.2 Inference for the Mean

We have already looked at confidence intervals (Example 6.3.2) and hypothesis tests
(Example 6.5.2) forµ in the normal distribution whenσ is known. It turns out that we
only have to modify these methods by replacingσ with s and the normal distribution
with thet distribution according to the following result.

Proposition 7.3.4. LetX1, ..., Xn be i.i.d.N(µ, σ2), and lets2 be the sample
variance. Then

X̄ − µ

s/
√

n
∼ tn−1

a t distribution withn − 1 degrees of freedom.

Proof. We can rewrite the expression

X̄ − µ

s/
√

n
=

X̄ − µ

σ/
√

n√
(n − 1)s2

σ2

/
(n − 1)

where the enumerator isN(0, 1) and Proposition 7.3.1 implies that the denominator
is the square root ofχ2

n−1 divided by the degrees of freedom. Again, the fact that
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X̄ ands2 are independent for normal samples and Proposition 7.2.3 completes the
proof.

We can now find a confidence interval forµ. The inequalities

X̄ − R ≤ µ ≤ X̄ + R

are equivalent to the inequalities

− R

s/
√

n
≤ X̄ − µ

s/
√

n
≤ R

s/
√

n

where we now know that the quantity in the middle has at distribution withn − 1
degrees of freedom. Witht = R

√
n/s, we get the equation

q = P

(
−t ≤ X̄ − µ

s/
√

n
≤ t

)
= Ftn−1(t) − Ftn−1(−t) = 2Ftn−1(t) − 1

by symmetry of thet distribution. This finally gives the following proposition.

Proposition 7.3.5. If X1, ..., Xn is a sample from aN(µ, σ2) distribution
whereσ2 is unknown, a100q% confidence interval forµ is

µ = X̄ ± t
s√
n

(q)

wheret is such thatFtn−1(t) = (1 + q)/2.

The cdf of thet distribution is easily computed in many of the mathematicaland sta-
tistical software packages that are available. For example, in Matlab, the command
“cdf( ’t’, x, r )” gives the valueFtr (x). For your convenience, Table A.3 gives values
of t for various sample sizes and confidence levels. Forx values larger than those in
the table, you may use theN(0, 1) distribution as an approximation.

Example7.3.2. Consider the lightbulb example and find a95% confidence interval
for µ.

We haven = 5 and, from Example 6.2.5,s = 96.9. Since(1 + q)/2 = 0.975 and
n − 1 = 4, we need to findt such thatFt4(t) = 0.975, and from Table A.3 we get
t = 2.78. This gives the confidence interval

µ = 1086 ± 2.78 × 96.9√
5

= 1086 ± 120 (0.95)
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By comparing this result with Example 6.3.2 where we assumedthatσ = 100, we
see that we get a considerably wider interval. This is quite typical because using an
estimate for a parameter instead of the exact value increases our uncertainty, which
is reflected in the result.

The symmetry of thetdistribution also makes it possible to design a hypothesis test.

Proposition 7.3.6. Suppose thatX1, ..., Xn is a sample from a normal distri-
bution where we wish to test

H0 : µ = µ0 versus HA : µ 6= µ0

The test statistic is

T =
X̄ − µ0

s/
√

n

andH0 is rejected on levelα if

|T | ≥ c

whereFtn−1(c) = 1 − α/2.

This is called theone-samplet test. If we test against a one-sided alternative, we
should rejectH0 only for deviations in one direction ofT from 0. Thus, for the
alternativeHA : µ > µ0, we reject ifT ≥ c whereFtn−1(c) = 1 − α, just as in the
blood pressure example. If we instead haveHA : µ < µ0, we should reject for large
negative values ofT . More specifically, we reject ifT ≤ −c wherec satisfies

α = P (T ≤ −c) = Ftn−1(−c) = 1 − Ftn−1(c)

which again givesFtn−1(c) = 1 − α. We get the following corollary.

Corollary 7.3.7. In Proposition 7.3.6, if we testH0 against the one-sided
alternative

HA : µ > µ0 (or µ < µ0)

thenH0 is rejected on levelα if

T ≥ c (or T ≤ −c)

whereFtn−1(c) = 1 − α.
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Note how thec’s in the two-sided and one-sided tests are not the same. In a two-sided
test, we divide the significance level equally between the two directions specified by
HA. In a one-sided test we put all the significance level on one side, which makes
it easier to reject in that particular direction but does notreject at all in the other
direction. For example, withn = 10 andα = 0.05, the two-sided test rejects if
|T | ≥ 2.26 and the one-sided test ifT ≥ 1.83 (or T ≤ −1.83). If we want to do a
one-sided test, we should not “waste significance” on the other side. Compare with
the comments about one-sided versus two-sided confidence intervals in Section 6.3.3.

Example7.3.3. A generator is supposed to give an output voltage of220 V. It is
measured once an hour, and at the end of the day a technician decides whether ad-
justment is needed. Test on the5% level if the mean voltage is220 V, based on the
following data:

213, 223, 225, 232, 232, 233, 237, 238

We assume that measurements are independent and follow a normal distribution. The
hypotheses are

H0 : µ = 220 versus HA : µ 6= 220

where we choose a two-sided alternative since we are not asking for a particular
direction of deviation from220. The sample size isn = 8, and withα = 0.05, Table
A.3 givesc = 2.36 (n−1 = 7, 1−α/2 = 0.975). We haveX̄ = 229.1 ands = 8.3,
which gives the observed test statistic

T =
229.1 − 220

8.3/
√

8
= 3.1

and we rejectH0 and conclude that adjustment is needed.

7.4 COMPARING TWO SAMPLES

A common situation is that we have two samples and are interested in making com-
parisons between them. One typical application is in clinical trials, where we want to
determine whether a particular treatment or a new drug is better than some other stan-
dard treatment or no treatment at all. Patients are recruited and randomly assigned
to two different groups, usually calledtreatmentandcontrol, and then treated (or
not treated) accordingly. After some predetermined periodof time, all patients are
examined and health indicators like blood pressure or cholesterol level are measured.
If it is possible to detect statistically significant difference, we can claim that the new
treatment is efficient.
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7.4.1 Inference about Means

There are two different situations; one where the samples are independent and one
where the observations come in pairs and are dependent. In the first case, we thus
have two independent samplesX1, ..., Xn andY1, ..., Ym (the sample sizes are not
necessarily the same). If theXk have meanµ1 and theYk have meanµ2, we are
interested in estimating the differenceµ1 −µ2. The estimator is̄X − Ȳ and sinceX̄
andȲ are independent and normally distributed, we can use this tofind a confidence
interval forµ1 − µ2. If the variances areσ2

1 andσ2
2 , respectively, then according to

what we know about linear combinations of normal distributions, we obtain

X̄ − Ȳ ∼ N

(
µ1 − µ2,

σ2
1

n
+

σ2
2

m

)

where we need to estimate the variances in a way that gives us aknown distribution,
something that turns out to present a difficult problem. The situation simplifies if we
can assume that the variances in the two samples are equal2 so thatXk ∼ N(µ1, σ

2)
andYk ∼ N(µ2, σ

2). If we estimateσ2 within each sample by

s2
1 =

1

n − 1

n∑

k=1

(Xk − X̄)2 and s2
2 =

1

m − 1

m∑

k=1

(Yk − Ȳ )2

respectively, we can combine these to get an estimator ofσ2, based on both samples.

Definition 7.4.1. Let X1, ..., Xn andY1, ..., Ym be two samples, independent
of each other, with meansµ1 andµ2, respectively, and the same varianceσ2.
Thepooled sample varianceis then defined as

s2
p =

(n − 1)s2
1 + (m − 1)s2

2

n + m − 2

For a proof of the following result and further properties ofs2
p, see Problem 31.

Corollary 7.4.1. The pooled sample variances2
p is an unbiased and consistent

estimator of the varianceσ2.

2This property is calledhomoscedasticity, a great word to throw around at cocktail parties.
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Note how the pooled sample variance is a weighted average of the two sample vari-
ancess2

1 ands2
2, giving larger weight to the one that comes from the larger sample.

Note also that neither the definition nor the result about unbiasedness assumes any-
thing about the distributions of the random variables. If weassume normal distribu-
tions, the following result helps us with the confidence intervals that we set out to
find. We use the obvious notationsp for the square root ofs2

p.

Proposition 7.4.2. If X1, ..., Xn andY1, ..., Ym are two independent samples
from aN(µ1, σ

2) distribution and aN(µ2, σ
2) distribution, respectively, and

s2
p is the pooled sample variance, then

X̄ − Ȳ − (µ1 − µ2)

sp

√
1

n
+

1

m

∼ tn+m−2

a t distribution withn + m − 2 degrees of freedom.

Employing the usual method gives the confidence interval. Weleave this as an exer-
cise.

Corollary 7.4.3. Under the assumptions of Proposition 7.4.2, the confidence
interval forµ1 − µ2 is

µ1 − µ2 = X̄ − Ȳ ± tsp

√
1

n
+

1

m
(q)

whereFtn+m−2(t) = (1 + q)/2.

Example7.4.1. Suppose that we have the following measured weights (in grams)
from two shrimp farms, one in Louisiana and one in Arizona. (Yes, there are shrimp
farms in Arizona!) Find the observed95% confidence interval for the difference be-
tween the means:

Louisiana:15.5, 12.7, 12.1, 14.4, 16.1, 15.0, 16.2
Arizona: 11.9, 13.3, 15.8, 11.6, 10.4, 13.6, 13.8, 12.4, 13.6, 13.0

The sample sizes aren = 7, m = 10; the sample means arēX = 14.6 andȲ = 12.9
and the sample variances ares2

1 = 2.6 ands2
2 = 2.2. This gives the pooled sample
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variance

s2
p =

(n − 1)s2
1 + (m − 1)s2

2

n + m − 2
=

6 × 2.6 + 9 × 2.2

15
= 2.4

With q = 0.95 andn + m − 2 = 15, we gett = 2.13 and the observed confidence
interval

µ1 − µ2 = 14.6 − 12.9 ± 2.13 ×
√

2.4

√
1

7
+

1

10

= 1.7 ± 1.6.

This interval[0.1, 3.3] does not contain0. Thus, the differenceµ1 − µ2 is entirely
above0, which indicates that the Louisiana shrimp are on average bigger. If we had
gotten an interval that included0, this would have included both the casesµ1 > µ2

andµ1 < µ2, and no difference could have been detected.

We can also use Proposition 7.4.2 to construct hypothesis tests. Since we are usually
interested in determining whether there is a difference between the samples or not,
the most common null hypothesis is

H0 : µ1 = µ2

If we want to test this against a two-sided alternative hypothesis, we get the two-
samplet test.

Proposition 7.4.4. LetX1, ..., Xn andY1, ..., Ym be two independent samples
with meansµ1 andµ2, respectively, and the same varianceσ2. We wish to test

H0 : µ1 = µ2 versus HA : µ1 6= µ2

The test statistic is

T =
X̄ − Ȳ

sp

√
1

n
+

1

m

and we rejectH0 on levelα if
|T | ≥ c

whereFtn+m−2(c) = 1 − α/2.

The one-sided tests are obvious, as follows.
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Corollary 7.4.5. In Proposition 7.4.4, if we testH0 against the one-sided
alternative

HA : µ1 > µ2 (or µ1 < µ2)

thenH0 is rejected if
T ≥ c (or T ≤ −c)

whereFtn+m−2(c) = 1 − α.

Example7.4.2. To determine whether smoking is associated with elevated blood
pressure, a group of people were divided into two groups, smokers and nonsmokers,
and their blood pressures were measured. The systolic pressures for smokers were

128, 131, 137, 138, 139, 141, 150, 156

and for nonsmokers

101, 125, 129, 130, 130, 136, 138, 140, 143, 146

Test on the5% level whether smokers had higher blood pressure.

We assume that measurements are normal. If the mean for smokers is µ1 and for
nonsmokersµ2, we test

H0 : µ1 = µ2 versus HA : µ1 > µ2

We haven = 8, m = 10 and withα = 0.01, Table A.3 givesc = 1.75 (n + m− 2 =
16, 1 − α = 0.95). The sample means arēX = 140 andȲ = 132 and the pooled
sample variance

s2
p =

7s2
1 + 9s2

2

16
= 128.5

which gives the observed test statistic

T =
140 − 132

√
128.5×

√
1

8
+

1

10

= 1.49

and we cannot rejectH0. There is no clear support for the theory that smoking raises
blood pressure. A practical observation is that the observed value ofT is fairly close
to the critical value and it might be a good idea to get larger samples to be able to
perhaps draw a more definite conclusion.
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If the variances are not equal, the confidence interval and the hypothesis test still
work as approximations ifn andm are roughly the same. Otherwise, certain adjust-
ments can be made to improve the approximation, as describedin the following result.

Proposition 7.4.6. If X1, ..., Xn andY1, ..., Ym are two independent samples
from aN(µ1, σ

2
1) distribution and aN(µ2, σ

2
2) distribution, respectively, then

X̄ − Ȳ − (µ1 − µ2)√
s2
1

n
+

s2
2

m

d≈ tν

where

ν =

(
s2
1

n
+

s2
2

m

)2

s4
1

n2(n − 1)
+

s4
2

m2(m − 1)
.

It should be quite clear how this can be used to modify the previous methods of
inference3. Note thatν is not necessarily an integer so to be able to use Table A.3,
we have to round it off to the nearest smaller integer (to be onthe safe side).

To illustrate the other case, paired observations, supposeinstead that we are in-
terested in the monthly rate of growth of shrimp at one of the farms. To measure
this, we take a sample of shrimp, label and weigh them, and setthem aside. After a
month, we weigh the same shrimp again and thus have a pair of weights(X, Y ) for
each individual shrimp, whereX andY are obviously dependent. We get a sample
(X1, Y1), ..., (Xn, Yn) of weight pairs and are interested in the differenceµ2 − µ1.
By letting Dk = Yk − Xk, we can view this as a sampleD1, ..., Dn, and sinceXk

andYk are normal, so isDk, and we are back at a one-sample problem. The mean of
Dk is E[Yk]−E[Xk] = µ2 − µ1, and the variance is unknown and estimated by the
sample variance in theD sample. Note that this means that we do not need to assume
that the variances ofX andY are equal.

Example 7.4.3. Suppose that we have the following weights, before and aftera
month:

Before:11.9, 13.3, 15.8, 11.6, 10.4, 13.6, 13.8, 12.4, 13.6, 13.0
After: 20.9, 18.1, 20.9, 13.6, 11.3, 17.2, 20.4, 16.4, 15.5, 21.5

3The test based on Proposition 7.4.6 is usually referred to asWelch’st test
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The sample of the differences,Dk = Yk − Xk, “after minus before” is

9.0, 4.8, 5.1, 2.0, 0.9, 3.6, 6.6, 4.0, 1.9, 8.5

which has sample mean̄D = 4.6 and sample variances2 = 7.5. With n− 1 = 9 and
q = 0.95, we gett = 2.26 and confidence interval

µ2 − µ1 = D̄ ± t
s√
n

= 4.6 ± 2.0 (0.95)

7.4.2 Inference about Variances

Although we are mostly interested in studying changes in themean values when
comparing different groups or treatments, there are situations where changes in the
variances may be relevant. Let us say that we want to compare two different measuring
devices and want to determine if the measurement error, described by the variance, is
smaller for one of them. Another common problem is whether wecan assume equal
variances so that we can use the methods described in Corollary 7.4.3 and Proposition
7.4.4.

The key result, which follows directly from Proposition 7.3.1 and 7.2.2, for the
methods in this section is the following.

Proposition 7.4.7. If X1, ..., Xn andY1, ..., Ym are two independent samples
from aN(µ1, σ

2
1) distribution and aN(µ2, σ

2
2) distribution, respectively, then

s2
1/σ2

1

s2
2/σ2

2

∼ Fn−1,m−1

anF distribution withn − 1 ochm − 1 degrees of freedom.

Since theF distribution, just like the chi square distribution, is asymmetric, we have
to formulate a confidence interval forσ2

2/σ2
1 as follows.

Corollary 7.4.8. Under the assumptions of Proposition 7.4.7, the confidence
interval forσ2

2/σ2
1 is

x1
s2
2

s2
1

≤ σ2
2

σ2
1

≤ x2
s2
2

s2
1

(q)

whereFFn−1,m−1(x1) = (1 − q)/2 andFFn−1,m−1(x2) = (1 + q)/2.
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Example7.4.4. In Example 7.4.1, the sample variances were found to bes2
1 = 2.6

ands2
2 = 2.2. This difference was not considered to be too large so that the pooled

variance, under the assumption of equal variances, was usedin the calculations. Let
us take a closer look at this assumption.

The sample sizes weren = 7 andm = 10, which means that we need to use the
F6,9 distribution. If we want a 95 % confidence interval for the ratio of variances,
Table A.5 yields the percentilesFF6,9 (0.181) = 0.025 andFF6,9(4.32) = 0.975.
Hence, we get the interval

0.181 × 2.2

2.6
≤ σ2

2

σ2
1

≤ 4.32 × 2.2

2.6
(0.95)

0.15 ≤ σ2
2

σ2
1

≤ 3.6 (0.95)

Since the value one is included in the interval, we cannot exclude the possibility that
the two variances are equal.

We can also use Proposition 7.4.7 to construct a hypothesis test.

Corollary 7.4.9. Under the assumptions of Proposition 7.4.7, we wish to test

H0 : σ2
1 = σ2

2 versus HA : σ2
1 6= σ2

2

The test statistic is

F =
s2
1

s2
2

and we rejectH0 on levelα if

F ≤ x1 or F ≥ x2

whereFFn−1,m−1(x1) = (1 − q)/2 andFFn−1,m−1(x2) = (1 + q)/2.

7.5 ANALYSIS OF VARIANCE

In this section we are going to take things one step further and look at statistical
methods of comparing more than two independent normal samples. Of course, we
can always use the methods of the previous section to carry out pairwise comparisons,
but then we will end up in multiple testing problems as described in Section 6.6.4,
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especially if we have several samples to compare. Instead, we are going to use a more
comprehensive approach where we compare the variation within with the variation
between the samples to detect any differences in the means. Since we focus on the
variation through variances, these methods are referred toasAnalysis of Varianceor
ANOVAfor short.

7.5.1 One-way Analysis of Variance

Here, we assume that we havek independent samplesXi1, . . . , Xin such thatXij ∼
N(µi, σ

2), wherei = 1, . . . , k andj = 1, . . . , n. Note that we make two simplica-
tions in this model, namely that all samples are of equal sizen and that they have the
same varianceσ2. ANOVA is mostly used inexperimental design, where individuals
or other experimental units are randomly assigned to different groups and subjected
to a number of different treatments and it is quite common to choose groups of equal
sizes. Therefore, the varianceσ2 is interpreted as the natural individual variation,
which should have nothing to do with the treatments and should therefore be the
same in all groups. Actually, the assumption of equal sizes can be relaxed without
much trouble, but we will not consider that case here.

The hypotheses of interest are

H0 : µ1 = . . . = µk versus HA : µi1 6= µi2 for somei1 andi2

Now, we can obtaink independent estimators of the unknown variance as

s2
i =

1

n − 1

n∑

j=1

(Xij − X̄i·)
2 i = 1, . . . , k

where

X̄i· =
1

n

n∑

j=1

Xij

Since they are all based on samples of sizen, they can be pooled together as

s2
W =

1

k

k∑

i=1

s2
i =

1

k(n − 1)

k∑

i=1

n∑

j=1

(Xij − X̄i·)
2 (7.5.1)

which is thewithin-group variance. If the null hypothesis is true, we can regard
the sample means̄X1·, . . . , X̄k· as a normally distributed sample with meanµi and
varianceσ2/n. This means that we can get a second estimator ofσ2 as

s2
B =

n

k − 1

k∑

i=1

(X̄i· − X̄)2 =
1

k − 1

k∑

i=1

n∑

j=1

(X̄i· − X̄)2 (7.5.2)

where

X̄ =
1

k

k∑

i=1

X̄i· =
1

nk

k∑

i=1

n∑

j=1

Xij
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is the total sample mean. This is usually called thebetween-group variance.
The within-group variances2

W is always an unbiased estimator ofσ2 whereas the
same holds fors2

B only if the null hypothesis is true. If the alternative hypothesis is
true, it is possible to show thatE[s2

B] > σ2 (see Problem 37), so we should rejectH0

if s2
B is significantly larger thans2

W or, equivalently, if the test statistic

F =
s2

B

s2
W

is large enough. It turns out thats2
W ands2

B are independentand chi square distributed
with k − 1 andk(n − 1) degrees of freedom, respectively, under this model, which
means thatF ∼ Fk−1,k(n−1) and that critical values can be obtained from Table A.5.

In classical ANOVA notation, the sums in (7.5.1), (7.5.2) and the total variation
are denoted

SSA =

k∑

i=1

n∑

j=1

(X̄i· − X̄)2

SSE =
k∑

i=1

n∑

j=1

(Xij − X̄i·)
2

SST =

k∑

i=1

n∑

j=1

(Xij − X̄)2

where it can be shown that

SST= SSA+ SSE

The SS in the notation stands forSum of Squareswith T for Total, E for Error and A
for treatmentA4. The variance estimators above are also referred to asMean Squares
and denoted MSA and MSE, respectively. The result of an Analysis of Variance is
often summarized in anANOVA table, whose structure is illustrated, for a one-way
ANOVA, in Table 7.1. Sometimes, thep-value for theF test is also included in the
table.

Example7.5.1. In 2010, a large farming experiment was carried out in southern
Sweden, where nine different varieties of canned peas were grown in five fields each.
After harvest, the yield in metric tonnes per hectare was measured and the results
were the following.

4In higher order ANOVA, combinations of several different treatments (ususally denotedA, B, C and so
on) can be studied and corresponding sum of squares computed. Although only one treatment is considered
in one-way ANOVA, it is often called treatmentA.
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Table 7.1 An ANOVA table for a one-way Analysis of Variance.

Source DF Sum of Squares Mean Square F -statistic

TreatmentA k − 1 SSA MSA= SSA
k − 1

F = MSA
MSE

Error k(n − 1) SSE MSE= SSE
k(n − 1)

Total kn − 1 SST

Variety Yields Mean yield Variance

A 3.18 3.33 3.87 5.27 5.58 4.25 1.24
B 2.17 4.55 4.60 5.15 5.61 4.42 1.77
C 2.84 3.61 4.57 4.69 5.00 4.14 0.80
D 4.52 4.74 5.74 5.93 6.18 5.42 0.55
E 3.12 3.13 4.38 4.60 4.88 4.02 0.70
F 1.81 2.83 3.11 3.80 4.25 3.16 0.88
G 1.94 2.72 2.80 2.94 3.56 2.79 0.34
H 1.75 2.45 3.10 3.63 3.92 2.97 0.78
I 3.23 3.94 4.01 4.30 4.35 3.97 0.20

We see that best varietyD yields about twice as much as the worst varietyG on
average, but we also see that there is a large variation between the fields probably due
to quality of soil, climatic conditions, drainage and so on.Let us see if an Analysis of
Variance can determine whether there is any difference between the varieties of peas.

Since the total mean is̄X = 3.90, we can use Corollary 6.2.4 to calculate the
variety sum of squares as

SSA=

9∑

i=1

5∑

j=1

(X̄i· − X̄)2 = 5 ×
(

9∑

i=1

X̄2
i· − 9X̄2

)
= 27.10

and the total sum of squares as

SST=

9∑

i=1

5∑

j=1

(Xij − X̄)2 =

9∑

i=1

5∑

j=1

X2
ij − 45X̄2 = 56.13

which yields the error sum of squares SSE= 56.13 − 27.10 = 29.035. Now we get
the mean squares as

MSA =
SSA
k − 1

=
27.10

8
= 3.39

5This is the usual order of calculations since SSA and SST are both easier to calculate than SSE.
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Table 7.2 The ANOVA table for Example 7.5.1.

Source DF Sum of Squares Mean SquareF -statistic P -value

Variety 8 27.10 3.39 4.20 0.001
Error 36 29.03 0.81

Total 44 56.13

MSE =
SSE

k(n − 1)
=

29.03

36
= 0.81

which yields the test statistic

F =
MSA
MSE

=
3.39

0.81
= 4.20

The 95 % percentile of theF distribution with 8 and 36 degrees of freedom is 2.21,
which means that we can reject the null hypothesis on the 5 % level and claim that
the nine varieties vary in yield. The ANOVA is summarized in Table 7.2.

7.5.2 Multiple Comparisons: Tukey’s Method

Suppose that we have managed to reject the null hypothesis ofequal means, as in
Example 7.5.1, in an ANOVA. The next natural question is then: Which group or
groups differ from the rest and by how much? In this section wewill present the most
common method of making pairwise comparisons between groups such that the joint
level of significance is correct, the so calledTukey’s method6.

It is based on the following distribution.

Definition 7.5.1. LetX1, . . . , Xn be a normally distributed sample with mean
µ and varianceσ2 and lets2 be an estimator ofσ2 such that

ms2

σ2
∼ χ2

m

Then

Rn,m =
X(n) − X(1)

s

follows thestudentized range distributionwith n andm degrees of freedom.

6Named after the American chemist and mathematician John Tukey (1915–2000).
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The cdf can be expressed as an integral in terms of thet distribution and can, unfor-
tunately, only be calculated numerically. Pairwise confidence intervals can now be
obtained as follows.

Proposition 7.5.1. Let {Xij : i = 1, . . . , k; j = 1, . . . , n} be independent
random variables such thatXij ∼ N(µi, σ

2). Then

µi1 − µi2 = X̄i1· − X̄i2· ± r
sW√

n

are pairwise confidence intervals fori1 = 1, . . . , k andi2 = 1, . . . , k, where
i1 6= i2, with joint confidence levelq, wheres2

W is defined in (7.5.1) and
FRk,k(n−1)

(r) = q.

Table A.6 gives 95 % percentiles of the studentized range distribution.

Example7.5.2. In Example 7.5.1, we hadk = 9 andn = 5, which yields the critical
valuer = 4.66. Using the within-group variations2

W = MSE = 0.81 gives us the
statistical error

r
sW√

n
= 4.66 ×

√
0.81

5
= 1.87

When comparing all group means we find that only the three intervals

µD − µF = 5.42 − 3.16 ± 1.87 = 2.26 ± 1.87

µD − µG = 5.42 − 2.79 ± 1.87 = 2.63 ± 1.87

µD − µH = 5.42 − 2.97 ± 1.87 = 2.45 ± 1.87

does not contain the value zero. Hence, we can conclude, with95 % confidence, that
varietyD have a mean yield larger than varietiesF , G andH .

7.5.3 Kruskal-Wallis Test
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If the assumption of normally distributed samples with equal variances is not satisfied,
there is an alternative approach calledKruskal-Wallis test7, which is based on ranks
like the Wilcoxon rank sum test introduced in Section 6.9.2 but using the ANOVA
method of comparing sources of variation. The first step is torank the values in all
samples combined. If we denote the rank of observationXij by Rij , the test statistic
is defined as

K = (kn − 1)

k∑

i=1

n∑

j=1

(R̄i· − R̄)2

k∑

i=1

n∑

j=1

(Rij − R̄)2

(7.5.3)

whereR̄ is the mean of all ranks and̄Ri· is the mean rank of groupi. Note that the
enumerator and denominator in (7.5.3) correspond to SSA andSST, respectively, in
the one-way ANOVA. This means that we would expect a larger variation in mean
ranksR̄i· if the group means are different and, consequently, should reject the null
hypothesis if the test statisticK is large enough. If there are no ties, it is possible to
simplify (7.5.3) (see Problem 38) as

K =
12

kn2(kn + 1)

k∑

i=1

R2
i· − 3(kn + 1) (7.5.4)

whereRi· =
∑n

j=1 Rij are the group rank sums. In most textbooks in statistics,

the fact thatK
d≈ χ2

k−1 is often used to obtain critical values andp-values for the
Kruskal-Wallis test. However, this approximation is not very accurate for smalln,
especially ifk is large. The problem is that it is virtually impossible to calculate the
exact distribution ofK (except for really smalln andk) due to the enormous number
of combinations of ranks that has to be considered. In Table A.11, estimates of 95 %
percentiles are presented based on simulation methods likethose presented in Section
6.4.3. Therefore, these values may not all be accurate down to the last decimal, but
they at least give better critical values than the chi-square approximation.

Example7.5.3. There were some irregularities like different variances inthe data
in Example 7.5.1 that suggested that the conditions for carrying out an ANOVA may
not have been met completely. Let us therefore apply the Kruskal-Wallis test to the
data and see if we get a similar result. We first rank all 45 observations as follows.

7Named after the American mathematician William Kruskal (1919–2005) and economist W. Allen Wallis
(1912–98).
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Variety Ranks Rank sum

A 15 17 22 40 41 135
B 4 31 33.5 39 42 149.5
C 9 19 32 35 38 133
D 30 36 43 44 45 198
E 13 14 29 33.5 37 126.5
F 2 8 12 21 26 69
G 3 6 7 10 18 44
H 1 5 11 20 23 60
I 16 24 25 27 28 120

Note that we have one tie in the value 4.60 that occurs twice inthe table and, conse-
quently, gets the midrank 33.5. This means that (7.5.4) doesnot give the correct value
of K and that we should use (7.5.3) instead. In practice, (7.5.4)is actually used any-
way because as long as there are not too many ties, the error isreally negligible. In this
case, (7.5.3) gives the (correct) valueK = 22.196 while (7.5.4) givesK = 22.194.
The critical value fork = 9 andn = 5 on the 5 % level is 14.62 according to Table
A.11, which means that we can still reject the null hypothesis. In fact, thep-value
can be calculated to 0.0009, which is quite similar to the corresponding value in the
traditional ANOVA in Example 7.5.1.

7.6 LINEAR REGRESSION

The world is full of linear relationships. When measurements are taken, observations
seldom lie on a straight line, though, as a result of measurement error and other
random effects. In Section 3.8, we learned how the correlation coefficient can be used
to describe the degree of linearity in a relationship between two random variables,
and in Section 3.9, we saw that ifX andY are bivariate normal, there is a linear
relationship between them in the sense that the conditionalexpectation ofY given
X is a linear function ofX . In this section, we will investigate a similar model but
assume that onlyY is random. For fixedx, we assume that

Y = a + bx + ǫ

wherea andb are constants and

ǫ ∼ N(0, σ2)

This means that deviations from the liney = ax+ b are normally distributed random
variables, and an equivalent formulation is

Y ∼ N(a + bx, σ2)

We call this thesimple linear regressionmodel, and the liney = a + bx is called
theregression line. Thex values can be chosen by us or come from observations but



LINEAR REGRESSION 427

we think of them as fixed, not random. For eachx value, the correspondingY value
is measured, where we assume that consecutiveY values are independent random
variables. Thus, we have thex valuesx1, ..., xn, get a sampleY1, ..., Yn, where

Yk = a + bxk + ǫk ∼ N(a + bxk, σ2) (7.6.1)

and our main objective is to estimate the intercepta and slopeb. Note that theYk are
independent but do not have the same distribution. With a slight modification of the
maximum-likelihood method, we can still define the likelihood function as

L(a, b) =

n∏

k=1

fa,b(Yk)

where

fa,b(Yk) =
1

σ
√

2π
e−(Yk−a−bxk)2/2σ2

and we can maximize overa andb in the usual way by taking logarithms and setting
the partial derivatives to0. The resulting estimators are stated next, leaving the proof
for the Problems section.

Proposition 7.6.1. In the linear regression model, the maximum likelihood
estimators ofa andb are

b̂ =

n∑

k=1

(xk − x̄)(Yk − Ȳ )

n∑

k=1

(xk − x̄)2

â = Ȳ − b̂x̄

The liney = â + b̂x is the estimated regression line (or simply the regression line if
there is no risk of confusion). There are different ways to rewrite the expression for
b̂. We introduce one, which is suitable for computations.
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Corollary 7.6.2. Define the sums

Sxx =

n∑

k=1

(xk − x̄)2 =

n∑

k=1

x2
k − 1

n

(
n∑

k=1

xk

)2

SxY =

n∑

k=1

(xk − x̄)(Yk − Ȳ ) =

n∑

k=1

xkYk − 1

n

(
n∑

k=1

xk

)(
n∑

k=1

Yk

)

Then

b̂ =
SxY

Sxx

Example7.6.1. Let us look at a famous data set, Edwin Hubble’s1929 investigation
of the relationship between a galaxy’s distance from Earth and its recession velocity
(see also Example 3.8.9). He got the following24 observations pairs, wherex values
are distances in megaparsecs andY values the corresponding velocities in kilometers
per second. Find the estimated regression line.

Distance: 0.032, 0.034, 0.214, 0.263, 0.275, 0.275, 0.45, 0.5, 0.5, 0.63

0.8, 0.9, 0.9, 0.9, 0.9, 1.0, 1.1, 1.1, 1.4, 1.7, 2.0, 2.0, 2.0, 2.0

Velocity: 170, 290,−130,−70,−185,−220, 200, 290, 280, 200, 300 − 30

650, 150, 500, 920, 450, 500, 500, 960, 500, 850, 800, 1090

Computation of these sums gives

24∑

k=1

xk = 21.87,

24∑

k=1

Yk = 8965,

24∑

k=1

x2
k = 29.52,

24∑

k=1

xkYk = 12, 519

and

Sxx = 29.52 − 21.872

24
= 9.583

SxY = 12, 519− 21.87 × 8965

24
= 4348

which gives

b̂ =
4348

9.583
= 454

â =
8965

24
− 454 × 21.87

24
= −40.0
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Fig. 7.3 Plot of Hubble’s galaxy data and the estimated regression line. Distance is on thex
axis and recession velocity on they axis.

and the regression line isy = −40.0 + 454x, which is shown together with the data
set in Figure 7.3. Note how the line intersects they axis very close to the origin. Why
do you think this is the case?

If you are familiar with themethod of least squares, you may have noticed that the
estimated regression line is precisely the line that least-squares fitting gives. (Why
is this?) Our assumption of normally distributed errors enables us to further analyze
the estimated regression line. Let us investigate properties of our estimatorŝa andb̂.
Since thexk are fixed, the only randomness is in theYk, and since botĥa andb̂ are
linear combinations of the normally distributedYk, the estimators themselves must
be normal. It is straightforward to compute their means and variances (see Problem
39).

Corollary 7.6.3. The estimatorŝa and̂b have normal distributions with means
and variances

E[ â ] = a, Var[ â ] =

σ2
n∑

k=1

x2
k

nSxx

E[ b̂ ] = b, Var[ b̂ ] =
σ2

Sxx
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In particular, Corollary 7.6.3 tells us that botĥa and b̂ are unbiased estimators and
that

â − a√
Var[ â ]

∼ N(0, 1) and
b̂ − b√
Var[ b̂ ]

∼ N(0, 1) (7.6.2)

where the variances depend onσ2, which must thus be estimated. The following
estimator is used.

Proposition 7.6.4. In the linear regression model, the estimator

s2 =
1

n − 2

n∑

k=1

(Yk − â − b̂xk )2

is an unbiased estimator ofσ2.

Note how this resembles the sample variance from Section 6.2, in the sense that it
sums the squares of the observations minus their estimated expected values. Since
there are two estimated parameters, we divide byn − 2 instead ofn. Another sim-
ilarity is that s2 is not the MLE; the MLE is obtained by dividing byn rather than
n − 2. For practical calculations, the following result is useful.

Corollary 7.6.5. Define the sum

SY Y =

n∑

k=1

(Yk − Ȳ )2 =

n∑

k=1

Y 2
k − 1

n

(
n∑

k=1

Yk

)2

Then

s2 =
1

n − 2

(
SY Y − S2

xY

Sxx

)

For inference aboutσ2, we need the distribution ofs2. In the light of Proposition
7.3.1, the following is to be expected.



LINEAR REGRESSION 431

Proposition 7.6.6. In the linear regression model

(n − 2)s2

σ2
∼ χ2

n−2

a chi-squared distribution withn − 2 degrees of freedom.

Note how this follows the by now familiar pattern; the numberof degrees of freedom
equals the number of terms in the sum, minus the number of estimated parameters.
Confidence intervals forσ2 can now be derived on the basis of the chi-square distri-
bution (see Problem 50).

As we might expect, if the estimators replacesσ in the expressions in Equation
(7.6.2), we gett distributions withn − 2 degrees of freedom instead of normal
distributions. Recalling the computational formulas above, we have

Ta =
â − a

s

√
nSxx∑n
k=1 x2

k

∼ tn−2

Tb =
b̂ − b

s

√
Sxx ∼ tn−2

which gives us the following confidence intervals.

Corollary 7.6.7. In the linear regression model with unknown varianceσ2,
confidence intervals fora andb with confidence levelq are given by

a = â ± ts

√∑n
k=1 x2

k

nSxx
(q)

b = b̂ ± ts
1√
Sxx

(q)

whereFtn−2(t) = (1 + q)/2.

Example7.6.2. Find95% confidence intervals fora andb in Hubble’s galaxy data.

From Example 7.6.1, we havêa = −40.0, b̂ = 454,
∑

k x2
k = 29.52,

∑
k Yk = 8965,

Sxx = 9.583, SxY = 4348, andn = 24. we also need
∑

k Y 2
k = 6, 516, 925 to

calculate

SY Y = 6, 516, 925− 89652

24
= 3, 168, 124
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Now, we get the sample variance as

s2 =
1

22

(
3, 168, 124− 43482

9.583

)
= 54, 328

which givess = 233. With q = 0.95 andn − 2 = 22, we gett = 2.07. The
confidence intervals are

a = −40.0 ± 2.07 × 233

√
29.52

24 × 9.583
= −40.0 ± 173 (0.95)

b = 454 ± 2.07 × 233
1√

9.583
= 454 ± 156 (0.95)

Note that the intervals are quite wide; in particular, the one fora is all over the place.
Two cautious conclusions we can draw are thatb is positive and that we cannot rule
out thata = 0 (which, of course, makes sense).

As you know by now, the step from confidence intervals to hypothesis tests is not
big. Since the quantitiesTa andTb given above have known distributions, we can
construct tests of the null hypotheses

H0 : a = a0 and H0 : b = b0

based on the test statisticsTa andTb, where we seta = a0 and b = b0. If the
alternatives are two-sided, we reject on levelα if |Ta| ≥ t and|Tb| ≥ t, respectively,
whereFtn−2(t) = 1 − α/2. For one-sided tests, the usual adjustments are made,
using1 − α instead of1 − α/2.

Example7.6.3. The Old Faithful geyser (see Problem 111 in Chapter 3) is a rich
source of data. Two quantities that are routinely measured are the times between
eruptions (typically30–120 minutes) and the length of eruptions (1–5 minutes). It
is known that these are positively correlated, and the Yellowstone park rangers use a
formula that is roughlyy = 13x + 30 to predict the timey until the next eruption,
based on the lengthx of the most recent eruption. (Source: The Geyser Observation
and Study Association, www.geyserstudy.org.) Assume a linear regression model
and estimate the regression line based on the following20 observations; also test
whether the slope13 is correct.

Length: 1.7, 1.7, 1.7, 1.8, 2.3, 3.1, 3.4, 3.5, 3.7, 3.9, 3.9, 4.0, 4.0, 4.0, 4.1, 4.3

4.4, 4.6, 4.7, 4.9

Time: 55, 58, 56, 42, 50, 57, 75, 80, 69, 80, 74, 68, 76, 90, 84, 80, 78, 74, 76, 76

To compute the estimators, we need the usual sums
∑

k xk = 69.7,
∑

k Yk = 1398,∑
k x2

k = 264.65 and
∑

k xkYk = 5083.1, which withn = 20 gives us

Sxx = 264.65− 69.72

20
= 21.75
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Fig. 7.4 The Old Faithful data with the regression line (solid) and the rangers’ line (dashed).

SxY = 5083.1− 69.7 × 1398

20
= 211.1

Now, we get the estimators

b̂ =
211.1

21.75
= 9.71

â =
1398

20
− 9.71

69.7

20
= 36.1

which gives the regression liney = 9.71x + 36.1. To test

H0 : b = 13 versus HA : b 6= 13

on level0.05, we haven− 2 = 18 and1− 0.05/2 = 0.975 and reject if|Tb| ≥ 2.10,
whereb = 13. We first need

∑
k Y 2

k = 100, 768 and

SY Y = 100, 768− 13982

20
= 3048

to compute

s2 =
1

18

(
3048− 211.12

21.75

)
= 55.5

which givess = 7.45 and test statistic

Tb =
9.71 − 13

7.45

√
21.75 = −2.06

and we cannot rejectH0, although it is close. The rangers know what they are doing
and, of course, base their estimates on much larger data setsthan our20 observations.
See Figure 7.4 for the data and the two lines.
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7.6.1 Prediction

In the last problem, it was mentioned that one variable (length of last eruption) is
used to predict another (time until next eruption). Generally, in the linear regression
model, if we observe or choosex, what can we say aboutY ? We know that the mean
of Y is E[Y ] = a + bx, which we estimate bŷa + b̂x, and we can use this estimator
as a predictor ofY (recall Section 3.7.2). How good is it? The difference between
the true valueY and the predicted valuêa + b̂x is

D = Y − â − b̂x = Y − Ȳ + b̂(x − x̄)

Note here that̄x, Ȳ , and̂b are computed from the observations(x1, Y1), ..., (xn, Yn),
x is our new observedx value, andY the yet unobserved value that we are trying to
predict. Clearly,E[D] = 0 and for the variance, note thatY is independent of̄Y and
b̂. It is also easy to show that̄Y andb̂ are uncorrelated (see Problem 40) and hence

Var[D] = Var[Y ] + Var[Ȳ ] + (x − x̄)2Var[ b̂ ]

= σ2 +
σ2

n
+

(x − x̄)2σ2

Sxx
.

Moreover, sinceD is a linear combination of normal distributions, it is normal with
mean0 and the variance given above. Hence,D/

√
Var[D] ∼ N(0, 1), and estimating

σ2 by s2 and using the computational formula for the sum of squares gives

T =
D

s

√

1 +
1

n
+

(x − x̄)2

Sxx

∼ tn−2

a t distribution with n − 2 degrees of freedom. Thus, we can findt such that
P (−t ≤ T ≤ t) = q for our desiredq, and sinceD = Y − â − b̂x we get the
following prediction interval(see also Problem 30).

Corollary 7.6.8. Consider the linear regression model with estimatorsâ and
b̂. If x has been observed, a100q% prediction interval for the corresponding
Y value is given by

Y = â + b̂x ± ts

√

1 +
1

n
+

(x − x̄)2

Sxx

whereFtn−2 = (1 + q)/2.
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Note the difference between a prediction interval and a confidence interval. A pre-
diction interval captures the nextY value for a givenx value; a confidence interval
captures the long-term average of a large number ofY values for a givenx value.
A confidence interval for the expected value ofY for a givenx, would thus look
somewhat different (see Problem 48).

Note the length of the prediction interval increases with increasing(x−x̄)2, that is,
the farther away the chosenx value is fromx̄. This reflects that fact that our estimated
regression line is most reliable nearx̄. Indeed, for anx far outside the range of our
originalx1, ..., xn, the prediction is highly uncertainandshould preferably be avoided.

Example7.6.4. Consider the Old Faithful example and suppose that we just ob-
served an eruption that lasted for1.5 minutes. Find the predicted time until the next
eruption and a95% prediction interval.

The estimated regression line isy = 9.71x + 36.1, so withx = 1.5 we get predicted
y value9.71 × 1.5 + 36.1 = 50.6. For the prediction interval, we haven = 20,
t = 2.10, s = 7.5, x̄ = 69.7/20 = 3.5 andSxx = 21.75. We get

Y = 50.6 ± 2.10 × 7.5

√
1 +

1

20
+

(1.5 − 3.5)2

21.75
= 50.6 ± 17.5 (0.95)

7.6.2 Goodness of Fit

To determine whether the linear regression model is reasonable, it is useful to examine
the difference between the observedY values and those predicted by the estimated
regression line. The deviations

Ek = Yk − â − b̂xk, k = 1, ..., n

are called theresiduals. Do not confuse theEk and theǫk from above;Ek is the
difference between the observedY value and theestimatedline â+ b̂xk, whereasǫk is
the difference between the observedY value and thetrue linea+bxk, so we can think
of Ek as a predictor ofǫk. If the residuals are plotted against thex values, they should
appear more or less randomly scattered and not display any discernible patterns, if the
model is correct. In Figure 7.5(a), the residuals for Hubble’s galaxy data are plotted,
and they look just fine. In contrast, consider plot (b) where the residuals tend to be
below 0 at the ends and above in the middle, indicating a nonlinear relation. Finally,
in (c), the residuals tend to increase in magnitude with increasingx, indicating that
the variance is not constant but depends onx. The plots in (b) and (c) illustrate the
two most common deviations from the linear regression model. Try to figure out how
the data set together with the estimated regression line would look in these two cases.
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Fig. 7.5 Three residual plots. In (a), the residuals for Hubble’s galaxy data are plotted and
give no reason to suspect that the model is wrong. In (b), the “banana shape” indicates a
nonlinear relationship, and in (c), the residuals indicatea nonconstant variance.

Plotting the residuals provides a quick diagnostic tool to assess whether the as-
sumed linear model is reasonable. For a more detailed analysis, it should be noted
that the residualEk has mean0 and a variance that depends onk. If the residuals
are divided by their estimated standard deviations, these are called thestandard-
ized residuals. If the model is correct, the standardized residuals are approximately
independent andN(0, 1), which can be used for further analysis.

The situation with nonconstant variance is common and may bemodeled by
weighted linear regression, letting Y = a + bx + ǫ whereǫ ∼ N(0, w(x)σ2),
where thew(x) are weights depending onx.

It is also possible to apply the ANOVA method of comparing sources of variation
to quantify the goodness of fit. The residuals defined above can be used to obtain the
error sum of squares as

SSE=

n∑

k=1

(Yk − â − b̂xk)2 = SY Y − S2
xY

Sxx

and the total sum of squares is defined in a similar way as in Section 7.5 as

SST=

n∑

k=1

(Yk − Ȳ )2 = SY Y

The difference between the total variation and the random variation

SSR= SST− SSE=
S2

xY

Sxx

denotedregression sum of squares, can be interpreted as the amount of variation that
can be explained by the regression model. Hence, the larger SSR is in relation to SSE,
the better because then the points will lie close to the estimated regression line and
we will be able to predictY values with high accuracy. The proportion of variation
explained by the model, namedcoefficient of determinationand defined as

R2 = 1 − SSE
SST

=
S2

xY

SxxSY Y
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is the most common way of quantifying the goodness of fit of a regression model.

Example7.6.5. The coefficient of determination for the regression model for Hub-
ble’s data is

R2 =
43482

9.583 × 3, 168, 124
= 0.62

which means that most of the variation, roughly 60 %, can be explained by the
estimated linear relationship. The Old Faithful analysis yields a coefficient of deter-
mination of

R2 =
211.12

21.75 × 3048
= 0.67

which is even better with two thirds of the variation explained.

7.6.3 The Sample Correlation Coefficient

The simple linear regression model is useful, as we have seen, when we want to
estimate the linear relationship between two measured quantities and make predic-
tions about new observations. Sometimes we are merely interested in estimating the
strength of the connection between two variables and test whether it exists. This
can be done if we assume that data can be regarded as observations from the sample
of pairs(X1, Y1), ..., (Xn, Yn) and consider the correlation coefficientρ, which we
recall is defined as

ρ =
E[(X − µ1)(Y − µ2)]√

Var[X ]Var[Y ]

Note that we regard both variables as random in this context while thex variables
previously were fixed. The difference lies mainly in the assumption of a causal
relationship in the simple linear regression model. By makingY random andx fixed,
we are implicitly assuming that the value ofx have a direct impact on the value of
Y . Here, we just claim that the two variables are connected andsay nothing about
direction of influence. It may even be the case that both variables are affected by a
third variable not included in the model and not directly linked at all.

Anyway, the following estimator should make intuitive sense.
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Definition 7.6.1. If (X1, Y2), ..., (Xn, Yn) is a sample from a bivariate distri-
bution, we define thesample correlation coefficientas

R =

n∑

k=1

(Xk − X̄)(Yk − Ȳ )

√√√√
n∑

k=1

(Xk − X̄)2
n∑

k=1

(Yk − Ȳ )2

=
SXY√

SXXSY Y

We use the term “sample correlation coefficient” to point outthe analogy with sample
mean and sample variance. If you wish to memorize a longer name, the termproduct
moment correlation coefficientis also used.8 Note that the square of the sample corre-
lation coefficient is actually the same as the coefficient of determination introduced in
Section 7.6.2, which further emphasizes the link between regression and correlation.

Example7.6.6. Below is a data set of10 observations of the daily closing prices
for the two U.S. stock market indices, Dow Jones Industrial Average and Nasdaq
Composite Index, chosen at random between the years of1971 and2003, rounded
to the nearest integer (and listed in chronological order).Estimate the correlation
coefficient ofX andY .

Dow: 887, 833, 821, 961, 1259, 2176, 2820, 3442, 7289, 10715
Nasdaq:108, 86, 74, 95, 283, 352, 430, 696, 1228, 2028

This is merely an exercise in computing the sums needed. Thus, we have

10∑

k=1

Xk = 31203,

10∑

k=1

Yk = 5380

10∑

k=1

X2
k = 1.97 × 108,

10∑

k=1

Y 2
k = 6.53 × 106

and finally
10∑

k=1

XkYk = 3.57 × 107

8Sometimes it is also prefixed withPearson’sto honor its discoverer, English statistician Karl Pearson
(1857–1936), one of the founders of the theory of statistics.
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Fig. 7.6 Plots of Dow (x axis) versus Nasdaq (y axis) for10 randomly sampled days during
1971–2003 (left) and1971 (right).

This gives us the sum of squares

SXX = 1.97 × 108 − 312032

10
= 9.98 × 107

SY Y = 6.53 × 106 − 53802

10
= 3.63 × 106

SXY = 3.57 × 107 − 31203× 5380

10
= 1.89 × 107

Inserting these in the expression forR from Definition 7.6.1 yields

R =
1.89 × 107

√
(9.98 × 107) × (3.63 × 106)

= 0.995

which is a very high correlation. For comparison, consider the following10 pairs of
closing prices, chosen at random from the year1971 only (the year that the Nasdaq
index was started).

Dow: 941, 947, 889, 874, 850, 908, 888, 798, 829, 873
Nasdaq:104, 104, 114, 110, 105, 110, 108, 106, 109, 105

This time the estimated correlation isR = −0.14, which is not only much smaller
in magnitude but also negative. The reason for the difference in correlation is the
relatively stable growth of the markets over a long period, such as the32 years we
first sampled from but less stable behavior over a shorter period, such as a single year.
Since both indices mirror the market as a whole but are compiled from different sets
of stocks, we would expect their correlation to be positive and high for longer periods
of time, but for shorter periods of time, the correlation could be anything. The two
data sets are plotted in Figure 7.6. See also Problem 51.
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The most common test problem regarding the correlation coefficient is to test ifρ = 0,
if there is an association between the random variablesX andY , and intuitively the
test should be based on how farR is from0. In general, we cannot find the distribution
of R but if our data are from a bivariate normal distribution withρ = 0, the following
result gives the exact distribution for a particular function ofR, which we can use to
construct our test procedure.9

Proposition 7.6.9. Let (X1, Y1), ..., (Xn, Yn) be a sample from a bivariate
normal distribution withρ = 0, and let

T = R

√
n − 2

1 − R2

Then
T ∼ tn−2

a t distribution withn − 2 degrees of freedom.

The test procedure is now straightforward. IfR = 0, then alsoT = 0, and asR
increases from−1 to 1, T increases from−∞ to ∞. Thus we rejectH0 if T is too
far from0. Let us state this formally.

Proposition 7.6.10. Let (X1, Y1), ..., (Xn, Yn) be a sample from a bivariate
normal distribution where we wish to test

H0 : ρ = 0 versus HA : ρ 6= 0

The test is based on the statisticT above, and we rejectH0 on levelα if

|T | ≥ c

whereFtn−2(c) = 1 − α/2.

If we want to test against a one-sided alternative instead, for example, with the inten-
tion of showing a positive (or negative) correlation, we reject if T ≥ c (or T ≤ −c),
whereFtn−2(c) = 1 − α. Note that since we assume thatX andY are bivariate

9The result in Proposition 7.6.9 actually requires only thatY be normal; in fact,X does not even have to
be random.
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normal, a test ofρ = 0 is in fact a test for independence.

Example7.6.7. Use the two data sets from Example 7.6.6 to test whether the Dow
and Nasdaq indices are correlated. Test on the5% level.

We test

H0 : ρ = 0 versus HA : ρ 6= 0

where we choose a two-sided alternative since we are not testing for any particular
direction of the correlation (although the one-sided alternativeρ > 0 would also make
sense). Let us first find the critical value. We haven = 10, and withα = 0.05, we
getFt8(t) = 0.95, which givest = 2.31 so thatH0 is rejected if|T | ≥ 2.31. In the
first data set we haveR = 0.995, which gives

T = 0.995

√
8

1 − 0.9952
= 28.1

and we rejectH0. In the second data set we haveR = −0.14, which gives

T =
8 × (−0.14)√
1 − (−0.14)2

= −0.40

and we cannot rejectH0. The negative correlation for the short time period is not
significant.

If we wish to testρ = ρ0 for someρ0 6= 0, we cannot useT . Also, if we wish to find
a confidence interval forρ, we cannot useT , either. The problem withT is that it
does not include the unknown parameterρ, which would be necessary for both these
tasks. In these cases an approximation can be used, as described in Problem 53.

7.6.4 Spearman’s Correlation Coefficient

If data cannot be assumed to be normal, which is often the casewith market data
such as the above, there is an alternative approach calledSpearman’s correlation
coefficient10 based on ranks similar to the methods in Section 6.9. The ideais quite
simple as in many nonparametric procedures.

10Named after the English psychologist Charles Spearman (1863–1945).
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Definition 7.6.2. If (X1, Y2), ..., (Xn, Yn) is a sample from a bivariate distri-
bution, we defineSpearman’s correlation coefficientas

RS =

n∑

k=1

(rk − r̄)(sk − s̄)

√√√√
n∑

k=1

(rk − r̄)2
n∑

k=1

(sk − s̄)2

=
Srs√
SrrSss

whererk is the rank ofXk amongX1, . . . , Xn andsk is the rank ofYk among
Y1, . . . , Yn.

If there are no ties in the data, the formula in Definition 7.6.2 can be simplified quite
considerably.

Proposition 7.6.11. If there are no ties, Spearman’s correlation coefficient can
be expressed as

RS = 1 − 6

n(n2 − 1)

n∑

k=1

(rk − sk)2

Hence, what you do is rank theX andY observations separately, sum the squared
differences and use the formula in Proposition 7.6.11. It also turns out that it is possible
to test the hypothesisH0 : ρ = 0 using the same test statistic andt distribution as
above, only that the result is approximate

T = RS

√
n − 2

1 − R2
S

d≈ tn−2

for largen.

Example7.6.8. Let us return to Example 7.6.6 and calculate Spearman’s correlation
coefficient for the two data sets. When ranking the two sets ofobservations from the
period 1971–2003, we get that

Dow: 887 833 821 961 1259 2176 2820 3442 7289 10715
Rank: 3 2 1 4 5 6 7 8 9 10

Nasdaq: 108 86 74 95 283 352 430 696 1228 2028
Rank: 4 2 1 3 5 6 7 8 9 10
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Since the ranks only differ in two positions and by only one unit, we get the sum of
squared differences

∑
k(rk − sk)2 = 2 and the correlation coefficient

RS = 1 − 6

10 × 99
× 2 = 0.988

which is quite close to the previous result.
When looking at the data from 1971, we discover several ties for the Nasdaq data

set and have to use midranks.

Dow: 941 947 889 874 850 908 888 798 829 873
Rank: 9 10 7 5 3 8 6 1 2 4

Nasdaq: 104 104 114 110 105 110 108 106 109 105
Rank: 1.5 1.5 10 8.5 3.5 8.5 6 5 7 3.5

Unfortunately, this means that the formula in Proposition 7.6.11 does not yield an
accurate value, so here we have to use the more complicated one in Definition 7.6.2.
After some standard calculations we reach the resultRS = −0.17, which is also quite
close to the previous estimate.

7.7 THE GENERAL LINEAR MODEL

When comparing the one-way ANOVA model of Section 7.5 with the simple linear
regression model of Section 7.6 we notice some common features. In both cases,
observations are assumed to be normally distributed randomvariables where the
means are described by deterministic parametric linear functions. Any model that
satisfies these requirements is called aGeneral Linear Model11, or GLM for short,
which is really a large class of models with tremendous importance in many statistical
applications. We will not expand this rich field here but rather offer a brief outline to
give some feeling for the kind of problems addressed and methods used.

We begin with the formal definition, which is most conveniently expressed in ma-
trix notation.

Definition 7.7.1. Let Y be an × 1 vector of random variables,X a n × k
matrix with known entries,β ak×1 parameter vector andǫ ∼ Nn(0, Σ). The
General Linear Model satisfies

Y = Xβ + ǫ

11Not to be confused with the even larger classGeneralized Linear Model, usually abbreviated GLIM,
also covering other distributions like the binomial and Poisson distributions.
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The matrixX is usually called thedesign matrix, because it defines the design of the
model, i.e. how the unknown parameters inβ are linked to the observed values inY.

Using standard linear algebra, the GLM can also be expressed

Yi =

k−1∑

j=0

xijβj + ǫi i = 1, . . . , n (7.7.1)

whereYi, βj andǫi are the components of the vectorsY, β andǫ, respectively, and
xij are the entries of the matrixX . Note that the vectorβ and the columns ofX are
indexed from 0 tok − 1, a common standard which will be motivated below.

In the most general form, the multivariate structure of the random error vector
ǫ makes it possible to have different variances and dependenterrors, but it is quite
common to assume that the covariance matrix can be writtenΣ = σ2In, whereIn is
the identity matrix with ones in the diagonal and zeros in allother positions. This will
give us a model with independent errors and constant variance. Another common
requirement is that the first column of the design matrixX should consist of ones,
i.e.xi0 = 1 in (7.7.1), which is mainly a technical condition that will guarantee that
parameter estimates are unique. The consequence is that alllinear models get an
intercept parameterβ0.

Example7.7.1. (Linear Regression) It is quite easy to see that the simple linear
regression model (7.6.1) of Section 7.6 fits into this framework. Letk = 2 and

X =




1 x1

1 x2

...
...

1 xn


 β =

(
a
b

)

It is also quite straightforward to generalize this into theMultiple Linear Regression
model

Yi = β0 + β1xi1 + β2xi2 + . . . + βk−1xi,k−1 + ǫi i = 1, . . . , n

using

X =




1 x11 x12 · · · x1,k−1

1 x21 x22 · · · x2,k−1

...
...

...
. . .

...
1 xn1 xn2 · · · xn,k−1


 β =




β0

β1

...
βk−1



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Example7.7.2. (One-way Analysis of Variance) To see that the one-way ANOVA
is a linear model requires a bit more work. Recall from Section 7.5.1 thatXij ∼
N(µi, σ

2), which can be expressed

Xij = µi + ǫij i = 1, . . . , k j = 1, . . . , n

whereǫij ∼ N(0, σ2) are independent. This almost fits into the form of (7.7.1),
except that we have two indices and no intercept term.

First of all, we have to reorganize the observationsXij and the error terms in the
vectors

Y = (X11, X12, . . . , X1n, X21, X22, . . . , X2n, X31, . . . , Xkn)′

ǫ = (ǫ11, ǫ12, . . . , ǫ1n, ǫ21, ǫ22, . . . , ǫ2n, ǫ31, . . . , ǫkn)′

whereM ′ means the transpose of the matrixM .
Next, we reparametrize the group meansµi as

µi = µ + αi i = 1, . . . , k

so that we get an interceptβ0 = µ. Unfortunately, this adds an additional parameter
to the model, so some kind of restriction is necessary. In standard ANOVA, it is
common to require that

∑k
i=1 αi = 0. This means that whenα1, . . . , αk−1 have

been determined, thenαk = −∑k−1
i=1 αi showing that the number of parameters is

still k. Another alternative is to set one of theαi to zero (most commonlyα1 = 0 or
αk = 0), which gives an equivalent model, but we will not consider this case here.

In order to define the design matrix we need to introduce so calleddummy variables

xi1 = 1, i = 1, . . . , n

xi2 = 1, i = n + 1, . . . , 2n

xi,k−1 = 1, i = (k − 2)n + 1, . . . , (k − 1)n

xij = −1, i = (k − 1)n + 1, . . . , kn j = 1, . . . , k − 1

If we let 0 and1 denote then× 1 vectors consisting of zeros and ones, respectively,
we can express the design matrix and parameter vector as

X =




1 1 0 · · · 0 0

1 0 1 · · · 0 0
...

...
...

. . .
...

...
1 0 0 · · · 0 1

1 −1 −1 · · · −1 −1




β =




µ
α1

α2

...
αk−1



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If k = n we would have a square design matrixX and we could get estimates ofβ

as the solution to the linear matrix equation

Y = Xβ (7.7.2)

which, if the inverse ofX exists, can be writtenβ = X−1Y. In practical applications,
it is common to have more observations than unknown parameters (often much more),
i.e. k < n. In that case, we can reduce the dimensionality of (7.7.2) bymultiplying
with X ′ from the left to get

X ′Y = X ′Xβ

If the inverse of thek×k-matrixX ′X exists, we get the solutionβ = (X ′X)−1X ′Y.
In fact, we get the following important result.

Proposition 7.7.1. Assume that(X ′X)−1 exists in a GLM. Then

β̂ = (X ′X)−1X ′Y

is a unique MLE ofβ. It also holds that

β̂ ∼ Nk(β, (X ′X)−1X ′ΣX(X ′X)−1) (7.7.3)

If we consider the special case whereΣ = σ2In, we can simplify the covariance
matrix in (7.7.3) as

(X ′X)−1X ′(σ2In)X(X ′X)−1 = σ2(X ′X)−1X ′X(X ′X)−1 = σ2(X ′X)−1

Then it is possible to show that

s2 =
1

n − k
||Y − Xβ̂|| =

1

n − k

n∑

i=1


Yi −

k−1∑

j=0

xij β̂j




2

is an unbiased estimator ofσ2 such that

(n − k)s2

σ2
∼ χ2

n−k

As a consequence of this, it follows that

β̂j − βj

s

σ

√
Var(β̂j)

=
β̂j − βj

s
√

zjj
∼ tn−k j = 1, . . . , k
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wherezjj are the diagonal elements in the matrixZ = (X ′X)−1.

Example7.7.3. (Two-way Analysis of Variance) Let us end this section by indicating
how the theory of GLM can be used to handle higher order ANOVA models. We will
only consider the two-way ANOVA here. It should be quite clear how this can be
generalized to higher dimensions.

The two-way ANOVA can be written

Xijk ∼ (µij , σ
2) i = 1, . . . , a j = 1, . . . , b k = 1, . . . , n

or in alternative form

Xijk = µ + αi + βj + γij + ǫijk i = 1, . . . , a j = 1, . . . , b k = 1, . . . , n

whereǫijk ∼ N(0, σ2) are independent error terms. The parametersαi andβj are
calledmain effectsandγij are calledinteraction effects. As before, we need some
additional conditions to reduce the number of parameters

a∑

i=1

αi = 0

b∑

j=1

βj = 0

a∑

i=1

γij = 0

b∑

j=1

γij = 0

This implies that the parameter vector can be written

β = (µ, α1, . . . , αa−1, β1, . . . , βb−1, γ11, . . . , γ1,b−1, γ21, . . . , γa−1,b−1)
′

The design matrix becomes quite messy, so we will not attemptto give a detailed
description of it here. It will be a(abn) × (ab) matrix, which can be built up by
introducing dummy variables much in the same way as in Example 7.7.2. In this
particular case, it is possible to express the parameter estimators analytically as

µ̂ = X̄

α̂i = X̄i·· − X̄ i = 1, . . . , a − 1

β̂j = X̄·j· − X̄ j = 1, . . . , b − 1

γ̂ij = X̄ij· − X̄i·· − X̄·j· + X̄ i = 1, . . . , a − 1 j = 1, . . . , b − 1

where we use the convenient notation introduced in Section 7.5 where the dots indicate
for which indices the average is taken.
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PROBLEMS

Section 7.2. Sampling Distributions

1 Let X ∼ χ2
r andY ∼ χ2

s be independent. Show thatX + Y ∼ χ2
r+s.

2 Let X ∼ χ2
r. Show thatX ∼ Γ( r

2
, 1

2
).

3 Find the mean and variance in theχ2
r distribution. Also find the approximate distribution

for larger. Hint: Use the previous problem and Section 2.8.2.

4 Let X ∼ Fr,s. Show thatX−1 ∼ Fs,r.

5 Find the mean (fors > 2) and variance (fors > 4) in theF distribution. Hint: Use
Proposition 7.2.2 andΓ(x + 1) = xΓ(x).

6 Find the mean (forr > 1) and variance (forr > 2) in thet distribution.

7 Let X ∼ t1. Show thatX is Cauchy distributed.

8 Maxwell-Boltzmann distribution.The velocityV of a particle in an ideal gas can be
represented as

V =
√

V 2
x + V 2

y + V 2
z

whereVx, Vy andVz are the velocity components in a three dimensional coordinate
system. They are assumed to be independent and normally distributed with mean 0 and
varianceσ2 = kT/m, whereT is temperature,m is the mass of particles andk is the
Boltzmann constant (k = 1.381 × 10−23). Derive the pdf ofv. Hint: Use Proposition
2.3.7.

Section 7.3. Single Sample Inference

9 Below are seven measurements of the ozone level (in ppm) taken at an environmen-
tal measuring station. Suppose that these have a normal distribution and find a95%
symmetric confidence interval for the meanµ.

0.06, 0.07, 0.08, 0.11, 0.12, 0.14, 0.21

10 letX1, ..., Xn be a sample from a normal distribution with known meanµ and unknown
varianceσ2. Use Proposition 7.2.1 to show that a100q% symmetric confidence interval
for σ2 can be based on̂σ2 from Section 6.2.1 and is given by

nσ̂2/x2 ≤ σ2 ≤ nσ̂2/x1 (q)

whereFχ2
n
(x1) = (1 − q)/2 andFχ2

n
(x2) = 1 − (1 − q)/2.

11 Below are measurement errors from an unbiased scale (µ = 0). Use the previous
problem to find a95% symmetric confidence interval for its standard deviation.

−0.08, −0.05, −0.02, 0.01, 0.02, 0.06, 0.07

12 An IQ test is being constructed, and it is desirable that the standard deviation is15 (the
mean is unknown). To assess this, the test was given to30 randomly selected people
and the sample variance came out to bes2 = 340. Find symmetric confidence intervals
for σ with confidence levels0.90 and0.95. Conclusions?
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13 Consider the symmetric confidence interval forµ in the normal distribution,µ = X̄ ±
ts/

√
n. How should we choosen in order to limit the length of the confidence interval

to ǫσ with probability q or greater? Express in terms of the cdf of the chi-square
distribution.

14 Lets2 be the sample variance and letY be a random variable that has aχ2
n−1 distribution.

Show that(a) E[s] = σE[
√

Y ]/
√

n − 1, (b) E[s4] = σ4E[Y 2]/(n − 1)2. (c) In (b),
it can be shown thatE[Y 2] = (n − 1)(n + 1). Use this to find the variance ofs2 and
show thats2 is consistent (see Definition 6.2.4).

15 A company producing soda cans test whether their cans contain the intended12 ounces.
The contents of100 cans are measured, the sample mean is12.1, and the sample variance
0.96. State the relevant hypotheses and test on the5% level if the mean is12.

16 The depth of a lake at a particular point is claimed to be more than100 m. To test this,
the depth is measured repeatedly, where it is known that measurement errors have a
normal distribution. On the basis of the following measurements, test on the5% level
whether the depth is more than100 m:

99, 101, 102, 102, 103, 103, 103

17 An electronic scale is known to give a measurement error, andto test whether it is
unbiased, a100 g weight was weighed repeatedly and the following data obtained. Test
on the5% level if the scale is unbiased (i.e., if the mean is0).

−1.05, −0.55, −0.01, 2.55, 3.72

18 An environmental measuring station measures ozone levels in the air. The level is con-
sidered unhealthy if it is over0.30 (ppm) and to decide, the following five observations
were gathered. Assume a normal distribution, state the appropriate null and alternative
hypotheses (one- or two-sided?) and test on level5%:

0.32, 0.35, 0.38, 0.41, 0.48

19 The vendor of a particular herbal supplement claims that it will increase your IQ. To
test the claim, the supplement was given to10 people. Before, the sample mean was
100 and after, it was103. “I told you so!” says the vendor but test his claim on the5%
level if you are also given the sample variance of the differences, which was318.

20 A test facility reports that they have found that a measurement device gives values
that tend to be too large. The measurement errors had a samplemean of0.5 and a
sample variance of4. How large must their sample size have been in order to draw the
conclusion in a two-sided test on the5% level?

21 LetX1, ..., Xn be a sample from a normal distribution with known meanµ and unknown
varianceσ2. Describe how to use estimators ofσ2 and the chi-square distribution to
construct tests of the null hypothesisH0 : σ2 = σ2

0 for fixedσ2
0 .

22 The following data are from a normal distribution where it isdesirable that the variance
is at most1. Do the following data cause concern that the variance is toolarge? Test
on the5% level.

−3.7, −1.5, −0.6, −0.4,−0.3, 1.0, 2.0

23 An electronic scale gives measurement errors that are normal with mean0. The scale
needs to be adjusted if the standard deviation exceeds one milligram. The following
data are deviations in milligrams obtained by weighing an object of known weight6
times. Do the data warrant an adjustment? Test on the5% level.

−0.40, −0.28, −0.27,−0.16, 0.05, 0.22
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24 An IQ test is constructed and the desired standard deviationis 15. The following data
are10 measured IQ scores. Test on the5% level if the standard deviation is out of
bounds.

75, 76, 87, 90, 97, 104, 106, 107, 111, 127

Section 7.4. Comparing Two Samples

25 Common sea-buckthorn berries are particularly rich in vitamin E. Two genetically dif-
ferent types of plants were evaluated in an experiment whereseven plants of typeA and
five plants of typeB were cultivated. The vitamin E content (inµg/g dry weight) of the
ripe berries were measured.

TypeA: 416, 492, 444, 404, 325, 286 403

TypeB: 279, 352, 320, 385, 315

Assume that the samples are normally distributed with equalvariances and carry out a
hypothesis test on the 10% level to see if the mean vitamin E content differ between the
two types.

26 To investigate whether caffeine effects cholesterol levels, five patients had their choles-
terol levels measured before and after taking doses of caffeine. Find a symmetric95%
confidence interval for the difference in cholesterol levelbased on the following data:

Before:162, 168, 197, 202, 225

After: 179, 170, 196, 188, 210

27 A chemist wants to see how much an industry contributes to pollution in a nearby
river. She collects 10 samples upstream and 15 samples downstream on 25 different and
randomly chosen days during a three month period and measures the content of a certain
pollutant. The sample mean and standard deviation were 13.2and 2.8, respectively, for
the upstream samples and 86.1 and 38.7, respectively, for the downstream samples.
Assume that the samples are normally distributed and calculate a 95 % confidence
interval for the difference in mean pollution downstream and upstream.

28 A water laboratory need new pH meters and considers two different brands. Therefore,
they acquire six meters each from the manufacturers for evaluation and use them to
measure the pH in a neutral solution known to have pH level 7. The sample standard
deviations of each brand were 0.078 and 0.029, respectively. Is this evidence enough to
claim that one brand has significantly lower measurement error than the other? What
assumptions do you need to make?

29 A type of rectangular metal plate has sidesX and Y that are normally distributed
with the same variance and meansµ1 andµ2, respectively. Find a95% symmetric
confidence interval for the circumference2µ1 + 2µ2 of a plate, based on the following
two independent samples:

X : 87, 90, 97, 102, 108, 110

Y : 133, 147, 148, 154

30 If we have two independent samples of the same sizen and with the same variance,
the standard confidence interval for the difference betweenthe means is based on the
estimatorȲ − X̄ of µ2 − µ1. However, we could also pair the observations, compute
the differencesD1, ..., Dn, and base the confidence interval onD̄ = Ȳ − X̄. Which
do you think is better and why?
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31 Consider two independent samplesX1, ..., Xn andY1, ..., Ym that have the same un-
known varianceσ2. Let s2

1 ands2
2 be the respective sample variances.(a) Prove that

the pooled sample variance from Definition 7.4.1 is an unbiased estimator ofσ2. (b)
Prove that any linear combination of the types2

a = as2
1 + (1− a)s2

2 where0 ≤ a ≤ 1
is an unbiased estimator ofσ2. (c) Prove that the variance ofs2

a is minimized for
a = (n − 1)/(n + m − 2) and thus that the pooled sample variance has a smaller
variance than does any other linear combination ofs2

1 ands2
2. Hint: By Problem 14 (c),

Var[s2
1] = 2σ4/(n − 1) and Var[s2

2] = 2σ4/(m − 1).

32 In 1908, W. S. Gosset conducted a famous experiment to determine whether kiln-dried
seed would give larger corn yield than would regular seed. Eleven plots were split in
half and planted with regular seed on one side and kiln-driedseed on the other. (Why is
this better than simply planting regular seed in one big plotand kiln-dried in another?)
This gave the following11 pairs of yields in pounds per acre:

Regular: 1903, 1935, 1910, 2496, 2108, 1961, 2060, 1444, 1612, 1316, 1511

Kiln-dried: 2009, 1915, 2011, 2463, 2180, 1925, 2122, 1482, 1542, 1443, 1535

which we assume are normally distributed. State the appropriate hypotheses and test
on the5% level.

33 Let us say that you want to test if the means in two independentand normal samples
are equal and you are uncertain whether the variances are equal. Then, it may seem like
a good idea to first carry out a hypothesis test to see if the variances are equal. If you
acceptH0, you carry out the test in Proposition 7.4.4, and if you reject H0, you use
Proposition 7.4.6 instead. What is the problem with this procedure?

Section 7.5. Analysis of Variance

34 A biologist wanted to examine the impact of alcohol on sleep patterns. A total of 20
mice were randomly assigned to four equally large treatmentgroups and injected with
a certain concentration of ethanol per body weight. The length of the REM sleep was
then measured during a 24 hour period. The result was as follows.

Treatment REM sleep Mean Variance

0 (control) 89 73 91 68 75 79.2 104.2
1 g/kg 63 54 69 50 72 61.6 89.3
2 g/kg 45 60 40 56 39 48.0 90.5
3 g/kg 31 40 45 25 23 32.8 90.2

(a) Carry out an ANOVA on the 5% level to see if alcohol consumption affects REM
sleep. (b) Calculate pairwise confidence intervals for the differencein means. What
groups are significantly different?(c) Carry out a Kruskal-Wallis test. Does the con-
clusion differ from (a)?

35 Consider an ANOVA withk = 2 and arbitraryn. Show that this is equivalent to the
two-samplet-test with equal variances.

36 Unbalanced ANOVA.Let us assume that thek treatment groups in a one-way ANOVA
are of different sizesn1, . . . , nk. Modify the balanced ANOVA and derive expressions
for the sum of squares, mean squares, degrees of freedom andF test.
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37 Show thatE[s2
B ] > σ2 if µi1 6= µi2 for somei1 andi2.

38 Use
n∑

k=1

k =
n(n + 1)

2
and

n∑

k=1

k2 =
n(2n + 1)(n + 1)

6
(7.7.4)

to derive equation (7.5.4) if there are no ties in Kruskal-Wallis test.

Section 7.6. Linear Regression

39 Verify the estimators ofaandb in Proposition 7.6.1 and compute the means and variances
of â andb̂.

40 Show thatȲ and̂b are uncorrelated (Problem 101 in Chapter 3). Are they independent?

41 Find95% symmetric confidence intervals fora andb based on the Old Faithful data in
Example 7.6.3. Compare with the “ranger formula”y = 13x + 30.

42 Test the hypothesis thata = 0 in Hubble’s galaxy data, on significance level0.01.

43 Consider the linear regression model without the interceptterm, that is,Y = bx + ǫ.
(a) Find the MLEb̂ of b and compute its mean and variance.(b) Suggest an estimator
of σ2 and a confidence interval forb. (c) Again consider Hubble’s galaxy data. Argue
why the modelY = bx + ǫ is reasonable there, computeb̂, a95% confidence interval
for b, and compare with the estimate obtained in Examples 7.6.1 and 7.6.2.

44 Consider the linear regression modelY = a + bx + ǫ. (a) Suppose thata is known.
Find the MLE ofb. (b) Suppose thatb is known. Find the MLE ofa. (c) Compute the
preceding estimates for the Old Faithful data in Example 7.6.3 using the rangers’ values
of a andb, respectively. Compare with the estimates in the example.

45 A cell culture is growing in such a way that the total mass at time t can be ideally
described by the equationy = aebt, wherea andb are constants. Because of random
fluctuations, the real relationship isY = aebtL, whereL is a random variable that has
a lognormal distribution withµ = 0 andσ2 = 1 (see Section 2.8.1). Find estimators
and95% confidence intervals fora andb based on the following data, obtained from
five different cultures, weighed at different times.

Time: 1, 3, 7, 8, 10

Weight: 1.43, 0.51, 4.57, 5.93, 1.73

46 Below are the winning times in men’s 10,000-m track in the Olympic Games between
the years1952 and2004. Times are in decimal form, so, for example,28.4 = 28
minutes and24 seconds. Let the years be thex values and the times they values.(a)
Find the estimated regression line and the predicted winning time in the Olympic year
2668. (b) Is it reasonable to assume a linear relationship?

29.3, 28.8, 28.5, 28.4, 29.4, 27.6, 27.7, 27.7, 27.8, 27.4, 27.8, 27.1, 27.3, 27.1

47 Again consider the Old Faithful data in Example 7.6.3. Compute a95% prediction
interval for the timeY until the next eruption if the most recent eruption was10 minutes.
Compare with the interval in Example 7.6.4. Which is longer,and why?

48 Show that a confidence interval fora + bx, the expected value ofY if x has been
observed, is obtained by removing the “1” under the square root in the expression for
the prediction interval in Corollary 7.6.8.
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49 Consider the following residual plots. What do they suggestabout the true relation
betweenx andY ?

0 0 0 

(a) (b) (c)

50 Consider the linear regression model. Describe how to find a symmetric100q% con-
fidence interval forσ based on Proposition 7.6.6. What does this give for Hubble’s
galaxy data in Example 7.6.1, ifq = 0.95?

51 The following is a data set of10 closing prices for the Dow and Nasdaq indices, chosen
at random from the year2000. Compute the sample correlation coefficientR and test
if ρ = 0. Look up the behavior of the two indices during the year2000 and explain the
value ofR in the light of this.

Dow: 10, 092, 11, 112, 10, 621, 10, 714, 10, 504, 10, 783, 10, 908, 10, 681
10, 707, 10, 399

Nasdaq:4321, 4897, 3205, 3400, 3767, 3858, 3842, 3333, 3429, 3200

52 Compute Spearman’s correlation coefficientRS for the data in the previous problem
and test ifρ = 0. Do the results differ?

53 Let ρ be the correlation coefficient andR the sample correlation coefficient in a sample
from a bivariate normal distribution, and let

L = log
(

1 + R

1 − R

)

It can be shown that the following approximation holds:

L
d≈ N

(
log

(
1 + ρ

1 − ρ

)
,

4

n − 3

)

Use this to find an approximate confidence interval forρ. Apply this to find the observed
95% confidence interval for the stock market data in Problem 51.

54 Consider Gosset’s corn yield data from Problem 32. Use the statisticL in Problem 53
to test whether the correlation between yields is greater than0.9. Test on the5% level.

55 To test the null hypothesisH0 : ρ = 0 about the correlation coefficient, we can use
either the test statisticT from Proposition 7.6.9 or the test statisticL from Problem 53.
However, only one of them can be used for power calculations.Which one, and why?

56 Use (7.7.4) to derive Proposition 7.6.11 if there are no ties.

Section 7.7.The General Linear Model

57 In the multiple regression modelYi = β0+β1xi1+β2xi2+ǫi for i = 1, . . . , 25, where
ǫ1, . . . , ǫ25 are i.i.d.N(0, σ2), we gotβ̂0 = 2.71, β̂1 = 10.20, β̂2 = 2.07, s2 = 0.180
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and the diagonal elementsz11 = 0.4, z22 = 0.5 andz33 = 0.02. Calculate two-sided
symmetric confidence intervals forβ0, β1 andβ2. Use Bonferroni correction to get
simultaneous confidence level at least 95 %.

58 Express the two-sample model in Section 7.4 as a general linear model both for the case
σ2

1 = σ2
2 = σ2 andσ2

1 6= σ2
2 .

59 Use Proposition 7.7.1 to verify Proposition 7.6.1.Hint: The inverse of a2 × 2-matrix
is (

a b
c d

)−1

=
1

ad − bc

(
d −b
−c a

)

60 Consider the two-way ANOVA in Example 7.7.3 and derive sum ofsquares SSA and
SSB for main effects, SSAB for interaction, SSE for error andSST for total.Hint: Use
SST= SSA+ SSB+ SSAB+ SSE.

61 It is perfectly fine to mix categorical components, like in anANOVA, with linear com-
ponents, like in a linear regression, into a general linear model. As a simple example,
considerXij = µ + αi + βxij + ǫij for i = 1, . . . , k and j = 1, . . . , n, where∑

i
αi = 0 and ǫ11, . . . , ǫkn are i.i.d N(0, σ2). Outline the design matrix in this

model.



8
Stochastic Processes

8.1 INTRODUCTION

Many real-world applications of probability theory have the particular feature that data
are collected sequentially in time. A few examples are weather data, stock market
indices, air-pollution data, demographic data, and political tracking polls. These also
have in common that successive observations are typically not independent. We refer
to any such collection of observations as astochastic process. Formally, a stochastic
process is a collection of random variables that take valuesin a setS, thestate space.
The collection is indexed by anothersetT , theindex set. The two most common index
sets are the natural numbersT = {0, 1, 2, ...}, and the nonnegative real numbers
T = [0,∞), which usually represent discrete time and continuous time, respectively.
The first index set thus gives a sequence of random variables{X0, X1, X2, ...} and
the second, a collection of random variables{X(t), t ≥ 0}, one random variable
for each timet. In general, the index set does not have to describe time but is also
commonly used to describe spatial location. The state spacecan be finite, countably
infinite, or uncountable, depending on the application.

In order to be able to analyze a stochastic process, we need tomake assumptions
on the dependence between the random variables. In this chapter, we will focus on
the most common dependence structure, the so calledMarkov property, and in the
next section we give a definition and several examples.

455
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8.2 DISCRETE -TIME MARKOV CHAINS

You are playing roulette, in each round betting$1 on odd. You start with$10 and
after each round record your new fortune. Suppose that the first five rounds gives the
sequence loss, loss, win, win, win, which gives the sequenceof fortunes

9, 8, 9, 10, 11

and that you wish to find the distribution of your fortune after the next round, given
this information. Your fortune will be12 if you win, which has probability1838 , and10
if you lose, which has probability2038 . One thing we realize is that this depends only
on the fact that the current fortune is$11 and not the values prior to that. Generally,
if your fortunes in the firstn rounds are the random variablesX1, ..., Xn, then the
conditional distribution ofXn+1 givenX1, ..., Xn depends only onXn. This is a
fundamental property, and we state the following general definition.

Definition 8.2.1. Let X0, X1, X2, ... be a sequence of discrete random vari-
ables, taking values in some setS and that are such that

P (Xn+1 = j|X0 = i0, ..., Xn−1 = in−1, Xn = i) = P (Xn+1 = j|Xn = i)

for all i, j, i0, ..., in−1 in S and alln. The sequence{Xn} is then called a
Markov chain.

We often think of the indexn as discrete time and say thatXn is thestateof the chain
at timen, where the state spaceS may be finite or countably infinite. The defining
property is called theMarkov property, which can be stated in words as “conditioned
on the present, the future is independent of the past.”

In general, the probabilityP (Xn+1 = j|Xn = i) depends oni, j, andn. It is,
however, often the case (as in our roulette example) that there is no dependence on
n. We call such chainstime-homogeneousand restrict our attention to these chains.
Since the conditional probability in the definition thus depends only oni andj, we
use the notation

pij = P (Xn+1 = j|Xn = i), i, j ∈ S

and call these thetransition probabilitiesof the Markov chain. Thus, if the chain is
in statei, the probabilitiespij describe how the chain chooses which state to jump to
next. Obviously the transition probabilities have to satisfy the following two criteria:

(a) pij ≥ 0, for all i, j ∈ S, (b)
∑

j∈S

pij = 1, for all i ∈ S

Example8.2.1. In the roulette example above, the state space is

S = {0, 1, ...}
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and if the chain is in statei ≥ 1, it can jump to eitheri − 1 or i + 1 according to the
transition probabilities

pi,i−1 =
20

38
and pi,i+1 =

18

38

Wheni = 0, this means that you are ruined and cannot play anymore. Thus, you
can jump to0 but not from it. It is customary to describe this by lettingp00 = 1,
thus imagining that the chain performs an eternal sequence of jumps from0 to itself.
The diagram below shows a way to describe a Markov chain as a graph, which we
refer to as thetransition graph. The arrows show the possible transitions and their
corresponding probabilities. Note that the sum of the numbers on the arrows going
out from each state is1. This is criterion (b) above.

18/3818/38
1

20/3820/3820/38

0 21 ...

Example8.2.2. A certain gene in a plant has two alleles,A anda (see Section 1.6.2).
Thus, its genotype with respect to this gene can beAA, Aa, oraa. Now suppose that
a plant is crossed with itself and one offspring selected that is crossed with itself and
so on and so forth. Describe the sequence of genotypes as a Markov chain.

The state space isS = {AA, Aa, aa}, which also shows that states do not have to
be numbers.1 The Markov property is clear, since the offspring’s genotype depends
only on the parent plant, not the grandparent. Clearly, genotypesAA andaa can have
only themselves as offspring and for the typeAa, we recall the Punnett square from
Section 1.6.2 to get the following transition graph.

1 1/2 1
1/4

1/4

AaAA aa

1The picky probabilist then refers to theXk asrandom objectsrather than random variables. If we wish,
we can rename the states{1, 2, 3} instead, where the numbers have no role other than serving aslabels.
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It is convenient to summarize the transition probabilitiesin the transition matrixP ,
which haspij as its(i, j)th entry. Depending on the state space, the transition matrix
may be finite or infinite. Thus, in the genetics example we have

P =




1 0 0
1/4 1/2 1/4
0 0 1




and in the roulette example the infinite matrix

P =




1 0 0 0 0 . . .
20/38 0 18/38 0 0 . . .

0 20/38 0 18/38 0 . . .
...

...
...

...
...

. . .




8.2.1 Time Dynamics of a Markov Chain

The most fundamental aspect of a Markov chain in which we are interested is how
it develops over time. The transition matrix provides us with a description of the
stepwise behavior, but suppose that we want to compute the distribution of the chain
two steps ahead. Let

p
(2)
ij = P (X2 = j|X0 = i)

and condition on the intermediate stepX1. The law of total probability gives

p
(2)
ij =

∑

k∈S

P (X2 = j|X0 = i, X1 = k)P (X1 = k|X0 = i)

=
∑

k∈S

P (X2 = j|X1 = k)P (X1 = k|X0 = i) =
∑

k∈S

pikpkj

where we used the Markov property for the second-to-last equality. We switched the
order between the factors in the sum to get the intuitively appealing last expression;
in order to go fromi to j in two steps, we need to visitsomeintermediate stepk
and jump from there toj. Now recall how matrix multiplication works to help us
realize from the expression above thatp

(2)
ij is the(i, j)th entry in the matrixP 2. Thus,

in order to get the two-step transition probabilities, we square the transition matrix.
Generally, define then-step transition probabilitiesas

p
(n)
ij = P (Xn = j|X0 = i)

and letP (n) be then-step transition matrix. Repeating the argument above gives
P (n) = Pn, thenth power of the one-step transition matrix. In particular, this gives
the relation

P (n+m) = P (n)P (m)
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for all m, n, commonly referred to as thehapman–Kolmogorov equationsChapman–
Kolmogorov equations. Spelled out coordinatewise, they become

p
(n+m)
ij =

∑

k∈S

p
(n)
ik p

(m)
kj

for all m, n and alli, j ∈ S. In words, to go fromi to j in n + m steps, we need to
visit some intermediate stepk aftern steps. We letP (0) = I, the identity matrix.

Example8.2.3. Find then-step transition matrix in the genetics example (Example
8.2.2).

The state space isS = {AA, Aa, aa}, and let us start withn = 2. We get

P (2) =




1 0 0
1/4 1/2 1/4
0 0 1






1 0 0
1/4 1/2 1/4
0 0 1




=




1 0 0
3/8 1/4 3/8
0 0 1




We now realize that0s and1s will remain in all powers ofP , that the middle entry
in P (n) is p

(n)
22 = (1

2 )n, and that by symmetryp(n)
21 = p

(n)
23 . This gives then-step

transition matrix

P (n) =




1 0 0
(1 − (1/2)n)/2 (1/2)n (1 − (1/2)n)/2

0 0 1




It is obvious without computations that the0s and1s remain unchanged; the types
AA andaa can have offspring only of their own type. Also note how the probability
to find the typeAa declines rapidly withn, indicating that eventually this genotype
will disappear. We will return to this aspect of the transition matrix.

It should be pointed out that computation ofP (n) is seldom this simple and may be
more or less impossible if the state space is large. Even for asmall state space, the
computation is not trivial, as the next example shows.

Example8.2.4. (ON/OFF System). Consider a system that alternates between the
two states0 (OFF) and1 (ON) and that is checked at discrete timepoints. If the system
isOFFat one timepoint, the probability that it has switched toONat the next timepoint
isp, and if it isON, the probability that it switches toOFFisq. (a)Describe the system
as a Markov chain.(b) Find then-step transition matrix.(c) Suppose thatp = 3

4 and
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q = 1
2 . If the system starts beingOFF, what is the probability that it isON at time

n = 3?

For (a), the transition graph is

0 1

q

p
1 − q1 − p

and the transition matrix

P =

(
1 − p p

q 1 − q

)

and computation of the powers ofP needed for (b) is facilitated by diagonalization
techniques from linear algebra. The eigenvalues ofP areλ1 = 1 andλ2 = 1− p− q
and it can be shown that

Pn =
1

p + q

(
q p
q p

)
+

λn
2

p + q

(
p −p
−q q

)

and you may verify that this satisfies the relationPn+1 = PnP . To find the answer
to (c), we needp(3)

01 , which is the(0, 1) entry inP (3). Thus, the probability that the
system isON at timen = 3, given that it starts beingOFF, is

p
(3)
01 =

p

p + q
+

−pλ3
2

p + q
=

3/4

5/4
+

−3/4 × (−1/4)3

5/4
≈ 0.61

One interesting aspect of a Markov chain is its long term behavior. As it turns out,
there are simple and elegant asymptotic results for Markov chains that makes this
easy to deal with. Before we get to those results, let us consider asymptotics in some
of our examples.

Example8.2.5. Recall the genetics example (Example 8.2.2). Find the limits of the
transition probabilities asn → ∞.

Then-step transition matrix is

P (n) =




1 0 0
(1 − (1/2)n)/2 (1/2)n (1 − (1/2)n)/2

0 0 1




and lettingn → ∞ gives the matrix

lim
n→∞

P (n) =




1 0 0
1/2 0 1/2
0 0 1



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Thus, if we start in stateAA or aa, we stay there, and if we start in stateAa, we
eventually end up in eitherAA or aa with equal probabilities.

Example8.2.6. Recall theON/OFFsystem in Example 8.2.4. Find the limits of the
transition probabilities asn → ∞.

Then-step transition matrix is

P (n) =
1

p + q

(
q p
q p

)
+

λn
2

p + q

(
p −p
−q q

)

and, sinceλ2 = 1− p− q and thus|λ2| < 1 (unlessp = q = 0 or p = q = 1), letting
n → ∞ gives the matrix

lim
n→∞

P (n) =
1

p + q

(
q p
q p

)

Note that the rows of this matrix are identical. Thus, at a late timepoint, the prob-
abilities that the system isOFFandON are approximatelyq/(p + q) andp/(p + q)
respectively, regardless of the initial state. Note that ifq > p, the probability to be
OFF is larger, which makes sense.

In the last example, the asymptotic probabilities do not depend on how the chain was
started, and we call the distribution(q/(p + q), p/(p + q)) on the state space{0, 1}
a limit distribution. Compare with the genetics example where no limit distribution
exists, since the asymptotic probabilities depend on the initial state. A question of
general interest is when a Markov chain has a limit distribution. To be able to answer
this, we need to introduce some criteria that enables us to classify Markov chains.

8.2.2 Classification of States

The graphic representation of a Markov chain illustrates inwhich ways states can
be reached from each other. In the roulette example, state1 can, for example, reach
state2 in one step and state3, in two steps. It can also reach state3 in four steps,
through the sequence2, 1, 2, 3, and so on. One important property of state1 is that it
can reach any other state. Compare this to state0 which cannot reach any other state.
Whether or not states can reach each other in this way is of fundamental importance
in the study of Markov chains, and we state the following definition.
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Definition 8.2.2. If p
(n)
ij > 0 for somen, we say that statej is accessiblefrom

statei, written i → j. If i → j andj → i, we say thati andj communicate
and write thisi ↔ j.

If j is accessible fromi, this means that it ispossibleto reachj from i but not that this
necessarily happens. In the roulette example,1 → 2 sincep12 > 0, but if the chain
starts in1, it may jump directly to0, and thus it will never be able to visit state2. In
this example, all nonzero states communicate with each other and0 communicates
only with itself.

In general, if we fix a statei in the state space of a Markov chain, we can find all
states that communicate withi and form thecommunicating classcontainingi. It is
easy to realize that not only doesi communicate with all states in this class but they all
communicate with each other. By convention, every state communicates with itself
(it can “reach itself in0 steps”) so every state belongs to a class. If you wish to be
more mathematical, the relation “↔” is an equivalence relation and thus divides the
state space into equivalence classes that are precisely thecommunicating classes. In
the roulette example, there are two classes

C0 = {0}, C1 = {1, 2, ...}

and in the genetics example, each state forms its own class and we thus have

C1 = {AA}, C2 = {Aa}, C3 = {aa}

In theON/OFFsystem, there is only one class, the entire state spaceS. In this chain,
all states communicate with each other, and it turns out thatthis is a desirable property.

Definition 8.2.3. If all states inS communicate with each other, the Markov
chain is said to beirreducible.

Another important property of Markov chains has to do with returns to a state. For
example, in the roulette example, if the chain starts in state 1, it may happen that
it never returns. Compare this with theON/OFFsystem where the chain eventually
returns to where it started (assuming thatp > 0 andq > 0). We next classify states
according to whether return is certain. We introduce the notationPi for the probabil-
ity distribution of the chain when the initial stateX0 is i.
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Definition 8.2.4. Consider a statei ∈ S and letτi be the number of steps it
takes for the chain to first visiti. Thus

τi = min{n ≥ 1 : Xn = i}

whereτi = ∞ if i is never visited. IfPi(τi < ∞) = 1, statei is said to be
recurrentand ifPi(τi < ∞) < 1, it is said to betransient.

A recurrent state thus has the property that if the chain starts in it, the time until it
returns is finite. For a transient state, there is a positive probability that the time until
return is infinite, meaning that the state is never revisited. This means that a recurrent
state is visited over and over but a transient state is eventually never revisited.

Now consider a transient statei and another statej such thati ↔ j. We will
argue thatj must also be transient. By the Markov property, every visit to j starts a
fresh Markov chain and sincei ↔ j, there is a positive probability to visiti before
coming back toj. We may think of this as repeated trials to reachi every time the
chain is inj, and since the success probability is positive, eventuallythere will be a
success. Ifj were recurrent, the chain would return toj infinitely many times and
the trial would also succeed infinitely many times. But this means that there would
be infinitely many visits toi, which is impossible sincei is transient. Hencej must
also be transient.

We have argued that transience (and hence also recurrence) is aclass property,
a property that is shared by all states in a communicating class. In particular, the
following holds.

Corollary 8.2.1. In an irreducible Markov chain, either all states are transient
or all states are recurrent.

This is convenient since we can classify the entire Markov chain as transient or re-
current by checking only one state. In the case of a finite state space, there is an easy
way to classify the transient and recurrent states.

Corollary 8.2.2. Suppose thatS is finite. A statei is transient if and only if
there is another statej such thati → j but j 6→ i.
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We omit the proof, referring instead to an intuitive argument. Every time the chain
visits a transient state, there is a chance that it will neverreturn again. In a finite state
space, the only way in which this can happen is if there is someother state that can
be reached but from where there is no path back. In an infinite state space, however,
there is enough room for states to be transient even if they all communicate with each
other. We also realize that if the state space is finite, thereis not enough room for all
states to be transient.

Corollary 8.2.3. If a Markov chain has finite state space, there is at least one
recurrent state.

Example8.2.7. Classify the states as recurrent/transient in theON/OFFsystem in
Example 8.2.4.

To avoid trivialities, we assume that bothp andq are strictly positive. Since the state
space is finite, we can use Corollary 8.2.2 and note that sincei andj communicate,
they must both be recurrent.

Example8.2.8. Classify the states as recurrent/transient in the rouletteexample (Ex-
ample 8.2.1).

Here we must use the general definition. Let us start with state 0, which is trivially
recurrent since if we start there, we are stuck there forever, that is,τ0 ≡ 1. As for state
1, if we start there and the first jump is to0, we never return to1, and thusτ1 = ∞
in this case. HenceP (τ1 < ∞) < 1 and state1 is transient. Since1 communicates
with the states2, 3, ..., they are all transient.

The recurrent state0 has the additional property that once the chain is there, it can
never leave.2 Such a state is calledabsorbing.

A transient statei is revisited a number of times, which has a geometric distribution
with success probabilityPi(τi = ∞) (where “success” means that the state is never
revisited). This means that the expected number of returns is 1/Pi(τi = ∞), which
is finite sincePi(τi = ∞) > 0. On the other hand, for a recurrent state the expected

2A quote fromHotel California is sometimes given at this point in the presentation, but we resist the
temptation.
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number of returns is infinite (since already theactualnumber is infinite). Now let

In =

{
1 if Xn = i
0 otherwise

and let

S =
∞∑

n=1

In

the total number of returns to statei. We get

Ei[S] =

∞∑

n=1

Ei[In] =

∞∑

n=1

Pi(Xn = i) =

∞∑

n=1

p
(n)
ii

which gives the following nice characterization of transience/recurrence.3

Proposition 8.2.4. Statei is

transient if
∞∑

n=1

p
(n)
ii < ∞

recurrent if
∞∑

n=1

p
(n)
ii = ∞

Since we have noted that it is often difficult to compute thep
(n)
ii , one may wonder

how useful the last result is. However, we do not need to compute the exact value of
the infinite sum, only determine whether it is convergent, and for this, it will suffice
if we have some idea of howp(n)

ii behaves asymptotically inn. We will later see
examples of this.

8.2.3 Stationary Distributions

Consider theON/OFFsystem and suppose that we choose the initial state according
to the probabilitiesν0 = P (X0 = 0), ν1 = P (X0 = 1) = 1 − ν0. The distribution
ν = (ν0, ν1) is called aninitial distribution and the probability distribution of the
first stateX1 is computed by conditioning onX0, which gives

P (X1 = j) = p0jν0 + p1jν1, j = 0, 1

3In the calculation, we interchanged summation and expectation, which is not always allowed when the
sum is infinite. However, it can be shown that it is justified ifthe summands are nonnegative as in this
case.
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or in matrix notation
(P (X1 = 0), P (X1 = 1)) = νP

Suppose in particular that we takeν0 = q/(p + q), ν1 = p/(p + q), the limit distri-
bution, as initial distribution. We then get

P (X1 = 0) = (1 − p)
q

p + q
+ q

p

p + q
=

q

p + q
= ν0

andP (X1 = 1) = ν1. In matrix notation,ν = νP , which means that the distribu-
tion does not change over time. This is an important observation, and we state the
following general definition.

Definition 8.2.5. Let P be the transition matrix of a Markov chain with state
spaceS. A probability distributionπ = (π1, π2, ...) onS satisfying

πP = π

is called astationary distributionof the chain.

The entries ofπ thus satisfy

πj =
∑

i∈S

pijπi, for all j ∈ S

and together with the condition ∑

i∈S

πi = 1

this determines the stationary distribution. The intuition behind the probabilityπj is
that it describes what proportion of time that is spent in statej in the long run. Other
terms areinvariant distributionandequilibrium distribution.

There are, however, some caveats: (1) a stationary distribution may not always
exist and (2) there may be more than one. The uniqueness problem goes away if
we make our usual assumption of irreducibility, an observation that we state without
proof.

Proposition 8.2.5. Consider an irreducible Markov chain. If a stationary
distribution exists, it is unique.
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This is helpful, but we can still not guarantee that a stationary distribution exists.
Things simplify if the state space is finite.

Proposition 8.2.6. If S is finite and the Markov chain is irreducible, a unique
stationary distributionπ exists.

Rather than giving the proof, we examine our examples to illustrate how to compute
the stationary distribution and what can go wrong if the chain is not irreducible.

Example8.2.9. Find the stationary distribution for theON/OFFsystem in Example
8.2.4.

Since the chain is finite and irreducible, the stationary distribution exists and is unique.
The equationπP = π becomes

(π0 π1)

(
1 − p p

q 1 − q

)
= (π0 π1)

from which we take the first equation

(1 − p)π0 + qπ1 = π0

which gives

π1 =
p

q
π0

The second equation is
pπ0 + (1 − q)π1 = π1

which also givesπ1 = (p/q)π0. To get a solution, we note thatπ0 + π1 = 1, which
gives

π0

(
1 +

p

q

)
= 1

which gives stationary distribution

π =

(
q

p + q
,

p

p + q

)

Note howπ0 > π1 if q > p. This makes sense since if the chain is more likely to
jump from1 to 0 than the other way, in the long run it spends more time in0.
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Note how the two equations forπ0 andπ1 in the example turned out to be the same.
In general, if the state space hasr states, the equationπP = π gives at mostr − 1
linearly independent equations, and in addition to these, we also have the equation∑

j∈S πj = 1. Recalling results from linear algebra, this means that there always
exists a solution to this system of equations, but unless thechain is irreducible, there
may be more than one solution.

Example8.2.10. Find the stationary distribution in the genetics example (Example
8.2.2).

The chain is not irreducible, but let us still attempt to find the stationary distribution.
The states areAA, Aa, andaa, and the equationπP = π becomes

(πAA πAa πaa)




1 0 0

1/4 1/2 1/4
0 0 1



 = (πAA πAa πaa)

from which we get the first equation

πAA +
1

4
πAa = πAA

which givesπAa = 0. Knowing this, the second equation gives only0 = 0, and the
third givesπaa = πaa. Thus, any distribution of the form

π = (α, 0, 1 − α)

where0 ≤ α ≤ 1 qualifies as a stationary distribution. The evolution of thechain is
simple; we choose eitherAA or aa, according toπ, and whatever state we choose
stays forever. Thus, we get the sequenceAA, AA, ... with probabilityα andaa, aa, ...
with probability1−α. Perhaps not very exciting, but a good illustration of what can
happen without irreducibility.

Things are a little more complicated if the state space is infinite. Consider, for exam-
ple, the following variant of Example 1.6.17.

Example8.2.11. Recall the gambler’s ruin problem in Example 1.6.17, where Ann
starts with one dollar and Bob is infinitely wealthy. Also suppose that Ann has an
infinitely wealthy and benevolent uncle who gives her a dollar to bet every time she
goes broke. Describe the Markov chain and find the stationarydistribution.

The state space of Ann’s possible fortune isS = {0, 1, 2, ...}. If i ≥ 1, the possible
transitions are to statesi − 1 andi + 1 and in state0, Ann either wins and pays back
her uncle’s dollar or loses her uncle’s dollar, stays in0, and borrows another dollar.
The transition graph is
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1/21/21/2

1/2
1/2

1/2 1/2

...0 21

and the transition matrix is

P =




1/2 1/2 0 0 0 . . .
1/2 0 1/2 0 0 . . .
0 1/2 0 1/2 0 . . .
...

...
...

...
...

. . .




The equationπP = π now gives the first equation

1

2
π0 +

1

2
π1 = π0

which givesπ1 = π0. The second equation is

1

2
π0 +

1

2
π2 = π1

which givesπ2 = 2π1 − π0 = π0. The remaining equations all look the same:

1

2
πn−2 +

1

2
πn = πn−1, n ≥ 3

which givesπn = 2πn−1 − πn−2 = π0. Thus, a stationary distribution must be of
the form

π = (π0, π0, π0, ...)

which is obviously a problem since we cannot sum these probabilities to1. If π0 = 0,
the sum is 0, and ifπ0 > 0, the sum is infinite. We conclude thatno stationary
distribution exists.

The technique used in this example to express all theπn in terms ofπ0 is the standard
way to try to find a stationary distribution. In this case it turned out to be impossible
since theπn did not sum to one.

Example8.2.12. Reconsider the previous problem under the assumption that Bob
has an edge in the game, so that in each round Ann wins with probability p < 1

2 .

The transition graph is now
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1 − p1 − p1 − p

1 − p
ppp

...0 21

and the transition matrix

P =




1 − p p 0 0 0 ...
1 − p 0 p 0 0 ...

0 1 − p 0 p 0 ...
...

...
...

...
...

. . .




The equationπP = π gives

(1 − p)π0 + (1 − p)π1 = π0

which gives

π1 =
p

1 − p
π0

The next equation is
pπ0 + (1 − p)π2 = π1

which gives

π2 =
1

1 − p
(π1 − pπ0) =

(
p

1 − p

)2

π0

The remaining equations are

pπn−2 + (1 − p)πn = πn−1

and it is easily verified that

πn =

(
p

1 − p

)n

π0, n = 0, 1, 2, ...

satisfy these equations. To findπ0, we use the condition
∑

j∈S πj = 1 and get

1 = π0

∞∑

n=0

(
p

1 − p

)n

= π0
1 − p

1 − 2p

which gives stationary distribution

πn =
1 − 2p

1 − p

(
p

1 − p

)n

, n = 0, 1, 2, ...
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The Markov chains are irreducible and recurrent in both examples; the only difference
is that the probability12 was replaced byp < 1

2 in the second. Why, then, does a
stationary distribution exist in the second but not the firstchain? We need to introduce
yet another classifying property for Markov chains.

Definition 8.2.6. Let i be a recurrent state. IfEi[τi] < ∞, theni is said to be
positive recurrent. If Ei[τi] = ∞, i is said to benull recurrent.

This is a more subtle distinction than between recurrence and transience. Any re-
current state is revisited infinitely many times, but only a positive recurrent state is
revisited in such a way that the expected time between visitsis finite (recall from Ex-
ample 2.4.9 that a random variable can be finite and yet have aninfinite expectation).
Thus, recurrence/transience is distinguished by theτi themselves and positive/null
recurrence by the expected valuesEi[τi]. It can be shown that positive recurrence is
also a class property, and hence we have the following corollary.

Corollary 8.2.7. For an irreducible Markov chain, there are three possibili-
ties: (a) all states are positive recurrent, (b) all states are null recurrent, (c) all
states are transient.

Now consider a finite state space. There cannot be any null recurrent states, a fact
that we will not prove, but the intuition is that there simplyis not enough room for
very long paths of return. Also recall that there must be at least one recurrent state
and hence this state must be positive recurrent. Thus, if a finite chain is irreducible, it
must also be positive recurrent. If the state space is infinite, this is not true because of
(b) in Corollary 8.2.7. The following result covers both finite and infinite state spaces.

Proposition 8.2.8. Consider an irreducible Markov chain{Xn}. Then

A stationary distributionπ exists ⇔ {Xn} is positive recurrent

If this is the case,π is unique and hasπj > 0 for all j ∈ S.

The intuition behind the result is not obvious, but we can look at the last two examples
for a comparison. By Proposition 8.2.8, all states are positive recurrent whenp < 1

2 ,
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something which can also be shown directly. We can think of this as there being a
“pull” toward 0 and the chain settles in toward a stationary distribution. Compare
this with the casep = 1

2 where there is no such pull and the chain wanders around
aimlessly forever. This is reflected in how the stationary distribution “tries to be
uniform,” but this is not possible on an infinite state space.In general, think of a
positive recurrent Markov chain as one that makes a deliberate effort to revisit states,
in contrast to a null recurrent chain, which just happens to revisit states without really
trying.

Note that Proposition 8.2.8 goes in both directions. Thus, if we can find a stationary
distribution of an irreducible chain,we know two things: (1) the stationary distribution
is unique and (2) the chain is positive recurrent.

8.2.4 Convergence to the Stationary Distribution

In this section we will state the main limit result for a Markov chain. Although the
proof is not beyond the scope of the text, we will not give it; instead we will focus
on its interpretation and applications. For a proof, the interested reader may consult,
for example, Grimmett and Stirzaker,Probability and Random Processes[7]. In
Example 8.2.6, we found the limit distribution of the Markovchain, and let us now
formally define this concept.

Definition 8.2.7. Let p
(n)
ij be then-step transition probabilities of a Markov

chain. If there exists a probability distributionq onS such that

p
(n)
ij → qj as n → ∞ for all i, j ∈ S

we callq the limit distributionof the Markov chain.

Note that the limit distribution is the same for every initial statei ∈ S. Another way
to express this is that then-step transition matrixP (n) converges to a limit matrix
in which all rows are equal. The intuition behind the limit distribution is thatqj

describes the probability that the chain is in statej at some late timepoint and that
at this time, the chain has “forgotten how it started.” We have seen in the examples
that a limit distribution does not always exist. If it does, however, it also qualifies as
a stationary distribution (see Problem 13).

The more interesting question is whether the converse is true: is the stationary
distribution also the limit distribution? This would give anice computational recipe:
in order to find the limit distribution we solveπP = π, which is typically much
easier than computing powers of the transition matrix. The following example shows
that there may be a problem.
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Example8.2.13. In theON/OFFsystem in Example 8.2.4, suppose thatp = q = 1,
that is, that the system always changes. Find the stationarydistribution and limit
distribution.

The stationary distribution satisfies

(π0 π1)

(
0 1
1 0

)
= (π0 π1)

which givesπ0 = π1, so the stationary distribution isπ = (1
2 , 1

2 ). In this case it is
easy to find then-step transition probabilities explicitly. For example

p
(n)
00 =

{
0 if n is even
1 if n is odd

and similarly for the other threen-step transition probabilities. But this means that the
n-step transition probabilities do not converge, and thus thereis no limit distribution.
Recall how a limit distribution forgets where the chain started; in this case, if we start
in state0, we know that the system will be in state0 at every even timepoint and in
state1 at every odd timepoint, no matter how late.

Thus, stationary distributions and limit distributions are not necessarily the same.
What is the intuition behind these concepts? Suppose that welook at a Markov chain
at some late timen. The stationary distribution then gives the long-term proportions
of time spent in the different statesup to timen. The limit distribution, on the other
hand, gives the proportions of time spent in the statesat timen (so we have to think
of the Markov chain being run up to timen multiple times). In the previous example,
let n = 1000. The stationary distribution(1

2 , 1
2 ) tells us that equal amounts of time

have been spent in both states up to timen = 1000, regardless of the initial state.
However, if we look only at precisely timen = 1000, the chain must be in the same
state that it started in, and if we run the chain up to timen = 1000 from the same
initial state, the proportion of time in the other state is0. For a theoretical result that
motivates the interpretation of the stationary distribution, see Problem 21.

The existence of a limit distribution is a desirable property of a Markov chain,
since it means that we can get an idea of the distribution overthe state space at some
late, arbitrary timepoint. It turns out that the problem in the last example is that the
chain isperiodic, in the sense that returns from a state to itself can only occur in an
even number of steps.



474 STOCHASTIC PROCESSES

Definition 8.2.8. Theperiodof statei is defined as

d(i) = gcd{n ≥ 1 : p
(n)
ii > 0}

the greatest common divisor of lengths of cycles through which it is possible
to return toi. If d(i) = 1, statei is said to beaperiodic; otherwise it is called
periodic.

The concept of a period may not be immediately clear. Let us look at two examples.

Example8.2.14. Find the periods of the states in theON/OFFsystem withp = q = 1.

Sincep
(n)
00 > 0 whenevern is even and0 otherwise, the set ofn such thatp(n)

00 > 0
is {2, 4, 6, ...} which has greatest common divisor2. Thus, the period of state0 is
2, which means that the only possible return paths to state 0 have lengths that are
multiples of2. The period of state 1 is also 2.

Example8.2.15. Find the period of the state 1 in the gambler’s ruin example (Ex-
ample 8.2.11).

We havep(1)
11 = 0, p

(2)
11 > 0, andp

(3)
11 > 0, and since the greatest common divisor of

2 and3 is 1, we do not need to go any further. State1 is aperiodic, and we note that
this doesnotmean that it can reach itself in one step. See also Problem 14.

If all states are aperiodic, we call the whole Markov chain aperiodic. It can be shown
that periodicity is a class property in the sense that communicating states have the
same period. Thus, if we can show that one state is aperiodic in an irreducible chain,
the whole chain must be aperiodic. Aperidodicity is the lastproperty we need to be
able to say that the stationary distribution and the limit distribution coincide. The
following is the main convergence theorem for Markov chains.

Theorem 8.2.9. Consider an irreducible, positive recurrent, and aperiodic
Markov chain with stationary distributionπ andn-step transition probabili-
tiesp

(n)
ij . Then

p
(n)
ij → πj as n → ∞

for all i, j ∈ S.
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An irreducible, positive recurrent, and aperiodic Markov chain is calledergodic.
We have seen examples of what can go wrong when any of the threeconditions
are removed. Take away irreducibility, and there may be morethan one stationary
distribution, take away positive recurrence, and there maybe none at all; take away
aperiodicity, and there may be a unique stationary distribution that is not the limit
distribution.

We should also point out that positive recurrence is listed as anassumption. Positive
recurrence is an important characteristic of a Markov chain, describing its long-term
behavior, but it is typically not checked since it is easier to find the stationary dis-
tribution. The practical way to use the theorem is thus to check irreducibility and
aperiodicity and then go about solvingπP = π. If this can be done,π is the limit
distribution, and we get positive recurrence for free.

Example8.2.16. (Success Runs). A fair coin is flipped repeatedly, and at timen, we
let Xn be the length of the current run of heads. For example, if we get the sequence
HTHHHT , we have (letX0 ≡ 0)

X1 = 1, X2 = 0, X3 = 1, X4 = 2, X5 = 3, X6 = 0

Describe this sequence ofsuccess runsas a Markov chain and find its limit distribution.

The state space isS = {0, 1, 2, ...}, and from a statei, transitions are possible to
eitheri + 1 or 0, with equal probabilities, giving the following transition graph:

1/2

1/2

1/2
1/2

1/2 1/2

...0 21

The chain is clearly irreducible, so let us look for the stationary distribution. The
equationπP = π becomes

(π0, π1, ...)




1/2 1/2 0 0 0 ...
1/2 0 1/2 0 0 ...
1/2 0 0 1/2 0 ...
1/2 0 0 0 1/2 ...

...
...

...
...

...
. . .




= (π0, π1, ...)

and it is easily checked that the solution is

πk =
1

2k+1
, k = 0, 1, 2, ...
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which we recognize from Section 2.5.3 as a geometric distribution including0, with
success probabilityp = 1

2 . The last question is whether this also qualifies as the
limit distribution and we need to check for aperiodicity. Consider state0 and note
thatp00 > 0, which means that state0 is aperiodic. Thus, by irreducibility, the entire
chain is aperiodic, Theorem 8.2.9 applies, andπ is the limit distribution.

In a Markov chain with stationary distributionπ, πi is the long-term frequency spent
in statei; thus, statei is revisited on average every1/πi steps. Now consider another
statej. In any sequence ofN steps, it is visited on averageNπj times, and we get
the following nice result, which we state without formal proof. We use the notation
Ei for expected value when the initial state isi.

Proposition 8.2.10. Consider an ergodic Markov chain with stationary distri-
butionπ and choose two statesi andj. Let τi be the return time to statei, and
let Nj be the number of visits toj between consecutive visits toi. Then

Ei[τi] =
1

πi
and Ei[Nj ] =

πj

πi

Note that by positive recurrence, all theEi[τi] are finite and hence all theπi are strictly
positive. TheEi[τi] are called themean recurrence times.

Example8.2.17. Consider Example 8.2.12. Suppose that Ann wins with probability
p = 1

3 . (a) If Ann just went broke, what is the expected number of rounds until she
is broke again?(b) If Ann reaches a fortune of$5, how many times can she expect
to go broke before reaching that fortune again?

We are asking forE0[τ0] andE5[N0], and by Proposition 8.2.10, these are

E0[τ0] =
1

π0
=

1

1/2
= 2

and

E5[N0] =
π0

π5
=

1/2

1/64
= 32

8.3 RANDOM WALKS AND BRANCHING PROCESSES

In this section we will look at two special cases of Markov chains: random walksand
branching processes. Although they are examples of Markov chains, their properties
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are such that the methods we have explored do not reach very far and we instead
analyze them by methods that are suited to their particular nature.

8.3.1 The Simple Random Walk

Many of the examples we looked at in the previous section are similar in nature.
For example, the roulette example and the various versions of gambler’s ruin have
in common that the states are integers and the only possible transitions are one step
up or one step down. We now take a more systematic look at such Markov chains,
calledsimple random walks. A simple random walk can be described as a Markov
chain{Sn} that is such that

Sn =

n∑

k=1

Xk

where theXk are i.i.d. such thatP (Xk = 1) = p, P (Xk = −1) = 1 − p.
The term “simple” refers to the fact that only unit steps are possible; more generally

we could let theXk have any distribution on the integers. The initial stateS0 is
usually fixed but could also be chosen according to some probability distribution.
Unless otherwise mentioned, we will always haveS0 ≡ 0. If p = 1

2 , the walk is said
to besymmetric. It is clear from the construction that the random walk is a Markov
chain with state spaceS = {...,−2,−1, 0, 1, 2, ...} and transition graph

–1

p p p p

1 − p1 − p1 − p1 − p

... 10 ...

Note how the transition probabilitiespi,i+1 andpi,i−1 do not depend oni, a property
calledspatial homogeneity. We can also illustrate the random walk as a function of
time, as was done in Example 1.6.16. Note that this illustrates one particular outcome
of the sequenceS0, S1, S2, ..., called asample path, or arealization, of the random
walk.

It is clear that the random walk is irreducible, so it has to beeither transient, null
recurrent, or positive recurrent, and which one it is may depend onp. The random
walk is a Markov chain where we can compute then-step transition probabilities
explicitly and apply Proposition 8.2.4. Consider any statei, and note first that

p
(2n−1)
ii = 0, n = 1, 2, ...

since we cannot make it back to a state in an odd number of steps. To make it back
in 2n steps, we must taken steps up andn steps down, which has probability

p
(2n)
ii =

(
2n

n

)
pn(1 − p)n =

(2n)!

n!n!
(p(1 − p))n (8.3.1)

and since convergence of the sum of thep
(2n)
ii is not affected by the values of any

finite number of terms in the beginning, we can use an asymptotic approximation of
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n!, Stirling’s formula, which says that

n! ∼ nn
√

ne−n
√

2π

where “∼” means that the ratio of the two sides goes to1 asn → ∞. The practical
use is that we can substitute one for the other for largen in the sum in Proposition
8.2.4. Thus

p
(2n)
ii ∼ (4p(1 − p))n

√
πn

and if p = 1
2 , this equals1/

√
πn and the sum overn is infinite. If insteadp 6= 1

2 ,

p
(2n)
ii is of the formxn/

√
πn where|x| < 1 and the sum overn converges. This

shows that the simple random walk is recurrent ifp = 1
2 and transient ifp 6= 1

2 .
The next question is whether the casep = 1

2 is positive recurrent or null recurrent.
Repeating the argument from Example 3.7.9 shows that regardless of whether the
first step is up or down, the expected time until return to0 is infinite. We summarize
as follows.

Proposition 8.3.1. The simple random walk is null recurrent ifp = 1
2 and

transient ifp 6= 1
2 .

In particular, this means that there is never a stationary distribution, so the theory
for Markov chains does not give us anything further, but there are still interesting
questions regarding the behavior of the random walk. Recallτ1, the time of the first
visit to state1. From Examples 1.6.17 and 3.7.9, we know thatP0(τ1 < ∞) = 1 and
E0[τ1] = ∞, if p = 1

2 . What about other values ofp? If p > 1
2 , we must still have

P0(τ1 < ∞) = 1 but what ifp < 1
2? Let us use recursion and again condition on the

first step. Withr = P0(τ1 < ∞), we get

r = p + (1 − p)r2

which has solutionsr = 1 andr = p/(1 − p). We can excluder = 1, since if the
probability to reach1 in finite time equals1, the same must be true for−1 (more
likely to go down than up), but then by symmetry, the probability is also1 that the
walk gets back to0 again in finite time, which contradicts transience. We get the
following result.

Corollary 8.3.2. The probability that the walk ever visits1 is

P0(τ1 < ∞) =






1 if p ≥ 1/2

p

1 − p
if p < 1/2
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Thus, if p < 1
2 , the probability isp/(1 − p) that the walknevervisits the positive

axis. If it does visit the positive axis, how far does it get? According to the following
result, not very far.

Corollary 8.3.3. The simple random walk withp < 1
2 visits only finitely

many states on the positive axis.

Proof. Let A be the event that the walk visits all positive states andAr the event
that the walk eventually visits stater. Then

A =
∞⋂

r=1

Ar

where the eventsAr are decreasing (must have visitedr in order to visitr + 1).
Moreover, in order to visitr, the walk must first visit1, then2, and so on, and by
Corollary 8.3.2 and Proposition 1.3.5, we obtain

P (A) = lim
r→∞

P (Ar) = lim
r→∞

(
p

1 − p

)r

= 0

sincep < 1
2 .

We can continue the argument in the proof. Since the walk makes it up only to some
maximum integer, it must eventually leave the positive axisfor good. But then it is at
−1, and the same argument says that it must eventually hit−2, never to return to−1
again. Thus, for any number, the random walk will eventuallystay below it forever,
and we have argued that the simple random walk withp < 1

2 drifts toward−∞. In
obvious analogy, ifp > 1

2 , the walk drifts toward∞. In Problem 27, you are asked
to compute the probability that the transient random walk ever returns to0 (right now
all we know is that this probability is< 1). In the remaining case,p = 1

2 , the walk
must visit all states infinitely many times (why?) and must, like Ahasverus, wander
aimlessly forever.

We next turn to expected values. If the walk starts in0, what is the expected time
until its first visit to 1? If p < 1

2 , it must be infinite, since the random variableτ1

itself may be infinite. Ifp = 1
2 , canE0[τ1] be finite? If it were, then the expected

time to visit−1 would by symmetry also be finite. But then the expected time back
to 0 again would also be finite, which contradicts null recurrence. Thus, ifp ≤ 1

2 , we
haveE0[τ1] = ∞. It remains to investigate what happens whenp > 1

2 . We will use
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a recursive approach, in the spirit of Example 3.7.9. Letµ = E0[τ1] and condition
on the first step to get the equation

µ = p × 1 + (1 − p)(1 + 2µ)

which we solve forµ to getµ = 1/(2p − 1). Note, however, that alsoµ = ∞ is a
solution, so we need to argue that this can be ruled out. Firstnote thatτ1 = 2n + 1
if the walk is back at0 at time2n, without having visited1, then goes up to1 in the
following step. The probability to be back at0 at time2n without any restrictions is
p
(2n)
00 , and hence

P0(τ1 = 2n + 1) ≤ p × p
(2n)
00 ∼ p

(4p(1 − p))n

√
πn

and since4p(1− p) < 1, E0[τ1] =
∑

n(2n + 1)P0(τ1 = 2n + 1) must be finite. We
summarize as follows.

Corollary 8.3.4. The expected time until the first visit to1 is

E0[τ1] =





1

2p − 1
if p > 1/2

∞ if p ≤ 1/2

8.3.2 Multidimensional Random Walks

Let us now consider a two-dimensional simple random walk andinvestigate it with
regard to transience/recurrence. First, how do we define it?In one dimension, if the
walk is ati, it chooses one of the neighboringpointsi−1andi+1. In two dimensions,
there are different ways to define neighboring points. One way is to consider the four
neighbors parallel with the axes; another, to consider the four neighboring corner
points.

Regardless of definition, we will assume that the walk is symmetric so that each
neighbor is chosen with probability14 ; otherwise the walk is transient (why?). Also,
since all we are interested in is transience/recurrence, itdoes not matter which defi-
nition we choose, since in each case there are four equally likely neighbors (one case
is just a45◦ rotation of the other). We will choose the second version, choosing the
corners with equal probabilities. The reason for this is that we can then view the
two-dimensional random walk as two independent one-dimensional random walks,
one on each axis. Thus, let

Sn = (S(1)
n , S(2)

n ), n = 0, 1, 2, ...
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where we letS0 = (0, 0). ThenSn = (0, 0) if and only if S
(1)
n = S

(2)
n = 0 and by

independence and Equation (8.3.1),

P (Sn = (0, 0)) = P (S(1)
n = 0)P (S(2)

n = 0) =

((
2n

n

)
1

4n

)2

and by Stirling’s formula

P (Sn = (0, 0)) ∼ 1

πn

and since
∑

n
1
n = ∞, we conclude that the simple random walk in two dimen-

sions is recurrent (and must be null recurrent). But look nowwhat happens in three
dimensions. By defining

P (Sn = (S(1)
n , S(2)

n , S(3)
n ), n = 0, 1, 2, ...

whereS
(1)
n , S

(2)
n , and S

(3)
n are independent symmetric random walks and letting

S0 = (0, 0, 0), we get

P (Sn = (0, 0, 0)) ∼ 1

(πn)3/2

and since
∑

n
1

n3/2 < ∞, we conclude that the walk is now transient. This might be
a bit surprising, and there is no immediate intuition for whythe walk always returns
to the origin in one and two dimensions but not in three. We know that each of the
three individual walks returns to0 infinitely many times, but only finitely many times
will they do so simultaneously. We can define the random walk in any number of
dimensions and conclude the following.

Corollary 8.3.5. The symmetric simple random walk inn dimensions is
recurrent forn = 1 andn = 2, and transient forn ≥ 3.

One thing needs to be pointed out. In two dimensions, we argued that the definition
of a neighboring point does not matter, since there are four neighbors with either
definition. This is not true in dimensionsn ≥ 3. For example, in three dimensions,
there is a difference between choosing between the eight corner points and the six
points along the axes. We chose the first definition, and the chance of return to the
origin ought to be higher with the second, since there are fewer choices in each step.
However, it can be shown that the probability of return is still less than one and also
this variant of the three-dimensional random walk is transient (see Problem 29).

8.3.3 Branching Processes

To steal a line of British humo(u)r from Grimmett and Stirzaker, [7]: “Besides gam-
bling, many probabilists have been interested in reproduction.” In this section we
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. . .

Fig. 8.1 A branching process withZ0 = 1, Z1 = 3, andZ2 = 3

analyze a simple model for populations that are composed of individuals who repro-
duce independently of each other. Suppose that we start fromone individual, the
ancestor, who gets a number of children,X , with range{0, 1, 2, ...} and pmfpX .
We refer to this pmf as theoffspring distribution. Each child then reproduces inde-
pendently according to the offspring distribution and their children reproduce in the
same way and so on. The resulting evolving population is an example of abranching
process(see Figure 8.1).4 To describe it mathematically, we letZn be the number of
individuals in thenth generation, and letZ0 ≡ 1. The generation sizes relate to each
other as

Zn =

Zn−1∑

k=1

Xk, n = 1, 2, ... (8.3.2)

where theXk are i.i.d. with pmfpX . The formula states that in order to get the number
of individuals in any generation, we go through the individuals in the preceding
generation and sum their numbers of children. Note that in each generation we get a
new set ofXk, which if needed can be indicated by a superscript,X

(n−1)
k , the number

of children of thekth individual in the(n − 1)st generation.
We are interested in the behaviorofZn and will focus on two issues: extinction and

population growth. Note that the process{Zn} is a Markov chain but the transition
probabilities are complicated and it is also clear that state 0 is absorbing, so the
Markov chain methods that we know will not be of much help. Letus from now
on exclude the two uninteresting casespX(0) = 1 andpX(1) = 1. (Why are these
uninteresting?) From Equation (8.3.2) it is clear that

Zn = 0 ⇒ Zn+1 = 0 (8.3.3)

in which case the population has gone extinct. Now letE be the event that the
population goes extincteventually, that is, the event that some generation size is0.

4In this simple form, it is usually called aGalton–Watsonprocess, after the previously mentioned Sir
Francis Galton, who worried about extinction of the Englishnobility, and Henry W. Watson, mathematician,
clergyman, and mountaineer, who advocated the use of generating functions to solve the problems. Inles
pays francophones, the name ofBienayméis usually also added, which is only fair since the work of I. J.
Bienaymé precedes that of Galton and Watson.
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This event can be described as

E =

∞⋃

n=1

{Zn = 0}

and to find the probability ofE, we will use probability generating functions. Thus,
let X have pgfG, and letZn have pgfGn. ThenG1 = G (why?) and by Equation
(8.3.2) and Proposition 3.11.5, we get the relation

Gn(s) = Gn−1(G(s)), n = 2, 3, ... (8.3.4)

By Equation (8.3.3), we realize that the events{Zn = 0} are increasing inn, and
Corollary 3.11.1 and Proposition 1.3.5 together give

P (E) = lim
n→∞

P (Zn = 0) = lim
n→∞

Gn(0)

Example8.3.1. Consider a population of cells that may either die or reproduce,
according to the following random variable:

X =

{
0 with probability1/4
2 with probability3/4

Find the probability of extinction.

We have

G(s) =
1

4
+

3

4
s2

which givesG(0) = 1
4 , the probability that extinction occurs already in the first

generation. ForG2, we use Equation (8.3.4) and obtain

G2(s) = G(G(s)) =
1

4
+

3

4

(
1

4
+

3

4
s2

)2

which givesG2(0) = 19
64 . Already here we realize that it will be hard to findP (E) in

this way; remember that we need to find the limit ofGn(0) asn → ∞ and a pattern
for the sequence does not readily emerge. We give up.

The branching process in this example is about as simple as they come, and yet it is
virtually impossible to find the extinction probability as the limit of Gn(0). Luckily,
there is a much quicker way.
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Proposition 8.3.6. Consider a branching process where the offspring distri-
bution has pgfG, and letE be the event of extinction. Thenq = P (E) is the
smallest solution in[0, 1] to the equations = G(s).

Proof. Let us first show thatq is a solution and then that it must be smaller than
any other solution. Condition on the number of children,X , of the ancestor and note
that ifX = k, then there arek independent branching processes that must go extinct,
which has probabilityqk (true also fork = 0). This gives the following observation

q =
∞∑

k=0

P (E|X = k)P (X = k) =
∞∑

k=0

qkP (X = k) = G(q)

and we see that the extinction probability solves the equations = G(s).
Suppose that there is another solutionr ∈ [0, 1]. By Problem 133 in Chapter 3,

G(s) is increasing, and sincer ≥ 0, we get

r = G(r) ≥ G(0)

Applying G again givesr = G(r) ≥ G(G(0)) = G2(0) and repeating the argument
gives

r ≥ Gn(0) for all n

But sinceGn(0) → q, we also getr ≥ q, and henceq is the smallest solution to the
equations = G(s).

Example8.3.2. In Example 8.3.1 we get the equation

s =
1

4
+

3

4
s2

which has solutions13 and1. Thus, the probability of extinction is13 .

Note that any pgf has the propertyG(1) = 1, and hences = 1 is always a solution to
the equations = G(s).5 Let us now turn to the question of population growth. More
specifically, we will find the mean and variance of thenth-generation sizeZn. Equa-
tion (8.3.2) is central, and we can apply Corollary 3.11.6 toobtain the following result.

5Watson, whose work was published in1875, found the solutions = 1 but overlooked the fact that there
could be more solutions and erroneously concluded that extinction is always inevitable. It took yet another
half-century and Danish ingenuity to completely solve the problem, done by J. F. Steffensen in1930.
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Proposition 8.3.7. Consider a branching process where the offspring distri-
bution has meanµ and varianceσ2. Then

E[Zn] = µn

Var[Zn] =





nσ2 if µ = 1

σ2(µn − 1)µn−1

µ − 1
if µ 6= 1

Proof. For the mean, repeatedly apply Corollary 3.11.6 to Equation(8.3.2) and
get

E[Zn] = E[Zn−1]µ = E[Zn−2]µ
2 = · · · = µn

sinceE[Z0] = 1. We leave it as an exercise to verify that the expression for the
variance satisfies Corollary 3.11.6.

The proposition thus tells us that

E[Zn]





→ 0 if µ < 1
≡ 1 if µ = 1
→ ∞ if µ > 1

and that

Var[Zn]






→ 0 if µ < 1
→ ∞ if µ = 1
→ ∞ if µ > 1

This suggests that the population always goes extinct ifµ < 1 since the mean and
variance both go to0 andZn itself can take on only integer values. It is less clear
what happens in the other two cases, but the following resultgives the answer.

Proposition 8.3.8. Consider a branching process with mean number of chil-
drenµ. Then

µ ≤ 1 ⇒ P (E) = 1

µ > 1 ⇒ P (E) < 1
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Proof. If pX(0) = 0, thenµ > 1 andP (E) = 0. Now suppose thatpX(0) > 0,
and recall from Section 3.11 thatµ = G′(1), the slope at the points = 1. By Problem
133 in Chapter 3,G(s) is convex and increasing, and since it has to increase from
G(0) = pX(0) > 0 to G(1) = 1, it must intersect the liney = s if µ > 1, and the
intersection is the extinction probability, which is< 1. If insteadµ ≤ 1, there can
be no such intersection, and the extinction probability is1. See Figure 8.2 for the
two possible cases. Note that this also shows that there can never be more than two
solutions in[0, 1] to the equations = G(s).

This result is quite remarkable. It says that whether extinction occurs for certain
depends only on the mean number of children, and if this is less than or equal to1,
there will be extinction sooner or later. Ifµ > 1, extinction may be avoided and the
probability of this is found by solving the equations = G(s). The casesµ > 1,
µ = 1, andµ < 1 are called thesupercritical, critical, andsubcritical, respectively.
Although extinction is certain in the last two, they exhibitsome differences in behav-
ior that motivates the distinction (see Problem 30).

Example8.3.3. An individual with a contagious disease enters a large city.Suppose
that he passes the disease on to a number of people, who in turnpass it on to others
and so on. Suppose that each individual remains contagious for one day and in this
day interacts with a number of people that has a Poisson distribution with mean10
and that for each person, the probability of infection isp. (a) For which values ofp
does the disease eventually die out?(b) If p = 0.2, what is the probability that the
disease still exists in the population on day2? (c) Forp = 0.2, what is the probability
that the disease eventually disappears?

The number of infected “children” of an individual has a Poisson distribution with
mean10p, so the disease eventually dies out ifp ≤ 0.1. For part (b), we need to

0 0.5 1
0 

 0.2 

0.4 

0.6 

0.8 

1 

0 0.5 1
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1 

Fig. 8.2 Plots of the pgfG(s) of the offspring distribution and the liney = s, in the cases
µ = G′(1) ≤ 1 (left) andµ = G′(1) > 1 (right).
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computeP (Z2 = 0) = G2(0), and since

G(s) = e2(s−1)

we get
P (Z2 = 0) = e2(e−2−1) ≈ 0.18

so the probability that the disease still exists is0.82. For (c), we need numerically to
solve the equation

s = e2(s−1)

which givesq ≈ 0.2. The spread of a disease may be adequately modeled by a
branching process in its early stages but as time goes on, such a model becomes less
realistic. There are several reasons for this, which we leave for the reader to ponder.

The final question is what happens if there is no extinction. As it turns out, the only
other possibility is forZn to go to infinity. We will not give a strict proof but refer
to an intuitive argument. Suppose thatZn does not go to infinity. Then there is some
integerK such thatZn drops belowK infinitely many times. But each time it does,
there is a chance that it goes extinct before the next time it drops belowK. The
probability of this is at leastpX(0)K , since the “worst case” is when the population
goes extinct already in the next generation. But this means that the population must
become extinct sooner or later (think geometric trials here), and we have argued
that if Zn does not go to infinity, the population must become extinct. In terms of
probabilities

P (Zn 6→ ∞) ≤ P (E)

and since the reversed inequality obviously also holds (if there is extinction, the pop-
ulations size cannot go to infinity), the probabilities are equal. We have argued for
the following result.

Proposition 8.3.9. Consider a branching process with extinction probability
q. Then

Zn →
{

0 with probabilityq
∞ with probability1 − q

asn → ∞.

Note that “Zn → 0” is just another way of saying “extinction,” sinceZn takes on only
integer values. We can describe this result by saying that the sequence of random
variablesZ1, Z2, ... converges to a random variableZ asn → ∞, whereZ is either
0 or∞ with probabilitiesq and1− q, respectively. To be perfectly strict, we need to
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say that this convergence takes placewith probability1 since we can describe other
types of sequences. For example, in a population of dividingcells let us say that
Z1 = 2. It could then happen that one divides and the other dies so thatZ2 = 2 also.
If the same thing happens again,Z3 = 2, and we can continue, to describe a sequence
Z1, Z2, ... whereZn = 2 for all n. However, it can be shown that this sequence
together with all other sequences that do not converge to0 or ∞ belong to an event
that has probability0. This is an example of convergence almost surely, mentioned
in footnote 1 in Section 4.2.

8.4 CONTINUOUS -TIME MARKOV CHAINS

We have studied Markov chains in discrete time and will now turn to their counterpart
in continuous time. This means that the chains stays in each state a random time that
is a continuous random variable with a distribution that maydepend on the state. The
state of the chain at timet is denotedX(t), wheret ranges over the nonnegative real
numbers. In addition to having the Markov property for the jumps, we also want
the jumps to be independent of how long a time that is spent in aspecific state, and
in order to achieve this, we recall that there is only one continuous distribution that
would ensure this property: the exponential distribution.6 We state the following
definition.

Definition 8.4.1. Let {X(t), t ≥ 0} be a collection of discrete random
variables taking values in some setS and that evolves in time as follows:

(a) If the current state isi, the time until the state is changed has an
exponential distribution with parameterλ(i).

(b) When statei is left, a new statej 6= i is chosen according to the transition
probabilities of a discrete-time Markov chain.

Then{X(t)} is called acontinuous-time Markov chain.

Thus, a continuous-time Markov chain{X(t)} is composed of a discrete-time Markov
chain{Xn}, thejump chain, for the transitions and exponential random variables for
the holding times. Recall that the holding times in a discrete Markov chain are
geometric, the discrete counterpart of the exponential (see Section 2.6), so this is
a natural assumption. Theλ(i) are called theholding-time parameters. Note that

6We are leaving out some subtle technicalities here that the interested reader may find, for example, in
Grimmett and Stirzaker,Probability and Random Processes[7].



CONTINUOUS-TIME MARKOV CHAINS 489

the state space is still finite or countably infinite; the discrete/continuous distinction
refers to how time is measured. Let us also mention that sometimes the termMarkov
processis used in continuous time. We will not formally state the Markov property
but intuitively it says that conditioned on the current state and time, where and when
the chain jumps next is independent of the complete history of the chain.

Our construction also ensures that the process istime-homogeneous, that is, the
probabilityP (X(s+ t) = j |X(s) = i) depends only on time through the difference
(s + t) − s = t, and we can define the transition probabilities as

pij(t) = P (X(t) = j |X(0) = i)

the probability that the chain is in statej, t time units after having been in statei. For
eacht, we then get a transition matrixP (t) with entriespij(t), i, j ∈ S, which has
the following properties.

Proposition 8.4.1. Let P (t) be the transition matrix for a continuous-time
Markov chain with state spaceS. Then

(a) P (0) = I, the identity matrix

(b)
∑

j∈S

pij(t) = 1, for all i ∈ S andt ≥ 0

(c) P (s + t) = P (s)P (t)( Chapman–Kolmogorov equations)

When you talk to mathematicians, make sure to refer to the set{P (t), t ≥ 0} as a
stochastic semigroup.

Proof. Parts (a) and (b) are obvious. For (c), consider an elementpij(s + t) of
P (s + t) and condition on an intermediate statek at times to obtain

pij(s + t) =
∑

k∈S

Pi(X(s + t) = j |X(s) = k)Pi(X(s) = k|X0 = i)

=
∑

k∈S

pik(s)pkj(t)

which is the(i, j)th entry in the matrixP (s)P (t).

One problem is thatP (t) is usually difficult or impossible to compute, in the same
way thatP (n) may be in the discrete case. In the discrete case, however, weknow
thatP (n) = Pn, so all the information we need is contained in the one-step transition
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matrix P . In the continuous case there is no analog of “one step,” so weneed to
proceed differently in search of a more compact description.

Let the jump chain have transition probabilitiespij for i 6= j and consider the
chain in a statei. The holding time isexp(λ(i)) and when it leaves, the chain jumps
to statej with probabilitypij . Now, if we consider the chain only when it is in state
i and disregard everything else, we can view the jumps fromi as a Poisson process
with rateλ(i). For any other statej, the jumps fromi to j is then a thinned Poisson
process with rateλ(i)pij . Thus, for any pair of statesi andj, we can define the
transition ratebetweeni andj as

γij = λ(i)pij

In addition to these, we also let

γii = −
∑

j 6=i

γij

and define thegeneratoras the matrixG whose(i, j)th entry isγij . Note that once
theγij have been inserted, the diagonal elementsγii are chosen such thatG has row
sums equal to0. The generator completely describes the Markov chain, since if we
are givenG, we can retrieve the holding-time parameters as

λ(i) = −γii, i ∈ S

and the jump probabilities as

pij = −γij

γii
, j 6= i

Note thatpii = 0 for all i ∈ S since thepij give the probability distribution when the
chain leaves a state and there can be no jumps from a state to itself (see also Problem
36). Let us look at a few examples.

Example8.4.1. An ON/OFFsystem staysOFFfor a time that isexp(λ) andON for a
timeexp(µ) (µ does not denote the mean here). Describe the system as a continuous-
time Markov chain.

The holding-time parameters areλ andµ, and the only possible jumps are from0
(OFF) to 1 (ON) and vice versa. Thus we have

γ01 = λ, γ10 = µ

and after filling in the diagonal elements, we get generator

G =

(
−λ λ
µ −µ

)

We can also describe the system in a graph as follows:
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0 1

λ

µ

This is similar to how we described discrete-time Markov chains but the numbers on
the arrows are now rates, not probabilities. The jump chain has transition matrix

P =

(
0 1
1 0

)

Example8.4.2. A continuous-time Markov chain on state space{1, 2, 3} has gen-
erator

G =




−6 2 4
1 −2 1
3 1 −4





Suppose that the chain is in state1. What is the expected time until it leaves, and
what is the probability that it next jumps to state2?

The holding-time parameter in state 1 isλ(1) = −γ11 = 6, so the expected holding
time is 1

6 . The probability to jump to state2 is

p12 = −γ12

γ11
= − 2

−6
=

1

3

The generator now plays the role that the transition matrix did in the discrete case,
and a logical question is howG relates toP (t). The following proposition gives the
answer, whereP ′(t) denotes the matrix of the derivativesp′ij(t).

Proposition 8.4.2. The transition matrixP (t) and generatorG satisfy the
backward equations

P ′(t) = GP (t), t ≥ 0

andforward equations
P ′(t) = P (t)G, t ≥ 0

If we spell out the backward equations elementwise, we get

p′ij(t) =
∑

k∈S

γikpkj(t), i, j ∈ S, t ≥ 0
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and the forward equations

p′ij(t) =
∑

k∈S

pik(t)γkj , i, j ∈ S, t ≥ 0

Proof. We refer to an intuitive argument and leave out the technicaldetails. Con-
sider the probabilitypij(t + h) = Pi(X(t + h) = j). The Chapman–Kolmogorov
equations give

pij(t + h) =
∑

k∈S

pik(t)pkj(h)

and ifh is small, we have, withTj denoting the holding time in statej

pjj(h) = P (X(h) = j|X(0) = j) ≈ P (Tj > h) = e−λ(j)h

≈ 1 − λ(j)h = 1 + γjjh

The intuition behind this is that ifh is small and the chain is in statej at times0 and
h, most likely nothing happened in the interval(0, h). With a similar argument, if
there is a jump in(0, h), we neglect the possibility of more than one jump and obtain

pkj(h) ≈ γkjh, k 6= j

This gives

pij(t + h) ≈ pij(t)(1 + γjjh) +
∑

k 6=j

pik(t)γkjh

= pij(t) + h
∑

k∈S

pik(t)γkj

which gives
pij(t + h) − pij(t)

h
=
∑

k∈S

pik(t)γkj

and lettingh ↓ 0 gives the forward equations, with a similar type of argumentfor the
backward equations.

It turns out that the forward equations are usually easier tosolve but do not always
exist (a fact that is not revealed by our intuitive argument above). In all examples
and applications we consider, they do, however, exist. It isusually difficult to solve
the backward and forward equations and only in simple cases can we easily find the
explicit form ofP (t). In Problem 34, you are asked to find the solution for the simple
ON/OFFsystem.

SinceP (0) = I, the backward and forward equations also suggest a way to obtain
the generator fromP (t) according to

G = P ′(0) (8.4.1)
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8.4.1 Stationary Distributions and Limit Distributions

Just as in the discrete case, we are interested in asymptoticbehavior, which is described
by the limit of P (t) ast → ∞ and also as in the discrete case, we would like to do
this via stationary distributions instead of direct calculations. A limit distribution in
the continuous case is the obvious analog of the discrete case: a distributionq such
that

pij(t) → qj , ast → ∞ for all i, j ∈ S

How should we define a stationary distribution? In the discrete case, it is defined
through the relationπ = πP , but in the continuous case there is noP . However,
since a stationary distribution “stays forever,” we also haveπ = πP (n) for all n, and
we can imitate this in the continuous case.

Definition 8.4.2. Consider a continuous-time Markov chain with transition
matrixP (t). A probability distributionπ which is such that

πP (t) = π for all t ≥ 0

is called astationary distributionof the chain.

The intuition is the same as in the discrete case; the probability πj is the proportion
of time spent in statej in the long run. Since we have pointed out how difficult it
typically is to findP (t), the definition does not give a computational recipe. Instead,
first differentiate with respect tot on both sides in the definition to obtain

d

dt
(πP (t)) = πP ′(t) =

d

dt
(π) = 0, t ≥ 0

sinceπ does not depend ont. In particular, witht = 0, Equation (8.4.1) gives
P ′(0) = G and we have shown the following.

Corollary 8.4.3. The stationary distribution satisfies the equation

πG = 0

where0 is a vector of zeros.

Elementwise, the equations are
∑

i∈S

γijπi = 0, j ∈ S
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and as in the discrete case, we have the additional conditionthat the entries inπ sum
to 1.

Example8.4.3. Consider theON/OFFsystem in Example 8.4.1. Find the stationary
distribution.

The equationπG = 0 is

(π0, π1)

(
−λ λ
µ −µ

)
= (0, 0)

which gives the first equation

−π0λ + π1µ = 0

which in turn gives

π1 =
λ

µ
π0

and the conditionπ0 + π1 = 1 gives

1 = π0

(
1 +

λ

µ

)

and we get stationary distribution

(π0, π1) =

(
µ

µ + λ
,

λ

µ + λ

)

Note howπ0 > π1 if µ > λ, that is, when the transition rate is higher from1 to 0
than vice versa. Also note that

(π0, π1) =

(
1/λ

1/λ + 1/µ
,

1/µ

1/λ + 1/µ

)

which is intuitively appealing since the expected times spent in states0 and1 are1/λ
and1/µ, respectively. Thus, in the long run, the proportions of time spent in states0
and1 areπ0 andπ1.

Recall that the jump chain has stationary distribution(1
2 , 1

2 ), which tells us that the
jump chain on average visits0 and1 equally many times but does not take holding
times into account.

The existence of a stationary distribution is again closelyrelated to the concepts
of irreducibility and positive recurrence. Irreducibility is only a property of how the
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states communicate and has nothing to do with holding times,so we call a continuous-
time Markov chain irreducible if its jump chain is irreducible. As for recurrence and
transience, they are defined in the analogous way, letting

Si = inf{t : X(t) = i}
whereSi = ∞ if i is never visited. The only difference from the discrete caseis that
Si is now a continuous random variable and the following definition is a direct analog.

Definition 8.4.3. If Pi(Si < ∞) = 1, statei is called recurrent and if
Pi(Si < ∞) < 1, statei is calledtransient. If i is recurrent andEi[Si] < ∞,
i is calledpositive recurrent; otherwise it is callednull recurrent.

We use the notationS for “sum,” sinceSi is the sum of the holding times in all states
visited before reachingi. We keep the notationτi for the return times in the jump
chain. Thus, if the holding time in statek is Tk, thenSi andτi relate as

Si =

τi−1∑

n=0

TXn (8.4.2)

Now suppose that statei is recurrent in the jump chain{Xn}. This means thatτi

presented above is finite, and since also theTk are finite,Si must be finite andi is re-
current also in{X(t)}. Thus, if the jump chain is recurrent, so is the continuous-time
chain{X(t)}. When it comes to positive recurrence, things are more complicated,
as the following example shows.

Example8.4.4. Consider the following continuous-time version of the success run
chain from Example 8.2.16. The holding time parameters areλ(k) = 1/2k for
k = 0, 1, 2..., and the success run chain functions as the jump chain, with the excep-
tion thatp01 = 1. Show that the jump chain{Xn} is positive recurrent but{X(t)}
is not.

The state space isS = {0, 1, 2, ...} and the transition matrix of the jump chain differs
from that of the success run chain only in that it hasp01 = 1 instead ofp00 = p01 = 1

2 .
It is easy to find the stationary distribution (see Problem 16) and this shows that{Xn}
is positive recurrent.

Now consider state0. Equation (8.4.2) is extra simple since the jump chain in-
creases by unit steps until it drops back to0, which givesXn = n for n < τ0, and
we get

S0 =

τ0−1∑

n=0

Tn
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Since the state0 is recurrent in{Xn}, it is recurrent also in{X(t)}. However, we
will show that state 0 is null recurrent in{X(t)} and thus proceed to compute the
expected value ofS0. To do so, we condition onτ0 and note that the range ofτ0 is
{2, 3, ...}. If τ0 = k, S0 is the sum ofT1, ..., Tk−1 and hence

E0[S0|τ0 = k] =

k−1∑

n=0

E[Tn] =

k−1∑

n=0

2n = 2k − 1

and the distribution ofτ0 is

P0(τ0 = k) =
1

2k−1
, k = 2, 3, ...

sinceτ0 = k precisely when there arek − 1 successes followed by a failure, where
k must be at least2. We get

E0[S0] =

∞∑

k=2

E0[S0|τ0 = k]P0(τ0 = k)

=

∞∑

k=2

(2k − 1)
1

2k−1
=

∞∑

k=2

(
2 − 1

2k−1

)
= ∞

which means that state0 is null recurrent in the continuous-time chainX(t). By
irreducibility, the entire continuous-time chain is null recurrent. The problem is that
even though the jump chain is positive recurrent, the holding times get so long that
the continuous chain becomes null recurrent.

If the holding times are instead very short, it is possible that {Xn} is null recurrent
but {X(t)} is positive recurrent (see Problem 38). It is also possible to construct
examples where the jump chain is transient but the continuous-time chain has a sta-
tionary distribution in the sense of a solution toπG = 0. However, in such examples
we get the unpleasant property of infinitely many jumps in finite time, and to rule out
such anomalies, we always assume that the jump chain is recurrent. The following is
the continuous-time analog of Proposition 8.2.8.

Proposition 8.4.4. Consider an irreducible continuous-time Markov chain
with a recurrent jump chain. Then

A stationary distributionπ exists ⇔ {X(t)} is positive recurrent

The stationary distribution is unique and hasπj > 0 for all j ∈ S.



CONTINUOUS-TIME MARKOV CHAINS 497

As in the discrete case, positive recurrence is an importantconcept for describing the
behavior of the chain, but it is typically not checked directly. Instead, we look for a
solution toπG = 0.

We next turn to the question of convergence to the stationarydistribution. In the
discrete case this was complicated by possible periodicity, but in the continuous case
we have no unit step size, and thus the concept of period does not exist. We can state
the convergence theorem already.

Theorem 8.4.5. Consider an irreducible, continuous-time Markov chain with
a recurrent jump chain, stationary distributionπ, and transition probabilities
pij(t). Then

pij(t) → πj as t → ∞
for all i, j ∈ S.

As in the discrete case, a continuous-time Markov chain thatsatisfies the assumptions
in the theorem is calledergodic. The obvious analog of Proposition 8.2.10, regarding
mean recurrence times and mean number of visits to intermediate states, holds in the
continuous case as well. Finally, we refer to Problem 38 to see how the stationary
distributions for{X(t)} and its jump chain relate to each other.

Example8.4.5. Consider theON/OFFsystem from Example 8.4.3, where the jump
chain has stationary distribution(1

2 , 1
2 ) and the continuous-time chain has stationary

distribution(µ/(λ+µ), λ/(λ+µ)). These describe the proportion of jumps and the
proportion of time, respectively, spent in each state in thelong run. However, only
the continuous-time chain also has a limit distribution. Ifthe system starts in state 0,
it forgets how it started if we consider it in real time, but not if we count the jumps,
as we saw in Example 8.2.13.

8.4.2 Birth–Death Processes

In this section we will examine continuous-time analogs of random walks. Thus we
will consider integer-valued, continuous-time Markov chains that can only step up or
down, so the only generator entries that can be positive (butdo not have to be) are
γi,i−1 andγi,i+1. We also restrict the state space toS = {0, 1, 2, ...}, the nonnegative
integers. Such Markov chains are calledbirth–death processes. Let us explain why
in an example.

Example8.4.6. Consider a population of cells. Each cell lives for a time that is
exp(α) and then either splits into two new cells with probabilityp or dies with prob-
ability 1−p, independently of all other cells. LetX(t) be the number of cells at time
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t and describe this as a continuous-time Markov chain.

The state space isS = {0, 1, 2, ...}. If there arei cells, the next change comes after a
time that is the minimum ofi lifetimes that are independent andexp(α). By Example
3.10.3, we thus have holding-time parameters

λ(i) = iα, i = 0, 1, 2, ...

whereλ(0) = 0 means that state0 is absorbing. This gives the transition rates

γi,i+1 = iαp and γi,i−1 = iα(1 − p), i = 1, 2, ...

and it is common to define thebirth rateλi = γi,i+1 anddeath rateµi = γi,i−1 [do
not confuseλi andλ(i)]. Since the birth and death rates are linear ini, this is called a
linear birth–death process. It is also customary to denoteλ = αp andµ = α(1− p),
the individualbirth and death rates. The transition graph is then

...

3µ2µµ

1 20

2λλ

and the generator

G =




0 0 0 0 0 . . .
µ −(λ + µ) λ 0 0 . . .
0 2µ −2(λ + µ) 2λ 0 . . .
0 0 3µ −3(λ + µ) 3λ . . .
...

...
...

...
...

. . .




The jump chain is the simple random walk, which we know is transient ifp > 1
2 , the

only case in which absorption in0 can be avoided.

Example8.4.7. Consider a population where the individual death rate isµ and there
are no births. Instead, there is constant immigration into the population according to
a Poisson process with rateλ. Describe the process, determine when a limit distribu-
tion exists, and find what it is.

The birth and death rates are

λi = λ, µi = iµ, i = 0, 1, ...

and we have the following transition graph:
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µ

λ

...

3µ2µ

λ λ

1 20

The chain is clearly irreducible, so we need only to look for astationary distribution,
which, if it exists, is also the limit distribution. The equation πG = 0 becomes

(π0, π1, ...)




−λ λ 0 0 0 . . .
µ −(λ + µ) λ 0 0 . . .
0 2µ −(λ + 2µ) λ 0 . . .
0 0 3µ −(λ + 3µ) λ . . .
...

...
...

...
...

. . .




= (0, 0, ...)

which gives the first equation

−λπ0 + µπ1 = 0

which gives

π1 =
λ

µ
π0

The next equation
λπ0 − (λ + µ)π1 + 2µπ2 = 0

gives, after some algebra

π2 =
λ2

2µ2
π0

The remaining equations all look the same:

λπn−1 − (λ + nµ)πn + (n + 1)µ πn+1, n = 2, 3, ...

and it is easy to check that the general solution is

πn =
ρn

n!
π0, n = 0, 1, 2, ...

whereρ = λ/µ. The condition
∑

n πn = 1 gives

1 = π0

∞∑

n=0

ρn

n!
= π0e

ρ

which gives stationary distribution

πn = e−ρ ρn

n!
, n = 0, 1, 2, ...

which we recognize as a Poisson distribution with meanρ. Note that the stationary
distribution always exists. The intuitive reason for this is that the larger the population
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becomes, the more likely that the next event is a death ratherthan an immigration.
Even if the immigration rateλ is enormous compared to the individual death rateµ,
sooner or later there will be so many individuals that deathsstart to compensate for
immigration. The jump chain has transition probabilities

pi,i+1 = −γi,i+1

γii
=

λ

λ + iµ

andpi,i−1 = iµ/(λ + iµ), i = 0, 1, ... and also note that the larger the population
becomes, the more frequent the events, since the expected holding time in statei is
1/(λ + iµ).

Since the structure of the generator is so simple in a birth–death process, it is possible
to find a general formula for the stationary distribution. The general form of the
generator is

G =




−λ0 λ0 0 0 0 . . .
µ1 −(λ1 + µ1) λ1 0 0 . . .
0 µ2 −(λ2 + µ2) λ2 0 . . .
0 0 µ3 −(λ3 + µ3) λ3 . . .
...

...
...

...
...

. . .




from which it is easily seen that the equationπG = 0 gives the first equation

−λ0π0 + µ1π1 = 0

which gives

π1 =
λ0

µ1
π0

and the remaining equations

λn−2πn−2 − (λn−1 + µn−1)πn−1 + µnπn = 0, n = 2, 3, ...

and it is easy to check that these are satisfied by

πn =
λ0λ1 · · ·λn−1

µ1µ2 · · ·µn
π0, n = 1, 2, ... (8.4.3)

Summing overn now yields that a stationary distribution exists if and onlyif

1 +

∞∑

n=1

λ0λ1 · · ·λn−1

µ1µ2 · · ·µn
< ∞

and the stationary distribution is then given by

π0 =

(
1 +

∞∑

n=1

λ0λ1 · · ·λn−1

µ1µ2 · · ·µn

)−1

and the remainingπn by Equation (8.4.3). Also see Problem 42 for a nice interpre-
tation of the equationπG = 0.
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8.4.3 Queueing Theory

A particular class of birth–death processes arise in modelsfor certain service systems.
Let us introduce the subject ofqueueing theorywith an example.

Example8.4.8. (The M/M/1 queue). Customers arrive according to a Poisson
process with rateλ to a service station with one server. Service times are i.i.d. ex-
ponential with rateµ and independent of the arrivals (note thatµ does not denote the
mean here; the mean service time is1/µ). If the server is busy, incoming customers
wait in line and as soon as a service is completed, the next begins. Describe the
system as a birth–death process, determining when it has a stationary distribution and
what it is.

We let the stateX(t) be the number of customers in the system (under service and
in line) at timet. Transition rates are given already in the problem;λi = λ for i ≥ 0
andµi = µ for i ≥ 1. The transition graph is

...

µµµ

λλλ

1 20

and to find the stationary distribution, note that

λ0λ1 · · ·λn−1

µ1µ2 · · ·µn
=

λn

µn

so withρ = λ/µ we see that a stationary distribution exists if and only if

1 +

∞∑

n=1

ρn =

∞∑

n=0

ρn < ∞

which is to say thatρ < 1. Using the formula for the geometric series, it is easy to
see that the stationary distribution in this case is

πn = (1 − ρ)ρn, n = 0, 1, 2...

a geometric distribution including0. The constantρ is called thetraffic intensity
and in order for a stationary distribution to exist, this must be strictly less than one,
meaning that service rates are higher than arrival rates. Only in this way can the
server be efficient to regularly clear out the system.

The jump chain is the simple random walk where the probability to step up is
p = λ/(λ + µ) = ρ/(1 + ρ), which means thatρ < 1 if and only if p < 1

2 .
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The system in this example is called anM/M/1 queue, where “M ” stands for
“Markov,” meaning that both interarrival times (firstM ) and service times (second
M ) are exponential, which is the only way in which this system satisfies the Markov
property. The “1” indicates that there is one server. Other, non-Markovian,queueing
systems are for exampleM/D/1, where service times are deterministic andG/G/1,
where both interarrival times and service times have some general distribution, not
necessarily exponential. The analysis of such systems require other methods, and we
will stick with theM/M queues and analyze them as continuous time Markov chains.
There are many variants of theM/M/1 queue. In the following three examples, we
examine some of these, leaving others for the Problems section.

Example8.4.9. (Finite waiting room). Consider theM/M/1 queue, but suppose
that there is only room forr customers in the system (the maximum queue length is
r − 1), denotedM/M/1/r.

The transition graph is

µ

r

λ λ

µ µ

...

λ

10

Again letρ = λ/µ. We have

r∑

n=0

ρn =





r + 1 if ρ = 1

1 − ρr+1

1 − ρ
if ρ 6= 1

which gives stationary distribution

πn =





1

r + 1
, n = 0, 1, ..., r if ρ = 1

(1 − ρ)ρn

1 − ρr+1
, n = 0, 1, ..., r if ρ 6= 1

Note how the stationary distribution is uniform ifρ = 1 and how the probabilityπr

approaches1 asρ → ∞.

Example8.4.10. (Balking). Consider theM/M/1 queue and suppose that an ar-
riving customer who finds the system not empty joins with probability q and leaves
otherwise.
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The only difference from theM/M/1 queue is that transitions fromi to i + 1 where
i ≥ 1 now occur according to a thinned Poisson process with rateλq. Thus we have
the transition graph

µ µ µ

...

λqλqλ

1 20

and we get
λ0λ1 · · ·λn−1

µ1µ2 · · ·µn
=

λnqn−1

µn

where we letρ = λq/µ to obtain

1 +
∞∑

n=1

λ0λ1 · · ·λn−1

µ1µ2 · · ·µn
= 1 +

1

q

∞∑

n=1

ρn

which is finite if and only ifρ < 1, which makes intuitive sense. Since

∞∑

n=1

ρn =
ρ

1 − ρ

the stationary distribution is given by






π0 =

(
1 +

ρ

q(1 − ρ)

)−1

πn =
ρnπ0

q
, n = 1, 2, ...

Note how we redefined the traffic intensityρ. We did this since we wantρ < 1 to be
the criterion for when the system is efficient, that is, when the server manages to deal
with the arrivals.

Example8.4.11. (More than one server). Consider theM/M/2 queue, which is
just like theM/M/1 queue except that there are two servers instead of one. An
arriving customer can thus get immediate service if the system is empty or if only
one server is busy.

The difference this time is what happens when both servers are busy. The time for a
service to be completed is now the minimum of two exponentials with rateµ and is
thusexp(2µ) (recall Example 3.10.3). The transition graph is
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2µ2µµ

...

λλλ

1 20

This time we get
λ0λ1 · · ·λn−1

µ1µ2 · · ·µn
=

λn

µ(2µ)n−1
= 2

(
λ

2µ

)n

which suggests that we define the traffic intensity asρ = λ/2µ. We then get

πn = 2ρnπ0, n ≥ 1

and the stationary distribution exists if and only ifρ < 1. Since
(

1 + 2

∞∑

n=1

ρn

)
=

1 + ρ

1 − ρ

the stationary distribution is given by





π0 =
1 − ρ

1 + ρ

πn =
2ρn(1 − ρ)

1 + ρ
, n ≥ 1

8.4.4 Further Properties of Queueing Systems

When a queueing system has settled in to have the stationary distribution, we say that
it is in equilibrium. Several different measures can be used to assess the efficiency
of the system, often calledperformance measures. Let us examine some of them for
theM/M/1 queue.

Example8.4.12. Consider theM/M/1 queue withρ < 1 in equilibrium. (a) What
is the expected number of customers in the system?(b) What is the expected queue
length?(c) When a customer arrives, what is the probability that she does not have
to wait in line? (d) When a customer arrives, what is her expected waiting time un-
til service?(e)When a customer arrives, what is her expected total time in the system?

Let us introduce some random variables. Thus, let

N = the number of customers in the system

Q = the queue length

W = the waiting time until service

T = the total time spent in the system
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For (a), we know thatN has distribution

πk = (1 − ρ)ρk, k = 0, 1, ...

the geometric distribution including0 with success probability1−ρ,and from Section
2.5.3 we know that

E[N ] =
ρ

1 − ρ

which answers (a). For (b), note that

Q =

{
0 if N = 0 or N = 1
N − 1 if N > 1

and hence

P (Q = 0) = π0 + π1

P (Q = k) = πk+1, k ≥ 1

which gives

E[Q] =
∞∑

k=0

kP (Q = k) =
∞∑

k=1

kπk+1

= ρ

∞∑

k=1

k(1 − ρ)ρk = ρE[N ] =
ρ2

1 − ρ

The answer to (c) is simplyπ0 = 1− ρ, and for (d), note thatW = 0 if the system is
empty and the sum ofN i.i.d. exponentials with mean1/µ if there areN customers
in the system (keep in mind thatµ does not denote the mean but the service rate). By
Corollary 3.11.6 we get

E[W ] = E[N ]
1

µ
=

ρ

µ(1 − ρ)

Finally, for (e), letS be a service time and note thatT = W + S to obtain

E[T ] =
ρ

µ(1 − ρ)
+

1

µ
=

1

µ(1 − ρ)

We summarize as follows. In theM/M/1 system in equilibrium, we have

E[N ] =
ρ

1 − ρ
, E[Q] =

ρ2

1 − ρ

E[W ] =
ρ

µ(1 − ρ)
, E[T ] =

1

µ(1 − ρ)
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There are many interesting relations between these expected values. For example,

E[Q]

E[N ]
=

E[W ]

E[T ]

which is also equal to the traffic intensityρ. Also, sinceµ = ρλ, we obtain

E[N ] = λE[T ] (8.4.4)

formulas that are intuitively reasonable. These relationshold for many queueing
systems, not only theM/M/1. Equation (8.4.4) is known asLittle’s formula. Also
note how all the expectations go to∞ asρ approaches1.

If there is finite waiting room, an obvious performance measure is how likely it is
that the system is full, in which case arriving customers arelost. Thus, the probability
that the system is full is the long-term proportion of arriving customers that are lost.
Let us consider one example.

Example8.4.13. Consider theM/M/1/r queue from Example 8.4.9. What pro-
portion of customers are lost?

This is the probability that the system is full,πr, which is

πr =






1

r + 1
if ρ = 1

(1 − ρ)ρr

1 − ρr+1
if ρ 6= 1

where we can note thatπr → 1 asρ → ∞.

8.5 MARTINGALES

In this section, we will introduce a class of stochastic processes calledmartingales7

that is particularly useful in a wide variety of situations where asymptotic properties
are of interest.

Let us go directly to the definition.

7The term originated in France in the 17th century as a class ofbetting strategies to increase the chances
in various games of gambling.
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Definition 8.5.1. A sequence of random variablesY1, Y2, . . . is called a mar-
tingale in discrete time with respect to the sequenceX1, X2, . . . if E[|Yn|] < ∞
and

E[Yn+1|X1, . . . , Xn] = Yn (8.5.1)

for all n = 1, 2, . . ..

The conditional expectation used in Definition 8.5.1 is a generalization of Definition
3.7.4, where we interpreted conditional expectation as a random variable. In this
context, (8.5.1) is a random variable assuming the valueE[Yn+1|X1 = x1, . . . , Xn =
xn] whenever the event{X1 = x1, . . . , Xn = xn} occurs.

In many applications, we can actually chooseXk = Yk for all k = 1, 2, . . . so that
(8.5.1) takes the form

E[Yn+1|Y1, . . . , Yn] = Yn

which better illustrates the fundamental property of a martingale. Basically, it says
that if we have observed the process forn steps, we at least know that the process in
the next step on average will not deviate from the last valueYn. The more general
definition above is useful in situations where we can writeYn as a function of the
underlying variablesX1, . . . , Xn.

Example8.5.1. One process that we have considered earlier that fits nicely into this
theory is the symmetric random walk from Section 8.3.1 whereX1, X2, . . . are i.i.d.
random variables whereP (Xk = 1) = P (Xk = −1) = 1

2 and

Sn =

n∑

k=1

Xk

The first property in Definition 8.5.1 is clearly satisfied sinceE[|Sn|] ≤ n < ∞ and

E[Sn+1|X1, . . . , Xn] = E[Xn+1 + Sn|X1, . . . , Xn] = E[Xn+1] + Sn = Sn

shows thatS1, S2, . . . is a martingale with respect toX1, X2, . . ..

Example8.5.2. (Branching Processes).Another example where martingales are
useful is the branching process introduced in Section 8.3.3. Here, the variables
X1, X2, . . . represent the number of offspring of individuals in a generation and

Zn =

Zn−1∑

k=1

Xk, n = 1, 2, . . .
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whereZ0 ≡ 1, denotes the number of individuals in generationn. If µ = E[Xk] <
∞, Proposition 8.3.7 implies thatE[|Zn|] = E[Zn] = µn < ∞ and

E[Zn+1|Z1, . . . , Zn] = E

[
Zn∑

k=1

Xk

∣∣∣∣∣Z1, . . . , Zn

]
= Znµ

showing thatZ1, Z2, . . . is a martingale with respect to itself, but only ifµ = 1.
However, it is actually quite easy to construct a martingalefor arbitraryµ by rescaling
Zn with respect to the mean as

Yn =
Zn

µn

Clearly,E[|Yn|] = E[Yn] = 1 for all n = 1, 2, . . . and

E[Yn+1|Z1, . . . , Zn] = E

[
1

µn+1

Zn∑

k=1

Xk

∣∣∣∣∣Z1, . . . , Zn

]

=
1

µn+1
Znµ = Yn

showing thatY1, Y2, . . . is a martingale with respect toZ1, Z2, . . ..

8.5.1 Martingale Convergence

The main result of this section is the following.

Proposition 8.5.1(Martingale Convergence Theorem). If Y1, Y2, . . . is a mar-
tingale with respect to some sequenceX1, X2, . . . andE[Y 2

n ] < c < ∞ for all
n = 1, 2, . . ., then there exists a random variableY such that

Yn → Y as n → ∞

with probability one.

Note that the convergence is almost surely, the stronger mode of convergence men-
tioned in the discussion of the law of large numbers in Section 4.2. This implies
thatYn also converges in probability and in distribution. Proposition 8.5.1 says that
there exists a random variableY in the limit, but it does not say anything about its
properties. If we want to find out its distribution, say, we have to use other methods,
e.g. limits of moment generating functions as described in the proof of Theorem 4.3.1.
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Example8.5.3. (Strong Law of Large Numbers).As a first example, we are going
to demonstrate how to use Proposition 8.5.1 to strengthen Theorem 4.2.18 which says
that the sample mean̄X converges in probability to the meanµ asn → ∞.

Let X1, X2, . . . be a sequence of i.i.d. random variables and let

Yn =

n∑

k=1

Xk − µ

k

Clearly,E[Yn] = 0 and

E[Y 2
n ] = Var[Yn] =

n∑

k=1

σ2

k2
< σ2

∞∑

k=1

1

k2
=

σ2π2

6

so as long asσ2 < ∞, the condition in Proposition 8.5.1 is satisfied. To conclude
thatYn is a martingale, we have to show thatE[|Yn|] < ∞ for all n, which follows
from

E[|Yn|] = E[|Yn| | |Yn| ≤ 1]P (|Yn| ≤ 1) + E[|Yn| | |Yn| > 1]P (|Yn| > 1)

< 1 × P (|Yn| ≤ 1) + E[Y 2
n ] < 1 +

σ2π2

6

Proposition 8.5.1 now says that there exists someY such thatYn → Y with prob-
ability one. To obtain the strong law of large numbers we needa mathematical result
called Kronecker’s lemma, which says that if we have a sequence of arbitrary real
numbersx1, x2, . . . and positive constantsb1, b2, . . . that increase strictly to infinity
then

n∑

k=1

xk

bk
→ z implies that

1

bn

n∑

k=1

xk → 0

asn → ∞, where|z| < ∞. We have to be a bit cautious since we are dealing with
random variables, but without going into details it turns out that

n∑

k=1

Xk − µ

k
→ Y implies that

1

n

n∑

k=1

(Xk − µ) → 0

asn → ∞ with probability one. Finally, we note that sincēX − µ → 0 it follows
thatX̄ → µ with probability one.

8Sometimes called theWeak Law of Large Numbersto distinguish it from this case.
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Example8.5.4. (Branching Processes).Recall Example 8.5.2 where we showed
thatYn = Zn/µn for n = 1, 2, . . . is a martingale with respect toZ1, Z2, . . .. Propo-
sition 8.3.7 implies that

E[Y 2
n ] = (E[Yn])2 + Var[Yn] = 1 +

1

µ2n
× σ2(µn − 1)µn−1

µ − 1

= 1 +
σ2(1 − µ−n)

µ(µ − 1)
< 1 +

σ2

µ(µ − 1)

if µ > 1. Hence, Proposition 8.5.1 says that there only exists a limit Y for the mar-
tingaleYn in the supercritical case. Luckily, this is the most interesting case because
we know from Proposition 8.3.8 that subcritical and critical branching processes al-
ways goes extinct eventually and it is possible, using othermethods, to conclude that
Yn → 0 for those cases.

The properties ofY are not that easy to obtain and we are not going to go much
further here. It is possible, though, to show thatY is continuous except for a point
mass at 0 equal to the extinction probability. This means that the event{Y > 0}
is equivalent to non-extinction and if we condition on this event, we can say that
Zn ≈ Y µn for largen. Essentially, the branching process grows with a more or less
deterministic rate but from a random level.

8.5.2 Stopping Times

Let us assume that we can interpret a martingale as the accumulated fortune of a
gambler playing a fair game. The game is fair in the sense thatthe expected amount
after each play is equal to the gambler’s fortune before the play. However, if we are
lucky we may win some money or if we are unlucky we may lose somemoney in
each individual play.

Let us, for simplicity, consider the symmetric random walk as a simple model for
gambling where we bet $1 and win $2 if we get heads and lose our bet if we get tails.
Throughout history, innumerable attempts have been made tobeat the odds, to come
up with the perfect foolproof strategy to win money no matterhow the dice fall or the
roulette wheel spins. One of the most (in)famous is the so called doubling strategy,
where you always double your bet if you lose one play.

If it takesn plays to get heads, we have lost1 + 2 + 4 + . . . + 2n−2 = 2n−1 − 1
dollars along the way but since the winning play brings in2n−1 dollars, we will gain
$1 altogether. Seems solid, doesn’t it, so, what’s the problem? If we letN denote the
number of plays it takes to get heads, we know thatpn = P (N = n) =

(
1
2

)n
. The

expected amount that we will have to bet to gain $1 is then

∞∑

n=1

(2n−1 − 1)pn =

∞∑

n=1

(
1

2
− 1

2n

)
= ∞

Hence, no matter how big your initial fortune is, you will most likely be ruined before
you stand to win any significant amount of money.
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This is an example of a strategy using astopping time, i.e. a predetermined rule
when to stop playing. The rule has to be formulated so that we know for sure, after
each play, if we will stop or not and that we are not allowed to use future, unobserved
observations. In mathematical terms, it can be defined as follows.

Definition 8.5.2. A random variableT that takes values in{1, 2, . . . ,∞} is
called a stopping time for the sequenceX1, X2, . . . if

P (T = n|X1 = x1, X2 = x2, . . .) =

P (T = n|X1 = x1, X2 = x2, . . . , Xn = xn) = 0 or 1

This means that if we know exactly what values the stochasticprocessX1, X2, . . .
has assumed up to and including stepn, we will know for sure if the event{T = n}
has occurred or not. Also, note that we allowT to assume an infinite value, which
corresponds to a situation where our rule is never met and we therefore never stop.

A poorly chosen stopping time usually means, as illustratedabove, that there is a
clear risk that we may have to wait for a very long time until westop and that things
may go awry before that. Exactly what conditions a useful stopping time should
satisfy are covered in the following result.

Proposition 8.5.2(Optional Stopping Theorem). Let Y1, Y2, . . . be a martin-
gale andT a stopping time with respect to some sequenceX1, X2, . . .. If

i) P (T < ∞) = 1

ii) E[|YT |] < ∞

iii) E[Yn|T > n]P (T > n) → 0 as n → ∞

thenE[YT ] = E[Y1].

There are several versions of the optional stopping theoremgiving slightly different
conditions, but those described in Proposition 8.5.2 are usually easy to verify. This
is bad news for all gamblers since it shows that there is no (reasonable) strategy that
will increase your expected fortune in a fair game.9 The doubling strategy described

9It is actually even worse because casinos and other gamblingvenues rarely offer any fair games.
The odds are usually stacked in their favour, bringing in a small but steady profit. Processes where
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above satisfies the first two conditions in Proposition 8.5.2but not the third since

E[Yn|T > n]P (T > n) = −(2n − 1) ×
(

1

2

)n

→ −1

asn → ∞.

Example 8.5.5. (Gambler’s Ruin). As a first example of the optional stopping
theorem, let us revisit Example 1.6.16 where Ann and Bob flipped a coin and Ann
paid Bob one dollar if it turned up heads and Bob paid Ann one dollar if it turned up
tails. Ann started witha dollars and Bob withb dollars and the question was which
one would be ruined first.

If we let Xk be 1 if we get heads in thekth flip and -1 otherwise, we can write
Bob’s total gain aftern coin flips as

Sn =

n∑

k=1

XK

This is clearly a martingale with respect toX1, X2, . . . since

E[Sn+1|X1, . . . , Xn] = (Sn − 1) × 1

2
+ (Sn + 1) × 1

2
= Sn

The game stops either whenSn = a (Ann is ruined) orSn = −b (Bob is ruined), so

T = min{n : Sn = a or Sn = −b}

is clearly a stopping time.
We know from Section 8.3.1 that the symmetric random walk is recurrent, which

means that it will hit eithera or−b eventually. This implies both thatP (T < ∞) = 1,
verifying the first condition of Proposition 8.5.2, and thatP (T > n) → 0 asn → ∞.
We also know that the random variableST only assumes the valuesa and−b so that
E[|ST |] ≤ max(a, b) < ∞. Finally, we realize that if the event{T > n} occurs, the
martingale has not stopped at timen so that−b < Sn < a and the third condition
follows.

Let p be the probability that Bob wins all the money (and Ann gets ruined) and
note thatp = P (ST = a). Proposition 8.5.2 now implies that

E[ST ] = ap − b(1 − p) = E[S1] = 0

which gives us that

p =
b

a + b

E[Yn+1|X1, X2, . . . , Xn] ≤ Yn are calledsupermartingales(replace≤ with ≥ and you getsubmartin-
gales) and have similar properties.
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We can also calculate the expected value ofT by considering the sequenceYn =
S2

n − n, which also is a martingale with respect toX1, X2, . . . since

E[Yn+1|X1, . . . , Xn] = E[(Sn + Xn+1)
2 − (n + 1)|Sn]

= S2
n + 2SnE[Xn+1] + E[X2

n+1] − (n + 1) = S2
n − n = Yn

It is not quite as easy to verify that all conditions of Proposition 8.5.2 are satisfied,
but we will skip those details. Hence, we know that

E[YT ] = E[S2
T − T ] = E[S2

T ] − E[T ] = E[Y1] = E[S2
1 − 1] = 0

and, since we know thatST is either equal toa with probabilityp or equal to−b with
probability1 − p, we get that

E[T ] = E[S2
T ] = a2p + b2(1 − p) =

a2b

a + b
+

b2a

a + b
= ab

which would be very difficult to calculate in any other way.

Example8.5.6. (Ballot Theorem).There has been a ballot between Ann and Bob
where Ann won witha votes whereas Bob only gotb votes. If the votes where counted
one by one in random order, what is the probability that Ann was ahead of Bob the
whole time?

Let Xk be equal to 1 if vote numberk was a vote for Ann and -1 if the vote was for
Bob. ThenSn =

∑n
k=1 Xk denotes the difference between the number of votes for

Ann and Bob aftern votes have been counted. The probability we are looking for
can be expressed asP (Sn > 0; 1 ≤ n ≤ N), whereN = a + b is the total number
of votes.

There are several ways to solve this classic probabilistic problem10 but we will
use the optional stopping theorem to do it here. It turns out that we can simplify the
problem by going backwards in time, creating a so calledbackwards martingale.

First, we note that aftern votes have been counted, Ann have(n + Sn)/2 votes
and Bob have(n − Sn)/2 votes. This implies that

P (Sn = Sn+1 + 1|Sn+1) =
(n + 1 − Sn+1)/2

n + 1

P (Sn = Sn+1 − 1|Sn+1) =
(n + 1 + Sn+1)/2

n + 1

10Introduced by the French mathematician Joseph Bertrand (1822–1900) in 1887. Martingale theory had
not been developed at the time, so he solved it using combinatorical methods.
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These conditional probabilities consider the events that we take away a vote for Bob
and we take away a vote for Ann, respectively, fromn + 1 counted votes.

Now, we define the sequenceY1, Y2, . . . , YN as

Yn =
SN−n+1

N − n + 1
n = 1, 2, . . . , N

which is a martingale with respect to itself since

E[Yn+1|Y1, . . . , Yn] = E

[
SN−n

N − n

∣∣∣∣SN , . . . , SN−n+1

]

=
1

N − n
{(SN−n+1 + 1)P (SN−n = SN−n+1 + 1|SN−n+1)

+(SN−n+1 − 1)P (SN−n = SN−n+1 − 1|SN−n+1)}

=
1

N − n

(
SN−n+1 +

(N − n + 1 − SN−n+1)/2

N − n + 1

− (N − n + 1 + SN−n+1)/2

N − n + 1

)

=
SN−n+1

N − n

(
1 − 1

N − n + 1

)
=

SN−n+1

N − n + 1
= Yn

Next, we define the stopping timeT as

T = min{min{n : Yn = 0}, N}

Since we are going backwards in time,T denotes the last time the candidates were
even and if this never happens, we letT = N , which corresponds to the first vote
counted. This means that ifT < N , the candidates were even atT andYT ≡ 0.
On the other hand, ifT = N , Ann was always ahead andYT ≡ 1. Since both the
martingale and the stopping time are bounded, it is obvious that all conditions in
Proposition 8.5.2 are satisfied, so we can conclude that

E[YT ] = E[Y1] = E

[
SN

N

]
=

a − b

a + b

Finally, since the random variableYT only assumes the values 0 and 1, we get that

E[YT ] = 0 × P (YT = 0) + 1 × P (YT = 1)

= 0 × P (T < N) + 1 × P (T = N) = P (T = N)

which yields the probability that Ann was always in the lead as

P (Ann always in the lead) = P (T = N) =
a − b

a + b
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8.6 RENEWAL PROCESSES

In Section 3.12, we introduced the Poisson process as a pointprocess with i.i.d.
exponentially distributed inter-arrival times. In this section, we will outline some
theory of the most obvious generalization of this, namely toallow the inter-arrival
times to have any non-negative distribution.

Let us start with the formal definition.

Definition 8.6.1. Let T1, T2, . . . be i.i.d. non-negative random variables such
thatP (Tk = 0) < 1 andSn =

∑n
k=1 Tk, then

N(t) = max{n : Sn ≤ t}

is a renewal processfor t ≥ 0.

The time pointsS1, S2, . . . are called therenewalssince it is like starting all over from
the beginning every time an inter-arrival time ends. SinceN(t) = n is equivalent to
Sn ≤ t < Sn+1, we see thatN(t) counts the number of renewals in the interval[0, t].
The cdf ofTk andSn will be denotedF (t) = P (Tk ≤ t) andFn(t) = P (Sn ≤ t),
respectively, and we letµ andσ2 denote the mean and the variance ofTk.

The exact distribution ofN(t) is usually very difficult to derive, except for a few
simple cases, but it can at least theoretically be expressedin the form

P (N(t) = n) = P (Sn ≤ t < Sn+1) = P (Sn ≤ t) − P (Sn+1 ≤ t)

= Fn(t) − Fn+1(t)

for n = 0, 1, 2, . . ., whereF0(t) = 1. We can also write the meanm(t) = E[N(t)],
using Proposition 2.4.1, as

m(t) =

∞∑

n=1

P (N(t) ≥ n) =

∞∑

n=1

P (Sn ≤ t) =

∞∑

n=1

Fn(t)

The meanm(t) is also called therenewal functionand it turns out that it uniquely
determines the renewal process, i.e. if we are given an expression form(t), we can
in principle calculate the distributionF (t) of the inter-arrival times.

Example8.6.1. Let us have a look at the Poisson process expressed as a renewal
process. Since the inter-arrival times are exponentially distributed, we know that

F (t) = 1 − e−λt

and, by Proposition 3.10.6 and Section 2.8.2, that

Fn(t) = 1 − e−λt
n−1∑

k=0

(λt)k

k!
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The distribution ofN(t) can now be calculated as

P (N(t) = n) =

(
1 − e−λt

n−1∑

k=0

(λt)k

k!

)
−
(

1 − e−λt
n∑

k=0

(λt)k

k!

)
= eλt (λt)n

n!

which is the Poisson distribution with meanλt. The renewal function becomes

m(t) =

∞∑

n=1

(
1 − e−λt

n−1∑

k=0

(λt)k

k!

)
=

∞∑

n=1

(
1 − e−λt

(
eλt −

∞∑

k=n

(λt)k

k!

))

= e−λt
∞∑

n=1

∞∑

k=n

(λt)k

k!
= e−λt

∞∑

k=1

k∑

n=1

(λt)k

k!
= e−λt

∞∑

k=1

(λt)k

(k − 1)!

= e−λtλt

∞∑

k=1

(λt)k−1

(k − 1)!
= λt

where we used the Taylor expansion ofeλt. This is a very longwinded way to derive
the mean of the Poisson process but at least it shows that the theory works. What we
have shown is that the Poisson process has a linear renewal function and, since the
renewal function determines the renewal process, it is worth noting that the Poisson
process is theonly renewal process with a linear renewal function.

For continuous inter-arrival times, we can use the propertythat the renewal process
starts over at every renewalSn to obtain the following result.

Proposition 8.6.1 (The Renewal Equation). If T1, T2, . . . are continuous
inter-arrival times with cdfF (t) and pdff(t), the renewal functionm(t) satis-
fies

m(t) = F (t) +

∫ t

0

m(t − u)f(u) du

Proof. If we condition on the time of the first renewal, Proposition 3.7.1 says that
we can write the renewal function

m(t) = E[N(t)] =

∫ ∞

0

E[N(t)|T1 = u]f(u) du (8.6.1)

Now, if the first renewal occurs aftert, i.e. thatu > t holds, clearlyE[N(t)|T1 =
u] = 0. On the other hand, ifu ≤ t, we count the first renewal and start the process
from the beginning at timeu. This means that

E[N(t)|T1 = u] = 1 + E[N(t − u)] = 1 + m(t − u) u ≤ t
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which means that we can write (8.6.1) as

m(t) =

∫ t

0

(1 + m(t − u))f(u) du = F (t) +

∫ t

0

m(t − u)f(u) du

The main advantage of Proposition 8.6.1 is that we only need to consider the distri-
bution of the first renewal to get the renewal function, but instead we need to solve an
integral equation, which is not that easy in most cases. Still, it gives us a tool to verify
whether a proposedm(t) actually is a renewal function for a given renewal process.

8.6.1 Asymptotic Properties

Since the exact distribution of the renewal process is difficult to obtain in most cases,
it would at least be interesting to see howN(t) behaves ast → ∞. The first result is
essentially a version of the Law of Large Numbers.

Proposition 8.6.2. Forµ > 0, it holds that

N(t)

t

P→ 1

µ
ast → ∞

Proof. SinceSN(t) is the time of the last renewal beforet, we note that

SN(t) ≤ t < SN(t)+1

which yields that
SN(t)

N(t)
≤ t

N(t)
<

SN(t)+1

N(t)
(8.6.2)

for N(t) > 0. Now, it holds thatN(t) → ∞ ast → ∞ (Why is that?), so the Law
of Large Numbers implies that

SN(t)

N(t)

P→ µ ast → ∞

Furthermore, using a similar argument yields that

SN(t)+1

N(t)
=

SN(t)+1

N(t) + 1
× N(t) + 1

N(t)

P→ µ × 1 ast → ∞

We have shown that both the upper and lower bound in (8.6.2) converge in probability
to µ and sincet/N(t) is between these, it has to converge in probability toµ as well.
Taking the reciprocals completes the proof.
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The ratio1/µ is called therenewal ratebecause it denotes the average number of
renewals per time unit in the long run. Note that the result holds also for infiniteµ,
in which case we interpret the renewal rate as 0.

In light of Proposition 8.6.2, the following result seems quite natural.

Proposition 8.6.3(Elementary Renewal Theorem). Forµ > 0, it holds that

m(t)

t
→ 1

µ
ast → ∞

It would seem that this is a simple consequence of Proposition 8.6.2,but that is actually
not the case. Proving the elementary renewal theorem turns out to be rather difficult
and requires some asymptotic theory that we have not introduced.

The following result is slightly more general but holds onlyfor continuous inter-
arrival times.

Proposition 8.6.4(Renewal Theorem). For continuousF (t) andµ > 0, it
holds that

m(t + s) − m(t) → s

µ
ast → ∞

This result says essentially that if we slide a ruler of length s on the time axis, the
expected number of renewals covered by the ruler will be, at least approximately,
proportional to the length of the ruler. For a fixed and larget, Propositions 8.6.3 and
8.6.4 can be summarized as

m(t) ≈ t

µ

m(t + s) − m(t) ≈ s

µ

which illustrates how they are connected. Proposition 8.6.3 can be regarded as a
global average of renewals while Proposition 8.6.4 gives a similar local property.

There is also a central limit theorem for renewal processes.
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Proposition 8.6.5. Forµ < ∞ andσ2 < ∞, it holds that

P

(
N(t) − t/µ

σ
√

t/µ3
≤ x

)
→ Φ(x)

ast → ∞, whereΦ(x) is the cdf of the standard normal distribution.

Proof. For a fixedx, let
t = nµ − xσ

√
n (8.6.3)

and consider the probability

P (N(t) < n) = P

(
N(t) − t/µ

σ
√

t/µ3
<

nµ − t

σ
√

t/µ

)
= P

(
N(t) − t/µ

σ
√

t/µ3
< x

√
nµ

t

)

Now, if we letn → ∞ we see from (8.6.3) thatt → ∞ and vice versa. Also, (8.6.3)
implies that

√
nµ/t → 1, which means that

lim
n→∞

P (N(t) < n) = lim
t→∞

P

(
N(t) − t/µ

σ
√

t/µ3
< x

)

Finally, since the events{N(t) < n} and{Sn > t} are equivalent, we get that

P (N(t) < n) = P (Sn > t) = P

(
Sn − nµ

σ
√

n
>

t − nµ

σ
√

n

)

= P

(
Sn − nµ

σ
√

n
> −x

)
→ 1 − Φ(−x) = Φ(x)

asn → ∞ by the central limit theorem.

Example8.6.2. A Geiger-Müller counter (or Geiger counter for short) is anelec-
tronic device that detects radioactive particles,usuallyfrom beta and gamma radiation.
One problem is that every time a particle is registered, the counter has to be reset be-
fore it can detect new particles. These periods are calleddead periodsbecause any
particles that arrive while the counter is reset are lost. Therefore, some appropriate
adjustment needs to be done in order to avoid underestimation of the radioactive
intensity.

Let us assume that the radioactive particles arrive according to a Poisson process
with rate λ and that the lengths of the dead periodsY1, Y2, . . . are i.i.d. random
variables. LetX1, X2, . . .denote the times until a reset counter registers a particle and,



520 STOCHASTIC PROCESSES

from the properties of the Poisson process, these are independent and exponentially
distributed with parameterλ. Furthermore, we assume that the lengths of the dead
periods are independent of the Poisson process.

If we let the inter-arrival times beTk = Xk + Yk for k = 1, 2, . . ., we can define
the renewals as

Sn =

n∑

k=1

Tk =

n∑

k=1

(Xk + Yk)

In this case, we get the mean and variance of the inter-arrival times as

µ =
1

λ
+ µY (8.6.4)

σ2 =
1

λ2
+ σ2

Y

Let us say that we have run the counter for a long timet and registeredN(t) particle
emissions.11 Proposition 8.6.2 implies that

N(t) ≈ t

µ
=

t

1/λ + µY

which gives us the appropriate estimator ofλ as

λ̂ =
1

t

N(t)
− µY

Having obtained an estimate forλ, we can then use Proposition 8.6.5 to calculate
a confidence interval. First, we get an interval for1/µ with approximate confidence
levelq as

1

µ
≈ N(t)

t
± z

σ√
tµ3

≈ N(t)

t
± zσ̂

√
N(t)3

t2

whereΦ(z) = (1 + q)/2. In the second approximation above, we used the fact that
µ ≈ t/N(t) and

σ̂2 =
1

λ̂2
+ σ2

Y

Then, (8.6.4) can be used to transform the interval forλ.
For a practical example, let us assume that we have detectedN(t) = 5630particles

during one second and the dead periods are uniformly distributed between 0 and 200
µs. Let us use 1 ms as a convenient time unit so thatλ denotes the average number of
particle emissions per ms. It is clear thatµY = 0.1, which yields the point estimate

λ̂ =
1

1000

5630
− 0.1

= 12.9

11If the time pointt ends up in a dead period, the number of detected particles is actually N(t) + 1 since
the last particle is registered beforet although the corresponding inter-arrival time ends aftert. However,
if t is large, this is negligible.
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Now, we get

σ̂2 =
1

12.92
+

0.22

12
= 0.0094

which yields the 95 % interval

1

µ
≈ 5630

1000
± 1.96

√
0.0094

√
56303

10002
= 5.63 ± 0.08

Finally, this yields the limits forλ as

1
1

5.58
− 0.1

≤ λ ≤ 1
1

5.71
− 0.1

(≈ 95%)

or
12.5 ≤ λ ≤ 13.3 (≈ 95%)

Example8.6.3. (Delayed Renewal Process).There is one variation of the regular
renewal process that is of particular interest, where the distribution of the initial inter-
arrival timeT1 may be different from the subsequent. Such a situation may emerge if
we start the process in between two adjacent renewals ratherthan at a specific renewal
time, hence the term delayed renewal process. Since only thefirst inter-arrival time
differs, all previous limiting results can be shown to hold also for the delayed renewal
process. In fact, it has some interesting theoretical properties that actually can be
used to prove some of these results for the regular renewal process.

Let F (t) denote the cdf ofT2, T3, . . . as before and denote the cdf ofT1 by F̃ (t).
Furthermore, let̃Sn denote the renewals,̃N(t) the delayed renewal process andm̃(t)
the renewal function. Now, we can use the same method as in theproof of Proposition
8.6.1 to obtain

m̃(t) =

∫ t

0

E[Ñ(t)|T1 = u]f̃(u) du =

∫ t

0

(1 + m(t − u))f̃(u) du

= F̃ (t) +

∫ t

0

m(t − u)f̃(u) du (8.6.5)

Note that we get the meanm(t− u) in the integral since we get an ordinary renewal
process after conditioning on{T1 = u}. If we apply Proposition 8.6.1 tom(t − u),
we can write (8.6.5) as

F̃ (t) +

∫ t

0

(
F (t − u) +

∫ t−u

0

m(t − u − v)f(v) dv

)
f̃(u) du

= F̃ (t) +

∫ t

0

F (t − u)f̃(u) du +

∫ t

0

(∫ t−v

0

m(t − v − u)f̃(u) du

)
f(v) dv
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The first integral can be transformed, using integration by parts, into

∫ t

0

F (t − u)f̃(u) du =
[
F (t − u)F̃ (u)

]t
0
+

∫ t

0

f(t − u)F̃ (u) du

=

∫ t

0

F̃ (t − u)f(u) du

and we can use (8.6.5) again to rewrite the inner integral as

∫ t−v

0

m(t − v − u)f̃(u) du = m̃(t − v) − F̃ (t − v)

Together, these results imply that

m̃(t) = F̃ (t) +

∫ t

0

F̃ (t − u)f(u) du +

∫ t

0

(m̃(t − v) − F̃ (t − v))f(v) dv

= F̃ (t) +

∫ t

0

m̃(t − v)f(v) dv (8.6.6)

which is the renewal equation for the delayed renewal process.
As for the ordinary renewal process, this equation uniquelydetermines the renewal

function. If we look at the asymptotic properties ast → ∞, we realize that they
depend largely onF (t) and that the initial inter-arrival time eventually becomes
irrelevant. This means that we may choose whateverF̃ (t) we like without affecting
any limiting results. Proposition 8.6.3 says that the scaled renewal functionm(t)/t
for a regular renewal process converges towards1/µ and, as mentioned above, the
same can be shown to hold for̃m(t)/t. Let us see if we can choosẽF (t) so that

m̃(t) =
t

µ

for all t ≥ 0. In that case, (8.6.6) implies that

F̃ (t) = m̃(t) −
∫ t

0

m̃(t − v)f(v) dv =
t

µ
−
∫ t

0

t − v

µ
f(v) dv

=
t

µ
−
[
t − v

µ
F (v)

]t

0

−
∫ t

0

1

µ
F (v) dv =

1

µ

∫ t

0

(1 − F (v)) dv

as long asµ < ∞.

8.7 BROWNIAN MOTION

The simple random walk presented in Section 8.3.1 describesa discrete process that
at unit time points jumps one unit up or one unit down with fixedprobabilitiesp and
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1− p, respectively, independent of all previous jumps. Let us see if we can construct
a continuous version of this that makes infinitesimally small jumps infinitesimally
often. To achieve this, we can consider random walks with jump sizes∆x and time
intervals of length∆t and then gradually decrease∆x and∆t towards zero. In the
following, we will only consider the symmetric random walk wherep = 1 − p = 1

2 .
Let X1, X2, . . . be independent random variables such that

Xk =





+1 with probability1/2.

−1 with probability1/2.
(8.7.1)

Then we can define the process

Sn(t) = ∆xX1 + ∆xX2 + . . . + ∆xX[t/∆t] = ∆x
n∑

i=1

Xi (8.7.2)

wheren = [t/∆t] denotes the largest integer less than or equal to the real number
t/∆t.

SinceE[Xk] = 0 and Var[Xk] = 1, we can calculate the mean and variance of
(8.7.2) as

E[Sn(t)] = ∆x

n∑

i=1

E[Xk] = 0

Var[Sn(t)] = (∆x)2
n∑

i=1

Var[Xk] = (∆x)2n = (∆x)2
[

t

∆t

]
(8.7.3)

If we let ∆t → 0, thenn → ∞ and we can use the Central Limit Theorem to
conclude that the sum in (8.7.2), properly standardized, converges to the standard
normal distribution.

To obtain a similar result forSn(t), we also have to let∆x → 0 in some orderly
fashion. It is clear from (8.7.3) that∆x would have to decrease at a slower rate than
∆t, of the order

√
∆t, if we are to obtain a positive and finite variance in the limit.

For simplicity, let∆x = σ
√

∆t to obtain the variance limit Var[Sn(t)] → σ2t and
let ∆t → 0. Then, the Central Limit Theorem implies that

Sn(t) − E[Sn(t)]√
Var[Sn(t)]

d→ N(0, 1) (8.7.4)

asn → ∞.
Since bothE[Sn(t)]and Var[Sn(t)]converge to finite and, for the variance,positive

limits, we can reformulate (8.7.4) as

Sn(t)
d→ B(t) ∼ N(0, σ2t) (8.7.5)

Another important property of the limiting processB(t) is that it has independent
increments, i.e. that the changesB(t3) − B(t2) andB(t2) − B(t1) are independent
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Fig. 8.3 Two realizations of Brownian motions in the unit interval for (a) σ = 1 and (b)
σ = 4.

random variables fort1 < t2 < t3, which should be intuitively clear from the random
walk definition above. In fact, these are the two fundamentaldefining properties of
the process.

Definition 8.7.1. The Brownian Motion12B(t) is a real valued stochastic pro-
cess in real timet ≥ 0 that satisfies

i) B(0) = 0

ii) If t1 < t2 < . . . < tn, thenB(t1), B(t2)−B(t1), . . . , B(tn)−B(tn−1)
are independent.

iii) B(t + s) − B(s) ∼ N(0, σ2t) for t, s ≥ 0

Note that part iii) of Definition 8.7.1 is slightly more general than (8.7.5) since it
says that all increments are also normally distributed. It does behave very erratically,
which is illustrated in Figure 8.3 where two simulated Brownian motions are shown
for σ = 1 andσ = 4.

This is one of the most studied stochastic processes in the mathematical literature
partly because it has a lot of fascinating theoretical properties but also because it has
been found to be very useful in quite different areas like physics (quantum mechanics),
electronics (filtering theory) and economics (option pricing). We will not have time to

12Named after the Scottish botanist Robert Brown (1773–1858)who studied pollen grains submerged in
liquid. To his amazement he observed that particles ejectedfrom the pollen grains moved in a very erratic
random fashion. He was the first to observe this phenomenon but he did not manage to explain it. Later,
the American mathematician Norbert Wiener (1894–1964) developed the mathematical theory behind it
and therefore the processB(t) is sometimes also called theWiener process
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explore the Brownian motion in detail here except for some ofthe most fundamental
and useful properties.

One interesting feature ofB(t) is that it is scale invariant in both time and space.
It is quite easy to see, by checking the conditions in Definition 8.7.1, that ifB(t) is a
Brownian motion with varianceσ2, thenB(t)/σ is a Brownian motion with variance
1. This is called thestandard Brownian motionand since any Brownian motion can
be standardized in this way, it is common to assume thatσ2 = 1. Similarily, it can be
shown that ifB(t) is a standard Brownian motion, thenB(σ2t) is a Brownian motion
with varianceσ2. These scalings can also be combined.

Proposition 8.7.1(Self-similarity). Let B(t) be a standard Brownian motion.
Then the process

B̃(t) =
B(a2t)

a

is also a standard Brownian motions for anya 6= 0.

Essentially, what this says is that if we would “zoom in” on the Brownian motion we
would see a process that would look quite similar to what we started with, i.e. the
Brownian motion can be charaterized as arandom fractal. However, in order for this
to work, we see that the rescaling of the horizontal time axishas to be the square of
the rescaling of the vertical space axis. Also note that the rescaling constants does
not have to be positive. A negativea means that we reverse the vertical axis and, by
symmetry of the normal distribution, we still get a Brownianmotion.

8.7.1 Hitting Times

One quantity of interest is the time until the Brownian motion attains some predeter-
mined level. As a practical example, let us say that we buy a share of stock whose
value can be described by a Brownian motion and decides to sell this after its value
has increased by a certain amount. Then we would like to know how long time it
takes until our investment pays off. We start with the following definition.

Definition 8.7.2. The time until the Brownian motionB(t) hitsa is called the
hitting timeand is defined

Ta = min{t : B(t) = a}
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Clearly,Ta is a non-negative continuous random variable whose distribution is given
below.

Proposition 8.7.2. The hitting timeTa of a standard Brownian motion has pdf

fTa(t) =
|a|√
2πt3

e−a2/2t t > 0

for anya 6= 0.

Proof. Let us first assume thata > 0 and consider the event that the Brownian
motion exceedsa at timet. The law of total probability gives us

P (B(t) ≥ a) = P (B(t) ≥ a|Ta > t)P (Ta > t)

+P (B(t) ≥ a|Ta ≤ t)P (Ta ≤ a) (8.7.6)

The first conditional probability above is clearly 0 since the event{Ta > t} means
that the Brownian motion has not hita at timet and sinceB(t) is continuous, it cannot
be abovea. If we turn to the second conditional probability, the condition says that
we have hita beforet. Then we can split upB(t) in the two parts

B(t) = B(Ta) + (B(t) − B(Ta)) = a + (B(t) − a)

Now, the incrementB(t) − a is normally distributed with mean 0, which means that

P (B(t) ≥ a|Ta > t) = P (B(t) − a ≥ 0) =
1

2

by symmetry. This means that (8.7.6) can be written

P (Ta ≤ t) = 2P (B(t) ≥ a) = 2

(
1 − Φ

(
a − 0√

t

))

Fora < 0 we consider the event{B(t) ≤ a} and, again by symmetry, we get that

P (Ta ≤ t) = 2P (B(t) ≤ a) = 2Φ

(
a − 0√

t

)
= 2

(
1 − Φ

(
− a√

t

))

Hence, the cdf can be written

FTa(t) = 2

(
1 − Φ

( |a|√
t

))
(8.7.7)

and taking the derivative with respect tot yields the pdf

−2φ

( |a|√
t

)
×
(
− |a|

2t3/2

)
=

|a|√
2πt3

e−a2/2t
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The properties of this distribution are not that easy to investigate. Even ifTa is finite
with probability 1, implying that we will hita eventually, it turns out that the mean
is infinite, in analogy with Corollary 8.3.4, suggesting that it might take awhile. The
median, however, turns out to be just1.67a2, so for smalla there is a fair chance that
we will reacha fairly soon.

Example8.7.1. Since the Brownian motion can be characterized as the scaledlimit
of a symmetric random walk, we can use its properties to say something, at least
approximately, about random walks. Therefore, let

Sn =

n∑

k=1

Xk

whereX1, X2, . . . are defined in (8.7.1),be a symmetric random walk. As an example,
let us consider the probability that the random walk will reachSn = 100 within 1000
steps.

If we let ∆t = 0.001 in and∆x =
√

∆t =
√

0.001, by the proper scaling, we see
that the event thatSn reaches 100 within 1000 steps is equivalent toSn(t) defined
by (8.7.2) reaching100 ∗∆x =

√
10 in the interval[0, 1]. Since∆t is comparatively

small, we can use (8.7.5) to conclude thatSn(t)
d≈ B(t), which means that we can

express the event approximately as{T√10 ≤ 1} and (8.7.7) yields that

P ( max
0≤n≤1000

Sn ≥ 100) ≈ P (T√10 ≤ 1) = 2(1 − Φ(3.16)) = 0.0016

This is quite unlikely, so let us consider 10,000 steps instead. We could do this by
another rescaling where∆t = 10−4, but it suffices to use the scaling we have and
instead look at the timet = n∆t = 10. Then we get that

P ( max
0≤n≤10,000

Sn ≥ 100) ≈ P (T√10 ≤ 10) = 2(1 − Φ(1)) = 0.32

Another related quantity of interest is the maximum of a Brownian motion in a
fixed interval. Therefore, we define the random variable

Mt = max
0≤s≤t

B(t)

for the standard Brownian motionB(t). This variable has the following distribution.
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Proposition 8.7.3. The maximumMt of a standard Brownian motion in the
interval[0, t] has pdf

fMt(x) =
2√
2πt

e−x2/2t x > 0

Proof. The cdf ofMt can be written

FMt(x) = P (Mt ≤ x) = 1 − P (Mt > x) = 1 − P (Tx < t)

since we have to hit the levelx in order to exceed it before the time pointt. Now,
equation (8.7.7) yields that

FMt(x) = 1 − FTx(t) = 1 − 2

(
1 − Φ

( |x|√
t

))
= 2Φ

(
x√
t

)
+ 1

sincex > 0, and taking the derivative with respect tox gives us the pdf

fMt(x) = 2φ

(
x√
t

)
× 1√

t
=

2√
2πt

e−x2/2t

Sincet is fixed andx is variable, this distribution is easier to understand. Essentially,
it consists of the positive part of a normal distribution with mean 0 and variancet,
which among other things means that the mean and variance canbe calculated ana-
lytically (see Problem 66).

8.7.2 Variations of the Brownian Motion

The standard Brownian motionB(t) is quite interesting in itself, but it is also used
as a component in other, more realistic processes applied invarious fields. In this
section we are going to look at some of the most common variations ofB(t).

Example8.7.2. (Brownian Motion with Drift). Sometimes it is not enough to look
at a Brownian motion with zero mean but rather a process that have a tendency to
drift in a particular direction. We say that a Brownian motion with drift parameterµ
and varianceσ2 is defined as

X(t) = µt + σB(t)

For a fixedt, we get thatX(t) is normally distributed with meanµt and varianceσ2t.
This means that the mean is increasing (or decreasing forµ < 0) towards infinity, but
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if the variance also increase towards infinity, can we reallybe sure that the process
will have a tendency to drift upwards? This is indeed the case, which can be seen by
considering the limit of

P (X(t) > a) = 1 − Φ

(
a − µt

σ
√

t

)
= 1 − Φ

(
a

σ

1√
t
− µ

σ

√
t

)

ast → ∞. If µ > 0, we see that the argument ofΦ above tends to−∞, which means
thatP (X(t) > a) → 1 for anya showing thatX(t) will eventually exceed any finite
level.

Example8.7.3. (Geometric Brownian Motion).LetX(t) be Brownian motion with
drift as defined in Example 8.7.2. Geometric Brownian motionis then defined as

Y (t) = eX(t) = eµt+σB(t)

Since ordinaryBrownian motion can be characterized as a sumof independentnormal
increments, this gives us a process that can handle productsof independent increments.
Furthermore, sinceX(t) is normally distributed for any fixedt, we get thatY (t)
follows a lognormal distribution (see Section 2.8.1). Thismeans that we can get the
mean and variance as

E[Y (t)] = eµt+σ2t/2 = e(µ+σ2/2)t (8.7.8)

Var[Y (t) = e2µt+σ2t
(
eσ2t − 1

)

It is interesting to note that we can have an increasing mean even if µ is negative as
long asµ > −σ2/2. It also holds that we can have an increasing variance ifµ > −σ2.
This yields an interesting interval−σ2 < µ < −σ2/2 where we get a process whose
mean decreases exponentially to zero but whose variance increases exponentially to
infinity. Basically, it means that the drift downwards is notstrong enough to prevent
brief excursions upwards and the exponential functions amplifies the effect rather
strongly.

One of the most common applications of the geometric Brownian motion is to use
it as a model for stock prices and even whole stock exchange indices. Since price
fluctuations are relative to the stock, we get a natural situation where increments are
multiplicative rather than additive. In this context,µ is usually called theexpected
logarithmic returnandσ thevolatility of the stock. Therisk is usually interpreted as
the probability that the stock will decrease in value over a fixed time period, i.e.

P (Y (t) < Y (0) = 1) = P (X(t) < 0) = Φ

(
0 − µt

σ
√

t

)
= Φ

(
−µ

σ

√
t
)

This shows that in order to minimize the risk, we should choose a stock with high
expected return but low volatility. This is unfortunately not always possible in reality,
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stock with high expected return often suffer from high volatility and vice versa. On
the other hand, a high volatility also means a higher expected value, as shown in
(8.7.8), so it might still be worth to accept the higher risk.The geometric Brownian
motion has also proved to be a valuable tool in the field ofoption pricing, but we will
not go further into that area here.

Example8.7.4. (Brownian Bridge). In some situations, we may be interested in
the properties of a Brownian motion that returns to its starting point. Without loss of
generality, we will consider a standard Brownian motionB(t) that returns to 0 at time
t = 1. Brownian bridges with arbitrary varianceσ2 and arbitrary time pointst can
be obtain by appropriate time and space scaling. One way to dothat is to condition
on the event{B(1) = 0}, but an equivalent and more convenient construction is

B◦(t) = B(t) − tB(1)

The Brownian bridgeB◦(t) is a linear combination of two normally distributed quan-
tities and, hence, also normally distributed. The mean is clearly 0 and to calculate
the variance, we first note thatB(t) andB(1) − B(t) are independent and normally
distributed increments, which yields that

Var[B◦(t)] = Var[B(t) − tB(1)] = Var[(1 − t)B(t) − t(B(1) − B(t))]

= (1 − t)2Var[B(t)] + t2Var[B(1) − B(t)]

= (1 − t)2t + t2(1 − t) = t(1 − t)

One of the most important applications of the Brownian bridge is as a large sample
approximation of the empirical distribution function

F̂n(x) =
1

n

n∑

k=1

I{Xk≤x}

introduced in Section 6.9.1. We note that, for a fixedx, the total numberY of events
{Xk ≤ x} that occur is binomially distributed with parametersn andp = F (x).
Then, the Central Limit Theorem implies that

Y − np√
np(1 − p)

d→ N(0, 1)

asn → ∞ and, sincêFn(x) = Y/n, we get that

√
n(F̂n(x) − F (x))

d→ N(0, F (x)(1 − F (x)))
d
= B◦(F (x))

Now, this result holds pointwise for every fixedx, but can actually be generalized to
hold uniformly over the whole interval and is then usually expressed as

√
n(F̂ (·) − F (·)) d→ B◦(F (·)) (8.7.9)
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asn → ∞13. To show this requires more elaborate mathematical tools than we have
time to go into here. Suffice it to say that it can be used to derive distributions of more
complex quantities like, for instance, the test statisticDn = maxx |F̂n(x)−F0(x)| for
the one-sample Kolmogorov-Smirnov test introduced in Section 6.9.1. Then (8.7.9)
implies that √

nDn
d→ max

x
|B◦(F0(x))|

which in turn can be used to derive (6.9.3).

PROBLEMS

Section 8.2. Discrete-time Markov Chains

1 The weather at a coastal resort is classified each day simply as “sunny” or “rainy.” A
sunny day is followed by another sunny day with probability0.9, and a rainy day is
followed by another rainy day with probability0.3. (a)Describe this as a Markov chain.
(b) If Friday is sunny, what is the probability that Sunday is also sunny?(c) If Friday is
sunny, what is the probability that both Saturday and Sundayare sunny?

2 At another resort, it is known that the probability that any two consecutive days are both
sunny is0.7 and that the other three combinations are equally likely. Find the transition
probabilities.

3 A machine produces electronic components that may come out defective and the process
is such that defective components tend to come in clusters. Adefective component is
followed by another defective component with probability0.3, whereas a nondefective
component is followed by a defective component with probability 0.01. Describe this
as a Markov chain, and find the long-term proportion of defective components.

4 An insurance company classifies its auto insurance policyholders in the categories
“high,” “intermediate,” or “low” risk. In any given year, a policyholder has no accidents
with probability0.6, one accident with probability0.2, two accidents with probability
0.1, and more than two accidents with probability0.1. If you have no accidents, you
are moved down one risk category; if you have one, you stay where you are; if you
have two accidents, you move up one category; and if you have more than two, you
always move to high risk.(a) Describe the sequence of moves between categories of
a policyholder as a Markov chain.(b) If you start as a low-risk customer, how many
years can you expect to stay there?(c) How many years pass on average between two
consecutive visits in the high-risk category?

5 Consider the ON/OFF system from Example 8.2.4. LetXn be the state aftern steps,
and defineYn = (Xn, Xn+1). Show that{Yn} is a Markov chain on the state space
{0, 1} × {0, 1}, find its transition matrix and stationary distribution.

6 Suppose that statei is transient and thati → j. Canj be recurrent?

7 Consider the state spaceS = {1, 2, ..., n}. Describe a Markov chain onS that has only
one recurrent state.

13This result is usually calledDonsker’s Theorem
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8 Consider an irreducible Markov chain on a finite state space,such that the transition
matrix is symmetric (pij = pji for all i, j ∈ S). Find the stationary distribution.

9 Markov chains are named for Russian mathematician A. A. Markov, who in the early
twentieth century examined the sequence of vowels and consonants in the1833 poem
Eugene Oneginby Alexander Pushkin. He empirically verified the Markov property and
found that a vowel was followed by a consonant87% of the time and a consonant was
followed by a vowel66% of the time. (a) Give the transition graph and the transition
matrix. (b) If the first letter is a vowel, what is the probability that thethird is also a
vowel? (c) What are the proportions of vowels and consonants in the text?

10 A text is such that a vowel is followed by a consonant80% of the time and a consonant
is followed by a vowel50% of the time. In the following cases, how should you guess in
order to maximize your probability to guess correctly:(a) a letter is chosen at random,
(b) a letter is chosen at random and the next letter in the text is recorded,(c) five letters
are chosen at random with replacement,(d) a sequence of five consecutive letters is
chosen at random?

11 Consider a text composed of consonants, vowels, blank spaces, and punctuation marks.
When a letter is followed by another letter, which happens80% of the time, the proba-
bilities are as in the previous problem. If a letter is not followed by a letter, it is followed
by a blank space90% of the time. A punctuation mark is always followed by a blank
space, and a blank space is equally likely to be followed by a vowel or a consonant.(a)
State the transition matrix and find the stationary distribution. (b) If a symbol is chosen
at random and turns out to be a punctuation mark, what is the expected number of blank
spaces before the next punctuation mark?(c) If this is a literary text in English, what in
the model do you find unrealistic?

12 Customers arrive at an ATM where there is room for three customers to wait in line.
Customers arrive alone with probability2

3
and in pairs with probability1

3
(but only one

can be served at a time). If both cannot join, they both leave.Call a completed service or
an arrival an “event,” and let the state be the number of customers in the system (serviced
and waiting) immediately after an event. Suppose that an event is equally likely to be an
arrival or a completed service.(a) State the transition graph and transition matrix and
find the stationary distribution.(b) If a customer arrives, what is the probability that
he finds the system empty? Full?(c) If the system is empty, the time until it is empty
again is called a “busy period.” During a busy period, what isthe expected number of
times that the system is full?

13 Show that a limit distribution is a stationary distribution. The case of finiteS is easier,
so you may assume this.

14 Consider the Markov chain with the following transition graph:

1

1/2

111

3

1/21

0 21 54

(a) What is the smallest number of steps (excluding0) in which a state can reach itself?
(b) What is the period of the chain?(c) Find the stationary distribution. Is it the limit
distribution?
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15 Consider the success run chain in Example 8.2.16. Suppose that the chain has been
running for a while and is currently in state10. (a) What is the expected number of
steps until the chain is back at state10? (b) What is the expected number of times the
chain visits state9 before it is back at10?

16 Consider a version of the success run chain in Example 8.2.16where we disregard
sequences of consecutive tails, in the sense that for example T , TT , TTT , and so on,
all simply count asT . Describe this as a Markov chain and examine it in terms of
irreducibility, recurrence, and periodicity. Find the stationary distribution and compare
with Example 8.2.16. Is it the limit distribution?

17 Reversibility. Consider an ergodic Markov chain, observed at a late timepoint n. If
we look at the chainbackward, we have the backward transition probabilityqij =
P (Xn−1 = j|Xn = i). (a) Expressqij in terms of the forward transition probabilities
and the stationary distributionπ. (b) If the forward and backward transition probabilities
are equal, the chain is calledreversible. Show that this occurs if and only ifπipij =
πjpji for all statesi, j (this identity is usually taken as the definition of reversibility).
(c) Show that if a probability distributionπ satisfies the equationπipij = πjpji for all
i, j, thenπ is stationary.

18 The intuition behind reversibility is that if we are given a sequence of consecutive states
under stationary conditions, there is no way to decide whether the states are given in
forward or backward time. Consider the ON/OFF system in Example 8.2.4; use the
definition in the previous problem to show that it is reversible and explain intuitively.

19 For which values ofp is the following matrix the transition matrix of a reversible Markov
chain? Explain intuitively.

P =

(
0 p 1 − p

1 − p 0 p
p 1 − p 0

)

20 Ehrenfest model of diffusion. Consider two containers containing a total ofN gas
molecules, connected by a narrow aperture. Each time unit, one of theN molecules is
chosen at random to pass through the aperture from one container to the other. LetXn

be the number of molecules in the first container.(a) Find the transition probabilities
for the Markov chain{Xn}. (b) Argue intuitively why the chain is reversible and why
the stationary distribution is a certain binomial distribution. Then use Problem 17 to
show that it is indeed the stationary distribution.(c) Is the stationary distribution also
the limit distribution?

21 Consider an irreducible and positive recurrent Markov chain with stationary distribution
π and letg : S → R be a real-valued function on the state space. It can be shown that

1

n

n∑

k=1

g(Xk)
P→
∑

j∈S

g(j)πj

for any initial distribution, where we recall convergence in probability from Section 4.2.
This result is reminiscent of the law of large numbers, but the summands are not i.i.d.
We have mentioned that the interpretation of the stationarydistribution is the long-term
proportion of time spent in each state. Show how a particularchoice of the functiong
above gives this interpretation (note that we do not assume aperiodicity).
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Section 8.3. Random Walks and Branching Processes

22 Consider the symmetric simple random walk at two timepoints: n andn + m. Find
ρ(Sn, Sn+m). What happens asm → ∞ for fixed n and asn → ∞ for fixed m?
Explain intuitively.

23 Consider the simple random walk withp 6= 1
2
. Use the law of large numbers to argue

thatSn goes to−∞ if p < 1
2

and to∞ if p > 1
2
.

24 Consider a symmetric simple random walk withreflecting barriers0 anda, in the sense
thatp0,0 = p0,1 = 1

2
andpa,a−1 = pa,a = 1

2
. (a) Describe this as a Markov chain

and find its stationary distribution. Is it the limit distribution? (b) If the walk starts
in 0, what is the expected number of steps until it is back?(c) Suppose instead that
reflection is immediate, so thatp0,1 = 1 andpa,a−1 = 1, everything else being the
same. Describe the Markov chain, find its stationary distributionπ, and compare with
(a). Explain the difference. Isπ the limit distribution?

25 Consider a variant of the simple random walk where the walk takes a step up with
probability p, down with probabilityq, or stays where it is with probabilityr, where
p + q + r = 1. Let the walk start in0, and letτ1 be the time of the first visit to1. Find
P0(τ1 < ∞) andE0[τ1].

26 Consider the simple random walk starting in0 and letτr be the time of the first visit to
stater, wherer ≥ 1. Find the expected value ofτr if p > 1

2
.

27 Consider the simple random walk withp 6= 1
2
, starting in0 and let

τ0 = min{n ≥ 1 : Sn = 0}

the time of the first return to0. Use Corollary 8.3.2 to show thatP0(τ0 < ∞) =
2min(p, 1 − p).

28 Consider the simple random walk withp > 1
2

started in state 1. By Corollary 8.3.2
“reversed,” the probability that the walk ever visits 0 is(1 − p)/p. Now let the initial
stateS0 be random, chosen according to a distribution on{0, 1, ...} that has pgfG. (a)
Show that the probability that0 is ever visited (which could occur in step0 if S0 = 0)
is G((1 − p)/p). (b) Now instead consider the probability that0 is ever visited at
step1 or later. Show that this equalsG((1 − p)/p) − 2p + 1. (c) Let p = 2

3
and

S0 ∼ Poi(1). Compute the probabilities in (a) and (b) and also compare with the
corresponding probability ifS0 ≡ 1.

29 Consider a three-dimensional random walkSn where in each step, one of the six neigh-
bors along the axes is chosen with probability1

6
each. Let the walk start in the origin

and show that

P (S2n = (0, 0, 0)) =
(

1

6

)2n ∑

i+j+k=n

(2n)!

(i!j!k!)2

and use Stirling’s formula to conclude that the walk is transient.

30 Consider a branching process with mean number of offspringµ, lettingYn be the total
number of individuals up to and including thenth generation and lettingY be the total
number of individuals ever born.(a) For what values ofµ is Y finite? (b) ExpressYn
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in terms ofZ0, ..., Zn and findE[Yn]. What happens asn → ∞? In particular, In
particular, compare the two casesµ = 1 andµ < 1.

31 Consider a branching process where the offspring distribution is given by

P (X = k) =
1

3

(
2

3

)k

, k = 0, 1, 2, ...

(geometric distribution including0). Find(a)E[Zn], (b) P (Z2 = 0), (c) the extinction
probabilityq.

32 Branching with immigration.Consider a branching process where the offspring distri-
bution is{p0, p1, ...}, with pgfG(s) and meanµ. Suppose that in each generation there
is immigration into the population according to a sequence of i.i.d. random variables
Y0, Y1, ... with range{0, 1, 2, ...} and the population is thus started by the first nonzero
Yk. Let theYk have distribution{q0, q1, ...}, pgf H(s), and meanν, and letZn be
the nth-generation size.(a) Show thatP (Z1 = 0) = q0H(p0). (b) Show thatZn

has pgf given by
∏n

j=0
H(Gn−j(s)) whereGn−j is the pgf of the(n − j)th gener-

ation in a branching process without immigration. Use this to find an expression for
E[Zn]. (c) Suppose that theYk are Poisson with meanλ and the offspring distribution
is p0 = 1 − p, p1 = p. What is the distribution ofZn?

Section 8.4. Continuous-Time Markov Chains

33 Consider a continuous-time Markov chain where statei is absorbing. How should the
ith row of the generatorG be defined?

34 Consider the ON/OFF system in Example 8.4.1. State the backward and forward equa-
tions and solve the forward equations. (Why are these easierto solve than the backward
equations?) What happens ast → ∞?

35 Birds arrive at four bird feeders according to a Poisson process with rate one bird per
minute. If all feeders are occupied, an arriving bird leaves, but otherwise it occupies a
feeder and eats for a time that has an exponential distribution with mean one minute.
Consider this as a Markov chain where a “state” is the number of occupied feeders. The
rate diagram is given below.(a) Explain the rates in the diagram.(b) Find the generator
G. (c) If three feeders are occupied, what is the expected time until this changes?(d)
If all feeders are occupied, what is the probability that a bird arrives before a feeder
becomes free?

4321

111

0 1 3

1

2 4

36 Consider a continuous-time Markov chain that allows jumps from states to themselves,
after an exponentially distributed time. Although this sounds more general than our
construction, it is not. Explain!Hint: Problem 147 in Chapter 3.

37 Consider a continuous-time Markov chain whose jump chain isthe simple random walk
with reflecting barriers0 andm from Problem 24 (c). Suppose that the holding times
in states0 andm areexp(a) and in all other statesexp(b). (a) Describe this in a rate
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diagram and give the generatorG. (b) Find the stationary distribution. For which values
of a andb is it uniform? Compare with the stationary distribution forthe jump chain.

38 An invariant measurefor a discrete-time Markov chain is a nonnegative vectorν such
thatνP = ν. Thus, an invariant measure is more general than a stationary distribution,
since its entries need not sum to one.(a) Let ν be invariant and suppose that0 <∑

j∈S
νj < ∞. Show that a stationary distribution exists.(b) Let {X(t)} be a

continuous-time Markov chain with stationary distribution π, and let its jump chain
{Xn} have invariant measureν . Show that

πk =
cνk

λ(k)
, k ∈ S

whereλ(k) is the holding-time parameter in statek and c is a constant (show that
πG = 0 and explain the role of the constantc). Note that this gives an alternative to
solvingπG = 0 in order to findπ. (c) Now let the jump chain{Xn} be the simple
symmetric random walk. Show thatν defined byνk = 1 for all k is invariant for{Xn}.
(d) Let λ(0) = 1 andλ(k) = k2 for k 6= 0, and show that{X(t)} has a stationary
distribution but that the jump chain{Xn} does not. This shows that the jump chain is
null recurrent but the continuous-time chain is positive recurrent.

39 Consider a continuous-time Markov chain{X(t)} whose jump chain is the success run
chain from Problem 16. Give a condition on the holding time parametersλ(k), k =
0, 1, ... guaranteeing that{X(t)} has a stationary distribution (remember the previous
problem).

40 Consider a linear birth–death process where the individualbirth rate isλ = 1, the
individual death rate isµ = 3 and there is constant immigration into the population
according to a Poisson process with rateα. (a) State the rate diagram and the generator.
(b) Suppose that there are currently10 individuals in the population. What is the
probability that the population size increases to11 before it decreases to9? (c) Suppose
thatα = 1 and that the population just became extinct. What is the expected time until
it becomes extinct again?

41 In the previous problem suppose that an immigrating individual joins the population only
if it is extinct, and otherwise leaves. Find the rate diagram, generator, and stationary
distribution.

42 Consider state0 in a birth–death process with stationary distributionπ . Under stationary
conditions we ought to have thebalance equationπ0λ0 = π1µ1 (“rate in equals rate
out”), which is also precisely the first equation ofπG = 0. (a)Suggest how to formulate
balance equations for any three statesk−1, k, andk+1, and show that these equations
are the same asπG = 0. (b) Describe how the equationπG = 0 has an interpretation as
balance equations for any continuous-time Markov chain, not just birth–death processes.

43 Consider anM/M/1/r queue in equilibrium wherer = 5 and the service rate equals
the arrival rate.(a) What is the proportion of lost customers?(b) How does this change
if the service rate is doubled?

44 Consider a queueing system where there is one server and no room to wait in line (i.e.,
anM/M/1/1 queue). Further suppose that the arrival rateλ and the service rateµ are
equal. Under stationary conditions, find the proportion of customers that are lost(a) in
this system,(b) if the service rate is doubled,(c) if one customer can wait in line,(d) if
a second server is added.
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45 Consider the following queueing system. Customers arrive in pairs according to a
Poisson process with rateλ = 1 customer pair/minute. There is one server and room
for two customers to wait in line. Service times are exponential with mean 30 seconds.
If there is not room for both arriving customers, they both leave.(a)Describe the system
in a rate diagram and find the stationary distribution.(b) Now suppose that pairs may
split up. If there is not room for both, then with probability1

2
they both leave and with

probability 1
2

one stays and the other leaves. Do (a) again under these assumptions.

46 Customer groups arrive to a service station according to a Poisson process with rateλ
groups/minute. With probabilityp, such a group consists of a single individual, and with
probability1− p, it consists of a pair. There is a single server and room for two to wait
in line. Service times are exponential with rateµ. If a pair arrives and they cannot both
join, they both leave.(a) Give the state space and describe the system in a rate diagram.
(b) Supposeλ = µ andp = 1

2
. Find the stationary distribution(π0, π1, π2, π3).

47 Phone calls arrive to a company according to two independentPoisson processes, one of
female callers with rate2 and one of male callers with rate1 (calls/minute). There is one
server and room for one to wait in line. If the server is busy, afemale caller stays to wait
in line with probability0.8; a male caller, with probability0.5. Service times are i.i.d.
exponential with mean length2 minutes. Let the state be the number of customers in the
system.(a) Describe the system in a rate diagram and find the stationary distribution.
(b) What proportion of callers are lost?

48 Consider anM/M/1 queue with arrival rateλ and service rateµ and where an arriving
customer who findsk individuals in the system joins with probability1/(k +1). When
does a stationary distribution exist and what is it?

49 Reneging. Consider anM/M/1 queue with arrival rateλ and service rateµ, where a
customer who is waiting in linerenegesand leaves the line after a time that isexp(ν)
(unless service has started), independent of the queue length. Describe this system in a
rate diagram and state the generator.

50 Consider anM/M/1 queue in equilibrium and letW be the waiting time of an arriving
customer. Find the cdf ofW . What type of distribution is this?Hint: First find
P (W = 0), and then computeP (W > x) by conditioning on the number of customers
in the system.

51 Consider anM/M/1 queue in equilibrium and letT be the total time an arriving
customer spends in the system. Find the distribution ofT (condition on the number of
customers in the system at arrival).

Section 8.5. Martingales

52 LetX1, X2, . . . be positive i.i.d random variables with meanµ and letPn = X1× . . .×
Xn for n = 1, 2, . . .. Find a functiong(x) so thatYn = g(Pn) becomes a martingale
with respect toX1, X2, . . ..

53 LetX1 ≡ 1 andXn+1 be uniformly distributed on the interval[0, Xn] for n = 1, 2, . . ..
Find a functiong(x) so thatYn = g(Xn) becomes a martingale with respect to
X1, X2, . . ..

54 Consider the branching process in Example 8.5.2. Show thatYn = qZn for n = 1, 2, . . .
is a martingale with respect toZ1, Z2, . . ..
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55 Polya’s urn model.Let us assume that we have an urn containing one white ball and
one black ball initially. A ball is selected completely at random from the urn and put
back together with a ball of the same colour. Repeat this operation infinitely and let
Yn denote the ratio of white balls in the urn aftern steps. Show thatY1, Y2, . . . is a
martingale with respect to itself and use Proposition 8.5.1to conclude thatYn → Y
with probability one. What distribution doesY have?

56 Consider a simple random walk withp > 1
2
. Show thatYn = Sn − (p − q)n is

a martingale with respect toS1, S2, . . . and use Proposition 8.5.2 to prove Corollary
8.3.4.

Section 8.6. Renewal Processes

57 Consider a renewal processN(t) whereT1, T2, . . . are i.i.d. and uniformly distributed
on [0, 1]. Derive the renewal functionm(t) for t ≤ 1.

58 Consider a lamp where the lightbulbs are replaced either when they burn out or when
they have burned for 336 hours. The lifelengths of lightbulbs are assumed to be i.i.d.
and exponentially distributed with mean 300 hours.(a) How often are the lightbulbs
replaced in the long run?(b) What is the probability that a supply of 50 lightbulbs will
last for a year (8760 hours)?

59 M/G/1/114. Assume that customers arrive to a service station with one server according
to a Poisson process with rateλ. When an arriving customer finds the service station
empty, he enters and starts being served, whereas if the server is busy, he leaves and
never returns.(a) If we denote the mean service timeµS , at what rate do customers
enter the service station?(b) What proportion of customers are actually served by the
service station?

60 Let us assume thatλ = 5 customers per minute in the previous problem and that the
mean and variance of the service times areµS = 0.25 andσ2

S = 0.1, respectively.
What is the probability that at least 120 customers will be served during one hour?

61 Find the distributionF̃ (t) of the initial inter-arrival time in a delayed renewal process
if the subsequent inter-arrival times are(a) Exponentially distributed (delayed Poisson
process).(b) Uniformly distributed on[0, 1]. (c) Gamma distributed withα = 2

Section 8.7. Brownian Motion

62 Calculate(a) Cov[B(t),B(s)] (b) Cov[B◦(t), B◦(s)]

63 Derive the distribution ofB(t) + B(s) for t 6= s.

64 CalculateE[B(t)B(s)].

65 Show thatB∗(t) = tB(1/t) is a standard Brownian motion.

66 Calculate the mean and variance of the maximumMt of a standard Brownian motion
in the interval[0, t].

14TheG stands forGeneral, denoting that we allow any service time distribution
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67 Derive the conditional distribution ofB(t) for t1 < t < t2 conditioned on the event
{B(t1) = x1, B(t2) = x2}

68 Consider a Brownian motion with drift parameterµ and varianceσ2. Derive the condi-
tional distribution ofB(t) conditioned on the event{B(s) = c} for (a) t > s and(b)
t < s.

69 The discounted value of a share of stock can be described as a geometric Brownian
motion with drift parameterµ = 0 and varianceσ2 = 0.2. The time unit is one year.
Let us assume that we decide to sell the share when it has increased by 20 %. What is
the probability that we sell the share within six months?

70 Two-dimensional Brownian motion.LetBx(t) andBy(t) be two independent standard
Brownian motion describing the horizontal and vertical location of a particle moving in
two dimensions. Derive the pdf of the distanceR(t) =

√
Bx(t)2 + By(t)2 from the

origin aftert time units.
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Table A.1 Values of the cdfΦ(x) of the standard normal distribution [e.g.,Φ(1.41) = 0.921]

x 0 1 2 3 4 5 6 7 8 9
0.0 .500 .504 .508 .512 .516 .520 .524 .528 .532 .536
0.1 .540 .544 .548 .552 .556 .560 .564 .568 .571 .575
0.2 .579 .583 .587 .591 .595 .599 .603 .606 .610 .614
0.3 .618 .622 .626 .629 .633 .637 .641 .644 .648 .652
0.4 .655 .659 .663 .666 .670 .674 .677 .681 .684 .688
0.5 .692 .695 .698 .702 .705 .709 .712 .716 .719 .722
0.6 .726 .729 .732 .736 .739 .742 .745 .749 .752 .755
0.7 .758 .761 .764 .767 .770 .773 .776 .779 .782 .785
0.8 .788 .791 .794 .797 .800 .802 .805 .808 .811 .813
0.9 .816 .819 .821 .824 .826 .829 .832 .834 .836 .839
1.0 .841 .844 .846 .848 .851 .853 .855 .858 .860 .862
1.1 .864 .867 .869 .871 .873 .875 .877 .879 .881 .883
1.2 .885 .887 .889 .891 .892 .894 .896 .898 .900 .902
1.3 .903 .905 .907 .908 .910 .912 .913 .915 .916 .918
1.4 .919 .921 .922 .924 .925 .926 .928 .929 .931 .932
1.5 .933 .934 .936 .937 .938 .939 .941 .942 .943 .944
1.6 .945 .946 .947 .948 .950 .951 .952 .952 .9545 .954
1.7 .955 .956 .957 .958 .959 .960 .961 .962 .962 .963
1.8 .964 .965 .966 .966 .967 .968 .969 .969 .970 .971
1.9 .971 .972 .973 .973 .974 .974 .975 .976 .976 .977
2.0 .977 .978 .978 .979 .979 .980 .980 .981 .981 .982
2.1 .982 .983 .983 .983 .984 .984 .985 .985 .985 .986
2.2 .986 .986 .987 .987 .988 .988 .988 .988 .989 .989
2.3 .989 .990 .990 .990 .990 .991 .991 .991 .991 .992
2.4 .992 .992 .992 .992 .993 .993 .993 .993 .993 .994
2.5 .994 .994 .994 .994 .995 .995 .995 .995 .995 .995
2.6 .995 .996 .996 .996 .996 .996 .996 .996 .996 .996
2.7 .996 .997 .997 .997 .997 .997 .997 .997 .997 .997
2.8 .997 .998 .998 .998 .998 .998 .998 .998 .998 .998
2.9 .998 .998 .998 .998 .998 .998 .998 .998 .999 .999

Table A.2 Values ofΦ(x) commonly used in confidence intervals and tests, and the corre-
spondingx values

Φ(x) 0.90 0.95 0.975 0.99 0.995
x 1.28 1.64 1.96 2.33 2.58
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Table A.3 Percentiles of thet distribution with DF degrees of freedom [e.g.,Ft7(1.89) =
0.95]

DF 0.95 0.975 0.99 0.995 DF 0.95 0.975 0.99 0.995
1 6.31 12.71 31.82 63.66 16 1.75 2.12 2.58 2.92
2 2.92 4.30 6.96 9.92 17 1.74 2.11 2.58 2.90
3 2.35 3.18 4,54 5.84 18 1.73 2.10 2.55 2.88
4 2.13 2.78 3.74 4.60 19 1.73 2.09 2.54 2.86
5 2.02 2.57 3.36 4.03 20 1.72 2.09 2.53 2.85
6 1.94 2.45 3.14 3.71 21 1.72 2.08 2.52 2.83
7 1.89 2.36 3.00 3.50 22 1.72 2.07 2.51 2.82
8 1.86 2.31 2.90 3.36 23 1.71 2.07 2.50 2.81
9 1.83 2.26 2.82 3.25 24 1.71 2.06 2.49 2.80
10 1.81 2.23 2.76 3.17 25 1.71 2.06 2.49 2.79
11 1.80 2.20 2.72 3.11 26 1.71 2.06 2.48 2.78
12 1.78 2.18 2.68 3.05 27 1.70 2.05 2.47 2.77
13 1.77 2.16 2.65 3.01 28 1.70 2.05 2.47 2.76
14 1.76 2.14 2.62 2.98 29 1.70 2.05 2.46 2.76
15 1.75 2.13 2.60 2.95 30 1.70 2.04 2.46 2.75

Table A.4 Percentiles of the chi-square distribution with DF degreesof freedom [e.g.,
Fχ2

20
(10.85) = 0.05]

DF 0.025 0.05 0.95 0.975 DF 0.025 0.05 0.95 0.975
1 0.001 0.004 3.84 5.02 16 6.91 7.96 26.30 28.84
2 0.05 0.10 5.99 7.38 17 7.56 8.67 27.59 30.19
3 0.22 0.35 7.82 9.34 18 8.23 9.39 28.87 31.53
4 0.48 0.71 9.49 11.14 19 8.91 10.12 30.14 32.85
5 0.83 1.14 11.07 12.83 20 9.59 10.85 31.41 34.17
6 1.24 1.64 12.59 14.45 21 10.28 11.60 32.67 35.48
7 1.69 2.17 14.07 16.01 22 10.98 12.34 33.92 36.78
8 2.18 2.73 15.51 17.54 23 11.69 13.09 35.17 38.08
9 2.70 3.32 19.92 19.02 24 12.40 13.85 36.42 39.36
10 3.25 3.94 18.31 20.48 25 13.12 14.61 37.65 40.65
11 3.82 4.58 19.68 21.92 26 13.84 15.38 38.88 41.92
12 4.40 5.23 21.03 23.34 27 14.57 16.15 40.11 43.19
13 5.01 5.89 22.36 27.74 28 15.31 16.93 41.34 44.46
14 5.63 6.57 23.68 26.12 29 16.05 17.71 42.56 45.72
15 6.26 7.26 25.00 27.49 30 16.79 18.49 43.77 46.98
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Table A.5 Percentiles of theF distribution with r and s degrees of freedom [e.g.,
FF8,20(2.45) = 0.95]

2.5 % percentile

s r = 2 3 4 5 6 7 8 9 10

2 0.026 0.062 0.094 0.119 0.138 0.153 0.165 0.175 0.183
3 0.026 0.065 0.100 0.129 0.152 0.170 0.185 0.197 0.207
4 0.025 0.066 0.104 0.135 0.161 0.181 0.198 0.212 0.224
5 0.025 0.067 0.107 0.140 0.167 0.189 0.208 0.223 0.236
6 0.025 0.068 0.109 0.143 0.172 0.195 0.215 0.231 0.246
7 0.025 0.068 0.110 0.146 0.176 0.200 0.221 0.238 0.253
8 0.025 0.069 0.111 0.148 0.179 0.204 0.226 0.244 0.259
9 0.025 0.069 0.112 0.150 0.181 0.207 0.230 0.248 0.265
10 0.025 0.069 0.113 0.151 0.183 0.210 0.233 0.252 0.269
12 0.025 0.070 0.114 0.153 0.186 0.214 0.238 0.259 0.276
15 0.025 0.070 0.116 0.156 0.190 0.219 0.244 0.265 0.284
16 0.025 0.070 0.116 0.156 0.191 0.220 0.245 0.267 0.286
18 0.025 0.070 0.116 0.157 0.192 0.222 0.248 0.270 0.290
20 0.025 0.071 0.117 0.158 0.193 0.224 0.250 0.273 0.293
21 0.025 0.071 0.117 0.158 0.194 0.225 0.251 0.274 0.294
24 0.025 0.071 0.117 0.159 0.195 0.227 0.253 0.277 0.297
25 0.025 0.071 0.118 0.160 0.196 0.227 0.254 0.278 0.298
27 0.025 0.071 0.118 0.160 0.197 0.228 0.255 0.279 0.300
28 0.025 0.071 0.118 0.160 0.197 0.228 0.256 0.280 0.301
30 0.025 0.071 0.118 0.161 0.197 0.229 0.257 0.281 0.302

95 % percentile

s r = 2 3 4 5 6 7 8 9 10

2 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40
3 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79
4 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96
5 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74
6 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06
7 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64
8 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35
9 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14
10 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98
12 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75
15 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54
16 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49
18 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41
20 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35
21 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32
24 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25
25 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24
27 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20
28 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19
30 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16
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97.5 % percentile

s r = 2 3 4 5 6 7 8 9 10

2 39.00 39.17 39.25 39.30 39.33 39.36 39.37 39.39 39.40
3 16.04 15.44 15.10 14.88 14.73 14.62 14.54 14.47 14.42
4 10.65 9.98 9.60 9.36 9.20 9.07 8.98 8.90 8.84
5 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68 6.62
6 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52 5.46
7 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82 4.76
8 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36 4.30
9 5.71 5.08 4.72 4.48 4.32 4.20 4.10 4.03 3.96
10 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78 3.72
12 5.10 4.47 4.12 3.89 3.73 3.61 3.51 3.44 3.37
15 4.77 4.15 3.80 3.58 3.41 3.29 3.20 3.12 3.06
16 4.69 4.08 3.73 3.50 3.34 3.22 3.12 3.05 2.99
18 4.56 3.95 3.61 3.38 3.22 3.10 3.01 2.93 2.87
20 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84 2.77
21 4.42 3.82 3.48 3.25 3.09 2.97 2.87 2.80 2.73
24 4.32 3.72 3.38 3.15 2.99 2.87 2.78 2.70 2.64
25 4.29 3.69 3.35 3.13 2.97 2.85 2.75 2.68 2.61
27 4.24 3.65 3.31 3.08 2.92 2.80 2.71 2.63 2.57
28 4.22 3.63 3.29 3.06 2.90 2.78 2.69 2.61 2.55
30 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.57 2.51
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Table A.6 95 % percentiles of the studentized range distribution withr ands degrees of
freedom [e.g.,FR8,20(4.77) = 0.95]

s r = 3 4 5 6 7 8 9 10

2 8.33 9.80 10.88 11.73 12.43 13.03 13.54 13.99
3 5.91 6.82 7.50 8.04 8.48 8.85 9.18 9.46
4 5.04 5.76 6.29 6.71 7.05 7.35 7.60 7.83
5 4.60 5.22 5.67 6.03 6.33 6.58 6.80 6.99
6 4.34 4.90 5.30 5.63 5.90 6.12 6.32 6.49
7 4.16 4.68 5.06 5.36 5.61 5.82 6.00 6.16
8 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92
9 3.95 4.41 4.76 5.02 5.24 5.43 5.59 5.74
10 3.88 4.33 4.65 4.91 5.12 5.30 5.46 5.60
12 3.77 4.20 4.51 4.75 4.95 5.12 5.27 5.39
15 3.67 4.08 4.37 4.59 4.78 4.94 5.08 5.20
16 3.65 4.05 4.33 4.56 4.74 4.90 5.03 5.15
18 3.61 4.00 4.28 4.49 4.67 4.82 4.96 5.07
20 3.58 3.96 4.23 4.45 4.62 4.77 4.90 5.01
21 3.56 3.94 4.21 4.42 4.60 4.74 4.87 4.98
24 3.53 3.90 4.17 4.37 4.54 4.68 4.81 4.92
25 3.52 3.89 4.15 4.36 4.53 4.67 4.79 4.90
27 3.51 3.87 4.13 4.33 4.50 4.64 4.76 4.86
28 3.50 3.86 4.12 4.32 4.49 4.62 4.74 4.85
30 3.49 3.85 4.10 4.30 4.46 4.60 4.72 4.82

Table A.7 Critical valuesc for the Wilcoxon signed rank test, wheren is the sample size
andC = n(n + 1) − c [e.g., if n = 20, thenP (W ≤ 61) = P (W ≥ 149) ≈ 0.05]

n 0.025 0.05 n(n + 1)/2 n 0.025 0.05 n(n + 1)/2
5 0 1 15 18 41 48 171
6 1 3 21 19 47 54 190
7 3 4 28 20 53 61 210
8 4 6 36 21 59 68 231
9 6 9 45 22 67 76 253
10 9 11 55 23 74 84 276
11 11 14 66 24 82 92 300
12 14 18 78 25 90 101 325
13 18 22 91 26 99 111 351
14 22 26 105 27 108 120 378
15 26 31 120 28 117 131 406
16 30 36 136 29 127 141 435
17 35 42 153 30 138 152 465
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Table A.8 Critical valuesc for the Wilcoxon rank sum test, wherem is the size of the
smaller sample, andC = m(m + n + 1)− c [e.g., ifm = 4 andn = 8, thenP (W ≤ 16) =
P (W ≥ 36) ≈ 0.05]

n P (W ≤ c) m = 2 3 4 5 6 7 8 9 10 11
2 0.025 3

0.05 3
3 0.025 3 3

0.05 6 7
4 0.025 3 6 11

0.05 3 7 12
5 0.025 3 7 12 18

0.05 4 8 13 20
6 0.025 3 8 13 19 27

0.05 4 9 14 21 29
7 0.025 3 8 14 21 28 37

0.05 4 9 15 22 30 40
8 0.025 4 9 15 22 30 39 50

0.05 5 10 16 24 32 42 52
9 0.025 4 9 15 23 32 41 52 63

0.05 5 11 17 25 34 44 55 67
10 0.025 4 10 16 24 33 43 54 66 79

0.05 5 11 18 27 36 46 57 70 83
11 0.025 5 10 17 25 35 45 56 69 82 97

0.05 5 12 19 28 38 48 60 73 87 101
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Table A.9 Critical valuesc for the one-sample Kolmogorov-Smirnov test wheren is the
sample size [e.g.FD10(0.409) = 0.95]

n 0.01 0.05 n 0.01 0.05

1 0.995 0.975 16 0.392 0.327
2 0.929 0.842 17 0.381 0.318
3 0.829 0.708 18 0.371 0.309
4 0.734 0.624 19 0.361 0.301
5 0.669 0.563 20 0.352 0.294
6 0.617 0.519 21 0.344 0.287
7 0.576 0.483 22 0.337 0.281
8 0.542 0.454 23 0.330 0.275
9 0.513 0.430 24 0.323 0.269
10 0.489 0.409 25 0.317 0.264
11 0.468 0.391 26 0.311 0.259
12 0.449 0.375 27 0.305 0.254
13 0.432 0.361 28 0.300 0.250
14 0.418 0.349 29 0.295 0.246
15 0.404 0.338 30 0.290 0.242



549

Table A.10 Critical valuesc for the two-sample Kolmogorov-Smirnov test on the 5 % level
wherem is the size of the smaller sample [e.g.P (D7,10 ≥ 0.614) ≈ 0.05]

n m = 2 3 4 5 6 7 8 9 10

4 - - 1
5 - 1 1 1
6 - 1 0.833 0.8 0.833
7 - 1 0.857 0.8 0.714 0.857
8 1 0.875 0.875 0.75 0.708 0.714 0.75
9 1 0.889 0.778 0.778 0.722 0.667 0.639 0.667
10 1 0.9 0.75 0.8 0.667 0.657 0.6 0.589 0.7
11 1 0.909 0.75 0.709 0.652 0.623 0.602 0.596 0.545
12 1 0.833 0.75 0.717 0.667 0.631 0.625 0.583 0.55
13 1 0.846 0.75 0.692 0.667 0.615 0.596 0.556 0.538
14 1 0.857 0.75 0.657 0.643 0.643 0.571 0.556 0.529
15 0.933 0.8 0.733 0.733 0.633 0.590 0.558 0.556 0.567
16 0.938 0.812 0.75 0.675 0.625 0.571 0.625 0.542 0.525
17 0.941 0.824 0.706 0.647 0.608 0.571 0.566 0.536 0.524
18 0.944 0.833 0.694 0.667 0.667 0.571 0.556 0.556 0.511
19 0.947 0.790 0.697 0.642 0.614 0.571 0.540 0.520 0.495
20 0.95 0.8 0.75 0.65 0.6 0.564 0.55 0.517 0.55

n m = 11 12 13 14 15 16 17 18 19 20

11 0.636
12 0.546 0.583
13 0.524 0.519 0.538
14 0.532 0.512 0.489 0.571
15 0.509 0.517 0.492 0.467 0.533
16 0.506 0.5 0.486 0.473 0.475 0.5
17 0.497 0.490 0.475 0.466 0.455 0.456 0.471
18 0.490 0.5 0.470 0.460 0.456 0.444 0.435 0.5
19 0.488 0.474 0.462 0.455 0.446 0.438 0.436 0.415 0.474
20 0.486 0.483 0.462 0.45 0.45 0.438 0.429 0.422 0.421 0.45



550 TABLES

Table A.11 Critical valuesc for the Kruskal-Wallis test on the 5 % level, wherek is the
number of groups andn is the sample size [e.g., ifk = 4 andn = 5, thenP (K ≥ 7.37) ≈
0.05]

n k = 3 4 5 6 7 8 9 10

2 - 6.00 7.31 8.85 10.17 11.47 12.74 14.03
3 5.42 6.90 8.30 9.75 11.13 12.49 13.83 15.18
4 5.65 7.21 8.73 10.16 11.59 12.98 14.33 15.68
5 5.66 7.37 8.91 10.38 11.84 13.21 14.62 15.95
6 5.72 7.45 9.00 10.49 11.96 13.38 14.77 16.10
7 5.77 7.48 9.09 10.60 12.08 13.47 14.87 16.27
8 5.80 7.53 9.12 10.68 12.10 13.56 14.96 16.34
9 5.85 7.58 9.18 10.71 12.18 13.60 15.02 16.40
10 5.86 7.61 9.22 10.76 12.22 13.66 15.08 16.44
11 5.84 7.59 9.25 10.79 12.26 13.71 15.12 16.51
12 5.88 7.65 9.26 10.80 12.31 13.73 15.12 16.54
13 5.86 7.65 9.27 10.82 12.30 13.77 15.17 16.57
14 5.86 7.63 9.30 10.84 12.34 13.77 15.21 16.58
15 5.91 7.67 9.33 10.86 12.38 13.81 15.22 16.62
16 5.91 7.71 9.29 10.86 12.38 13.82 15.26 16.66
17 5.90 7.70 9.31 10.88 12.40 13.85 15.22 16.65
18 5.91 7.69 9.34 10.92 12.43 13.85 15.25 16.66
19 5.93 7.72 9.35 10.91 12.37 13.89 15.28 16.69
20 5.93 7.72 9.35 10.94 12.40 13.89 15.31 16.69



Appendix B
Answers to Selected

Problems

CHAPTER 1

1(a){3, 4, ..., 18} (b) [0, 1] × [0, 1] (c) {M, F} × {0, 1, 2, ...} (d) {(i, j) : 1 ≤ i < j ≤ 10}
(e) [0, 1].

2 S = {rr, rs, sr, ss}
3 (c) and(e)
4(a) (A ∩ Bc ∩ Cc) ∪ (Ac ∩ B ∩ Cc) ∪ (Ac ∩ Bc ∩ C) (b) Ac ∩ Bc ∩ Cc (c) A ∪ B ∪ C
5(a) B1 (b) Bc

1 ∩ B2 ∩ B3 (c) B1 ∩ B2 ∩ B3 ∩ B4 (d) (Bc
1 ∩ B2 ∩ B3 ∩ B4 ∩ B5) ∪

(B1 ∩ Bc
2 ∩ B3 ∩ B4 ∩ B5) ∪ (B1 ∩ B2 ∩ Bc

3 ∩ B4 ∩ B5)(B1 ∩ B2 ∩ B3 ∩ Bc
4 ∩ B5) (e)

B1 ∩ B2 ∩ B3 ∩ Bc
4 ∩ Bc

5 ∩ Bc
6 ∩ Bc

7

6 0.6
7(a) P (B) = 0.4 (b,c) P (A ∩ Bc) = 0.1 (d) P (Ac) = 0.7 (e) P (Bc) = 0.6 (f)
P (Ac ∩ Bc) = 0.5 (which also equalsP ((A ∪ B)c)).

8(a)0.5 − p (b) 1 − 2p (c) p
10 (b)
12(a)3/8 (b) 1/8 (c) 7/8 (d) 1/8 (e)3/8
16(a)0.5 + 0.33 + 0.2− (0.16 + 0.2 + 0.08) + 0.08 = 0.67 (b) P (Ai) + P (Aj) + P (Ak)

−(P (Alcm(i,j))+ P (Alcm(i,k))+ P (Alcm(j,k)))+ P (Alcm(i,j,k)) (see Example 1.3.4)
17(a)(7.1+15−0.75)/143 = 0.149 (b) (7.1+15+10−(0.75+0.5+0)+0)/143 = 0.216

551
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(c)(71+15+71+1−(7.5+35.5+0+7.5+0+0)+(3.75+0+0+0)−0)/143 = 0.778
19(a)

(
7
2

)
× 265 × 102 = 2.5 × 1010 (b)

(
7
2

)
× (26)5(10)2 = 1.5 × 1010

20(a)23 × 22 × 21/233 = 0.87 (b) 10 × 9 × 8/103 = 0.72 (c) 23/233 = 0.002
(d) 53/103 = 0.125 (e)23 × 22 × 21 × 10/(233103) = 0.009

21(a)5 × 264/2610 = 1.6 × 10−8 (b) 5 × (20)4/(26)10 = 3.0 × 10−8

22(a)1/4 (b) 11/24 (c) 10/24
20(a)6, 12
25(a)

(
8
3

)
/
(
64
3

)
= 1/744 (b)

(
32
3

)
/
(
64
3

)
= 5/42 (c) 8 ×

(
8
3

)
/
(
64
3

)
= 1/93

(d) 8 × 2 ×
(
4
3

)
/
(
64
3

)
= 1/651

26(a)1/
(

n
j

)
(b) 2/

(
n
j

)
(c) (n − j + 1)/

(
n
j

)

273(
(
2n
k

)
−
(

n
k

)
)/
(
3n
k

)

28 (4 ×
(
39
13

)
− 6 ×

(
26
13

)
+ 4
(
13
13

)
)/
(
52
13

)
= 0.05

29(a)
(
5
4

)(
39
1

)(
43
1

)
/(
(
44
5

)(
44
1

)
) = 0.00018 (b)

(
5
3

)(
39
2

)(
1
1

)
/(
(
44
5

)(
44
1

)
) = 0.00016

30(a)4/
(
52
5

)
= 1.5 × 10−6 (b) 9 × 4/

(
52
5

)
= 0.000014 (c) 13 × 48/

(
52
5

)
= 0.00024

(d) 13 × 12 ×
(
4
3

)(
4
2

)
/
(
52
5

)
= 0.0014 (e)4(×

(
13
5

)
− 10)/

(
52
5

)
= 0.002

(f) (10 × 45 − 40)/
(
52
5

)
= 0.0039 (g) 13 ×

(
12
2

)
× 43/

(
52
5

)
= 0.021

(h)
(
13
2

)(
4
2

)(
4
2

)
× 44/

(
52
5

)
= 0.0475 (i) 13 ×

(
4
2

)(
12
3

)
× 43/

(
52
5

)
= 0.4226

31(a)
(
6
2

)
/
(
10
3

)
(b)
(
3
1

)
/
(
10
3

)
(c) (k − j − 1)/

(
n
3

)

32m(n)k−1/(n + m)k

34
(

k−1
n−1

)

33 false,0 < P (A) < 1, B = A
350.63
36(a)n0 = n!

∑n

k=0

(−1)k

k!
(b) P (j matches) =

nj

n!
= 1

j!

∑n−j

k=0

(−1)k

k!
, j = 0, ..., n which

is ≈ e−1

j!
for largen

40(a)P (A ∪ B) = 2
3
, P (A ∩ B) = 1

6
(b) P (A ∪ B) = 5

6
, P (A ∩ B) = 0 (c) P (A ∪ B) =

2
3
, P (A ∩ B) = 1

6
(d) P (A ∪ B) = 1

2
, P (A ∩ B) = 1

3

41(a)P (A∩B) = P (A)P (B|A) = 0.60 ·0.75 = 0.45 (b) P (A∩Bc) = P (A)P (Bc|A) =
0.60 · 0.25 = 0.15 (c) P (A|B) = P (A ∩ B)/P (B) = 0.45/0.50 = 0.90 (d) P (B|Ac) =
P (Ac∩B)

P (Ac)
= P (Ac|B)P (B)

P (Ac)

42(a) true(b) false(c) true(d) true (if P (A) < 1)
45p = 0, 1/2, 1
48No, for any eventsA andB, P (A ∩ B) ≤ P (A) andP (A ∩ B) ≤ P (B)
49P (B|A) = 1, P (A|B) = 3/5
50(a) 1

6
(b) 1

2

51n = 7
52(a)(0.4 × 0.16)2 = 0.0041 (b) 2 × 0.378 × (1 − 0.378) = 0.47

(c) 1 − (1 − 0.45 × 0.84)2 = 0.61 (d) 0.96 × 0.84 + 0.96 × 0.84 × 0.16 = 0.94
(e)0.452 + 0.402 + 0.112 + 0.042 = 0.38 (f) 0.38 × 2 × 0.84 × 0.16 = 0.10

54No, the probability that you win is≈ 0.45 (compare the birthday problem).
55p2 + (1 − p)2, p = 1/2
56(a)

∑365

k=1
p2

k

57 (a)(1/2)5 (b) (5/9)5 (c) (2/3)5

59(a)P (A ∩ B ∩ C) = 1/36, P (A) = 1/2, P (B) = 2/3, P (C) = 1/12 (b) No
61(a)(1 − 1/143)3 = 0.98 (b) 0.02 (c) (71/143)3 = 0.1224

(d) 3(10 × 1182 + 10 × 15 × 118)/1433 = 0.161
62 (4/5)3 = 0.512
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63(a)8/15 (b) ((2n − 2)(2n − 4) · · · 2)/((2n − 1)(2n − 3) · · · 1)
64n/2n−1

653((2/3)5 − (1/3)5) = 0.38
67 (1 − (1 − p)2)2, 1 − (1 − p2)2

68
∑n

j=k

(
n
j

)
pj(1 − p)n−j

694 rounds,P (win) = 1 − (5/6)4 ≈ 0.52
70(a)1 − (1 − 1/1, 000, 000)2,000,000 = 0.86 (b) n ≥ 693147
71P (A1) = 6(1/6)n, P (A2) =

(
6
2

)
((2/6)n − 2(1/6)n)

7299.4%
73
∑6

k=1
(1/2)k(1/6) = 0.164

74(a)2 × 0.40 × 0.11 = 0.09 (b) 0.45(1 − 0.45) + (0.40 + 0.11)(0.45 + 0.04)
+0.04(1 − 0.04) = 0.54 (c) 1 − 0.09 = 0.91 (d) 0.38 [same as 52(e)]

76 (1 × (1/56) + (1/3)(15/56 + 6/56) + (1/6)(34/56)) = 0.24
77 (1 × (1/8) + 3 × (1/2) + 6 × (1/4))/10 = 5/16
78 (10 × 1 + 3 ×

(
10
2

)
× 3 + 855 × 6)/10002 = 0.0055

79 (
(
4
k

)(
48

4−k

)(
4
n

)(
48

k−n

)
)/(
(
52
4

)(
52
k

)
), n ≤ k = 0, 1, ..., 4

80(a)1/2 (b) 1/(1 + 2p)
83A
840.8 × 0.05/0.135 = 0.296
87(a)1/3 (b) 1/2
88376/459 ≈ 0.82
89(a)0.902 = 0.81 (b) (9/11)(18/19) = 0.775
90(a)10/11 (b) 1/2
920.99 × 0.001/(0.99 × 0.001 + 0.01 × 0.999) = 0.09
93 1·0.002

1·0.002+0.05·0.998
≈ 0.04

94 1/3·1/3
1/3·1/3+2/3·2/3

= 1
5

971/(1 + p)
98(a)p2 + r(1 − p) (b) 1 − (1 − r)(1 − p) (c) (1 − p)p/((1− p)(p + 1 − r))
992p/(1 + p)
100(a)1/2 (b) 2/3 (c) 2j/(2j + 2n−j)
101(a)2401/2500 = 0.96 (b) 1/2499 = 0.04
102(a)0 and1 (b) 0 and1/2
103(a)1/250, 000 (b) 1/30 (c) N = 4n2

104(a)(1 − p)/(2 − p) (b) pA/(1 − pB + pApB)
105pA(1 − pB)/(pA + pB − 2pApB)
1060.47, 0.45, 0.37, and0.26 respectively.
107(1 − p)/p
108(a)P (TH beforeHH) = 3/4 (b) P (THHH beforeHHHH) = 15/16
109244/495 ≈ 0.49

CHAPTER 2

1 (a)1/3 (b) 2/3 (c) 0 (d) 2/3
2(a)P (X = 1) = 1/4 (b) P (X = 2) = 1/2 (c) P (X = 2.5) = 0 (d) P (X ≤ 2.5) = 3/4
3(a)p(k) = (13− 2k)/36, k = 1, ..., 6 (b) p(0) = 6/36, p(k) = (12− 2k)/36, k = 1, ..., 5
4(a) c = 1/6 (c) 1/2 (d) 5/6
5(a) c = 1/2 (b) 1/2 (c) 2/3
6(a)p(k) =

(
5
k

)
(1/13)k(12/13)5−k , k = 0, ..., 5 (b)

(
4
k

)(
48

5−k

)
/
(
52
5

)
, k = 0, ..., 4

7 p(−2) = p(2) = 1/4, p(0) = 1/2
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8(a)p(k) = (51/52)k−1(1/52), k = 1, 2, ... (b) p(k) = 1/52, k = 1, 2, ..., 52
9 If x = 1/n for some integern, thenFY (x) = (1/2)n−1, for otherx ∈ (0, 1],

FY (x) = (1/2)[1/x] ([ · ] denotes integer part)
12No and no.
13(a)c = 3 (b) F (x) = x3, P (X > 0.5) = 1− 0.53 = 0.875 (c) FY (x) = 6x5, 0 ≤ x ≤ 1
14(a)F (x) = (1 − x2)/2,−1 ≤ x ≤ 0, F (x) = (1 + x2)/2, 0 ≤ x ≤ 1 (b) not possible

(c) F (x) = x + 1,−1 ≤ x ≤ 0 (d) F (x) = 1 − 1/x, x ≥ 1
15 b = 1 − a/2,−2 ≤ a ≤ 2
16(a)a = 1/

√
2 (b) 1/18 (c) x =

√
2

17(a)a = 1/100 (b) fW (x) = (43 − x)/400, 13 ≤ x ≤ 33
18(c)Same pdf asX
19unif (0, 1)
20(a)fY (x) = 1/x2, x > 1 (b) fY (x) = 2/x3, x > 1 (c) fY (x) = exp(x), x < 0
21unif[0, 1]
22fY (x) = 2x exp(−x2), x ≥ 0
23No.
24(a)91/36 = 2.53 (b) 70/36 = 1.94
25(a)1.5 (b) 1
263/4
27E[X] = 101 − 100(1 − p)100 ≤ 100 if p ≤ 0.045
28E[X] = − 2

38
, Var[X] = 398

38
− (− 2

38
)2 = 10.5

29(a)$6.20 (b) − 3
38

cents
307.9 cents
34$85, $3.75
353/4
36(a)−0.027, 0.9993 (b) −0.027, 34.08
37E[A] = 55/6, Var[A] = 275/36, E[W ] = 64/3, Var[W ] = 275/9
38(a)E[X] = 3/4, Var[X] = 3/80 (b) E[Y ] = 6/7, Var[Y ] = 3/196
40E[Y ] = ∞, E[Z] = 2, Var[Z] = ∞
41E[V ] = π/3, Var[V ] = π2/7
42E[V ] = 2, Var[V ] = 36

7

43(a)E[X] = 2
3

Var[X] = 1
18

(b) 8π
15

44(a)c = 1
2

(b) F (x) = 1−cos x
2

, 0 ≤ x ≤ π (c) π
2

45(a)E[−X] = −µ, Var[−X] = σ2 (b) a = 1
σ
, b = −µ

σ

46(a)c = (b − a)/(
√

3(b + a)) (b) c → 0
50(a)Binomial withn = 10 andp = 0.8.
bf(b) Not binomial as trials are not independent (one rainy day makes another more likely).
(c) Not binomial asp changes between months.(d) Binomial withn = 10 andp = 0.2.
51P (X > 0) = 1 − 0.910 ≈ 0.65
52(a)0.1615 (b) 0.5155 (c) 0.9303
53(a)E[X] = 1, E[Y ] = 2 (b) P (X > E[X]) = 0.6651, P (Y > E[Y ]) = 0.6187
54(a)

(
n−1
k−1

)
(1/2)n−1 (b)

(
n−1

k

)
(1/2)n−1 (c)

(
n
k

)
(1/2)n/(1 − (1/2)n)

55(a)5 − 5 (b) somebody wins6 − 4 (c) 0.7734 (P (X ≥ 3) whereX ∼ bin(7, 1/2))
(d) 1 − (1/2)5 = 0.9688 (e) (1/2)8 = 0.004

56(a)77/2048 (b) 37/64 (c) 0.596 [distribution is bin(6, 5/8)] (d) p ≈ 0.8 [distribution
is bin(6, (1 + 3p)/4)] (e) (a): 1.5, 1.125 (b): 3.75, 0.5625 (c): 3.75, 1.4062

5717
58(b)P (Y ≤ n) = P (X ≥ 1)
59P (X = 0) = (15/16)n , E[X] = n/16
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60P (D > S) = 1/2, P (D = S) = 1/4, P (D < S) = 1/4
62(a)(4/5)4(1/5) = 0.08 (b)

(
9
4

)
(1/5)5(4/5)5 = 0.01

63(a)1 − exp(−2) = 0.86 (b) pY (k) = exp(−2)2k/(k!(1 − exp(−2))),
E[Y ] = 2/(1 − exp(−2)) = 2.3 (c) exp(2) − 1 = 6.4

64(a)0.9 + 0.1 exp(−1) = 0.94 (b) 0.1 exp(−1)/(0.9 + 0.1 exp(−1)) = 0.04
(c) 1 − (0.9/(0.9 + 0.1 exp(−1)))10 = 0.33

66(a)0.0107 (exact)0.0404 (Poisson)(b) 0.8741 (exact)0.8698 (Poisson)
70(a)100 (b) 0.3935 (c) 0.3935 (d) exp(−1) = 0.37
71No, memoryless property does not seem to hold.
73(a)0.70 (b) 0.30 (c) E[X] = 58/ log 2 = 83.7, Var[X] = 7002
761/4
77(a)P (X ≤ 220) = Φ((220 − 200)/10) = Φ(2) = 0.98 (b) P (X ≤ 190) = Φ((190 −
200)/10) = Φ(−1) = 1 − Φ(1) = 0.16 (c) P (X > 185) = Φ(1.5) = 0.93 (d) P (X >
205) = 1 − Φ(0.5) = 0.31 (e) P (190 ≤ X ≤ 210) = Φ(1) − Φ(−1) = 0.68 (f)
P (180 ≤ X ≤ 210) = Φ(1) − Φ(−2) = 0.81
782Φ(c) − 1
7966 and74
80Z = c
81A 24-pound A-fish (theZ scores are2 and1, respectively).
82180 points
832Φ(1.16) − 1 = 0.754
84(a)T ∼ N(t + 0.1, 0.01) (b) Φ(−1) = 0.16 (c) Φ(−0.5) − Φ(−1.5) = 0.24
85(a)ϕ(x), x ∈ R, (b) 2ϕ(x), x ≥ 0 (c) ϕ(

√
x)/

√
x, x ≥ 0 (d) ϕ(log x)/x, x > 0

87(a)g(X) = X if X < 100, g(X) = X − 100 if X ≥ 100.
(b) E[g(X)] = µ − 100(1 − Φ((100 − µ)/

√
2)) has mininum forµ = 103.7

88
√

π/2
909.6 × 10−18

92Xk is lognormal with parameters(kµ, k2σ2)
94(a)0.76 (b) 0.64 (c) 0.31 (d) 1
96(a)1/2 + arctan(x)/π, x ∈ R
97F (x) = 0.2 + 0.8x/30, 0 ≤ x ≤ 30
98(a)F (x) = 1 − (exp(−x) + exp(−2x))/2 (b) P (typeI |X ≥ t) = 1/(1 + exp(−t))
99(a)∞, 2, 1 (b) 1.5, any number in[1, 2], any number in[0, 1] ∪ [2, 3] (c) 1/3, 1− 1/

√
2, 0

(d) 0, 0, and−1 or 1, (e) does not exist,0, 0
101(a)(i), (iii), (v)
103(a)2 (b) 1/

√
λ

105(a)3 (b) 9 (c) 1.8 (d) 3 + 1/λ
107(b)r(k) = 1/(7 − k), k = 1, ..., 6
109(a)2t/(1 − t2) (b) 1/t (c) 2t
110(a)F (t) = 1 − 1/(1 + t) (b) F (t) = 1 − exp(−t2) (c) F (t) = 1 − exp(t4/4)

(d) 1 − exp(exp(−t) − 1)
111c = log 0.4/ log 0.2 = 0.57
112(a)a = 0.26 (b) 0.096
113(a)0.15 (b) f(t) = (1− t) exp(−t+ t2/2), 0 ≤ t ≤ 1, f(t) = (t−1) exp(t− t2/2−1),

t ≥ 1, m = 1.6
114(a)0.22 (b) 0.54 (c) 0.53 (d) 2 log 2 = 1.39 (e)1.1 years
115(a)r(t) = c, 0 ≤ t ≤ 100, r(t) = c2k, 100 + 2k ≤ t < 100 + 2(k + 1), k = 0, 1, 2, ...

(b) c = log 2/162 = 0.043 (c) 0.35
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CHAPTER 3

3(a)1, (b) 0 (c) 0
4(a) true(b) false
6(a)FX(x) = 1 − exp(−x), FY (y) = 1 − exp(−y), (b) FX(x) = x2, FY (y) =

√
y,

(c) FX(x) = 2x, FY (y) = y (d) FX(x) = (x2 + 2x)/3, FY (y) = (y + 2y2)/3
7(a)pX(0) = 1/4, pX(1) = 1/2, pX(2) = 1/4, pY (0) = pY (1) = 1/2

(b) p(0, 0) = p(2, 1) = 1/3, p(1, 0) = p(1, 1) = 1/6
9 p(0, 3) = p(3, 0) = 1/8, p(1, 2) = p(2, 1) = 3/8
10(a)p(j, k) = 1/36, j = 1, ..., 6, k = j + 1, ..., j + 6 (b) p(j, 2j) = 1/36, j = 1, ..., 6,

p(j, k) = 1/18, j = 1, ..., 6, k = 2j + 1, ..., j + 6
11(a)p(j, k) =

(
13
j

)(
13
k

)(
26

3−j−k

)
/
(
52
3

)
, 0 ≤ j + k ≤ 3 (b) P (H = S) = p(0, 0) + p(1, 1)

= 0.32
12(a)p(0, 0) = 36/52, p(0, 1) = 3/52, p(1, 0) = 12/52, p(1, 1) = 1/52 (b) 40/52
13(a)1/4 (b) 3/32 (c) 25/64
15 (c), (d)
16(a)c = 6 (b) 3/4 (c)1/4 (d) fX(x) = 3x2, 0 ≤ x ≤ 1, fY (y) = 3y2−6y +3, 0 ≤ y ≤ 1
17f(x, y) = x + y, fX(x) = x + 1/2, fY (y) = y + 1/2
19unif [0, 1]
20(a)c = 2/π (b) d2(2 − d2)
220.68
23 exp(−2) = 0.14
28f(x) = 1/2, 0 ≤ x ≤ 2
298x/3, 0.5 ≤ x ≤ 1
31(a)fY (y|x) = exp(x − y), y ≥ x, (b) fY (y|x) = x exp(−xy), y ≥ 0,

(c) fY (y|x) = 1/y2, y ≥ 1, (d) fY (y|x) = 1/(2
√

y), 0 ≤ y ≤ 1
32(a)f(x, y) = x, 0 ≤ y ≤ 1/x, 0 ≤ x ≤ 1 (b) fY (y) = 1/2, 0 ≤ y ≤ 1,

fY (y) = 1/(2y2), y ≥ 1 (c) 1/3
33pY (k) = 1/(n + 1), k = 0, 1, ..., n
34(a)450/1350 = 1/3 (b) 800/1350 = 0.59
35(b)λ1/(λ1 + λ2)
36 (a) yes(b) no (c) yes(d) yes(e)yes
38 (π/6)1/3/2 = 0.40
391/2 + n/24 for n ≤ 4 and1 − 2/(3

√
n) for n ≥ 4

40(a)1/4 (b) 0.53 (c) 1/4
43(a)F (x) = 1 − (1 − x)2, 0 ≤ x ≤ 1 (b) F (x) = x/(2(1 − x)), 0 ≤ x ≤ 1/2,

F (x) = 1 − (1 − x)/(2x), 1/2 ≤ x ≤ 1
44fW (x) = − log x, 0 < x ≤ 1
45(a)10/3 minutes(b) 85/6 minutes
467/12 Ml (E[max(X − Y, 0)])
474/9
48(a)1/4 (b) ∞ (c)−2 (d) 1/3
49(a)E[A] = a, Var[A] = σ2/2 + τ 2/4
50EX̄] = µ, Var[X] = σ2/n
51(a)n(µ2 + σ2) (b) n(nµ2 + σ2)

53(c)(1 − 2p)/
√

np(1 − p) and3 + (1 − 6p + 6p2)/(np(1 − p))

55(a)n(1 − (1 − 1/n)k)
58(2N −n)(2N −n− 1)/(4N − 2) (let Ij be the indicator for the event that thejth married

couple remains and findE[Ij ])
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61(a)f(X,Z)(x, z) = xf(x, xz) (b) f(X,Z)(x, z) = x exp(−x(1+ z)), fZ(z) = 1/(1+ z)2

62f(U,V )(u, v) = u, 0 ≤ uv ≤ 1, 0 ≤ u(1 − v) ≤ 1
63f(U,V )(u, v) = exp(−(u2 + v2)/4)/(4π) (note thatU = X − Y andV = X + Y are

independent; this only holds for the normal distribution)
64f(X,Y )(x, y) = 1/(2π

√
x2 + y2), x2 + y2 ≤ 1

65f(W,I)(w, i) = 2/i, 0 ≤ i ≤ 1, i2 ≤ w ≤ i (note the range),fI(i) = 2(1− i), 0 ≤ i ≤ 1,
fW (w) = − log w, 0 ≤ w ≤ 1

66f(U,V )(u, v) = v/2, 0 ≤ u ≤ 2, u/2 ≤ v ≤ 1 + u/2 (note the range)
67f(U,V )(u, v) = exp(−(u2 + 3v2)/6)/(2π

√
3), u, v ∈ R

69(a)$360 (E[g(X)] whereg(X) = X − 0.8 if X ≥ 0.8 andg(X) = 0 otherwise)
(b) $600 (E[X|X > 0.8] − 0.8)

70(a)E[Y |X = k] = k + 3.5 (b) E[Y |X = k] = 52/11, 56/9, 54/7, 46/5, 32/3, 12
for k = 1, 2, ..., 6

71(a)E[Y |X = x] = x + 1, (b) E[Y |X = x] = 1/x, (c) E[Y |X = x] = ∞,
(d) E[Y |X = x] = 1/3

72(a)1/6 (b) 1/π (c) ∞ (d) 1/2
73(a)1/2 (b) 2 (c) ∞
74(a)∞ (b) n/2
782/((1 − p)2 + p2)
79 (2 − p)/(1 − p(1 − p))
8110 and20
832n+1 − 2
84(a)36 (b) 258
851/36
861 [Var[Ij ] = (n − 1)/n2, Cov[Ij , Ik] = 1/(n2(n − 1))]
87−1/3
95none are independent(a) correlated(b) uncorrelated(c) uncorrelated(d) uncorrelated
96
√

6/7 = 0.93
97E[X] + E[Y ] = 0
98E[Y |X] = X2/2, l(X) = 2X/3 − 1/5
102a,d,e,g
103(a)E[C] = 30, E[C|X = x] = 5.2x+4 (b) E[A] = 50.016, E[A|X = x] = 1.6x2+2x

(c) 0.08 (d) 0.02 (e)c ≤ 0.46
1040.37
105(a)0.08 (b) 0.09 (c) n ≥ 3
107U andV are independent withU ∼ N(0, 2(1 − ρ)), V ∼ N(0, 2(1 + ρ)).
108(a)fZ(x) = ϕ((x − 900)/

√
181/4)/

√
181/4 (b) fW (x) = (ϕ((x − 1000)/10)/20

+ϕ((x−800)/9)/18 (c)E[Z] = 900, Var[Z] = 181/4E[W ] = 900, Var[W ] = 10090.5
109E[N ] = e
110E[N ] = 1/(1 − F (c))
11132.5 minutes
114(a)fM (x) = Φ(x − 5)ϕ(x − 7) + Φ(x − 7)ϕ(x − 5) (b) Φ(1)Φ(−1) = 0.13
117(a)1/2 (b) 1/24 (c) 1/8 (d) 1/8
118100 + 100 × 0.91/4 = 197.40
120Hint: the lifetime ismax(T1, T2) whereT1, T2 are i.i.d.exp(2)
121(exp(t) + 2)/(exp(t) + 1)
122f(x, y) + f(y, x)
1230.0001
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1250.38
126fT (x) = 1 − exp(−x), 0 ≤ x ≤ 1 andfT (x) = exp(−x)(e − 1), x ≥ 1
128fX+Y (x) = (x − 2) exp(2 − x), x ≥ 2
131fX+Y (x) = exp(−x)x2/2, x ≥ 0
134(a)GX(s) = (s + s2 + · · · s6)/6 (b) GS(s) = GX(s)5

135(a)ps/(1 − s + ps) (b) (ps/(1 − s + ps))r

137P (Xk = 0) = 1 − µ/λ, P (Xk = 1) = µ/λ
138$8.75
139(a)0.83 (b) 9 ms
140(a)GY (s) = exp(s+s2+s3+s4−4) (b) exp(−4) = 0.02 (c)E[Y ] = 10, Var[Y ] = 30
142(b)≈ $95
1450 and3
148not normal
149(a)GX(s) = G(s, 1) (b) Cov[X, Y ] = Gst(1, 1) − Gs(1, 1)Gt(1, 1)
150(a)exp(−10/13) = 0.46 (b) exp(−5/13) = 0.68 (c) exp(−1) = 0.37

(d) ((10/13) exp(−10/13))3 = 0.045
151(a)exp(−2/7) = 0.75 (b) 1 − exp(−8/10) = 0.55 (c) bin(52, exp(−2))
155(a)exp(−5) × 52/2 = 0.08 (b) 2 exp(−2) × 3 exp(−3) = 0.04 (c) 9/25

(d)
(
4
2

)
(1/2)4 = 0.375

156(a)no (b) 3 exp(−2) = 0.41 (c) P (even number of accidents) = 0.51

CHAPTER 4

3
∫ 1

0
g(x)dx

4 2/3
9 Φ(2) = 0.977
101 − Φ(10/

√
200) = 0.24

1178
12Exact:0.67, 1, 1, approximately:0.50, 0.87, 0.99
13P (X ≥ 80) = 1 − P (X ≤ 79) ≈ 0.72 (n = 100, p = 13/16)
140.44
15254
16(a)1/2 and1/2 (exact:1/2) (b) 1/4 and1/3 (exact:1/3) (c) 1/16 and3/16 (exact:1/5)

(d) 1.65 and1.72 (exact:exp(1) − 1 ≈ 1.72) (e)0.61 and0.63 (exact:1 − exp(−1)
≈ 0.63) (f) 1 and0.59 (exact:2/π ≈ 0.64) (g) 0 and0 (exact:0)

17≈ 216, 000 times
18N(2/3, 4/27n)
24λ = 1, α = 2
25For examplean = n1/3, Weibull withλ = 1, α = 3

CHAPTER 5

3 Let Sn =
∑n

1
Xk, n = 1, 2, ... and letY = min{n : Sn > λ} − 1.

6 F−1(u) = (b − a)u + a
7 X = U1/3

8(a)X = tan(π(U − 1/2))
9 X = (− log U/λ)1/α

10X = 1 + [log U/ log p] ([ · ] denotes integer part)
17X1 = µ1 + σ1X, Y1 = µ2 + ρσ2(X1 − µ1)/σ1 + σ2

√
1 − ρ2Y

18X =
√

V sin(2πU), Y =
√

V cos(2πU)
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CHAPTER 6

2 Ȳ − X̄,
√

σ2
1/n + σ2

2/m

5(a) N̂ = kn/X, not unbiased(b) N̂ = kX, unbiased
7 λ̂ = X/t,

√
λ/t

8 I(λ)−1 = λ/t
12P (X ≤ 5) ≤ 0.59 and0.06 respectively
13 ĉ = 0.11, no
14(a) p̂ = 0.0113 (b) x̂ = 17.8
15 µ̂ = 98.3, σ̂ = 24.7
17A − B = 4.7 ± 17.8
18µ = X̄ ± 1.96/

√
5 = 1000.3 ± 0.88

19p = 0.54 ± 0.03
20≈ 0.25
21(a)n ≥ 246 (b) n ≥ 385
22p = 0.53 ± 0.06
24pB − pG = 0.03 ± 0.01
25µ = X̄ ± z σ√

n
(≈ q)

26σ = s

1±z/
√

2n
(≈ q)

28pd − pp ≥ −0.03
30(c)1086 ± 215
32 λ̂ = n/T
33 p̂ = X/n

34 b̂ = X(n) (MLE) and b̂ = 2X̄ − a

35 â = X(1), b̂ = X(n) (MLE’s) and â = X̄ −
√

3(µ̂2 − X̄2), b̂ = X̄ +
√

3(µ̂2 − X̄2)

36 θ̂ = max(−X(1), X(n))

37 θ̂ = X(1) (MLE) and θ̂ = X̄ − 1

38(a) θ̂ = x̄/(1 − X̄) (b) θ̂ = −n/
∑

k
log Xk (c) θ = θ̂(1 ± z/

√
n) (≈ q)

39 θ̂ =
∑

k
X2

k/n (both)
40(a) â = π/(2X̄2) (b) â = 2n/

∑
k

X2
k (c) a = â(1 ± z/

√
n) (≈ q)

43H0 : p = 1
2
, HA : p 6= 1

2
, α = 0.0078, C = {0, 1, 7, 8}

44H0 : λ = 5, HA : λ > 5, C = {
∑4

k=1
Xk ≥ 26}, We can rejectH0.

45(a)Base the test onT = (X̄ − µ0)/(σ/
√

n) ∼ N(0, 1) (b) acceptH0

47(a)T =
√

n(1 − λ0X̄) (b) T =
√

n(1/(λ0X̄) − 1) The second test is better.
48H0 : p = 0.21 vsHA : p > 0.21, acceptH0

49H0 : pW = 2pT vsHA : pW > 2pT , acceptH0

50 Assume independent Poisson variables. Test statisticT = (X2 − X1)/
√

X1 + X2
d≈

N(0, 1).
51

np̂ + z2/2

n − z2
±
√

nz2p̂(1 − p̂) + z4/4

(n − z2)2

561 − 0.95k

60(a)n ≥ 210 (b) Φ((p − 0.5)
√

n − 1.64/2)/
√

p(1 − p) = q
63RejectH0, beware of data-snooping!
64AcceptH0, χ2 = 4.06, lump together into five classes
65Geometric:χ2 = 1.31, four classes. Poisson:χ2 = 10.48, four classes
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68AcceptH0, χ2 = 0.26, DF=1
70RejectH0, χ2 = 15.2, five classes
71RejectH0, χ2 = 7.1
72RejectH0, χ2 = 76.6, DF=1
74RejectH0, χ2 = 207, DF=3
75p-value=0.14. Do not rejectH0.
76P (p = 1/3|D) = q/(4 − 3q), E[p|D] = (8 − 7q)/(12 − 9q)
78P (p|D) = 30p4(1 − p), mean= 5/7, mode= 4/5, MLE = 3/4
80(a)f(θ|D) = 32θ(θ − 1)/(99 · 2θ) θ = 2, . . . , 6, (b) 3.94 and1.69, (c) 3 ≤ θ ≤ 5
83(a)1/5 and1/75 (b) 2/15 and2/225
87(a)Beta(α, β) (b) 0.2 and0.072 (c) 0.175 and0.070
88 Parametric:101.2 ≤ µ ≤ 116.4, Nonparametric (sign test):96 ≤ m ≤ 116, Nonpara-
metric (Wilcoxon test)101 ≤ m ≤ 116
89Parametric:22.3 ≤ µ ≤ 283.6, non-parametric:27.3 ≤ µ ≤ 263.9
900.06 and0.03 respectively, ifN+ is either0 or 5
91AcceptH0 : m = 100
92RejectH0 : m = 1 on the5% level
951/16
96RejectH0 : µ = 100 in favor ofHA : µ > 100 (W = 59, C = 66 − 14 = 52)
97Pairwise differences. RejectH0 : µ = 0 in favor ofHA : µ 6= 0 (W = 54, c = 9,

C = 46)
98W = 3, 4, ..., 13, P (W = 7) = 1/5
99AcceptH0 : µA = µB (W = 46.5, c = 22, C = 48)
100AcceptH0 : D5,8 = 0.475 (c = 0.8)
101AcceptH0 (W = 43, c = 33, C = 69)

102AcceptH0 (W = 106, W
d≈ N(90,

√
345))

CHAPTER 7

8 f(v) =
√

2/πσ3v2e−v2/(2σ2) v ≥ 0
9 µ = 0.11 ± 0.05
110.034 ≤ σ ≤ 0.104
1215.2 ≤ σ ≤ 23.6 (0.90), 14.7 ≤ σ ≤ 24.8 (0.95)
13Fχ2

n−1
(nǫ2/(4t2))

142σ4/(n − 1)
15 H0 : µ = 12 vs HA : µ 6= 12, |T | = (12.1 − 12)/(

√
0.96/10) = 1.02 < 1.96, accept

H0

16H0 : µ = 100 vsHA : µ > 100, T = (X̄ − 100)/(s/
√

7) = 3.1 > 1.94, rejectH0

17H0 : µ = 0 vsHA : µ 6= 0, |T | = X̄/(s/
√

5) = 1.0 < 2.78, acceptH0

18H0 : µ = 0.30 vsHA : µ > 0.30, rejectH0

19H0 : µ = 0 vsHA : µ > 0, acceptH0

20n ≥ 62
22H0 : σ2 = 1 vsHA : σ2 > 1, rejectH0

23H0 : σ = 1 vsHA : σ > 1, acceptH0

24H0 : σ = 15 vsHA : σ 6= 15, acceptH0

25RejectH0 (T = 1.875, t10 = 1.812)
26d = −2.2 ± 16.3
2773 ± 22 (95%)
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28 Assume normally distributed samples. Testσ1 = σ2. RejectH0 on 5% level. (F = 7.23,
x1 = 0.14, x2 = 7.15)
292µ1 + 2µ2 = 489 ± 27
32H0 : µ = 0 vsHA : µ > 0, acceptH0

33 Eacht-test will be conditioned on the outcome of the first test, which means that the test
statistic no longer ist distributed.
34(a) RejectH0. (F = 20.85, F3,16 = 3.24) (b) X̄i1· − X̄i2· ± 17.5. (c) RejectH0.
(K = 15.16 > 7.37)
41a = 36 ± 12, b = 9.7 ± 3.4
42AcceptH0 : a = 0 (T = −0.48)
44(a) b̂ = (SxY − aSx)/Sxx (b) â = Ȳ − bx̄ (c) â = 24.6, b̂ = 11.3

45 â = 0.85, 0 ≤ a ≤ 25.5, b̂ = 0.15, b = 0.15 ± 1.12 (considerlog Y )
46(a)y = −0.039x + 105, 57 seconds
47Y = 133 ± 27
50180 ≤ σ ≤ 330
51H0 : ρ = 0 vsHA : ρ 6= 0, R = 0.25, acceptH0

52RS = 0.418, AcceptH0 (T = 1.30).
53−0.45 ≤ ρ ≤ 0.76 (≈ 0.95)
54H0 : ρ = 0.9 vsHA : ρ > 0.9, L = 4.66, rejectH0

57β0 = 2.71 ± 0.70, β1 = 10.20 ± 0.78, β2 = 2.07 ± 0.16
60 SSA=

∑
i,j,k

(X̄i·· − X̄)2, SSB=
∑

i,j,k
(X̄·j· − X̄)2, SSE=

∑
i,j,k

(Xijk − X̄ij·)
2,

SST=
∑

i,j,k
(Xijk − X̄)2 and SSAB=

∑
i,j,k

(X̄ij· − X̄i·· − X̄·j· + X̄)2 (Derive them in
this order.)

CHAPTER 8

1(b) 0.88 (c) 0.81
2 pss = 7/8, prr = 1/2
3 1/71
4(b) 4 (geom(0.2) including0) (c) 1/πhigh = 5.8
9(b) 0.59 (c) 43% vowels
10(a)c(onsonant)(b) c (c) ccccc(d) cvcvc
11(b) 10
12 (a)π = (1/10, 2/10, 4/15, 5/18, 7/45) (Note: p32 = 3/5, p34 = 2/5 andp43 = 1)

(b) 1/10, 7/45 (c) 14/9
14(a)4 (b) 2 (c) π0 = π1 = π2 = π3 = 1/5, π4 = π5 = 1/10, no
15(a)2048 (b) 2
16π0 = π1 = 1/3, πk = (1/3)(1/2)k−1 , k ≥ 2
17(a)qij = pjiπj/πi

19p = 1/2
20(a)p0,1 = pN,N−1 = 1, pk,k−1 = k/N, pk,k+1 = 1 − k/N, k = 1, 2, ..., N − 1

(b) bin(N, 1/2) (c) no
221/

√
1 + m/n

24(a)πk = 1/(a + 1), k = 0, 1, ...a (b) a + 1 (c) π0 = πa = 1/(2a),
πk = 1/a, k = 1, 2, ..., a − 1

25P0(τ1 < ∞) = p/q if p < q and1 otherwise.E0[τ1] = 1/(p − q) if p > q and∞
otherwise

26r/(p − q)
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28(c)exp(−1/2) = 0.61 in (a),2 exp(−1)(1 − 2/3) + exp(−1/2) − exp(−1) = 0.48 in
(b), and1/2 if S0 ≡ 1

30(a)µ < 1 (b) Yn = 1 + Z1 + · · ·Zn, E[Yn] = n + 1
if µ = 1 and(1 − µn+1)/(1 − µ) if µ 6= 1

31(a)2n (b) 3/7 (c) 1/2

32 (b)Note thatZn = Z
(0)
n + · · ·Z(n)

n whereZ
(j)
n is the number of individuals in thenth

generation stemming from theYj immigrants in generationj, j = 0, 1, ..., n. Differentia-
tion of the pgf givesE[Zn] = ν

∑n

k=0
µk (c) Poi(λ(1 − pn+1)/(1 − p))

34For example,p00(t) = λ/(λ + µ)e−(λ+µ)t + µ/(λ + µ)
35(c)1/4 minute(d) 1/5
37(b) uniform if b = 2a
40(b) (10 + α)/(40 + α) (c) 1.5
41π0 = 1/(1 − log(2/3)), πn = π0/(n3n)
43(a)17% (b) 1.6%
44(a)50% (b) 33% (c) 33% (d) 20%
45(a)π0 = 4/10, π1 = 2/10, π2 = 3/10, π3 = 1/10 (b) π0 = 16/43, π1 = 8/43,

π2 = 12/43, π3 = 7/43
46(b)π0 = π1 = 4/19, π2 = 6/19, π3 = 5/19
47(a)π0 = 0.03, π1 = 0.19, π2 = 0.78 (b) π2 + π1((2/3) × 0.2 + (1/3) × 0.5) = 0.84
48Poi(λ/µ)
49λn ≡ λ, µn = µ + (n − 1)ν, n ≥ 1
50P (W ≤ x) = 1 − ρ exp(−x(µ − λ)), x ≥ 0 (P (W = 0) = 1 − ρ) and conditioned on

k ≥ 1 customers in the system,W ∼ Γ(k, µ))
51T ∼ exp(µ(1 − ρ))
52Yn = Pn/µn

53Yn = 2nXn

55Y ∼ unif[0, 1]
57m(t) = et − 1, t ≤ 1
58(a)Once in 190 hours.(b) 0.79
59(a)λ/(1 + λµS) (b) 1/(1 + λµS)
600.918
61(a) F̃ (t) = 1 − e−λt (b) F̃ (t) = t(2 − t) 0 ≤ t ≤ 1 (c) F̃ (t) = 1 − e−λt(1 + λt/2)
62(a)min(s, t), (b) t(1 − s) if t ≤ s ands(1 − t) if t ≥ s
63N(0, t + s + 2 min(t, s))
64min(t, s)

66E[Mt] =
√

2t/π, Var[Mt] = t(t − 2/π)
67

N

(
t2 − t

t2 − t1
x1 +

t − t1
t2 − t1

x2,
(t2 − t)(t − t1)

t2 − t1

)

68(a)N(c + µ(t − s), σ2(t − s)) (b) N(ct/s, σ2t(s − t)/s)
690.362
70f(r) = r

t
e−r2/(2t) r ≥ 0
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Absorbing state, 464
Alternative hypothesis, 338

one-sided versus two-sided, 338
Analysis of variance, 419

as GLM, 445
confidence intervals, 424
for regression models, 436
multiple comparisons, 423
one-way, 420
two-way, 447
unbalanced, 451

ANOVA, 419
ANOVA table, 421
Aperiodic state, 474
Backward equations, 491
Backwards martingale, 513
Balking, 502
Ballot theorem, 513
Base rate, 51
Bayes estimator, 363
Bayes’ formula, 49

in island problem, 53
in Monty Hall problem, 51–52

Bayesian statistics, 361
Beta distribution, 365

conjugate to binomial, 367
Between-group variance, 421
Bienaymé, I. J., 482
Binomial distribution, 116

approximation by normal, 279

approximation by Poisson, 125
approximation of hypergeometric, 285

Birthday problem, 21–22, 71–72
Birth–death process, 497

linear, 498
Bivariate normal distribution, 216
Bonferroni correction, 348
Bonferroni-Holm correction, 349
Bootstrap simulation, 334
Borel set, 89
Box–Muller method, 298
Branching processes, 481

as martingale, 507, 510
convergence of, 510

Brownian bridge, 530
Brownian motion, 524

geometric, 529
maximum of, 527
standard, 525
two-dimensional, 539
with drift, 528

Buffon, Count de, 178
Buffon’s needle, 177, 275, 280
C, 459
Cauchy distribution, 140
Cavendish, Henry, 378
Central limit theorem, 276

for renewal process, 519
Chapman–Kolmogorov equations, 489
Chebyshev’s inequality, 112
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one-sided, 154
Chi-square distribution, 402
Chuck-a-luck, 153
Coefficient of determination, 436
Coefficient of variation, 154, 389
Communicating states, 462
Conditional distributions, 169
Conditional expectation, 191

in prediction, 197
Conditional pdf

given an event, 170
jointly continuous case, 171

Conditional probability, 29
as information, 70

Conditional variance, 198
Confidence interval, 314

for difference between means (equal variances),
414

for ratio of variances, 418
for the mean, 317, 410
for the variance, 408
for unknown probability, 318
nonparametric, 386
one-sided, 321

Confidence level, 314
simultaneous, 391

Conjugate distribution, 367
Consistent estimator, 306
Continuous-time Markov chain, 488

irreducible, 495
jump chain of, 488
limit distribution of, 493
null recurrent, 495
positive recurrent, 495
recurrent, 495
transient, 495

Convergence
almost surely, 273, 488, 508
in distribution, 283, 285
in probability, 272

Convolution, 235
Correlation coefficient, 208
Correspondence theorem, 341
Coupon collecting problem, 186
Covariance, 203
Cramér-Rao lower bound, 309
Craps, 77
Credibility interval, 372
Critical

region, 338
value, 338

Data snooping, 345
Delayed renewal process, 521
Delta method, 282
De Moivre–Laplace theorem, 279
De Morgan’s Laws, 6

Design matrix, 444
Disjoint events, 8
Distribution function, 84
Distribution function

empirical, 334, 380, 384, 530
Distribution function

properties, 87
Distributive Laws, 6
Donsker’s theorem, 531
Efficiency, 309
Ehrenfest model, 533
Elementary renewal theorem, 518
Empirical distribution function, 334, 380, 384, 530
Estimate, 304
Estimator, 304

asymptotically unbiased, 390
bias of, 390
consistent, 306
more efficient, 307
of mean, 304
of variance, 311
unbiased, 305

Eugene Onegin, 532
Euler’s constant, 227
Event, 5

decreasing sequence, 15
increasing sequence, 15
independent events, 35
independent vs. disjoint events, 37
pairwise disjoint events, 8

Expectation, 100
Expected value, 100

of a function, 106, 181
of a sum, 182, 185

Exponential distribution, 128
in Poisson process, 248
memoryless property of, 130

Exponential family, 367
Extreme values, 285
Failure rate, 131, 145, 231

constant, 131
increasing, decreasing, bathtub-shaped, 146

False-negative rate, 51
False-positive rate, 51
F distribution, 403
Fisher information, 309, 331, 341, 371
Fisher’s exact test, 359
Forward equations, 491
Frequentist statistics, 362
Galton, Sir Francis, 221, 482
Gambler’s ruin, 61–63, 76
Gambler’s ruin, 512
Gamma distribution, 139

in Poisson process, 251
relation to exponential, 238

Gauss, Carl Friedrich, 132
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Gaussian distribution, 132
General linear model, 443
Generator, 490
Genetics, 56, 76
Geometric Brownian motion, 529
Geometric distribution, 120
Goodness of fit, 349

for regression models, 435
test for independence, 356

Histogram, 81, 93
Hitting time, 525
Hubble, Edwin, 215, 428
Hypergeometric distribution, 125

approximation by binomial, 285
Hypothesis test, 336

for correlation coefficient, 440
for difference in means (equal variances), 415
for ratio of variances, 419
for the mean, 411
for the variance, 409
for unknown probability, 342
large sample, 341
multiple, 348

I.i.d. random variables, 224
Inclusion–exclusion formula, 14
Independent events, 35

and conditional probability, 36
and disjoint events, 37
conditionally independent, 72
infinite sequence of, 40
pairwise independent, 39
three events, 40

Independent random variables, 174, 187
Indicators, 116, 188
Inter-arrival times, 248, 515
Inverse transformation method, 293
Irreducible Markov chain, 462
Island problem, 53, 153
Jeffrey’s prior, 371
Joint

distribution function, 162
mgf, 268
pdf, 166
pgf, 268
pmf, 163

Kolmogorov-Smirnov test, 379, 384
one-sample, 379
two-sample, 384

Kronecker’s lemma, 509
Kruskal-Wallis test, 424
Kurtosis, 159, 260
Laplace, Pierre-Simon, 1, 364
Laplace’s rule of succession, 364
Law of large numbers, 272, 509

for renewal process, 517
Law of total expectation, 191–193

Law of total probability, 43, 172–173
Law of total variance, 198
Likelihood function, 326
Limit distribution

for continuous-time Markov chain, 493
for discrete-time Markov chain, 461, 472

Linear birth–death process, 498
Linear regression, 426

as GLM, 444
estimation of slope and intercept, 427
estimation of variance, 430
multiple, 444
prediction interval, 434
residuals, 435

Little’s formula, 506
Location parameter, 108, 142
Log-likelihood function, 326
Lognormal distribution, 137
Luckenbach, Texas, 319
Marginal, 163
Margin of error, 318
Markov, A. A., 532
Markov chain, 456

aperiodic, 474
continuous-time, 488
ergodic, 475
finite state space, 463
irreducible, 462
limit distribution of, 472
Monte Carlo (MCMC), 367
null recurrent, 471
periodic, 473
positive recurrent, 471
recurrent, 463
stationary distribution of, 466
transient, 463

Markov property, 456
for continuous-time Markov chain, 489

Markov’s inequality, 154
Martingale, 507

backwards, 513
Martingale convergence, 508
Matching problem, 27, 70
Maximum likelihood estimator (MLE), 326

approximate confidence interval, 331
asymptotically efficient, 331
asymptotically normal, 331
asymptotically unbiased, 331
consistent, 331
in linear regression, 427

Maximum likelihood method, 324
Maxwell-Boltzmann distribution, 448
Mean, 100
Mean recurrence time, 476
Median, 92, 131, 142
Mendel, Gregor, 352



568 INDEX

Method of moments, 321
Mixed distribution, 141
Mode, 144
Moment estimator, 323
Moment generating function (mgf), 244
Moment of a random variable, 247, 322
Monty Hall problem, 51–52
Multidimensional random vectors, 223
Multinomial distribution, 232
Multiple linear regression, 444
Multivariate normal distribution, 233
Negative binomial distribution, 155
Non-informative prior, 370
Nonparametric methods, 373
Normal distribution, 132

approximation of binomial, 279
bivariate, 216
in central limit theorem, 276
linearity of, 221
standard, 133

Null hypothesis, 338
Null recurrent state, 471, 495
Occupancy problem, 186
Oil rigs, 382
Old Faithful geyser, 265, 432
One-samplet test, 411
One-way analysis of variance, 420
Opinion polls, 318
Optional stopping theorem, 511
Order statistics, 225
Outcome, 3
Pearson, Karl, 438
Penney-ante, 65, 77, 201
Percentile, 136, 389
Period, 474
Periodic state, 474
Poisson distribution, 122

approximation of binomial, 125
in Poisson process, 250

Poisson process, 131, 248, 515
superposition, 255
thinning, 252

Poisson, Siméon, 123
Poker, 24, 69
Polya’s urn model, 538
Pooled sample variance, 413
Positive recurrent state, 471, 495
Posterior distribution, 362
Power function, 347
Prediction interval, 392, 434
Predictor, 197, 391

best linear, 212
in linear regression, 434

Prior distribution, 362
conjugate, 367
Jeffrey’s, 371

non-informative, 370
vague, 370

Probability
as continuous set function, 15
axioms, 8
classical definition, 17

Probability density function (pdf), 88
interpretation, 92
relation to cdf, 89

Probability generating function (pgf), 238
Probability mass function (pmf), 81

relation to cdf, 86
Probability

measure, 8
objective and subjective, 1

Product moment correlation coefficient, 438
Punnett square, 57
Pushkin, Alexander, 532
P-value, 344
Quantile function, 295
Queueing system, 501

finite waiting room, 502
M/M/1, 501
multi-server, 503
performance measures, 504
with balking, 502
with reneging, 537

Random experiment, 3
Random number generator, 290
Random sample, 304
Random variable, 79

continuous, 86
discrete, 81
mixed, 142

Random vector, 162
discrete, 163
jointly continuous, 166

Recurrent state, 463, 495
Recursive methods, 58, 199
Regression line, 426
Rejection method, 296
Relative frequency, 1, 273, 317
Reliability, 42, 72, 230
Renewal, 515
Renewal equation, 516
Renewal function, 515
Renewal process, 225, 515

delayed, 521
Renewal rate, 518
Renewal theorem, 518
Residuals, 435
Reversible Markov chain, 533
Roulette, 76, 100, 107, 110, 153
Sample correlation coefficient, 438
Sample mean, 259, 263, 271, 304
Sample moment, 322
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Sample space, 3
countably infinite, 4
finite, 4, 16
uncountable, 4

Sample variance, 311
Sampling distribution, 402
Sensitivity, 51
Significance level, 338

multiple, 348
Sign test, 374
Simple random walk, 477, 527

as martingale, 507
in three dimensions, 480
symmetric, 477

Simpson’s paradox, 47
Simulation, 289

bootstrap, 334
Box–Muller method, 298
evaluation of estimators with, 332
of discrete random variables, 292
with inverse transformation method, 293
with rejection method, 296

Size-biased distribution, 120, 153
Skewness, 159, 260
Spearman’s correlation coefficient, 442
Specificity, 51
Standard Brownian motion, 525
Standard deviation, 109
Standard error, 310
Stationary distribution, 466

for continuous-time Markov chain, 493
Statistic, 338
Statistical inference, 303
Stochastic semigroup, 489
Stopping time, 511
St Petersburg paradox, 107
Strong law of large numbers, 509
Studentized range distribution, 423
Submartingale, 512
Success runs, 475, 495, 533

Sum of squares, 421
Supermartingale, 512
Survey sampling, 319
Survival analysis, 147
Survival function, 148
Symmetric distribution, 159
T distribution, 404
Test statistic, 338
Texas lottery, 23, 26, 41, 122, 345, 395
Transient state, 463, 495
Transition

matrix, 458
probabilities, 456
rate, 490

Translation model, 382
Tree diagrams, 46
Triangular distribution, 237
t test

one-sample, 411
two-sample, 415
Welch’s, 417

Tukey’s method, 423
Two-samplet test, 415
Two-way analysis of variance, 447
Type I and type II errors, 346
Unbiased estimator, 305
Uniform distribution, 17, 82, 94–95
Variance, 109

of a sum, 183, 187, 204, 206
Venn diagram, 6, 12–13, 67
Waiting time paradox, 224
Watson, Henry W., 482
Weibull distribution, 150
Welch’st test, 417
Wiener process, 524
Wilcoxon

rank sum test, 382
signed rank test, 377

Within-group variance, 420
Z score, 134


