


Mobile Test Automation with
Appium

Nishant Verma

BIRMINGHAM - MUMBAI



Mobile Test Automation with Appium

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2017

Production reference: 1290617

ISBN 978-1-78728-016-8



Credits

Author
Nishant Verma

Copy Editor
Shaila Kusanale

Reviewers
Jagannath Balachandran
Kapil Sethi
Manoj Hans

Project Coordinator
Ritika Manoj

Commissioning Editor
Amarabha Banerjee

Proofreader
Safis Editing

Acquisition Editor
Siddharth Mandal

Indexer
Tejal Daruwale Soni

Content Development Editor
Aditi Gour

Graphics
Jason Monteiro

Technical Editor
Rashil Shah

Production Coordinator
Arvindkumar Gupta



About the Author
Nishant Verma is a co-founder of TestVagrant Technologies. It’s a service start-up
addressing testing solutions for B2C companies with a focus on mobile and web, and helps
companies deliver faster and reliably.

Nishant has 11 years of experience in software development and testing. He has worked
with IT companies such as ThoughtWorks Inc., Aditi Technologies, and Altisource. He has
extensive experience in setting up agile testing practices, functional and non-functional test
automation, mentoring, and coaching. In the past, he has worked on web UIs and
specializes in building test solutions in the mobile domain. He has hands-on experience
with test automation tools such as WebDriver (Selenium2), Calabash, Frank, Appium,
Watin, Sikuli, QTP, and DeviceAnywhere.

He actively maintains his own website on testing techniques, agile testing, automation
techniques, and general learning. He has contributed to leading testing journals such as
Testing Circus and Software Developer's Journal, and has been an active speaker at vodQA
(testing event of Thoughtworks).

Nishant has authored a reference book on how to use Appium for automating Android
apps using Java, which is available on Gitbook. It has received close to 200,000 views, 40,000
readers online, and has been downloaded around 3,000 times.



About the Reviewers
Jagannath Balachandran works as a lead consultant for ThoughtWorks India Pvt. Ltd. He
has around 14 years of experience working with teams delivering software using agile and
continuous delivery practices. He has extensively consulted clients on their journey toward
continuous delivery.

Kapil Sethi is an agile practitioner with more than 12 years of experience in the software
industry. He is a passionate advocate of shifting testing to the left most column in the agile
development process and is a strong believer of the Testing Pyramid. He is a connoisseur of
automation testing and has hands-on experience in designing automation testing
frameworks using a variety of automation tools, such as WebDriver, Appium, Protractor,
Applitools, Calabash, SoapUI, and QTP.

He has worked on numerous domains, including banking, mortgage, retail, e-commerce,
and online gaming. His expertise involves helping development teams deliver quality
products, coaching teams on agile adoption, transforming teams and thereby organizations,
to make the working environment fun and passionate.

He is currently working with Nintex as an automation specialist. In the past, he has worked
with companies such as MYOB, ThoughtWorks, Sapient, and Cognizant Technology
Solutions, and performed the development lead, iteration manager, QA lead roles during
his tenure.



www.PacktPub.com
For support files and downloads related to your book, please visit .

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at  and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at  for more details.

At , you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser



Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at .

If you'd like to join our team of regular reviewers, you can e-mail us at
. We award our regular reviewers with free eBooks and

videos in exchange for their valuable feedback. Help us be relentless in improving our
products!



Table of Contents
Preface 1

Chapter 1: Introduction to Appium 8

Native app 9
Mobile Web app 11
Hybrid app 13
Appium architecture 15

XCUITest 17
UiAutomator 2 18
Pros of using Appium 19

Summary 19

Chapter 2: Setting Up the Machine 20

Machine setup for macOS 21
Installing Java 21
Installing Android SDK (using the Android command-line tool) 22
Installing Android SDK (using Homebrew) (Optional) 23
Creating Android Virtual Device (Optional) 23
Genymotion emulator 25

Debug help 29
Installing Appium 30
Installing Appium server (From Source) (Optional) 32
Selecting IDE 32

App under test 32
Machine setup for Windows 32

Installing Java 33
Installing Android SDK (using Android command-line tool) 33
Installing Node JS 36
Installing Appium 36

Installing Appium server (via npm) 37
Installing Genymotion 37
Selecting IDE 38

Appium GUI app 38
Summary 44

Chapter 3: Writing Your First Appium Test 45

Creating an Appium Java project (using gradle) 46



[ ii ]

Introduction to Cucumber 50
Writing our first Appium test 51

Running the feature file 64
Refactoring 66
Implementing the remaining steps 66
Running the scenario 72
Automating a mobile web app using Appium 73
Implementing the remaining steps 74
Automating the iOS app using Appium 77

Build the app 78
Deploying the app on the iOS Simulator 79

Via xcrun command 79
Using Appium 79

Generating Boilerplate code for iOS 82
Summary 88

Chapter 4: Understanding Desired Capabilities 89

Refactoring -1 90
Server argument 92

Refactoring -2 93
Server capabilities 97

Refactoring -3 99
Android-only capabilities 100

Refactoring -4 103
iOS-only capabilities 105
Summary 110

Chapter 5: Understanding Appium Inspector to Find Locators 111

Appium inspector 111
Implementing the other steps 115
UI Automator Viewer 118
Debugging mobile web apps using Chrome Inspect 121

Summary 123

Chapter 6: How to Synchronize Tests 124

AppiumDriver 124
Implicit wait 126
Explicit wait 126
Fluent wait 129
Summary 131

Chapter 7: How to Automate Gestures 132



[ iii ]

Gestures 132
TouchAction 132
MultiTouch 137
Scroll 138
Swipe 139
Orientation 140

Summary 141

Chapter 8: Design Patterns in Test Automation 142

Refactor -1 143
Page Object pattern 148

Refactor-2 150
Assertions 156

Implementing assertions in Page Object 156
Implementing assertion in test script 158
Avoiding dependencies between tests 159
Introducing set up and tear down 159

Summary 160

Chapter 9: How to Run Appium Test on Devices and Emulators 161

Emulator 161
Running test on the Genymotion emulator 163

Devices 165
Running a test on actual Android devices 169
Running a test on actual iOS devices 169

Summary 172

Chapter 10: Continuous Integration with Jenkins 173

Refactoring -1 174
Setting up Jenkins 178

Moving a project to Git 180
Adding Jenkins plugin 184
Setting up the Jenkins task 186
Viewing reports in Jenkins 190

Summary 192

Chapter 11: Appium Tips and Tricks 193

Switching between views - web and native 193
Taking screenshots 194
Recording video execution 197
Interacting with another app 198
Running the test in parallel 200



[ iv ]

Network conditioning 202
Summary 204

Chapter 12: Appium Desktop App 205

Installing the new Appium app 205
Starting a simple server 207

Start New Session 208
Attach to an existing session 209

Desired Capabilities 209
Appium Inspector 210
Starting the server with advanced options 212
Appium Endpoints 214

Summary 215

Appendix 216

Introduction to Cucumber 216
How does Cucumber work? 217

Feature 219
Scenario 220
Background 222
Scenario Outline 224
Hooks in Cucumber 225

Running Cucumber 226
CLI Runner 226
JUnit Runner 226
Third-Party Runner (Via IntelliJ) 227

Finding an app's package name and launch activity 228
Using the ManifestViewer app 228
Using the Appium GUI app 231

Installing Google Play services in the Genymotion emulator 232
Summary 233

Index 234



Preface
With the growing popularity of mobile apps and the enormous growth in the number of
mobile devices all around the world, mobile ecosystems are poised to further scale up. Until
a couple of years ago, the IT world was dominated by web and enterprise application
development and testing. With the growth of mobile apps around the world, the trend is
shifting toward mobile development and testing as a niche skill set. Mobile testing had
largely been manual until the advent of standard test automation libraries, such as Calabash
and Appium.

This book is an effort toward gearing up a better testing workforce by making them
educated and aware of a mobile testing and automation tool called Appium. Appium is the
most widely adopted mobile test automation tool. The community support has been
vibrant, but there is a lack of a structured step-by-step guide or documentation around
building a framework. This book is an attempt to bridge that gap and serves as a handheld
guide for each tester who wants to build their own mobile test automation framework from
scratch.

This book is intended for developers and testers who want to learn mobile app testing and
automation using Appium. The book takes you on a journey of understanding Appium and
slowly gets you started with the test automation ecosystem. Cucumber is one of the most
promising technologies, and is rising in popularity due to the wide adoption of the agile
and behavior-driven development methodologies. This book introduces you to the concept
of Cucumber and shows how you can build your own testing framework in Cucumber and
Appium from scratch. It contains example code snippets of creating a sample project,
writing first Appium tests, evolving the test framework, and setting up Jenkins.

The book is organized into two parts:

Appium basics: This largely covers an understanding of Appium, desired
capabilities in Appium, Appium inspector, and how to use it to find locators, test
synchronization, and automate widely used gestures, such as tap, scroll, press,
and long press.
Appium advanced: This covers design patterns for the automation framework,
how to run tests on actual devices and emulators, how to run tests on a
Genymotion emulator, continuous integration with Jenkins, and Appium tips
and tricks.



Preface

[ 2 ]

What this book covers
, Introduction to Appium, starts with an introduction to the mobile app. It talks

about different types of mobile app, that is, native, hybrid, and mobile web. We then take a
little closer look at the advantages and limitations of each type of mobile app. We learn
about Appium's architecture and about two different automation frameworks Appium
uses, XCUITest and UIAutomator2 for iOS and Android, respectively.

, Machine Setup, starts with instructions for setting up your machine in order to
start using Appium and write automated tests. In this chapter, we address the setup for
both Windows and Mac machines. Some of the prerequisites to install are the most recent
Java, Android SDK, Genymotion Emulator, Appium, IntelliJ as the preferred IDE, and the
app under test. We will also learn to create the sample Android emulator as well as the
Genymotion emulator. We will learn how to install Appium, both via npm and the Appium
GUI app. We will take a detailed look at the Appium GUI app and the iOS and Android
settings Appium allows.

, Writing Your First Appium Test, helps us write our first Appium test. We will
start by creating a Java project in IntelliJ and then get introduced to Cucumber. We create a
sample feature file and write our first scenario using the Given-When-Then format. We will
learn how to start Appium session and use Appium Inspector. We will then write our first
automated test and learn how to run the cucumber test. We will also learn how to write our
first test for mobile web app and learn how to use the Chrome developer tools to find the
locators. We then run these tests via the IDE.

, Understanding Desired Capabilities, tells us about the concept of desired
capabilities in Appium. We learn about the mandatory capabilities and the device-specific
desired capabilities, such as Android and iOS. We will look into the server argument and
the various flags it exposes along with its sample usage.

, Understanding Appium Inspector to Find Locators, shows us how to use the
Appium inspector to find the locator of a UI element. We learn to derive the xPath over the
Appium-generated xPath values. We looked into another tool, UIAutomatorViewer, and
how to use it. We also learn how to debug the mobile apps using Chrome's inspect feature.

, How to Synchronize Tests, explores the different types of drivers Appium allows
you to create, along with the various synchronization strategies. We will learn about the
implicit wait, explicit wait, and fluent wait. We also learn about ExpectedConditions and
the various predefined conditions it allows.



Preface

[ 3 ]

, How to Automate Gestures, explains implementing various gestures that Appium
supports. We will learn how to implement the most frequently used gestures, such as tap,
swipe, scroll, and drag and drop. We will also learn about the orientation and how to
change the orientation of devices between the landscape and portrait modes.

, Design Patterns in Test Automation, covers the concept of the design pattern in
test automation. In this chapter, we will take a detailed look at the page object pattern and
then learn how to implement it in the current framework, which we have been building
since , Writing Your First Appium Test. We will learn about assertions and where
they belong, and we will also learn about the concepts of setup and teardown and how to
implement them using pre-specified hooks in cucumber.

, How to Run Appium Test on Devices and Emulators, shows you how to connect
physical devices and prepare them for development and testing purposes. It also
demonstrates how to configure the Genymotion emulator and run tests. We learn how to
retrieve the UDID of iOS devices, the libraries we need to install, and the process for
running the test on iOS.

, Continuous Integration with Jenkins, teaches the concept of Gradle and writing
Gradle tasks. We start by creating a Gradle task to run the test via command line and
moving the project to Git. We navigate through downloading and installing Jenkins. We
learn how to set up a Jenkins job and trigger it and view the report. This chapter explains
how to implement continuous testing using Jenkins.

, Appium Tips and Tricks, shows you some tips and tricks in the form of code
snippets, that can be used to make your test framework more intelligent and innovative. We
will learn about switching between webviews and native views, taking screenshots, and
recording video using adb commands. We will also explore the approach of running tests in
parallel on multiple devices and about the network simulation API.

, Appium Desktop App, explores the new Appium Desktop App. It discusses in
details about how to install the new Appium GUI app, how to start an appium server with
basic and advanced options. It also explains how to use the Desired Capabilities while
setting up a session and how to connect to different end points (the non local server).

By the end of this book, you will have learned about Appium, how to build a test
automation framework from scratch in Cucumber and Appium, and how to set up Jenkins
to run tests.

, Appendix takes a deeper insight into different how to’s which are needed across
chapters. It includes a deep dive into Cucumber and explains various concepts of
Cucumber. It also talks about finding details needed for Appium for android installer. Very
importantly, it tells us how to install the Google Play services on the Genymotion Emulator.



Preface

[ 4 ]

What you need for this book
To get started with this book, you need basic knowledge of Java. You should be aware of
the OOPS concept and should be able to use loops and define classes. A basic
understanding of mobile apps and knowledge of Android would be an added advantage;
however, it is not a must. The book provides hands-on experience with writing and
executing code. There are some software prerequisites, which are explained in the second
chapter, which helps set up the development environment and readies your machine for
any future mobile automation work using Appium.

Who this book is for
This book is intended for developers/testers who want to learn mobile automation using
Appium. It doesn’t require any prior experience in testing mobile applications or
automation. This book serves as a detailed guide for Appium and a step-by-step guide to
building a mobile test automation framework from scratch. The only prerequisite for this
book is to have a basic knowledge of Java programming. By the end of this book, you
would have gained advanced knowledge of Appium and would have learned how to build
a framework in Cucumber and Appium. You will be able to leverage this framework
building knowledge by replacing Appium with any other UI automation tool, such as
Selenium.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "With
version 1.6, Appium has provided support to UiAutomator 2. Appium uses the 

 module to interact with UI Automator. "

A block of code is set as follows:



Preface

[ 5 ]

Any command-line input or output is written as follows:

automationName: XCUITest

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Clicking on Start Session
will launch a new Appium inspector screen, as illustrated."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply e-mail , and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at .

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.



Preface

[ 6 ]

Downloading the example code
You can download the example code files for this book from your account at 

. If you purchased this book elsewhere, you can visit 
and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at 
. We also have other code bundles from

our rich catalog of books and videos available at .
Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.



Preface

[ 7 ]

To view the previously submitted errata, go to 
and enter the name of the book in the search field. The required information will

appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at  with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at

, and we will do our best to address the problem.



11
Introduction to Appium

The mobile app market is huge, and it will increase further. Approximately, there are 2
billion smartphone devices worldwide, which is more than two times the number of
personal computers in the world. A report (for more information, visit 

) shows that more than 102 billion apps have
been downloaded worldwide, and the number is expected to reach 268 billion by 2017.
According to one of the reports (for more information, visit 

), the worldwide mobile
revenue for 2015 amounted to $41.1 billion and is expected to reach $101.1 billion by 2020.

With all these promising growth numbers and trends, learning mobile app development
and testing will be worth it and will have a huge demand.

In this chapter, we will cover the following topics:

Types of mobile apps
Native App
Mobile Web app
Hybrid App

Appium Architecture
What is XCUITest
What is UiAutomator 2



Introduction to Appium

[ 9 ]

Let's take a look at mobile apps, which form this ecosystem, and how they are broadly
categorized based on the way they are developed:

Let's understand the different types of mobile apps.

The mobile world is majorly dominated by two operating systems: iOS and Android. Most
apps are made for both the platforms given the user base. In this chapter, we will take a
detailed look at the following:

Native app, mobile web, and hybrid app
The characteristics of each type of app
A sample example app of each type

Native app
A native app is an app developed for a particular mobile device or platform (such as
Android, iOS, or Windows). For example, iPhone apps are written in Swift, and Android
apps are written in Java. Native apps are also better performing and have a high degree of
reliability as they use the underlying system architecture and the device's built-in features.

Native apps can run in both the online mode as well as the offline mode. Native App is tied
to the mobile operating system it has been developed for, and hence can’t be run on any
other operating system. This makes developing the native app costly as the same app has to
be rewritten for another operating system. These apps are available to be downloaded on
the mobile via the respective app store.



Introduction to Appium

[ 10 ]

Here's an example of a native app. It's a news app bundled with iPhone and can be
downloaded from the Apple App Store:



Introduction to Appium

[ 11 ]

Another one is the popular Instagram app on Android phone, which is native:

Mobile Web app
A Mobile Web app is an app accessed over a mobile browser. It can be easily accessed via
built-in browsers, such as Safari on iOS and Chrome on Android. They are primarily
developed using technologies such as HTML5 or JavaScript, which provide the
customization capabilities. So, they are basically served from a server and not stored offline
anywhere on the device.



Introduction to Appium

[ 12 ]

Web apps have a common code base and can be accessed like any typical web app on any
device with browsers. For Mobile Web apps, responsive web design is the new standard as
they have to cater to devices of different screen sizes and resolutions. Mobile Web apps can
also access mobile-specific features, such as dialing a phone number or location-based
mapping. Mobile Web apps can only be accessed with a valid network (Wifi/4G/3G/2G).

The following is an example of a mobile app. It's a mobile website of The New York Times
and can be opened with any mobile browser. The URL for this is 

. One can perform the same actions as web, such as browser refresh. The following
screenshot shows the same app; it's opened using the Safari app on an iPhone 6 simulator,
running iOS 10.1:



Introduction to Appium

[ 13 ]

The next is an Android emulator running Android 6.0 and has the mobile site of The New
York Times opened on the default browser app:

Hybrid app
A hybrid app consists basically of websites packaged in a native wrapper. They are
primarily developed in web technologies (HTML5, CSS, JavaScript) but run inside a native
container, thereby giving a feel that it is a native app. Hybrid apps rely on HTML being
rendered in the mobile browser, with a limitation that the browser is embedded within the
app. This approach allows you to have one code base for all the mobile operating systems:
iOS, Android, and Windows. A web-to-native abstraction layer enables access to device-
specific capabilities, which are not accessible in Mobile Web apps otherwise. Examples
include a camera, on device local storage, and an accelerometer.



Introduction to Appium

[ 14 ]

Hybrid app is the most favored approach for companies with a web page in existence.
Those companies often build hybrid apps as a wrapper over the web page. Tools such as
PhoneGap and Sencha Touch allow one to build a hybrid app. These apps can be
downloaded via the respective app stores. Here's an example of a hybrid app--it's an
Evernote app and can be downloaded from the respective app store:



Introduction to Appium

[ 15 ]

The mobile testing ecosystem is not yet crowded; there are only a couple of tools that are
really worth trying and learning, and Appium is the most promising one.

Appium is an open source tool to automate mobile applications. It’s a cross-platform
automation tool, which will help in automating the different types of mobile apps that we
discussed earlier.

The supported mobile operating system platforms by Appium are as follows:

iOS
Android
Windows

Let's take a detailed look at Appium, how it is architected, and how it facilitates
automation.

Appium architecture
Now that we have understood the different types of mobile apps, let's take a look at how
Appium is architected to support mobile app automation. Appium is basically a web server
written in Node.js. The server performs actions in the given order:

Receives connection from client and initiates a session
Listens for commands issued
Executes those commands
Returns the command execution status

So basically, Appium is a client-server architecture.



Introduction to Appium

[ 16 ]

The Appium server receives a connection from client in the form of a JSON object over
HTTP. Once the server receives the details, it creates a session, as specified in JSON, and
returns the session ID, which will be maintained until the Appium server is running. So, all
testing will be performed in the context of this newly created session. The following is a
diagram depicting the Appium architecture:

The Appium server is written in Node.js; it can be installed via  or directly from source.



Introduction to Appium

[ 17 ]

XCUITest
XCUITest is an automation framework introduced by Apple with the iOS 9.3 version.
However, from iOS 10 and later versions, it's the only supported automation framework.

Appium 1.6.0 uses Apple's new XCUITest framework, which supports iOS 10/Xcode 8.
Appium internally uses Facebook's WebDriverAgent project to support XCUITest. For the
older iOS version (<=9.3), Appium uses Apple’s  library. Typical usage
would be to pass the following in desired capabilities:

automationName: XCUITest

Facebook  is a WebDriver server implementation for iOS. It is used to
remote control connected devices or simulators and allows one to launch an app, perform
commands (such as tap and scroll), and kill applications.

The  library communicates with , which is running inside the
device or simulator to perform the commands received by the Appium client:



Introduction to Appium

[ 18 ]

UiAutomator 2
UIAutomator 2 is an automation framework based on Android instrumentation and allows
one to build and run UI tests.

Appium uses Google’s UIAutomator to execute commands on real devices and emulators.
UIAutomator is Google’s test framework for native app automation at the UI level. Typical
usage would be to pass the following in desired capabilities:

automationName: uiautomator2

With version 1.6, Appium has provided support to UiAutomator 2. Appium uses the
 module to interact with UI Automator. It allows commands

to be sent to the device, which are then executed on real devices using Android's
UIAutomator testing framework.

When Appium client requests to create a new  session, the client passes the
desired capability to the Appium node server. The UIAutomator2 driver module creates the
session. It then installs the UIAutomator2 server APK on the connected Android device,
starts the Netty server, and initiates a session. Once the Netty server session is started, the
UIAutomator2 server continues to listen on the device for requests and responds:



Introduction to Appium

[ 19 ]

Pros of using Appium
Appium has many advantages; some of them are listed here:

It's an open source tool backed by a very active community.1.
It supports multiple languages (Java, JavaScript, Objective C, C#, PHP, Python,2.
Ruby, Clojure, and Perl).
It doesn't force you to recompile an app or modify it. You can test the same3.
version that you have planned to submit to the play store or app store.
It allows you to write cross-platform tests.4.

Netty is an NIO client-server framework, which enables quick and easy
development of network applications, such as protocol servers and clients.

Summary
So, in this chapter, we learned about different types of mobile apps and the advantages one
has over another. We also learned about Appium and its architecture. We learned about
XCUITest and UIAutomator 2 and how Appium uses them to communicate commands to
devices. We also looked at the advantages of using Appium.

In the next chapter, we will set up our machine so that we can start practicing the usage of
Appium.



22
Setting Up the Machine

In the last chapter, we looked at the different types of mobile apps. We also looked at the
advantage of one over another and how they are different from each other. We learned
about Appium and its architecture, and we learned about iOS XCUITest and android
UIAutomator 2.

We also learned how commands are translated and passed on to the device. In the
upcoming chapters, we will learn how to set up the machine and start writing tests and how
to eventually create a framework.

In this chapter, we will cover the following topics:

Installing Java
Installing Android SDK and creating one Android Virtual Device
Installing Genymotion Emulator
Installing Appium (Via NPM, app, source code)
Choosing IDE and setting up
Knowing app under test

All the preceding installations are mandatory, except some that are optional and indicated.
As part of this book, we will be addressing both Mac and Windows machines.



Setting Up the Machine

[ 21 ]

Machine setup for macOS
Setting up the machine will require a bunch of software and packages to be installed. Let's
start with . Open the terminal and type in the following command (in the
home directory):

ls -al

This should return all the hidden files and directories under the home directory. Check
whether the  file is present; if not, type the given command to create one:

touch .bash_profile

Installing Java
If you have had the development machine set up before, you might have a couple of
software and packages already installed. You can skip the installation part and check for the
version of the installed packages. If the versions are significantly old, you might want to
upgrade them.

For the new machines, follow the mentioned steps for installing Java:

Visit the JDK download page and download the 1.
 package based on your machine configuration (either the amd64 or

x64).
Install Java from the downloaded package.2.
Once installed, launch the terminal and type in this command to determine the3.
Java version:

      java -version

You will see the following output if Java is installed correctly:4.

      java version "1.8.0_73"
      Java(TM) SE Runtime Environment (build 1.8.0_73-b02)
      Java HotSpot(TM) 64-Bit Server VM (build 25.73-b02, mixed mode)



Setting Up the Machine

[ 22 ]

Add the following line to your  file. In Mac OSX 10.5 or later5.
versions, Apple recommends to set the  variable to

:

      export JAVA_HOME=$(/usr/libexec/java_home)
      export PATH=$PATH:$JAVA_HOME/bin

Now that we have finished installing Java, let's move on to installing Android SDK.

Installing Android SDK (using the Android
command-line tool)

Navigate to the Android Studio page and download the command-line tools (for1.
more information visit this link: 

).
Once downloaded, extract the same in a folder of your choice.2.
Rename the extracted file, for your convenience, to Android SDK.3.
Android SDK contains only the basic SDK tools and does not contain any4.
platform or library; we need to download the same before we start using it:

Launch the terminal and navigate to the folder where the ZIP file was1.
extracted. In the terminal, type  and press enter.
Android SDK Manager will start with a new window.2.
Select one of the android platform Android 7.0 (API 24) and choose the3.
given packages: ARM EABI v7a System Image, Intel x86 Atom
System Image, and SDK Platform.
Under the Tools section, select Android SDK, Android SDK Platform-4.
tools, and Android SDK Build-tools.
Under the Extra section, select Google Play Services.5.



Setting Up the Machine

[ 23 ]

Open the  file and enter the following lines at the bottom:5.

      export ANDROID_HOME={YOUR_PATH}
      export PATH=$PATH:$ANDROID_HOME/tools:
      $ANDROID_HOME/platform-tools

Save the file and run this command:6.

      source ~/.bash_profile

Run the next command to check whether the Android home is set properly:7.

      echo $ANDROID_HOME

Installing Android SDK (using Homebrew)
(Optional)
You can also choose to install Android SDK using Homebrew (the 

 command). This installs the Android SDK in the
 path, so

 should point to the installed location.

Creating Android Virtual Device (Optional)
When we install Android SDK, it allows you to create a virtual device (an emulator) to help
perform the development and testing locally without buying a physical device. The
following steps will help you to create an emulator:

Launch AVD Manager (using the terminal, type in command ).1.
Click on "Create...".2.
Enter an AVD Name.3.
Select a target Device from the dropdown.4.
Select an API level by clicking on the dropdown next to Target.5.
Click on the dropdown next to CPU/ABI and select a value from the dropdown.6.



Setting Up the Machine

[ 24 ]

Choose a Skin.7.
You can alter the RAM size in Memory Options; it generally defaults based on8.
the device selected.
Press OK:9.



Setting Up the Machine

[ 25 ]

Once the Android Virtual Device is created, it will show up in the AVD manager. We have
the option of performing operations, such as Start, Edit, Repair, and Delete, on the Android
Virtual Device.

Let's take a look at an emulator (Genymotion) other than Android Virtual Device, which is a
much better performant compared to the android ones. We can rely heavily on the
Genymotion emulator for our day-to-day testing and development activities.

Genymotion emulator
Genymotion is a software company making one of the fastest Android emulators and a
couple of other products around it. For this book and our testing activities, we will use the
Genymotion emulator personal use version, as it's a faster alternative to Android Virtual
Devices. However, I strongly recommend that you get in touch with Genymotion to
validate whether you need to purchase a license (individual or enterprise) once you finish
using the personal version.

One can download the Genymotion installer to their machine from the website 
 after signing up, and then perform the installation. Once installed, we

need to sign in with Genymotion account details. Post that, we need to create virtual
devices. The illustrated screenshot shows the Genymotion app with a couple of virtual
devices already configured; however, it will be empty for the first time user:



Setting Up the Machine

[ 26 ]

Let's learn to create virtual devices in Genymotion:

Launch the Genymotion app and log in with your registered credentials.1.
Click on Add +.2.



Setting Up the Machine

[ 27 ]

Select the Android version and Device model from the dropdown:3.

Select Android version as 5.1 and choose Device Model to be Google Nexus 6.4.
Click on Next.5.
It will start the download of the virtual device.6.
Once done, click on Finish to close the download window.7.
The virtual device will start appearing on the Your virtual devices window.8.
Click on Start to launch the virtual device.9.



Setting Up the Machine

[ 28 ]

Starting the emulator will show a screen similar to the following:



Setting Up the Machine

[ 29 ]

Launch the terminal and run the  command; the output will be as shown:

So, each emulator runs as a virtual machine on your physical machine. To install the app on
Genymotion emulator, the normal adb commands--

 will work fine.

Debug help
If the  command throws the error 

, follow the given set of steps to fix the same:

Navigate to Genymotion > Settings > ADB > Use custom Android SDK tools.1.
Put the  path in Android SDK:2.



Setting Up the Machine

[ 30 ]

Once done, restart the Genymotion virtual device and type in the 3.
command.

This should help fix it.

Installing Appium
Appium requires macOS X 10.7 or a higher version; we would recommend 10.10 (Yosemite)
or a later version. To work with Appium, we need both the Appium GUI app (installed via
the  file) and the Appium server (installed via Homebrew), as explained here:

Install Xcode and the Xcode command-line tool.1.
Download the  file from 2.

.
Install Homebrew ( ) on your machine. This will need Ruby to3.
be installed on your machine. Run the below command to install Homebrew:

Homebrew is a package manager for Mac OS. It installs packages to their
own directories and then symlinks their files into .

  /usr/bin/ruby -e "$(curl -fsSL
  https://raw.githubusercontent.com/Homebrew/install/master/install)"

Post the install run command to ensure that Homebrew is up to date:4.

      brew update

To install node on your machine, run this command:5.

      brew install node

Once the preceding commands are executed and don't throw up any errors, we6.
can run one final command to check the successful Node and npm install. Run
the below command to check the successful installation (of Node and npm) and
this should successfully install :



Setting Up the Machine

[ 31 ]

Node.js is an open source, cross-platform JavaScript runtime environment
for developing a diverse variety of tools and applications.

 is the default package manager for the JavaScript runtime
environment Node.js.

To install Appium server and Appium doctor using node, we can run the given7.
command:

      npm install -g appium
      npm install -g appium-doctor

Once Appium doctor is installed, we can run the  command in8.
the terminal and see the following output:

Once done, we can run the  command in the terminal and see this output:9.

So, the preceding section completes the Appium setup on both the app and the server.
However, we can also install Appium server from source.



Setting Up the Machine

[ 32 ]

Installing Appium server (From Source)
(Optional)
This is optional and can be skipped if the preceding setup has been done. To do the setup,
run the following commands in the given order:

git clone https://github.com/appium/appium.git
cd appium
npm install
gulp transpile # requires gulp, see below
npm install -g authorize-ios # for ios automation
authorize-ios # for ios automation
node

Selecting IDE
For the purpose of test development, we will choose IntelliJ (

) as the preferred IDE. Download the community edition from 
. Once downloaded, open the  package and drag IntelliJ to

the  folder.

App under test
We will be using the Quikr app (Google Play link for app: 

) throughout the book for Appium concepts and
demonstration. All features of Appium can be demonstrated using this app. We are using
the Quikr android app and mobile web version. It's easy to relate to any classifieds app, and
it let us use gestures as well. For your learning, you can use any app of your choice which
you are comfortable with. Book is written and evolved in such a way that it demonstrates
the appium and automation concepts that can be applied to any app.

Machine setup for Windows
Machine setup for Windows will be a little different from that of Mac as we don't have the
concept of a package manager. We will need to download the individual installers and run
them to install the software we need. Let's start with installing Java, Android SDK, and then
appium.



Setting Up the Machine

[ 33 ]

Installing Java
Following are the steps to install Java:

Visit the JDK download page and download the (1.
) package based on your machine configuration (either the amd64 or

x64).
Install Java from the downloaded package.2.
Once installed, bring up the search box and type .3.
Click on the View advanced system settings search result.
On the system properties window, click on the Advanced tab and click on4.
Environment Variables.
Under the System variables section, click on New and add a variable name--5.
JAVA_HOME--and check for the installed location of the JDK. It will be similar
to .
Under the System variables section, scroll to find PATH and click on edit. Add6.

 at the end.
Once done, launch the Command Prompt and type ; you should7.
see the illustrated output with different version details based on the JDK version
you installed:

      java version "1.8.0_73"
      Java(TM) SE Runtime Environment (build 1.8.0_73-b02)
      Java HotSpot(TM) 64-Bit Server VM (build 25.73-b02, mixed mode)

You can also try running the  command in Command8.
Prompt, which should display the path we set earlier.

Installing Android SDK (using Android command-
line tool)

Navigate to Android Studio page and download the Android Studio package1.
(android-studio-bundle-xxx.xxxxx-windows.exe) for Windows (Link for
Android Studio: ).



Setting Up the Machine

[ 34 ]

Once downloaded, run the  and follow the install instructions:2.

Click on Next >.3.
Click on the I Agree button.4.
Create a folder in C drive and name it .5.



Setting Up the Machine

[ 35 ]

On the Configuration Settings Install Locations screen, choose the shown values6.
for Android Studio and Android SDK:

Click on Next.7.
Finish the installation.8.
Bring up the Windows program search box and type 9.

. Click on the View advanced system settings search result.
On the system properties window, click on the Advanced tab and click on10.
Environment Variables.
Under the System variables section, click on New and add a variable name,11.

, and value, .
Under the System variables section, scroll to find PATH and click on edit. Add12.

 and  at the end.



Setting Up the Machine

[ 36 ]

To create an Android Virtual Device, we need to follow these steps:13.
Launch Android Studio from the installed programs on Windows.1.
On the Android Studio home page, click on the Configure dropdown2.
and select SDK Manager.
Under SDK platform, choose the SDK platform you want to install,3.
such as Android 5.1 (Lollipop), and select the checkbox.
Click on Apply and confirm the installation.4.
This will finish the installation of the new virtual device.5.
Click on OK to close the popup.6.

Follow the instructions here to set up the AVD on a Windows machine (14.
).

Once done, we can move on to the Node JS installation.

Installing Node JS
Before we install Appium on Windows, we need to install Node JS. Navigate to the web
page ( ) and download the windows installer
( ) based on your architecture (either 32-bit or 64-bit).

Once downloaded, install the same with the default options. The  and  paths
should be in your PATH environment variable.

Installing Appium
Download the  file from the location by visiting this1.
link: .
Install the downloaded file and proceed with the default selections.2.
Launch the Appium app; it will open the permission popup for Node JS and3.
allow that.



Setting Up the Machine

[ 37 ]

Installing Appium server (via npm)
Launch Command Prompt (Use Run as Administrator option) and type in this1.
command:

      npm install -g appium

Once the preceding command is done, type in the next one:2.

      npm install -g appium-doctor

Once done, run the following command:3.

      appium-doctor

This will show the given output:

Installing Genymotion
Sign up for a Genymotion account and download the windows installer with virtual box.
Installing Genymotion on Windows is fairly simple; follow the default settings to proceed.
The steps for creating the Genymotion emulator will remain the same as described earlier.



Setting Up the Machine

[ 38 ]

Selecting IDE
For test development purposes, we will choose IntelliJ (

) as the preferred IDE. Download the community edition from 
. Once downloaded, open the  package and follow the steps on the

installation popup.

Appium GUI app
Let's take a detailed look at the Appium GUI app. Here's a snapshot of the Appium GUI
app (on Mac OSX), which has a couple of icons on top, a console window, and a trash bin
icon at the bottom. Windows Appium app has couple of options lesser than the Mac OS X,
however functionally it represent the same as described below. Let's take a look at each of
the icons and what it helps us to do:

Open Configuration: This lets you select any previously saved Appium
configuration and load.



Setting Up the Machine

[ 39 ]

Save Configuration: This saves the current Appium config, which is basically the
settings you selected with Android or iOS or General.
Doctor: It runs the  program and tells you whether all the
wirings are proper. By wiring, I mean it performs the following checks:

Xcode path
Xcode command-line tool
Checks for DevToolsSecurity to be enabled
Node.js installation
ANDROID_HOME to be set
JAVA_HOME to be set

Inspector: It brings up the Appium inspector window. With the recent version of
Appium, it launches the app on the device or emulator and shows the captured
UI state of the application. The following is a snapshot of the same. The panel on
the extreme right is clickable. Once you click on any UI element, the panel on the
left shows the UI hierarchy and the panel named Details shows the UI attribute
of the element clicked on. The right-hand side of the panel lets you click on any
element that you need to interact with as part of your test code. On the Details
pane, you can find attributes such as type, text, index, and resource-id:

On the top of the Appium Inspector, you find the Record button, clicking on which
generates the boiler plate code; it records the action on the element, based on the XPath of
the element. Clicking on Refresh refreshes the panel on the left-hand side to load the latest
UI snapshot on the right of the inspector screen and reloads the UI hierarchy and details
panel as well.



Setting Up the Machine

[ 40 ]

Android Settings: Clicking on this brings up a window that lets you fill the android app-
related details. The following is its snapshot. It is divided into two parts: Basic and
Advanced. Under Basic, there are some mandatory settings and some optional ones:

To launch an Appium session for a particular app, we need the app to be installed on the
device, in which case we need the Package name and Launch Activity. If we want to install
the app on the device and then start the Appium session, we need to pass in the App Path
parameter, which is the location of the apk. So, we need to pass either the App Path or the
Package and Launch Activity for the application section.



Setting Up the Machine

[ 41 ]

For the Launch Device section, Launch AVD will work if you have android emulator
created via Android SDK. It doesn't work with Genymotion Emulator.

For the Capabilities section, there are four mandatory parameters, described here, and two
optional, which are Language and Locale:

Platform Name: It gives you an option of selecting Android if it's an android
device or FirefoxOS.
Automation Name: It can be either Appium or Selendroid. For this book, we will
primarily be using Appium.
Platform Version: It gives you the option to select different versions of android
(such as API 22 and 21).
Device Name: It is mandatory again and can be any text.

Under the Advanced Section, you have the option to choose Android SDK path,
Chromedriver Path, and any Keystore settings. All these are optional parameters.

iOS Settings: Clicking on this brings up a window that lets you fill the iOS app-
related details:



Setting Up the Machine

[ 42 ]

Before we proceed with any steps on iOS app automation using Appium, one of the
important prerequisites is that the app must be signed with a developer identity:

App Path: If you want to deploy the app using Appium, enter the location of
 (for physical device) or  (for simulators).

BundleID: If you want to invoke the existing app, then pass the Bundle ID.
Platform Version: This lets you select the version of iOS that you want to connect
Appium with.
UDID: This is needed when you want to run the test on a physical device.
Force Device: This lets you select the device on which you want the test to
connect.
Full Reset: This tells Appium to reset the state of the application we are testing
every time we run a test.

On the Advanced tab, you need to be sure that Appium knows the path of Xcode on your
machine. You can even change the path to Xcode using the Change button.

In the bottom section of the screen, you can see the buttons highlighted, such as Touch,
Text, Locator, and Misc.

Clicking on Touch gives you an option, such as Tap, Swipe, and Shake, to be performed on
the element you have selected on the right. Similarly, when you click on Text, it brings up a
textbox to send in the text you want:



Setting Up the Machine

[ 43 ]

When you click on Locator, it brings up the option to choose the strategy with which you
want to select the element, as illustrated in the following screenshot. The options available
as part of strategy are accessibility id, android uiautomator, class name, id, ios
uiautomation, name, and xpath. These are the different ways of identifying a UI element on
a mobile app:

For example, in the following screenshot, the Continue button (on the right panel) on the
app can be identified in two ways:

Using id, we can use the ID as strategy and give the  value that
is taken from resource-id, highlighted in blue in the Details panel.
Using xpath, we can construct a meaningful xpath that can be derived from the
type of element and some unique attribute, which is text in this case. Hence, the
xpath for the Continue button can be

, same is illustrated below
in the Appium inspector snapshot:



Setting Up the Machine

[ 44 ]

When you click on Misc, it gives you a button that performs the function of accepting or
dismissing alerts.

Context: Following is a small section of the Details panel, called Context. It's a dropdown
that shows you the context available for the app, be it native or web view. The next
screenshot shows that the contexts available are both the native and web view. Appium lets
you switch the context within the web driver protocol itself so that testing the native and
web view parts becomes seamless. So, we can select one of the values in the dropdown and
change the context:

Summary
In this chapter, we learned to set up the machine both for Windows and Mac. We also
learned to install Android SDK and update the system path for the same. We learned how
to configure an Android Virtual Device and also explore the Genymotion emulator. We also
learned to set up Appium, both the server and the GUI app. We explored the Appium GUI
app and learned about the different settings we need to use, both for the android and iOS
apps. We also explored how we can look up UI locator and check for the context in the app.

In the next chapter, we will start with setting up a project and write the first Appium test.



33
Writing Your First Appium Test

In the last two chapters, we saw what Appium is and how to set up the machine for both
Mac OSX and Windows. Now that we have the ecosystem set up, let's start using Appium
and writing some actual tests on Appium. In this chapter, we will set up an Appium Java
project using IntelliJ and write our first test.

So, the set up we need before we actually write the code is this:

Create a sample Java project
Add Appium (automation tool) as a dependency
Add Cucumber-JVM as a dependency
Write a small test for a mobile web

For this example project, we will use Cucumber to write the specification. Cucumber is a
tool based on the behavior-driven development framework. We have a separate section in
this chapter that briefly talks about Cucumber.

While authoring this book, both the Mac OSX as well as Windows
machine support has been included. However, the features of Appium on
Windows is not in sync with Mac OS Appium app. Windows users might
find the Appium UI option to be missing on certain screens, please do
proceed with the most similar option available.



Writing Your First Appium Test

[ 46 ]

Creating an Appium Java project (using
gradle)
Let's create a sample Appium Java project in IntelliJ. This forms the foundation of all the
code-related and Appium-related discussions we will have in the subsequent chapters. The
following steps help you to achieve this:

Launch IntelliJ and click on Create New Project on the welcome screen.1.
On the New Project screen, select Gradle from the left pane. Project SDK should2.
get populated with the Java version.
Click on Next, enter the GroupId as  and ArtifactId as .3.
The version will already be populated; click on Next.
Check the Use auto-import option and ensure that Gradle JVM is populated.4.
Click on Next. In case the Gradle JVM is not populated, please follow the below
steps:



Writing Your First Appium Test

[ 47 ]

Click on Configure > Project Defaults > Project Structure:1.

Choose Project under Project Settings as shown below:2.

Click on New... button.3.
Point it to the JDK installed on your machine.4.



Writing Your First Appium Test

[ 48 ]

Click on OK to close the pop up and go to the new Project creation5.
screen.

The Project name field will be auto-populated with what you gave as ArtifactId.5.
Choose a Project location and click on Finish. IntelliJ will be running the
background task (Gradle build), which can be seen in the status bar.
This should create a project with the following structure:6.

Open the  file. You will see a message, as shown; click on Ok,7.
apply suggestion!:

Enter the following two lines in . This adds Appium and8.
cucumber-jvm under dependencies:



Writing Your First Appium Test

[ 49 ]

Here's how the gradle file should look:9.

Once done, navigate to View > Tools Windows > Gradle and click on the Refresh10.
all gradle projects icon. This will pull all the dependencies in External Libraries:



Writing Your First Appium Test

[ 50 ]

Navigate to Preferences > Plugins, search for Cucumber for Java, and click on11.
Install (if it's not previously installed).
Repeat the preceding step for Gherkin and install the same. Once done, restart12.
IntelliJ if it prompts.

Once done, we are ready with the IntelliJ project creation. The next step is to write a
Cucumber feature file; however, let's first understand what Cucumber is.

Introduction to Cucumber
Cucumber is a test framework that supports behavior-driven development (or BDD, in
short). The core idea behind BDD is domain-specific language (known as DSL) where the
tests are written in normal English, expressing how the application or system has to behave.
DSL is an executable test that starts with a known state, performs some action, and verifies
the expected state:

Dan North (creator of BDD) defined behavior-driven development in 2009
as --BDD is a second-generation, outside-in, pull-based, multiple-
stakeholder, multiple-scale, high-automation, agile methodology. It
describes a cycle of interactions with well-defined outputs, resulting in the
delivery of working, tested software that matters.

Cucumber feature files serve as a living documentation that can be implemented in many
languages. It was first implemented in Ruby and later extended to Java. Some of the basic
features of Cucumber are listed as follows:

The core of Cucumber is text files called features, which contain scenarios. These
scenarios express the system or application behavior.
Scenario files consist of steps that are written following the syntax of Gherkin.



Writing Your First Appium Test

[ 51 ]

A sample feature file is as shown here:

Feature:

Scenario:

Given
And
Then
And

So, in the preceding example, , , , , , and  are
keywords. Let's take a look at some of the most used keywords of Cucumber and what it
means:

Feature: tests are grouped into features. We use this name because we want engineers to
describe the features that a user will be able to use.

Scenario: A scenario expresses the behavior we want. Each feature contains several
scenarios; each scenario is a example of how the system should behave in a particular
situation. The expected behavior of the feature will be the total scenarios. For a feature to
pass, all scenarios must pass.

Test Runner: There are different ways to run the feature file; however, we will use the JUnit
runner initially and then move on to the gradle command for command-line execution.

So, I am hoping that we now have a brief idea of what Cucumber is. Further details can be
read on their site ( ). In the following section, we will create a feature
file, write a scenario, implement the code behind, and execute it.

Writing our first Appium test
Until now, we have created a sample Java project and added the Appium dependency.
Next, we need to add a feature file and implement the code behind. Let's start that:

Under the  folder, create the  directory1.
structure.
Right click on the  folder, select New > File, and enter name as2.

.



Writing Your First Appium Test

[ 52 ]

You will notice that the file is associated with a Cucumber feature icon if the3.
plugin is installed correctly.
We need to explore the Quikr mobile app; when you install it and play around4.
the first scenario, you will notice the login scenario. Quikr gives you an option to
log in using Google or Facebook.
In the  file, let's write a sample scenario, as shown, which is5.
about logging in using Google.
Detailed steps will be clicking on log in using Google, and then verifying that the6.
account picker screen has a valid email ID:

 Feature

 Scenario

 When 
 And 
 Then 

When the Cucumber steps are not implemented, it will highlight them in yellow.7.
Right now, all the steps will be highlighted. The implementation of these steps
will be java class, and they can be hosted under different packages.
Right-click on the  folder, select New > Package, and enter name as .8.
The next step is to implement the Cucumber steps; click on the first line in the9.

 file  and press Alt+Enter. Then,
select the Create step definition option:



Writing Your First Appium Test

[ 53 ]

It will present you with a popup to enter File name, File location, and File type.10.
We need to enter the step's class name; select the shown values. Since the step
belongs to Home Page (or we can even call it Landing Page), we create the

 class:

So, the idea is that the steps will belong to a page and each page will typically11.
have its own step implementation class.
Once you click on OK, it will create the given template in the 12.
class file:



Writing Your First Appium Test

[ 54 ]

We have written our test steps; the next step is to implement the actual code behind which
will launch the Appium server and then deploy the app on the emulator. So, let's start with
launching the emulator first and then the Appium App (For Windows user, the screen
below may be totally different and some options may not be present; you can choose the
mandatory options and ignore others if it is not present):

Download the Quikr app (version 9.16).1.
Create a folder named  under the  project and copy the2.
downloaded  under that folder. Ideally, this will host the app under test:



Writing Your First Appium Test

[ 55 ]

Launch the Appium GUI app:3.

On Mac, navigate to Finder > Applications > Appium.
On Windows, navigate to Start Menu > Type Appium > Press
Enter:



Writing Your First Appium Test

[ 56 ]

Launch the Genymotion emulator (the one we created in , Setting Up4.
the Machine) by selecting the virtual device and clicking on the Start icon, as
highlighted; wait for it to get started:



Writing Your First Appium Test

[ 57 ]

Once launched, we will see the Genymotion emulator, as shown:5.

Switch to the Appium GUI app, click on the android icon, and enter the following6.
details:

App Path: Browse to the .apk location under the app folder
Platform Name: Select Android
Automation Name: Select Appium
Platform Version: Select 5.1 Lollipop (API Level 22) from the
dropdown, as the emulator created in , Setting Up the
Machine or the device. Also, even though it's a dropdown, it allows you
to edit the value and it behaves as a text input field rather than a
dropdown. On Windows app , it's just a drop down so make sure you
have a emulator version which is supported by the Appium windows
app.



Writing Your First Appium Test

[ 58 ]

Android N (version 7.0) has support issues with Appium. Be cautious
while you are trying your hands with version 7.0.

Device Name: Enter any string, such as Nexus6:



Writing Your First Appium Test

[ 59 ]

Once the preceding settings are done, click on the General Settings icon-- --and7.
choose the following settings:

Select Pre-Launch Application.
Select Strict Capabilities.
Select Override Existing Sessions.
Select Kill Processes Using Server Port Before Launch.
Select New Command Timeout and enter the value 7200. Refer to
the following screenshot:



Writing Your First Appium Test

[ 60 ]

Once done, close the popup by clicking on the General settings icon-- --again.8.
Then, click on Launch.
You will see a bunch of logs on the Appium console and will be able to find the9.
given line:



Writing Your First Appium Test

[ 61 ]

So basically, it indicates that the Appium server has been started on the default server and
port, and it has returned the status HTTP 200:

Click on the Inspector icon-- --to launch the Appium Inspector popup.1.
The preceding step will install the app on the emulator and launch the inspector2.
window. It will also install the Appium Settings app and Unlock app on the
emulator.
If the emulator image in the right pane of the Inspector is not fully loaded, then3.
click on the Refresh button to sync with the t on the emulator. Here's how the
Inspector popup will look after clicking on the Refresh button:

If you notice the Appium console, you will find the following log when you click on
Inspector:



Writing Your First Appium Test

[ 62 ]

The last line of the preceding log shows that the Appium server has created a session with
session ID . For all future communication
with the device until the server is alive, this session ID will be the context. For example,
when you click on the Refresh button on the inspector, the console will log the request like

.

The session gets killed when we click on Stop on the Appium GUI. So every time we click
on Start, Appium gives us a new session; this is because we selected the parameter
Override ExistingSession. This makes sure that the previous Appium session is killed
before creating a new one.



Writing Your First Appium Test

[ 63 ]

Now Appium has started the server and created a session based on the parameters we
passed in both the Android Settings and General Settings, which are also known as
Desired Capabilities. We will take a detailed look at Desired Capabilities in the next
chapter.

Coming back to automation of the steps, we need to implement whatever we1.
have done until now as code.
Click on the Record button on Appium Inspector; it will generate the boilerplate2.
code, which will perform the function of setting device-related capabilities (such
as Platform name and version) when the Appium server is already running:

Windows machine do not have the Record button. Windows users can skip to
step 3 and copy the code mentioned below. The code generated is OS
independent, it will work seamlessly for both Mac OSX and Windows user.



Writing Your First Appium Test

[ 64 ]

Copy the preceding code (generated by appium) and paste the same in the3.
 method of the  class. Delete the line 

.
Resolve the dependencies by importing the necessary class or add the following4.
code to the class file:

Remove the  line as this will kill the session. We need the session to5.
perform other tests, and then kill the session once done.
This is how the code snippet will look:6.

So, the boilerplate typically has all the settings we made under Android Settings.7.
Close the Appium Inspector window and click on Stop on the Appium GUI app.8.
This kills the current Appium session.

We will discuss some of the concepts, such as and implicit wait, in the upcoming chapters.
To create an Appium session we need only 4 capabilities to be passed which is generated by
the boiler plate code: , ,  and .

Let's try to run the generated code to see whether it works seamlessly.

Running the feature file
With the Appium GUI app, we did two things:

Ran the Appium server1.
Set the desired capabilities2.



Writing Your First Appium Test

[ 65 ]

To run the preceding code from IntelliJ, we need Appium server to be running. From the
preceding code, we are only setting desired capability and getting a session of our choice,
but the server has to be running:

The Appium server can be started either by the Appium GUI app or the Appium1.
command line. Let's use a command line for test execution purpose.
Launch the terminal (Command Prompt in case of Windows machine), type in2.
the  command, and press Enter to run the Appium server. We can see the
Appium logs in the console.

In IntelliJ, right-click on the scenario file and select the Run3.
'Scenario:Registration Flow...' option.
This will be the sample output:4.



Writing Your First Appium Test

[ 66 ]

So, the first step has passed and the other two are yet to be implemented; we are5.
good to proceed with automating the rest of the steps.
Kill the appium server once the test is run. Navigate to Terminal (Command6.
Prompt on Windows) and press Ctrl + C to kill the process.

As and when we progress, we will keep refactoring the code to make it more readable and
maintainable.

Refactoring
In the preceding code we wrote,  is private to the method. We need to
refactor it to make it available to all the methods in that class. So, highlight the line, click on
Refactor > Extract > Field, and choose  from the list of values shown.

This will make your code look like this:

Implementing the remaining steps
Come back to the  file and create step definitions for the other two steps
in the sample class file, HomePageSteps.

Step 2 implementation:

In the  step, we are supposed to1.
click on the Google icon once the app launches.



Writing Your First Appium Test

[ 67 ]

The sequence of steps is:2.
Find the locator for the Google icon.1.
Click on the icon.2.

To find the locator, we need the Appium GUI app (Since the android settings are3.
correct and unaltered, we can start the session again by clicking on Launch).
Once the server has started, click on the Appium inspector icon and wait for the4.
app to launch on emulator.
Click on the Refresh button in the Appium Inspector popup.5.
Once done, click on the Google icon in the Appium Inspector right panel; it will6.
show you the layout details and button attributes in the Details panel. The id for
the Google button is highlighted in red with row name resource-id in the Details
section. The first part there-- --is the package name; the value of id is

. The inspector also gives you the xpath, which is the last item
under the Details section. There are different ways to find an element: ,

, , , , , ,
. We can choose one of these based on what is available. We will see

locators in detail in , Understanding Appium Inspector to Find r:



Writing Your First Appium Test

[ 68 ]

For now, we can use the id field. Once we get the value of id, we tell the r to find7.
an element by the property name  and value  then, perform
a click operation on it.
Navigate to the  method under the8.

 class and paste the following code. Add an import statement
 for:

Step 3 implementation:

In the 1.
 step, we are required to get the value of the email displayed

on the Google account picker popup and match it with the expected value
passed.
The sequence of steps is:2.

Find the locator of the email ID field1.
Get the value of that field2.
Perform string comparison and pass or fail accordingly.3.

If you have stopped the Appium session, launch the Appium GUI app and wait3.
for the app to be launched. Click on the Google icon and wait for the account
picker to show up.



Writing Your First Appium Test

[ 69 ]

Once done, click on the Inspector icon on Appium GUI; here's how the Appium4.
inspector screen will be:

Let's quickly verify if using the ID value will give us that element. Click on5.
Locator in the inspector screen. Select the strategy as id, enter value as

, and click on Search. It throws up an error, as illustrated:



Writing Your First Appium Test

[ 70 ]

An important thing to notice in resource-id is that the package name has been6.
changed to . Let's use the complete value of ID in this
case-- --and click on Search.
It works this time, showing one element found.7.
So, we are good to implement the8.

 method, as follows. Rename
the parameter from  to  and copy and paste the following
implementation. Since clicking on the Google button and showing up the popup
will take time, we added a  before the assert statement:

In the preceding method, we are using JUnit assertion-- --9.
for string comparison. The advantage of this method is that it will show both the
expected and the actual string in case of failure:

The complete  class will look like this:



Writing Your First Appium Test

[ 71 ]

Let's now move to the execution of our preceding code. Once we are done with the step
implementation, stop the Appium GUI session.



Writing Your First Appium Test

[ 72 ]

Running the scenario
In the last section, we completed the implementation of the scenario. The next step is to
execute the same. So, navigate to the feature file in IntelliJ and right-click on the scenario,
which will show the illustrated option. We get two options: one is to run the scenario and
the other is to debug the scenario:

So, the steps to run the feature file are these:

Start the terminal (Command Prompt in the case of Windows Machine) and type1.
in .
Choose the run scenario option (from the steps explained earlier).2.

The preceding command will launch the android emulator and start the test execution.



Writing Your First Appium Test

[ 73 ]

Automating a mobile web app using Appium
To automate a mobile web app, we need to have a mobile web browser installed on the
emulator/device. All android phones generally come with a stock browser installed. For
example, Genymotion comes with a stock browser installed and can be used for automation
purposes. For emulators created using Android SDK, we need to install the Chrome
browser by downloading its install file ( ) based on the CPU configured for the
emulator.

Another way to install the Chrome browser on the emulator is to install it via Play Store. To
install Play Store on the emulator, you need to download the following files and install
them first:

The files need to be for the Android version you created the emulator with. Once done,
launch the Play Store and search for the Chrome app and download it.

Let's write another scenario to test the mobile web app of Quikr:

Scenario

When 
And 
Then 

Implement the first step and create the skeleton definition for the step in a separate class,
. Here, we will not need the Desired Capability app as the test

will be run on the browser on the device; instead, we will use .
The implementation is shown here:



Writing Your First Appium Test

[ 74 ]

Compared to the hybrid app implementation explained earlier, the major difference lies
with the desired capability  being used. This parameter tells the Appium
about the browser being requested.

Possible values for  are as follows:

Chrome: For a Chrome browser on Android<
Safari: For a Safari browser on iOS
Browser: For a stock browser on Android

To run the preceding step, follow the given steps:

Ensure that you have the emulator running and a stock browser installed.1.
Genymotion emulator comes with one, so we can readily run the test.
Start the Appium server by running the 2.
command in the terminal (for Windows machine, use Command Prompt).
Right-click on the feature file and select the Run scenario... option for the last3.
written scenario.

Implementing the remaining steps
To implement the remaining steps, we need to find locators for the elements we want to
interact with. Once the locators are found, we need to perform the desired operation.

Following are the steps that will help us find the locators:

Launch the chrome browser and navigate to the mobile site (in our case, 1.
).

Select More Tools > Developer Tools from the Chrome Menu.2.
In the Developer Tool menu items, click on the Toggle device toolbar icon,3.
highlighted in blue:

Once done, the page will be displayed in a mobile layout format.4.
In order to find the locator of any UI element, click on the first icon of the dev5.
toolbar and click on the desired element.



Writing Your First Appium Test

[ 75 ]

The HTML in the dev tool layout will change to highlight the selected element.6.
Refer to this screenshot that shows the same:

In the highlight panel on the right-hand side, we can see the7.
 and  properties. We can choose to use 

and implement the step as follows:

Similarly, we can use the chrome dev tool to find the locator of the other element--Sign
In/Sign Up link--and perform the click operation.

So, the second step can be implemented as shown:

For now, we will use  to wait for an action to complete and
then refactor the same to implement using . This will be explained
thoroughly in a separate chapter.



Writing Your First Appium Test

[ 76 ]

The last method to verify the presence of Facebook as an option can be done in a couple of
ways, one of them being asserting for the presence of an element and another way being
asserting for certain text to be present in the t:

So, to implement the preceding step, we can check whether the button with the name
Facebook is displayed on the Register tab. Wherever there is a change in screen or we are
expecting some element to appear or action to happen, we can use  for w:

This completes writing the basic test of the mobile web app. So, basically, your class file--
--should look like this:



Writing Your First Appium Test

[ 77 ]

Now, we can run the test scenario to check whether we get the option of registering using
Facebook in the mobile web app.

Automating the iOS app using Appium
So far we have learned how to create a project, looked into Cucumber and how to write a
feature file, took a sample android app and mobile web app to learn how to get started with
writing our first test. Let's take a look at the iOS app now. Let's understand some
dependency before we get started.

Some of the mandatory things we need:

The iOS app automation needs Mac OS X (Windows user will not be able to
execute the below steps)
Xcode needs to be installed (Version 7.1)

In case you have installed the latest version of Xcode you will have
to use the new Appium Desktop app.
You can also have multiple versions of Xcode on your machine and
choose to default to the older version (less than 8) to run through
the following example:



Writing Your First Appium Test

[ 78 ]

App under test
The iOS simulator app (.app) is needed for any testing on iOS
simulators. This is the debug version of the app.
The iOS app ( ) is needed for any testing on iOS real devices.
To use this app for automation purpose, the app must be signed
with a development identity (needs an iOS Developer license).

For the reference in this book, we will use a simulator app which can be
downloaded from Appium repo at: 
.

Build the app
Let's build the app for the simulator first which will form the basis of the whole chapter
going forward and the discussions. Follow these steps:

Navigate to your local workspace or any folder of your choice1.
Clone the repo using the following command:2.

 git clone https://github.com/appium/ios-test-app

It should show the following output once the command is successfully3.
completed:

Navigate to the directory and build the repo using the following command:4.

 npm install



Writing Your First Appium Test

[ 79 ]

Once the command is successfully executed, it will create a folder  as5.
shown in the following screenshot, that contains the test app. Navigate to the file

 >  > :

Deploying the app on the iOS Simulator
Once we have the app, we need to install the app on the iOS simulator. We have different
options to do this:

Via  command1.
By using Appium2.

To install app via the xcrun command we need to start the simulator first. Launch Xcode
and launch the simulator by clicking Xcode > Open Developer Tool > Simulator.

Once the simulator is booted and running, start the terminal and run the command 
 as shown. If the command

is successful, it will return the prompt.

Let's follow the given steps to deploy the app using the Appium app:

Launch the Appium GUI app.1.
Click on the apple icon and it will open the iOS Settings popup.2.



Writing Your First Appium Test

[ 80 ]

Enter the details:3.
App Path - path to the test app which we generated earlier.
Select Force Device and choose iPhone 6 from the dropdown.
Select Platform Version to be 8.4:

Once done, click on the apple icon to close the iOS Settings screen.4.
Click on Launch on the Appium GUI.5.



Writing Your First Appium Test

[ 81 ]

This will start the Appium server with the following logs:6.

Click on the inspector icon .7.
It will launch the Appium inspector with the app screen captured:8.



Writing Your First Appium Test

[ 82 ]

So this step deploys the app on the iOS simulator and launches the app. We can click on any
of the UI elements on the right of the preceding screen and the left panel will be loaded
with the respective attribute details.

Generating Boilerplate code for iOS
Once we have the preceding Appium set up does and it runs successfully to deploy the app
on the iOS simulator, we can use the boiler plate code to implement the first step which is
about launching the app. The precedingly written scenario in case of android is contextual
to the app; let's write a unique scenario for the iOS app to understand the concepts under a
new feature file and name it :

Following is the snippet which you can copy after creating a new feature file for iOS
features:

Feature

Scenario

When 
And 
When
Then 



Writing Your First Appium Test

[ 83 ]

So the preceding scenario is performing in following steps:

Launch the app.1.
Enter two numbers 22 and 33 in the specified text-box.2.
Tap on Compute Sum.3.
Verify result as 55.4.

Let's implement the first step which is launching the iOS app. Remember we have the
Appium session running and the app is already launched on the simulator. Click on the
Record button on the Appium inspector screen. This will generate the boiler plate code as
shown:

So if we notice the important desired capabilities, they are:

 - 1.
 - 2.

 - 3.
 - Actual app path4.



Writing Your First Appium Test

[ 84 ]

Let's implement the first step  ; we need to copy the preceding
code generated as boiler plate and make some minor tweaks as shown:

This gives us the driver instance  which can be used for all the test purpose. Let's learn
how to run the preceding steps.

So, the steps to run the feature file are these:

Start the terminal and type in .1.
Navigate to IntelliJ and open the feature file .2.
Right click on the feature file and choose the run feature option:3.

This will launch the iOS simulator and run the test which is basically going to deploy the
app and launch the app. The test would fail because other steps are yet to be implemented.

We need to perform the above demonstrated refactoring to extract the AppiumDriver
instance and make it a class variable. Once it is done, let's automate other steps to complete
the scenario automation. Next step to get automated is :



Writing Your First Appium Test

[ 85 ]

We need to figure out the locators of the text box. Launch the appium GUI app, previously
made iOS settings would persist. Click on Start, this will start the appium server. We need
to wait till the appium server is started and the console log is shown as below:



Writing Your First Appium Test

[ 86 ]

And then click on the Appium Inspector icon which would start the iOS simulator and
deploy the app on the same. This would deploy the app, and launch the appium inspector
window. Click on the first text box field on the right of the appium inspector window, it
will load the UI hierarchy and the attributes in the left pane, as shown in image below:

We can use the property name for identifying the first text box by using the method
 and pass the property name as the parameter.

Step implementation for the above mentioned step would be:



Writing Your First Appium Test

[ 87 ]

In the above code, we are trying to find a field using it's accessibility identifier and then
pass a value in that field. Similarly we can implement the other two steps using accessibility
identifier :

Below is how the  file would look like after the implementation:



Writing Your First Appium Test

[ 88 ]

This completes the automation of the scenario for iOS app. In the upcoming chapters, we
can perform the general refactoring on the above generated code for iOS app. However,
some of the code which are android specific will not work for iOS app.

Summary
In this chapter, we introduced you to basic a Appium Java project and how to use
Cucumber to write the test. Also, we briefly discussed the importance of Cucumber and
how it helps capture the system's behavior. We added Appium and Cucumber dependency
in  file. We were also introduced to the desired capabilities class, which tells the
Appium server what session we are interested in. We saw how the desired capabilities
differ from hybrid app and mobile web app. We also got to know about  and
the values it can take.

In the next chapter, we will take a detailed look into the  class and
how to vary the parameters to suit our testing needs. Also, we will refactor the test to start
the server programmatically and see the arguments it can take.



44
Understanding Desired

Capabilities
In the last chapter, we saw that the boilerplate code generated by Appium Inspector had a
bunch of lines that used the  class and passed a certain set of keys
and values to the Appium server. In this chapter, we will take a detailed look at the
following:

Appium server arguments
Desired capabilities for Android
Desired capabilities for iOS
iOS XCUITest related iOS capabilities

Before we take a dive in there, we will refactor the code written in the last chapter and
introduce the concept of hooks before and after, which acts like setup and tear down and
will take care of starting the Appium server programmatically and then stopping it.

In test automation with Appium, all the commands are executed in the context of a session.
A session is initiated by a client with a server in ways either specific to Android or iOS and
with a JSON object called desired capabilities.

Let's refactor the existing code to add handling the Appium server through code.



Understanding Desired Capabilities

[ 90 ]

Refactoring -1
Note: We will take one of the feature files or code bases (Android in this
case) to demonstrate some of the concepts while refactoring. This can also
be followed with the other iOS code written.

In this first refactoring, we will remove the manual dependency of starting and stopping the
Appium server, and we will do it programmatically:

Create a new class called  under the  package
In the  class, create two empty methods, called

 and :

At this point in time, we need to know the concept of hooks in cucumber. So basically,
cucumber gives you a number of hooks, which allow one to run certain code at a certain
point in the test life cycle. These hooks can be used and defined in a class file in the steps
folder. However, cucumber doesn't mandate the location. So, the two hooks that we will use
are these:

Before: Before hooks will run before the execution of each scenario. They execute
before the first step mentioned in each scenario; hence, they can potentially act as
a common setup for all the tests. We can have multiple before hooks, and they
will run in the same order as they are declared.
After: After hooks run after the last step of each scenario. they run irrespective of
the outcome of the last step, whether the last step is a success or failure.



Understanding Desired Capabilities

[ 91 ]

Let's put the  tag for the  method and the  tag for
 method. While resolving, ensure that you use the

, highlighted here:

The next step is to add code that will start the Appium server. Appium exposes
, which will basically let you start and stop the

server.
Add the following code to the  method. So, this builds the
default Appium service, which means that the IP address will remain 0.0.0.0 and
the port will be 4723:

To implement the  method, we need  to be
in instance variable; so, highlight the first row above and select Refactor > Extract
> Field.

Once done in the  method, implement the following code.
This stops the Appium server:

Once done, stop any instance of Appium server running via the terminal
(Command prompt in case of Windows) or Appium GUI app.
Navigate to the feature file, right-click, and select the Run 'Feature:Sample'
option.

You should be able to run both the scenarios without having to start the Appium server
manually.



Understanding Desired Capabilities

[ 92 ]

Server argument
Desired capabilities are sent by the client to the server via JSON objects by requesting the
automation session we intend to have. Now, with the preceding code refactor, we can start
the Appium server by calling the  method. This method starts the Appium server
assuming the  and  files to be in certain locations and using port 4723. If
you have tweaked  installation, your Appium install path is not the same, or if you
want to start Appium server on different ports, we can use  to
override these inputs:

 also gives you other options to override, which are as shown
here:



Understanding Desired Capabilities

[ 93 ]

If you note the  method, Appium server can
take input from the following list of arguments. We will mention some important ones that
one should be aware of, though Appium lists a bunch of them that can be found on their
site at 

(The following descriptions/definitions of certain flags are cross
referenced from Appium website):

Flag Description

This is the IP address to listen on.
Default value: 
(usage example, )

This is the port to listen on.
Default value: 
(usage example, )

This enables session override.
Default value: 

(usage example, )

This is to send log output to the file specified.
Default value: 
(usage example, )

This is the port used for communication with Selendroid.
Default value: 
(usage example, )

This is the port to use on devices to talk to Appium. This is an
Android-only.
Default value: 
(usage example, )

This is to send log output to the HTTP listener specified.
Default value: 
(usage example, )

So, let's do another refactoring where we replace the
 method to build our own

Appium service.



Understanding Desired Capabilities

[ 94 ]

Refactoring -2
Let's refactor the given line and change the ; instead, we will use
the  method, which will take some of the server flags discussed earlier:

Ensure that the path to node and Appium is what you found on your machine. To find the
path on your Mac machine, launch Terminal and run the  and 
commands to get the path:

Also, the path to the log file can be relative to the project folder. So, now the method should
look as shown in the following code:



Understanding Desired Capabilities

[ 95 ]

For a Windows user, we need to get the path of executables of Node JS and Appium. So,
instead of having two methods in the same class, we will add a check for the OS type, and
we will start the Appium server based on the OS type. So, the preceding code will look as
illustrated; dependency is , and  should be defined based on
your machine:



Understanding Desired Capabilities

[ 96 ]

In the preceding code, we noticed that the  belongs to
; apart from that, there are a lot of other flags as well, which can be

chosen from this list:

For example, we can choose to pass the  flag and pass the device ID or
UDID to run the test on a certain device connected to the machine:

We will use the  feature when we need to execute the test on physical devices or more
than one device with similar configurations. We will read about this in detail in the
upcoming chapter. Let's move on to the server capabilities.



Understanding Desired Capabilities

[ 97 ]

Server capabilities
Testing will always be performed in a fixed context with respect to Appium server and that
context will be set by desired capabilities. There are some mandatory desired capabilities
and some are device OS-specific, such as Android or iOS. If you navigate to the

 class file and the  method, you will note the following
mentioned lines:

So, , , and  are mandatory desired
capabilities, which form the basis of mobile automation.

Here are some of the capabilities that are applicable for both iOS as well as Android
devices:

Capability Description & Usage

This is used to specify the automation engine to be used.
Values:  (default) or 

This is used to specify which mobile OS platform to use for the
session.

This is used to specify which mobile OS version to be used for the
session, and it should match the emulator or device under test.

This is used to specify which mobile device or emulator is in use.
For Android, any string can be passed.

This is used to specify the absolute local path to an  or 
file.



Understanding Desired Capabilities

[ 98 ]

This is used to specify the name of the mobile web browser to
automate.
Values: , , , and 

This is used to specify the time (in seconds) Appium will wait for a
new command from the client before assuming that the client quit
and ending the session.

This is used to specify the language for the simulator or emulator.
(usage example, )

This is used to specify the locale to set for the iOS Simulator
For example, 

This is used to specify the unique device identifier of the connected
physical device
For example, 

This is used to specify the orientation for simulator or emulator.
 or 

This is used to move directly into Webview context; default value
is false.
Values:  and 

Don't reset the app state; the default value is false. This flag is
used when you don't want to reset the app state.
Values: true and false

Reset app state; in iOS, delete the entire simulator folder. In
Android, reset the app state by uninstalling the app and clearing
all data; full reset requires an app capability. The default value is
false.
Values:  and 



Understanding Desired Capabilities

[ 99 ]

Refactoring -3
Let's add a couple of desired capabilities to our test now. One of the important concepts of
test automation is to start with a clean slate; hence, we will add  capabilities.
Also, the Appium server waits for 60 secs for the new command by default, and then it
quits the session because of inactivity; so we will tweak it a little to wait for 120 seconds
now:

: This is to reset the app state between each test
: This is to stop the session from quitting if new commands

are not passed within 120 seconds

Let's add these capabilities in the  class file under the 
method:

We can try running the scenario again, and it will work seamlessly. After every refactoring,
ensure that you execute the code so that you know the impact of the change.



Understanding Desired Capabilities

[ 100 ]

Android-only capabilities
When we are performing Android app automation, there are a bunch of Android-specific 
capabilities that can be used to set the session. Here's a complete list of Android-only
capabilities:

Capability Description and values

Used to specify the activity name for the Android activity you want to
launch from your package.

Used to specify the Java package name of the Android app you want
to run.

Used to specify the activity name for the Android activity you want to
wait for.

Used to specify the Java package of the Android app you want to wait
for.

Used to specify timeout in milliseconds used to wait for the
 to launch (default is ).

Used to specify timeout in seconds while waiting for the device to
become ready.

Used to specify a fully qualified instrumentation class. Passed to  in
adb shell am instrument  coverage true .

Used to enable ChromeDriver’s performance logging only for Chrome
and webview (default ).

Used to specify timeout in seconds used to wait for a device to become
ready after booting.



Understanding Desired Capabilities

[ 101 ]

Used to specify timeout in milliseconds, it is used to wait for an apk to
install to the device. Defaults to .

Used to specify the port used to connect to the ADB server (default ).

Used to specify the Devtools socket name. It is needed only when the
tested app is a Chromium-embedding browser. The socket is opened
by the browser, and ChromeDriver connects to it as a client, for
example, .

Used to specify the name of the avd to launch.

Used to specify how long to wait in milliseconds for an avd to launch
and connect to ADB (default ).

Used to specify how long to wait in milliseconds for an avd to finish its
boot animations (default ).

Used to specify additional emulator arguments, it is used when
launching an avd.
Usage example, 

Used to specify a custom keystore to sign apks; default false.

Used to specify the path to custom keystore; default .
Usage example, 

Used to specify the password for custom keystore.
For example, 

Used to specify the alias for key.

Used to specify the password for key.
For example, 

Used to specify the absolute local path to webdriver executable (if
Chromium embedder provides its own webdriver, it should be used
instead of the original ChromeDriver bundled with Appium).
Usage example, 

Used to specify the amount of time to wait for Webview context to become
active, in ; defaults to .

Used to specify the intent action that will be used to start activity
(default ).
For ,  and



Understanding Desired Capabilities

[ 102 ]

Used to specify intent category which will be used to start activity
(default ).
For ,  and

Used to specify flags that will be used to start activity (default
).

For example, 

Used to specify additional intent arguments that will be used to start
activity; refer to Intent arguments.
For example, , , and more.

Used to enable Unicode input, default is .

Used to reset the keyboard to its original state after running Unicode tests
with the d capability. It is ignored if used alone; default is .

This doesn't stop the process of the app under test before starting the app
using adb. If the app under test is created by another anchor app, setting
this to false allows the process of the anchor app to be still alive during the
start of the test app using adb. In other words, with t set to true, we will
not include the S flag in the adb shell start call. With this capability
omitted or set to false, we include the  flag; default is .

Used to skip checking and signing of the app with debug keys, it will
work only with r and not with selendroid; defaults to .

Used to call the ) UiAutomator function. This capability can speed up test
execution since accessibility commands will run faster, ignoring some
elements. The ignored elements will not be findable, which is why this
capability has also been implemented as a toggle-able setting as well as a
capability; defaults to .

Used to disable Android watchers that watch for applications not
responding and application crash; this will reduce CPU usage on Android
device/emulator. This capability will work only with UiAutomator and
not with Selendroid; default is .

Used to allow passing the s capability for ChromeDriver. For more
information, refer to ChromeOptions at: 

Used to kill a ChromeDriver session when moving to a non-
ChromeDriver webview; defaults to .

Used to specify web context and use the native (adb) method for taking a
screenshot; defaults to .

Used to specify the name of the directory on the device in which the
screenshot will be put; defaults to .
For example, 

Used to have Appium automatically determine which permissions your
app requires and grant them to the app on install; defaults to .



Understanding Desired Capabilities

[ 103 ]

Let's refactor the code to use some of the preceding capabilities.

Refactoring -4
When we want to use the app that is already installed on the emulator, we need to use the

 and  capabilities and not use the  capability. Let's look at the
code we have written till now for starting an app in the .

When we execute the preceding code, it performs a full reset and deploys the app every
time. Let's modify this code to use the installed app and perform a fast reset of the app.
Comment or delete the lines, as shown:

Also, add the following lines. Once done, run the test by right-clicking on the feature file
and selecting the Run Scenario... option:



Understanding Desired Capabilities

[ 104 ]

If we have an Android virtual device created (using Android SDK, we created one in
 Setting Up the Machine), we can use the following code that will start the

emulator first and then run the test:

So, with the preceding change, the  method will look like this:

Once we make the preceding changes, we should be able to run it; this will launch the
Android virtual device as well before triggering the test on it.

Let's take a look at the iOS only capabilities. Even though the app behavior is more or less
similar across the devices, Appium exposes a bunch of different sets of capabilities for iOS.



Understanding Desired Capabilities

[ 105 ]

iOS-only capabilities
When we are performing iOS app automation, there are a bunch of iOS specific capabilities
that can be used to set the session. Here's a complete list of iOS-only capabilities. Recently,
Appium implemented support for XCUITest; hence, there are bunch of other capabilities
that are XCUITest specific:

Capability Description and values

Used to specify the calendar format to set for the iOS
Simulator.
For example, 

Used to specify the bundle ID of the app under test.
For example, 

Used to specify the unique device identifier of the
connected device.
For example, 

Used to specify the amount of time (in ms) to wait for
instruments.
For example, 

Used to force location services to be either on or off.
The default behavior is to keep the current simulator
setting.
Value:  or 

Used to set location services to be authorized or not
authorized for an app via plist so that the location
services alert doesn't pop up. The default is to keep
the current simulator setting.
Value:  or 

Used to accept all iOS alerts automatically if they pop
up. This includes privacy access permission alerts
(For example, location, contacts, and photos); default
is . It does not work on XCUITest-based tests.
Value:  or 



Understanding Desired Capabilities

[ 106 ]

Used to dismiss all iOS alerts automatically if they
pop up. This includes privacy access permission alerts
(For example, location, contacts, and photos); default
is . It doesn't work on XCUITest-based tests.
Value: true or false

Used to use native instruments b (that is, disable
instruments-without-delay).
Value:  or 

Used to enable "real", non-javascript-based web taps
in Safari; default is .
Value: true or false

Used to specify initial Safari URL; default is a local
welcome page and its simulator-only capability, and
works on version 8.1 onward.
For example, 

Used to allow JavaScript to open new windows in
Safari. By default, it keeps the current sim setting.
Value:  or 

Used to prevent Safari from showing a fraudulent
website warning. By default, it keeps the current sim
setting. It's a simulator-only feature.
Value:  or 

Used to specify whether Safari should allow links to
open in new windows. By default, it keeps the
current sim setting. It's a simulator-only feature.
Value:  or 

Used to specify whether to keep keychains
(Library/Keychains) when an Appium session is
started/finished. It's a simulator-only feature.
Value:  or 

Used to specify where to look for localizable strings;
.



Understanding Desired Capabilities

[ 107 ]

Used to specify arguments to pass to the AUT using
instruments.
For example, 

Used to specify the delay, in ms, between keystrokes
sent to an element when typing.
For example, 

Used to specify whether to show any logs captured
from a device in the Appium logs; default is .
Value:  or 

Used to specify the strategy to use to type text into a t
field; simulator default: , real device
default: .
Value: , , or 

Used to specify maximum timeout in seconds to wait
for a screenshot to be generated; default is .
For example, 

Used to specify the iOS automation script used to
determine whether the app has been launched; by
default, the system waits for the page source not to be
empty. The result must be a boolean.
For example, , 

, 

Used to specify the number of times we are to send a
connection message to the remote debugger to get a
webview; default: .
For example, 

Used to specify the display name of the application
under test. It is used to automate backgrounding the
app in iOS 9+.
For example, 



Understanding Desired Capabilities

[ 108 ]

Used to specify an SSL certificate to simulator. It's a
simulator-only feature.
For example,

Here are the iOS XCUITest related iOS capabilities:

Capability Description Values

Process arguments and
environment that will be sent
to the t server.

This value, if specified, will be 
used to forward traffic from
the Mac host to real iOS
devices over a USB. The
default value is the same as the
port number used by WDA on
device.

For example, 

To display the output of the 
Xcode command used to run
the tests. If this is true, there
will be lots of extra logging at
startup; it defaults to false.

For example, 

Time in milliseconds to pause
between installing the
application and starting

 on the
device. It is used particularly
for larger applications, and
defaults to 0.

For example, 



Understanding Desired Capabilities

[ 109 ]

Full path to an optional Xcode
configuration file that specifies
the code signing identity and
team for running the
WebDriverAgent on the real
device.

For example, 

Full path to the private
development key exported
from the system keychain. It is
used in conjunction with d
when testing on real devices.

For example, 

Password for unlocking the
keychain specified in h.

For example, super awesome
password

Simulator scale factor. This is
useful to have if the default
resolution of the simulated
device is greater than the
actual display resolution. So
you can scale the simulator to
see the whole device screen
without scrolling.

Acceptable values are ,
, '0.5', , and
; the value should be a

string

Sets read-only permissons to
the s subfolder of the
WebDriverAgent root inside
Xcode's DerivedData. This is
necessary to prevent the
XCTest framework from
creating tons of unnecessary
screenshots and logs, which
are impossible to shut down
using programming interfaces
provided by Apple.

Setting the capability to true
will set Posix permissions of the
folder to 555, and false will reset
them back to 755

If provided, Appium will
connect to an existing
WebDriverAgent instance at
this URL instead of starting a
new one.

For example,



Understanding Desired Capabilities

[ 110 ]

If true, it forces the uninstall of
any existing WebDriverAgent
app on the device. This can
provide stability in some
situations; it defaults to false.

For example, 

Time, in ms, to wait for
WebDriverAgent to be
pingable; it defaults to 
ms.

For example, 

Summary
In this chapter, we were introduced to the concept of desired capabilities and how they set
the context of automation. We also got acquainted with the mandatory capabilities and the
device-specific desired capabilities, such as Android and iOS. We also refactored the code to
use some of these capabilities around launching the session using an app package name and
app activity. We also refactored the code to launch the Android virtual device.

In the next chapter, we will build on a couple of more scenarios and explore Appium
inspector. We will learn how to find locators and debug hybrid apps via the Chrome
browser.



55
Understanding Appium

Inspector to Find Locators
In the last chapter, we saw how to start Appium server programmatically and use the
desired capabilities to set the context for test execution. We saw how to launch an emulator
from code and invoke the test on an app that is preinstalled. We also took a look at detailed
Android-specific capabilities and iOS-specific capabilities and refactored the test to use a
few.

To write tests, we need to find the locators, and sometimes these locators are not easily
available. We need to make our own locators using xPath in that case. In this chapter, we
will take a look at the following:

How to use Appium inspector to find locators
How to use UI Automator Viewer
How to use Chrome browser to debug mobile web apps

Appium inspector
We read about Appium inspector briefly in , Writing Your First Appium Test, to
find out the element we want to click on. It's a handy tool for element discovery and
understating the hierarchy. Let's take a thorough look at Appium inspector and the
possibilities it opens for us. Let's launch the Appium inspector by following these steps:

Launch the emulator.1.
Ensure that the Quikr app is installed on the emulator.2.



Understanding Appium Inspector to Find Locators

[ 112 ]

Click on the Android Settings icon in the Appium app, select the Package as3.
com.quikr, and select the Launch Activity as com.quikr.old.SplashActivity.
(Refer Appendix to learn to find out Package Name and Launch Activity)
Select the Platform Name as Android, Automation Name as Appium, and the4.
Platform Version as 5.1 Lollipop (API Level 22).
Check the Device Name box and enter Nexus.5.
Click on the Launch button.6.
Once the Appium console shows the following output, click on the Appium7.
Inspector icon:

This will launch the Appium Inspector window, as follows:



Understanding Appium Inspector to Find Locators

[ 113 ]

We briefly discussed the Appium inspector window in , Machine Setup. Let's
explore how to use this window to derive locators. Inspector loads this window with the UI
element selected on the right pane. So, in most cases fields will have resource-id, which will
contain the ID value of the element. It also shows the attributes of the element, which
include type, text, index, enabled, and location. All these values can be used to derive the
locator xPath to get a handle on the element. Let's navigate to the home page of the app by
clicking on the SKIP link of the app on the emulator. Once done, click on the Refresh
button in the Appium inspector window.

It will load this window:

Now, assume the following test case:



Understanding Appium Inspector to Find Locators

[ 114 ]

For all the elements, we need locators. So, we need locators for the following for the
preceding scenario:

Tap on Select City.1.
Type  in the Search for your city textbox.2.
Tap on the Cars category.3.
Type  in the Find a Car textbox.4.
Tap on the Find Used Cars button.5.
Verify that the result is shown.6.

Now, in the preceding list, a couple of elements have unique IDs, which makes it easy to
author the test, but some don't have IDs. In this case, we need to create our own locator
using xpath. Let's run through a sample exercise in creating xpath for tapping on Cars.

Now, all the elements in the category list have the same ID, , but the text is
different for each of them. Tap on the Locator tab in the Appium inspector window.

To form an xpath, we can use one of the following syntax:

So, let's try to form an xpath in this case. For type, we can use android.widget.TextView
and for the attribute part, we need to use something that's unique. So, we have text as the
unique value in this case:

Type: android.widget.TextView

Text: Cars

So, the xpath for Cars will be , and this
can be tested by clicking on the Search button in the window:



Understanding Appium Inspector to Find Locators

[ 115 ]

There's also an xpath attribute, which is present in the Appium Inspector window under
the Details pane; the following is the value of xpath for the Cars element. The problem with
this value is that it's not intuitive. The xpath value will work as long as Appium Inspector
hierarchy and everything else remain the same:

Implementing the other steps
Let's implement the preceding scenario. The first step to launch a quicker app is already
automated, so let's figure out the dependency for the following step:

Tap on SKIP.1.
Tap on Select City.2.
Enter  in the search for your city textbox.3.
Select the appearing value from the dropdown.4.

So, when you use the Inspector, you will notice that all the preceding elements have an ID,
which can be easily used.

Here's the implementation for the same. We can create these methods in the
HomePageSteps class file. To ensure that the click action has the element visible, we have
used . We will refactor the same in a later chapter to use  wait:



Understanding Appium Inspector to Find Locators

[ 116 ]

Similarly, we can implement the other steps:

If you get the Upgrade Available popup, you can use the Appium Inspector window, as
shown, and construct the xpath for the same:

To implement the next step, which is 
, we need to perform the following steps:

Tap on the Cars category.1.

Here's the code to do the same; the locator used is :



Understanding Appium Inspector to Find Locators

[ 117 ]

Tap on the Find a Car textbox.2.

This is the code to do the same; the locator used is :

Type in  in the textbox.3.

The following is the code to do the same; the locator used is :

Select the matching item from the results.4.

The following is the code to do the same; the locator used is id. To find the result, we need
to click on one result from the list of results. So, we will be using the  API,
which will return a list of results and here we will query for the result we want:

To filter the result we want, we will iterate through the list and check for the element that
contains the text Honda City. Here's the code for the same:

Tap on Find Used Cars.5.

Here's the code to do the same; the locator used is id:

So, the complete method will look like this:



Understanding Appium Inspector to Find Locators

[ 118 ]

The last step to be automated is as follows:

This is the code to do the same, and the locator used is id:

In the next code, we are checking that the header of each result item contains Honda as we
have searched for Honda City car:

So, this completes the implementation of the new scenario. You would have noticed that, to
use Appium inspector, we need to start the session from scratch. There are times when we
perform certain transactions and steps to arrive on a screen and then see the locators. There
is a direct way to check for locators without having to use Appium.

UI Automator Viewer
There is an alternate way of just seeing locators using , bundled by
Android SDK. If you have set up the Android SDK path, open the Terminal (Command
Prompt in Windows) and type in the  command. This will launch a
blank window with a couple of icons on top, as illustrated in the following screenshot. It is
present under the tools folder in Android SDK:



Understanding Appium Inspector to Find Locators

[ 119 ]

We use this tool to find out the application UI hierarchy and show the details of the
elements present in the UI. We can inspect the attributes of an element by clicking on the
element.

Steps to use UI Automator Viewer:

Prerequisites: Emulator is running and the Android SDK path is set.1.
Open Terminal and type in  (for Windows, open Command2.
Prompt and type in ).
Launch the app under test in the emulator, Quikr in our case.3.
Click on the second icon, which is Device Screenshot.4.
The UI Automator Viewer window will launch, with the following screen.5.



Understanding Appium Inspector to Find Locators

[ 120 ]

Click on any one of the UI elements on the left pane:6.

In the right pane, we see two things: UI hierarchy and the element details, such as7.
index, resource-id, and class.
Clicking on the Save icon allows us to save the screenshot and the XML layout of8.
the screen with all the node details.

This is a lightweight way to check for locators without going through the process of starting
an Appium session. It can be invoked on any screen of the emulator.



Understanding Appium Inspector to Find Locators

[ 121 ]

Debugging mobile web apps using Chrome
Inspect
The Chrome browser comes with a lot of handy features under Dev Tools. It can be used to
debug and profile a mobile web app. Chrome Dev Tools can be launched from More Tools
> Developer Tools under the Chrome menu:

To use the Chrome inspect feature, we need to be running the emulator/device upward of
Android 4.0 and Chrome for Android has to be installed on the emulator/device.

To use the device, we need to enable certain settings: on the Android device, select Settings
> Developer Options > Enable USB Debugging. Developer Options is hidden, by default,
on Android 4.2 and later. We will take a detailed look at it when we move on to devices for
test execution. For now, emulators will show up by default and do not require any
permission settings.

Carry out the following steps to use the Chrome Inspect feature:

Launch the emulator and open the mobile web app on the Chrome browser of the1.
emulator.
Open Chrome browser on your mobile and type in chrome://inspect.2.
It displays a list of debug-enabled web views on the emulator running (or the3.
device connected).



Understanding Appium Inspector to Find Locators

[ 122 ]

This will load the following details, showing the remote device connected, which4.
in this case is an emulator running on host 192.168.56.101:5555:

The emulator is running Chrome browser version 55.0.2883.91. It also shows the5.
site opened along with the URL and certain options available, such as inspect,
focus tab, reload, and close.
To start debugging, click on the inspect link, and it will open the Developer6.
Tools window.
The screen is divided into three sections: one displaying the mobile UI, the7.
second one with element/DOM hierarchy highlighted, and the last one showing
Styles and Event Listeners.
Overall, there are nine main tools available: Elements, Console, Sources,8.
Network, Timelines, Profiles, Application, Security, and Audits, as shown:



Understanding Appium Inspector to Find Locators

[ 123 ]

In the preceding screenshot, the transparent portions represent device interfaces, such as
the Chrome omnibox or the Android status bar.

Once we have this window open, we can click on the Select Element icon  and then
click on the element in the left pane whose locator we want to find. We can also click on
Toggle Screencast  to view the content of the device/emulator in the DevTools instance.
When in toggled mode, the icon color will change to blue . The screen on the left can be
interacted with using clicks, which are generally translated into tap actions, and key strokes
are sent to the device.

Summary
In this chapter, we delved into how to use Appium Inspector to find locators of UI
elements. Also, we learned to derive xpath over the Appium-generated xpath, which is long
and difficult to comprehend and maintain. Xpath has to be used if there are no readily
available locators, preferably IDs. We also implemented a few cucumber steps to use
locators and learned to select the element we need from the list.

We learned about the UI Automator Viewer and how to use it. We also learnt about
debugging mobile web apps or webviews using Chrome browser's inspect feature.



66
How to Synchronize Tests

In the earlier chapters, we completed the journey of writing a basic test scenario that runs
on the emulator. We started with the machine setup, creating an Appium Java project and
then writing the first Appium test. We also looked at how to use the Appium inspector to
find locators. During this process, we wrote a couple of scenarios and automated them.
Robustness and reliability are the traits of a good automated test. However, while writing a
test, sometimes we need to keep the test execution speed in sync with the actual app
performance; this way, the script won't fail for issues such as the app not loading rapidly.
So far, we handled it using  in our code, which is not the best way to
handle synchronization.

In this chapter, we will learn about the following:

Different driver types available in Appium
Wait strategies:

Implicit wait
Explicit wait
Fluent wait

And we will refactor the code to implement these.

AppiumDriver
If you refer to , Writing Your First Appium Test, and remember the boilerplate code
generated, it creates an instance :

Let's take some time to understand what types of driver Appium allows us to create.



How to Synchronize Tests

[ 125 ]

Certainly,  was generated by the boilerplate code. Let's take a look at the
other drivers:

: It comes from Selenium. It has two components: a server and
a client. A server is a component that listens on a port for various requests from
the client. The client translates the script to the JSON payload and sends it to the
server using the JSON wire protocol.

: It inherits from the  and adds functions that
are handy for mobile automation. It can be used to automate both Android and
iOS apps; however, it lacks device family-specific functions. The direct subclasses
are , , and .

: It inherits from  and adds in additional
functions that are highly contextual to the family of Android devices for
automation. If you are working only on an Android project, then it's highly
recommended for you to use this driver.

: It inherits from and adds in additional functions that are highly
contextual to the family of iOS devices for mobile automation. If you are working
on iOS app automation, then it's highly recommended for you to use this driver:



How to Synchronize Tests

[ 126 ]

Understanding the different types of driver is important as there are different methods
available specifically for certain driver types, and they can help you to solve the problem of
writing a lot of explicit code. All you need to do is typecast the driver and use that method.
We will explore some gestures supported only for specific drivers in the next chapter.

Implicit wait
Implicit wait is a way to tell the Appium driver to poll the DOM (Document Object Model)
for a certain amount of time before throwing an exception to the effect that it can't find the
element on the page. The default timeout value is set to 0 seconds. Once we set the implicit
wait to a specified time, it persists for the life of the  object instance. How to set
an implicit wait is explained here:

So, what this implies is letting the driver instance wait for a maximum of 10 seconds before
throwing the  exception. We need to be watchful about the implicit usage.
The Appium boilerplate generally gives us the code with the implicit wait implementation,
so note the preceding line in the  class file, as shown:

Increasing the implicit wait timeout should be used judiciously as it will have an adverse
effect on the overall test execution time, especially when used with slower locator strategies,
such as .

This just removes a lot of indeterministic wait from the code. Implicit wait is most suited
when there is a variation in app response time due to network speed.

Explicit wait
There are times when the app under test can be slow on certain specific elements, such as
page submit, form submit, or somewhere it fetches data from an external system and takes a
little more time to load. In that case, using implicit wait to handle the situation will be a
flawed approach, given that it has to wait for each and every element for the same specified
time.



How to Synchronize Tests

[ 127 ]

To handle this situation, we can use explicit wait for such elements. In explicit wait, we tell
the web driver instance to wait for a certain condition invoked through

. So, this wait applies explicitly to the specified element. Explicit wait
can be invoked using this code:

In the preceding code, we are creating an instance of  with a maximum
waiting time of 10 seconds and then using an , which tells the driver
to wait till the visibility of the specified element can be located.  has
a bunch of methods available to be used under different conditions. , by
default, calls  every 500 ms until it returns successfully, otherwise it
throws the , as follows:

While automating, you will typically need the given conditions to be met for an element
and, for each of the following,  provides a set of predefined
conditions:

Web element is present and clickable
Web element is selected
Web element is invisible
Selected web element
Presence of web element located by
Wait for a particular condition
Text present in a web element



How to Synchronize Tests

[ 128 ]

Here's a list of all the methods available under :

Explicit wait is also used to check a specified property of an element, such as visibility,
click-ability, invisibility, and selection state.

Let's go ahead and refactor some of the code to introduce explicit wait. Some of the places to
add explicit wait, would be where we are typing in a textbox to search for an item. Consider
the following examples:

Choosing my city:



How to Synchronize Tests

[ 129 ]

Searching for a specified car:

So there are two different methods we are adding explicit wait to; we can even set a
different timeout for each element. However, one observation would be that the code is
repeating. We will come back to refactor this piece in subsequent chapters to create
something called a base page class, which hosts all such commonly used methods that can
be used in each page class.

Make the preceding changes in your code and run the test; the test should run smoothly, as
earlier. Here's an implementation in one of the methods:

Let's move on to understand a wait type that is somewhat more specific and lets us further
customize it.



How to Synchronize Tests

[ 130 ]

Fluent wait
Fluent wait is a type of explicit wait where we can define polling intervals and ignore
certain exceptions to proceed with further script execution even if the element is not found.

So, when we specify a fluent wait, we provide the following:

Maximum wait time
Polling interval or frequency to check the element
Any specific exception to ignore
Message that should appear after timeout

A simple example of a fluent wait implementation is as follows:

Let's implement the preceding in the  method and re-
run the test to see what the results are:



How to Synchronize Tests

[ 131 ]

Run this test, the result is the same as the earlier ones. Basically, all the three approaches
handle the element wait in different ways and give us the same result. However, we need to
choose the most suitable approach based on the situation.

Summary
In this chapter, we learned to implement wait strategy using implicit a wait, explicit wait,
and fluent wait. We also learned how these waits are different and in which way. We also
learned the predefined conditions that  allows one to use. We
modified some of the tests to run them using the new wait strategies and saw that all of
them work seamlessly.

In the next chapter, we will see how to automate gestures, such as tap, long press, swipe,
and scroll. We will also refactor the existing test to organize it in a much easier to maintain
structure.



77
How to Automate Gestures

In the earlier chapters, we learned how to set up and write a basic Appium test. We started
with a scenario and learned how to use the Appium inspector and write a few automated
tests. We also learned the concept of desired capabilities and saw how to use them. We
learned how to add synchronization in tests and the different types of wait strategy
Appium allows us to use. In this chapter, we will learn how to automate different gestures,
such as the following:

Tap
Swipe
Drag
Scroll to
Slider
Shake
Long tap
Orientation

Let's start with each of the afore mentioned and learn its implementation and details.

Gestures
Mobile devices allow a multitude of gestures, which can be used across the app. However,
there are no standards as to what gestures an app must implement. Some of the gestures
most typically used are tap, swipe, pinch, and double tap. One good thing with mobiles is
that these gestures are constantly evolving and eventually become natural to use. So, let's
take a look at the different gestures and how they can be implemented.



How to Automate Gestures

[ 133 ]

TouchAction
Appium implements the new TouchAction API, which allows chaining touch events and,
thereby, facilitates gesture implementation. Touch Action is pretty robust and supports a
multitude of gestures, which ease the simulation:

We will discuss some of the methods mentioned earlier, that TouchAction supports:

press:
: This method allows you to press on the

center of the element
: This method allows you to press on an

absolute position (x and y coordinates)



How to Automate Gestures

[ 134 ]

: This method allows
you to press on an element offset from the upper-left corner by a
number of pixels:

Consider the following usage examples:

release:
: This method withdraws the touch

Consider the following example:

long press:
: This method allows you to press

and hold the absolute position x,y until the context event has fired
: This method

allows you to press and hold for the specified duration at an
absolute position x,y until the context event has fired

: This method allows you to press
and hold the center of an element until the context event has fired



How to Automate Gestures

[ 135 ]

: This method
allows you to press and hold the center of an element until the
context event has fired

: This method
allows you to press and hold the elements in the upper-left corner,
offset by the x,y amount, until the context event has fired:

Consider the following usage example:

move:
: This method allows you to move the

current touch to a new position that is relative to the current
position

: This method allows you to move the
current touch to the center of the specified element

: This method allows
you to move the current touch to the specified element and offset
from the upper-left corner:



How to Automate Gestures

[ 136 ]

Consider this usage example:

perform:
: This allows you to perform a chain of actions

tap:
: This method allows you to tap an absolute

position (x,y) on the screen
: This method allows you to tap the center

of the specified element
: This method allows you

to tap an element with the specified offset from the upper-left
corner

: This method allows you to wait for the action to be
completed and is used as a no-operation in multi-chaining

: This method allows you to wait for a
specified amount of time to pass before it continues with
performing the next touch action



How to Automate Gestures

[ 137 ]

Consider this usage example:

In the preceding API, when we pass coordinates along with the web element, the
coordinates are treated as relative to the web element position. When we call the 
method, the sequence of the constructed event is sent to Appium, and the touch action is
performed on the device.

MultiTouch
Appium gives you the option to construct a MultiTouch action by chaining touch actions.
So, we can chain all the actions that the  class supports. MultiTouch is a
collection of TouchActions and allows two operations: add and perform:

 is used to chain another TouchAction
 is called to send all TouchActions to Appium in the same order

Let's take a look at its usage:



How to Automate Gestures

[ 138 ]

Scroll
One of the most commonly used gestures on mobiles is scroll. Earlier, there were two
methods available for scrolling:  and 

. However, recently, both functions have been deprecated. To solve this, we can use
swipe to perform the scroll functions and pass in parameters that are based on the relative
height and width of the screen.

To scroll down, use the following code snippet, where we have fixed the x component and
moved the y component:

To scroll up, use this code snippet where we have fixed the x component and moved the y
component:

Once we have the preceding implementation, we can implement scroll down to an element
using the following code. Change the  to the appropriate assertion.



How to Automate Gestures

[ 139 ]

We can even implement a scroll down to text on similar implementations; refer to this code
snippet:

The preceding code can be used for reference and for developing your own customized
scroll method.

Swipe
Swipe is another commonly used gesture on a mobile device. The swipe functionality is
relative to the device height and width. So, we can use the relative device height and width
to implement the swipe functionality. Android Driver supports the swipe method, and we
can use it:



How to Automate Gestures

[ 140 ]

Here's the code snippet for swiping from left to right:

Similarly, we can implement right to left:

In a similar format, we can even implement swiping from one element to another element,
based on the element location:

One thing to note here is that the swipe method is made available as part of
 and not ; hence, we need to type cast the driver to
 in the current implementation and then use this method.

Orientation
Many times, we need to change the device orientation to see a different view or to perform
some other action/assertion. Appium exposes a method to change the orientation from
landscape to portrait and vice versa:

 gives a possible screen orientation and supports  or
.



How to Automate Gestures

[ 141 ]

Using the rotate API:

Appium also exposes an API to get the current orientation of the device:

A good practice is to perform the operation and change the orientation back so that it
doesn't affect the other test cases unless it is intended to do so.

Summary
In this chapter, we learned how to automate frequently-used gestures, such as press, long
press, touch, and MultiTouch. We learned the APIs exposed by Appium and also the usage
of those APIs. These code snippets can be used to implement different touch functionalities
in your app. We also learned about device orientation and how to toggle it between the
portrait and landscape modes. We also discussed the fact that some of these methods are
available only to androidDriver.

In the next chapter, we will learn about design patterns in test automation and delve into
one of the most popular design patterns. We will also learn about some of the best practices
for framework designing.



88
Design Patterns in Test

Automation
In the past chapters, we learned about gestures and how to implement gestures in mobile
automation. Until now, we have learned almost all the major aspects of Appium, right from
understanding the app to writing a basic test in cucumber and automating it. If you notice
the code we have written, we can see elements of repeatability and lack of structure and
design in the whole approach. There are a couple of design patterns that are used in test
automation framework, and some of them are s, Singletons, Facades, Strategy design
patterns, and so on.

In this chapter, we will take a look at the very popular and widely used design pattern as
well as the most fundamental aspect of test automation which is assertion:

Page Object pattern
Implementing assertions

Before we get on to the concept of the Page Object pattern, let's do one more round of
refactoring and introduce the concept of , the same is illustrated below.

We will implement this in the current state of automation to give it a more structured and
organized look. Let's start with understanding the Page Object pattern concept.



Design Patterns in Test Automation

[ 143 ]

Refactor -1
Let's recall the  class and the  method:

Now, the instance of  can be used by other step classes and not only this one.
So, to solve this, we will declare a  class, which creates the 
instance to be used throughout the test session.

Follow the steps below:

Select the following line in the  method and click on1.
Refactor > Extract > Superclass... :

Enter  as the Super class name, select appiumDriver:AppiumDriver2.
under Member, and click on Refactor:



Design Patterns in Test Automation

[ 144 ]

This will be the generated code for the same:3.

Note that the  access modifier changed from  to
. This makes it accessible within the package and outside the

package, but through inheritance only.



Design Patterns in Test Automation

[ 145 ]

Add a  keyword to the  instance as we want the same4.
instance to persist for the session run:

Let's open the  class and modify it a bit. We also need to move5.
the  section from the preceding 
method to the  class:



Design Patterns in Test Automation

[ 146 ]

Also, in the teardown method, we need to add , which will close6.
the session before stopping the Appium server:

So, the  class should look as shown:7.



Design Patterns in Test Automation

[ 147 ]

Now, the  method becomes empty after moving all the code8.
to the  class. We can use this method to perform some assertion,
or we can rename it to serve another purpose. For now, we will just add some
checkpoints to it:

Now, we have moved all the infrastructure code to  and our
 contains only methods that perform actions on the home page of the app.

Let's take a look at the design pattern to further organize and structure the code.



Design Patterns in Test Automation

[ 148 ]

Page Object pattern
Here are some important aspects of a good framework design, which we tend to base our
decision on:

Avoiding duplication of code
Tests should be more readable
Tests should be easy to maintain
Accommodating changes should be easy
Enhanced reliability
A structure that is easy to scale with the growth of the project

Page Object pattern is about modelling your app's UI as an object. A Page Object wraps the
UI of a page with an app-specific API, which allows us to manipulate page elements. Let's
understand the same with respect to the following image. The following page serves the
purpose of both login and registration. It's the first page that gets displayed when we
launch the app; for the sake of our conversation, let's call this a landing page. The page
contains UI elements such as skip, mobile number text field, continue button, and Facebook
and Google sign in buttons:



Design Patterns in Test Automation

[ 149 ]

When we apply the Page Object concept, the preceding page will typically perform the
following services for any user using the app:

Skip to home page
Register as a new user
Log in using Facebook
Log in using Google

In this case, the Page Object has the complete knowledge of the page elements and the
services it can perform on that page. When we model a page this way, it can hide the UI
elements from the consumer of the page and expose only the service one can perform on
that UI element via accessor methods. Let's create a sample page class for the shown page:



Design Patterns in Test Automation

[ 150 ]

So, we have declared the UI elements as private and the accessor methods as public so that
they can allow anyone to perform any operation on those UI elements.

These are simple, straightforward actions that a page is doing, and we believe that it
belongs to that page class. There are some discussions around as to whether a Page Object
should include assertions or not. We will come to this a little later; before that, let's refactor
the existing code to create another page class.

Refactor-2
We will start this refactoring by creating a new package under the  folder of the
solution called , illustrated here:

Right-click on the , select New > Java Class, and enter the name1.

Copy the preceding code snippet of  and paste it2.
We also need to implement wait for the visibility of elements to remove any3.
flakiness in the test



Design Patterns in Test Automation

[ 151 ]

We learned about test synchronization in the last chapter, and we also learned about the
importance of a proper wait strategy in the test. So, instead of having each page class create
its own implementation of , we can extract it to a base page, which can be
extended by different page classes and can utilize the common methods. So, the next step is
to add a :

Add another Java class to the pages package and name it as 1.
WebDriver wait needs a driver instance and for now, we will create only one2.
method, .
Copy this code in the :3.

At this point, we need to make the  class extend the  and4.
add the method we just created to the  class method

. This will make you add the constructor matching the
; go ahead and do that. Here's how it will look after the changes:

At this point, we can try running the code but it will throw a .
PageFactory supports this pattern and helps cut down the code. Let's see what changes we
need to make and where.



Design Patterns in Test Automation

[ 152 ]

The reason the code threw up  is because the fields are not
instantiated; hence, we need to initialize the PageObject. Take a look at this code:

When  is initialized, it is equivalent to the following:

Now let's try to stabilize the code here. We have added a  class, as shown just
now. Let's navigate back to the  class; we need to add this 
initialization:

We need to add a constructor that takes care of the  initialization. The code
after extending  class and adding initialization is as shown:



Design Patterns in Test Automation

[ 153 ]

To use the preceding code, we need to change the 
 method and edit a couple of lines. Consider the

following code:

We can substitute it with the following line and run the same test again. It will pass
seamlessly and look at the readability and code organization we have introduced:

On similar lines, we can create a  class that will have elements such as select city
dropdown. Let's do the exercise of creating the  class. In the  class, we
need not map everything that is present on the UI; it can just be those elements that you
need interaction with. Here's the implementation of the same:



Design Patterns in Test Automation

[ 154 ]

With the preceding piece of code, we can replace the following line:

This is the line it will be replaced with:

So, the  method now looks like this:



Design Patterns in Test Automation

[ 155 ]

This code is much more readable and easy to maintain. We can even add this handling of
pop up message to upgrade by clicking on Later to  or  itself so that the
code will look much cleaner. Now that we have seen how to do this, I am leaving it to you
to implement the same. Below is the pictorial difference in the code readability and
structure:

The next exercise for you is to replace the existing code we have written and model it all on
the Page Object concept.



Design Patterns in Test Automation

[ 156 ]

Assertions
Assertions are the core of test automation, and there has been a good long debate on where
assertions belong. Broadly, there are two types of approaches for handling assertions, and
they can be implemented in either of the following:

Page Object
Test script

The first approach says that Page Objects should contain assertions. The advantage of this
approach is to minimize the duplication of assertions in the test suite. Also, it helps in
organizing the messages and following the Tell, Don't Ask principle (for more information
visit: ). The Tell, Don't Ask principle
recommends that an object can be issued a command to perform some operation or logic,
rather than to query its state. It suggests that we should tell the object what to do, rather
than asking the object for data and then acting on it.

Let's apply the same in our code. Here's what we have automated:

Implementing assertions in Page Object
The first step is to replace the implementation with the following page class and the method
that will perform the verification of the search results on the car search results page. So, we
can declare something like this:



Design Patterns in Test Automation

[ 157 ]

The next step is to implement the  class and the
 method. So, this method will take care of

the verification of the result. This is the implementation of the  class:



Design Patterns in Test Automation

[ 158 ]

we can add other assertions and remove the assertion from the step class. Let's look at the
other approach of implementing assertions in the test script.

Implementing assertion in test script
The second approach is having assertions in the test suite. In this case, we will have a Page
Object that implements a getter for the element state we want to have a check on or verify
upon. So in this case, we need a method in the page class that will return us the text of the
search result header.

Let's implement the page class for this:



Design Patterns in Test Automation

[ 159 ]

Now, let's go to the step implementation and refactor a couple of things there. First, we
need to call the preceding method, store the result, and then make the necessary assertions:

Now, we can execute the test to get the same result. Let's discuss some other practices of test
development that will help us create a better test automation framework, and it applies to
mobile test automation solutions as well.

Avoiding dependencies between tests
Each test we author should be independent of the others. Developers or testers using the
solution should be able to run any test in any order based on the need. Generally, when we
submit the cucumber feature to run, scenarios need not execute in the same order and, as a
result, the test will easily be broken if there are dependencies in it. Hence, it becomes easy
when we execute via cucumber as we follow the Given-When-Then format.

Introducing set up and tear down
Most of the tests that we write can be broken into three parts:

Pre-condition
Action and verification
Post-condition

Pre-condition takes the app under test to a certain desired state. In our case, it will translate
to install the app on the device, log in to the app, and come on the respective screen.

The action will translate to tapping on car category, and searching for a car. Verification will
translate to asserting if we have the correct result, as expected.



Design Patterns in Test Automation

[ 160 ]

Post-condition will translate to logging out of the app, cleaning of the app state, and even
uninstalling the app.

Cucumber exposes two hooks that take care of running pre-condition and post-condition
using the  and  hooks. These hooks are very similar to the  and

 methods provided in xUnit testing tools. Both  and  are global
hooks; hence, they can be declared in any step.

 allows you to run a block of code before every scenario. We can declare many
methods tagged with the  hook. They run in the same order as they are declared.
In our code base, we have declared a method with the  tag. So, it is executed before
running any scenario:

 allows you to run a block of code after the last step of each scenario. It runs
regardless of the status of the last step, be it failing, undefined, skipped, or pending. It runs
in the opposite order of declaration. We have declared a method with the  tag in our
code base. Hence, it takes care of the session and what to do after running the test:

This finishes the framework designing principles and some of the concepts.

Summary
In this chapter, we learned about the Page Object design pattern and how it can be used to
give a structure to the code we have written. We also went through refactoring,
understanding the design pattern and how it has significantly improved the code
readability and makes the maintenance look easier. We learned about assertions and how
they can be used. We also learned about where assertion belongs and the pros and cons of
each approach. We discussed some framework design principles of avoiding the dependent
test designs and the importance of hooks, such as  and , provided by
cucumber.

Now we have a decent framework in structure and the tests are a little mature with the
design pattern in place. The next step is to be able to run the test on different targets, such
as an emulator and an actual device, understand the hassles around it, and solve them.



99
How to Run Appium Test on

Devices and Emulators
In the last chapter, we were exposed to design patterns, and we learned how to structure
code for better readability and maintenance. We have a decent test that deploys an app on
the target device, launches the app, and performs a search. The next stage in Appium is to
be able to run these tests on an emulator and actual device. In this chapter, we will study
the following topics in detail:

Emulator:
Setting up and configuring
Running the test on the emulator

Devices:
How to configure
Running the test on devices

Emulator
An emulator is an application that emulates a real mobile device, which lets you prototype
the app under development or allows you to test out the app without actually buying a
physical device. When we install Android SDK, we can create emulators based on the
available API level, CPU, and RAM. We learned how to set up an Android Virtual Device
using Android SDK in , Setting Up the Machine. We also briefly learned about the
emulator and how to download one virtual device.



How to Run Appium Test on Devices and Emulators

[ 162 ]

In this chapter, let's take a detailed look into Genymotion, which provides Android
emulators that are faster and better performing compared to Android SDK:



How to Run Appium Test on Devices and Emulators

[ 163 ]

To install app on the Genymotion emulator, the normal  commands will work fine, as
shown:

adb install /path/to/app/<app_name>.apk

If the app under test is dependent on Google Play, we need to perform these steps:

Look for the Google Play Store APK, , for1.
the device API level and install it.
Flash the emulator with the respective Google play Service's 2.

 file.
Restart the emulator.3.
Launch the Play Store and update the google apps installed.4.

The advantages of using the GenyMotion emulator are:

The Genymotion emulator is a better performant than the Android SDK
emulators. Genymotion uses the x86 architecture to run the Android
virtualization.
Genymotion emulators don't crash as frequently compared to Android Virtual
Devices.
Genymotion has a larger array of devices to create an emulator from.

Running test on the Genymotion emulator
When you are running a single Genymotion emulator on your machine, you can pass the
platform version to the desired capabilities and it will take care. The code for that is as
given; customize it for the platform version you have created the emulator for:



How to Run Appium Test on Devices and Emulators

[ 164 ]

When we are running multiple versions of Genymotion emulator, we need to pass the 
of the targeted device where we want to run the automation:

Here's the code snippet for passing the  as the desired capabilities:

With the Genymotion emulator, one of the exceptions is that the desired capability to
launch the emulator doesn't work the way it works seamlessly in Android Virtual Devices.
Also, we need to launch Genymotion emulators before we trigger the test. Here, how we
can launch the Genymotion emulator via the command line is explained.

Use these steps to start the Genymotion emulator via the command line on macOS:

Launch the Terminal.1.
Type in the  command. This is the sample output:2.

Type in the following command (modify the vm name with the data on your3.
system):

      open -a /Applications/Genymotion.app/Contents/MacOS/player.app --
      args --vm-name '1010b597-fb0b-4ef7-9f59-57070b3108a7'

The last parameter passed is , as shown in the .4.

This will launch the Genymotion emulator without launching the Genymotion app. Let's
take a look at how to run the same test for physical devices.



How to Run Appium Test on Devices and Emulators

[ 165 ]

Devices
To do any development and debugging activity on Android devices, the first thing we need
to do is enable the developer options. Different phones have different navigations for
enabling developer options; here, we list a few of them:

Samsung Phones:
Launch Settings > About Device > Build number

LG Phones:
Launch Settings > About Phone > Software Information > Build
number

Stock Android Phone:
Launch Settings > About phone > Build number:



How to Run Appium Test on Devices and Emulators

[ 166 ]

Once we reach the Build number, we need to tap on it seven times, and then it will show a
message saying You are now a developer!. This will enable the developer options on the
device under the Settings menu. Tap on Developer options and select USB debugging.
Also, ensure that the option of Verify apps over USB is turned off. This option, when
turned on, stops app deployment on the physical device:



How to Run Appium Test on Devices and Emulators

[ 167 ]

This will show a popup (as illustrated), on which we need to press OK:

Once the preceding setups are done on the device, we can connect the device to the
machine, launch the Terminal ( the Command Prompt in the case of Windows), and type in
this command:

adb devices

The expected output is shown here; we have one physical device running with UDID
 and one GenyMotion emulator with ID :

Sometimes, when the devices still don't show up in the output, we can run through the
following steps to fix this (these are macOS-specific steps):

Open the USB manager on your machine (macOS).1.
Use the vendor ID (highlighted in red in the following screenshot) and update it2.
in the  file.

To obtain the vendor ID on macOS:

Click on the Apple icon in the top-left of the screen.1.
Click on About This Mac.2.
On the popup, tap on System Report.3.



How to Run Appium Test on Devices and Emulators

[ 168 ]

Under the hardware section, click on USB.4.
You will notice the device connected there; click on the Android device:5.

Copy the Vendor ID and run the following command to update the  file:

vim ~/.android/adb_usb.ini



How to Run Appium Test on Devices and Emulators

[ 169 ]

The preceding command will open the file in edit mode, and we can paste the vendor ID in
the new line there, save the file, and quit. Here's a sample snapshot of the file:

Once we are done editing this file, we can restart the adb server and run the 
command, as shown:

adb kill-server
adb start-server
adb devices

Running a test on actual Android devices
Running a test on a physical device is very similar to running the test on emulators once the
preceding setup is done. As long as we are providing the platform version correctly and
providing there is only a single device connected, the test will pick up that device for
execution. However, when we have multiple devices connected with the same android
platform version, we need to specify the unique  of the device to run the test.
So, if we have the emulator and device of the same platform version, we can use the
following line and update the respective device ID to run the test on the connected physical
device:



How to Run Appium Test on Devices and Emulators

[ 170 ]

Running a test on actual iOS devices
Until now, we have largely built the code base for Android, but most of it remains the same
for iOS. We need to create a similar project for iOS apps and use an  or  file to
deploy the app on device/simulator. The current project we have developed is Android-
specific; however, we can reuse the feature file. Locators might be different in the case of the
iOS app, but the steps largely remains the same to obtain the locator.

However, when it comes to running tests on iOS devices, we need to go through the
following series of steps before triggering the test.

The first major requirement is to have a macOS as your machine and, second, to have the
iOS app under test signed with a development provisioning profile.
If we are using a physical device, we need to enable UI automation in the developer options
in the iPhone device. These are the steps to do this:

Switch off the iDevice.1.
Connect it to the Mac running Xcode.2.
Switch it back on to have Developer options appear under device Settings.3.
Tap on the Developer option.4.
Enable UI automation.5.

Now, the device is ready to run any Appium tests. The next step to run the Appium test is
to get the UDID of the devices. The following steps help you obtain the UDID of iOS
devices:

Connect your iOS Device to your Mac and launch iTunes.1.
In the left pane, go to Devices > Select your Device.2.
In the right pane, reveal the identifier by clicking on Serial Number. It's a3.
clickable element that toggles.
Copy the device identifier and save it.4.

We need to have a couple of libraries installed before we run the test. Run the following
commands to install these libraries:

: It proxies requests from the  daemon over
a websocket connection. It allows you to send commands to MobileSafari and
UIWebViews on real and simulated iOS devices:

      brew install ios-webkit-debug-proxy



How to Run Appium Test on Devices and Emulators

[ 171 ]

: It's a cross-platform software library that talks the protocols
to support Apple devices. It supports iOS devices natively:

      brew install libimobiledevice

: It stands for USB multiplexing daemon and is in charge of multiplexing
connections over USB to an iOS device:

      brew install usbmuxd

: It's a dependency manager for a Cocoa application. Appium uses the
Facebook  agent, which in turn needs  as a dependency
manager:

      brew install carthage

:  doesn't work with iOS 10 yet. Hence, we need
to use the  library to interact with real devices. Use this line to
implement it:

      npm install -g ios-deploy

These are the steps to follow before triggering a test on an iOS physical device:

Launch the Terminal.1.
Run  by running the following command. This2.
command restricts the proxy to just one device identified by its UDID:

      ios_webkit_debug_proxy -c <UDID>:27753

Assuming that the test is starting the Appium server, run the Appium test. A3.
sample of the desired capabilities will look like this:

      capabilities.setCapability("platformName", "iOS");
      capabilities.setCapability("platformVersion", "9.3");
      capabilities.setCapability("deviceName", "iPhone");
      capabilities.setCapability("udid",
      "2b6f0cc904d137be2e1730235f5664094b831186");

So, the preceding steps will help run the Appium test on physical iOS devices. For running
the test on physical iOS devices,  is a must; we don't need the  as a desired
capability but the  has to match the simulator name for iOS simulators.



How to Run Appium Test on Devices and Emulators

[ 172 ]

Summary
In this chapter, we learned how to set up Genymotion emulators and how to configure
them. We learned how to alter the desired capabilities to run the test on emulators. We
learned how to set up Android devices for development and testing by turning on the
developer options. We also learned how to turn on USB debugging and run the test on an
Android device by passing the .
We explored different libraries to install (via Homebrew) for running the Appium test on an
actual iOS device. We also discussed how to get the UDID of iOS devices. We went through
the steps to start  and the desired capabilities to use for an iOS
test.
In the next chapter, we will learn how to run the Appium test via the continuous integration
tool, Jenkins. We will go through the detailed process of setting up Jenkins and running the
test.



110
Continuous Integration with

Jenkins
In the last chapter, we looked at how to run the Appium test on an emulator and physical
devices. We also learned how to start the emulator through the command line. We explored
how to run the Appium test on physical devices, including iOS devices. So far, we have
seen how to use Appium, learned how to author test, learned to automate gestures, and
learned about design patterns as well. The next step is to run these Appium tests via a
continuous integration tool, Jenkins. In this chapter, we will take a detailed look at the
following:

Setting up Jenkins
Exporting reports as artefacts

Generally, on any development project, we use a continuous integration tool. It's a standard
development practice that requires developers to integrate code into a shared repository.
Once the developer checks in the code, it is verified by the automated build that does basic
jobs, such as compiling the code and running unit tests.

Before we set up Jenkins, let's refactor the code to run the automation test via command line
using the tool .



Continuous Integration with Jenkins

[ 174 ]

Refactoring -1
Until now, we have been running the test via an IDE. When we started with the  file,
it was majorly to pull in the dependencies needed for the project. Here's how the current
version of the  file looks:

The next step is to create a task that will execute the cucumber features in a different feature
file. A task represents an atomic piece of work for a build. Tasks generally belong to a
project and the syntax to define a task is this:

A task is made up of a sequence of actions; some typical actions can be added by calling
 or . So, let's go ahead and add a task to execute all features and

generate a  report. Copy the following code snippet and paste it in the  file
below the dependencies section:



Continuous Integration with Jenkins

[ 175 ]

Let's understand the above piece of code we have written; we are essentially doing the
following things:

Creating a task called 
Making it dependent on the other task  and  (which are predefined)
Getting a  (tag name) via system parameters and performing a null check
on the same
Invoking cucumber CLI with a bunch of arguments:

: To create a pretty report in Json format in the specified
directory

: To find the step implementation in the "steps" package
: To filter the features file (in the specified path) based on the

passed string, which is tags



Continuous Integration with Jenkins

[ 176 ]

So, the entire  file should look as illustrated:



Continuous Integration with Jenkins

[ 177 ]

If you note the preceding code, we are accepting tags as an input to run the test. So, let's add
a tag on the scenario and call it :

Now we can pass these created tags using the command line; let's test the preceding gradle
task by following these steps:

Launch Emulator or connect a device.1.
Change the desired capability to match the  of the2.
emulator/device.
Launch the Terminal ( the Command Prompt on Windows) and navigate to the3.
project root folder:

Type in this command and press Enter:4.

 gradle clean build runAllTest -Dtags=@search

Windows user can run the command

 ./gradlew clean build runAllTest -Dtags=@search

This should start the test on the targeted device. We can add the same tag to other test as
well and run them.

Once we have this up-and-running, we are good to set up Jenkins.



Continuous Integration with Jenkins

[ 178 ]

Setting up Jenkins
Jenkins is an open source continuous integration tool that helps in automating
development-related repetitive tasks. It runs as a local server on a host machine where we
install it:

Let's follow these steps to install Jenkins:

Download the Jenkins mac OS X installer or Windows installer from 1.
.

Double-click on the  (  for Windows) file to install Jenkins and select the2.
location installation.
Once it is successfully installed, the browser will open to3.

.
The browser will redirect to  with a4.
message for macOS X and Windows.



Continuous Integration with Jenkins

[ 179 ]

Unlock Jenkins
To ensure that Jenkins is securely set up by the administrator, a password
has been written to the log (not sure where to find it?) and this file on the
server:

.
Copy the password from either location and paste it below as shown in
the following screenshot:

Use the following command to view the password and copy it:5.

For macOSX : 

For Windows: Navigate to the earlier mentioned location (in the
Getting Started pop up) and open the file with Notepad; copy the
password.

Enter the password in the Jenkins log-in page, and it will show you the screen to6.
install and manage the plugin.

Close that and click on Start Jenkins.1.



Continuous Integration with Jenkins

[ 180 ]

This completes the Jenkins setup on your machine. The next step is to create a job that runs
the automation suite, but we need to implement the version control system ( ) with our
current project before that.

Moving a project to Git
Until now, whatever we have coded resides locally on our machine, which will never be an
ideal case as we will typically be using the source control tool GitHub, Bitbucket, and so on.
Follow the given steps to move the project to GitHub (assuming that you have a GitHub
account; if not, please sign up on ):

Install Git by downloading the respective installer for your machine (either Mac1.
or Windows).
Once done, launch the Terminal and type in the  command. It2.
should show something similar to this (with a higher version number):

The next step is to configure your git username and email using the following3.
commands:

      $ git config --global user.name "firstname lastname"
      $ git config --global user.email "firstname.lastname@xyz.com"

Once the preceding steps are executed, we are done with the setup of Git; the next step is to
move the repository to Git. Follow these steps for that:

Log in to Git and click on New repository. You will be directed to another1.
window, as shown:



Continuous Integration with Jenkins

[ 181 ]

Enter a Repository Name.2.
Enter the Description for your repository.3.
By default, Public repository will be selected. Choose Private if you want to set4.
up a private repo.
Click on Create repository.5.



Continuous Integration with Jenkins

[ 182 ]

Once done you will see this screen:



Continuous Integration with Jenkins

[ 183 ]

So, now we have an existing project that we want to get started with. Let's follow these
steps to push the  project to GitHub:

Launch the Terminal (the Command Prompt on Windows) and navigate to the1.
 project folder.

Type , and you will see this output:2.

Once done, run the 3.
 command to add

the remote origin.
Do a  for all files, as shown:4.

      git add --all

Do a commit with the  message:5.

      git commit -m "Initial Commit"

Once done, it will show a bunch of files that are ready to be pushed.6.
Run the push command:7.

      git push -u origin master



Continuous Integration with Jenkins

[ 184 ]

This is a snapshot of all the commands and the typical output:8.

We have pushed our project to GitHub with the preceding steps. The next job is to create
the Jenkins task that will use this repo to run the Appium test.

Adding Jenkins plugin
To start the Jenkins setup, we need to install a couple of plugins that Jenkins provides to
make the process easier. We need a couple of Jenkins plugins to help set up the automated
test run. Follow these steps to install some of the plugins:

Launch Jenkins ( ).1.
Click on Manage Jenkins.2.



Continuous Integration with Jenkins

[ 185 ]

Select Manage Plugins, as illustrated:3.

Click on the Available tab.4.
Click on Filter and type in Gradle plugin.5.
Select the checkbox next to the result.6.
Click on Install without restart.7.
Repeat the preceding steps for the following plugins:8.

Cucumber reports1.
Github plugin2.
Android Emulator plugin3.

Once done, restart Jenkins.9.

This finishes the installation of all the required plugins point in time. We can always go
ahead and add more plugins as the need arises.



Continuous Integration with Jenkins

[ 186 ]

Setting up the Jenkins task
Once the preceding plugins are installed, it becomes slightly easier for us to use these
plugins to set up the Jenkins task. Follow the given steps to create the Jenkins task:

Launch Jenkins ( ).1.
Click on Manage Jenkins > Configure System.2.
Under Global properties, select Environment variables and add the Name and3.
Value. Value should be local to your machine; it should be what we have set up
in the bash profile in , Setting Up the Machine:

Click on Save.4.
Once done, click on New Item.5.
Enter a project name and select Freestyle project; click on OK:6.

Enter the Description you want for this project.7.



Continuous Integration with Jenkins

[ 187 ]

Under Source Code Management, select Git.8.
Enter the Repository URL and add Credentials if it's a private repository, as9.
illustrated:

Choose  as the Repository browser.10.
Enter the URL again for the Repository browser.11.
Under Additional Behaviours, click on Add and select Clean before checkout.12.
For now, we will manually trigger the builds; hence, we need not select any of the13.
options under Build Triggers.
Click on Add build step under Build and select Execute shell. Enter this14.
command:

./gradlew clean build runAllTest -Dtags=@search



Continuous Integration with Jenkins

[ 188 ]

In this Command textbox as shown:

Alternatively, we can select Invoke Gradle script, which will allow us to use the15.
Gradle task directly. Refer to the following screenshot. For now, choose between
above mentioned points 14 or 15:

Click on Add post-build action.16.



Continuous Integration with Jenkins

[ 189 ]

Select Cucumber reports from the drop-down, as follows:17.

Click on Save.18.
We will see this screen once the task is created:19.



Continuous Integration with Jenkins

[ 190 ]

Launch the Genymotion emulator. We haven't added a step to do this in an20.
automated way. So for now, we will have to start it manually.
Click on Build Now in the left panel.21.
Under Build History, click on the running job drop-down and select Console22.
Output. This will show the runtime log of the running job:

We have finished setting up the Jenkins task and we have also seen how to run the task. The
next step is to view the reports. This section will help you understand this.

Viewing reports in Jenkins
Once the preceding job is complete, Jenkins will show you some of the information it
collects as part of the result. Refer to the following screenshot; it shows Cucumber reports,
Workspace, and Recent Changes:



Continuous Integration with Jenkins

[ 191 ]

Clicking on Cucumber reports will show you the summary of the test result.
Under Permalinks, we can see the test result by Last build, Last failed build,
and so on.
Recent Changes will show the code changes commit-wise since the last run.

We have now completed setting up Jenkins to run the appium test we have authored. We
can hook this to the GitHub account, where each commit will trigger the test, or we can
have a manual trigger as well.



Continuous Integration with Jenkins

[ 192 ]

Summary
In this chapter, we covered running the appium test via a Gradle task. We learned how to
pass the tags from outside to the Gradle task. We learned about Git and how to move the
current project to the GitHub repo. We learned about Jenkins and how to install plugins.
We also learned how to create a Jenkins task to run the test unattended. We explored how
to map the Jenkins task to use the Github project for source code management and how to
pass the gradle command via a shell or via the gradle task configurator. We also discussed
how to enable cucumber reports and see the console output during execution time.

This pretty much completes the appium test, right from setting it up to authoring the test
and configuring Jenkins to run it. In the next chapter, we will look at some of the tips and
tricks that make mobile automation a little more intelligent.



111
Appium Tips and Tricks

In the last chapter, we looked at how to set up Jenkins and have a test run in an automated
way. We also learned how to put the code into GitHub and then configure the Jenkins task
for the purpose. We have almost come to the end of this book; in this chapter, we will learn
some tips and tricks of Appium and automation in general, which can help improve our test
automation and make it a little more intelligent both from the system and testing points of
view.

In this chapter, we will take a detailed look at the following:

Switching between WebView and Native
Taking screenshots
Recording video execution
Interaction with an other app
Approach for running the test in parallel
Simulating various network conditions

Switching between views - web and native
While testing an app, we often find the need to switch between the Web and native views.
A typical example is the Facebook sign-in page in many apps or an intermediate payment
page. In those situations, we need to change the application context to  or .
Use the following code snippet to switch to WebView:



Appium Tips and Tricks

[ 194 ]

It tries to get a list of all the context handles, checks whether there is any context that
contains WebView, and then the driver switches to that context.
The following code snippet switches to native on a similar logic:

Generally, switching between a WebView and native view happens across the app on
different pages, so it will make more sense to have this method created in BasePage. The
advantages of this approach are as follows:

Easy access to call from any page
Avoid duplication of the implementation

We can use the preceding code for reference and may tweak it, if need be. The next tip is
taking a screenshot of the app while under execution.

Taking screenshots
A picture speaks a thousand words, but in our case it can save a thousand seconds. It's a
good practice to take an image at the point of test failure as it will help us save a lot of time,
which is needed to go through the error logs. Also, sometimes images are needed as part of
the test case itself. Here are two approaches:

Embedding a snapshot at the point of failure
Taking a screenshot and saving it for later use or reference



Appium Tips and Tricks

[ 195 ]

Embedding a snapshot in a cucumber report becomes fa+irly easy. Cucumber exposes you
to the  interface, which makes it slightly easier to query whether the scenario has
failed or passed. For example, refer to the following snapshot of code; we are doing the
following step by step:

The conditional statement helps us check whether the scenario has passed or
failed
We are checking for a failure condition in respect of the scenario
We instruct the driver instance to take a screenshot at the point of failure:

We can include the preceding code in the tear-down method. So, this will keep probing the
scenario and, if it fails, it will take a screenshot and embed it in cucumber reports. If we edit
the current tear-down method, it will be as shown below:



Appium Tips and Tricks

[ 196 ]

When we embed the failure snapshot in the current test report, it becomes more
informative. Here's how a sample report with image embedding will look:



Appium Tips and Tricks

[ 197 ]

To get the above report or a nicely formatted cucumber report, we can use an external JAR
listed here: .

The second use case for taking a screenshot is to use it for manual verification. For instance,
a use case would help UX team give a page by page snapshot of the app to verify the look
and feel. We can use the described  method to taking the screenshot
and store the output as a file in some predefined path. The format we are using is :

Having a large number of screenshots at different points in the execution and publishing
them as part of build artefacts might eat up the Jenkins agent space (assuming that the
Jenkins slaves are less powerful and scaled down machine versions). We should be careful
with this feature.

The next tip is to record the video execution of scenarios.

Recording video execution
Often, there is an inherent need to capture the playback when we execute a test so that we
can actually see how the scenario fared. There can be a few reasons for this, one of which is
the documentation. It might also be for demonstration purposes in the product team, or to
see what happened on the device in the case of any failure.

Android ADB gives screen recording functionality only and not the audio capture. This
should suffice for most functional test automation needs, which doesn't really require the
audio component to be captured. ADB gives you a way to capture the display of Android
devices, running Android 4.4 (API Level 19) or upward. The API is 

.

Let's look at a usage example--
:

The screen recording automatically stops after 3 minutes or by the
 option, if set API usage for time limits--

.



Appium Tips and Tricks

[ 198 ]

The usage example for this is :
The screen record API gives the option to rotate the output by 90
degrees; however, this is just an experimental feature.

API usage for rotate-- :
The screen record API gives the option to display log information.
By default, this is off.

API usage for displaying log info-- :
The screen record API gives the option of setting the bit rate for the
video, in megabits per second. The default value is 4 Mbps. The
higher the bit rate, the greater the size of video and vice versa.

API usage for bit rate-- .

An example of this 
.

A handy tip for recording video execution is to start the recording when you start the
scenario; so an ideal place to call it would be in the  method with the  tag.
Also, adb makes only 3 minutes of screen recording; so if a scenario exceeds 3 minutes, we
need to write our own logic to capture the remaining execution.

The next tip is about how we launch a different app when we have started a session with a
specified app under test.

Interacting with another app
Most of the time, when we test a mobile application, it requires interaction with another
app. For example, an app might need integration with the Contacts app or the SMS app.
Sometimes, while testing, we might need to simulate the geo location, which can be done
via an external app installed on the device/emulator (or it can even be done using Android

 commands).



Appium Tips and Tricks

[ 199 ]

When we start an Appium session for testing, generally it is tied to an app as we are passing
the  parameter in the desired capabilities, so we can't really pass two apps in the desired
capabilities. If we recall our code, we are using this line:

One way to switch between the apps is when we know the target app's package name and
activity name. Android driver exposes a method, ,
which basically takes an activity as input and starts it. So, a sample code snippet to start the
Contacts app on a device will look like this:

Once we are done with the test steps we want on this app, we can use the BACK key to
traverse back to the application under test:

The  method is available only for  and not for
. On iOS devices/simulators we can't automate two apps in one session due

to a limitation from the Apple itself. The only way we can do this:

Initiate a session 1
Run through the steps for app 1
Close session 1
Start another session 2
Run through the steps for app 2
Close the session 2.

One thing we need to keep in mind is to set the Desired Capability  to be 
while creating the driver instance.

Let's take a look at how we can run the test in parallel.



Appium Tips and Tricks

[ 200 ]

Running the test in parallel
Let's go back a bit and see what we used in , Understanding Desired Capabilities:
the Refactoring -2 section. Here's the code snippet we used:

We discussed the  capability, but didn't use it then. This capability holds
the key to have Appium tests run in parallel.
We can follow these steps to implement test parallelization for Appium:

Create a method to start Appium service by passing  and  as1.
parameters.



Appium Tips and Tricks

[ 201 ]

Once we parameterize the preceding, we can actually start as many Appium2.
servers as we have devices connected. The following code takes  and 
as parameters, starts the Appium service, and ties it to a particular  and

:

Create a method to read the output of the  command:3.
Iterate the preceding method to start the Appium service for each 
(Android device connected)
Use the following method to read the output of the preceding
command:



Appium Tips and Tricks

[ 202 ]

Create a method to build the desired capability based on the device UDID as the4.
parameter
Create a properties file to save the mapping of tags and devices to pick at runtime5.
Create a method in Gradle to read from the properties file and run the test6.

For the preceding steps, you need to implement your own code.

Network conditioning
Mostly, we test a mobile app in a perfect condition of best and fast network; however, in
reality the devices might be moving and the network may be fluctuating between Edge
connections (2G), 3G, or even LTE. Sometimes, the automation test has to run at a lower
data speed or even test some offline functionality.

Appium exposes the  method, which can help in setting the
network condition between WiFi, airplane, data, or none. Any of the following statements
can be used, based on which data connectivity you want to set up:



Appium Tips and Tricks

[ 203 ]

The connection is an  that defines these bit masks:

Connection Type Bit Mask

0

1

2

4

6

Once the value is set, it persists for the life of the driver instance, so we must reset it back to
the data connectivity we want for the test suite.

On macOS, one can install the Network Link Conditioner app to simulate the various
network conditions. It can be downloaded as part of the Hardware IO tools package (for
more information visit: 

). The following screenshot shows what the app looks like. This helps simulate
the network speed on the simulator. One thing to keep in mind is that it impacts the hosting
device network speed as well, so we have to be careful while using it:



Appium Tips and Tricks

[ 204 ]

Profile lets you select between different network speeds, such as low latency and 3G:

However, on a real iOS device, it's already built in and can be accessed by navigating to
Settings > Developer > Network link Conditioner.

Summary
This chapter completes our journey learning mobile test automation with Appium. It took
us on a tour where we understood the importance of mobile app testing and automation.
We learned about the mobile testing ecosystem, how to set up a machine, and how to install
the respective software and tools. We learned how to use the Appium app, find locators,
and author tests. We also learned how to automate gestures and how to introduce
synchronization in tests. We saw how to run these tests on devices and emulators, including
setting up Genymotion emulators. We also discussed how to set up Jenkins and have tests
automated when the source code is checked in Github.

Lastly, in this chapter, we learned some Appium tricks for switching between WebView
and Native, taking screenshots, and embedding them in the report. We explored how to
record the test execution device screen and also how to vary the quality of the recording.
We learned how to interact with other apps and traverse back to the app under test. We
learned the approach for parallel test execution and how to implement it. We also learned
how to simulate the various network conditions to simulate 2G, 3G, or LTE conditions on
the device while running the functional test.

With this knowledge, we are good to go out, set up our own automation framework from
scratch, and drive it to solve our testing needs. I wish good luck and happy learning to you
all!



112
Appium Desktop App

In this chapter, we will take a detailed look at the new Appium app that is built on Electron.
We will look at how to use the app and different options it allows us to configure:

Installing the Appium app
Starting a simple server
Starting the server with advanced options
Appium endpoints

Installing the new Appium app
Appium has recently released a new open source GUI app for Mac/Windows/Ubuntu users.
It's an app with a new UI and doesn't require node or NPM to be installed. It's built using 
electron (for more information visit: ) and comes bundled
with node runtime. It can be downloaded and installed from the specified location (for
more information visit: 

). Based on your machine OS, you can choose to download the respective installer file
and install the Appium app. The latest released version is 1.6.4.



Appium Desktop App

[ 206 ]

Here's how the new Appium app looks when you launch it after install:

At the first glance, it allows you to do the following:

Start a simple server (version 1.6.4) with the default configuration
Explore some additional settings under the Advanced tab, and then start the
server or save it as presets

Let's take a detailed look at starting a simple server.



Appium Desktop App

[ 207 ]

Starting a simple server
To start an Appium server, we only need the host and port info. The new app allows you to
update the host and port information and then start the server. It also indicates the server
version, which is  at the time of writing this book.

When you click on the Start Server v1.6.4 button, it opens the console log that shows the
status of the server:

The following is the new interface when the server is running. It shows you the Appium
server runtime log as well as other options:

The app gives you two options:

Start New Session
Stop Server



Appium Desktop App

[ 208 ]

Start New Session
Clicking on Start New Session launches a new screen (as shown in the following
screenshot), which allows you to launch a new Appium session with the specified Desired
Capabilities. By default, the new session will be launched against the default running
server; alternatively, we can choose to use the other endpoints, such as Custom Server,
SauceLabs, and TestObject. We will discuss that later:



Appium Desktop App

[ 209 ]

Attach to an existing session
It allows you to attach to an existing session by providing just the session-id (as shown in
the following screenshot). This comes in handy when you already have an Appium session,
and you are in the middle of a running test. Attaching to an existing Appium session is
possible because the inspector is just an Appium client:

Desired Capabilities
Let's do the exercise of launching a new session. We need four mandatory Desired
Capabilities to launch a new session when we are working with a pre-existing app or three
mandatory Desired Capabilities when we want to deploy the app on emulator.

When we want to launch a new session for an installed app (Quikr, in our case) on
emulator/device, use the mentioned Desired Capabilities:

platformName: Android
deviceName: Nexus
appPackage: 
appActivity: 



Appium Desktop App

[ 210 ]

Here's how the screen will look after setting the values. On the right-hand side, you can see
the JSON being created when we add new Desired Capabilities:

Clicking on Start Session will launch a new Appium inspector screen, as illustrated.
Clicking on Save As... will allow you to save the config as preset values.

Appium Inspector
Once you click on Start Session, it launches the Appium Inspector, which is fairly simple to
use; one needs to click on the element on the left-hand side of the screen and the right pane
Selected Element will load to show the app source and details of the selected element. The
right pane is categorized by Find By and the rest of the attributes of that element, such as
index, text, and class:



Appium Desktop App

[ 211 ]

It allows you to perform operations such as Tap and Send Keys:

It also allows you to navigate Back (which simulates the action on the device) and Refresh
the UI based on the device's current state. Clicking on Quit closes the Appium inspector
session.



Appium Desktop App

[ 212 ]

Starting the server with advanced options
Appium app allows you to start the server with the advanced options. Clicking on
Advanced on the launch screen opens a new configuration section in the app, which allows
you to select the General Server arguments and the iOS/Android specific arguments:



Appium Desktop App

[ 213 ]

It allows you to enter the following details:

General:
LogFile Path: This is the location where we want to store the
Appium log file.
Log Level: The default value is debug; other allowed values are

, , , , , ,
, , , , ,

, , , , ,
, , , and .

Override Temp Path: This is the absolute path to the directory
Appium can use to manage temporary files.
Node Config File Path: This is the configuration JSON file to
register Appium.
Local Timezone: This is to use the local timezone for timestamps.
Allow Session Override: This enables session override.
Log Timestamps: They show timestamps in console output.
Suppress Log Colour: Do not use colors in console output.
Strict Caps mode: This causes sessions to fail if desired caps are
sent, and it does not recognize it as valid for the selected device.

iOS
WebDriverAgent Port: Local port used for communication with

.
executeAsync Callback Host: Callback IP Address (default: the
same as address).
executeAsync Callback Port: Callback port (default: the same as
port).

Android
Bootstrap Port: Port to use on device to talk to Appium.
Selendroid Port: Local port used for communication with
Selendroid.
Chromedriver Port: Port upon which ChromeDriver will run. If
not passed, Android driver will pick a random available port.
Chromedriver Binary Path: ChromeDriver executable full path.

Appium app allows you to the save the config by clicking on the Save As Preset... option.



Appium Desktop App

[ 214 ]

Appium Endpoints
Appium app also allows you to launch a session against a non-local Appium server. There
are built-in integrations with SauceLabs and TestObject, apart from running your server
on a custom host.

Custom Server: This allows you to launch an Inspector session against an
Appium server running on another machine in your network. It allows you to
provide the host address and the port:

Sauce Labs: This allows you to leverage your Sauce Labs (for more information
visit ) account to start an Appium session in the cloud:

TestObject: This allows you to leverage the cloud of real devices of TestObject
(for more information visit ):



Appium Desktop App

[ 215 ]

Summary
In this chapter, we learned about the new Appium app and how to install it. We learned
how to run a simple server and also learned how to start a new session using the Desired
Capabilities and by attaching to an existing session. We saw an example to launch the
existing Quikr app on the emulator and save the configurations as a preset.

We also learned to use the Appium inspector and the options it gives us, such as tap and
send keys. We also looked at different options given in the Appium inspector, such as
Refresh, Quit, and Navigate back. We explored how to use the advanced options to create
an Appium session and different server arguments that Appium gives us to configure
under the heading General and device-specific for iOS and Android.

We also learned about the integration with other endpoints, such as custom server,
SauceLabs, and TestObject.

This chapter covers the new Appium app, which is still to be widely adopted and used.



Appendix

Introduction to Cucumber
In Behavior Driven Development (BDD), the prime focus is on writing acceptance tests
that describe the behavior of the application or system. Acceptance tests are written from a
customer point of view and hence bring in the outside-in approach to the understanding
and testing of the application. The emphasis is on making the test cases readable by
everyone on the team so that any stakeholder can give feedback on the application's
behavior.

Eric Evans, in his book Domain Driven Design (
), talks about the need for one

language to bridge the gap between the domain experts and programmers on the team.
Cucumber helps enforce the ubiquitous language within the team, which can be understood
by anyone on the team. Cucumber tests are written in a language that can be understood by
anyone in the team, and it's implementation tests the application. This way, Cucumber
helps a team express the behavior of the application in a language that is executable, and at
the same time, understandable by stakeholders.

Cucumber clearly makes it easy, given simplicity with which it can be authored and
comprehended by anyone in the team. An example is as follows:

Feature

Scenario

Given 
When 
And 
Then 



Appendix

[ 217 ]

Now with this example, anyone would be able to comprehend what the behavior under test
is. Also, it is very easy for others to ascertain whether we are testing the right scenario. The
amazing aspect of Cucumber is that this feature is executable; it can be run and provides
feedback.

Cucumber solves the problem of documentation and serves as a source of living
specification of the software. Most of the time, the documentation resides in a system such
as an excel sheet or some test case management system. The challenges of that approach are
the maintenance and diligence required to keep it updated. The advantage with Cucumber
is that it will always be updated, otherwise the test will fail. It never becomes outdated
because of the constant maintenance and feedback it gives.

Cucumber also serves as a source of truth, being in one place that gives complete insight
into the application's behavior. It takes away the pain as well as the time of maintaining
multiple documents. It also helps in avoiding people having their own version of truth and
understanding of the application.

How does Cucumber work?
Cucumber is a command-line tool that basically executes the feature file which contains
business scenarios facing the application. Feature files follow a specific syntax that is called
Gherkin. Gherkin is a Domain Specific Language (DSL) that allows us to describe a
business scenario. It's a line-oriented language that uses spaces or tabs to define structure
apart from the keyword.

There are two basic conventions with Gherkin:

A file can contain the description of a single feature
Files have the  extension

The stages of writing a scenario will be as follows:

Create a feature file.1.
Describe a scenario.2.
Write the steps to accomplish that scenario.3.

All these steps of writing a scenario are business facing, while the implementation is purely
technical. Let's see a better representation of the Cucumber stack (pic courtesy: The
Cucumber Book):



Appendix

[ 218 ]

The technology facing component can be implemented in different languages such as Ruby,
Java, .NET (using SpecFlow), and JavaScript. Here's a representation that makes it more
clear:



Appendix

[ 219 ]

Let's take a quick deep dive into Gherkin and understand it in a bit more detail. The beauty
of Gherkin lies in its simplicity to write a feature file. Feature files can be authored in any
text editor tool available. It follows syntaxes such as YAML Ain't Markup Language
(YAML). A Gherkin file uses a  extension and can be created in any text editor. It
starts with a  keyword and is written in plain English using other keywords. Let's
take a look at the different keywords Gherkin has:

Feature
Background
Examples
Scenario
Given
When
Then
And
Scenario Outline

Feature
Feature is the first keyword to be used in a Gherkin file. Each Gherkin file can have only
one feature. The typical syntax is this:

Feature

So, the text following the Feature keyword is the feature name that expresses the business
module under test; some examples of feature names are Login, Search, and User
Registration. Feature description can be expressive and can detail what is supposed to be
accomplished by that feature.

Gherkin parser treats the entire text under feature description till it encounters another
Gherkin keyword beginning on a new line.



Appendix

[ 220 ]

Scenario
Scenario is another Gherkin keyword that helps express the business scenario under test. It
captures the high-level intent of the scenario. The typical syntax is as shown:

Scenario

A feature can be broken down into multiple scenarios, and these scenarios constitute
business use cases together. If you add up all the scenarios' behavior, it should be
equivalent to the feature behavior itself.

So, a scenario basically contains the steps run on the system under test and gives feedback.
For a scenario to pass in Cucumber, all steps under it should pass. Each scenario can have
multiple steps describing the behavior. There is no rule for the number of steps within a
scenario; however, care should be taken to keep the readability intact.



Appendix

[ 221 ]

Gherkin gives us keywords to help express these steps; they are . Any
testing scenario is generally categorized into the following:

Getting the system to a desired state
Performing the steps to test
Verifying

The mentioned steps are typically mapped to , where we get the system in a desired
state, , where we perform the actual testing steps (this can be a bunch of lines) and
lastly, , where we do the verification of the desired state of the application. Let's look at
the feature file we wrote earlier:

    Given 
When 
And 
Then 

So,  sets the application state that is about launching the desired application;  is
telling the application to move to a particular state by choosing a city and searching for
specified cars in our case, and  is about verifying that the first car result is the desired
one.

Gherkin allows you to replace the entire set of Given, When, and Then in a little less
verbose way by replacing it with . So, the earlier statement can be expressed as follows:

* 
* 
* 
* 

Now that we have read about feature files, scenarios, and steps, let's take a look at the result
states Cucumber gives. Cucumber has multiple states for the results: , ,

, and .

Undefined steps: When Cucumber doesn't find the step definition that matches a step, it
marks the step as undefined and throws the undefined step exception when we try to run it.
For the preceding steps, it will throw the shown exception:



Appendix

[ 222 ]

Pending steps: Cucumber isn't able to figure out whether a step is defined or not. It starts
looking at the step definition and then figures out the state of the step, that is, whether it is
defined or not. Generally, when a new step is created, this is the template:

So, when the Cucumber runner encounters the 
statement, it throws up the pending steps exception.

Passed: If a code block executes successfully without throwing any exception, Cucumber
marks that step as passed.

Failed: If a code block throws some exception, Cucumber marks that step as failed and
skips the remaining steps (if any). The standard reason for exception is, generally, system
not behaving as expected, which is a bug in the app or bug in the step definition code itself.
The assertion failures also mark the step to be failed, thereby failing the scenario.

Let's look at another important Gherkin keyword--Background.

Background
Generally, while testing, we might have a bunch of scenarios that need a set of common
steps. For example, any test steps that are after the log-in screen will require log in to be a
common step. In that case, we can move log in to a section called  in a feature
file, thereby telling Cucumber to run it before each and every scenario in that file. Consider
a feature file (testing the used car search scenario), as shown:

Feature

Scenario

When 
And 
And 
Then 

Scenario

When 
And 



Appendix

[ 223 ]

And 
And 
Then 

Now, if we look at the preceding two scenarios, the first three steps are common for both
the scenarios and are getting repeated. Instead, we can move some of these common steps
to the background just below where  is mentioned under the 
keyword. Let's make the preceding changes and see the readability of the feature file:

Feature

Background
    When 

And 

Scenario
When 
Then 

Scenario
When 
Then 

So, we have added a Background section that takes care of setting the state of the
application for both the scenarios and, in this case, it will perform the following steps:

Launch the application under tests
Choose Bangalore as the city for any further action

So, the purpose of the preceding two tests doesn't change; during runtime, Cucumber
actually executes these background steps before each scenario. Part of the rule is that we can
only have one  per feature file and, secondly, it has to appear before the

 keyword or the  keyword.

Let's look at .



Appendix

[ 224 ]

Scenario Outline
In testing, we generally have scenarios where we have multiple combinations of input and
different outputs for the same set of steps, such as the log-in combination and some other
business calculation.  helps express these scenarios in a much better
way by letting us express the scenario once and giving us an option to provide multiple sets
of data in the  section. Let's take a look at the given example:

Feature

Scenario
Given 
When 
And 
Then 

Scenario
Given 
When 
And 
Then 

Scenario
Given 
When 
And 
Then 

In the preceding scenario, we have the same set of steps repeating for different data
combinations that are the essence of the test cases. We can express the same scenario in a
much better way with less repetitiveness. Refer to the following usage of 

 to achieve this:

Scenario Outline
Given 
When 
And 
Then 
Examples

email password message



Appendix

[ 225 ]

What happens behind the scene is that Cucumber converts each example row as one
scenario and executes it. So basically, the  is nothing but a place holder that is
substituted by the real values during execution. In a feature file, we can have many

 and  sections. If we create a  and don't
include a following  section, it will throw an error.

Hooks in Cucumber
Cucumber has a very interesting feature of hooks that helps us execute a block of code
before or/and after each scenario. It can be defined anywhere in the step definitions using
the  and  methods. Most of the xUnit tools support a concept of the setup and
tear down method, which is represented by  and  here.

By default, these hooks are global in nature, and they run for every scenario. Here, an
interesting concept to understand is that the step definitions are global in nature; there is no
way to reduce the scope of step definitions to certain scenarios.

A sample of the  hook is as shown:

A sample of the  hook is as follows:



Appendix

[ 226 ]

Running Cucumber
Cucumber allows you to run feature files in a couple of ways:

CLI Runner
JUnit Runner
Third-Party Runner (IntelliJ IDEA)

CLI Runner
CLI Runner stands for Command-Line Interface Runner, which is an executable class and
can be invoked from Gradle or Ant. While using Cucumber-jvm on the command line, we
can use this command:

java -cp <classpath> cucumber.api.cli.Main \
     --glue com.example.steps \
     --plugin pretty path/to/feature/files

JUnit Runner
If we are using the JUnit framework to run Cucumber, we need to create a single empty
class, as shown:

With this, we can run the tests in the same way as we run the typical JUnit tests.



Appendix

[ 227 ]

Third-Party Runner (Via IntelliJ)
IntelliJ enables you to run Cucumber features via the  class. Navigate
to IntelliJ > Run > Edit Configurations; we can configure it as shown in the following
screenshot:

Let's look at some of these important items in detail:

Main: This is the  method, the main class name is .
Glue: This is the package name where the step definitions are contained.
Feature or folder path: This is the directory name where the feature file is
contained. You can also specify a specific feature here.
VM Options: This is the string value to be passed to the VM for launching the
app. The string contains options such as  and . If we specify a class
path here as part of VM Options, it will override the class path of the module.
Program Arguments: This is the list of arguments to be passed to the program in
the same format as that of the command line.

If you are using Eclipse, it also provides similar options to run Cucumber-ivm test.



Appendix

[ 228 ]

Finding an app's package name and launch
activity
In , we entered  and  to launch Appium
Inspector for an app already installed on the emulator. Let's learn how to find this
information from an app.

We can follow two approaches to get the same result. The first approach requires you to
have Play Store and the app under test (Quikr in our case) installed on your mobile.

Using the ManifestViewer app
Follow the given steps to find out the package information:

Launch the Emulator/Device
Launch Google Play Store
Search for an app ManifestViewer in Play Store and install it:

Once installed, launch the ManifestViewer app



Appendix

[ 229 ]

Under the Application sections and scroll down to the Quikr app:



Appendix

[ 230 ]

Once done, tap on the Quikr app, and it will show you these options:

Click on the Look the  option
This will load the manifest properties, as illustrated:

This file will have details like package and activity



Appendix

[ 231 ]

Using the Appium GUI app
The second approach to know the package and activity details is to use the Appium GUI
app. When we use Appium to install the app on the emulator/device, it also loads the
Package details and the Launch Activity. So, the steps to be followed are as listed:

Launch the Emulator/Device.1.
Launch the Appium GUI app.2.
Select the App path parameter and browse to the APK package.3.
Click on Launch.4.
This will start the Appium server; now click on the Inspector icon.5.
Click on Stop (to stop the Appium server).6.
Click on the Android icon in the Appium GUI app.7.
Select the Package checkbox and click on the dropdown; it will show the value8.
from the last APK file installed.
Select the Launch Activity checkbox and click on the dropdown; it will show all9.
the values from the last APK file installed.

Refer to the following screenshot:



Appendix

[ 232 ]

Installing Google Play services in the
Genymotion emulator
Genymotion is one of the fastest Android emulators available for use. One drawback of
using Genymotion is that it comes without the Google Play Store and Google apps. This
means that some of the apps for testing that require the Google Play services framework
may not work on the emulator.

However, the good news is that we can install Google Play services by following these
steps:

Start the Genymotion emulator
Based on the Android version configured for the emulator, we need to download
the flash-able Google Play services  file from

This installs Google Play services on the Genymotion emulator.

Click on OK and reboot the emulator
Once the device is rebooted, you will notice that the Google Apps will start
showing in the emulator
To install Google Play Store on the device, we need to download the Play Store
installer  APK file and install it
on the emulator



Appendix

[ 233 ]

Once done, launch the Play Store app and log in to the Play Store account (if you
have one)
This will update all the necessary Google apps (some of the apps might
intermittently crash or stop working, but this will only occur until the apps are
updated)
Restart the emulator once the apps are updated, and it will work smoothly

Summary
In this Appendix, we covered different topics for a deeper insight into Cucumber. We
learned about how Cucumber works and the importance of BDD, and we gained a deep
insight into Gherkin and the different keywords Gherkin exposes. We also learned what
hooks are and how to use them. We learned the different ways of running Cucumber tests.

We also learned how to look up an Android package name and find out different activities
for an app. This is needed when we want to launch the Appium session on a pre-existing
app on an Android device. We also learned how we can find the package name and Launch
Activity from Appium itself.

We learnt that the Genymotion emulator doesn't come with Google Play services installed.
We learned how to flash the device with the Google apps installer file and to install Google
Play services on the Genymotion emulator.



Index

A
activity
   launching  
after hooks  
Android devices
   test, running on  
Android only capabilities
   about  
   adbPort  
   androidCoverage  
   androidDeviceReadyTimeout  
   androidDeviceSocket  
   androidInstallTimeout  
   androidScreenshotPath  
   appActivity  
   appPackage  
   appWaitActivity  
   appWaitDuration  
   appWaitPackage  
   autoGrantPermissions  
   autoWebviewTimeout  
   avd  
   avdArgs  
   avdLaunchTimeout  
   avdReadyTimeout  
   chromedriverExecutable  
   chromeOptions  
   deviceReadyTimeout  
   disableAndroidWatchers  
   dontStopAppOnReset  
   enablePerformanceLogging  
   ignoreUnimportantViews  
   intentAction  
   intentCategory  
   intentFlags  
   keyAlias  

   keyPassword  
   keystorePassword  
   keystorePath  
   nativeWebScreenshot  
   noSign  
   optionalIntentArguments  
   recreateChromeDriverSessions  
   resetKeyboard  
   unicodeKeyboard  
   useKeystore  
AndroidDriver  
app package name
   finding  
app, deploying on iOS simulator
   about  
   Appium used  , 
app
   starting, in HomePageSteps  
Appium app
   attaching, to existing session  
   installing  , 
   Start New Session  
Appium architecture
   about  
   UIAutomator 2  
   XCUITest  
Appium Endpoints  
Appium GUI app
   about  , , , 
   code, refactoring  
   feature file, running  
   scenario, running  
   steps, implementing  , 
   using  
Appium Inspector
   about  
   launching  , , , 



[ 235 ]

   scenario, implementing  , , 
Appium Java project
   creating  , , 
Appium server
   installing, via npm  
   starting  
   starting, with advanced options  , 
   working  
Appium session
   Desired Capabilities, for launching  
Appium test
   writing  , , , , , , , , , 
appium.dmg file
   reference  
Appium
   about  
   advantages  
   supported mobile operating system platforms  
   used, for automating iOS app  
   used, for automating mobile web app  
AppiumDriver  , 
assertions
   about  
   implementing, in Page Object  
   implementing, in test script  

B
background  
before hooks  
Behavior Driven Development (BDD)  
Boilerplate code
   generating, for iOS  , , , , 

C
Chrome Inspect
   used, for debugging mobile web apps  
   using  , 
CLI Runner
   used, for running Cucumber  
Cucumber
   about  , , 
   reference  
   running, CLI Runner used  
   running, JUnit Runner used  
   running, third-party runner (IntelliJ) used  

   running, ways  
   working  
Custom Server  

D
dependencies
   avoiding, during tests  
desired capabilities
   adding  
devices
   about  
   setting up  , 
Domain Driven Design
   reference  

E
electron
   reference  
emulator
   about  
   setting up  
explicit wait  , , 

F
feature  
features  
fluent wait  , 

G
Genymotion emulator
   advantages  
   Debug help  
   Google Play services, installing in  , 
   test, running on  
Genymotion
   about  
   reference  
gestures
   about  
   MultiTouch  
   Scroll  
   Swipe  
   TouchAction  
Gherkin



[ 236 ]

   about  
   basic conventions  
   keywords  
Git
   project, moving to  
GitHub
   HelloAppium project, pushing to  
   reference  
Google Play services
   installing, in Genymotion emulator  , 
gradle file
   current version  , 
gradle task
   testing  

H
HelloAppium project
   pushing, to GitHub  
HomeBrew
   about  
   reference  
hooks, Cucumber  
hooks
   about  
   after hooks  
   before hooks  
hybrid app
   about  
   example  

I
IntelliJ
   reference  
iOS app
   automating, Appium used  
iOS devices
   test, running on  
iOS only capabilities
   about  
   appName  
   autoAcceptAlerts  
   autoDismissAlerts  
   bundleId  
   calendarFormat  
   customSSLCert  

   interKeyDelay  
   launchTimeout  
   localizableStringsDir  
   locationServicesAuthorized  
   locationServicesEnabled  
   nativeInstrumentsLib  
   nativeWebTap  
   processArguments  
   safariAllowPopups  
   safariIgnoreFraudWarning  
   safariInitialUrl  
   safariOpenLinksInBackground  
   screenshotWaitTimeout  
   sendKeyStrategy  
   showIOSLog  
   udid  
   waitForAppScript  
   webviewConnectRetries  
iOS XCUITest related iOS capabilities
   iosInstallPause  
   keychainPassword  
   keychainPath  
   processArguments  
   scaleFactor  
   showXcodeLog  
   useNewWDA  
   wdaLaunchTimeout  
   wdaLocalPort  
   webDriverAgentUrl  
   xcodeConfigFile  
iOS
   Boilerplate code, generating for  , , , ,

IOSDriver  

J
Jenkins Mac OS X installer
   download link  
Jenkins plugin
   adding  
Jenkins task
   setting up  , , , 
Jenkins
   about  
   installing  



[ 237 ]

   reports, viewing in  
JUnit Runner
   used, for running Cucumber  

K
keywords, Cucumber
   features  
   scenario  
   test runner  
keywords, Gherkin
   background  
   feature  
   scenario  , , 
   scenario outline  , 

M
machine setup, for macOS
   about  
   Android SDK, installing with Android command-

line tool  , 
   Android SDK, installing with HomeBrew  
   Android Virtual Device, creating  , 
   Appium Server, installing  
   Appium, installing  , 
   IDE, selecting  
   Java, installing  , 
machine setup, for Windows
   about  
   Android SDK, installing with Android command-

line tool  , , , 
   Appium, installing  
   Genymotion, installing  
   IDE, selecting  
   Java, installing  
   Node JS, installing  
ManifestViewer app
   using  , , 
methods, TouchAction
   long press  
   move  
   perform  
   press  
   release  
   tap  
mobile application

   interacting, with other app  
mobile apps
   about  , 
   hybrid app  
   Mobile Web app  
   native app  
Mobile Web app
   about  
mobile web app
   automating, Appium used  
   debugging, Chrome Inspect used  
Mobile Web app
   example  , 
mobile website, The New York Times
   reference  
MultiTouch gesture  

N
native app
   about  
   example  , 
Netty  
network conditioning  , 
Node.js  
npm
   Appium server, installing via  

O
orientation
   example  

P
Page Object pattern
   about  
   applying  
   assertions, implementing in  
parallel
   test, running in  , 

Q
Quikr app
   reference  



R
refactoring
   example  , , , , , , 
RemoteWebDriver  
reports
   viewing, in Jenkins  

S
SauceLabs
   about  
   reference  
scenario  , , , 
scenario outline  , 
screenshot
   taking  , 
Scroll gesture  
server argument  , , , 
server capabilities
   about  
   app  
   automationName  
   autoWebview  
   deviceName  
   fullReset  
   language  
   locale  
   newCommandTimeout  
   noReset  
   orientation  
   platformName  
   platformVersion  
   udid  
set up  
Swipe gesture  

T
tear down  
test runner  

test script
   assertions, implementing in  
test
   running, in parallel  , 
   running, on Android devices  
   running, on Genymotion emulator  
   running, on iOS devices  
TestObject
   about  
   reference  
third-party runner
   used, for running Cucumber  
TouchAction gesture
   about  
   methods  , , , 

U
UI Automator Viewer
   using  , , 
UIAutomator 2  

V
video execution
   recording  
views
   switching between  
virtual devices
   creating, in GenyMotion  , , , 

W
WebView, and native view
   switching between  

X
XCUITest  , 

Y
YAML Ain't Markup Language (YAML)  


	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Introduction to Appium
	Native app
	Mobile Web app
	Hybrid app
	Appium architecture
	XCUITest
	UiAutomator 2
	Pros of using Appium


	Summary

	Chapter 2: Setting Up the Machine
	Machine setup for macOS
	Installing Java
	Installing Android SDK (using the Android command-line tool)
	Installing Android SDK (using Homebrew) (Optional)
	Creating Android Virtual Device (Optional)
	Genymotion emulator
	Debug help

	Installing Appium
	Installing Appium server (From Source) (Optional)
	Selecting IDE
	App under test


	Machine setup for Windows
	Installing Java
	Installing Android SDK (using Android command-line tool)
	Installing Node JS
	Installing Appium
	Installing Appium server (via npm)

	Installing Genymotion
	Selecting IDE

	Appium GUI app
	Summary

	Chapter 3: Writing Your First Appium Test
	Creating an Appium Java project (using gradle)
	Introduction to Cucumber
	Writing our first Appium test
	Running the feature file
	Refactoring
	Implementing the remaining steps
	Running the scenario
	Automating a mobile web app using Appium
	Implementing the remaining steps
	Automating the iOS app using Appium
	Build the app
	Deploying the app on the iOS Simulator
	Via xcrun command
	Using Appium

	Generating Boilerplate code for iOS


	Summary

	Chapter 4: Understanding Desired Capabilities
	Refactoring -1
	Server argument
	Refactoring -2

	Server capabilities
	Refactoring -3

	Android-only capabilities
	Refactoring -4

	iOS-only capabilities
	Summary

	Chapter 5: Understanding Appium Inspector to Find Locators
	Appium inspector
	Implementing the other steps
	UI Automator Viewer
	Debugging mobile web apps using Chrome Inspect

	Summary

	Chapter 6: How to Synchronize Tests
	AppiumDriver
	Implicit wait
	Explicit wait
	Fluent wait
	Summary

	Chapter 7: How to Automate Gestures
	Gestures
	TouchAction
	MultiTouch
	Scroll
	Swipe
	Orientation

	Summary

	Chapter 8: Design Patterns in Test Automation
	Refactor -1
	Page Object pattern
	Refactor-2
	Assertions
	Implementing assertions in Page Object
	Implementing assertion in test script
	Avoiding dependencies between tests
	Introducing set up and tear down


	Summary

	Chapter 9: How to Run Appium Test on Devices and Emulators
	Emulator
	Running test on the Genymotion emulator

	Devices
	Running a test on actual Android devices
	Running a test on actual iOS devices

	Summary

	Chapter 10: Continuous Integration with Jenkins
	Refactoring -1
	Setting up Jenkins
	Moving a project to Git
	Adding Jenkins plugin
	Setting up the Jenkins task
	Viewing reports in Jenkins

	Summary

	Chapter 11: Appium Tips and Tricks
	Switching between views - web and native
	Taking screenshots
	Recording video execution
	Interacting with another app
	Running the test in parallel
	Network conditioning
	Summary

	Chapter 12: Appium Desktop App
	Installing the new Appium app
	Starting a simple server
	Start New Session
	Attach to an existing session

	Desired Capabilities
	Appium Inspector
	Starting the server with advanced options
	Appium Endpoints

	Summary

	Appendix
	Introduction to Cucumber
	How does Cucumber work?
	Feature
	Scenario
	Background
	Scenario Outline
	Hooks in Cucumber

	Running Cucumber
	CLI Runner
	JUnit Runner
	Third-Party Runner (Via IntelliJ)


	Finding an app's package name and launch activity
	Using the ManifestViewer app
	Using the Appium GUI app

	Installing Google Play services in the Genymotion emulator
	Summary

	Index

