Nishant Verma

Mobile Test
Automation
with Appium

Comprehensive guide to build mobile test automation
solution using Appium

LI Packty

Mobile Test Automation with
Appium

Comprehensive guide to build mobile test automation solution
using Appium

Nishant Verma

Packt

BIRMINGHAM - MUMBAI

Mobile Test Automation with Appium

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2017
Production reference: 1290617

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78728-016-8

www.packtpub.com

Author
Nishant Verma

Reviewers

Jagannath Balachandran
Kapil Sethi

Manoj Hans

Commissioning Editor
Amarabha Banerjee

Acquisition Editor
Siddharth Mandal

Content Development Editor
Aditi Gour

Technical Editor
Rashil Shah

Credits

Copy Editor
Shaila Kusanale

Project Coordinator
Ritika Manoj

Proofreader
Safis Editing

Indexer
Tejal Daruwale Soni

Graphics
Jason Monteiro

Production Coordinator
Arvindkumar Gupta

About the Author

Nishant Verma is a co-founder of TestVagrant Technologies. It’s a service start-up
addressing testing solutions for B2C companies with a focus on mobile and web, and helps
companies deliver faster and reliably.

Nishant has 11 years of experience in software development and testing. He has worked
with IT companies such as ThoughtWorks Inc., Aditi Technologies, and Altisource. He has
extensive experience in setting up agile testing practices, functional and non-functional test
automation, mentoring, and coaching. In the past, he has worked on web Uls and
specializes in building test solutions in the mobile domain. He has hands-on experience
with test automation tools such as WebDriver (Selenium2), Calabash, Frank, Appium,
Watin, Sikuli, QTP, and DeviceAnywhere.

He actively maintains his own website on testing techniques, agile testing, automation
techniques, and general learning. He has contributed to leading testing journals such as
Testing Circus and Software Developer's Journal, and has been an active speaker at vodQA
(testing event of Thoughtworks).

Nishant has authored a reference book on how to use Appium for automating Android
apps using Java, which is available on Gitbook. It has received close to 200,000 views, 40,000
readers online, and has been downloaded around 3,000 times.

About the Reviewers

Jagannath Balachandran works as a lead consultant for ThoughtWorks India Pvt. Ltd. He
has around 14 years of experience working with teams delivering software using agile and
continuous delivery practices. He has extensively consulted clients on their journey toward
continuous delivery.

Kapil Sethi is an agile practitioner with more than 12 years of experience in the software
industry. He is a passionate advocate of shifting testing to the left most column in the agile
development process and is a strong believer of the Testing Pyramid. He is a connoisseur of
automation testing and has hands-on experience in designing automation testing
frameworks using a variety of automation tools, such as WebDriver, Appium, Protractor,
Applitools, Calabash, SoapUl, and QTP.

He has worked on numerous domains, including banking, mortgage, retail, e-commerce,
and online gaming. His expertise involves helping development teams deliver quality
products, coaching teams on agile adoption, transforming teams and thereby organizations,
to make the working environment fun and passionate.

He is currently working with Nintex as an automation specialist. In the past, he has worked
with companies such as MYOB, ThoughtWorks, Sapient, and Cognizant Technology
Solutions, and performed the development lead, iteration manager, QA lead roles during
his tenure.

www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

ws Mapt

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?

¢ Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
¢ On demand and accessible via a web browser

Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon.com/dp/1787280160.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and

videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

Table of Contents

Preface 1
Chapter 1: Introduction to Appium 8
Native app 9
Mobile Web app 11
Hybrid app 13
Appium architecture 15
XCUITest 17
UiAutomator 2 18

Pros of using Appium 19

Summary 19
Chapter 2: Setting Up the Machine 20
Machine setup for macOS 21
Installing Java 21

Installing Android SDK (using the Android command-line tool) 22

Installing Android SDK (using Homebrew) (Optional) 23

Creating Android Virtual Device (Optional) 23
Genymotion emulator 25

Debug help 29

Installing Appium 30

Installing Appium server (From Source) (Optional) 32

Selecting IDE 32

App under test 32

Machine setup for Windows 32
Installing Java 33

Installing Android SDK (using Android command-line tool) 33

Installing Node JS 36

Installing Appium 36

Installing Appium server (via npm) 37

Installing Genymotion 37

Selecting IDE 38

Appium GUI app 38
Summary 44
Chapter 3: Writing Your First Appium Test 45
Creating an Appium Java project (using gradle) 46

Introduction to Cucumber 50
Writing our first Appium test 51
Running the feature file 64
Refactoring 66
Implementing the remaining steps 66

Running the scenario 72
Automating a mobile web app using Appium 73
Implementing the remaining steps 74
Automating the iOS app using Appium 77

Build the app 78

Deploying the app on the iOS Simulator 79

Via xcrun command 79

Using Appium 79

Generating Boilerplate code for iOS 82

Summary 88
Chapter 4: Understanding Desired Capabilities 89
Refactoring -1 90
Server argument 92
Refactoring -2 93

Server capabilities 97
Refactoring -3 99
Android-only capabilities 100
Refactoring -4 103

i0S-only capabilities 105
Summary 110
Chapter 5: Understanding Appium Inspector to Find Locators 111
Appium inspector 111
Implementing the other steps 115

Ul Automator Viewer 118
Debugging mobile web apps using Chrome Inspect 121

Summary 123
Chapter 6: How to Synchronize Tests 124
AppiumDriver 124
Implicit wait 126
Explicit wait 126
Fluent wait 129
Summary 131
Chapter 7: How to Automate Gestures 132

[ii]

Gestures 132
TouchAction 132
MultiTouch 137
Scroll 138
Swipe 139
Orientation 140

Summary 141

Chapter 8: Design Patterns in Test Automation 142

Refactor -1 143

Page Object pattern 148
Refactor-2 150
Assertions 156

Implementing assertions in Page Object 156

Implementing assertion in test script 158

Avoiding dependencies between tests 159

Introducing set up and tear down 159

Summary 160
Chapter 9: How to Run Appium Test on Devices and Emulators 161

Emulator 161
Running test on the Genymotion emulator 163

Devices 165
Running a test on actual Android devices 169
Running a test on actual iOS devices 169

Summary 172

Chapter 10: Continuous Integration with Jenkins 173

Refactoring -1 174

Setting up Jenkins 178
Moving a project to Git 180
Adding Jenkins plugin 184
Setting up the Jenkins task 186
Viewing reports in Jenkins 190

Summary 192

Chapter 11: Appium Tips and Tricks 193

Switching between views - web and native 193

Taking screenshots 194

Recording video execution 197

Interacting with another app 198

Running the test in parallel 200

[iii]

Network conditioning 202
Summary 204
Chapter 12: Appium Desktop App 205
Installing the new Appium app 205
Starting a simple server 207

Start New Session 208

Attach to an existing session 209

Desired Capabilities 209

Appium Inspector 210

Starting the server with advanced options 212

Appium Endpoints 214
Summary 215
Appendix 216
Introduction to Cucumber 216

How does Cucumber work? 217

Feature 219

Scenario 220

Background 222

Scenario Outline 224

Hooks in Cucumber 225

Running Cucumber 226

CLI Runner 226

JUnit Runner 226

Third-Party Runner (Via IntelliJ) 227

Finding an app's package name and launch activity 228

Using the ManifestViewer app 228

Using the Appium GUI app 231

Installing Google Play services in the Genymotion emulator 232
Summary 233

Index 234

[iv]

Preface

With the growing popularity of mobile apps and the enormous growth in the number of
mobile devices all around the world, mobile ecosystems are poised to further scale up. Until
a couple of years ago, the IT world was dominated by web and enterprise application
development and testing. With the growth of mobile apps around the world, the trend is
shifting toward mobile development and testing as a niche skill set. Mobile testing had
largely been manual until the advent of standard test automation libraries, such as Calabash
and Appium.

This book is an effort toward gearing up a better testing workforce by making them
educated and aware of a mobile testing and automation tool called Appium. Appium is the
most widely adopted mobile test automation tool. The community support has been
vibrant, but there is a lack of a structured step-by-step guide or documentation around
building a framework. This book is an attempt to bridge that gap and serves as a handheld
guide for each tester who wants to build their own mobile test automation framework from
scratch.

This book is intended for developers and testers who want to learn mobile app testing and
automation using Appium. The book takes you on a journey of understanding Appium and
slowly gets you started with the test automation ecosystem. Cucumber is one of the most
promising technologies, and is rising in popularity due to the wide adoption of the agile
and behavior-driven development methodologies. This book introduces you to the concept
of Cucumber and shows how you can build your own testing framework in Cucumber and
Appium from scratch. It contains example code snippets of creating a sample project,
writing first Appium tests, evolving the test framework, and setting up Jenkins.

The book is organized into two parts:

e Appium basics: This largely covers an understanding of Appium, desired
capabilities in Appium, Appium inspector, and how to use it to find locators, test
synchronization, and automate widely used gestures, such as tap, scroll, press,
and long press.

¢ Appium advanced: This covers design patterns for the automation framework,
how to run tests on actual devices and emulators, how to run tests on a
Genymotion emulator, continuous integration with Jenkins, and Appium tips
and tricks.

Preface

What this book covers

Chapter 1, Introduction to Appium, starts with an introduction to the mobile app. It talks
about different types of mobile app, that is, native, hybrid, and mobile web. We then take a
little closer look at the advantages and limitations of each type of mobile app. We learn
about Appium's architecture and about two different automation frameworks Appium
uses, XCUITest and UlAutomator2 for iOS and Android, respectively.

Chapter 2, Machine Setup, starts with instructions for setting up your machine in order to
start using Appium and write automated tests. In this chapter, we address the setup for
both Windows and Mac machines. Some of the prerequisites to install are the most recent
Java, Android SDK, Genymotion Emulator, Appium, IntelliJ as the preferred IDE, and the
app under test. We will also learn to create the sample Android emulator as well as the
Genymotion emulator. We will learn how to install Appium, both via npm and the Appium
GUI app. We will take a detailed look at the Appium GUI app and the iOS and Android
settings Appium allows.

Chapter 3, Writing Your First Appium Test, helps us write our first Appium test. We will
start by creating a Java project in IntelliJ and then get introduced to Cucumber. We create a
sample feature file and write our first scenario using the Given-When-Then format. We will
learn how to start Appium session and use Appium Inspector. We will then write our first
automated test and learn how to run the cucumber test. We will also learn how to write our
first test for mobile web app and learn how to use the Chrome developer tools to find the
locators. We then run these tests via the IDE.

chapter 4, Understanding Desired Capabilities, tells us about the concept of desired
capabilities in Appium. We learn about the mandatory capabilities and the device-specific
desired capabilities, such as Android and iOS. We will look into the server argument and
the various flags it exposes along with its sample usage.

Cchapter 5, Understanding Appium Inspector to Find Locators, shows us how to use the
Appium inspector to find the locator of a Ul element. We learn to derive the xPath over the
Appium-generated xPath values. We looked into another tool, UIAutomatorViewer, and
how to use it. We also learn how to debug the mobile apps using Chrome's inspect feature.

Chapter 6, How to Synchronize Tests, explores the different types of drivers Appium allows
you to create, along with the various synchronization strategies. We will learn about the
implicit wait, explicit wait, and fluent wait. We also learn about ExpectedConditions and
the various predefined conditions it allows.

[2]

Preface

chapter 7, How to Automate Gestures, explains implementing various gestures that Appium
supports. We will learn how to implement the most frequently used gestures, such as tap,
swipe, scroll, and drag and drop. We will also learn about the orientation and how to
change the orientation of devices between the landscape and portrait modes.

Chapter 8, Design Patterns in Test Automation, covers the concept of the design pattern in
test automation. In this chapter, we will take a detailed look at the page object pattern and
then learn how to implement it in the current framework, which we have been building
since chapter 3, Writing Your First Appium Test. We will learn about assertions and where
they belong, and we will also learn about the concepts of setup and teardown and how to
implement them using pre-specified hooks in cucumber.

Chapter 9, How to Run Appium Test on Devices and Emulators, shows you how to connect
physical devices and prepare them for development and testing purposes. It also
demonstrates how to configure the Genymotion emulator and run tests. We learn how to
retrieve the UDID of iOS devices, the libraries we need to install, and the process for
running the test on iOS.

Chapter 10, Continuous Integration with Jenkins, teaches the concept of Gradle and writing
Gradle tasks. We start by creating a Gradle task to run the test via command line and
moving the project to Git. We navigate through downloading and installing Jenkins. We
learn how to set up a Jenkins job and trigger it and view the report. This chapter explains
how to implement continuous testing using Jenkins.

Chapter 11, Appium Tips and Tricks, shows you some tips and tricks in the form of code
snippets, that can be used to make your test framework more intelligent and innovative. We
will learn about switching between webviews and native views, taking screenshots, and
recording video using adb commands. We will also explore the approach of running tests in
parallel on multiple devices and about the network simulation API.

Chapter 12, Appium Desktop App, explores the new Appium Desktop App. It discusses in
details about how to install the new Appium GUI app, how to start an appium server with
basic and advanced options. It also explains how to use the Desired Capabilities while
setting up a session and how to connect to different end points (the non local server).

By the end of this book, you will have learned about Appium, how to build a test
automation framework from scratch in Cucumber and Appium, and how to set up Jenkins
to run tests.

appendix, Appendix takes a deeper insight into different how to’s which are needed across
chapters. It includes a deep dive into Cucumber and explains various concepts of

Cucumber. It also talks about finding details needed for Appium for android installer. Very
importantly, it tells us how to install the Google Play services on the Genymotion Emulator.

[3]

Preface

What you need for this book

To get started with this book, you need basic knowledge of Java. You should be aware of
the OOPS concept and should be able to use loops and define classes. A basic
understanding of mobile apps and knowledge of Android would be an added advantage;
however, it is not a must. The book provides hands-on experience with writing and
executing code. There are some software prerequisites, which are explained in the second
chapter, which helps set up the development environment and readies your machine for
any future mobile automation work using Appium.

Who this book is for

This book is intended for developers/testers who want to learn mobile automation using
Appium. It doesn’t require any prior experience in testing mobile applications or
automation. This book serves as a detailed guide for Appium and a step-by-step guide to
building a mobile test automation framework from scratch. The only prerequisite for this
book is to have a basic knowledge of Java programming. By the end of this book, you
would have gained advanced knowledge of Appium and would have learned how to build
a framework in Cucumber and Appium. You will be able to leverage this framework
building knowledge by replacing Appium with any other Ul automation tool, such as
Selenium.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: "With
version 1.6, Appium has provided support to UiAutomator 2. Appium uses the appium-
android-bootstrap module to interact with Ul Automator. "

A block of code is set as follows:

@Before

public void startAppiumServer () throws IOException {
AppiumDriverLocalService appiumService =
AppiumDriverLocalService.buildDefaultService () ;
appiumService.start ();

[4]

Preface

Any command-line input or output is written as follows:

automationName: XCUIlTest

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Clicking on Start Session
will launch a new Appium inspector screen, as illustrated.”

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

[5]

Preface

Downloading the example code

You can download the example code files for this book from your account at http://www.p
acktpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.c
om/supportand register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

No g kMwDdE

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WInRAR / 7-Zip for Windows
e Zipeg/iZip / UnRarX for Mac
e 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPubl
ishing/Mobile-Test-Automation-with-Appium. We also have other code bundles from
our rich catalog of books and videos available at nttps://github.com/PacktPublishing/.
Check them out!

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/submit-errata, Selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

[6]

Preface

To view the previously submitted errata, go to https://www.packtpub.com/books/conten
t /supportand enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com With a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[7]

Introduction to Appium

The mobile app market is huge, and it will increase further. Approximately, there are 2
billion smartphone devices worldwide, which is more than two times the number of
personal computers in the world. A report (for more information, visit https://www.stati
sta.com/topics/1002/mobile-app-usage/) Shows that more than 102 billion apps have
been downloaded worldwide, and the number is expected to reach 268 billion by 2017.
According to one of the reports (for more information, visit http://www.statista.com/sta
tiStics/269025/worldwide—mobile—app—revenue—forecast/), the worldwide mobile
revenue for 2015 amounted to $41.1 billion and is expected to reach $101.1 billion by 2020.

With all these promising growth numbers and trends, learning mobile app development
and testing will be worth it and will have a huge demand.

In this chapter, we will cover the following topics:

¢ Types of mobile apps
* Native App

e Mobile Web app
e Hybrid App
e Appium Architecture
e What is XCUITest
¢ What is UiAutomator 2

Introduction to Appium

Let's take a look at mobile apps, which form this ecosystem, and how they are broadly
categorized based on the way they are developed:

Let's understand the different types of mobile apps.

The mobile world is majorly dominated by two operating systems: iOS and Android. Most
apps are made for both the platforms given the user base. In this chapter, we will take a
detailed look at the following:

¢ Native app, mobile web, and hybrid app
¢ The characteristics of each type of app
¢ A sample example app of each type

Native app

A native app is an app developed for a particular mobile device or platform (such as
Android, iOS, or Windows). For example, iPhone apps are written in Swift, and Android
apps are written in Java. Native apps are also better performing and have a high degree of
reliability as they use the underlying system architecture and the device's built-in features.

Native apps can run in both the online mode as well as the offline mode. Native App is tied
to the mobile operating system it has been developed for, and hence can’t be run on any
other operating system. This makes developing the native app costly as the same app has to
be rewritten for another operating system. These apps are available to be downloaded on
the mobile via the respective app store.

[9]

Introduction to Appium

Here's an example of a native app. It's a news app bundled with iPhone and can be
downloaded from the Apple App Store:

iPhone 6 - i0S 10.1 (14B72)

WEDNESDAY B
DECEMBER 21
TOP STORIES ®

@he Washington Post

Emails between Clinton and
top aide, but little else,
spurred FBI to resume
controversial probe

[10]

Introduction to Appium

Another one is the popular Instagram app on Android phone, which is native:
Y. &907

English (United States) «

Instagram

Sign up 1o see photos and videos
from your friends.

K7 Log in with Facebook

OR

Sign up with email or phone number

Already nave an account Lr:-q in.

Mobile Web app

A Mobile Web app is an app accessed over a mobile browser. It can be easily accessed via
built-in browsers, such as Safari on iOS and Chrome on Android. They are primarily
developed using technologies such as HTMLS5 or JavaScript, which provide the
customization capabilities. So, they are basically served from a server and not stored offline

anywhere on the device.

[11]

Introduction to Appium

Web apps have a common code base and can be accessed like any typical web app on any
device with browsers. For Mobile Web apps, responsive web design is the new standard as
they have to cater to devices of different screen sizes and resolutions. Mobile Web apps can
also access mobile-specific features, such as dialing a phone number or location-based
mapping. Mobile Web apps can only be accessed with a valid network (Wifi/4G/3G/2G).

The following is an example of a mobile app. It's a mobile website of The New York Times
and can be opened with any mobile browser. The URL for thisishttp://mobile.nytimes.
com. One can perform the same actions as web, such as browser refresh. The following
screenshot shows the same app; it's opened using the Safari app on an iPhone 6 simulator,
running iOS 10.1:

iPhone 6- 105 10.1 (14B72)
Carviar ¥ 1TETEM e

maobile.nytimes.com c

= Ehe New YJorkTimes 2

B, 313010 SR

Germany Frees Man Held in Attack;
ISIS Claims Role

= AT unt confinwes after an asyhom seeker hield
the demlly truck rampage in Berlin was
rebeased for lock of evidenee
 The Islumic State said that the attacker was acting

[12]

Introduction to Appium

The next is an Android emulator running Android 6.0 and has the mobile site of The New
York Times opened on the default browser app:

mabile.nytimes.com

= CheNewdlorkTimes A

Your Thursday Briefing

Herr ed 10 know 10 start vour day

THE 45TH PRESIDENT

|_Obama Fights for Health IFNEN |

Hybrid app

A hybrid app consists basically of websites packaged in a native wrapper. They are
primarily developed in web technologies (HTMLD5, CSS, JavaScript) but run inside a native
container, thereby giving a feel that it is a native app. Hybrid apps rely on HTML being
rendered in the mobile browser, with a limitation that the browser is embedded within the
app. This approach allows you to have one code base for all the mobile operating systems:
iOS, Android, and Windows. A web-to-native abstraction layer enables access to device-
specific capabilities, which are not accessible in Mobile Web apps otherwise. Examples
include a camera, on device local storage, and an accelerometer.

[13]

Introduction to Appium

Hybrid app is the most favored approach for companies with a web page in existence.
Those companies often build hybrid apps as a wrapper over the web page. Tools such as
PhoneGap and Sencha Touch allow one to build a hybrid app. These apps can be
downloaded via the respective app stores. Here's an example of a hybrid app--it's an
Evernote app and can be downloaded from the respective app store:

Evernote Basic

Capture what's on your mind.

* Sync up to 2 devices
+ 60 MB of uploads per month

» Find text in images

See more Basic features »

) O O

PLUS PREMILIM

Select Basic

[14]

Introduction to Appium

The mobile testing ecosystem is not yet crowded; there are only a couple of tools that are
really worth trying and learning, and Appium is the most promising one.

Appium is an open source tool to automate mobile applications. It’s a cross-platform
automation tool, which will help in automating the different types of mobile apps that we
discussed earlier.

The supported mobile operating system platforms by Appium are as follows:

e iOS
e Android
e Windows

Let's take a detailed look at Appium, how it is architected, and how it facilitates
automation.

Appium architecture

Now that we have understood the different types of mobile apps, let's take a look at how
Appium is architected to support mobile app automation. Appium is basically a web server
written in Node.js. The server performs actions in the given order:

Receives connection from client and initiates a session
Listens for commands issued

Executes those commands

Returns the command execution status

So basically, Appium is a client-server architecture.

[15]

Introduction to Appium

The Appium server receives a connection from client in the form of a JSON object over
HTTP. Once the server receives the details, it creates a session, as specified in JSON, and
returns the session ID, which will be maintained until the Appium server is running. So, all
testing will be performed in the context of this newly created session. The following is a
diagram depicting the Appium architecture:

Web Driver Script

coamimanads rEsponie

Devices or Emulators

The Appium server is written in Node.js; it can be installed via npm or directly from source.

[16]

Introduction to Appium

XCUITest

XCUITest is an automation framework introduced by Apple with the iOS 9.3 version.
However, from iOS 10 and later versions, it's the only supported automation framework.

Appium 1.6.0 uses Apple's new XCUITest framework, which supports iOS 10/Xcode 8.
Appium internally uses Facebook's WebDriverAgent project to support XCUITest. For the
older iOS version (<=9.3), Appium uses Apple’s UTAutomation library. Typical usage
would be to pass the following in desired capabilities:

automationName: XCUITest

Facebook WwebDriveraAgent is a WebDriver server implementation for iOS. It is used to
remote control connected devices or simulators and allows one to launch an app, perform
commands (such as tap and scroll), and kill applications.

The UTAutomation library communicates with bootstrap. js, which is running inside the
device or simulator to perform the commands received by the Appium client:

Web Driver Script

Devices or Emulators

[17]

Introduction to Appium

UiAutomator 2

UlAutomator 2 is an automation framework based on Android instrumentation and allows
one to build and run Ul tests.

Appium uses Google’s UIAutomator to execute commands on real devices and emulators.
UlAutomator is Google’s test framework for native app automation at the Ul level. Typical
usage would be to pass the following in desired capabilities:

automationName: uilautomator2

With version 1.6, Appium has provided support to UiAutomator 2. Appium uses the
appium-android-bootstrap module to interact with Ul Automator. It allows commands
to be sent to the device, which are then executed on real devices using Android's
UlAutomator testing framework.

When Appium client requests to create a new AndroidDriver session, the client passes the
desired capability to the Appium node server. The UIAutomator2 driver module creates the
session. It then installs the UlAutomator2 server APK on the connected Android device,
starts the Netty server, and initiates a session. Once the Netty server session is started, the
UlAutomator2 server continues to listen on the device for requests and responds:

™ appium
Application Under Test
p ®

I k. ‘
WebDriver script UiAutomator2
o tait e ’ UAutomator2) Sarver APK
o i Driver
::::;mui"{ =l 3
Fiwld [P - 'Hllhrhrwr
\ V,

Picture courtesy--GitHub Appium page

[18]

Introduction to Appium

Pros of using Appium

Appium has many advantages; some of them are listed here:

1. It's an open source tool backed by a very active community.

2. It supports multiple languages (Java, JavaScript, Objective C, C#, PHP, Python,
Ruby, Clojure, and Perl).

3. It doesn't force you to recompile an app or modify it. You can test the same
version that you have planned to submit to the play store or app store.

4. It allows you to write cross-platform tests.

Netty is an NIO client-server framework, which enables quick and easy
development of network applications, such as protocol servers and clients.

Summary

So, in this chapter, we learned about different types of mobile apps and the advantages one
has over another. We also learned about Appium and its architecture. We learned about
XCUITest and UlAutomator 2 and how Appium uses them to communicate commands to
devices. We also looked at the advantages of using Appium.

In the next chapter, we will set up our machine so that we can start practicing the usage of
Appium.

[19]

Setting Up the Machine

In the last chapter, we looked at the different types of mobile apps. We also looked at the
advantage of one over another and how they are different from each other. We learned
about Appium and its architecture, and we learned about iOS XCUITest and android
UlAutomator 2.

We also learned how commands are translated and passed on to the device. In the
upcoming chapters, we will learn how to set up the machine and start writing tests and how
to eventually create a framework.

In this chapter, we will cover the following topics:

¢ |nstalling Java

Installing Android SDK and creating one Android Virtual Device
Installing Genymotion Emulator

Installing Appium (Via NPM, app, source code)

Choosing IDE and setting up

Knowing app under test

All the preceding installations are mandatory, except some that are optional and indicated.
As part of this book, we will be addressing both Mac and Windows machines.

Setting Up the Machine

Machine setup for macOS

Setting up the machine will require a bunch of software and packages to be installed. Let's
start with bash_profile. Open the terminal and type in the following command (in the
home directory):

Is -al

This should return all the hidden files and directories under the home directory. Check
whether the .bash_profile file is present; if not, type the given command to create one:

touch .bash_profile

Installing Java

If you have had the development machine set up before, you might have a couple of
software and packages already installed. You can skip the installation part and check for the
version of the installed packages. If the versions are significantly old, you might want to
upgrade them.

For the new machines, follow the mentioned steps for installing Java:

1. Visit the JDK download page and download the jdk—8uversion-macosx—

xxx .dmg package based on your machine configuration (either the amd64 or
x64).

2. Install Java from the downloaded package.

3. Once installed, launch the terminal and type in this command to determine the
Java version:

jJava -version
4. You will see the following output if Java is installed correctly:
java version "1.8.0_73"

Java(TM) SE Runtime Environment (build 1.8.0_73-b02)
Java HotSpot(TM) 64-Bit Server VM (build 25.73-b02, mixed mode)

[21]

Setting Up the Machine

5. Add the following line to your .bash_profile file. In Mac OSX 10.5 or later

versions, Apple recommends to set the sJAVA_HOME variable to
/usr/libexec/java_home:

export JAVA_HOME=$(/usr/libexec/java_home)
export PATH=$PATH:$JAVA HOME/bin

Now that we have finished installing Java, let's move on to installing Android SDK.

Installing Android SDK (using the Android
command-line tool)

1

Navigate to the Android Studio page and download the command-line tools (for
more information visit this link: https://developer.android.com/studio/inde
x.html?hl=sk).
Once downloaded, extract the same in a folder of your choice.
Rename the extracted file, for your convenience, to Android SDK.
Android SDK contains only the basic SDK tools and does not contain any
platform or library; we need to download the same before we start using it:
1. Launch the terminal and navigate to the folder where the ZIP file was
extracted. In the terminal, type android and press enter.
2. Android SDK Manager will start with a new window.
3. Select one of the android platform Android 7.0 (APl 24) and choose the
given packages: ARM EABI v7a System Image, Intel x86 Atom
System Image, and SDK Platform.
4. Under the Tools section, select Android SDK, Android SDK Platform-
tools, and Android SDK Build-tools.
5. Under the Extra section, select Google Play Services.

[22]

Setting Up the Machine

5. Openthe .bash_profile file and enter the following lines at the bottom:

export ANDROID_HOME={YOUR_PATH}
export PATH=$PATH:$ANDROID_HOME/tools:
$ANDROID_HOME/platform-tools

6. Save the file and run this command:
source ~/_bash_profile

7. Run the next command to check whether the Android home is set properly:

echo $ANDROID_HOME

Installing Android SDK (using Homebrew)
(Optional)

You can also choose to install Android SDK using Homebrew (the brew install
android-sdk command). This installs the Android SDK in the
/usr/local/Cellar/android-sdk/{YOUR_SDK_VERSION_NUMBER} path, so
ANDROID_HOME should point to the installed location.

Creating Android Virtual Device (Optional)

When we install Android SDK, it allows you to create a virtual device (an emulator) to help
perform the development and testing locally without buying a physical device. The
following steps will help you to create an emulator:

Launch AVD Manager (using the terminal, type in command android avd).
Click on "Create...".

Enter an AVD Name.

Select a target Device from the dropdown.

Select an API level by clicking on the dropdown next to Target.

Click on the dropdown next to CPU/ABI and select a value from the dropdown.

o0k wN PR

[23]

Setting Up the Machine

7. Choose a Skin.

8. You can alter the RAM size in Memory Options; it generally defaults based on
the device selected.

9. Press OK:

Android Virtual Devices Device Definitions

List of existing Android Virtual Devices located at /Users/nishant/.android/avd

& & Create new Andrald Virtual Device (AVD) Craste...
AVD Name: Al [(x86.64) Start...
Device: Nexus & (5.96" 1440 = 2560; S60dpi) B

Edit...
Target: Android 5.0.1 - APl Level 21
CPUABI: ARM (armeabi-v7a) 7 Deléte...
Keyboard: Hardware keyboard presant Detallz.
skin No skin I
Frant Camera: None E
Back Camera: Mone B
Memory Options: RAM: 3072 VM Heap: 32
Refrash
Internal Storage: 200 Mg & toloac Click ‘Details' to see the
1 SD Card:
O size: vie [
File:
Emulation Options: Snapshot Use Host GPU

Setting Up the Machine

Once the Android Virtual Device is created, it will show up in the AVD manager. We have
the option of performing operations, such as Start, Edit, Repair, and Delete, on the Android
Virtual Device.

Let's take a look at an emulator (Genymotion) other than Android Virtual Device, which is a
much better performant compared to the android ones. We can rely heavily on the
Genymotion emulator for our day-to-day testing and development activities.

Genymotion emulator

Genymotion is a software company making one of the fastest Android emulators and a
couple of other products around it. For this book and our testing activities, we will use the
Genymotion emulator personal use version, as it's a faster alternative to Android Virtual
Devices. However, | strongly recommend that you get in touch with Genymotion to
validate whether you need to purchase a license (individual or enterprise) once you finish
using the personal version.

One can download the Genymotion installer to their machine from the website https://ww
w.genymotion.com/ after signing up, and then perform the installation. Once installed, we
need to sign in with Genymotion account details. Post that, we need to create virtual
devices. The illustrated screenshot shows the Genymotion app with a couple of virtual
devices already configured; however, it will be empty for the first time user:

[25]

Setting Up the Machine

L= & Ganymaotion for personal use

00O Genymotion

> + o]

Add Settings

Your virtual devices
EJ Mexus 5 AP 218 -.\ -Iﬁ
u Nexus_5_AP121 Clone_A
[_J Mexus & 51 APl 22

[r] Nexus_6P_7.0.0API24

User:

Let's learn to create virtual devices in Genymotion:

1. Launch the Genymotion app and log in with your registered credentials.
2. Click on Add +.

[26]

Setting Up the Machine

3. Select the Android version and Device model from the dropdown:

a i All
Custom Phone
L_é Select a new virtual device Custom Tablet
Google Galaxy Mexus
Google Nexus 10
je Mewus 4

Android version: Eefils) > . mg MNexus 5
Google Nexus 5X

Available virtual devices Google Nexus &
Google Newus 6P
Google Nexus 7
Google Nexus 7 2013
Google Mewus 9
Google Neaws One
Google Nexus 5
HTC Evo 4G LTE
HTC One
HTC One X
HTC One XL
LG Optimus L3 11
Motorola Droid Razr
Motorala Moto X
Matorala Xoom

Select Android version as 5.1 and choose Device Model to be Google Nexus 6.
Click on Next.

It will start the download of the virtual device.

Once done, click on Finish to close the download window.

The virtual device will start appearing on the Your virtual devices window.
Click on Start to launch the virtual device.

© 0o N o s

[27]

Setting Up the Machine

Starting the emulator will show a screen similar to the following:

2 = Genymotion for personal use - Nexus_6P_7_API_24 (144...

Setting Up the Machine

Launch the terminal and run the adb devices command; the output will be as shown:

. 181:5555

So, each emulator runs as a virtual machine on your physical machine. To install the app on
Genymotion emulator, the normal adb commands--adb install
/path/to/app/<app_name>.apk Will work fine.

Debug help

If the adb devices command throws the error adb server version (31) doesn't
match this client (36), follow the given set of steps to fix the same:

1. Navigate to Genymotion > Settings > ADB > Use custom Android SDK tools.
2. Put the ANDROID SDK path in Android SDK:

-] & Sentings

Account Network VirtualBox ADB Misc

ADB tool connecthon settings

l:! Use Genymotion Android tools (default)
®} Use custom Android 50K tools

Android SDK ellar/androbd-sdi/24.4.1_1

" Android SDK tools found successfully

[29]

Setting Up the Machine

3. Once done, restart the Genymotion virtual device and type in the adb devices
command.

This should help fix it.

Installing Appium

Appium requires macOS X 10.7 or a higher version; we would recommend 10.10 (Yosemite)
or a later version. To work with Appium, we need both the Appium GUI app (installed via
the . dmg file) and the Appium server (installed via Homebrew), as explained here:

1. Install Xcode and the Xcode command-line tool.
2. Download the appium.dmg file from https://bitbucket.org/appium/appium.a
pp/downloads/.

3. Install Homebrew (http://brew.sh/) on your machine. This will need Ruby to
be installed on your machine. Run the below command to install Homebrew:

Homebrew is a package manager for Mac OS. It installs packages to their
own directories and then symlinks their files into /usr/local.

/usr/bin/ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install)"

4. Post the install run command to ensure that Homebrew is up to date:
brew update

5. To install node on your machine, run this command:
brew install node

6. Once the preceding commands are executed and don't throw up any errors, we
can run one final command to check the successful Node and npm install. Run
the below command to check the successful installation (of Node and npm) and
this should successfully install grunt-c1i:

[30]

Setting Up the Machine

Node.js is an open source, cross-platform JavaScript runtime environment
for developing a diverse variety of tools and applications.

npmn is the default package manager for the JavaScript runtime
environment Node.js.

7. Toinstall Appium server and Appium doctor using node, we can run the given
command:

npm install -g appium
npm install -g appium-doctor

8. Once Appium doctor is installed, we can run the appium-doctor command in
the terminal and see the following output:

So, the preceding section completes the Appium setup on both the app and the server.
However, we can also install Appium server from source.

[31]

Setting Up the Machine

Installing Appium server (From Source)
(Optional)

This is optional and can be skipped if the preceding setup has been done. To do the setup,
run the following commands in the given order:

git clone https://github.com/appium/appium.git

cd appium

npm install

gulp transpile # requires gulp, see below

npm install -g authorize-ios # for ios automation
authorize-ios # for ios automation

node

Selecting IDE

For the purpose of test development, we will choose IntelliJ (https://www.jetbrains.com
/idea/) as the preferred IDE. Download the community edition from nttps://www. jetbra
ins.com/idea/download/. Once downloaded, open the . dmg package and drag IntelliJ to
the Applications folder.

App under test

We will be using the Quikr app (Google Play link for app: https://play.google.com/stor
e/apps/details?id=com.quikrshl=en) throughout the book for Appium concepts and
demonstration. All features of Appium can be demonstrated using this app. We are using
the Quikr android app and mobile web version. It's easy to relate to any classifieds app, and
it let us use gestures as well. For your learning, you can use any app of your choice which
you are comfortable with. Book is written and evolved in such a way that it demonstrates
the appium and automation concepts that can be applied to any app.

Machine setup for Windows

Machine setup for Windows will be a little different from that of Mac as we don't have the
concept of a package manager. We will need to download the individual installers and run
them to install the software we need. Let's start with installing Java, Android SDK, and then
appium.

[32]

Setting Up the Machine

Installing Java

Following are the steps to install Java:

1.

Visit the JDK download page and download the (jdk-8uversion-windows—
xxx .exe) package based on your machine configuration (either the amd64 or
X64).

Install Java from the downloaded package.

Once installed, bring up the search box and type advanced system setting.
Click on the View advanced system settings search result.

On the system properties window, click on the Advanced tab and click on
Environment Variables.

Under the System variables section, click on New and add a variable name--
JAVA_HOME--and check for the installed location of the JDK. It will be similar
toC:/Program Files/Java/jdkl.8.xxx.

Under the System variables section, scroll to find PATH and click on edit. Add
$JAVA_HOME%\bin at the end.

Once done, launch the Command Prompt and type java -version;you should
see the illustrated output with different version details based on the JDK version
you installed:

java version "1.8.0_73"
Java(TM) SE Runtime Environment (build 1.8.0_73-b02)
Java HotSpot(TM) 64-Bit Server VM (build 25.73-b02, mixed mode)

You can also try running the echo %Java_HOME$ command in Command
Prompt, which should display the path we set earlier.

Installing Android SDK (using Android command-
line tool)

1.

Navigate to Android Studio page and download the Android Studio package
(android-studio-bundle-xxx.xxxxx-windows.exe) for Windows (Link for
Android Studio: https://developer.android.com/studio/index.html ?hlzsk).

[33]

Setting Up the Machine

2. Once downloaded, run the . exe and follow the install instructions:

5 Android Studio Setup -

Choose Components
Chioose which features of Android Studio you want to install,

Chedk the components you want to install and unchedk the components you don't want to
install. Chck Mext to continue.

Select components to install: Android Studka Deacription

[#] Android SDK
[+] Android Virtual Device

Space required: 5.0GB

< Back Cancel

3. Click on Next >.
4. Click on the I Agree button.
5. Create a folder in C drive and name it android-sdk.

[34]

Setting Up the Machine

6. On the Configuration Settings Install Locations screen, choose the shown values
for Android Studio and Android SDK:

Android Studio Setup - X

Configuration Settings
Install Locatons

Android Studio Installation Locaton

The location specified must have at least 500MB of free space.
Chck Browse to customize:

C:¥Program Files \Android\Android Studio 1 | Browse.,

Android SOK Instalation Location

The location specified must have at least 3.2GB of free space.
Chek Bravese to austomize:

[Clndrodsd] Browse...

ot [] | e

7. Click on Next.
8. Finish the installation.

9. Bring up the Windows program search box and type advanced system
setting. Click on the View advanced system settings search result.
10. On the system properties window, click on the Advanced tab and click on
Environment Variables.
11. Under the System variables section, click on New and add a variable name,
ANDROID_HOME, and value, C: \Android—-SDK.

12. Under the System variables section, scroll to find PATH and click on edit. Add
$ANDROID_HOME%\tools and $ANDROID_HOME%\platform-tools at the end.

[35]

Setting Up the Machine

13. To create an Android Virtual Device, we need to follow these steps:

1.
2.

Launch Android Studio from the installed programs on Windows.

On the Android Studio home page, click on the Configure dropdown
and select SDK Manager.

Under SDK platform, choose the SDK platform you want to install,
such as Android 5.1 (Lollipop), and select the checkbox.

Click on Apply and confirm the installation.
This will finish the installation of the new virtual device.
Click on OK to close the popup.

14. Follow the instructions here to set up the AVD on a Windows machine (https

://developer.android.com/studio/run/managingfavds.html)

Once done, we can move on to the Node JS installation.

Installing Node JS

Before we install Appium on Windows, we need to install Node JS. Navigate to the web
page (https://nodejs.org/en/download/) and download the windows installer
(xxx.ms1) based on your architecture (either 32-bit or 64-bit).

Once downloaded, install the same with the default options. The npm and node ;s paths
should be in your PATH environment variable.

Installing Appium

1. Download the AppiumForWindows. zip file from the location by visiting this
link: https://bitbucket.org/appium/appium.app/downloads/.
2. Install the downloaded file and proceed with the default selections.

3. Launch the Appium app; it will open the permission popup for Node JS and
allow that.

[36]

Setting Up the Machine

Installing Appium server (via npm)

1. Launch Command Prompt (Use Run as Administrator option) and type in this
command:

npm install -g appium

2. Once the preceding command is done, type in the next one:
npm install -g appium-doctor

3. Once done, run the following command:
appium-doctor

This will show the given output:

BA Select CVWINDOWS\system32\emd.exe

C:\>appium-doctor
Appium
##H DA

Everything looks good, bye!

Installing Genymotion

Sign up for a Genymotion account and download the windows installer with virtual box.
Installing Genymotion on Windows is fairly simple; follow the default settings to proceed.
The steps for creating the Genymotion emulator will remain the same as described earlier.

[37]

Setting Up the Machine

Selecting IDE

For test development purposes, we will choose IntelliJ (nttps://www.jetbrains.com/idea
/) as the preferred IDE. Download the community edition from https://www.jetbrains.c
om/idea/download/. Once downloaded, open the .exe package and follow the steps on the
installation popup.

Appium GUI app

Let's take a detailed look at the Appium GUI app. Here's a snapshot of the Appium GUI
app (on Mac OSX), which has a couple of icons on top, a console window, and a trash bin
icon at the bottom. Windows Appium app has couple of options lesser than the Mac OS X,
however functionally it represent the same as described below. Let's take a look at each of
the icons and what it helps us to do:

L @ Appium

BB YA w & £ X ¥ Launen
o

i

e Open Configuration: This lets you select any previously saved Appium
configuration and load.

[38]

Setting Up the Machine

e Save Configuration: This saves the current Appium config, which is basically the
settings you selected with Android or iOS or General.

e Doctor: It runs the appium-doctor. js program and tells you whether all the
wirings are proper. By wiring, | mean it performs the following checks:
e Xcode path
Xcode command-line tool
Checks for DevToolsSecurity to be enabled
Node.js installation
ANDROID_HOME to be set
¢ JAVA _HOME to be set

¢ Inspector: It brings up the Appium inspector window. With the recent version of
Appium, it launches the app on the device or emulator and shows the captured
Ul state of the application. The following is a snapshot of the same. The panel on
the extreme right is clickable. Once you click on any Ul element, the panel on the
left shows the Ul hierarchy and the panel named Details shows the Ul attribute
of the element clicked on. The right-hand side of the panel lets you click on any
element that you need to interact with as part of your test code. On the Details
pane, you can find attributes such as type, text, index, and resource-id:

L] L] At g
4 dmen
Srarer Do) oo Hartririn

[meairosn wiigel_LiaarLapest] [ancmid scogat Framelopi] et
{ancrni wioget Lineanap... * [anodsiige Framslig. * (ndmd siagn femelao b
rnchecsd sl ieer] typac srerred miogat ent e
Jarth v e n | Ak Cwniecas
iwaglan; T
e
Kewtion: (0, 1200}
iea: {1300, 1871
checksble: ‘e
e ———
e

hahaie 11
Iy b b b Ve
pathape: o
maword: st
reReUITE - o ek e
Cormirg, kogn
sormilabbe: reae
el ted falr
B 1ot tocess wme Pt n ' o
T . [¢« o a |
Prociue Tap Somd To Crange -

On the top of the Appium Inspector, you find the Record button, clicking on which
generates the boiler plate code; it records the action on the element, based on the XPath of
the element. Clicking on Refresh refreshes the panel on the left-hand side to load the latest
Ul snapshot on the right of the inspector screen and reloads the Ul hierarchy and details
panel as well.

[39]

Setting Up the Machine

Android Settings: Clicking on this brings up a window that lets you fill the android app-
related details. The following is its snapshot. It is divided into two parts: Basic and
Advanced. Under Basic, there are some mandatory settings and some optional ones:

Application
~ App Path Choose
 aciags)

Wait for Package
Launch Activity
Wait for Activity

Use Browser
Intent Action
Intent Flags
Launch Device
Launch AVD
Arguments
Capabilities
Platform Name
Platform Version
Device Name
Language

To launch an Appium session for a particular app, we need the app to be installed on the
device, in which case we need the Package name and Launch Activity. If we want to install
the app on the device and then start the Appium session, we need to pass in the App Path
parameter, which is the location of the apk. So, we need to pass either the App Path or the
Package and Launch Activity for the application section.

[40]

Setting Up the Machine

For the Launch Device section, Launch AVD will work if you have android emulator
created via Android SDK. It doesn't work with Genymotion Emulator.

For the Capabilities section, there are four mandatory parameters, described here, and two
optional, which are Language and Locale:

o Platform Name: It gives you an option of selecting Android if it's an android
device or FirefoxOS.

e Automation Name: It can be either Appium or Selendroid. For this book, we will
primarily be using Appium.

o Platform Version: It gives you the option to select different versions of android
(such as API 22 and 21).

e Device Name: It is mandatory again and can be any text.

Under the Advanced Section, you have the option to choose Android SDK path,
Chromedriver Path, and any Keystore settings. All these are optional parameters.

¢ iOS Settings: Clicking on this brings up a window that lets you fill the iOS app-
related details:

[41]

Setting Up the Machine

Before we proceed with any steps on iOS app automation using Appium, one of the
important prerequisites is that the app must be signed with a developer identity:

o App Path: If you want to deploy the app using Appium, enter the location of
. ipa (for physical device) or . app (for simulators).

e BundlelD: If you want to invoke the existing app, then pass the Bundle ID.

¢ Platform Version: This lets you select the version of iOS that you want to connect
Appium with.

o UDID: This is needed when you want to run the test on a physical device.

e Force Device: This lets you select the device on which you want the test to
connect.

o Full Reset: This tells Appium to reset the state of the application we are testing
every time we run a test.

On the Advanced tab, you need to be sure that Appium knows the path of Xcode on your
machine. You can even change the path to Xcode using the Change button.

In the bottom section of the screen, you can see the buttons highlighted, such as Touch,
Text, Locator, and Misc.

Clicking on Touch gives you an option, such as Tap, Swipe, and Shake, to be performed on
the element you have selected on the right. Similarly, when you click on Text, it brings up a
textbox to send in the text you want:;

Touch w Locator Misc

Maobile Phone

Send Keys Execute Script Add Comment

[42]

Setting Up the Machine

When you click on Locator, it brings up the option to choose the strategy with which you
want to select the element, as illustrated in the following screenshot. The options available
as part of strategy are accessibility id, android uiautomator, class name, id, ios
uiautomation, name, and xpath. These are the different ways of identifying a Ul element on
a mobile app:

Touch Text RGIEIGEIE Misc

Strategy xpath n Search From Selected Element

class name
Value Search

id

ios viautomation

For example, in the following screenshot, the Continue button (on the right panel) on the
app can be identified in two ways:

e Using id, we can use the ID as strategy and give the continue_login value that
is taken from resource-id, highlighted in blue in the Details panel.

« Using xpath, we can construct a meaningful xpath that can be derived from the
type of element and some unique attribute, which is text in this case. Hence, the
xpath for the Continue button can be
//android.widget.TextView[@text="Continue"], same is illustrated below
in the Appium inspector snapshot:

L] L] AT NR{EL 10

Shorw Dinatsied Rwcord Rt

[andrd widgut LinsarLvout] |[andmidwidget Framelnodll s
St Lnsafliva. ¢ (i Fr - & |andeoad miged Faml, L
'Imw-lﬁ: ’ drya I weiged Fraswlars I o .
i e e | Y| e Y Ty -
antieriel vig Vigw| T Coemrusd

e &

srabsled: o

\scation: {70, T204)

sizec 1300, 131

ERALLA S
aerealatilas fuis
AL falee
Ll oo — L . E
= P S = ¢ o o]
Valsl ['ardiroad widigel. Tent ' seew] fler = “Cortirue™] Saarch Erarge

Ciooy MWL [~

[43]

Setting Up the Machine

When you click on Misg, it gives you a button that performs the function of accepting or
dismissing alerts.

Context: Following is a small section of the Details panel, called Context. It's a dropdown
that shows you the context available for the app, be it native or web view. The next
screenshot shows that the contexts available are both the native and web view. Appium lets
you switch the context within the web driver protocol itself so that testing the native and
web view parts becomes seamless. So, we can select one of the values in the dropdown and
change the context:

Context

no context

no context

MATIVE_APP
WEBVIEW _com.google.android....

H WEBVIEW_com.quikr H

Summary

In this chapter, we learned to set up the machine both for Windows and Mac. We also
learned to install Android SDK and update the system path for the same. We learned how
to configure an Android Virtual Device and also explore the Genymotion emulator. We also
learned to set up Appium, both the server and the GUI app. We explored the Appium GUI
app and learned about the different settings we need to use, both for the android and iOS
apps. We also explored how we can look up Ul locator and check for the context in the app.

In the next chapter, we will start with setting up a project and write the first Appium test.

[44]

Writing Your First Appium Test

In the last two chapters, we saw what Appium is and how to set up the machine for both
Mac OSX and Windows. Now that we have the ecosystem set up, let's start using Appium
and writing some actual tests on Appium. In this chapter, we will set up an Appium Java
project using IntelliJ and write our first test.

So, the set up we need before we actually write the code is this:

o Create a sample Java project

e Add Appium (automation tool) as a dependency
e Add Cucumber-JVM as a dependency

o Write a small test for a mobile web

For this example project, we will use Cucumber to write the specification. Cucumber is a
tool based on the behavior-driven development framework. We have a separate section in
this chapter that briefly talks about Cucumber.

While authoring this book, both the Mac OSX as well as Windows
machine support has been included. However, the features of Appium on
Windows is not in sync with Mac OS Appium app. Windows users might
find the Appium Ul option to be missing on certain screens, please do
proceed with the most similar option available.

Writing Your First Appium Test

Creating an Appium Java project (using
gradle)

Let's create a sample Appium Java project in Intellil. This forms the foundation of all the
code-related and Appium-related discussions we will have in the subsequent chapters. The
following steps help you to achieve this:

1. Launch IntelliJ and click on Create New Project on the welcome screen.

2. On the New Project screen, select Gradle from the left pane. Project SDK should
get populated with the Java version.

3. Click on Next, enter the Groupld as com.test and Artifactld as HelloAppium.
The version will already be populated; click on Next.

4. Check the Use auto-import option and ensure that Gradle JVM is populated.
Click on Next. In case the Gradle JVM is not populated, please follow the below

steps:
L] @ Default Project Stnaciure
e s Project SOK:
This SD is default for all project modules.
Project Settings A module specific SDK can be configured for each of the modules as requined.
G <o SOK> H M.
Libraries Project language level:

This language level is default for all project modules.

Platform Settings e
A module specific language level can be configured for each of the modules as requined.

SDKs

Giobal Libraries 8 - Lambdas, type annotations eic 7]
Project compiler output:
Problems This path is used to store all project compllation results.

A directory cormespanding to each module is created under this path.
This directory contains two subdirectories: Production and Test for production code and test sources, respectively,
A module specific compiler output path can be confligured for each of the modules as required.

[46]

Writing Your First Appium Test

1. Click on Configure > Project Defaults > Project Structure:

LR
= Deeehoerwman | 1oel loAgosum g |

T e r

Wity 83 el DEA

IntelliJ IDEA

& Crvate hew Praject

o Impaor Froject

1 Open

Check out From Yersion Control «

© Configume = Get Helg =

Pluging

Import Seitings
Expart Seftingi
Sertinga Repoaisary
Check for Updase

Seftings

Aun Configuraticn

2. Choose Project under Project Settings as shown below:

a -]

+ s

Prigact Settings
Libraries

Platform Senings

SOKs
Global Libeartes

Problems

Difailt Praject Structuing
Project SOK:
This SDK is default for all project modules.,
A module specific 50K can be configured for sach of the modules as neguined.

G) <Mo 5D B he. e
Project language bevel

This language level is default for all praject modules.
A module specific language level can be configured for each of the modules as requined.

8 - Lambdas, type annotations e, E

Project compiler output:

This path is used 1o stone all project compilation msults,

A directary comesponding 1o each module is created under this path.

This directory contains two subdirectories: Production and Test for production code and test sources, nespectively,
A module specific compiler output path can be configuned for each of the modubes s required.

3. Click on New... button.
4. Point it to the JDK installed on your machine.

[47]

Writing Your First Appium Test

5. Click on OK to close the pop up and go to the new Project creation
screen.

5. The Project name field will be auto-populated with what you gave as Artifactld.
Choose a Project location and click on Finish. IntelliJ will be running the
background task (Gradle build), which can be seen in the status bar.

6. This should create a project with the following structure:

L N
"1 HelloAppium
E [Project - I R - T e
§
3 1 .gradle
] [.idea

Clgradle
g (=¥ build.gradle
3 =l gradliew
2 it gradiew.bat
? | & HelloAppium.iml

+ settings.gradie

i External Libraries

7. Open the build.gradle file. You will see a message, as shown; click on Ok,
apply suggestion!:

| You can configure Gradle wrapper to use distribution with sources. It will provide IDE with Gradle API/DSL.., Hide the tip Ok, apply sugoestion! |

8. Enter the following two lines in build.gradle. This adds Appium and
cucumber-jvm under dependencies:

compile group: 'info.cukes', name: 'cucumber-java',
version: '1.2.5"
compile group: 'io.appium', name: 'java-client',

version: '5.0.0-BETAG6'

[48]

Writing Your First Appium Test

9. Here's how the gradle file should look:

[_Isamplefeature x = (= HelloAppium x
group 'com.test®
version '1.@-SNAPSHOT"
apply plugin: ‘java®

f/sourceCompatibility = 1.8

repositories {
mavenCentrall)
}

dependencies {
testCompile group: ‘junit’, name: ‘junit', version: "4.11'
compile group: ‘info.cukes', name: 'cucumber-java', version: ‘1.2.5°
compile group: ‘ic.appium’, name: ‘java-client', version: '5.0.8-BETAG'

10. Once done, navigate to View > Tools Windows > Gradle and click on the Refresh
all gradle projects icon. This will pull all the dependencies in External Libraries:

& IntelllJIDEA File Edit Navigate Code Anmalyze Refactor Bulld Run Tools VCS Window
oo @ Project %1 Development/ellonpg
3 HellaAppium | (5 build gradie Giuick Definition o # Fovorites x2

i i B Project - Show Siblings £ TODO X8
i * CaHelloAppium (- Developn Quick Documentation Ayl ¥ Svuctre o
& = O.gradie [Show Bytecode - :
& + Cl.idea Parameter Info sp ¥ AntBuild
» [Cigradie Expression Type ~ P
E # bulld.gradle | Context Infa ~gg ™ Event Log
3 =l gradiew
E! =1 gradiew.bat Recent Files XE m Maven Projects
g [HelloApplum.iml Recently Changed Files 1::!!-:
(& sertings.gradle Recent Changes xXeC
= W External Libraries @ Compare With... ®D & Terminal TF2 RS et
Compare with Clipboard e B S R L
"info.cukes: cucusber-junit:1.2.4"
Quick Switch Schemae... ol “io, sppium; jove—client:4.0.0°
Toolbar
+ Tool Buttons
' Status Bar
 Mavigation Bar
Active Editor -
Enter Presentation Mode
Enter Distraction Free Mode
Enter Full Screen ~RF

[49]

Writing Your First Appium Test

11. Navigate to Preferences > Plugins, search for Cucumber for Java, and click on
Install (if it's not previously installed).

12. Repeat the preceding step for Gherkin and install the same. Once done, restart
IntelliJ if it prompts.

Once done, we are ready with the IntelliJ project creation. The next step is to write a
Cucumber feature file; however, let's first understand what Cucumber is.

Introduction to Cucumber

Cucumber is a test framework that supports behavior-driven development (or BDD, in
short). The core idea behind BDD is domain-specific language (known as DSL) where the
tests are written in normal English, expressing how the application or system has to behave.
DSL is an executable test that starts with a known state, performs some action, and verifies
the expected state:

Given I launch the app
And I click on Register
Then I should see register with Facebook and Google

Dan North (creator of BDD) defined behavior-driven development in 2009
as --BDD is a second-generation, outside-in, pull-based, multiple-
stakeholder, multiple-scale, high-automation, agile methodology. It
describes a cycle of interactions with well-defined outputs, resulting in the
delivery of working, tested software that matters.

Cucumber feature files serve as a living documentation that can be implemented in many
languages. It was first implemented in Ruby and later extended to Java. Some of the basic
features of Cucumber are listed as follows:

e The core of Cucumber is text files called features, which contain scenarios. These
scenarios express the system or application behavior.

o Scenario files consist of steps that are written following the syntax of Gherkin.

[50]

Writing Your First Appium Test

A sample feature file is as shown here:

Feature: Sign up

Scenario: Facebook Integration
A user should be able to register and log into the app by using the
Facebook account.

Given I choose to sign up

And I select to sign up using Facebook

Then I should see a pop up with my Facebook account to continue
And I should be logged in once I allow

So, in the preceding example, Feature, Scenario, Given, But, Then, and And are
keywords. Let's take a look at some of the most used keywords of Cucumber and what it
means:

Feature: tests are grouped into features. We use this name because we want engineers to
describe the features that a user will be able to use.

Scenario: A scenario expresses the behavior we want. Each feature contains several
scenarios; each scenario is a example of how the system should behave in a particular
situation. The expected behavior of the feature will be the total scenarios. For a feature to
pass, all scenarios must pass.

Test Runner: There are different ways to run the feature file; however, we will use the JUnit
runner initially and then move on to the gradle command for command-line execution.

So, I am hoping that we now have a brief idea of what Cucumber is. Further details can be
read on their site (https://cucumber.io/). In the following section, we will create a feature
file, write a scenario, implement the code behind, and execute it.

Writing our first Appium test

Until now, we have created a sample Java project and added the Appium dependency.
Next, we need to add a feature file and implement the code behind. Let's start that:

1. Under the project folder, create the src/test/java/features directory
structure.

2. Rightclick on the features folder, select New > File, and enter name as
Sample. feature.

[51]

Writing Your First Appium Test

3. You will notice that the file is associated with a Cucumber feature icon if the
plugin is installed correctly.

4. We need to explore the Quikr mobile app; when you install it and play around
the first scenario, you will notice the login scenario. Quikr gives you an option to
log in using Google or Facebook.

5. Inthe sample. feature file, let's write a sample scenario, as shown, which is
about logging in using Google.

6. Detailed steps will be clicking on log in using Google, and then verifying that the
account picker screen has a valid email ID:

Feature: Hello World

Scenario: Registration Flow Validation via App
As a user I should be able to see my google account
when I try to register myself in Quikr

When I launch Quikr app

And I choose to log in using Google

Then I see account picker screen with my email address
"testemail@gmail.com"

7. When the Cucumber steps are not implemented, it will highlight them in yellow.
Right now, all the steps will be highlighted. The implementation of these steps
will be java class, and they can be hosted under different packages.

8. Right-click on the java folder, select New > Package, and enter name as steps.

9. The next step is to implement the Cucumber steps; click on the first line in the
Sample.feature fileWhen I launch Quikr app and press Alt+Enter. Then,
select the Create step definition option:

Feature: Hello World

Scenario: Registration Flow Validation via app
As a User I should be able to see my google account
when I try to register myself in Quikr app

1 When I launch Quikr app
e et
Then T see account pick MMMl AL | *testenailagnaill. con”

Create all steps definition »

[52]

Writing Y

our First Appium Test

10. It will present you with a popup to enter File name, File location, and File type.

We need to enter the step's class name; select the shown values. Since the step

belongs to Home Page (or we can even call it Landing Page), we create the
HomePageSteps class:

& 7] Create New Step Definition File
File name: HomePageSteps File type: Java H

File location: rs/nishant/Development/HelloAppium/src/test/java/steps

oK

11.

12.

So, the idea is that the steps will belong to a page and each page will typically
have its own step implementation class.

Once you click on OK, it will create the given template in the HomePageSteps
class file:

public class HomePageSteps {

@When (""I launch Quikr app$")

public void iLaunchQuikrApp () throws Throwable {

// Write code here that turns the phrase above into
concrete actions

throw new PendingException();

3

3

[53]

Writing Your First Appium Test

We have written our test steps; the next step is to implement the actual code behind which
will launch the Appium server and then deploy the app on the emulator. So, let's start with
launching the emulator first and then the Appium App (For Windows user, the screen
below may be totally different and some options may not be present; you can choose the
mandatory options and ignore others if it is not present):

1. Download the Quikr app (version 9.16).

2. Create a folder named app under the HelloAppium project and copy the
downloaded apk under that folder. Ideally, this will host the app under test:

CiHelloAppium (~/Development fHellc
£ .gradle
[.idea
Clapp

Citest
[java
[features
Sample.feature
[steps
** build.gradle
5] gradlew
it gradlew.bat
[& HelloAppium.iml
(# settings.gradle
il External Libraries

[54]

Writing Your First Appium Test

3. Launch the Appium GUI app:

¢ On Mac, navigate to Finder > Applications > Appium.

¢ On Windows, navigate to Start Menu > Type Appium > Press
Enter:

[2 Appium

0|8 % QA [T ‘ 'n' & T Launeh

o

[55]

Writing Your First Appium Test

4. Launch the Genymotion emulator (the one we created in chapter 2, Setting Up
the Machine) by selecting the virtual device and clicking on the Start icon, as
highlighted; wait for it to get started:

& [Genymotion for personal use

&

Settings

Your virtual devices

e
E_J Mexus 5 AP 21 B ‘\ m

u Nexus &P 7 AP| 24

[:_J Mexus &P T AP| 24 Clone

[56]

Writing Your First Appium Test

5. Once launched, we will see the Genymotion emulator, as shown:

L] []

Garrpmation for parsonal use - Nesus 5 APL_21 B (108018
L I BFEY

q Google 4

6. Switch to the Appium GUI app, click on the android icon, and enter the following
details:

e App Path: Browse to the .apk location under the app folder

e Platform Name: Select Android

e Automation Name: Select Appium

o Platform Version: Select 5.1 Lollipop (API Level 22) from the
dropdown, as the emulator created in chapter 2, Setting Up the
Machine or the device. Also, even though it's a dropdown, it allows you
to edit the value and it behaves as a text input field rather than a
dropdown. On Windows app , it's just a drop down so make sure you
have a emulator version which is supported by the Appium windows
app.

[57]

Writing Your First Appium Test

Android N (version 7.0) has support issues with Appium. Be cautious
while you are trying your hands with version 7.0.

e Device Name: Enter any string, such as Nexus6:

[58]

Writing Your First Appium Test

7. Once the preceding settings are done, click on the General Settings icon-- # --and
choose the following settings:

o Select Pre-Launch Application.

Select Strict Capabilities.

Select Override Existing Sessions.

Select Kill Processes Using Server Port Before Launch.

Select New Command Timeout and enter the value 7200. Refer to
the following screenshot:

[59]

Writing Your First Appium Test

8. Once done, close the popup by clicking on the General settings icon-- # --again.
Then, click on Launch.

9. You will see a bunch of logs on the Appium console and will be able to find the
given line:

@ [} Appium
= H s O\ lii i ﬂ * b Launch
0

[Appium] platforeName: ‘Android’

[Appimm] platforeVersion: '5.1°

[Appium] automationMame: ‘Appium'

[Appium] deviceMame: ‘Mexust’

[Appium] app: 'SUsers/nishant/Development/HelloAppiue/app/quikr.apk’

[Appium] fullReset: true

[Appium] Deprecated server args:

[Appimm] —platform-name == —default-capabilities "{"platformMame”:"And

[Appimm] —platform-version == —default-capabilities '{"platforaVersio

[Appium] —automatlon—name = —default-capabilities ‘{“automationNam

[Appivm] ——device-pame => —default-capabilities '{"deviceName' xush

[Appium] ——app => ——default-capabilities °{"app”:"/Users/nishant/Development/HelloAppivm/app/quikr.apk™}®
lAppim] —=full=reset =» ——default-capabilities '{"fullReset":true}'

[Appium] Default capabilities, which will be added to each request unles: overridden by desired capabilities

[Appium] platforsName: ‘Android’
lAppium] platforaVersion: '5.1°

lAppium] automationName: ‘Appium'
lAppium] deviceMame: 'Nexusg'

lAppium] app: 'SUsers/nishant/Development/HelloAppive/app/quikr. apk’
lAppium] fullReset: true

lAppium] Appium REST http interface listener started on 9.8.0.08:4723

IHTTP] —> GET /wd/hub/status {}

[MISONWF] Calling AppiwmDriver.getStatus{) with args: []

[MIS0NWF] Responding to client with driver.getStatus() result: {"build":{*version®:"1.5.3"...
[HTTP] === GET /wd/hub/status 208 20 ms - B3

[HTTP] —=> GET /wd/hub/status {}

[Appium] Appium REST http interface listener started on
0.0.0.0:4723

[HTTP] --> GET /wd/hub/status {}

[MJSONWP] Calling AppiumDriver.getStatus () with args: []
[MJSONWP] Responding to client with driver.getStatus() result:
{"build":{"version":"1.5.3"...

[HTTP] <-- GET /wd/hub/status 200 17 ms — 83

[60]

Writing Your First Appium Test

So basically, it indicates that the Appium server has been started on the default server and
port, and it has returned the status HTTP 200:

1. Click on the Inspector icon-- % --to launch the Appium Inspector popup.

2. The preceding step will install the app on the emulator and launch the inspector

window. It will also install the Appium Settings app and Unlock app on the
emulator.

3. If the emulator image in the right pane of the Inspector is not fully loaded, then
click on the Refresh button to sync with the t on the emulator. Here's how the
Inspector popup will look after clicking on the Refresh button:

L L3 Appium Inspecion
Filtors
Show Disablod Record Ruofrosh
Detaia
[android widgat.Li., *
[anchnoid viow View)
[android view View]

BEEI Todt Locater Misc Lopen 0O recrees G
e el N
Precise Tap sSerall To Change

Copy XML C e

If you notice the Appium console, you will find the following log when you click on
Inspector:

[HTTP] --> POST /wd/hub/session
{"desiredCapabilities":{"platformName":"Android", "platformVersion":"5.1","n

ewCommandTimeout":"7200", "app":"/Users/nishant/Development/HelloAppium/app/
quikr.apk", "automationName":"Appiun", "deviceName":"Nexus6"}}

[MJSONWP] Calling AppiumDriver.createSession() with args:
[{"platformName":"Android", ...

[61]

Writing Your First Appium Test

] Creating new AndroidDriver session
] Capabilities:
Appium] platformName: 'Android'

] platformVersion: '5.1"'

] newCommandTimeout: '7200"
Appium] app:
'/Users/nishant/Development/HelloAppium/app/quikr.apk’
[Appium] automationName: 'Appium'
[Appium] deviceName: 'Nexus6'
[Appium] fullReset: true
[BaseDriver] Capability 'newCommandTimeout' changed from string
("7200"') to integer (7200). This may cause unexpected behavior
[BaseDriver] Session created with session id: 6c61a910-5c7e-
44ff-9cb1-£fb2413805cda
[debug] [AndroidDriver] Getting Java version

[AndroidDriver] Java version is: 1.8.0_73
[ADB] Checking whether adb is present

[ADB] Using adb from /usr/local/Cellar/android-—
sdk/24.4.1_1/platform-tools/adb

[AndroidDriver] Retrieving device list

[debug] [ADB] Trying to find a connected android device
[debug] [ADB] Getting connected devices...

[debug] [ADB] 1 device(s) connected

[AndroidDriver] Looking for a device with Android 5.1
[debug] [ADB] Setting device id to 192.168.56.101:5555

[ADB] Getting device platform version
[debug] [ADB] Getting connected devices...

The last line of the preceding log shows that the Appium server has created a session with
session ID 6c61a910-5¢c7e-44ff-9cb1-fb2413805cda. For all future communication
with the device until the server is alive, this session ID will be the context. For example,
when you click on the Refresh button on the inspector, the console will log the request like
[HTTP] --> GET /wd/hub/session/6c61a910-5c7e-44ff-9cbl-
fb2413805cda/source {}.

The session gets killed when we click on Stop on the Appium GUI. So every time we click
on Start, Appium gives us a new session; this is because we selected the parameter
Override ExistingSession. This makes sure that the previous Appium session is killed
before creating a new one.

[62]

Writing Your First Appium Test

Now Appium has started the server and created a session based on the parameters we
passed in both the Android Settings and General Settings, which are also known as
Desired Capabilities. We will take a detailed look at Desired Capabilities in the next
chapter.

1. Coming back to automation of the steps, we need to implement whatever we
have done until now as code.

2. Click on the Record button on Appium Inspector; it will generate the boilerplate
code, which will perform the function of setting device-related capabilities (such
as Platform name and version) when the Appium server is already running:

L Appium Inspecior
Titery
I Show Desabled m Rafresh
Catain
[andraid widgel

[andnakd view. Vie_.
[ancnoid viewVie

m Toxt Locator Misc Sl

Tap Swilpe Shke ma coertext ﬂ

Procise Tap Scroll To Chargo

{l.l:rl.pmuﬂ i

z vold main(Stringl] argsh l
I:lr.-urempuhmuﬂ capsbilities = nes DesireoCapabilities();
capallities. setCagabilityl “agn sbofr™, =1.0°1;
copabilities.setCagabliity{ gl
eapatl1it et setCasabllityd
capabdlities. setCagabliity| devi -"l -
capibilitien. s 1lasahllity] "ao”, st e | plumfapnfeelhr.aok™]
wil = re AppismOriveri{sews URL(7 ™ by um:l.llt l"r.l
wil.manage(] . tineouts|]. nphctﬂml l:"l Tinelnit. SECONDS |
wi.glavel};

Windows machine do not have the Record button. Windows users can skip to
step 3 and copy the code mentioned below. The code generated is OS
independent, it will work seamlessly for both Mac OSX and Windows user.

[63]

Writing Your First Appium Test

3. Copy the preceding code (generated by appium) and paste the same in the
iLaunchQuikrApp method of the HomePageSteps class. Delete the line throw
new PendingException();.

4. Resolve the dependencies by importing the necessary class or add the following
code to the class file:

import io.appium.java_client.AppiumDriver;
import org.openga.selenium.remote.DesiredCapabilities;

5. Remove the wd. close line as this will kill the session. We need the session to
perform other tests, and then Kill the session once done.
6. This is how the code snippet will look:

@When (""I launch Quikr apps$")

public void iLaunchQuikrApp () throws Throwable {
DesiredCapabilities capabilities = new DesiredCapabilities();
capabilities.setCapability ("appium-version", "1.0");
capabilities.setCapability ("platformName", "Android");
capabilities.setCapability ("platformVersion"”, "5.1");
capabilities.setCapability ("deviceName", "Nexus6");
capabilities.setCapability ("app",
"/Users/nishant/Development/HelloAppium/app/quikr.apk");
AppiumDriver wd = new AppiumDriver (new

URL ("http://0.0.0.0:4723/wd/hub"), capabilities);

wd.manage () .timeouts () .implicitlyWait (60, TimeUnit.SECONDS) ;
}

7. So, the boilerplate typically has all the settings we made under Android Settings.

8. Close the Appium Inspector window and click on Stop on the Appium GUI app.
This Kills the current Appium session.

We will discuss some of the concepts, such as and implicit wait, in the upcoming chapters.
To create an Appium session we need only 4 capabilities to be passed which is generated by
the boiler plate code: plat formName, plat formVersion, deviceName and app.

Let's try to run the generated code to see whether it works seamlessly.

Running the feature file
With the Appium GUI app, we did two things:

1. Ran the Appium server
2. Set the desired capabilities

[64]

Writing Your First Appium Test

To run the preceding code from IntelliJ, we need Appium server to be running. From the
preceding code, we are only setting desired capability and getting a session of our choice,
but the server has to be running:

1. The Appium server can be started either by the Appium GUI app or the Appium
command line. Let's use a command line for test execution purpose.

2. Launch the terminal (Command Prompt in case of Windows machine), type in
the appium command, and press Enter to run the Appium server. We can see the
Appium logs in the console.

? ~ appium

[Appium] Welcome to Appium v1.6.3

[Appium] Appium REST http interface listener started on
0.0.0.0:4723

3. In IntelliJ, right-click on the scenario file and select the Run
‘Scenario:Registration Flow..." option.

4. This will be the sample output:

Testing started at 9:33 AM

Jan 15, 2017 9:33:34 AM
org.opendga.selenium.remote.ProtocolHandshake
createSession

INFO: Attempting bi-dialect session, assuming Postel's Law holds
true on

the remote end

Jan 15, 2017 9:33:39 AM
org.opendga.selenium.remote.ProtocolHandshake
createSession

INFO: Falling back to original 0SS JSON Wire Protocol.
Jan 15, 2017 9:34:54 AM
org.opendga.selenium.remote.ProtocolHandshake
createSession

INFO: Detected dialect: 0SS

Undefined step: And I choose to log in using Google

Undefined step: Then I see account picker screen with my email
address
"test@gmail.com"

1 Scenarios (1 undefined)
3 Steps (2 undefined, 1 passed)
1m21.575s

[65]

Writing Your First Appium Test

5. So, the first step has passed and the other two are yet to be implemented; we are
good to proceed with automating the rest of the steps.

6. Kill the appium server once the test is run. Navigate to Terminal (Command
Prompt on Windows) and press Ctrl + C to kill the process.

As and when we progress, we will keep refactoring the code to make it more readable and
maintainable.

Refactoring

In the preceding code we wrote, AppiumDriver wd is private to the method. We need to
refactor it to make it available to all the methods in that class. So, highlight the line, click on
Refactor > Extract > Field, and choose appiumbriver from the list of values shown.

This will make your code look like this:

public class HomePageSteps {

private AppiumDriver wd;

Sten (™I launch Quikr app§™)
public wold iLsunchQuikrippl] throws Throwable {
DesiredCapabilities copabilities = new DesiredCapabilities();
capabilities.setCapability ["sppium-version™, "1.87);
capabilities.setCapabilitv("platformhame™, "Android”);
i i . (“platforeVersion”, “5.0%);
Jrivats. Asplimicivarwd) "deviceName”, “NexusB”):
capabilities. .etCapability(“app™, “/ Users/nishant,/Development/HelloAppive/app/ guikr.apk”];
Appiumoriver M = new AppiumDriver(new URL(“http://0.0,0.0:4723 wd/hub"], capabilities):
wd.managel). wd L. SECONDS) ;
)
driver

@and{=~I choose
1 ; Press "CMF to show diakog with more options
public void iChouserocoginusingoooeg ey tnross iirowable {

}

Implementing the remaining steps

Come back to the sample. feature file and create step definitions for the other two steps
in the sample class file, HomePageSteps.

Step 2 implementation:

1. Inthe and I choose to log in using Google Step, we are supposed to
click on the Google icon once the app launches.

[66]

Writing Your First Appium Test

2. The sequence of steps is:
1. Find the locator for the Google icon.

2. Click on the icon.

3. Tofind the locator, we need the Appium GUI app (Since the android settings are
correct and unaltered, we can start the session again by clicking on Launch).

4. Once the server has started, click on the Appium inspector icon and wait for the
app to launch on emulator.

5. Click on the Refresh button in the Appium Inspector popup.

6. Once done, click on the Google icon in the Appium Inspector right panel; it will
show you the layout details and button attributes in the Details panel. The id for
the Google button is highlighted in red with row name resource-id in the Details
section. The first part there--com. quikr--is the package name; the value of id is
sign_in_button. The inspector also gives you the xpath, which is the last item
under the Details section. There are different ways to find an element: id,
className, cssSelector, 1inkText, partiallLinkText, name, tagName,
xpath. We can choose one of these based on what is available. We will see
locators in detail in chapter 5, Understanding Appium Inspector to Find r:

] [] Applum lnspascior
Frteri

B Disabéeo Record Aefrash

(android widget LinmarLeyt |androkd widget Linsarlen- androidwidget Framelie oge

[asndrood wicged. Lingar_. + [andoid widget, Frame_ + [N e ey

[andinoicd wikger.Linamr_. * TypE! Bedroedmedget Button
i Googis
Inda: 0
Enabled: vus
Iecwthan: (78], 3153}
g (G0, 108}
chackalde: Ll
chackesd; fatw
Epruinalila:
clichable:
long-chckabe: false
pChEgE! COMOUAT

el
resree =ik Lo gulkei]

crolable: fass
meleciad: il
mpath: i
wredrput wigal, LinesrLayout

[

s wige, FremaLiyout -

B et Locater Misc SI N ivneoo G ooooll
Tap Saipe Shakn o consext = _

Precises Tap Scroll To Charge

[67]

Writing Your First Appium Test

7.

For now, we can use the id field. Once we get the value of id, we tell the r to find
an element by the property name id and value sign_in_button; then, perform

a click operation on it.
Navigate to the iChooseToLogInUsingGoogle method under the
HomePageSteps class and paste the following code. Add an import statement

import org.openga.selenium.By for:

appiumDriver.findElement (By.id ("sign_in_button")) .click();

Step 3 implementation:

1.

Inthe Then I see account picker screen with my email address
"test@gmail.com" step, we are required to get the value of the email displayed
on the Google account picker popup and match it with the expected value
passed.
The sequence of steps is:

1. Find the locator of the email ID field

2. Get the value of that field

3. Perform string comparison and pass or fail accordingly.

If you have stopped the Appium session, launch the Appium GUI app and wait
for the app to be launched. Click on the Google icon and wait for the account
picker to show up.

[68]

Writing Your First Appium Test

4. Once done, click on the Inspector icon on Appium GUI; here's how the Appium
inspector screen will be:

a8 [] AppaET nepecion
Firary
Srow Disabled Hecord Aefresh

[android widget LinearLoy {androidwidget Framel oy peegiin
TR z : AT _ gy T =

[ancosd wiager Linear [Pl osg wAdgor. Frame .. [arsiircid withgdt. Lindar .. OBt .
type:
i gt i gl Tantview
b ; vagractlab@gmal com
Invda; 1
snabled: ire
locathea: (338, T24H)
wipw: (A3, 87
chacksble: false Chaose scoount Tos Quikr
chiscked: falss
focuiabin:
clickabl: faise E

e it Jl'::'

packsge:
o geoghe android. gme

Bl Text Localor mMinc

Tag Swipa Shak e Covig ﬂ

Precisa Tap Sorll To Change
Copyxm. | & 0@

5. Let's quickly verify if using the ID value will give us that element. Click on
Locator in the inspector screen. Select the strategy as id, enter value as
account_name, and click on Search. It throws up an error, as illustrated:

Mo Matching Elements Were Found

An element could not be found using the locator value
"account_name" and the locator strategy “id"

[69]

Writing Your First Appium Test

6. An important thing to notice in resource-id is that the package name has been
changed to com.google.android.gms. Let's use the complete value of ID in this
case--com.google.android.gms:id/account_name--and click on Search.

7. It works this time, showing one element found.

8. So, we are good to implement the
iSeeAccountPickerScreenWithMyEmailAddress method, as follows. Rename
the parameter from arg0 to expected and copy and paste the following
implementation. Since clicking on the Google button and showing up the popup
will take time, we added a Thread.sleep () before the assert statement:

@Then (""I see account picker screen with my email address

A" (IANTT*)\"sS")

public void iSeeAccountPickerScreenWithMyEmailAddress (String
expected) throws Throwable {

Thread.sleep (5000);

Assert.assertEquals ("Email Id matches", expected,
appiumDriver.findElement (By.id ("com.google.android.gms:id/account_n
ame")) .getText ());

}

9. In the preceding method, we are using JUnit assertion--Assert .assertEquals--
for string comparison. The advantage of this method is that it will show both the
expected and the actual string in case of failure:

org.junit.ComparisonFailure: Email Id matches expected:
<vagrantlab@gmail[1l].com> but was:<vagrantlab@gmail[].com>
at org.junit.Assert.assertEquals (Assert.java:115)

The complete HomePageStep class will look like this:
package steps;

import cucumber.api.java.en.And;

import cucumber.api.java.en.Then;

import cucumber.api.java.en.When;

import io.appium.java_client.AppiumDriver;

import org.junit.Assert;

import org.openga.selenium.By;

import org.openga.selenium.remote.DesiredCapabilities;

import java.net.URL;
import java.util.concurrent.TimeUnit;

public class HomePageSteps {

[70]

Writing Your First Appium Test

private AppiumDriver appiumDriver;

@When (""I launch Quikr app$")
public void iLaunchQuikrApp () throws Throwable {

DesiredCapabilities capabilities = new DesiredCapabilities();
capabilities.setCapability ("platformName", "Android");
capabilities.setCapability ("platformVersion", "5.0");
capabilities.setCapability ("deviceName", "Nexus");
capabilities.setCapability ("noReset", false);
capabilities.setCapability ("fullReset", true);
capabilities.setCapability ("app",
"/Users/nishant/Development/HelloAppium/app/quikr.apk") ;
System.out.println (capabilities.toString());
appiumDriver = new AppiumDriver (new

URL ("http://0.0.0.0:4723/wd/hub"),

capabilities);
appiumDriver.manage () .timeouts () .implicitlyWait (60,
TimeUnit .SECONDS) ;

}

@And (""I choose to log in using Google$")
public void iChooseToLogInUsingGoogle () throws Throwable {
appiumDriver.findElement (By.id ("sign_in_button")) .click();

}

@Then (""~I see account picker screen with my email address \" ([*\"]*)\"$")
public void iSeeAccountPickerScreenWithMyEmailAddress (String expected)
throws Throwable {

Thread.sleep (5000);

Assert.assertEquals ("Email Id matches", expected,
appiumDriver.findElement (By.id ("com.google.android.gms:id/account_name")) .g
etText ());

}

}

Let's now move to the execution of our preceding code. Once we are done with the step
implementation, stop the Appium GUI session.

[71]

Writing Your First Appium Test

Running the scenario

In the last section, we completed the implementation of the scenario. The next step is to
execute the same. So, navigate to the feature file in IntelliJ and right-click on the scenario,
which will show the illustrated option. We get two options: one is to run the scenario and
the other is to debug the scenario:

Copy Reference YO¥C
[Paste Hy
Paste from History... i 47
Paste Simple gt AT
Column Selection Mode X v
Find Usages XF7
Refactor -
Falding >
Analyze *
GoTo >
Generate... *N
Compile ‘Sample.feature’ 1r38F9
P Run "Scenario: Successful log in’ ~{+F10
@ Debuqg 'Scenario: Successful log in' ~{F9
ki Run 'Scenario: Successful log in' with Coverage
2 5ave "Scenario: Successful log in'
Local History >
Compare with Clipboard
File Encoding
& Create Gist...

So, the steps to run the feature file are these:

1. Start the terminal (Command Prompt in the case of Windows Machine) and type
in appium —--session-override.

2. Choose the run scenario option (from the steps explained earlier).

The preceding command will launch the android emulator and start the test execution.

[72]

Writing Your First Appium Test

Automating a mobile web app using Appium

To automate a mobile web app, we need to have a mobile web browser installed on the
emulator/device. All android phones generally come with a stock browser installed. For
example, Genymotion comes with a stock browser installed and can be used for automation
purposes. For emulators created using Android SDK, we need to install the Chrome
browser by downloading its install file (. apk) based on the CPU configured for the
emulator.

Another way to install the Chrome browser on the emulator is to install it via Play Store. To
install Play Store on the emulator, you need to download the following files and install
them first:

e com.android.vending-x.x.xx.apk
e com.google.android.gsf_x.x.x—-xx_minAPIxx (nodpi) .apk

® GoogleLoginService.apk

The files need to be for the Android version you created the emulator with. Once done,
launch the Play Store and search for the Chrome app and download it.

Let's write another scenario to test the mobile web app of Quikr:

Scenario: Registration Flow Validation via web
As a User I want to verify that
I get the option of choosing Facebook when I choose to register

When I launch Quikr mobile web
And I choose to register
Then I should see an option to register using Facebook

Implement the first step and create the skeleton definition for the step in a separate class,
HomePageWebSteps.Java. Here, we will not need the Desired Capability app as the test
will be run on the browser on the device; instead, we will use browserName.

The implementation is shown here:

@When ("”I launch Quikr mobile web$")
public void iLaunchQuikrMobileWeb () throws Throwable {

DesiredCapabilities desiredCapabilities = new
DesiredCapabilities();

desiredCapabilities.setCapability ("platformName", "Android");
desiredCapabilities.setCapability ("deviceName", "Nexus");

desiredCapabilities.setCapability ("browserName", "Browser");

URL url = new URL("http://127.0.0.1:4723/wd/hub") ;
appiumDriver = new AppiumDriver (url, desiredCapabilities);

[73]

Writing Your First Appium Test

appiumDriver.get ("http://m.quikr.com");
t

Compared to the hybrid app implementation explained earlier, the major difference lies
with the desired capability browserName being used. This parameter tells the Appium
about the browser being requested.

Possible values for browserName are as follows:

e Chrome: For a Chrome browser on Android<
e Safari: For a Safari browser on iOS
e Browser: For a stock browser on Android

To run the preceding step, follow the given steps:

1. Ensure that you have the emulator running and a stock browser installed.
Genymotion emulator comes with one, so we can readily run the test.

2. Start the Appium server by running the appium --session-override
command in the terminal (for Windows machine, use Command Prompt).

3. Right-click on the feature file and select the Run scenario... option for the last
written scenario.

Implementing the remaining steps

To implement the remaining steps, we need to find locators for the elements we want to
interact with. Once the locators are found, we need to perform the desired operation.

Following are the steps that will help us find the locators:

1. Launch the chrome browser and navigate to the mobile site (in our case, http
://m.quikr.com).
2. Select More Tools > Developer Tools from the Chrome Menu.

3. In the Developer Tool menu items, click on the Toggle device toolbar icon,
highlighted in blue:

Elements Console Sources MNetwork Timeline » 929 41 :

)
B

4. Once done, the page will be displayed in a mobile layout format.

5. In order to find the locator of any Ul element, click on the first icon of the dev
toolbar and click on the desired element.

[74]

Writing Your First Appium Test

6. The HTML in the dev tool layout will change to highlight the selected element.
Refer to this screenshot that shows the same:

iobies & Tatisls Fumiues & Ducor Hormes

maL-mader Spmbersd- e el il ;
<ramenirgar_saw | e]

7. In the highlight panel on the right-hand side, we can see the
class=hamburger_nav and id=hamburger properties. We can choose to use id
and implement the step as follows:

appiumDriver.findElement (By.id ("hamburger")) .click();

Similarly, we can use the chrome dev tool to find the locator of the other element--Sign
In/Sign Up link--and perform the click operation.

So, the second step can be implemented as shown:

@And (""I choose to registers")
public void iChooseToRegister () throws Throwable {
appiumDriver.findElement (By.id ("hamburger")) .click();

Thread.sleep (5 * 1000);
appiumDriver.findElement (By.id ("hamLoginLink")) .click () ;

}

For now, we will use Thread.sleep(long millis) to wait for an action to complete and
then refactor the same to implement using WebDriverWait. This will be explained
thoroughly in a separate chapter.

[75]

Writing Your First Appium Test

The last method to verify the presence of Facebook as an option can be done in a couple of
ways, one of them being asserting for the presence of an element and another way being
asserting for certain text to be present in the t:

Then I should see an option to register using Facebook

So, to implement the preceding step, we can check whether the button with the name
Facebook is displayed on the Register tab. Wherever there is a change in screen or we are
expecting some element to appear or action to happen, we can use Thread.sleep () forw:

@Then (""I should see an option to register using Facebook$")
public void iShouldSeeAnOptionToRegisterUsingFacebook () throws Throwable {
Thread.sleep(5 * 1000);

appiumDriver.findElement (By.partiallLinkText ("Register")) .click();
Assert.assertTrue (appiumDriver.findElement (By.className ("icon-
facebook")) .isDisplayed());

}

This completes writing the basic test of the mobile web app. So, basically, your class file--
HomePageWebSteps--should look like this:

public class HomePageWebSteps {
private AppiumDriver appiumDriver;

@When ("~I launch Quikr mobile web$")
public void iLaunchQuikrMobileWeb () throws Throwable {

DesiredCapabilities desiredCapabilities = new
DesiredCapabilities();

desiredCapabilities.setCapability ("platformName", "Android");
desiredCapabilities.setCapability ("deviceName", "Nexus");

desiredCapabilities.setCapability ("browserName", "Browser");

URL url = new URL("http://127.0.0.1:4723/wd/hub") ;
appiumDriver = new AppiumDriver (url, desiredCapabilities);
appiumDriver.get ("http://m.quikr.com");

}

@And (""I choose to registers$")
public void iChooseToRegister () throws Throwable {
appiumDriver.findElement (By.id ("hamburger")) .click();

Thread.sleep (5 * 1000);
appiumDriver.findElement (By.id ("hamLoginLink")) .click();

[76]

Writing Your First Appium Test

@Then (""I should see an option to register using Facebook$")
public void iShouldSeeAnOptionToRegisterUsingFacebook () throws
Throwable {

Thread.sleep (5 * 1000);

appiumDriver.findElement (By.partiallLinkText ("Register"))
.click();

Thread.sleep (2 * 1000);
Assert.assertTrue (appiumDriver.findElement (By.className ("icon-—
facebook")) .isDisplayed());

}
}

Now, we can run the test scenario to check whether we get the option of registering using
Facebook in the mobile web app.

Automating the iOS app using Appium

So far we have learned how to create a project, looked into Cucumber and how to write a
feature file, took a sample android app and mobile web app to learn how to get started with
writing our first test. Let's take a look at the iOS app now. Let's understand some
dependency before we get started.

Some of the mandatory things we need:

e The iOS app automation needs Mac OS X (Windows user will not be able to
execute the below steps)

e Xcode needs to be installed (Version 7.1)
¢ |n case you have installed the latest version of Xcode you will have
to use the new Appium Desktop app.
¢ You can also have multiple versions of Xcode on your machine and
choose to default to the older version (less than 8) to run through
the following example:

sudo xcode-select -switch <path/to/old/>Xcode.app

[77]

Writing Your First Appium Test

e App under test
¢ The iOS simulator app (.app) is needed for any testing on iOS
simulators. This is the debug version of the app.

e The iOS app (. ipa) is needed for any testing on iOS real devices.
To use this app for automation purpose, the app must be signed
with a development identity (needs an iOS Developer license).

¢ For the reference in this book, we will use a simulator app which can be
downloaded from Appium repo at: https://github.com/appium/ios—test-app

Build the app

Let's build the app for the simulator first which will form the basis of the whole chapter
going forward and the discussions. Follow these steps:

1. Navigate to your local workspace or any folder of your choice
2. Clone the repo using the following command:

git clone https://github.com/appium/ios-test-app

3. It should show the following output once the command is successfully
completed:

4. Navigate to the directory and build the repo using the following command:

npm install

[78]

Writing Your First Appium Test

5. Once the command is successfully executed, it will create a folder build as
shown in the following screenshot, that contains the test app. Navigate to the file
build > Release—iphonesimulator > TestApp:

Deploying the app on the iOS Simulator

Once we have the app, we need to install the app on the iOS simulator. We have different
options to do this:

1. Via xcrun command
2. By using Appium

Via xcrun command

To install app via the xcrun command we need to start the simulator first. Launch Xcode
and launch the simulator by clicking Xcode > Open Developer Tool > Simulator.

Once the simulator is booted and running, start the terminal and run the command xcrun

simctl install booted path_to_the_app/TestApp.app asshown. If the command
is successful, it will return the prompt.

Using Appium
Let's follow the given steps to deploy the app using the Appium app:

1. Launch the Appium GUI app.
2. Click on the apple icon and it will open the iOS Settings popup.

[79]

Writing Your First Appium Test

3. Enter the details:

e App Path - path to the test app which we generated earlier.
o Select Force Device and choose iPhone 6 from the dropdown.
o Select Platform Version to be 8.4:

™

(o]

ApRium

e B Y Q w & B KX T

105 Setthgs

Bl Advanced

Application

BundielD Ligg Mobiie Satar

Fl Force Davice iPhone 6

Platform Version B2 [d LMD

Forco Orientation Force Language
Force Calendar Force Locale
Full Resat o Reset Isolate Simulator Device

B Show Simulator Log

Show 105 System .og

Launch

B App Path: [Users/nishant/Development/HdloAppium/fapp/TestApp.apy Choose

4. Once done, click on the apple icon to close the iOS Settings screen.
5. Click on Launch on the Appium GUI.

[80]

Writing Your First Appium Test

6. This will start the Appium server with the following logs:

Launching Applum C £ t applum/bul
Lib/main, j& —session L g rsion "B.4" —
platfors—nase =105 —app =/Users L —name "iPhone B

lAppium] wWelcome to Appium w1.5.3
lAppium] Mon—default server args:

lAppium] onlverride: true

IAppium]

lAppium]

[Appium]

[Appium] plat forehisns

lAppium] platformiers

[Appivm] devicebame:

lAppium] app: "/Use

[Appivm] Deprecated server arg

[Appium] —platfore-nome = —default-capabilities °{"platfornMans]

|Appium] —platTors-version == —default-capabilities "{"platforsVersion":"B.4"}'

[Appium] —device-name =» —default bilities °{"deviceMame":"iPhone 6°}"

lAppium] -app == =—default-copabilities *app™:"/Us ishant/Developsent /MelloAppium/ app/ TestApp. app™ }
[Appium] Defsult capabilities, which will be sdded to each reguest unless cverridden By desired capabilities

[Appium] platforeMass: *105°

[Appium] platformVersion:
[Appium] deviceMame: ‘1P
lAppium] app:

lAppium] Appium REST http interface listenser started on 0.8.0.8:472

(4

7. Click on the inspector icon = .
8. It will launch the Appium inspector with the app screen captured:

g L] Agpasm Inspoctar
Fagey
£ ¥ -7 e -
[Show Disabled [Show irmvisible Aecord Refresh
Detals
[LEAADRSCation]
Labs
Lt
Location
& beal b
Contunt
SN Text locator Misc e
Tap Togipe Shakp P EfibEn] e
Precise Tap Sorodl Ta Change =
Capy XML 09

[81]

Writing Your First Appium Test

So this step deploys the app on the iOS simulator and launches the app. We can click on any
of the Ul elements on the right of the preceding screen and the left panel will be loaded
with the respective attribute details.

Generating Boilerplate code for iOS

Once we have the preceding Appium set up does and it runs successfully to deploy the app
on the iOS simulator, we can use the boiler plate code to implement the first step which is
about launching the app. The precedingly written scenario in case of android is contextual
to the app; let's write a unique scenario for the iOS app to understand the concepts under a
new feature file and name it Sample_ios. feature:

|| Sample_ios.feature x

Feature: Hello World

Scenario: Computing sum of two number
As a user wWhen I add two number 22 and 33
I should see the sum 55

When I launch i0S app

And I choose to enter "“22" and "33"
. When I tap on Compute Sum

Then I should see the result “55"

Following is the snippet which you can copy after creating a new feature file for iOS
features:

Feature: Hello World

Scenario: Computing sum of two number
As a user When I add two number 22 and 33
I should see the sum 55

When I launch i0S app

And I choose to enter "22" and "33"
When I tap on Compute Sum

Then I should see the result "55"

[82]

Writing Your First Appium Test

So the preceding scenario is performing in following steps:

1. Launch the app.

2. Enter two numbers 22 and 33 in the specified text-box.
3. Tap on Compute Sum.

4. Verify result as 55.

Let's implement the first step which is launching the iOS app. Remember we have the
Appium session running and the app is already launched on the simulator. Click on the
Record button on the Appium inspector screen. This will generate the boiler plate code as
shown:

public class {scriptMame} {
public static void main{Stringl[] args) {

DesiredCapabilities capabilities = new DesiredCapabilities();
capabilities.setCapability({"appium-version", "1.8");
capabilities,setCapability{"platformMame”, "105"};
capabilities.setCapability({"platformVersion”, "8.4");
capabilities,setCapability{"deviceName", "iPhone 6");
capabilities.setCapability("app", "/Users/nishant/Development/HelloAppium/app/TestApp.app”);
wd = new ApplumDriver{new URL({"http://@.9.0.08:4723/wd/hub"), capabilities);
wd.manage().timeouts().implicitlywait (6@, Timelnit.SECONDS);
wd. close();

So if we notice the important desired capabilities, they are:

platformName - i0S
platformVersion-8.4
deviceName - iPhone 6

app - Actual app path

> w b

[83]

Writing Your First Appium Test

Let's implement the first step when I launch i0S app ; we need to copy the preceding
code generated as boiler plate and make some minor tweaks as shown:

@When ("~I launch i0S apps$")
public void iLaunchIOSApp () throws Throwable {
DesiredCapabilities capabilities = new DesiredCapabilities();
capabilities.setCapability ("appium-version", "1.0");
capabilities.setCapability ("platformName", "iOS");
capabilities.setCapability ("platformvVersion", "8.4");
capabilities.setCapability ("deviceName", "iPhone 6");
capabilities.setCapability ("app",
"/Users/nishant/Development/HelloAppium/app/TestApp.app");
AppiumDriver wd = new AppiumDriver (new
URL ("http://0.0.0.0:4723/wd/hub"), capabilities);
wd.manage () .timeouts () .implicitlyWait (60, TimeUnit.SECONDS) ;
}

This gives us the driver instance wd which can be used for all the test purpose. Let's learn
how to run the preceding steps.

So, the steps to run the feature file are these:

1. Start the terminal and type in appium —-session-override.
2. Navigate to IntelliJ and open the feature file sample_ios. feature.
3. Right click on the feature file and choose the run feature option:

This will launch the i0OS simulator and run the test which is basically going to deploy the
app and launch the app. The test would fail because other steps are yet to be implemented.

We need to perform the above demonstrated refactoring to extract the AppiumDriver
instance and make it a class variable. Once it is done, let's automate other steps to complete
the scenario automation. Next step to get automated is :

And I choose to enter "22" and "33"

[84]

Writing Your First Appium Test

We need to figure out the locators of the text box. Launch the appium GUI app, previously
made iOS settings would persist. Click on Start, this will start the appium server. We need
to wait till the appium server is started and the console log is shown as below:

@ ® Appium

e A v Q W

o &
L
%
¥i
v
3

[Appium] Welcome to Appium v1.5.3
[Appium] Mon-default server args:

[Appium] sessionOverride: true

[Appium] launch: true

[Appium] enforceStrictCaps: true

[Appium] debuglogSpacing: true

[Appium] platformMame: °105°

[Appium] platformVersion: "8.4°

[Appium] deviceName: *iPhone 6'

[Appium] app: "fusers/nishant/Development/HelloAppium/app/TestApp, app”
[Appium] Deprecated server args:

[Appium] -——platform-name => ——default-capabilities "{"platformMame":"
[Appium] —platform-version == —default-capabilities '{"platformVersion™:

[Appium] —device-name => —default-capabilities '{"deviceName":"iPhone 6"}'

[Appium] —app => —default-capsbilities '{"app”:"/Users/nishant/Development/HelloAppium/app/TestApp.app™}
[Appium] Default capabilities, which will be added to each request unless overridden by desired capabilities
|Appium] platforsName: °105°

[Appium] platformVersion: *

[Appium] devicen *iPhone &'

[Appium] spp: '/Users/nishant/Development/HelloAppius/app/TestApp. app”

[Appium] Appium REST http interface listener started on 9.8.0.9:4723

[HTTP] —= GET /wd/hub/sstatus {}

[MIS0MWP] Calling AppiumDriver.getStatus() with args: [

[H)S0tP] Responding to client with driver.getStatus() result: {"build":{"version":"1.5.3"...

[HTTP] == GET /wd/hub/status 208 19 ms - B3

[85]

Writing Your First Appium Test

And then click on the Appium Inspector icon which would start the iOS simulator and
deploy the app on the same. This would deploy the app, and launch the appium inspector
window. Click on the first text box field on the right of the appium inspector window, it
will load the Ul hierarchy and the attributes in the left pane, as shown in image below:

@ @ Appium Inspector
Filtlers
- . -
Show Disabled B Show Invisibla Record Refresh oo
[UaApplication] Tes! [UIAWIndow] Datalls ____.--""H (:]
[UlAApplication]... * [WIAWiIndow] [UlAToxtFiald] kn.. * el
» e Finbdl
[UAWindow] & [UATextrieij in_ » Loeer et
[UIAWIndow] * [UlAButton] Com.. value: SompUle S
[UlAStaticText] A.. inbel: TexiFisldl
[UIAButton] Sho.. hint; L
[UlAButton] cont... enabled: true
IAButton] loca visible: true .
u - valid: trua
[UiASaticText] A.. location: {119.53125, ahe.
[UlASlider] AppE... 45 1876}
[UlAStaticText] A.. slze: (113671875, _
[UIAButton) Disa... iiff_':fﬁ} Labe
[UIAStaticTaxt] UlAApplicatien[1]/
[UlASwitch] loca._. UAWiIndow(2]/
[WIAButton] Tast... UtATextFisld[1]/ Lonhmon &
[UlAButton] Crash LUiATextFisid[1] w5l Gesturn
[UIAStatcText] A.. A tesst kabal
W Text Locator Misc e
Tap Swipe Shake no context n
Precise Tﬂp Scrall To Change
Copy XML | Do

We can use the property name for identifying the first text box by using the method
findElementByAccessibilityId() and pass the property name as the parameter.

Step implementation for the above mentioned step would be:

@ANnd ("*I choose to enter \" (["\"]1*)\" and \" ([*\"]*)\"S")

public void iChooseToEnterAnd (String numl, String num2) throws Throwable {
wd.findElementByAccessibilityId ("TextFieldl") .sendKeys (numl) ;
wd.findElementByAccessibilityId ("TextField2") .sendKeys (num2) ;

}

[86]

Writing Your First Appium Test

In the above code, we are trying to find a field using it's accessibility identifier and then
pass a value in that field. Similarly we can implement the other two steps using accessibility
identifier :

When I tap on Compute Sum
Then I should see the result "55"

Below is how the i0sPageSteps . Java file would look like after the implementation:
public class i0OSPageSteps {
private AppiumDriver appiumDriver;

@When ("~I launch i0S apps$")

public void iLaunchIOSApp () throws Throwable {
DesiredCapabilities capabilities = new DesiredCapabilities();
capabilities.setCapability ("appium-version", "1.0");
capabilities.setCapability ("platformName", "iOS");
capabilities.setCapability ("platformvVersion", "8.4");
capabilities.setCapability ("deviceName", "iPhone 6");
capabilities.setCapability ("app",
"/Users/nishant/Development/HelloAppium/app/TestApp.app");
appiumDriver = new AppiumDriver (new URL
("http://0.0.0.0:4723/wd/hub"), capabilities);
appiumDriver.manage () .timeouts ()

.implicitlyWait (60, TimeUnit.SECONDS) ;

}

@And ("*I choose to enter \"([*\"]1*)\" and \" ([*\"]*)\"$")
public void iChooseToEnterAnd (String numl, String num2) throws Throwable {
appiumDriver.findElementByAccessibilityId ("TextFieldl") .sendKeys (numl) ;
appiumDriver.findElementByAccessibilityId ("TextField2") .sendKeys (num2) ;

}

@When ("I tap on Compute Sum$")

public void iTapOnComputeSum() throws Throwable {

appiumDriver.findElementByAccessibilityId ("ComputeSumButton") .click();
}

@Then ("I should see the result \"([*\"]1*)\"$")

public void iShouldSeeTheResult (String result) throws Throwable {
Assert.assertEquals (result,
appiumbDriver.findElementByAccessibilityId ("Answer") .getText ());
}

[87]

Writing Your First Appium Test

This completes the automation of the scenario for iOS app. In the upcoming chapters, we
can perform the general refactoring on the above generated code for iOS app. However,
some of the code which are android specific will not work for iOS app.

Summary

In this chapter, we introduced you to basic a Appium Java project and how to use
Cucumber to write the test. Also, we briefly discussed the importance of Cucumber and
how it helps capture the system's behavior. We added Appium and Cucumber dependency
in Gradle file. We were also introduced to the desired capabilities class, which tells the
Appium server what session we are interested in. We saw how the desired capabilities
differ from hybrid app and mobile web app. We also got to know about browserName and
the values it can take.

In the next chapter, we will take a detailed look into the Desired Capabilities classand
how to vary the parameters to suit our testing needs. Also, we will refactor the test to start
the server programmatically and see the arguments it can take.

[88]

Understanding Desired
Capabilities

In the last chapter, we saw that the boilerplate code generated by Appium Inspector had a
bunch of lines that used the DesiredCapabilities class and passed a certain set of keys
and values to the Appium server. In this chapter, we will take a detailed look at the
following:

e Appium server arguments

¢ Desired capabilities for Android

¢ Desired capabilities for iOS

¢ iOS XCUITest related iOS capabilities

Before we take a dive in there, we will refactor the code written in the last chapter and
introduce the concept of hooks before and after, which acts like setup and tear down and
will take care of starting the Appium server programmatically and then stopping it.

In test automation with Appium, all the commands are executed in the context of a session.
A session is initiated by a client with a server in ways either specific to Android or iOS and
with a JSON object called desired capabilities.

Let's refactor the existing code to add handling the Appium server through code.

Understanding Desired Capabilities

Refactoring -1

Note: We will take one of the feature files or code bases (Android in this
case) to demonstrate some of the concepts while refactoring. This can also
be followed with the other iOS code written.

In this first refactoring, we will remove the manual dependency of starting and stopping the
Appium server, and we will do it programmatically:

e Create a new class called startingSteps under the steps package

e Inthe startingSteps class, create two empty methods, called
startAppiumServer and stopAppiumServer:

public void startAppiumServer () {
//code to start appium server

}

public void stopAppiumServer () {
// Code to stop appium server

}

At this point in time, we need to know the concept of hooks in cucumber. So basically,
cucumber gives you a number of hooks, which allow one to run certain code at a certain
point in the test life cycle. These hooks can be used and defined in a class file in the steps

folder. However, cucumber doesn't mandate the location. So, the two hooks that we will use
are these:

o Before: Before hooks will run before the execution of each scenario. They execute
before the first step mentioned in each scenario; hence, they can potentially act as
a common setup for all the tests. We can have multiple before hooks, and they
will run in the same order as they are declared.

o After: After hooks run after the last step of each scenario. they run irrespective of
the outcome of the last step, whether the last step is a success or failure.

[90]

Understanding Desired Capabilities

Let's put the @Before tag for the startAppiumServer method and the eafter tag for
stopAppiumServer method. While resolving, ensure that you use the
cucumber.api . java, highlighted here:

Class to Impart

0 = Before (cucumber.apl.java) Cradie: info.cukes:cucumber-java:1.2.5 (cucumber-java-1.2.5 jar) T4 »
@ & Before (org.aspectj.lang.annotation j 1% [15 PECEweas Bl Waavi 0.jar) Cg »

& = Before (org.junit) fle: Junitjunit4 nit-4 r) B »

¢ The next step is to add code that will start the Appium server. Appium exposes
AppiumDriverLocalService, which will basically let you start and stop the
server.

¢ Add the following code to the startAppiumServer method. So, this builds the
default Appium service, which means that the IP address will remain 0.0.0.0 and
the port will be 4723:

@Before

public void startAppiumServer () throws IOException {
AppiumDriverLocalService appiumService =
AppiumDriverLocalService.buildDefaultService () ;
appiumService.start ();

}

e To implement the st opAppiumServer method, we need appiumService to be
in instance variable; so, highlight the first row above and select Refactor > Extract
> Field.

e Once done in the stopAppiumServer method, implement the following code.
This stops the Appium server:

@After
public void stopAppiumServer () {
appiumService.stop () ;

}

¢ Once done, stop any instance of Appium server running via the terminal
(Command prompt in case of Windows) or Appium GUI app.

¢ Navigate to the feature file, right-click, and select the Run 'Feature:Sample’
option.

You should be able to run both the scenarios without having to start the Appium server
manually.

[91]

Understanding Desired Capabilities

Server argument

Desired capabilities are sent by the client to the server via JSON objects by requesting the
automation session we intend to have. Now, with the preceding code refactor, we can start
the Appium server by calling the start () method. This method starts the Appium server
assuming the node and appium. §s files to be in certain locations and using port 4723. If
you have tweaked node. js installation, your Appium install path is not the same, or if you
want to start Appium server on different ports, we can use AppiumServiceBuilder to

override these inputs:

appiumService = AppiumDriverLocalService.buildService (new

AppiumServiceBuilder ()

.usingDriverExecutable (new File (("/path/to/node")))
.withAppiumJS (new File (("/path/to/appium")))

.withIPAddress ("127.0.0.1")
.usingPort (port)
.withArgument (argument)

.withLogFile (new File ("path/to/log/file")));

appiumService.start ();

AppiumServiceBuilder also gives you other options to override, which are as shown

here:

" withAppiumdS (File appiumlS)

usingAnyFreePort ()

m & usingPort(int port)
1 & withArgument (ServerArgument argument)

withIPAddress (String ipAddress)
n & withLogFile(File logFile)

usingDriverExecutable(File nodelSExecutabl..

m & withArgument (ServerArgument argument, Stri..
m o withCapabilities (DesiredCapabilities capab..
m 't withEnvironment (Map<String, String> enviro..

m ‘& withStartUpTimeOut(long time, TimeUnit tim.

AppiumServiceBuilder
AppiumServiceBuilder
AppiumServiceBuilder
AppiumServiceBuilder
AppiumServiceBuilder
AppiumServiceBuilder
AppiumServiceBuilder
AppilumServiceBuilder
AppiumServiceBuilder
AppiumServiceBuilder
AppiumServiceBuilder

[92]

Understanding Desired Capabilities

If you note the withArgument (ServerArgument argument) method, Appium server can
take input from the following list of arguments. We will mention some important ones that
one should be aware of, though Appium lists a bunch of them that can be found on their
siteat https://github.com/appium/appium/blob/master/docs/en/writing-running-ap
pium/server-args.md(The following descriptions/definitions of certain flags are cross
referenced from Appium website):

Flag Description

—-—address This is the IP address to listen on.
Default value: 0.0.0.0
(usage example, appium --address 192.168.1.1)

—--port This is the port to listen on.
Default value: 4723
(usage example, appium —-port 4726)

—--session-override | This enables session override.
Default value: False

(usage example, appium --session-override)

-—log This is to send log output to the file specified.
Default value: null
(usage example, appium --log path/to/appium.log)

—-—-selendroid-port [This isthe port used for communication with Selendroid.
Default value: 8080
(usage example, appium --selendroid-port 8282)

—-—bootstrap-port |[This isthe port to use on devices to talk to Appium. This is an
Android-only.

Default value: 4724

(usage example, appium --bootstrap-port 4728)

—-—-webhook This is to send log output to the HTTP listener specified.
Default value: nul1l
(usage example, appium —--webhook localhost:9876)

So, let's do another refactoring where we replace the
AppiumDriverLocalService.buildDefaultService () method to build our own
Appium service.

[93]

Understanding Desired Capabilities

Refactoring -2

Let's refactor the given line and change the buildbefaultService (); instead, we will use
the buildservice () method, which will take some of the server flags discussed earlier:

AppiumDriverLocalService appiumService =
AppiumDriverLocalService.buildDefaultService () ;

Ensure that the path to node and Appium is what you found on your machine. To find the
path on your Mac machine, launch Terminal and run the which appiumand which node
commands to get the path:

Also, the path to the log file can be relative to the project folder. So, now the method should
look as shown in the following code:

@Before
public void startAppiumServer () throws IOException {

int port = 4723;

appiumService = AppiumDriverLocalService.buildService (new
AppiumServiceBuilder ()
.usingDriverExecutable (new File (("/usr/local/bin/node")))
.withAppiumJS (new File (("/usr/local/bin/appium")))
.withIPAddress ("0.0.0.0")
.usingPort (port)
.withArgument (GeneralServerFlag.SESSION_OVERRIDE)
.withLogFile (new File ("build/appium.log")));
appiumService.start ();

[94]

Understanding Desired Capabilities

For a Windows user, we need to get the path of executables of Node JS and Appium. So,
instead of having two methods in the same class, we will add a check for the OS type, and
we will start the Appium server based on the OS type. So, the preceding code will look as
illustrated; dependency is nodeJsS_Path, and appiumJS_Path should be defined based on
your machine;

@Before
public void startAppiumServer () throws IOException {

int port = 4723;

String nodeJS_Path = "C:/Program Files/NodeJS/node.exe";
String appiumdS_Path = "C:/Program
Files/Appium/node_modules/appium/bin/appium.js";

String osName = System.getProperty ("os.name");
if (osName.contains ("Mac")) |
appiumService = AppiumDriverLocalService.buildService (new

AppiumServiceBuilder ()
.usingDriverExecutable (new
File(("/usr/local/bin/node")))
.withAppiumJS (new File (("/usr/local/bin/appium")))
.withIPAddress ("0.0.0.0")
.usingPort (port)
.withArgument (GeneralServerFlag.SESSION_OVERRIDE)

.withLogFile (new File ("build/appium.log")));
} else if (osName.contains ("Windows")) {
appiumService = AppiumDriverLocalService.buildService (new

AppiumServiceBuilder ()

.usingDriverExecutable (new File (nodeJS_Path))
.withAppiumJS (new File (appiumJS_Path))
.withIPAddress ("0.0.0.0")
.usingPort (port)
.withArgument (GeneralServerFlag.SESSION_OVERRIDE)
.withLogFile (new File ("build/appium.log")));

}

appiumService.start ();

[95]

Understanding Desired Capabilities

In the preceding code, we noticed that the SESSTON_OVERRIDE belongs to
GeneralServerFlag; apart from that, there are a lot of other flags as well, which can be
chosen from this list:

i) = SESSION_OVERRIDE GeneralServerFla®
%1 & ASYNC_TRACE GeneralServerFlag
2l © CALLBACK_ADDRESS GeneralServerFlag
5 & CALLBACK_PORT GeneralServerFlag
5! ‘= CONFIGURATION_FILE GeneralServerFlag
! = DEBUG_LOG_SPACING GeneralServerFlag
S & LDCAL_TIMEZONE GeneralServerFlag
5l & LOG_LEVEL GeneralServerFlag
3 & LOG_NO_COLORS GeneralServerFlag
5 & LOG_TIMESTAMP GeneralServerFlag
$1 & NO_PERMS_CHECKS GeneralServerFlag
1 & PRE_LAUNCH GeneralServerFlag
5l & ROBOT_ADDRESS GeneralServerFlag
:! = ROBOT_PORT GeneralServerFlag
31 & SHELL GeneralServerFlag
3 & SHOW_CONFIG GeneralServerFlag
5 & STRICT_CAPS GeneralServerFlag
% & TEMP_DIRECTORY GeneralServerFlag
4 & valueOf (String name) GeneralServerFlag
il & WEB_HOOK GeneralServerFlag
J4n & values () GeneralServerFlagl]

For example, we can choose to pass the ROBOT_ADDRESS flag and pass the device ID or
UDID to run the test on a certain device connected to the machine:

.withArgument (GeneralServerFlag.ROBOT_ADDRESS, udid)

We will use the udid feature when we need to execute the test on physical devices or more
than one device with similar configurations. We will read about this in detail in the
upcoming chapter. Let's move on to the server capabilities.

[96]

Understanding Desired Capabilities

Server capabilities

Testing will always be performed in a fixed context with respect to Appium server and that
context will be set by desired capabilities. There are some mandatory desired capabilities
and some are device OS-specific, such as Android or iOS. If you navigate to the
HomePageSteps class file and the i LaunchQuikr () method, you will note the following

mentioned lines:

capabilities.setCapability ("platformName", "Android");
capabilities.setCapability ("platformVersion", "5.1");
capabilities.setCapability ("deviceName", "Nexus");

S0, plat formName, plat formVersion, and deviceName are mandatory desired
capabilities, which form the basis of mobile automation.

Here are some of the capabilities that are applicable for both iOS as well as Android

devices:

Capability Description & Usage

automationName This is used to specify the automation engine to be used.
Values: Appium (default) or Selendroid

platformName This is used to specify which mobile OS platform to use for the
session.
capabilities.setCapability ("platformName",
"Android");

platformVersion |This is used to specify which mobile OS version to be used for the
session, and it should match the emulator or device under test.
capabilities.setCapability ("platformVersion",
n 5 . 1 n) ’.

deviceName This is used to specify which mobile device or emulator is in use.
For Android, any string can be passed.
capabilities.setCapability ("deviceName", "Nexus");

app This is used to specify the absolute local path to an . ipa or .apk

file.
capabilities.setCapability ("app",
"/Users/Development/HelloAppium/app.apk") ;

[97]

Understanding Desired Capabilities

browserName

This is used to specify the name of the mobile web browser to
automate.

Values: safari, Chrome, Chromium, and Browser
capabilities.setCapability ("browserName",
"Browser") ;

newCommandTimeout

This is used to specify the time (in seconds) Appium will wait for a
new command from the client before assuming that the client quit
and ending the session.

capabilities.setCapability ("newCommandTimeout",
120);

language This is used to specify the language for the simulator or emulator.
(usage example, fr)
locale This is used to specify the locale to set for the iOS Simulator
For example, fr_ca
udid This is used to specify the unique device identifier of the connected
physical device
For example, 1ae203187fc012g
capabilities.setCapability ("udid", 1ae203187fc012qg);
orientation This is used to specify the orientation for simulator or emulator.
LANDSCAPE OF PORTRAIT
autoWebview This is used to move directly into Webview context; default value
is false.
Values: t rue and false
capabilities.setCapability ("autoWebview", true);
noReset Don't reset the app state; the default value is false. This flag is
used when you don't want to reset the app state.
Values: true and false
capabilities.setCapability ("noReset", true);
fullReset Reset app state; in i0OS, delete the entire simulator folder. In

Android, reset the app state by uninstalling the app and clearing
all data; full reset requires an app capability. The default value is
false.

Values: true and false

capabilities.setCapability ("fullReset", true);

[98]

Understanding Desired Capabilities

Refactoring -3

Let's add a couple of desired capabilities to our test now. One of the important concepts of
test automation is to start with a clean slate; hence, we will add fullRrReset capabilities.
Also, the Appium server waits for 60 secs for the new command by default, and then it
quits the session because of inactivity; so we will tweak it a little to wait for 120 seconds

now:

e fullReset: This is to reset the app state between each test
¢ newCommandTimeout: This is to stop the session from quitting if new commands

are not passed within 120 seconds

Let's add these capabilities in the HomePageSteps class file under the i LaunchQuikrapp ()

method:

@When ("~I launch Quikr apps$")
public void iLaunchQuikrApp () throws Throwable {

}

DesiredCapabilities capabilities = new DesiredCapabilities();
capabilities.setCapability ("platformName", "Android");
capabilities.setCapability ("platformvVersion”, "5.1");
capabilities.setCapability ("deviceName", "Nexus");
capabilities.setCapability ("fullReset", true);
capabilities.setCapability ("newCommandTimeout", 120);
capabilities.setCapability ("app",
"/Users/nishant/Development/HelloAppium/app/quikr.apk") ;

appiumDriver = new AppiumDriver (new
URL ("http://0.0.0.0:4723/wd/hub"), capabilities);
appiumDriver.manage () .timeouts () .implicitlyWait (60,

TimeUnit.SECONDS) ;

We can try running the scenario again, and it will work seamlessly. After every refactoring,
ensure that you execute the code so that you know the impact of the change.

[99]

Understanding Desired Capabilities

Android-only capabilities

When we are performing Android app automation, there are a bunch of Android-specific
capabilities that can be used to set the session. Here's a complete list of Android-only

capabilities:

Capability Description and values

appActivity Used to specify the activity name for the Android activity you want to
launch from your package.
capabilities.setCapability ("appActivity",
MainActivity);

appPackage Used to specify the Java package name of the Android app you want
to run.
capabilities.setCapability ("appPackage",
com.example.android.mySampleApp) ;

appWaitActivity Used to specify the activity name for the Android activity you want to
wait for.
capabilities.setCapability ("appWaitActivity",
SplashActivity);

appWaitPackage Used to specify the Java package of the Android app you want to wait
for.
capabilities.setCapability ("appWaitPackage",
com.example.android.myApp) ;

appWaitDuration Used to specify timeout in milliseconds used to wait for the

appWaitActivity to launch (defaultis 20000).
capabilities.setCapability ("appWaitDuration", 30000);

deviceReadyTimeout

Used to specify timeout in seconds while waiting for the device to
become ready.
capabilities.setCapability ("deviceReadyTimeout", 5);

androidCoverage

Used to specify a fully qualified instrumentation class. Passed to —w in
adb shell am instrument —e coverage true —w.
com.my.Pkg.instrumentation.MyInstrumentation

enablePerformancelogging

Used to enable ChromeDriver’s performance logging only for Chrome
and webview (default false).

capabilities.setCapability ("enablePerformancelLogging",
true);

androidDeviceReadyTimeout

Used to specify timeout in seconds used to wait for a device to become
ready after booting.

capabilities.setCapability ("androidDeviceReadyTimeout",
30);

[100]

Understanding Desired Capabilities

androidInstallTimeout

Used to specify timeout in milliseconds, it is used to wait for an apk to
install to the device. Defaults to 90000.
capabilities.setCapability ("androidInstallTimeout",
60000) ;

adbPort

Used to specify the port used to connect to the ADB server (default 5037).

androidDeviceSocket

Used to specify the Devtools socket name. It is needed only when the
tested app is a Chromium-embedding browser. The socket is opened
by the browser, and ChromeDriver connects to it as a client, for
exanuﬂe,chrome_devtools_remota

avd

Used to specify the name of the avd to launch.
capabilities.setCapability ("avd", "Nexusé6");

avdLaunchTimeout

Used to specify how long to wait in milliseconds for an avd to launch
and connect to ADB (default 120000).
capabilities.setCapability ("avdLaunchTimeout", 300000);

avdReadyTimeout Used to specify how long to wait in milliseconds for an avd to finish its
boot animations (default 120000).
capabilities.setCapability ("avdReadyTimeout", 300000) ;
avdArgs Used to specify additional emulator arguments, it is used when
launching an avd.
Usage example, -net fast
useKeystore Used to specify a custom keystore to sign apks; default false.
capabilities.setCapability ("useKeystore", true);
keystorePath Used to specify the path to custom keystore; default .
Usage example, e
keystorePassword Used to specify the password for custom keystore.
For example, foo
keyAlias Used to specify the alias for key.
keyPassword Used to specify the password for key.

For example, foo

chromedriverExecutable

Used to specify the absolute local path to webdriver executable (if
Chromium embedder provides its own webdriver, it should be used
instead of the original ChromeDriver bundled with Appium).
Usage example, r

autoWebviewTimeout

Used to specify the amount of time to wait for Webview context to become
active, in ms; defaults to 2000.

intentAction

Used to specify the intent action that will be used to start activity
(default android.intent.action.MAIN).

For e, android.intent.action.MAIN and
android.intent.action.VIEW

[101]

Understanding Desired Capabilities

intentCategory Used to specify intent category which will be used to start activity
(default android.intent.category.LAUNCHER).
For e, android.intent .category.LAUNCHER and
android.intent.category.APP_CONTACTS

intentFlags Used to specify flags that will be used to start activity (default

0x10200000).
For example, 0x10200000

optionalIntentArguments

Used to specify additional intent arguments that will be used to start
activity; refer to Intent arguments.
For example, -—esn, ——ez, and more.

unicodeKeyboard

Used to enable Unicode input, default is false.

resetKeyboard

Used to reset the keyboard to its original state after running Unicode tests
with the d capability. It is ignored if used alone; default is false.

dontStopAppOnReset

This doesn't stop the process of the app under test before starting the app
using adb. If the app under test is created by another anchor app, setting
this to false allows the process of the anchor app to be still alive during the
start of the test app using adb. In other words, with t set to true, we will
not include the S flag in the adb shell start call. With this capability
omitted or set to false, we include the -s flag; default is false.

noSign

Used to skip checking and signing of the app with debug keys, it will
work only with r and not with selendroid; defaults to false.

ignoreUnimportantViews

Used to call the) UiAutomator function. This capability can speed up test
execution since accessibility commands will run faster, ignoring some
elements. The ignored elements will not be findable, which is why this
capability has also been implemented as a toggle-able setting as well as a
capability; defaults to false.

disableAndroidWatchers

Used to disable Android watchers that watch for applications not
responding and application crash; this will reduce CPU usage on Android
device/emulator. This capability will work only with UiAutomator and
not with Selendroid; default is false.

chromeOptions

Used to allow passing the s capability for ChromeDriver. For more
information, refer to ChromeOptions at: https://sites.google.com
/a/chromium.org/chromedriver/capabilities

recreateChromeDriverSessions

Used to kill a ChromeDriver session when moving to a non-
ChromeDriver webview; defaults to false.

nativeWebScreenshot

Used to specify web context and use the native (adb) method for taking a
screenshot; defaults to false.

androidScreenshotPath

Used to specify the name of the directory on the device in which the
screenshot will be put; defaults to /data/local/tmp.
For example, /sdcard/screenshots/

autoGrantPermissions

Used to have Appium automatically determine which permissions your
app requires and grant them to the app on install; defaults to false.

[102]

Understanding Desired Capabilities

Let's refactor the code to use some of the preceding capabilities.

Refactoring -4

When we want to use the app that is already installed on the emulator, we need to use the
appPackage and appActivity capabilities and not use the app capability. Let's look at the
code we have written till now for starting an app in the HomePageSteps.

@When (""I launch Quikr apps$")

public void iLaunchQuikrApp () throws Throwable {
DesiredCapabilities capabilities = new DesiredCapabilities();
capabilities.setCapability ("platformName", "Android");
capabilities.setCapability ("platformVersion"”, "5.1");
capabilities.setCapability ("deviceName", "Nexus");
capabilities.setCapability ("noReset", false);
capabilities.setCapability ("fullReset", true);
capabilities.setCapability ("app",
"/Users/nishant/Development /HelloAppium/app/quikr.apk");

appiumDriver = new AppiumDriver (new
URL ("http://0.0.0.0:4723/wd/hub"), capabilities);
appiumDriver.manage () .timeouts () .implicitlyWait (60,

TimeUnit.SECONDS) ;
}

When we execute the preceding code, it performs a full reset and deploys the app every
time. Let's modify this code to use the installed app and perform a fast reset of the app.
Comment or delete the lines, as shown:

// capabilities.setCapability ("noReset", false);

// capabilities.setCapability ("fullReset", true);

// capabilities.setCapability ("app",
"/Users/nishant/Development/HelloAppium/app/quikr.apk") ;

Also, add the following lines. Once done, run the test by right-clicking on the feature file
and selecting the Run Scenario... option:

capabilities.setCapability ("appPackage", "com.quikr");
capabilities.setCapability ("appActivity", "com.quikr.old.SplashActivity");

[103]

Understanding Desired Capabilities

If we have an Android virtual device created (using Android SDK, we created one in
Chapter 2, Setting Up the Machine), we can use the following code that will start the
emulator first and then run the test:

capabilities.setCapability ("avd", "Nexus6_API_24");
capabilities.setCapability ("avdReadyTimeout", 180000);

So, with the preceding change, the iLaunchQuikraApp method will look like this:

@When ("~I launch Quikr apps$")

public void iLaunchQuikrApp () throws Throwable {
DesiredCapabilities capabilities = new DesiredCapabilities();
capabilities.setCapability ("platformName", "Android");
capabilities.setCapability ("platformVersion”, "5.1");
capabilities.setCapability ("deviceName", "Nexus");
capabilities.setCapability ("newCommandTimeout", 120);

// Launches the below android virtual device and waits for 120
seconds for AVD to be ready

capabilities.setCapability ("avd", "Nexus6_API_24");
capabilities.setCapability ("avdReadyTimeout", 120000);

capabilities.setCapability ("appPackage", "com.quikr");
capabilities.setCapability ("appActivity",
"com.quikr.old.SplashActivity");

appiumDriver = new AppiumDriver (new
URL ("http://0.0.0.0:4723/wd/hub"), capabilities);
appiumDriver.manage () .timeouts () .implicitlyWait (60,

TimeUnit.SECONDS) ;
}

Once we make the preceding changes, we should be able to run it; this will launch the
Android virtual device as well before triggering the test on it.

Let's take a look at the iOS only capabilities. Even though the app behavior is more or less
similar across the devices, Appium exposes a bunch of different sets of capabilities for iOS.

[104]

Understanding Desired Capabilities

1I0S-only capabilities

When we are performing iOS app automation, there are a bunch of iOS specific capabilities
that can be used to set the session. Here's a complete list of iOS-only capabilities. Recently,
Appium implemented support for XCUITest; hence, there are bunch of other capabilities

that are XCUITest specific:

Capability Description and values

calendarFormat Used to specify the calendar format to set for the iOS
Simulator.
For example, gregorian

bundleld Used to specify the bundle ID of the app under test.
For example, i0.Helloi0S.TestApp

udid Used to specify the unique device identifier of the
connected device.
For example, 1ae203187fc012g

launchTimeout Used to specify the amount of time (in ms) to wait for

instruments.
For example, 5000

locationServicesEnabled

Used to force location services to be either on or off.
The default behavior is to keep the current simulator
setting.

Value: true or false

locationServicesAuthorized

Used to set location services to be authorized or not
authorized for an app via plist so that the location
services alert doesn't pop up. The default is to keep
the current simulator setting.

Value: true Or false

autoAcceptAlerts

Used to accept all iOS alerts automatically if they pop
up. This includes privacy access permission alerts
(For example, location, contacts, and photos); default
is false. It does not work on XCUITest-based tests.
Value: true or false

[105]

Understanding Desired Capabilities

autoDismissAlerts

Used to dismiss all iOS alerts automatically if they
pop up. This includes privacy access permission alerts
(For example, location, contacts, and photos); default
is false. It doesn't work on XCUITest-based tests.
Value: true or false

nativelInstrumentsLib

Used to use native instruments b (that is, disable
instruments-without-delay).
Value: true or false

nativeWebTap Used to enable "real”, non-javascript-based web taps
in Safari; defaultis false.
Value: true or false

safarilnitialUrl Used to specify initial Safari URL; default is a local

welcome page and its simulator-only capability, and
works on version 8.1 onward.
For example, m

safariAllowPopups

Used to allow JavaScript to open new windows in
Safari. By default, it keeps the current sim setting.
Value: true or false

safariIgnoreFraudWarning

Used to prevent Safari from showing a fraudulent
website warning. By default, it keeps the current sim
setting. It's a simulator-only feature.

Value: true Or false

safariOpenlLinksInBackground

Used to specify whether Safari should allow links to
open in new windows. By default, it keeps the
current sim setting. It's a simulator-only feature.
Value: true or false

keepKeyChains

Used to specify whether to keep keychains
(Library/Keychains) when an Appium session is
started/finished. It's a simulator-only feature.
Value: true or false

localizableStringsDir

Used to specify where to look for localizable strings;
default is en.lproj.
en.lproj

[106]

Understanding Desired Capabilities

processArguments Used to specify arguments to pass to the AUT using
instruments.
For example, -myflag

interKeyDelay Used to specify the delay, in ms, between keystrokes
sent to an element when typing.
For example, 100

showIOSLog Used to specify whether to show any logs captured
from a device in the Appium logs; default is false.
Value: true Or false

sendKeyStrategy Used to specify the strategy to use to type text into a t

field; simulator default: oneByOne, real device
default: grouped.
Value: e, grouped, OrF setValue

screenshotWaitTimeout

Used to specify maximum timeout in seconds to wait
for a screenshot to be generated; default is 10.
For example, 5

wailtForAppScript

Used to specify the iOS automation script used to
determine whether the app has been launched; by
default, the system waits for the page source not to be
empty. The result must be a boolean.
Forexanuﬂe,true;,target.elements().length
> 0;,$.delay (5000); true;

webviewConnectRetries

Used to specify the number of times we are to send a
connection message to the remote debugger to get a
webview; default: s.

For example, 3

appName

Used to specify the display name of the application
under test. It is used to automate backgrounding the
app in iOS 9+,

For example, UICatalog

[107]

Understanding Desired Capabilities

customSSLCert

Used to specify an SSL certificate to simulator. It's a
simulator-only feature.
For example,

————— BEGIN CERTIFICATE-————QWEQWEQWEKg. ..

Here are the iOS XCUITest related iOS capabilities:

Capability Description Values
processArguments Process arguments and { args: ["a", "b", "c"]
environment that willbesent |, env: { "a": "b", "c":
to the t server. "d" } } or '{"args":
["a", "b", "C"}, "envll:
{ "a": "b", "C": "d"
P
wdaLocalPort This value, if specified, will be | For example, 8100
used to forward traffic from
the Mac host to real iOS
devices over a USB. The
default value is the same as the
port number used by WDA on
device.
showXcodeLog To display the output of the For example, true
Xcode command used to run
the tests. If this is true, there
will be lots of extra logging at
startup; it defaults to false.
iosInstallPause Time in milliseconds to pause |For example, 8000

between installing the
application and starting
WebDriverAgent on the
device. It is used particularly
for larger applications, and
defaults to 0.

[108]

Understanding Desired Capabilities

xcodeConfigFile

Full path to an optional Xcode
configuration file that specifies
the code signing identity and
team for running the
WebDriverAgent on the real
device.

For example, g

keychainPath

Full path to the private
development key exported
from the system keychain. It is
used in conjunction with d
when testing on real devices.

For example, 2

keychainPassword

Password for unlocking the
keychain specified in h.

For example, super awesome
password

scaleFactor

Simulator scale factor. This is
useful to have if the default
resolution of the simulated
device is greater than the
actual display resolution. So
you can scale the simulator to
see the whole device screen
without scrolling.

Acceptable values are ' ',
'0.75','0.5, '0.33",and
'0.25"; the value should be a
string

preventWDAAttachments

Sets read-only permissons to
the s subfolder of the
WebDriverAgent root inside
Xcode's DerivedData. This is
necessary to prevent the
XCTest framework from
creating tons of unnecessary
screenshots and logs, which
are impossible to shut down
using programming interfaces
provided by Apple.

Setting the capability to true
will set Posix permissions of the
folder to 555, and false will reset
them back to 755

webDriverAgentUrl

If provided, Appium will
connect to an existing
WebDriverAgent instance at
this URL instead of starting a
new one.

For example,
http://localhost:8100

[109]

Understanding Desired Capabilities

useNewWDA

If true, it forces the uninstall of
any existing WebDriverAgent
app on the device. This can
provide stability in some
situations; it defaults to false.

For example, true

wdaLaunchTimeout

Time, in ms, to wait for
WebDriverAgent to be
pingable; it defaults to 60000
ms.

For example, 30000

Summary

In this chapter, we were introduced to the concept of desired capabilities and how they set
the context of automation. We also got acquainted with the mandatory capabilities and the
device-specific desired capabilities, such as Android and iOS. We also refactored the code to
use some of these capabilities around launching the session using an app package name and
app activity. We also refactored the code to launch the Android virtual device.

In the next chapter, we will build on a couple of more scenarios and explore Appium
inspector. We will learn how to find locators and debug hybrid apps via the Chrome

browser.

[110]

Understanding Appium
Inspector to Find Locators

In the last chapter, we saw how to start Appium server programmatically and use the
desired capabilities to set the context for test execution. We saw how to launch an emulator
from code and invoke the test on an app that is preinstalled. We also took a look at detailed
Android-specific capabilities and i0OS-specific capabilities and refactored the test to use a
few.

To write tests, we need to find the locators, and sometimes these locators are not easily
available. We need to make our own locators using xPath in that case. In this chapter, we
will take a look at the following:

e How to use Appium inspector to find locators
e How to use Ul Automator Viewer
e How to use Chrome browser to debug mobile web apps

Appium inspector

We read about Appium inspector briefly in chapter 3, Writing Your First Appium Test, to
find out the element we want to click on. It's a handy tool for element discovery and
understating the hierarchy. Let's take a thorough look at Appium inspector and the
possibilities it opens for us. Let's launch the Appium inspector by following these steps:

1. Launch the emulator.
2. Ensure that the Quikr app is installed on the emulator.

Understanding Appium Inspector to Find Locators

3. Click on the Android Settings icon in the Appium app, select the Package as
com.quikr, and select the Launch Activity as com.quikr.old.SplashActivity.
(Refer Appendix to learn to find out Package Name and Launch Activity)

4. Select the Platform Name as Android, Automation Name as Appium, and the
Platform Version as 5.1 Lollipop (API Level 22).

5. Check the Device Name box and enter Nexus.

Click on the Launch button.

7. Once the Appium console shows the following output, click on the Appium
Inspector icon:

o

[HTTP] --> GET /wd/hub/status {}

[MJSONWP] Calling AppiumDriver.getStatus() with args: []
[MJSONWP] Responding to client with driver.getStatus() result:
{"build":{"version":"1.5.3"...

[HTTP] <-- GET /wd/hub/status 200 48 ms - 83

This will launch the Appium Inspector window, as follows:

L AT RApTT
tom
e Rocond Ratiwsh s
[eirocwisget LnesiLavout] [andrsi sidget Framelavoit] ete Login / Register

|arairea meiget Linearbayn.. = Landdrosd seagen Framelays . |srdimed widget Frameley . = o

[i i) | bypa: st o wige Do Ter® 0

Jiram et wm V| [
) Lo
ket 1
\ecatian: (36, 1057)
wiyw: (1770, 1B
g b b Farne
et (nfen

parth: i
sncrnid wisgut. L isserLawosl 11
Srcirged widgat. Framed s 1y
el W F rare Lot
rairesd wigut. Fraces Lot [13
s wisget FraerLsvoct [1y
anarned wsggat | il aesat 10
a1l

arirrid wigget e Lot 1)
ardroed wickont L s svotl 11

it 0 s G
[IRERT R T -
s s = e - _
Precna T ol To Crarge

[112]

Understanding Appium Inspector to Find Locators

We briefly discussed the Appium inspector window in chapter 2, Machine Setup. Let's
explore how to use this window to derive locators. Inspector loads this window with the Ul
element selected on the right pane. So, in most cases fields will have resource-id, which will
contain the ID value of the element. It also shows the attributes of the element, which
include type, text, index, enabled, and location. All these values can be used to derive the
locator xPath to get a handle on the element. Let's navigate to the home page of the app by
clicking on the SKIP link of the app on the emulator. Once done, click on the Refresh
button in the Appium inspector window.

It will load this window:

L] L] A mmacion
[EN
Show Dinshied Swcond Hafrenn
i widget |insarLayoul] {sndroid sl GridV | [anEoid soget Urasrlopot] feisl
Lanciecid wiiget GricView] * [Bciold wedget LinestLaye... & Landeod witge!, image iew|
ricke pord e e | |aratreid neadget Lnesrleys. - A .-
o g - Eppr arebod e Tealves
fandered winget Linsarlavn . + [mdnsd wiiget Linesr s, * et Cay =
fanceoid widgel, Asisthvala.. * [sndokdsddget Linesrleyvo... = [r— ~ut g — Uiy
[wakiget Liredd L = g 1
L . iptatinn: (135, 488)
(e gt Linssr ey provoperisy
[sruraid widget LinearLeve.., = ik i
| sy L gL iy = chacked; haiss - — Sinn
(e whdget LineaiLiye._ * Pocunabin: foas
[tadi pedgpet Lineail iy, = cacishla: faus
[mrefred scigel Lnearlayg.. * fen-chokabie faive .
s it L.+ e e | e | e &
ranource-id: Com gui S St
acralsbiE; fute
(R T I
gt (|
ancird adigat Lirmarl syl 1y [——
e aicigan Frammi s 1]
wrsrond kg Frama, o |} *ﬁ
ey] ﬁ -
i midiged [rawd Tt - s
andimed micigat Belatroed ayout] 10 sl
ek gl v metgat Crwer
[o
i achgert Relatvel synat] 1L
WS] o A L rcacti 1 nost
]
BEEE et Locster e e —
= = o e ﬂ —
e Tan Scrod To Change
Coiogry XL .

Now, assume the following test case:

Scenario: Search for a used Honda City car in Bangalore city
When I launch Quikr app

And I choose "Bangalore" as my city

And I search for "Honda City" under Used Cars

Then I should see the first car search result with "Honda"

[113]

Understanding Appium Inspector to Find Locators

For all the elements, we need locators. So, we need locators for the following for the
preceding scenario:

Tap on Select City.

Type Bangalore in the Search for your city textbox.
Tap on the Cars category.

Type Honda City inthe Find a Car textbox.

Tap on the Find Used Cars button.

Verify that the result is shown.

© Uk~ wbdpeE

Now, in the preceding list, a couple of elements have unique IDs, which makes it easy to
author the test, but some don't have IDs. In this case, we need to create our own locator
using xpath. Let's run through a sample exercise in creating xpath for tapping on Cars.

Now, all the elements in the category list have the same ID, titleCat, but the text is
different for each of them. Tap on the Locator tab in the Appium inspector window.

To form an xpath, we can use one of the following syntax:

xpath=//type[Qattribute="'value']
xpath=//type[contains (Rattribute, 'value')]

So, let's try to form an xpath in this case. For type, we can use android.widget. TextView
and for the attribute part, we need to use something that's unique. So, we have text as the
unique value in this case:

Type: android.widget. TextView
Text: Cars

So, the xpath for Cars will be //android.widget.TextView[@text="Cars'], and this
can be tested by clicking on the Search button in the window:

Touch Text “f-"-‘f'i-'-"f- Misc
Strategy xpath il Search From Selected Element

Value | /fandroid.widget.TextView[@text="Cars'] Search

[114]

Understanding Appium Inspector to Find Locators

There's also an xpath attribute, which is present in the Appium Inspector window under
the Details pane; the following is the value of xpath for the Cars element. The problem with
this value is that it's not intuitive. The xpath value will work as long as Appium Inspector
hierarchy and everything else remain the same:

xpath:

//android.widget.LinearLayout [1]/android.widget.FrameLayout[1l]/android.widg
et.FrameLayout [1l]/android.widget.FrameLayout[1]/android.widget.FrameLayout [
1] /android.widget.RelativeLayout [1]/android.support.vd.widget.DrawerLayout [
1] /android.widget.RelativelLayout [1]/android.widget.RelativeLayout[1]/androi
d.widget.FrameLayout[1]/android.widget.ScrollView[1l]/android.widget.LinearL
ayout [1] /android.widget.GridView[1]/android.widget.LinearLayout[1]/android.
widget.TextView[1]

Implementing the other steps

Let's implement the preceding scenario. The first step to launch a quicker app is already
automated, so let's figure out the dependency for the following step:

And I choose "Bangalore" as my city

1. Tap on SKIP.

2. Tap on Select City.

3. Enter Bangalore in the search for your city textbox.
4. Select the appearing value from the dropdown.

So, when you use the Inspector, you will notice that all the preceding elements have an ID,
which can be easily used.

Here's the implementation for the same. We can create these methods in the
HomePageSteps class file. To ensure that the click action has the element visible, we have
used Thread.sleep (). We will refactor the same in a later chapter to use WwebDriver wait:

@And (""I choose \"(["\"]1*)\" as my citys$")
public void iChooseAsMyCity (String city) throws Throwable {
appiumDriver.findElement (By.id ("skip")) .click();

Thread.sleep(2000);
appiumDriver.findElement (By.id ("citySpinner")) .click();

Thread.sleep(2000);
appiumDriver.findElement (By.id ("search_ET")) .click();
appiumDriver.findElement (By.id ("search_ET")) .sendKeys (city);

[115]

Understanding Appium Inspector to Find Locators

Thread.sleep (2000) ;
appiumDriver.findElement (By.id("city_name")) .click();

}

Similarly, we can implement the other steps:

And I search for "Honda City" under Used Cars
Then I should see the first car search result with "Honda"

If you get the Upgrade Available popup, you can use the Appium Inspector window, as
shown, and construct the xpath for the same:

L BN) ADHRT PSR
[EN
Show Dinshied Swcond Hafrenn

[andoid micgel LirearLevoul] [acdroid widget Framelavoot] peisly
Lararo mwige | e Ees |wrarmt wiagad Framl e [aredroard arcager 1amel #y e, -
Eypas arcioid wisget. Button
et Larter

e

eaabied. 1

lotation: (284, 1807)
sitw: (330, 1848)
chackabis: fuss

ciicisbie; T Upgrads Availabia!!

g e e Wi o B e veraicn of e Apc. Plasas
™ g e 1 U Liteit rorpon i ey al He
rencurce-id; sraroat iibotined rure Apahurih g gt e heal utk
nomliabie fase e

el fane

apath: ||

i wickget L il myot (1
sncimid g Framelam TY
wrond ik Frama o 1)
il kg FrasaLinptut 1)
o ik L irse | ineect 1Y
i wickget. LinsarL et
i mnciged Buson{ 1]

Toueh Tat = Dy
Sumtegy rpath ﬂ Smsich From Selected Emrrem a1 cocteat ﬂ
Valn | fjandred widget Suttsn| fier = Later] Saarch Ehans

appiumDriver.findElement (By.xpath ("//android.widget.Button[@text="Later']")
)

To implement the next step, which isAnd I search for "Honda City" under Used
Cars, we need to perform the following steps:

1. Tap on the Cars category.

Here's the code to do the same; the locator used is xpath:

appiumDriver.findElement (By.xpath ("//android.widget.
TextView[Q@text="Cars']")).click();

[116]

Understanding Appium Inspector to Find Locators

2. Tap on the Find a Car textbox.

This is the code to do the same; the locator used is id:

appiumDriver.findElement (By.id ("cnb_hp_choose_et")) .click();

3. Typein Honda City in the textbox.

The following is the code to do the same; the locator used is id:

appiumDriver.findElement (By.id ("cnb_search_text_et"))
.sendKeys ("Honda City");

4. Select the matching item from the results.

The following is the code to do the same; the locator used is id. To find the result, we need
to click on one result from the list of results. So, we will be using the findElements () API,
which will return a list of results and here we will query for the result we want:

appiumDriver.findElements (By.id ("textl1"));

To filter the result we want, we will iterate through the list and check for the element that
contains the text Honda City. Here's the code for the same:

List<WebElement> results = appiumDriver.findElements (By.id("textl"));
for (WebElement result : results) {
if (result.getText ().contains (carName)) {
result.click();
break;

5. Tap on Find Used Cars.

Here's the code to do the same; the locator used is id:
appiumDriver.findElement (By.id ("cnb_search_button")).click();
So, the complete method will look like this:

@And (""I search for \"([*\"]*)\" under Used Cars$")
public void iSearchForUnderUsedCars (String carName) throws Throwable {
appiumDriver.findElement (By.xpath ("//android.widget.TextView[@text="'Cars']"

)y) .click();
appiumDriver.findElement (By.id ("cnb_hp_choose_et")) .click();
appiumbDriver.findElement (By.id ("cnb_search_text_et")) .sendKeys (carName) ;

[117]

Understanding Appium Inspector to Find Locators

List<WebElement> results = appiumDriver.findElements (By.id("textl"));
for (WebElement result : results) {
if (result.getText ().contains (carName)) {
result.click();
break;
}
}
appiumDriver.findElement (By.id ("cnb_search_button")) .click();

The last step to be automated is as follows:

Then I should see the first car search result with "Honda"

This is the code to do the same, and the locator used is id:

appiumDriver.findElements (By.id ("cars_ad_list_title_tv"));

In the next code, we are checking that the header of each result item contains Honda as we
have searched for Honda City car:

@Then ("*I should see the first car search result with \" ([*\"]*)\"S$")
public void iShouldSeeTheFirstCarSearchResultWith (String arg0) throws
Throwable {
List<WebElement> elements =
appiumDriver.findElements (By.id ("cars_ad_list_title_tv"));
Assert.assertTrue ("Verified first result contains
Honda",elements.get (0) .getText () .startsWith (arg0));
}

So, this completes the implementation of the new scenario. You would have noticed that, to
use Appium inspector, we need to start the session from scratch. There are times when we
perform certain transactions and steps to arrive on a screen and then see the locators. There
is a direct way to check for locators without having to use Appium.

Ul Automator Viewer

There is an alternate way of just seeing locators using uiautomatorviewer, bundled by
Android SDK. If you have set up the Android SDK path, open the Terminal (Command
Prompt in Windows) and type in the uiautomatorviewer command. This will launch a
blank window with a couple of icons on top, as illustrated in the following screenshot. It is
present under the tools folder in Android SDK:

[118]

Understanding Appium Inspector to Find Locators

o ® Ul Automator Viewer
@@ Jd
¥ A AN N -
Node Detall

We use this tool to find out the application Ul hierarchy and show the details of the
elements present in the Ul. We can inspect the attributes of an element by clicking on the
element.

Steps to use Ul Automator Viewer:

1. Prerequisites: Emulator is running and the Android SDK path is set.

2. Open Terminal and type in uiautomatorviewer (for Windows, open Command
Prompt and type in uiautomatorviewer).

3. Launch the app under test in the emulator, Quikr in our case.

4. Click on the second icon, which is Device Screenshot.

5. The Ul Automator Viewer window will launch, with the following screen.

[119]

Understanding Appium Inspector to Find Locators

6. Click on any one of the Ul elements on the left pane:

L]) Ul Automator Viewar
—~@ad
l i
& & AN N =
Login / Register
¥ [0) FramelLayout [0,88][1440,
e ¥ (0) FrameLayout [0,88)(142
— ¥(0) LinearLayout [0,88][1
(D) View [0,B8][1440,
Track Ordera * {0} LinearLayout [0,
TrmcH the Thaiuy bor pras dery *{1) FrameLayout [0,
e ¥ {0} LinearLayout |
*{1) RelativeLay
e {2) TextView:C}
®{1) LinearLayout [0,19
RS A Pl MAF S & 88 AAY
i —
index 2
text Continua
resource-id com.quikridfcontinue_login
class android widget.TextView
package com.quikr
content-desc
checkable false
checked false
Lo clickable true
enabled true
n FACEBDOX G GOOGLE r“usm 'I'alse
focused falsa
scrollable false

7. In the right pane, we see two things: Ul hierarchy and the element details, such as
index, resource-id, and class.

8. Clicking on the Save icon allows us to save the screenshot and the XML layout of
the screen with all the node details.

This is a lightweight way to check for locators without going through the process of starting
an Appium session. It can be invoked on any screen of the emulator.

[120]

Understanding Appium Inspector to Find Locators

Debugging mobile web apps using Chrome
Inspect

The Chrome browser comes with a lot of handy features under Dev Tools. It can be used to
debug and profile a mobile web app. Chrome Dev Tools can be launched from More Tools
> Developer Tools under the Chrome menu:

To use the Chrome inspect feature, we need to be running the emulator/device upward of
Android 4.0 and Chrome for Android has to be installed on the emulator/device.

To use the device, we need to enable certain settings: on the Android device, select Settings
> Developer Options > Enable USB Debugging. Developer Options is hidden, by default,
on Android 4.2 and later. We will take a detailed look at it when we move on to devices for
test execution. For now, emulators will show up by default and do not require any
permission settings.

Carry out the following steps to use the Chrome Inspect feature:

1. Launch the emulator and open the mobile web app on the Chrome browser of the
emulator.

2. Open Chrome browser on your mobile and type in chrome://inspect.

3. It displays a list of debug-enabled web views on the emulator running (or the
device connected).

[121]

Understanding Appium Inspector to Find Locators

4. This will load the following details, showing the remote device connected, which

in this case is an emulator running on host 192.168.56.101:5555:

Dy Tt

intpect 11 D &5

Durvicos

B e USE dewean P irageaey
[Temcsew ratwers e Coafigara
Ramola T:jnjur
Mexus_6_5.1_API_22

Chwromss [55.0 288181) o

(il Brappdng lor Mobdas & Tebsts | By Wabds Aocesennes Oniing ol Lo Prices in inda

Web/\View in com googhe androsd gress [389.0.0.0)

[R A S S R P B e B e R R e St

. The emulator is running Chrome browser version 55.0.2883.91. It also shows the

site opened along with the URL and certain options available, such as inspect,
focus tab, reload, and close.

. To start debugging, click on the inspect link, and it will open the Developer

Tools window.

. The screen is divided into three sections: one displaying the mobile Ul, the

second one with element/DOM hierarchy highlighted, and the last one showing
Styles and Event Listeners.

. Overall, there are nine main tools available: Elements, Console, Sources,

Network, Timelines, Profiles, Application, Security, and Audits, as shown:

[122]

Understanding Appium Inspector to Find Locators

In the preceding screenshot, the transparent portions represent device interfaces, such as
the Chrome omnibox or the Android status bar.

Once we have this window open, we can click on the Select Elementicon “* and then
click on the element in the left pane whose locator we want to find. We can also click on

Toggle Screencast 0] to view the content of the device/emulator in the DevTools instance.

When in toggled mode, the icon color will change to blue - . The screen on the left can be
interacted with using clicks, which are generally translated into tap actions, and key strokes
are sent to the device.

Summary

In this chapter, we delved into how to use Appium Inspector to find locators of Ul
elements. Also, we learned to derive xpath over the Appium-generated xpath, which is long
and difficult to comprehend and maintain. Xpath has to be used if there are no readily
available locators, preferably IDs. We also implemented a few cucumber steps to use
locators and learned to select the element we need from the list.

We learned about the Ul Automator Viewer and how to use it. We also learnt about
debugging mobile web apps or webviews using Chrome browser's inspect feature.

[123]

How to Synchronize Tests

In the earlier chapters, we completed the journey of writing a basic test scenario that runs
on the emulator. We started with the machine setup, creating an Appium Java project and
then writing the first Appium test. We also looked at how to use the Appium inspector to
find locators. During this process, we wrote a couple of scenarios and automated them.
Robustness and reliability are the traits of a good automated test. However, while writing a
test, sometimes we need to keep the test execution speed in sync with the actual app
performance; this way, the script won't fail for issues such as the app not loading rapidly.
So far, we handled it using Thread.sleep () in our code, which is not the best way to
handle synchronization.

In this chapter, we will learn about the following:

o Different driver types available in Appium
¢ Wait strategies:

o Implicit wait

o Explicit wait

¢ Fluent wait

And we will refactor the code to implement these.

AppiumDriver

If you refer to chapter 3, Writing Your First Appium Test, and remember the boilerplate code
generated, it creates an instance AppiumDriver:

wd = new AppiumDriver (new URL ("http://0.0.0.0:4723/wd/hub"), capabilities);

Let's take some time to understand what types of driver Appium allows us to create.

How to Synchronize Tests

Certainly, AppiumDriver was generated by the boilerplate code. Let's take a look at the
other drivers:

e RemoteWebDriver: It comes from Selenium. It has two components: a server and
a client. A server is a component that listens on a port for various requests from
the client. The client translates the script to the JSON payload and sends it to the
server using the JSON wire protocol.

e AppiumDriver: It inherits from the RemoteWebbDriver and adds functions that
are handy for mobile automation. It can be used to automate both Android and
iOS apps; however, it lacks device family-specific functions. The direct subclasses
are AndroidDriver, I0SDriver, and WindowsDriver.

e AndroidDriver: Itinherits from AppiumDriver and adds in additional
functions that are highly contextual to the family of Android devices for
automation. If you are working only on an Android project, then it's highly
recommended for you to use this driver.

e 10sDriver: It inherits from and adds in additional functions that are highly
contextual to the family of iOS devices for mobile automation. If you are working
on i0OS app automation, then it's highly recommended for you to use this driver:

RemoteWebDriver

AppiumDriver

1 |

[125]

How to Synchronize Tests

Understanding the different types of driver is important as there are different methods
available specifically for certain driver types, and they can help you to solve the problem of
writing a lot of explicit code. All you need to do is typecast the driver and use that method.
We will explore some gestures supported only for specific drivers in the next chapter.

Implicit wait

Implicit wait is a way to tell the Appium driver to poll the DOM (Document Object Model)
for a certain amount of time before throwing an exception to the effect that it can't find the
element on the page. The default timeout value is set to 0 seconds. Once we set the implicit
wait to a specified time, it persists for the life of the webdriver object instance. How to set
an implicit wait is explained here:

appiumDriver.manage () .timeouts () .implicitlyWait (10, TimeUnit.SECONDS) ;

So, what this implies is letting the driver instance wait for a maximum of 10 seconds before
throwing the NoSuchElement exception. We need to be watchful about the implicit usage.
The Appium boilerplate generally gives us the code with the implicit wait implementation,
so note the preceding line in the HomePageWebSteps class file, as shown:

appiumDriver = new AppiumDriver (new URL ("http://0.0.0.0:4723/wd/hub"),
capabilities);
appiumDriver.manage () .timeouts () .implicitlyWait (30, TimeUnit.SECONDS) ;

Increasing the implicit wait timeout should be used judiciously as it will have an adverse
effect on the overall test execution time, especially when used with slower locator strategies,
such as xpath.

This just removes a lot of indeterministic wait from the code. Implicit wait is most suited
when there is a variation in app response time due to network speed.

Explicit wait

There are times when the app under test can be slow on certain specific elements, such as
page submit, form submit, or somewhere it fetches data from an external system and takes a
little more time to load. In that case, using implicit wait to handle the situation will be a
flawed approach, given that it has to wait for each and every element for the same specified
time.

[126]

How to Synchronize Tests

To handle this situation, we can use explicit wait for such elements. In explicit wait, we tell
the web driver instance to wait for a certain condition invoked through
ExpectedConditions. So, this wait applies explicitly to the specified element. Explicit wait
can be invoked using this code:

WebDriverWait wait = new WebDriverWait (appiumDriver, 10);
wait.until (ExpectedConditions.visibilityOfElementLocated (By.id ("textl1")));

In the preceding code, we are creating an instance of WwebDriverWait with a maximum
waiting time of 10 seconds and then using an ExpectedConditions, which tells the driver
to wait till the visibility of the specified element can be located. ExpectedConditions has
a bunch of methods available to be used under different conditions. WwebDriverWait, by
default, calls ExpectedConditions every 500 ms until it returns successfully, otherwise it
throws the TimeoutException, as follows:

org.opendga.selenium.TimeoutException: Expected condition failed: waiting
for visibility of element located by By.id: textl (tried for 10 second(s)
with 500 MILLISECONDS interval)

While automating, you will typically need the given conditions to be met for an element
and, for each of the following, ExpectedConditions provides a set of predefined
conditions:

Web element is present and clickable
Web element is selected

Web element is invisible

Selected web element

Presence of web element located by
Wait for a particular condition

Text present in a web element

[127]

How to Synchronize Tests

Here's a list of all the methods available under ExpectedConditions:

[]

@ & visibilityOf (WebElement element) ExpectedCondit ion<WebElement>
& o jsReturnsValue(String javaScript) ExpectedCondition<Dbject>
& o alertIsPresent() ExpectedCondition<Alert>
@ s titlels (String title) ExpectedCondit ion<Booleans
" o and (ExpectedCondition<?>... conditions) ExpectedCondit ion<Boolean>
4% o attributeContains (By locator, String attribute, String value) ExpectedCondition<Boolean>
& o attributeContains (WebElesent element, String attribute, String valw. ExpectedCondition<Boolean>
#* & attributeToBe(By locator, String attribute, String value) ExpectedCondit ion<Boolean=
4% o attributeToBe (WebElement element, String attribute, String value) ExpectedCondition<Boolean=
& o attributeToBeNotEmpty (WebElement element, String attribute) ExpectedCondition<Boolean>
4 & elesentSelectionStateToBe (By locator, boolean selected) ExpectedCondit ion<Boolean>
4" & elesentSelectionStateToBe (WebElement element, boolean selected) ExpectedCondition<Boolean=
" o elementToBeClickable (By locator) ExpectedCondit ion<WebE lements
4" & elementToBeClickable (WebElement element) ExpectedCondition<WebElement>
¢ & elementToBeSelected (By locator) ExpectedCondition<Boolean=
¥ & elementToBeSelected (WebElement element) ExpectedCondition<Boolean=
4 o frameToBeAvailableAndSwitchToIt(By locator) ExpectedCondition=wWebDriver=
a0 o fraseToBeAvailableAndSwitchToIt({int framelocator) ExpectedCondit ion<WebDriver=
& & frameToBeAvailableAndSwitchTeIt{String framelLocator) ExpectedCondit ion<webDriver=
40 o frameToBeAvailableAndSwitchToIt (WebElement framelocator) ExpectedCondit ion<WebDriver>
@ o invisibilityOfALLELesents (List<WebElement> elements) ExpectedCondition<Boolean>
4% o invisibilityOfElementlocated (By locator) ExpectedCondit ion<Boolean>
@ & invisibilityOfElementWithText (By locator, String text) ExpectedCondit ion<Boolean>
& & javaScriptThrowsMoExceptions (String javaScript) ExpectedCondit ion<Booleans>
4% & not (ExpectedCondition<?> condition) ExpectedCondit ion<Boolean>
4 o numberOfElementsToBe (By locator, Integer number) ExpectedCondition<List<WebElements=
4" o number0fElementsToBelessThan By locator, Integer number) ExpectedCondition<List<WebElements=
4 o number0fELementsToBeMoreThan (By locator, Integer number) ExpectedCondition<List<WebElements>
o number0fWindowsToBe (int expectedhumberOfWindows) ExpectedCondition<Boolean>
& or(ExpectedCondition<?>... conditions) ExpectedCondition<Boolean>
@ o presence0fALLELementslocatedBy (By locator) ExpectedCondition<List<WebElements>
& o presence0fElementLocated (By locator) ExpectedCondition<WebE lement>
o aressncedfisstedElement LocatedBy [Av lacator. Bv sub Tacator) FrnertedCond i tinn<WenF | roaents
Pressing ~Space twice without a class qualifier would show all accessible static methods It

visibilityOfElementLocated (By locator) ExpectedCondit ion<WebElement®

Explicit wait is also used to check a specified property of an element, such as visibility,
click-ability, invisibility, and selection state.

Let's go ahead and refactor some of the code to introduce explicit wait. Some of the places to
add explicit wait, would be where we are typing in a textbox to search for an item. Consider
the following examples:

¢ Choosing my city:

WebDriverWait wait = new WebDriverWait (appiumDriver, 10);
wait.until (ExpectedConditions.visibilityOfElementLocated
(By.id("city_name")));

appiumDriver.findElement (By.id("city_name")) .click();

[128]

How to Synchronize Tests

e Searching for a specified car:

WebDriverWait wait = new WebDriverWait (appiumDriver, 10);
wait.until (ExpectedConditions.visibilityOfElementLocated
(By.id("textl1")));

List<WebElement> results =
appiumDriver.findElements (By.id ("textl"));

So there are two different methods we are adding explicit wait to; we can even set a
different timeout for each element. However, one observation would be that the code is
repeating. We will come back to refactor this piece in subsequent chapters to create
something called a base page class, which hosts all such commonly used methods that can
be used in each page class.

Make the preceding changes in your code and run the test; the test should run smoothly, as
earlier. Here's an implementation in one of the methods:

@And ("~I choose \"([*\"]1*)\" as my city$")
public void iChooseAsMyCity (String city) throws Throwable {

WebDriverWait wait = new WebDriverWait (appiumDriver, 10);
wait.until (ExpectedConditions.visibilityOfElementLocated
(By.id ("skip")));

appiumDriver.findElement (By.id ("skip")) .click();

try {
if (appiumDriver.findElement (By.xpath
("//android.widget .Button[@text="Later']")) .isDisplayed())
appiumDriver.findElement (By.xpath
("//android.widget .Button[@text="Later']")) .click();
} catch (Exception e) {
//Do nothing

appiumDriver.findElement (By.id ("citySpinner")) .click();
appiumDriver.findElement (By.id ("search_ET")) .click();
appiumDriver.findElement (By.id ("search_ET")) .sendKeys (city);

wait.until (ExpectedConditions.visibilityOfElementLocated
(By.id("city_name")));
appiumDriver.findElement (By.id ("city_name")) .click();

}

Let's move on to understand a wait type that is somewhat more specific and lets us further
customize it.

[129]

How to Synchronize Tests

Fluent wait

Fluent wait is a type of explicit wait where we can define polling intervals and ignore
certain exceptions to proceed with further script execution even if the element is not found.

So, when we specify a fluent wait, we provide the following:

¢ Maximum wait time

¢ Polling interval or frequency to check the element
o Any specific exception to ignore

¢ Message that should appear after timeout

A simple example of a fluent wait implementation is as follows:

Wait wait = new FluentWait (appiumDriver)
.withTimeout (10, TimeUnit.SECONDS)
.pollingEvery (250, TimeUnit .MILLISECONDS)
.ignoring (NoSuchElementException.class)
.ignoring (TimeoutException.class);

wait.until (ExpectedConditions.visibilityOfElementLocated
(By.1id("textl1")));

Let's implement the preceding in the iChooseAsMyCity (String city) method and re-
run the test to see what the results are:

@And ("*I choose \"(["\"]*)\" as my citys$")
public void iChooseAsMyCity (String city) throws Throwable {
Wait wait = new FluentWait (appiumDriver)
.withTimeout (10, TimeUnit.SECONDS)
.pollingEvery (250, TimeUnit.MILLISECONDS)
.ignoring (NoSuchElementException.class)
.ignoring (TimeoutException.class);
wait.until (ExpectedConditions.visibilityOfElementLocated

(By.1id("skip")));
appiumDriver.findElement (By.id ("skip")) .click();
try {
if (appiumDriver.findElement (By.xpath
("//android.widget .Button[Q@text="Later']")) .isDisplayed())
appiumDriver.findElement (By.xpath
("//android.widget .Button[Q@text="Later']")) .click();

} catch (Exception e) {
//Do nothing

[130]

How to Synchronize Tests

appiumDriver.findElement (By.id ("citySpinner")) .click();
appiumDriver.findElement (By.id("search_ET")) .click();
appiumDriver.findElement (By.id ("search_ET")) .sendKeys (city);

wait.until (ExpectedConditions.visibilityOfElementLocated
(By.id("city_name")));
appiumDriver.findElement (By.id("city_name")) .click();

}

Run this test, the result is the same as the earlier ones. Basically, all the three approaches
handle the element wait in different ways and give us the same result. However, we need to
choose the most suitable approach based on the situation.

Summary

In this chapter, we learned to implement wait strategy using implicit a wait, explicit wait,
and fluent wait. We also learned how these waits are different and in which way. We also
learned the predefined conditions that ExpectedConditions allows one to use. We
modified some of the tests to run them using the new wait strategies and saw that all of
them work seamlessly.

In the next chapter, we will see how to automate gestures, such as tap, long press, swipe,
and scroll. We will also refactor the existing test to organize it in a much easier to maintain
structure.

[131]

How to Automate Gestures

In the earlier chapters, we learned how to set up and write a basic Appium test. We started
with a scenario and learned how to use the Appium inspector and write a few automated
tests. We also learned the concept of desired capabilities and saw how to use them. We
learned how to add synchronization in tests and the different types of wait strategy
Appium allows us to use. In this chapter, we will learn how to automate different gestures,
such as the following:

e Tap

e Swipe
Drag
Scroll to
Slider
Shake
Long tap
Orientation

Let's start with each of the afore mentioned and learn its implementation and details.

Gestures

Mobile devices allow a multitude of gestures, which can be used across the app. However,
there are no standards as to what gestures an app must implement. Some of the gestures
most typically used are tap, swipe, pinch, and double tap. One good thing with mobiles is
that these gestures are constantly evolving and eventually become natural to use. So, let's
take a look at the different gestures and how they can be implemented.

How to Automate Gestures

TouchAction

Appium implements the new TouchAction API, which allows chaining touch events and,
thereby, facilitates gesture implementation. Touch Action is pretty robust and supports a
multitude of gestures, which ease the simulation;

@ & perform() TouchAction

m & moveTo(WebElement el, int x, int y) TouchAction
m & press(int x, int y) TouchAction
m & release() TouchAction
m & press (WebElement el) TouchAction
m - cancel() void
m & longPress(int x, int y) TouchAction
m & longPress(int x, int y, int duration) TouchAction
m & longPress (WebElement el) TouchAction
m & longPress (WebElement el, int duration) TouchAction
m & longPress (WebElement el, int x, int y) TouchAction
m & longPress (WebElement el, int x, int y, int duration) TouchAction
m & moveTo(int x, int y) TouchAction
m & moveTo(WebElement el) TouchAction
m o press(WebElement el, int x, int y) TouchAction
m & taplint x, int y) TouchAction
m & tap(WebElement el) TouchAction
m & tap(WebElement el, int x, int y) TouchAction
m & waitAction() TouchAction
& wait () void
" & wait({long timeout) void
% & wait(long timeout, int nanos) void
m & waitAction(int ms) TouchAction
m & equals(Object obj) boolean

We will discuss some of the methods mentioned earlier, that TouchAction supports:

e press:
e press (WebElement el): This method allows you to press on the
center of the element
e press (int x, int y):This method allows you to press on an
absolute position (x and y coordinates)

[133]

How to Automate Gestures

e press (WebElement el, int x, int y): This method allows
you to press on an element offset from the upper-left corner by a
number of pixels:

Consider the following usage examples:

TouchAction action = new TouchAction (appiumbDriver) ;

action.press (appiumDriver.findElement (By.id ("valid_id"))) .perform();
Point point =appiumDriver.findElementById("valid_id") .getLocation();
new TouchAction (appiumDriver) .press(point.x + 20, point.y +

30) .waitAction (1000) .release () .perform();

e release:
e release (): This method withdraws the touch

Consider the following example:

action.release();

¢ long press:
e longPress (int x, int y): This method allows you to press

and hold the absolute position X,y until the context event has fired
e longPress (int x, int y, int duration): This method
allows you to press and hold for the specified duration at an
absolute position x,y until the context event has fired
e longPress (WebElement el): This method allows you to press
and hold the center of an element until the context event has fired

[134]

How to Automate Gestures

® MOVe:

e longPress (WebElement el, int duration): This method
allows you to press and hold the center of an element until the
context event has fired

e longPress (WebElement el, int x, int y): This method
allows you to press and hold the elements in the upper-left corner,
offset by the x,y amount, until the context event has fired:

Consider the following usage example:

TouchAction action = new TouchAction (appiumDriver) ;
action.longPress (appiumDriver.findElement (By.id ("valid_id"))) .p
erform();

e moveTo (int x, int y): This method allows you to move the
current touch to a new position that is relative to the current
position

e moveTo (WebElement el): This method allows you to move the
current touch to the center of the specified element

e moveTo (WebElement el, int x, int y): This method allows
you to move the current touch to the specified element and offset
from the upper-left corner:

[135]

How to Automate Gestures

Drag n Drop

Drop

Consider this usage example:

WebElement drag = appiumDriver.findElement (By.id("drag_1"));
WebElement drop = appiumDriver.findElement (By.id ("drop_1"));
TouchAction dragNDrop = new

TouchAction (appiumDriver) .longPress (drag) .moveTo (drop) .release (
)i

dragNDrop.perform() ;

e perform:
e perform(): This allows you to perform a chain of actions

e tap:

e tap(int x, int y): This method allows you to tap an absolute
position (x,y) on the screen

e tap (WebElement el): This method allows you to tap the center
of the specified element

e tap (WebElement el, int x, int y): This method allows you
to tap an element with the specified offset from the upper-left
corner

e waitAction (): This method allows you to wait for the action to be
completed and is used as a no-operation in multi-chaining

e waitAction (int ms): This method allows you to wait for a
specified amount of time to pass before it continues with
performing the next touch action

[136]

How to Automate Gestures

Consider this usage example:

TouchAction action = new TouchAction (appiumDriver);

action.tap (appiumDriver.findElement (By.id ("valid_id"))) .perform();
// A case where an UI element is Start and when pressed enables
another element called Stop

Point centerl =
appiumDriver.findElementById("id_start") .getCenter ();

TouchAction action = new TouchAction (appiumDriver)

.tap (centerl.x, centerl.y)

.tap (appiumbDriver.findElementById("id_stop"),5,5);
action.perform();

In the preceding API, when we pass coordinates along with the web element, the
coordinates are treated as relative to the web element position. When we call the perform
method, the sequence of the constructed event is sent to Appium, and the touch action is
performed on the device.

MultiTouch

Appium gives you the option to construct a MultiTouch action by chaining touch actions.
So, we can chain all the actions that the TouchAct ion class supports. MultiTouch is a
collection of TouchActions and allows two operations: add and perform:

e Add is used to chain another TouchAction
e Perform is called to send all TouchActions to Appium in the same order

Let's take a look at its usage:
TouchAction actionl = new TouchAction (appiumDriver) .tap (webElementl) ;
TouchAction action2 = new TouchAction (appiumDriver) .tap (webElement2) ;

MultiTouchAction multiTouchAction = new MultiTouchAction (appiumDriver) ;
multiTouchAction.add(actionl) .add(action2) .perform();

[137]

How to Automate Gestures

Scroll

One of the most commonly used gestures on mobiles is scroll. Earlier, there were two
methods available for scrolling: scrol1To (String text) and ScrollToExact (String
text). However, recently, both functions have been deprecated. To solve this, we can use
swipe to perform the scroll functions and pass in parameters that are based on the relative
height and width of the screen.

To scroll down, use the following code snippet, where we have fixed the x component and
moved the y component:

public void scrollDown () {
int height = driver.manage () .window () .getSize () .getHeight ();
androidDriver.swipe (5, height * 2 / 3, 5, height / 3, 1000);
}

To scroll up, use this code snippet where we have fixed the x component and moved the y
component:

public void scrollUp () {
int height = driver.manage () .window () .getSize () .getHeight ();
androidDriver.swipe (5, height / 3, 5, height * 2 / 3, 1000);
}

Once we have the preceding implementation, we can implement scroll down to an element
using the following code. Change the system. out to the appropriate assertion.

public void scrollDownTo (By locatorOfElement) {
int 1 = 0;
while (i < 12) {
if (driver.findElements (locatorOfElement) .size () > 0)
return;
scrollDown () ;
i++;
t
System.out.println("Couldn't find element: " +
locatorOfElement.toString());
t

[138]

How to Automate Gestures

We can even implement a scroll down to text on similar implementations; refer to this code
snippet:

public void scrollDownTo (String text) {
By locatorOfElement = By.xpath("//*[@text=\"" + text + "\"I1");
androidDriver.hideKeyboard() ;
int i = 0;
while (i < 12) |
if (androidDriver.findElements (locatorOfElement) .size () > 0)
return;
scrollDown () ;
i++;
}
System.out.println ("Couldn't find text : " +
locatorOfElement.toString());
}

The preceding code can be used for reference and for developing your own customized
scroll method.

Swipe

Swipe is another commonly used gesture on a mobile device. The swipe functionality is
relative to the device height and width. So, we can use the relative device height and width
to implement the swipe functionality. Android Driver supports the swipe method, and we
can use it:

void swipe (int startx, int starty, int endx, int endy, int duration);

£~

Left To Right Right To Left

[139]

How to Automate Gestures

Here's the code snippet for swiping from left to right:

public void swipeLeftToRight () {
int height = driver.manage () .window () .getSize () .getHeight ();
int width = driver.manage () .window () .getSize () .getWidth();
androidDriver.swipe (width/3, height/2, (width*2)/3, height/2, 100);
t

Similarly, we can implement right to left:

public void swipeRightToLeft () {
int height = driver.manage () .window () .getSize () .getHeight ();
int width = driver.manage () .window() .getSize () .getWidth();
androidDriver.swipe ((width*9) /10, height/2, width/10, height/2, 1000);
}

In a similar format, we can even implement swiping from one element to another element,
based on the element location:

public void swipeFromTo (WebElement startElement, WebElement stopElement) {
androidDriver.swipe (startElement.getLocation () .getX (),
startElement.getLocation () .getY (),
stopElement.getLocation () .getX (), stopElement.getLocation().get¥(),
1000);

}

One thing to note here is that the swipe method is made available as part of
androidDriver and not appiumDriver; hence, we need to type cast the driver to
androidDriver in the current implementation and then use this method.

Orientation

Many times, we need to change the device orientation to see a different view or to perform
some other action/assertion. Appium exposes a method to change the orientation from
landscape to portrait and vice versa:

rotate (ScreenOrientation orientation)

ScreenOrientation gives a possible screen orientation and supports LANDSCAPE or
PORTRATT.

[140]

How to Automate Gestures

Using the rotate API;

androidDriver.rotate (ScreenOrientation.LANDSCAPE) ;

Appium also exposes an API to get the current orientation of the device:

androidDriver.getOrientation ()

A good practice is to perform the operation and change the orientation back so that it
doesn't affect the other test cases unless it is intended to do so.

Summary

In this chapter, we learned how to automate frequently-used gestures, such as press, long
press, touch, and MultiTouch. We learned the APls exposed by Appium and also the usage
of those APIs. These code snippets can be used to implement different touch functionalities
in your app. We also learned about device orientation and how to toggle it between the
portrait and landscape modes. We also discussed the fact that some of these methods are
available only to androidDriver.

In the next chapter, we will learn about design patterns in test automation and delve into
one of the most popular design patterns. We will also learn about some of the best practices
for framework designing.

[141]

Design Patterns in Test
Automation

In the past chapters, we learned about gestures and how to implement gestures in mobile
automation. Until now, we have learned almost all the major aspects of Appium, right from
understanding the app to writing a basic test in cucumber and automating it. If you notice
the code we have written, we can see elements of repeatability and lack of structure and
design in the whole approach. There are a couple of design patterns that are used in test
automation framework, and some of them are s, Singletons, Facades, Strategy design
patterns, and so on.

In this chapter, we will take a look at the very popular and widely used design pattern as
well as the most fundamental aspect of test automation which is assertion:

e Page Object pattern
¢ Implementing assertions

Before we get on to the concept of the Page Object pattern, let's do one more round of
refactoring and introduce the concept of BaseSteps, the same is illustrated below.

We will implement this in the current state of automation to give it a more structured and
organized look. Let's start with understanding the Page Object pattern concept.

Design Patterns in Test Automation

Refactor -1
Let's recall the HomePageSteps class and the iLaunchQuikrApp () method:

@When (""I launch Quikr apps$")

public void iLaunchQuikrApp () throws Throwable {
DesiredCapabilities capabilities = new DesiredCapabilities();
capabilities.setCapability ("platformName", "Android");
capabilities.setCapability ("platformvVersion", "5.1");
capabilities.setCapability ("deviceName", "Nexus");
capabilities.setCapability ("noReset", false);
capabilities.setCapability ("fullReset", true);
capabilities.setCapability ("app",

"/Users/nishant/Development/HelloAppium/app/quikr.apk") ;

appiumDriver = new AppiumDriver (new URL ("http://0.0.0.0:4723/wd/hub"),
capabilities);
appiumDriver.manage () .timeouts () .implicitlyWait (60, TimeUnit.SECONDS) ;
}

Now, the instance of appiumbDriver can be used by other step classes and not only this one.
So, to solve this, we will declare a BaseSteps class, which creates the Appiumbriver
instance to be used throughout the test session.

Follow the steps below:

1. Select the following line in the i LaunchQuikrApp () method and click on
Refactor > Extract > Superclass... :

private AppiumDriver appiumDriver;

2. Enter BaseSteps as the Super class name, select appiumDriver:AppiumDriver
under Member, and click on Refactor:

[143]

Design Patterns in Test Automation

= @ Extract Superclass
Extract superclass from:
steps.HomePageSteps

) Extract superclass Rename original class and use superclass where possible
Super class name:
B-aseStEps[

Package for new superclass:

steps 7]

Members to form superclass JavaDoc for abstracts
Member Make abstract O Asis
m o iLaunchQuikrApp(:void
m 5 iChooseTolLoglnUsingGoogle(:ve LCopy
mos iSeeAccountPickerScreenWithMyE Move

LB appiumDriver: AppiumDriver

3. This will be the generated code for the same:
package steps;
import io.appium.java_client.AppiumDriver;

public class BaseSteps {
protected AppiumDriver appiumDriver;

}

Note that the AppiumDriver access modifier changed from private to
protected. This makes it accessible within the package and outside the
package, but through inheritance only.

[144]

Design Patterns in Test Automation

4. Add a static keyword to the appiumDriver instance as we want the same
instance to persist for the session run:

protected static AppiumDriver appiumDriver;

5. Let's open the startingSteps class and modify it a bit. We also need to move
the DesiredCapabilities section from the preceding iLaunchQuikrApp ()
method to the startingSteps class:

@Before
public void startAppiumServer () throws IOException {

int port = 4723;
String nodedS_Path = "C://Program Files//NodeJS//node.exe";
String appiumJS_Path = "C://Program
Files//Appium//node_modules//appium//bin//appium.js";

String osName = System.getProperty ("os.name");

if (osName.contains ("Mac")) |

appiumService = AppiumDriverLocalService.buildService (new

AppiumServiceBuilder ()
.usingDriverExecutable (new

File (("/usr/local/bin/node")))
.withAppiumdS (new File (("/usr/local/bin/appium")))
.withIPAddress ("0.0.0.0")
.usingPort (port)
.withArgument (GeneralServerFlag.SESSION_OVERRIDE)
.withLogFile (new File ("build/appium.log")));

} else if (osName.contains ("Windows")) {

appiumService = AppiumDriverLocalService.buildService (new

AppiumServiceBuilder ()
.usingDriverExecutable (new File (nodeJS_Path))
.withAppiumdS (new File (appiumdS_Path))
.withIPAddress ("0.0.0.0")
.usingPort (port)
.withArgument (GeneralServerFlag.SESSION_OVERRIDE)
.withLogFile (new File ("build/appium.log")));

}

appiumService.start ();

DesiredCapabilities capabilities = new DesiredCapabilities();
capabilities.setCapability ("platformName", "Android");
capabilities.setCapability ("platformVersion", "5.1");
capabilities.setCapability ("deviceName", "Nexusé6");
capabilities.setCapability ("noReset", false);
capabilities.setCapability ("fullReset", true);

[145]

Design Patterns in Test Automation

capabilities.setCapability ("app",
"/Users/nishant/Development/HelloAppium/app/quikr.apk") ;

appiumDriver = new AppiumDriver (new
URL ("http://0.0.0.0:4723/wd/hub"), capabilities);
appiumDriver.manage () .timeouts () .implicitlyWait (10,

TimeUnit.SECONDS) ;
}

6. Also, in the teardown method, we need to add driver.quit (), which will close
the session before stopping the Appium server:

@After

public void closeAppiumServerSession () {
appiumDriver.quit () ;
appiumService.stop () ;

}
7. So, the startingSteps class should look as shown:
public class StartingSteps extends BaseSteps {
private AppiumDriverLocalService appiumService;
@Before
public void startAppiumServer () throws IOException {
int port = 4723;
String nodeJS_Path = "C://Program Files//NodeJS//node.exe";

String appiumJS_Path = "C://Program
Files//Appium//node_modules//appium//bin//appium.js";

String osName = System.getProperty ("os.name");
if (osName.contains ("Mac")) {
appiumService = AppiumDriverLocalService.buildService (new

AppiumServiceBuilder ()
.usingDriverExecutable (new
File (("/usr/local/bin/node")))
.withAppiumdS (new File (("/usr/local/bin/appium")))
.withIPAddress ("0.0.0.0")
.usingPort (port)
.withArgument (GeneralServerFlag.SESSION_OVERRIDE)

.withLogFile (new File ("build/appium.log")));
} else if (osName.contains ("Windows")) {
appiumService = AppiumDriverLocalService.buildService (new

AppiumServiceBuilder ()

[146]

Design Patterns in Test Automation

.usingDriverExecutable (new File (nodeJS_Path))
.withAppiumdS (new File (appiumdS_Path))
.withIPAddress ("0.0.0.0")
.usingPort (port)
.withArgument (GeneralServerFlag.SESSION_OVERRIDE)
.withLogFile (new File ("build/appium.log")));

}

appiumService.start ();

DesiredCapabilities capabilities = new DesiredCapabilities();
capabilities.setCapability ("platformName", "Android");
capabilities.setCapability ("platformVersion", "5.1");
capabilities.setCapability ("deviceName", "Nexusé6");
capabilities.setCapability ("noReset", false);
capabilities.setCapability ("fullReset", true);
capabilities.setCapability ("app",
"/Users/nishant/Development/HelloAppium/app/quikr.apk");

appiumDriver = new AppiumDriver (new
URL ("http://0.0.0.0:4723/wd/hub"), capabilities);
appiumDriver.manage () .timeouts () .implicitlyWait (10,

TimeUnit.SECONDS) ;
}

@After
public void closeAppiumServerSession () A
appiumDriver.quit () ;
appiumService.stop();

}
}

8. Now, the iLaunchQuikrApp () method becomes empty after moving all the code
to the startingSteps class. We can use this method to perform some assertion,
or we can rename it to serve another purpose. For now, we will just add some
checkpoints to it:

@When ("~I launch Quikr app$")

public void iLaunchQuikrApp () throws Throwable {
appiumDriver.findElement (By.id ("login_register_view")) .isDisplayed(
)i

I

Now, we have moved all the infrastructure code to StartingSteps and our
HomePageSteps contains only methods that perform actions on the home page of the app.

Let's take a look at the design pattern to further organize and structure the code.

[147]

Design Patterns in Test Automation

Page Object pattern

Here are some important aspects of a good framework design, which we tend to base our
decision on:

¢ Avoiding duplication of code

Tests should be more readable

Tests should be easy to maintain

Accommodating changes should be easy

Enhanced reliability

A structure that is easy to scale with the growth of the project

Page Object pattern is about modelling your app's Ul as an object. A Page Object wraps the
Ul of a page with an app-specific API, which allows us to manipulate page elements. Let's
understand the same with respect to the following image. The following page serves the
purpose of both login and registration. It's the first page that gets displayed when we
launch the app; for the sake of our conversation, let's call this a landing page. The page
contains Ul elements such as skip, mobile number text field, continue button, and Facebook
and Google sign in buttons:

1=

Login / Register +—— ip fo home page

=

Doorstep Delivery

T LPlench Wil Frim Pgepieg (il iaply]

Regigter ag a new uger

LESM Uit Lﬂg in USIIT'IQ Facebook

-—

I racepoos G cooole Log in uging gocﬂh

[148]

Design Patterns in Test Automation

When we apply the Page Object concept, the preceding page will typically perform the
following services for any user using the app:

¢ Skip to home page

e Register as a new user
e Log in using Facebook
e Log in using Google

In this case, the Page Object has the complete knowledge of the page elements and the
services it can perform on that page. When we model a page this way, it can hide the Ul
elements from the consumer of the page and expose only the service one can perform on
that Ul element via accessor methods. Let's create a sample page class for the shown page:

public class LandingPage {
AppiumDriver appiumDriver;

@FindBy (id = "skip")
private WebElement skipLink;

@FindBy (id = "login_register_view")
private WebElement mobileOrEmailField;

@FindBy (id = "continue_login")
private WebElement continueButton;

@FindBy (id = "fb")
private WebElement fbButton;

@FindBy (id = "sign_in_button")
private WebElement googleButton;

public void skipToHomePage () {
skipLink.click();

public void registerByMobileOrEmail (String mobileorEmail) {
mobileOrEmailField.sendKeys (mobileorEmail) ;
continueButton.click();

public void signInByFacebook () {
fbButton.click () ;

public void signInByGoogle () {
googleButton.click () ;

[149]

Design Patterns in Test Automation

}

So, we have declared the Ul elements as private and the accessor methods as public so that
they can allow anyone to perform any operation on those Ul elements.

These are simple, straightforward actions that a page is doing, and we believe that it
belongs to that page class. There are some discussions around as to whether a Page Object
should include assertions or not. We will come to this a little later; before that, let's refactor
the existing code to create another page class.

Refactor-2

We will start this refactoring by creating a new package under the java folder of the
solution called pages, illustrated here:

S HelloAppium
[.gradle

™~

Clapp
3 build
Jgradie
Clsrc
[test
Cljava
1 features
[steps
4 .gitignore
(= build.gradle
= gradiew
wi gradlew.bat

| g HelloAppium.imi
5] README.md
* settings.gradle

1. Right-click on the pages, select New > Java Class, and enter the name
LandingPage
2. Copy the preceding code snippet of LandingPage and paste it

3. We also need to implement wait for the visibility of elements to remove any
flakiness in the test

[150]

Design Patterns in Test Automation

We learned about test synchronization in the last chapter, and we also learned about the
importance of a proper wait strategy in the test. So, instead of having each page class create
its own implementation of webDriverwait, we can extract it to a base page, which can be
extended by different page classes and can utilize the common methods. So, the next step is
to add a BasePage:

1. Add another Java class to the pages package and name it as BasePage

2. WebDriver wait needs a driver instance and for now, we will create only one
method, waitForElementToBeVisible ().

3. Copy this code in the BasePage:

public class BasePage {
private AppiumDriver driver;
private WebDriverWait wait;

public BasePage (AppiumDriver driver) throws Exception {
this.driver = driver;
wait = new WebDriverWait (this.driver, 30);

}

public void waitForElementToBeVisible (WebElement element) {
wait.until (ExpectedConditions.visibilityOf (element));
}
}

4. At this point, we need to make the LandingPage class extend the BasePage and
add the method we just created to the LandingPage class method
skipToHomePage (). This will make you add the constructor matching the
superclass; go ahead and do that. Here's how it will look after the changes:

public void skipToHomePage () {
waitForElementToBeVisible (skipLink) ;
skipLink.click();
}

At this point, we can try running the code but it will throw a NullPointerException.

PageFactory supports this pattern and helps cut down the code. Let's see what changes we
need to make and where.

[151]

Design Patterns in Test Automation

The reason the code threw up NullPointerException is because the fields are not
instantiated; hence, we need to initialize the PageObject. Take a look at this code:

skipLink.click();

When pageFactory is initialized, it is equivalent to the following:

appiumDriver.findElement (By.id ("skip")) .click();

Now let's try to stabilize the code here. We have added a BasePage class, as shown just
now. Let's navigate back to the LandingPage class; we need to add this PageFactory
initialization:

PageFactory.initElements (appiumDriver, this);

We need to add a constructor that takes care of the PageFactory initialization. The code
after extending BasePage class and adding initialization is as shown:

public class LandingPage extends BasePage {
AppiumDriver appiumDriver;

@FindBy (id = "skip")
private WebElement skipLink;

@FindBy (id = "login_register_view")
private WebElement mobileOrEmailField;

@FindBy (id = "continue_login")
private WebElement continueButton;

@FindBy (id = "fb")
private WebElement fbButton;

@FindBy (id = "sign_in_button")
private WebElement googleButton;

public LandingPage (AppiumDriver appiumDriver) throws Exception {
super (appiumbDriver) ;
this.appiumDriver = appiumDriver;
PageFactory.initElements (appiumDriver, this);

public void skipToHomePage () {
waitForElementToBeVisible (skipLink) ;
skipLink.click();

public void registerByMobileOrEmail (String mobileorEmail) {

[152]

Design Patterns in Test Automation

mobileOrEmailField.sendKeys (mobileorEmail) ;
continueButton.click () ;

public void signInByFacebook () {
fbButton.click () ;
}

public void signInByGoogle () {
googleButton.click () ;
}

}

To use the preceding code, we need to change the public void
iChooseAsMyCity (String city) method and edit a couple of lines. Consider the
following code:
Wait wait = new FluentWait (appiumDriver)
.withTimeout (10, TimeUnit.SECONDS)
.pollingEvery (250, TimeUnit.MILLISECONDS)
.ignoring (NoSuchElementException.class)

.ignoring (TimeoutException.class);
wait.until (ExpectedConditions.visibilityOfElementLocated (By.id ("skip")));

appiumDriver.findElement (By.id ("skip")) .click();

We can substitute it with the following line and run the same test again. It will pass
seamlessly and look at the readability and code organization we have introduced:

new LandingPage (appiumDriver) .skipToHomePage () ;

On similar lines, we can create a HomePage class that will have elements such as select city
dropdown. Let's do the exercise of creating the HomePage class. In the HomePage class, we
need not map everything that is present on the Ul it can just be those elements that you
need interaction with. Here's the implementation of the same:

public class HomePage extends BasePage {
AppiumDriver appiumDriver;

@FindBy (id = "citySpinner")
private WebElement cityDropdown;

@FindBy (id = "search_ET")
private WebElement citySearchBox;

@FindBy (id = "city_name")

[153]

Design Patterns in Test Automation

private WebElement cityName;

@FindBy (xpath = "//android.widget.TextView[Q@text="'Cars']")
private WebElement mobileOrEmailField;

@FindBy (id = "sign_in_button")
private WebElement googleButton;

public HomePage (AppiumDriver appiumDriver) throws Exception {
super (appiumDriver) ;
this.appiumDriver = appiumDriver;
PageFactory.initElements (appiumDriver, this);

public void selectCity (String city) {
cityDropdown.click () ;
citySearchBox.click () ;
citySearchBox.sendKeys (city);
waitForElementToBeVisible (cityName) ;
cityName.click();

With the preceding piece of code, we can replace the following line:

appiumDriver.findElement (By.id("citySpinner")) .click();
appiumDriver.findElement (By.id("search_ET")) .click();
appiumDriver.findElement (By.id ("search_ET")) .sendKeys (city);

wait.until (ExpectedConditions.visibilityOfElementLocated (By.id("city_name")
)) i
appiumDriver.findElement (By.id("city_name")) .click();

This is the line it will be replaced with:

new HomePage (appiumDriver) .selectCity (city);

So, the iChooseAsMyCity (String city) method now looks like this:

@And (""I choose \" (["\"]*)\" as my city$")
public void iChooseAsMyCity (String city) throws Throwable {

new LandingPage (appiumDriver) .skipToHomePage () ;

try {

if

(appiumbDriver. findElement (By.xpath("//android.widget.Button[@text="Later']"
)) .isDisplayed())
appiumDriver.findElement (By.xpath ("//android.widget.Button[@text="Later']")
) .click();

[154]

Design Patterns in Test Automation

} catch (Exception e) {
//Do nothing
}
new HomePage (appiumDriver) .selectCity(city);

}

This code is much more readable and easy to maintain. We can even add this handling of
pop up message to upgrade by clicking on Later to HomePage Or BasePage itself so that the
code will look much cleaner. Now that we have seen how to do this, | am leaving it to you
to implement the same. Below is the pictorial difference in the code readability and
structure:

and(“*T choose \{[*\"]=]\" a5 my city$”]
public void iChooseAsMyCity(String city] throws Throwable {
mppd walriver. f indE Lement (By. {d({=skip=)).click(];

Thread. sleep| 20208) ;
oppd vl ver , £ indE Lement (By . dd{ “citySpinmer=]) .click{];

Before Thread. sieep(2008] ;

e eyl ver . findE Lement (By. 1o{ “search_ET") b.click(];
appiwmdriver, findE Lesent (By. id{“search_ET"]). sendKeysicity];

Thread. slesp| 2008)
ﬂﬂﬁ']hﬂfﬂilv\dh'lﬁﬂ‘ELﬂHi[B‘r.Jﬂi"tiﬂ'_h“"]ﬁ.l’.'l!.l:H];.

wad (4T choase \"([*\“]=)* as my citys")
public wodd iChoosedsMyCity(String city) throws Throwable {
mew Landingfagelappiusdriver) . skipToHomePage() ;
try {
if (appiveDriver, fJ.r'u‘IEI..cMn'I.Eh.xm!hi"rr-ndrnid.u]ﬁgﬂ JButton|@text="Later" |™]). 1sDisplayed{])
After appi vadriver, f indE Lement (By. xpath("/ fandrodd, widget. Button[@texts="Later']"}).click(};
} catch (Exception e) {

i
new HomePage [appiusDriver) . selectCitylcityd;:

The next exercise for you is to replace the existing code we have written and model it all on
the Page Object concept.

[155]

Design Patterns in Test Automation

Assertions

Assertions are the core of test automation, and there has been a good long debate on where
assertions belong. Broadly, there are two types of approaches for handling assertions, and
they can be implemented in either of the following:

¢ Page Object
e Test script

The first approach says that Page Objects should contain assertions. The advantage of this
approach is to minimize the duplication of assertions in the test suite. Also, it helps in
organizing the messages and following the Tell, Don"t Ask principle (for more information
Visit: https://martinfowler.com/bliki/TellDontAsk.html). The Tell, Don't Ask principle
recommends that an object can be issued a command to perform some operation or logic,
rather than to query its state. It suggests that we should tell the object what to do, rather
than asking the object for data and then acting on it.

Let's apply the same in our code. Here's what we have automated:

@Then ("~I should see the first car search result with \" ([*\"]1*)\"$")
public void iShouldSeeTheFirstCarSearchResultWith (String arg0) throws
Throwable {
List<WebElement> elements =
appiumDriver.findElements (By.id ("cars_ad_list_title_tv"));
Assert.assertTrue (elements.get (0) .getText () .startsWith (arg0));
}

Implementing assertions in Page Object

The first step is to replace the implementation with the following page class and the method
that will perform the verification of the search results on the car search results page. So, we
can declare something like this:

@Then ("I should see the first car search result with \" ([*\"]1*)\"$")
public void iShouldSeeTheFirstCarSearchResultWith (String arg0) throws
Throwable {

new CarResultsPage (appiumDriver) .verifySearchResult (searchInput) ;

}

[156]

Design Patterns in Test Automation

The next step is to implement the CarResultsPage class and the
verifySearchResult (String searchInput) method. So, this method will take care of
the verification of the result. This is the implementation of the CarkResultsPage class:

package pages;

import io.appium.java_client.AppiumDriver;
import org.junit.Assert;

import org.openga.selenium.WebElement;

import org.openga.selenium.support.FindBy;
import org.openga.selenium.support.PageFactory;

import java.util.List;

public class CarResultsPage extends BasePage {
AppiumDriver appiumDriver;

@FindBy (id = "category")
private WebElement categoryChooser;

@FindBy (id = "inspected_checkbox")
private WebElement inspectedToggle;

@FindBy (xpath = "//android.widget.TextView[@text="'SORT']")
private WebElement sortLink;

@FindBy (xpath = "//android.widget.TextView[Q@text="'FILTER']")
private WebElement filterLink;

@FindBy (id = "cars_ad_list_title_tv")
private List<WebElement> searchResultText;

public CarResultsPage (AppiumDriver appiumDriver) throws Exception {
super (appiumbDriver) ;
this.appiumDriver = appiumDriver;
PageFactory.initElements (appiumDriver, this);

public void verifySearchResult (String text) {
for (WebElement result : searchResultText) {
Assert.assertTrue (result.getText () .contains (text));

[157]

Design Patterns in Test Automation

we can add other assertions and remove the assertion from the step class. Let's look at the
other approach of implementing assertions in the test script.

Implementing assertion in test script

The second approach is having assertions in the test suite. In this case, we will have a Page
Object that implements a getter for the element state we want to have a check on or verify
upon. So in this case, we need a method in the page class that will return us the text of the
search result header.

Let's implement the page class for this:
package pages;
import io.appium.java_client.AppiumDriver;
import org.openga.selenium.WebElement;
import org.openga.selenium.support.FindBy;
import org.openga.selenium.support.PageFactory;

import java.util.List;

public class CarResultsPage extends BasePage {
AppiumDriver appiumDriver;

@FindBy (id = "category")
private WebElement categoryChooser;

@FindBy (id = "inspected_checkbox")
private WebElement inspectedToggle;

@FindBy (xpath = "//android.widget.TextView[Q@text="'SORT']")
private WebElement sortLink;

@FindBy (xpath = "//android.widget.TextView[@text="FILTER']")
private WebElement filterLink;

@FindBy (id = "cars_ad_list_title_tv")
private List<WebElement> searchResultText;

public CarResultsPage (AppiumDriver appiumDriver) throws Exception {
super (appiumbDriver) ;
this.appiumDriver = appiumDriver;
PageFactory.initElements (appiumDriver, this);

public String getFirstSearchResult () {

[158]

Design Patterns in Test Automation

return searchResultText.get (0) .getText () ;

}

Now, let's go to the step implementation and refactor a couple of things there. First, we
need to call the preceding method, store the result, and then make the necessary assertions:

@Then ("I should see the first car search result with \" ([*\"]1*)\"$")
public void iShouldSeeTheFirstCarSearchResultWith (String searchInput)
throws Throwable {
String searchResult = new
CarResultsPage (appiumDriver) .getFirstSearchResult () ;
Assert.assertTrue (searchResult.startsWith (searchInput));

}

Now, we can execute the test to get the same result. Let's discuss some other practices of test
development that will help us create a better test automation framework, and it applies to
mobile test automation solutions as well.

Avoiding dependencies between tests

Each test we author should be independent of the others. Developers or testers using the
solution should be able to run any test in any order based on the need. Generally, when we
submit the cucumber feature to run, scenarios need not execute in the same order and, as a
result, the test will easily be broken if there are dependencies in it. Hence, it becomes easy
when we execute via cucumber as we follow the Given-When-Then format.

Introducing set up and tear down
Most of the tests that we write can be broken into three parts:
¢ Pre-condition

e Action and verification
e Post-condition

Pre-condition takes the app under test to a certain desired state. In our case, it will translate
to install the app on the device, log in to the app, and come on the respective screen.

The action will translate to tapping on car category, and searching for a car. Verification will
translate to asserting if we have the correct result, as expected.

[159]

Design Patterns in Test Automation

Post-condition will translate to logging out of the app, cleaning of the app state, and even
uninstalling the app.

Cucumber exposes two hooks that take care of running pre-condition and post-condition
using the @eefore and @Aafter hooks. These hooks are very similar to the setup and
teardown methods provided in xUnit testing tools. Both before and after are global
hooks; hence, they can be declared in any step.

@Before allows you to run a block of code before every scenario. We can declare many
methods tagged with the @Be fore hook. They run in the same order as they are declared.
In our code base, we have declared a method with the @eefore tag. So, it is executed before
running any scenario:

@Before
public void startAppiumServer () throws IOException {

}

eafter allows you to run a block of code after the last step of each scenario. It runs
regardless of the status of the last step, be it failing, undefined, skipped, or pending. It runs
in the opposite order of declaration. We have declared a method with the cafter tag in our
code base. Hence, it takes care of the session and what to do after running the test:

QAfter
public void closeAppiumServerSession () A

}

This finishes the framework designing principles and some of the concepts.

Summary

In this chapter, we learned about the Page Object design pattern and how it can be used to
give a structure to the code we have written. We also went through refactoring,
understanding the design pattern and how it has significantly improved the code
readability and makes the maintenance look easier. We learned about assertions and how
they can be used. We also learned about where assertion belongs and the pros and cons of
each approach. We discussed some framework design principles of avoiding the dependent
test designs and the importance of hooks, such as @Before and @After, provided by
cucumber.

Now we have a decent framework in structure and the tests are a little mature with the
design pattern in place. The next step is to be able to run the test on different targets, such
as an emulator and an actual device, understand the hassles around it, and solve them.

[160]

How to Run Appium Test on
Devices and Emulators

In the last chapter, we were exposed to design patterns, and we learned how to structure
code for better readability and maintenance. We have a decent test that deploys an app on
the target device, launches the app, and performs a search. The next stage in Appium is to
be able to run these tests on an emulator and actual device. In this chapter, we will study
the following topics in detail:

e Emulator:
e Setting up and configuring
¢ Running the test on the emulator
e Devices:
e How to configure
¢ Running the test on devices
Emulator

An emulator is an application that emulates a real mobile device, which lets you prototype
the app under development or allows you to test out the app without actually buying a
physical device. When we install Android SDK, we can create emulators based on the
available API level, CPU, and RAM. We learned how to set up an Android Virtual Device
using Android SDK in chapter 2, Setting Up the Machine. We also briefly learned about the
emulator and how to download one virtual device.

How to Run Appium Test on Devices and Emulators

In this chapter, let's take a detailed look into Genymotion, which provides Android
emulators that are faster and better performing compared to Android SDK:

= ® Genymotion for personal use - Nexus_6P_7_API_24 (144...

[162]

How to Run Appium Test on Devices and Emulators

To install app on the Genymotion emulator, the normal adb commands will work fine, as
shown:

adb install /path/to/app/<app_nhame>.apk

If the app under test is dependent on Google Play, we need to perform these steps:

1. Look for the Google Play Store APK, com.android.vending-x.x.xx.apk, for
the device API level and install it.

2. Flash the emulator with the respective Google play Service's gapps-1p-
YYYYMMDD-s1igned file.

3. Restart the emulator.

4. Launch the Play Store and update the google apps installed.

The advantages of using the GenyMotion emulator are:

¢ The Genymotion emulator is a better performant than the Android SDK
emulators. Genymotion uses the x86 architecture to run the Android
virtualization.

e Genymotion emulators don't crash as frequently compared to Android Virtual
Devices.

¢ Genymotion has a larger array of devices to create an emulator from.

Running test on the Genymotion emulator

When you are running a single Genymotion emulator on your machine, you can pass the
platform version to the desired capabilities and it will take care. The code for that is as
given; customize it for the platform version you have created the emulator for:

capabilities.setCapability ("platformVersion", "5.1");

[163]

How to Run Appium Test on Devices and Emulators

When we are running multiple versions of Genymotion emulator, we need to pass the udid
of the targeted device where we want to run the automation:

Here's the code snippet for passing the udid as the desired capabilities:

capabilities.setCapability ("udid", "192.168.56.102:5555");

With the Genymotion emulator, one of the exceptions is that the desired capability to
launch the emulator doesn't work the way it works seamlessly in Android Virtual Devices.
Also, we need to launch Genymotion emulators before we trigger the test. Here, how we
can launch the Genymotion emulator via the command line is explained.

Use these steps to start the Genymotion emulator via the command line on macOS:

1. Launch the Terminal.
2. Typein the vBoxManage list vms command. This is the sample output:

~ VBoxManage list vms
'Mexus_5 API_21 B" {5b824ed3-aBbc-4662-b623-ef33701ccTol}
6F_7_API_24" {9a3aceaba-g647-4471-b57c-8661798

'‘Mexus 6P 7 API 24 Clone" {18180b597-fbAb-4ef7-9f59-5

i'MErLF B
|

3. Type in the following command (modify the vm name with the data on your
system):

open -a /Applications/Genymotion.app/Contents/MacOS/player.app --
args --vm-name "1010b597-fb0Ob-4ef7-9f59-57070b3108a7*

4. The last parameter passed is vm id, as shown in the .

This will launch the Genymotion emulator without launching the Genymotion app. Let's
take a look at how to run the same test for physical devices.

[164]

How to Run Appium Test on Devices and Emulators

Devices

To do any development and debugging activity on Android devices, the first thing we need
to do is enable the developer options. Different phones have different navigations for
enabling developer options; here, we list a few of them:

e Samsung Phones:
e Launch Settings > About Device > Build number

e LG Phones:
¢ Launch Settings > About Phone > Software Information > Build

number

e Stock Android Phone:
e Launch Settings > About phone > Build number:

~ - |
{ # About phone

SLdiLl

Legal information

Requlatory information

Model number

Kernel version

Build number

How to Run Appium Test on Devices and Emulators

Once we reach the Build number, we need to tap on it seven times, and then it will show a
message saying You are now a developer!. This will enable the developer options on the
device under the Settings menu. Tap on Developer options and select USB debugging.
Also, ensure that the option of Verify apps over USB is turned off. This option, when
turned on, stops app deployment on the physical device:

- - 100% W 3:056m

Developer options I

B e o o el i i Pl et
about running
proce

DEBUGGING

USB debugging
Debug mode when USE is
connected

Revoke USB debugging aut

Allow mock locations

Allow mock locations

Select debug app

No debug application set

[166]

How to Run Appium Test on Devices and Emulators

This will show a popup (as illustrated), on which we need to press OK:

USB debugging is intended
for development purposes
only. Use it to copy data
between your computer

and your device, install
apps on your device
without notification, and
read log data.

Cancel

Once the preceding setups are done on the device, we can connect the device to the
machine, launch the Terminal (the Command Prompt in the case of Windows), and type in
this command:

adb devices

The expected output is shown here; we have one physical device running with UDID
2a2d916 and one GenyMotion emulator with ID 192.168.56.101:5555:

~ adb de
of d

Sometimes, when the devices still don't show up in the output, we can run through the
following steps to fix this (these are macOS-specific steps):

1. Open the USB manager on your machine (macOS).

2. Use the vendor ID (highlighted in red in the following screenshot) and update it
in the adb_usb. ini file.

To obtain the vendor ID on macOS:

1. Click on the Apple icon in the top-left of the screen.
2. Click on About This Mac.
3. On the popup, tap on System Report.

[167]

How to Run Appium Test on Devices and Emulators

4. Under the hardware section, click on USB.
5. You will notice the device connected there; click on the Android device:

&] MacBook Pro
Printers USB Device Tree
SAS
SATA/SATA Express ¥ USB 3.0 Bus
s Bluetooth USBE Host Controller
Sicruie
Thunderbaoit iPhone
use
¥ Metwork
Firewall
Locations
Volumes Android:
WWAN
Wi-Fi Product ID: 0xf18
Vendor ID:
v
Sl - = Version: fi.f
ADCESSONLY Serial Number: 2a2d916
Applications Speed: Up to 480 Mb/sec
Components Manufacturer: Android
Developer Location ID: 0x14200000/ 8
Disabled Soft Current Available (mA): 600
RS anIAam Current Required (ma): 500
Extensions Extra Operating Current (mA): 0
Fonts
Frameworks
Installations
Logs

Managed Client
Preference Panes
Printer Software
Profiles

Startup items
Sync Services

B Nishant's MacBook Pro » Hardware » USB » USB 3.0 Bus » Android

Copy the Vendor ID and run the following command to update the adb_usb.ini file:

vim ~/.android/adb_usb. ini

[168]

How to Run Appium Test on Devices and Emulators

The preceding command will open the file in edit mode, and we can paste the vendor ID in
the new line there, save the file, and quit. Here's a sample snapshot of the file:

- DO HOT EDIT.

b' TO GEMERATE.

Once we are done editing this file, we can restart the adb server and run the adb devices
command, as shown:

adb kill-server
adb start-server
adb devices

Running a test on actual Android devices

Running a test on a physical device is very similar to running the test on emulators once the
preceding setup is done. As long as we are providing the platform version correctly and
providing there is only a single device connected, the test will pick up that device for
execution. However, when we have multiple devices connected with the same android
platform version, we need to specify the unique udid of the device to run the test.

So, if we have the emulator and device of the same platform version, we can use the
following line and update the respective device ID to run the test on the connected physical
device:

capabilities.setCapability ("udid", "2a2d916");

[169]

How to Run Appium Test on Devices and Emulators

Running a test on actual iOS devices

Until now, we have largely built the code base for Android, but most of it remains the same
for iOS. We need to create a similar project for iOS apps and use an . app or . ipa file to
deploy the app on device/simulator. The current project we have developed is Android-
specific; however, we can reuse the feature file. Locators might be different in the case of the
iOS app, but the steps largely remains the same to obtain the locator.

However, when it comes to running tests on iOS devices, we need to go through the
following series of steps before triggering the test.

The first major requirement is to have a macOS as your machine and, second, to have the
iOS app under test signed with a development provisioning profile.

If we are using a physical device, we need to enable Ul automation in the developer options
in the iPhone device. These are the steps to do this:

Switch off the iDevice.

Connect it to the Mac running Xcode.

Switch it back on to have Developer options appear under device Settings.
Tap on the Developer option.

Enable Ul automation.

o W

Now, the device is ready to run any Appium tests. The next step to run the Appium test is
to get the UDID of the devices. The following steps help you obtain the UDID of iOS
devices:

1. Connect your iOS Device to your Mac and launch iTunes.
2. In the left pane, go to Devices > Select your Device.

3. In the right pane, reveal the identifier by clicking on Serial Number. It's a
clickable element that toggles.

4. Copy the device identifier and save it.

We need to have a couple of libraries installed before we run the test. Run the following
commands to install these libraries:

e ios-webkit-debug-proxy: It proxies requests from the usbmuxd daemon over
a websocket connection. It allows you to send commands to MobileSafari and
UlWebViews on real and simulated iOS devices:

brew install ios-webkit-debug-proxy

[170]

How to Run Appium Test on Devices and Emulators

e libmobiledevice: It's a cross-platform software library that talks the protocols
to support Apple devices. It supports iOS devices natively:

brew install libimobiledevice

e usbmuxd: It stands for USB multiplexing daemon and is in charge of multiplexing
connections over USB to an iOS device:

brew install usbmuxd

e carthage: It's a dependency manager for a Cocoa application. Appium uses the
Facebook webDriver agent, which in turn needs carthage as a dependency
manager:

brew install carthage

e ios—-deploy: ideviceinstaller doesn't work with iOS 10 yet. Hence, we need
to use the ios-deploy library to interact with real devices. Use this line to
implement it:

npm install -g ios-deploy

These are the steps to follow before triggering a test on an iOS physical device:

1. Launch the Terminal.

2. Run ios-webkit-debug-proxy by running the following command. This
command restricts the proxy to just one device identified by its UDID:

ios_webkit_debug_proxy -c <UDID>:27753

3. Assuming that the test is starting the Appium server, run the Appium test. A
sample of the desired capabilities will look like this:

capabilities.setCapability("platformName', "i0S'™);
capabilities.setCapability("platformVersion', "9.3");
capabilities.setCapability("'deviceName", "iPhone');
capabilities.setCapability("'udid"”,
"'2b6T0cc904d137be2e1730235¥5664094b831186™) ;

So, the preceding steps will help run the Appium test on physical iOS devices. For running
the test on physical iOS devices, udid is a must; we don't need the udid as a desired
capability but the deviceName has to match the simulator name for iOS simulators.

[171]

How to Run Appium Test on Devices and Emulators

Summary

In this chapter, we learned how to set up Genymotion emulators and how to configure
them. We learned how to alter the desired capabilities to run the test on emulators. We
learned how to set up Android devices for development and testing by turning on the
developer options. We also learned how to turn on USB debugging and run the test on an
Android device by passing the udid.

We explored different libraries to install (via Homebrew) for running the Appium test on an
actual iOS device. We also discussed how to get the UDID of iOS devices. We went through
the steps to start i os—webkit-debug-proxy and the desired capabilities to use for an iOS
test.

In the next chapter, we will learn how to run the Appium test via the continuous integration
tool, Jenkins. We will go through the detailed process of setting up Jenkins and running the
test.

[172]

Continuous Integration with
Jenkins

In the last chapter, we looked at how to run the Appium test on an emulator and physical
devices. We also learned how to start the emulator through the command line. We explored
how to run the Appium test on physical devices, including iOS devices. So far, we have
seen how to use Appium, learned how to author test, learned to automate gestures, and
learned about design patterns as well. The next step is to run these Appium tests via a
continuous integration tool, Jenkins. In this chapter, we will take a detailed look at the
following:

e Setting up Jenkins
e Exporting reports as artefacts

Generally, on any development project, we use a continuous integration tool. It's a standard
development practice that requires developers to integrate code into a shared repository.
Once the developer checks in the code, it is verified by the automated build that does basic
jobs, such as compiling the code and running unit tests.

Before we set up Jenkins, let's refactor the code to run the automation test via command line
using the tool cradie.

Continuous Integration with Jenkins

Refactoring -1

Until now, we have been running the test via an IDE. When we started with the gradile file,
it was majorly to pull in the dependencies needed for the project. Here's how the current
version of the grad1le file looks:

group 'com.test'
version '1l.0-SNAPSHOT'

apply plugin: 'java'

//sourceCompatibility = 1.8

repositories {
mavenCentral ()

}

dependencies {

testCompile group: 'junit', name: 'Jjunit', version: '4.11"
compile group: 'info.cukes', name: 'cucumber-java',
version: '1.2.5'

compile group: 'io.appium', name: 'java-client',

version: '5.0.0-BETA6'
}

The next step is to create a task that will execute the cucumber features in a different feature
file. A task represents an atomic piece of work for a build. Tasks generally belong to a
project and the syntax to define a task is this:

task taskName (type: someType) {
configuration

}

A task is made up of a sequence of actions; some typical actions can be added by calling
doFirst () or doLast (). So, let's go ahead and add a task to execute all features and
generate a . json report. Copy the following code snippet and paste it in the gradle file
below the dependencies section:

task runAllTest (type: Test, dependsOn: ['clean', 'build']) {
doLast {
String tags = getTags()
javaexec {

main = "cucumber.api.cli.Main"
classpath = sourceSets.test.runtimeClasspath
args - ["7p"[llpretty", "7p"[

"json:${reporting.baseDir}/cucumber/cucumber. json",

[174]

Continuous Integration with Jenkins

|l77glue"’ "Steps", "7t|l, tagS,
"$S{project.projectDir}/src/test/java/features"]

}

private String getTags () {
def tags = System.getProperty ("tags")
i

if (tags != null)
return tags;
return "~wip"

Let's understand the above piece of code we have written; we are essentially doing the
following things:

e Creating a task called runA11Test
* Making it dependent on the other task cl1ean and build (which are predefined)
e Getting a string (tag name) via system parameters and performing a null check
on the same
¢ Invoking cucumber CLI with a bunch of arguments:
e —p: To create a pretty report in Json format in the specified
directory
e ——glue: To find the step implementation in the "steps" package
o —t: To filter the features file (in the specified path) based on the
passed string, which is tags

[175]

Continuous Integration with Jenkins

So, the entire gradle file should look as illustrated:

group ‘com.test’
version '1.8-SNAPSHOT®

apply plugin: 'java'
fisourceCompatibility = 1.8
repositories {

mavenCentrall)
}

dependencies {
testCompile group: ‘junit’, name: ‘junit', version: '4.11°
compile group: 'info.cukes', name: "cucumber-java’, version: '"1.2.5"
compile group: ‘io.appium’, name: ‘java-client', version: '5.0.0-BETAG'

}
task runAllTest(type: Test, dependsOn: [‘clean’, ‘build*]) {
doLast {
String tags = getTags()
javaexec {

main = “cucumber.api.cli.Main"

classpath = sourceSets,test. runtimeClasspath

args = ["-p", “pretty", “-p“, “json:${reporting.baselir} /cucumber/cucumber.json",
“——glua", "steps”, “-t", tags, "S${project.projectDir}/src/test/java/features"]

}

private String getTags() {
def tags = System.getProperty(”tags")
if (tags != mull)
return tags;
return “~wip"

[176]

Continuous Integration with Jenkins

If you note the preceding code, we are accepting tags as an input to run the test. So, let's add
a tag on the scenario and call it @search:

@search
Scenario: Search for a used Honda City car in Bangalore city

When I launch Quikr app

And I choose "Bangalore" as my city

And I search for "Honda City" under Used Cars

Then I should see the first car search result with "Honda"

Now we can pass these created tags using the command line; let's test the preceding gradle
task by following these steps:

1. Launch Emulator or connect a device.

2. Change the desired capability to match the Plat formversion of the
emulator/device.

3. Launch the Terminal (the Command Prompt on Windows) and navigate to the
project root folder:

HelloAppium pwd
fUsers/nishant/Development/HelloAppium

= HelloAppium gradle clean build runAllTest -Dtags=@search

4. Type in this command and press Enter:
gradle clean build runAllTest -Dtags=@search

Windows user can run the command

-/gradlew clean build runAllTest -Dtags=@search

This should start the test on the targeted device. We can add the same tag to other test as
well and run them.

Once we have this up-and-running, we are good to set up Jenkins.

[177]

Continuous Integration with Jenkins

Setting up Jenkins

Jenkins is an open source continuous integration tool that helps in automating
development-related repetitive tasks. It runs as a local server on a host machine where we
install it:

Let's follow these steps to install Jenkins:

1. Download the Jenkins mac OS X installer or Windows installer from nttp://jen
kins-ci.org.

2. Double-click on the .pkg (.msi for Windows) file to install Jenkins and select the
location installation.

3. Once itis successfully installed, the browser will open to
http://localhost:8080.

4. The browser will redirect to http://localhost:8080/login?from=%2F with a
message for macOS X and Windows.

[178]

Continuous Integration with Jenkins

Unlock Jenkins

To ensure that Jenkins is securely set up by the administrator, a password
has been written to the log (not sure where to find it?) and this file on the
server:
/Users/Shared/Jenkins/Home/secrets/initialAdminPassword.
Copy the password from either location and paste it below as shown in
the following screenshot:

Getting Staried

Unlock Jenkins

Admimuirater pertwsrd

==

5. Use the following command to view the password and copy it:

e For macOSX : sudo cat
/Users/Shared/Jenkins/Home/secrets/initialAdminPassw
ord

e For Windows: Navigate to the earlier mentioned location (in the
Getting Started pop up) and open the file with Notepad; copy the
password.

6. Enter the password in the Jenkins log-in page, and it will show you the screen to
install and manage the plugin.
1. Close that and click on Start Jenkins.

[179]

Continuous Integration with Jenkins

This completes the Jenkins setup on your machine. The next step is to create a job that runs
the automation suite, but we need to implement the version control system (cit) with our
current project before that.

Moving a project to Git

Until now, whatever we have coded resides locally on our machine, which will never be an
ideal case as we will typically be using the source control tool GitHub, Bitbucket, and so on.
Follow the given steps to move the project to GitHub (assuming that you have a GitHub
account; if not, please sign up on https://github.com/):

1. Install Git by downloading the respective installer for your machine (either Mac
or Windows).

2. Once done, launch the Terminal and type in the git --version command. It
should show something similar to this (with a higher version number):

3. The next step is to configure your git username and email using the following
commands:

$ git config --global user.name "firstname lastname"
$ git config --global user.email "firstname.lastname@xyz.com"

Once the preceding steps are executed, we are done with the setup of Git; the next step is to
move the repository to Git. Follow these steps for that:

1. Log in to Git and click on New repository. You will be directed to another
window, as shown:

[180]

Continuous Integration with Jenkins

Create a new repository

A repository contains all the files for your project, including the revision history.

Owner Repository name
? nishantverma - /
Great repository names are short and memorable. Meed inspiration? How about verbose-umbrella.

Description (optional)

. ! Public
".I'Tyl'ﬂﬁt' can see this repositony. You choose who can commil.
L1 Private

. You choose who can see and commit to this repusétnry.

Initialize this repository with a README
Thi= will lat }'U\J |rr'.me-dmml5r clona tha rapns.norl,l LD your cComputer Skip this atap it 'gruu'r{- impﬂl‘l‘mﬁ an axistng
repository

Add .gitignore: Nong = Add a license: Nona = @

2. Enter a Repository Name.

3. Enter the Description for your repository.

4. By default, Public repository will be selected. Choose Private if you want to set
up a private repo.

5. Click on Create repository.

[181]

Continuous Integration with Jenkins

Once done you will see this screen:

[/ nishantverma | testrepo @ Unmatch= 1 # Star

O Code Is%ises D Pull réquasts 0 Projecis @ Wik Pulse Graphs Settings

Quick setup — if you've done this kind of thing before
f‘i_] Setup in Deskicg o HTTPS | S8H hitpsl//pitses. cos/nishentverss/testreps. glt

Wea recommend every repository include a README, LICENSE, and .gltignare.

...OF create a new repository on the command line

echo “8 testrepo™ >» README.md

git init

it add README.md

git commit -m “First coemit™

git remsote add origin httpa://github.com/nishantversa/testrepo.git
git push -u origin master

...0r push an existing repository from the command line

Elt remote add origln https://glthub.com/nishantversa/testrapo.git
git push -u origin master

...or import code from another repository
You can initiskize this repository with code from a Subversion, Mercurial, or TFS project.

Impan code

[182]

Continuous Integration with Jenkins

So, now we have an existing project that we want to get started with. Let's follow these
steps to push the Hel1loAppium project to GitHub:

1. Launch the Terminal (the Command Prompt on Windows) and navigate to the
HelloAppium project folder.

2. Type git init, and you will see this output:

> HelloAppium git init

Initialized empty Git repository in /fL s/nishant/ lopment/HelloAppium/.git/
< HelloAppium x1

3. Oncedone, runthe git remote add origin
https://github.com/nishantverma/HelloAppium.git command to add
the remote origin.

4. Doagit add for all files, as shown:
git add --all

5. Doacommitwiththe "Initial Commit" message:
git commit -m "Initial Commit"

6. Once done, it will show a bunch of files that are ready to be pushed.
7. Run the push command:

git push -u origin master

[183]

Continuous Integration with Jenkins

8. This is a snapshot of all the commands and the typical output:

We have pushed our project to GitHub with the preceding steps. The next job is to create
the Jenkins task that will use this repo to run the Appium test.

Adding Jenkins plugin

To start the Jenkins setup, we need to install a couple of plugins that Jenkins provides to
make the process easier. We need a couple of Jenkins plugins to help set up the automated
test run. Follow these steps to install some of the plugins:

1. Launch Jenkins (http://localhost:8080).
2. Click on Manage Jenkins.

[184]

Continuous Integration with Jenkins

3. Select Manage Plugins, as illustrated:

Manage Jenkins

: Hew version of Jenkins (2.55] Is avadlable for dowmilosd (ohangetog)
* Biald H
e 3
| Mannge Jenkins E
& My View o :
_1 CAodeniin
Build Cusus .
o buiis in the gueus J
d p 5 = [
Builld Executor Status O -

1 S

= i

Click on the Available tab.

Click on Filter and type in Gradle plugin.
Select the checkbox next to the result.
Click on Install without restart.

Repeat the preceding steps for the following plugins:
1. Cucumber reports

2. Github plugin
3. Android Emulator plugin

© N o gk

9. Once done, restart Jenkins.

This finishes the installation of all the required plugins point in time. We can always go
ahead and add more plugins as the need arises.

[185]

Continuous Integration with Jenkins

Setting up the Jenkins task

Once the preceding plugins are installed, it becomes slightly easier for us to use these
plugins to set up the Jenkins task. Follow the given steps to create the Jenkins task:

1. Launch Jenkins (http://localhost :8080).
2. Click on Manage Jenkins > Configure System.

3. Under Global properties, select Environment variables and add the Name and
Value. Value should be local to your machine; it should be what we have set up
in the bash profile in chapter 2, Setting Up the Machine:

Name : ANDROID_HOME
Value : /usr/local/Cellar/android-sdk/24.4.1_1

4. Click on Save.
5. Once done, click on New Item.
6. Enter a project name and select Freestyle project; click on OK:

Enter an item name

HelloAppium Tas!
i Freastyle project

Multi-canfiguration propect

L Buitatio for peopecty that Fsad n ke nummSsr of Gfsrert configremions. such &8 leslng on mullichs irvronrmenty. platiorm-apecilic bulds, i

I you wanl bo creats a new item from olhar axisting, you can use this opbon

J Copy o

7. Enter the Description you want for this project.

[186]

Continuous Integration with Jenkins

8.
9.

Under Source Code Management, select Git.

Enter the Repository URL and add Credentials if it's a private repository, as
illustrated:

Source Code Management

MNane

= G

Rapathcries 0
Fepostory UFL hitpagithul comnishanta matHaloApgpium g| L
Cancertais nishanheomart* T == Ao
Adwanced
Asid Rephaliory
Beanches o buid n
Branch Soocfier (ank o ary] * L
e Bramch
Rapiinry browsdar piteab s i)

URL | hmgeciptub commnishanhsrmaHoelloA oo gf

Addioral Betuniours Clean before chackout u T
Al =
10. Choose gitweb as the Repository browser.

11.
12.
13.

14.

Enter the URL again for the Repository browser.
Under Additional Behaviours, click on Add and select Clean before checkout.

For now, we will manually trigger the builds; hence, we need not select any of the
options under Build Triggers.

Click on Add build step under Build and select Execute shell. Enter this
command:

-/gradlew clean build runAllTest -Dtags=@search

[187]

Continuous Integration with Jenkins

In this Command textbox as shown:

Build
Execuls sheil u 2]
Command - gtadlew cleas bulld runAllTest -Diage=fssarch
Soe jhe kil of gvalable evironmenl variabies
Advanced
Agd buildt step =

15. Alternatively, we can select Invoke Gradle script, which will allow us to use the
Gradle task directly. Refer to the following screenshot. For now, choose between
above mentioned points 14 or 15:

Buuild
Irveke Gradie script i<y Ll
Imvoke Gradia ‘.}
& Lo Gradio Wiappe: ‘_}
Waks gracdiow pascutatis
Wragar laoation 0
Suitches v L]
3 1]
Taths chaan budld runAdToest -Deages @ soarch ¥ g
Rt Buikd scrigl LD
Buiid Filp L1
Gipsezify Grmh Disia fike 10 Fun, AB0, SOMQ SIVECAMENT vinbios Bre oy Rl 10 D Duilg
Rcript
Fotoe GRADLE USER_HOME 1o uss workapace LL
PRGS s paramssiirs &y Gracls propsiiag 6
Add Eniild siep =

16. Click on Add post-build action.

[188]

Continuous Integration with Jenkins

17. Select Cucumber reports from the drop-down, as follows:

Aggregate downstream lest results
Archive the aridacts

Build other projects

Publish Android monkiy lesler resull
Publish JUnit 151 result repon ace
Publish Javadoc

Record lingerprnts of files to rack usage
Gil Publisher

Cucumbser reposts

E-mail Matification

Sel GitHub commi status (univensal)

Sat build status on GitHub commil [deprecaled]

Add post-build sction =~

18. Click on Save.
19. We will see this screen once the task is created:

@ Jenkins

Back 1o Dashboard

Project AppiumTest

. Stsius

== ¥

A

) Buikd Now Cucurmbes: ropons
(& Dolose Progct
™M Conligiae .:-'_“- Workspacy
—
2 Cucumber reports L 5
S Beoard Cligrges
Build History imnd == Permalinks
) BES o ol) PSS for Eniburen

[189]

Continuous Integration with Jenkins

20. Launch the Genymotion emulator. We haven't added a step to do this in an
automated way. So for now, we will have to start it manually.

21. Click on Build Now in the left panel.

22. Under Build History, click on the running job drop-down and select Console
Output. This will show the runtime log of the running job:

Build History trend =

a Apr 18, 2017 4:54 FM

- Chanpes

a Consale Output

~_» Edit Build Information

We have finished setting up the Jenkins task and we have also seen how to run the task. The
next step is to view the reports. This section will help you understand this.

Viewing reports in Jenkins

Once the preceding job is complete, Jenkins will show you some of the information it
collects as part of the result. Refer to the following screenshot; it shows Cucumber reports,
Workspace, and Recent Changes:

[190]

Continuous Integration with Jenkins

Project AppiumTest

@ Cucumber repors
b Workspace

—g# Becenl Changes
b=y

Permalinks

Last build (#1), 4 min 34 sec ago

Las! failed build (#1}, 4 min 34 sec ago

Last unsuccessful build (#1). 4 min 34 sec ago
Last completed build (#1), 4 min 34 sec ago

¢ Clicking on Cucumber reports will show you the summary of the test result.

o Under Permalinks, we can see the test result by Last build, Last failed build,
and so on.

¢ Recent Changes will show the code changes commit-wise since the last run.

We have now completed setting up Jenkins to run the appium test we have authored. We
can hook this to the GitHub account, where each commit will trigger the test, or we can
have a manual trigger as well.

[191]

Continuous Integration with Jenkins

Summary

In this chapter, we covered running the appium test via a Gradle task. We learned how to
pass the tags from outside to the Gradle task. We learned about Git and how to move the
current project to the GitHub repo. We learned about Jenkins and how to install plugins.
We also learned how to create a Jenkins task to run the test unattended. We explored how
to map the Jenkins task to use the Github project for source code management and how to
pass the gradle command via a shell or via the gradle task configurator. We also discussed
how to enable cucumber reports and see the console output during execution time.

This pretty much completes the appium test, right from setting it up to authoring the test
and configuring Jenkins to run it. In the next chapter, we will look at some of the tips and
tricks that make mobile automation a little more intelligent.

[192]

11

Appium Tips and Tricks

In the last chapter, we looked at how to set up Jenkins and have a test run in an automated
way. We also learned how to put the code into GitHub and then configure the Jenkins task
for the purpose. We have almost come to the end of this book; in this chapter, we will learn
some tips and tricks of Appium and automation in general, which can help improve our test
automation and make it a little more intelligent both from the system and testing points of
view.

In this chapter, we will take a detailed look at the following:

Switching between WebView and Native
Taking screenshots

Recording video execution

Interaction with an other app

Approach for running the test in parallel
Simulating various network conditions

Switching between views - web and native

While testing an app, we often find the need to switch between the Web and native views.
A typical example is the Facebook sign-in page in many apps or an intermediate payment
page. In those situations, we need to change the application context to WEBVIEW OF NATIVE.
Use the following code snippet to switch to WebView:

public static void changeDriverContextToWeb (AppiumDriver driver) {
Set<String> allContext = driver.getContextHandles();
for (String context : allContext) {
if (context.contains ("WEBVIEW"))
driver.context (context) ;

Appium Tips and Tricks

}

It tries to get a list of all the context handles, checks whether there is any context that
contains WebView, and then the driver switches to that context.
The following code snippet switches to native on a similar logic:

public static void changeDriverContextToNative (AppiumDriver driver) {
Set<String> contextNames = driver.getContextHandles();
for (String contextName : contextNames) {
if (contextName.contains ("NATIVE"))
driver.context (contextName) ;

}

Generally, switching between a WebView and native view happens across the app on
different pages, so it will make more sense to have this method created in BasePage. The
advantages of this approach are as follows:

e Easy access to call from any page
¢ Avoid duplication of the implementation

We can use the preceding code for reference and may tweak it, if need be. The next tip is
taking a screenshot of the app while under execution.

Taking screenshots

A picture speaks a thousand words, but in our case it can save a thousand seconds. It's a
good practice to take an image at the point of test failure as it will help us save a lot of time,
which is needed to go through the error logs. Also, sometimes images are needed as part of
the test case itself. Here are two approaches:

¢ Embedding a snapshot at the point of failure
e Taking a screenshot and saving it for later use or reference

[194]

Appium Tips and Tricks

Embedding a snapshot in a cucumber report becomes fa+irly easy. Cucumber exposes you
to the scenario interface, which makes it slightly easier to query whether the scenario has
failed or passed. For example, refer to the following snapshot of code; we are doing the
following step by step:

¢ The conditional statement helps us check whether the scenario has passed or
failed

¢ We are checking for a failure condition in respect of the scenario
« We instruct the driver instance to take a screenshot at the point of failure:

if (scenario.isFailed()) {
final byte[] screenshot
.getScreenshotAs (OutputType.BYTES) ;

= driver
(
scenario.embed (screenshot, "image/png");

We can include the preceding code in the tear-down method. So, this will keep probing the
scenario and, if it fails, it will take a screenshot and embed it in cucumber reports. If we edit
the current tear-down method, it will be as shown below:

@After
public void tearDown (Scenario scenario) A
try {
if (scenario.isFailed()) {
final byte[] screenshot appiumDriver

.getScreenshotAs (OQutputType.BYTES) ;
scenario.embed (screenshot, "image/png");
}
appiumService.stop () ;
appiumDriver.quit () ;
} catch (Exception e) {
System.out.println ("Exception while running Tear down
+ e.getMessage());

- n

[195]

Appium Tips and Tricks

When we embed the failure snapshot in the current test report, it becomes more
informative. Here's how a sample report with image embedding will look:

Icu rn_t___:u?;_r

Result for 0 0 in build: 2017-06-12
124256

e -
R b T o5 -
[———— S g e e g e ——

[196]

Appium Tips and Tricks

To get the above report or a nicely formatted cucumber report, we can use an external JAR
listed here: nttps://github.com/damianszczepanik/cucumber-sandwich.

The second use case for taking a screenshot is to use it for manual verification. For instance,
a use case would help UX team give a page by page snapshot of the app to verify the look
and feel. We can use the described get ScreenshotAs () method to taking the screenshot
and store the output as a file in some predefined path. The format we are using is . jpg:

public void getScreenshot (String imageFolder) throws IOException {
File srcImgFile=driver.getScreenshotAs (OutputType.FILE);
String filename= UUID.randomUUID () .toString();
File targetImgFile=new File (imageFolder + filename +".Jjpg");
FileUtils.copyFile(srcImgFile,targetImgFile);

}

Having a large number of screenshots at different points in the execution and publishing
them as part of build artefacts might eat up the Jenkins agent space (assuming that the
Jenkins slaves are less powerful and scaled down machine versions). We should be careful
with this feature.

The next tip is to record the video execution of scenarios.

Recording video execution

Often, there is an inherent need to capture the playback when we execute a test so that we
can actually see how the scenario fared. There can be a few reasons for this, one of which is
the documentation. It might also be for demonstration purposes in the product team, or to
see what happened on the device in the case of any failure.

Android ADB gives screen recording functionality only and not the audio capture. This
should suffice for most functional test automation needs, which doesn't really require the
audio component to be captured. ADB gives you a way to capture the display of Android
devices, running Android 4.4 (API Level 19) or upward. The APl is adb shell
screenrecord [options] <filename>

o Let's look at a usage example--adb shell screenrecord
/sdcard/demoVideo.mp4:
¢ The screen recording automatically stops after 3 minutes or by the
-—time-1limit option, if set APl usage for time limits--adb shell
screenrecord ——time-limit <TIME_IN_SECONDS>.

[197]

Appium Tips and Tricks

e The usage example for this is adb shell screenrecord --time-limit 240:
e The screen record API gives the option to rotate the output by 90
degrees; however, this is just an experimental feature.

¢ APl usage for rotate--adb shell screenrecord —-rotate:
e The screen record API gives the option to display log information.
By default, this is off.

o API usage for displaying log info--adb shell screenrecord --verbose:
e The screen record API gives the option of setting the bit rate for the
video, in megabits per second. The default value is 4 Mbps. The
higher the bit rate, the greater the size of video and vice versa.

API usage for bit rate--adb shell screenrecord —-bit-rate <RATE>.

An example of this adb shell screenrecord —-bit-rate 6000000
/sdcard/demoVideo .mp4.

A handy tip for recording video execution is to start the recording when you start the
scenario; so an ideal place to call it would be in the setup method with the @Be fore tag.
Also, adb makes only 3 minutes of screen recording; so if a scenario exceeds 3 minutes, we
need to write our own logic to capture the remaining execution.

The next tip is about how we launch a different app when we have started a session with a
specified app under test.

Interacting with another app

Most of the time, when we test a mobile application, it requires interaction with another
app. For example, an app might need integration with the Contacts app or the SMS app.
Sometimes, while testing, we might need to simulate the geo location, which can be done
via an external app installed on the device/emulator (or it can even be done using Android
adb commands).

[198]

Appium Tips and Tricks

When we start an Appium session for testing, generally it is tied to an app as we are passing
the app parameter in the desired capabilities, so we can't really pass two apps in the desired
capabilities. If we recall our code, we are using this line:

capabilities.setCapability ("app",
"/Users/nishant/Development/HelloAppium/app/quikr.apk") ;

One way to switch between the apps is when we know the target app's package name and
activity name. Android driver exposes a method, startActivity (Activity activity),
which basically takes an activity as input and starts it. So, a sample code snippet to start the
Contacts app on a device will look like this:

Activity activity = new Activity("com.android.contacts",
".ContactsListActivity");
androidDriver.startActivity (activity);

Once we are done with the test steps we want on this app, we can use the BACK key to
traverse back to the application under test:

androidDriver.pressKeyCode (AndroidKeyCode .BACK) ;

The startaActivity () method is available only for androidbriver and not for
AppiumDriver. On iOS devices/simulators we can't automate two apps in one session due
to a limitation from the Apple itself. The only way we can do this:

¢ |nitiate a session 1

Run through the steps for app 1
Close session 1

Start another session 2

Run through the steps for app 2
Close the session 2.

One thing we need to keep in mind is to set the Desired Capability norReset to be true
while creating the driver instance.

Let's take a look at how we can run the test in parallel.

[199]

Appium Tips and Tricks

Running the test in parallel

Let's go back a bit and see what we used in chapter 4, Understanding Desired Capabilities:
the Refactoring -2 section. Here's the code snippet we used:

@Before
public void startAppiumServer () throws IOException {

int port = 4723;

String nodeJS_Path = "C:/Program Files/NodeJS/node.exe";
String appiumdS_Path = "C:/Program
Files/Appium/node_modules/appium/bin/appium.js";

String osName = System.getProperty ("os.name");
if (osName.contains ("Mac")) |
appiumService = AppiumDriverLocalService.buildService (new

AppiumServiceBuilder ()
.usingDriverExecutable (new File ("/usr/local/bin/node"))
.withAppiumJS (new File ("/usr/local/bin/appium"))
.withIPAddress ("0.0.0.0")
.usingPort (port)
.withArgument (GeneralServerFlag.SESSION_OVERRIDE)

.withLogFile (new File ("build/appium.log")));
} else if (osName.contains ("Windows")) {
appiumService = AppiumDriverLocalService.buildService (new

AppiumServiceBuilder ()

.usingDriverExecutable (new File (nodeJS_Path))
.withAppiumJS (new File (appiumdS_Path))
.withIPAddress ("0.0.0.0")
.usingPort (port)
.withArgument (GeneralServerFlag.SESSION_OVERRIDE)
.withLogFile (new File ("build/appium.log")));

}

appiumService.start ();

}

We discussed the ROBOT_ADDRESS capability, but didn't use it then. This capability holds
the key to have Appium tests run in parallel.
We can follow these steps to implement test parallelization for Appium:

1. Create a method to start Appium service by passing port and udid as
parameters.

[200]

Appium Tips and Tricks

2. Once we parameterize the preceding, we can actually start as many Appium
servers as we have devices connected. The following code takes port and udid
as parameters, starts the Appium service, and ties it to a particular port and
udid:

appiumService = AppiumDriverLocalService.buildService (new
AppiumServiceBuilder ()

.usingDriverExecutable (new File ("/usr/local/bin/node"))
.withAppiumJS (new File ("/usr/local/bin/appium"))
.withIPAddress ("127.0.0.1")

.usingPort (port)

.withArgument (GeneralServerFlag.ROBOT_ADDRESS, udid as String)
.withArgument (AndroidServerFlag.BOOTSTRAP_PORT_NUMBER,
(port + 2) as String)

.withArgument (SESSION_OVERRIDE)

.withLogFile (new File ("build/${udid}.log")));

appiumService.start ();

3. Create a method to read the output of the adb devices command:
o Iterate the preceding method to start the Appium service for each udid
(Android device connected)
¢ Use the following method to read the output of the preceding

command:
public List<String> attachedDevicesAndEmulators () A
List<String> devices = new ArrayList<>();

String line;
StringBuilder log = new StringBuilder();
Process process;
Runtime rt = Runtime.getRuntime ();
try A
process = rt.exec(new Stringl]
{"adb", "devices", "-1"});
BufferedReader stdInput = new BufferedReader (new
InputStreamReader (
process.getInputStream()));
BufferedReader stdError = new BufferedReader (new
InputStreamReader (
process.getErrorStream()));

while ((line = stdInput.readLine()) != null) {
log.append(line);
log.append (System.getProperty
("line.separator"));

[201]

Appium Tips and Tricks

}

while ((line = stdError.readLine()) != null) {
log.append(line);
log.append(System.getProperty
("line.separator"));
t
} catch (Exception e) {
e.printStackTrace();

}

Scanner scan = new Scanner (String.valueOf (log));

while (scan.hasNextLine()) {
String oneline = scan.nextLine();
if (oneline.contains ("model")) {
devices.add (oneline.split ("device") [0].trim());

}
}

return devices;

}

4. Create a method to build the desired capability based on the device UDID as the
parameter

5. Create a properties file to save the mapping of tags and devices to pick at runtime

6. Create a method in Gradle to read from the properties file and run the test

For the preceding steps, you need to implement your own code.

Network conditioning

Mostly, we test a mobile app in a perfect condition of best and fast network; however, in
reality the devices might be moving and the network may be fluctuating between Edge
connections (2G), 3G, or even LTE. Sometimes, the automation test has to run at a lower
data speed or even test some offline functionality.

Appium exposes the driver.setConnection () method, which can help in setting the
network condition between WiFi, airplane, data, or none. Any of the following statements
can be used, based on which data connectivity you want to set up:

driver.setConnection (Connection.AIRPLANE) ;
driver.setConnection (Connection.WIFI)
driver.setConnection (Connection.DATA)
driver.setConnection (Connection.NONE)

()

7
7
7
driver.setConnection (Connection.ALL);

[202]

Appium Tips and Tricks

The connection is an enum that defines these bit masks:

Connection Type | Bit Mask
NONE 0
AIRPLANE 1
WIFI 2
DATA 4
ALL 6

Once the value is set, it persists for the life of the driver instance, so we must reset it back to
the data connectivity we want for the test suite.

On macQOS, one can install the Network Link Conditioner app to simulate the various
network conditions. It can be downloaded as part of the Hardware 10 tools package (for
more information visit: https://developer.apple.com/download/more/?q=Hardware%20I
0%20Tools). The following screenshot shows what the app looks like. This helps simulate
the network speed on the simulator. One thing to keep in mind is that it impacts the hosting
device network speed as well, so we have to be careful while using it:

@ L4 it Metwork Link Conditioner

K F__:u Praofile: Edge H

\ A DMS Delay: Mone
L o P
[} Downlink Uplink
MNetwork Link Conditioner Bandwidth: 240 kbps Bandwidth: 200 kbps
Packets Dropped: 0% Packets Dropped: 0%
Delay: 400 ms Delay: 440 ms

ofFf[[T on

[l Click the lock to prevent further changes. Manage Profiles

[203]

Appium Tips and Tricks

Profile lets you select between different network speeds, such as low latency and 3G:

100% Loss
G
DSL

+ Edge
High Latency DNS
Very Bad Network
Wifi

However, on a real iOS device, it's already built in and can be accessed by navigating to
Settings > Developer > Network link Conditioner.

Summary

This chapter completes our journey learning mobile test automation with Appium. It took
us on a tour where we understood the importance of mobile app testing and automation.
We learned about the mobile testing ecosystem, how to set up a machine, and how to install
the respective software and tools. We learned how to use the Appium app, find locators,
and author tests. We also learned how to automate gestures and how to introduce
synchronization in tests. We saw how to run these tests on devices and emulators, including
setting up Genymotion emulators. We also discussed how to set up Jenkins and have tests
automated when the source code is checked in Github.

Lastly, in this chapter, we learned some Appium tricks for switching between WebView
and Native, taking screenshots, and embedding them in the report. We explored how to
record the test execution device screen and also how to vary the quality of the recording.
We learned how to interact with other apps and traverse back to the app under test. We
learned the approach for parallel test execution and how to implement it. We also learned
how to simulate the various network conditions to simulate 2G, 3G, or LTE conditions on
the device while running the functional test.

With this knowledge, we are good to go out, set up our own automation framework from
scratch, and drive it to solve our testing needs. | wish good luck and happy learning to you
all!

[204]

Appium Desktop App

In this chapter, we will take a detailed look at the new Appium app that is built on Electron.
We will look at how to use the app and different options it allows us to configure:

¢ |nstalling the Appium app

e Starting a simple server

¢ Starting the server with advanced options
e Appium endpoints

Installing the new Appium app

Appium has recently released a new open source GUI app for Mac/Windows/Ubuntu users.
It's an app with a new Ul and doesn't require node or NPM to be installed. It's built using
electron (for more information visit: https://electron.atom.io/) and comes bundled
with node runtime. It can be downloaded and installed from the specified location (for
more information visit: https://github.com/appium/appium-desktop/releases/tag/vl.
0.0). Based on your machine OS, you can choose to download the respective installer file
and install the Appium app. The latest released version is 1.6.4.

Appium Desktop App

Here's how the new Appium app looks when you launch it after install:

® @ Appium

@ appium
DY overcea proses

Haost 0.0.0.0

Port 4733

Start Server vi.6.4

At the first glance, it allows you to do the following:

o Start a simple server (version 1.6.4) with the default configuration

o Explore some additional settings under the Advanced tab, and then start the
server or save it as presets

Let's take a detailed look at starting a simple server.

[206]

Appium Desktop App

Starting a simple server

To start an Appium server, we only need the host and port info. The new app allows you to
update the host and port information and then start the server. It also indicates the server
version, which is 1. 6. 4 at the time of writing this book.

When you click on the Start Server v1.6.4 button, it opens the console log that shows the
status of the server:

[Appium] Welcome to Appium v1.6.4
[Appium] Appium REST http interface listener started on 0.0.0.0:4723

The following is the new interface when the server is running. It shows you the Appium
server runtime log as well as other options:

O LU Appium

k! Start New Session Stop Server

[appium] welcome to Appium v1.6.4
[Appium] Appium REST http interface listener started on 0.0.0.0:4723

The app gives you two options:

e Start New Session
e Stop Server

[207]

Appium Desktop App

Start New Session

Clicking on Start New Session launches a new screen (as shown in the following
screenshot), which allows you to launch a new Appium session with the specified Desired
Capabilities. By default, the new session will be launched against the default running
server; alternatively, we can choose to use the other endpoints, such as Custom Server,
Saucelabs, and TestObject. We will discuss that later:

L] L] Appdim
Automatic Sarver Custom Server @ SAUCELABS Py TestObyject
WUl ke CrTRnEly-Aumiing ADDim Desktop sarver af hitooocallont: 4729
Desnmad Capalibities Allach (o Sassion

JE0OM Reprasentathon

[208]

Appium Desktop App

Attach to an existing session

It allows you to attach to an existing session by providing just the session-id (as shown in
the following screenshot). This comes in handy when you already have an Appium session,
and you are in the middle of a running test. Attaching to an existing Appium session is
possible because the inspector is just an Appium client:

L] & Appkim

1 S ﬂ!SAHCE:-'-H-'. ﬁ\eJlL‘ll"i‘:r

y A Beskiog server & hitocfocalast:- 4723

Degired Capablligles Saved Capabiity Sets (1)

Desired Capabilities

Let's do the exercise of launching a new session. We need four mandatory Desired
Capabilities to launch a new session when we are working with a pre-existing app or three
mandatory Desired Capabilities when we want to deploy the app on emulator.

When we want to launch a new session for an installed app (Quikr, in our case) on
emulator/device, use the mentioned Desired Capabilities:

platformName: Android

deviceName: Nexus

appPackage: com.quikr

appActivity: com.quikr.old.SplashActivity

[209]

Appium Desktop App

Here's how the screen will look after setting the values. On the right-hand side, you can see

the JSON being created when we add new Desired Capabilities:

L L Appiiim
Automatic Sarve Custom Sarver @ SAUCELARS g TestObject
0 " N A Deskiog sarves ot At Mooaihost: 4723

red Capabihties Atlach Lo Sesswon...

JSON Representation

Save Al

Clicking on Start Session will launch a new Appium inspector screen, as illustrated.

Clicking on Save As... will allow you to save the config as preset values.

Appium Inspector

Once you click on Start Session, it launches the Appium Inspector, which is fairly simple to
use; one needs to click on the element on the left-hand side of the screen and the right pane

Selected Element will load to show the app source and details of the selected element. The

right pane is categorized by Find By and the rest of the attributes of that element, such as

index, text, and class:

[210]

Appium Desktop App

m B App Source = Bk % b @ D T Sabected Elamsnt
T Sral Srya

BN Tl wraagen § ramal Syt

" [P w— B
5 CRITES WGl |nean byt

e e P L] Farad By Seig i
candtad meaga ramel ot e
- . rsiels = o e widoml Framnel byont i
s Bl o e DR LT (e
= w bl kel Rsbativrl ot four i adher- il —_— T
- - L = il vre Vi - 3
Ararn. soge mageSrey L
wrcrin, sk st AR
BRI L I
¢

< rwoa medgmt. T Tmem (adimsim-ades
s g &7, g 4 immar] symnlonmes
=« el wedgl Rl byt

4ol eyl Fransslasdul e

Fhom ety Addy
«ariroicd midigm] Serolfiios e

POAT
& d - "
= carerod wilges L e et

_ T 3
v v el st | e syt

It allows you to perform operations such as Tap and Send Keys:

Send Keys

BETES4321

Cancel Send Keys

It also allows you to navigate Back (which simulates the action on the device) and Refresh
the Ul based on the device's current state. Clicking on Quit closes the Appium inspector

session.

[211]

Appium Desktop App

Starting the server with advanced options

Appium app allows you to start the server with the advanced options. Clicking on
Advanced on the launch screen opens a hew configuration section in the app, which allows
you to select the General Server arguments and the iOS/Android specific arguments:

[NN Appium

@ appium

Simpla Prasats

General
Sarver Address 0.0.0.0 Sarver Port 4723
Logfile Path Log Level debug
Override Temp Path Node Config File Path
Local Timezone Allow Session Override
Log Timestamps Supress Log Color

Strict Caps Mode
i0s

WebDriverAgent Port 8100 executeAsync Callback Host

gxecutaAsyne Callback Port

Start Server vi.6.4 Save As Preset...

[212]

Appium Desktop App

It allows you to enter the following details:

e General:

¢ iOS

e Android

LogFile Path: This is the location where we want to store the
Appium log file.

Log Level: The default value is debug; other allowed values are
info, info:debug, info:info, info:warn, info:error, warn
warn:debug, warn:info, warn:warn, warn:error, error,
error:debug, error:info, error:warn, error:error, debug,
debug:debug, debug:info, debug:warn, and debug:error.
Override Temp Path: This is the absolute path to the directory
Appium can use to manage temporary files.

Node Config File Path: This is the configuration JSON file to
register Appium.

Local Timezone: This is to use the local timezone for timestamps.
Allow Session Override: This enables session override.

Log Timestamps: They show timestamps in console output.
Suppress Log Colour: Do not use colors in console output.

Strict Caps mode: This causes sessions to fail if desired caps are
sent, and it does not recognize it as valid for the selected device.

WebDriverAgent Port: Local port used for communication with
WebDriverAgent.

executeAsync Callback Host: Callback IP Address (default: the
same as address).

executeAsync Callback Port: Callback port (default: the same as
port).

Bootstrap Port: Port to use on device to talk to Appium.

Selendroid Port: Local port used for communication with
Selendroid.

Chromedriver Port: Port upon which ChromeDriver will run. If
not passed, Android driver will pick a random available port.

Chromedriver Binary Path: ChromeDriver executable full path.

Appium app allows you to the save the config by clicking on the Save As Preset... option.

[213]

Appium Desktop App

Appium Endpoints

Appium app also allows you to launch a session against a non-local Appium server. There
are built-in integrations with SaucelLabs and TestObject, apart from running your server
on a custom host.

e Custom Server: This allows you to launch an Inspector session against an
Appium server running on another machine in your network. It allows you to
provide the host address and the port:

Automatic Server Lustom S8 ﬁ SAUCELABS ﬂ Tutl‘.‘r_.'.‘ulufi'

Remple Host

Remole Post

e Sauce Labs: This allows you to leverage your Sauce Labs (for more information
Visit https://saucelabs.com/) account to start an Appium session in the cloud:

Automatic Server Custom Server @ SAUCELARS ity TestObject

Sauce Access Ky

e TestObject: This allows you to leverage the cloud of real devices of TestObject
(for more information visit https://testobject.com/):

Automatic Server Custom Serves ﬁ SAUCELABS h Tmt%b"*‘_':,r

TasiObject AR Ky

[214]

Appium Desktop App

Summary

In this chapter, we learned about the new Appium app and how to install it. We learned
how to run a simple server and also learned how to start a new session using the Desired
Capabilities and by attaching to an existing session. We saw an example to launch the
existing Quikr app on the emulator and save the configurations as a preset.

We also learned to use the Appium inspector and the options it gives us, such as tap and
send keys. We also looked at different options given in the Appium inspector, such as
Refresh, Quit, and Navigate back. We explored how to use the advanced options to create
an Appium session and different server arguments that Appium gives us to configure
under the heading General and device-specific for iOS and Android.

We also learned about the integration with other endpoints, such as custom server,
Saucelabs, and TestObject.

This chapter covers the new Appium app, which is still to be widely adopted and used.

[215]

Appendix

Introduction to Cucumber

In Behavior Driven Development (BDD), the prime focus is on writing acceptance tests
that describe the behavior of the application or system. Acceptance tests are written from a
customer point of view and hence bring in the outside-in approach to the understanding
and testing of the application. The emphasis is on making the test cases readable by
everyone on the team so that any stakeholder can give feedback on the application's
behavior.

Eric Evans, in his book Domain Driven Design (http://www.amazon.in/Domain-Driven-De
sign-Tackling-Complexity-Software/dp/0321125215), talks about the need for one
language to bridge the gap between the domain experts and programmers on the team.
Cucumber helps enforce the ubiquitous language within the team, which can be understood
by anyone on the team. Cucumber tests are written in a language that can be understood by
anyone in the team, and it's implementation tests the application. This way, Cucumber
helps a team express the behavior of the application in a language that is executable, and at
the same time, understandable by stakeholders.

Cucumber clearly makes it easy, given simplicity with which it can be authored and
comprehended by anyone in the team. An example is as follows:

Feature: Car Search
Scenario: Search for a used Honda City car in Bangalore city

Given I launch the app

When I choose "Bangalore" as my city

And I search for "Honda City" under Used Cars

Then I should see the first car search result with "Honda"

Appendix

Now with this example, anyone would be able to comprehend what the behavior under test
is. Also, it is very easy for others to ascertain whether we are testing the right scenario. The
amazing aspect of Cucumber is that this feature is executable; it can be run and provides
feedback.

Cucumber solves the problem of documentation and serves as a source of living
specification of the software. Most of the time, the documentation resides in a system such
as an excel sheet or some test case management system. The challenges of that approach are
the maintenance and diligence required to keep it updated. The advantage with Cucumber
is that it will always be updated, otherwise the test will fail. It never becomes outdated
because of the constant maintenance and feedback it gives.

Cucumber also serves as a source of truth, being in one place that gives complete insight
into the application's behavior. It takes away the pain as well as the time of maintaining
multiple documents. It also helps in avoiding people having their own version of truth and
understanding of the application.

How does Cucumber work?

Cucumber is a command-line tool that basically executes the feature file which contains
business scenarios facing the application. Feature files follow a specific syntax that is called
Gherkin. Gherkin is a Domain Specific Language (DSL) that allows us to describe a
business scenario. It's a line-oriented language that uses spaces or tabs to define structure
apart from the keyword.

There are two basic conventions with Gherkin:

¢ A file can contain the description of a single feature
¢ Files have the . feature extension

The stages of writing a scenario will be as follows:

1. Create a feature file.
2. Describe a scenario.
3. Write the steps to accomplish that scenario.

All these steps of writing a scenario are business facing, while the implementation is purely
technical. Let's see a better representation of the Cucumber stack (pic courtesy: The
Cucumber Book):

[217]

Appendix

Your Project

Features

'

Business
Facing Scenarios]

v
Steps I

¥
| Step Definitions]
'
Support Code
v
Automation Library]

Technology
Facing

Your System

The technology facing component can be implemented in different languages such as Ruby,
Java, .NET (using SpecFlow), and JavaScript. Here's a representation that makes it more
clear:

Gherkin

Java

Step Definitions

[218]

Appendix

Let's take a quick deep dive into Gherkin and understand it in a bit more detail. The beauty
of Gherkin lies in its simplicity to write a feature file. Feature files can be authored in any
text editor tool available. It follows syntaxes such as YAML Ain't Markup Language
(YAML). A Gherkin file uses a . feature extension and can be created in any text editor. It
starts with a Feature keyword and is written in plain English using other keywords. Let's
take a look at the different keywords Gherkin has:

o Feature

e Background

e Examples

e Scenario

e Given

e When

e Then

e And

e Scenario Outline

Feature

Feature is the first keyword to be used in a Gherkin file. Each Gherkin file can have only
one feature. The typical syntax is this:

Feature: This is feature name

This is feature description and

it can be multi-line till the Gherkin parser
encounters the next Keyword

So, the text following the Feature keyword is the feature name that expresses the business
module under test; some examples of feature names are Login, Search, and User
Registration. Feature description can be expressive and can detail what is supposed to be
accomplished by that feature.

Gherkin parser treats the entire text under feature description till it encounters another
Gherkin keyword beginning on a new line.

[219]

Appendix

Scenario

Scenario is another Gherkin keyword that helps express the business scenario under test. It
captures the high-level intent of the scenario. The typical syntax is as shown:

Scenario: Scenario name

Feature

L4

A feature can be broken down into multiple scenarios, and these scenarios constitute

business use cases together. If you add up all the scenarios’ behavior, it should be
equivalent to the feature behavior itself.

So, a scenario basically contains the steps run on the system under test and gives feedback.
For a scenario to pass in Cucumber, all steps under it should pass. Each scenario can have
multiple steps describing the behavior. There is no rule for the number of steps within a
scenario; however, care should be taken to keep the readability intact.

[220]

Appendix

Gherkin gives us keywords to help express these steps; they are Given, When, Then. Any
testing scenario is generally categorized into the following:

o Getting the system to a desired state
e Performing the steps to test
¢ Verifying

The mentioned steps are typically mapped to Given, where we get the system in a desired
state, when, where we perform the actual testing steps (this can be a bunch of lines) and
lastly, Then, where we do the verification of the desired state of the application. Let's look at
the feature file we wrote earlier:

Given I launch the app

When I choose "Bangalore" as my city

And I search for "Honda City" under Used Cars

Then I should see the first car search result with "Honda"

So, Given sets the application state that is about launching the desired application; When is
telling the application to move to a particular state by choosing a city and searching for
specified cars in our case, and Then is about verifying that the first car result is the desired
one.

Gherkin allows you to replace the entire set of Given, When, and Then in a little less
verbose way by replacing it with *. So, the earlier statement can be expressed as follows:

launch iOS app

choose to enter "22" and "33"
tap on Compute Sum

should see the result "55"

* F F ok
HoH H A

Now that we have read about feature files, scenarios, and steps, let's take a look at the result
states Cucumber gives. Cucumber has multiple states for the results: Undefined, Pending,
Passed,and Failed.

Undefined steps: When Cucumber doesn't find the step definition that matches a step, it
marks the step as undefined and throws the undefined step exception when we try to run it.
For the preceding steps, it will throw the shown exception:

Undefined step: I launch iOS app

[221]

Appendix

Pending steps: Cucumber isn't able to figure out whether a step is defined or not. It starts
looking at the step definition and then figures out the state of the step, that is, whether it is
defined or not. Generally, when a new step is created, this is the template:

@Given ("*I launch 10S app$")

public void iLaunchIOSApp () throws Throwable {
// Write code here that turns the phrase above into concrete
actions
throw new PendingException();

}

So, when the Cucumber runner encounters the throw new PendingException ()
statement, it throws up the pending steps exception.

Passed: If a code block executes successfully without throwing any exception, Cucumber
marks that step as passed.

Failed: If a code block throws some exception, Cucumber marks that step as failed and
skips the remaining steps (if any). The standard reason for exception is, generally, system
not behaving as expected, which is a bug in the app or bug in the step definition code itself.
The assertion failures also mark the step to be failed, thereby failing the scenario.

Let's look at another important Gherkin keyword--Background.

Background

Generally, while testing, we might have a bunch of scenarios that need a set of common
steps. For example, any test steps that are after the log-in screen will require log in to be a
common step. In that case, we can move log in to a section called Background in a feature
file, thereby telling Cucumber to run it before each and every scenario in that file. Consider
a feature file (testing the used car search scenario), as shown:

Feature: Used Car search feature
Scenario: Search for a used Honda City car in Bangalore city
When I launch Quikr app
And I choose "Bangalore" as my city
And I search for "Honda City" under Used Cars
Then I should see the first car search result with "Honda"

Scenario: Search for a used Honda City car in Bangalore city

When I launch Quikr app
And I choose "Bangalore" as my city

[222]

Appendix

And I search for "Honda City" under Used Cars

And I select the budget to be 5L

Then I should see the first car search result with price less than
5L

Now, if we look at the preceding two scenarios, the first three steps are common for both
the scenarios and are getting repeated. Instead, we can move some of these common steps
to the background just below where Feature is mentioned under the Background
keyword. Let's make the preceding changes and see the readability of the feature file:

Feature: Used Car search feature

Background:
When I launch Quikr app
And I choose "Bangalore" as my city

Scenario: Search for a used Honda City car in Bangalore city
When I search for "Honda City" under Used Cars
Then I should see the first car search result with "Honda"

Scenario: Search for a used Honda City car in Bangalore city
When I select the budget to be 5L
Then I should see the first car search result with price less than
5L

So, we have added a Background section that takes care of setting the state of the
application for both the scenarios and, in this case, it will perform the following steps:

e Launch the application under tests
¢ Choose Bangalore as the city for any further action

So, the purpose of the preceding two tests doesn't change; during runtime, Cucumber
actually executes these background steps before each scenario. Part of the rule is that we can
only have one Background per feature file and, secondly, it has to appear before the
Scenario keyword or the Scenario Outline keyword.

Let's look at Scenario Outline.

[223]

Appendix

Scenario Outline

In testing, we generally have scenarios where we have multiple combinations of input and
different outputs for the same set of steps, such as the log-in combination and some other
business calculation. scenario Outline helps express these scenarios in a much better
way by letting us express the scenario once and giving us an option to provide multiple sets
of data in the Examples section. Let's take a look at the given example:

Feature: Log in

Scenario: Log in - right email/password input
Given I launch the app
When I get the user sign in screen
And I enter "valid@email.com" and "valid password"
Then I should see a message "Log in success"

Scenario: Log in - wrong email input
Given I launch the app
When I get the user sign in screen
And I enter "wrong@email.com" and "valid password"
Then I should see a message "In-valid email provided"

Scenario: Log in - wrong password input
Given I launch the app
When I get the user sign in screen
And I enter "valid@email.com" and "wrong password"
Then I should see a message "Wrong password"

In the preceding scenario, we have the same set of steps repeating for different data
combinations that are the essence of the test cases. We can express the same scenario in a
much better way with less repetitiveness. Refer to the following usage of Scenario
Outline to achieve this:

Scenario Outline: Log in combinations
Given I launch the app
When I get the user sign in screen
And I enter <email> and <password>
Then I should see a message <message>
Examples:
| email
| valid@email.com
| wrong@email.com
| valid@email.com

password

valid password
valid password
wrong password

message

Log in success

In-valid email provided
Wrong password entered

[224]

Appendix

What happens behind the scene is that Cucumber converts each example row as one
scenario and executes it. So basically, the <email> is nothing but a place holder that is
substituted by the real values during execution. In a feature file, we can have many
Scenario Outline and Examples sections. If we create a Scenario Outline and don't
include a following Examp1le section, it will throw an error.

Hooks in Cucumber

Cucumber has a very interesting feature of hooks that helps us execute a block of code
before or/and after each scenario. It can be defined anywhere in the step definitions using
the Before and After methods. Most of the xUnit tools support a concept of the setup and
tear down method, which is represented by Before and After here.

By default, these hooks are global in nature, and they run for every scenario. Here, an
interesting concept to understand is that the step definitions are global in nature; there is no
way to reduce the scope of step definitions to certain scenarios.

A sample of the Before hook is as shown:

@Before

public void setUp() throws IOException {
System.out.println("This is a set up method and will be called
before the scenario");

}
A sample of the After hook is as follows:

@After

public void tearDown() throws IOException {
System.out.println("This is a tear down method and will be called
after the scenario");

[225]

Appendix

Running Cucumber

Cucumber allows you to run feature files in a couple of ways:

e CLI Runner
¢ JUnit Runner
e Third-Party Runner (IntelliJ IDEA)

CLI Runner

CLI Runner stands for Command-Line Interface Runner, which is an executable class and
can be invoked from Gradle or Ant. While using Cucumber-jvm on the command line, we
can use this command:

java -cp <classpath> cucumber.api.cli_Main \
--glue com.example.steps \
--plugin pretty path/to/feature/files

JUnit Runner

If we are using the JUnit framework to run Cucumber, we need to create a single empty
class, as shown:

package steps;

import cucumber.api.junit.Cucumber;
import org.junit.runner.RunWith;

@RunWith (Cucumber.class)
@CucumberOptions (plugin = {"pretty", "html:target/cucumber"})
public class RunCukesTest {

}

With this, we can run the tests in the same way as we run the typical JUnit tests.

[226]

Appendix

Third-Party Runner (Via IntelliJ)

IntelliJ enables you to run Cucumber features via the cucumber.cli.main class. Navigate
to IntelliJ > Run > Edit Configurations; we can configure it as shown in the following
screenshot:

{Configuation| Code Coverage Logs

Main class: cucumber.api.cli.Main

Glue: steps ¥
Feature or folder path: nishant/Development/HelloAppium/src/test/java/features /Sample. feature

VM options: =3
Program arguments: nonochrome --name “ASearch for a used Honda City car in Bangalore city$" %

Working directory:

Environment variables:

Use classpath of module: [HelloAppium ﬁ

Let's look at some of these important items in detail:

e Main: This is the main () method, the main class name is cucumber.cli.main.

o Glue: This is the package name where the step definitions are contained.

o Feature or folder path: This is the directory name where the feature file is
contained. You can also specify a specific feature here.

¢ VM Options: This is the string value to be passed to the VM for launching the
app. The string contains options such as mx and verbose. If we specify a class
path here as part of VM Options, it will override the class path of the module.

e Program Arguments: This is the list of arguments to be passed to the program in
the same format as that of the command line.

If you are using Eclipse, it also provides similar options to run Cucumber-ivm test.

[227]

Appendix

Finding an app's package name and launch
activity

In chapter 5, we entered Package name and Launch Activity to launch Appium
Inspector for an app already installed on the emulator. Let's learn how to find this
information from an app.

We can follow two approaches to get the same result. The first approach requires you to
have Play Store and the app under test (Quikr in our case) installed on your mobile.

Using the ManifestViewer app
Follow the given steps to find out the package information:
Launch the Emulator/Device

Launch Google Play Store
Search for an app ManifestViewer in Play Store and install it;

ManifestViewer
susatthi

(i

—J 4.0%

Once installed, launch the ManifestViewer app

[228]

Appendix

o Under the Application sections and scroll down to the Quikr app:

Y. 01043

Pico TTS

COM S0 pico

BT} Size-T2.0KB Memaory.0.0B
Print Spooler
com.androld.printspooler

Size!l . 63MB Memaory:12.0K8

ProxyHandler
com. androld.procyhandler
CvEle Sire 28 OKB Memary:0.08

Quikr

COiT q!.llhf

Search

com.androld.guicksearchbox
Mamory:12.0K8
Settings
com.androld -_.'r'1IIrHJ'_'.
=nl Size:d. T1IMB Memony-204.0KB
SEﬂil‘lgﬂ Stnrage
com.androld providers settings

Size:268.0KB Memory:176.0KB

[229]

Appendix

¢ Once done, tap on the Quikr app, and it will show you these options:

¢ Click on the Look the AndroidManifest.xml option
¢ This will load the manifest properties, as illustrated:

B L BT

ik

«*xml wersion="1.0" encoding="-8"%»
amanifest
Kl ar

d = “hitp.//echemas. androld.com/apk/res/andr
Codes"187"
Mame="9.281"
stallLocation="auto”
packoge="com. quikr
péatfoerm

androéd:minSdkVersion="15"

pndrosd fargetSdkVersion="23%»
<BURPOris-SCreens

androkl largeEScresnss "trie"

androkd: darpeScresns="true>
<isses-feature

androéd name="android_hardware. location™

andreéd required="alse"f>
“upes-feature

androkl names "androld hardware. camara”

andresd requined = Talee™f>
<uses-featune

androsd name="android_hardware, location.network”

androktrequired="false >
cuss-leature

androkd names "sndrodd. hardware. location. gps”

sndrosd required ="alse =
<UEES-PerTsSion

androsd name="com. google. androld.c 2dm. permission, RE
CLEBEE - PRITTHESEON

endroad names com. quikr. permission. MAPS_RECETVE ™S>
cUSes-permission

androad name="com. google. androdd_ providers gl permis
cisses-permission

android name="androld. permission ACCESS_NETWORK_ S
msurpeminm

androad name="androld, permission, INTERNET />
<LEERE-PRITTHESION

¢ This file will have details like package and activity

[230]

Appendix

Using the Appium GUI app

The second approach to know the package and activity details is to use the Appium GUI
app. When we use Appium to install the app on the emulator/device, it also loads the
Package details and the Launch Activity. So, the steps to be followed are as listed:

o N gk wbdRE

Launch the Emulator/Device.

Launch the Appium GUI app.

Select the App path parameter and browse to the APK package.

Click on Launch.

This will start the Appium server; now click on the Inspector icon.

Click on Stop (to stop the Appium server).

Click on the Android icon in the Appium GUI app.

Select the Package checkbox and click on the dropdown; it will show the value
from the last APK file installed.

Select the Launch Activity checkbox and click on the dropdown; it will show all
the values from the last APK file installed.

Refer to the following screenshot:

[231]

Appendix

Installing Google Play services in the
Genymotion emulator

Genymotion is one of the fastest Android emulators available for use. One drawback of

using Genymotion is that it comes without the Google Play Store and Google apps. This
means that some of the apps for testing that require the Google Play services framework
may not work on the emulator.

However, the good news is that we can install Google Play services by following these
steps:

¢ Start the Genymotion emulator

¢ Based on the Android version configured for the emulator, we need to download
the flash-able Google Play services gapps-1lp-yyyymmdd-signed. zip file from

File gapps-lp-20141109-signed.zip seems to be a
flashable archive. Do you want to flash it to the virtual
device?

Caution: this operation may corrupt the virtual device.

Cancel BK

This installs Google Play services on the Genymotion emulator.

¢ Click on OK and reboot the emulator
¢ Once the device is rebooted, you will notice that the Google Apps will start
showing in the emulator

e To install Google Play Store on the device, we need to download the Play Store
installer com.android.vending-Major.Minor.Hot fix APK file and install it
on the emulator

[232]

Appendix

¢ Once done, launch the Play Store app and log in to the Play Store account (if you
have one)

¢ This will update all the necessary Google apps (some of the apps might
intermittently crash or stop working, but this will only occur until the apps are
updated)

¢ Restart the emulator once the apps are updated, and it will work smoothly

Summary

In this Appendix, we covered different topics for a deeper insight into Cucumber. We
learned about how Cucumber works and the importance of BDD, and we gained a deep
insight into Gherkin and the different keywords Gherkin exposes. We also learned what
hooks are and how to use them. We learned the different ways of running Cucumber tests.

We also learned how to look up an Android package name and find out different activities
for an app. This is needed when we want to launch the Appium session on a pre-existing
app on an Android device. We also learned how we can find the package name and Launch
Activity from Appium itself.

We learnt that the Genymotion emulator doesn't come with Google Play services installed.
We learned how to flash the device with the Google apps installer file and to install Google
Play services on the Genymotion emulator.

[233]

A

activity
launching 228

after hooks 90

Android devices
test, running on 169

Android only capabilities
about 100
adbPort 101
androidCoverage 100
androidDeviceReadyTimeout 100
androidDeviceSocket 101
androidinstallTimeout 101
androidScreenshotPath 102
appActivity 100
appPackage 100
appWaitActivity 100
appWaitDuration 100
appWaitPackage 100
autoGrantPermissions 102
autoWebviewTimeout 101
avd 101
avdArgs 101
avdLaunchTimeout 101
avdReadyTimeout 101
chromedriverExecutable 101
chromeOptions 102
deviceReadyTimeout 100
disableAndroidWatchers 102
dontStopAppOnReset 102
enablePerformancelLogging 100
ignoreUnimportantViews 102
intentAction 101
intentCategory 102
intentFlags 102
keyAlias 101

Index

keyPassword 101
keystorePassword 101
keystorePath 101
nativeWebScreenshot 102
noSign 102
optionallntentArguments 102
recreateChromeDriverSessions 102
resetKeyboard 102
unicodeKeyboard 102
useKeystore 101
AndroidDriver 125
app package name
finding 228
app, deploying on iOS simulator
about 79
Appium used 79, 81
app
starting, in HomePageSteps 103
Appium app
attaching, to existing session 209
installing 205, 206
Start New Session 208
Appium architecture
about 15
UlAutomator 2 18
XCUITest 17
Appium Endpoints 214
Appium GUI app
about 38, 39, 40, 41
code, refactoring 66
feature file, running 64
scenario, running 72
steps, implementing 66, 69
using 231
Appium Inspector
about 111
launching 112,113,114, 210

scenario, implementing 115, 116, 118
Appium Java project

creating 46, 49, 50
Appium server

installing, via npm 37

starting 207

starting, with advanced options 212, 213

working 16
Appium session

Desired Capabilities, for launching 209
Appium test

writing 51, 52, 53, 54, 55, 56, 59, 61, 63, 64
appium.dmg file

reference 30
Appium

about 15

advantages 19

supported mobile operating system platforms 15

used, for automating iOS app 77

used, for automating mobile web app 73
AppiumDriver 124, 125
assertions

about 156

implementing, in Page Object 156

implementing, in test script 158

B

background 222
before hooks 90
Behavior Driven Development (BDD) 216
Boilerplate code
generating, for iOS 82, 83, 84, 86, 87

C

Chrome Inspect
used, for debugging mobile web apps 121
using 121, 123
CLI Runner
used, for running Cucumber 226
Cucumber
about 50,216,217
reference 51
running, CLI Runner used 226
running, JUnit Runner used 226
running, third-party runner (IntelliJ) used 227

[235]

running, ways 226
working 217
Custom Server 214

D

dependencies
avoiding, during tests 159
desired capabilities

adding 99
devices
about 165

settingup 166, 167
Domain Driven Design
reference 216

E

electron
reference 205
emulator
about 161
setting up 163
explicit wait 126, 128, 129

F

feature 219
features 51
fluent wait 130, 131

G

Genymotion emulator
advantages 163
Debug help 29
Google Play services, installing in 232, 233
test, running on 163

Genymotion
about 25
reference 25

gestures
about 132
MultiTouch 137
Scroll 138
Swipe 139
TouchAction 133

Gherkin

about 217
basic conventions 217
keywords 219
Git
project, moving to 180
GitHub
HelloAppium project, pushing to 183
reference 180
Google Play services
installing, in Genymotion emulator 232, 233
gradle file
current version 174, 175
gradle task
testing 177

H

HelloAppium project

pushing, to GitHub 183
HomeBrew

about 30

reference 30
hooks, Cucumber 225
hooks

about 90

after hooks 90

before hooks 90
hybrid app

about 13

example 14

IntelliJ
reference 32
iOS app
automating, Appium used 77
iOS devices
test, runningon 170
iOS only capabilities
about 105
appName 107
autoAcceptAlerts 105
autoDismissAlerts 106
bundleld 105
calendarFormat 105
customSSLCert 108

nterKeyDelay 107
aunchTimeout 105
ocalizableStringsDir 106
ocationServicesAuthorized 105
ocationServicesEnabled 105

nativelnstrumentsLib 106
nativeWebTap 106
processArguments 107
safariAllowPopups 106
safarilgnoreFraudWarning 106
safarilnitialUrl 106
safariOpenLinksinBackground 106
screenshotWaitTimeout 107
sendKeyStrategy 107
showlOSLog 107

udid 105

waitForAppScript 107
webviewConnectRetries 107

iO

S XCUITest related iOS capabilities

iosInstallPause 108
keychainPassword 109
keychainPath 109
processArguments 108
scaleFactor 109
showXcodeLog 108
useNewWDA 110
wdalLaunchTimeout 110
wdalocalPort 108
webDriverAgentUrl 109
xcodeConfigFile 109
i0S

Boilerplate code, generating for 82, 83, 84, 86,
87

IOSDriver 125

J

Jenkins Mac OS X installer
download link 178
Jenkins plugin

adding 184

Jenkins task

setting up 186, 187, 189, 190

Jenkins

[236]

about 178
installing 178

reports, viewing in 190
JUnit Runner
used, for running Cucumber 226

K

keywords, Cucumber
features 51
scenario 51
test runner 51

keywords, Gherkin
background 222
feature 219
scenario 220, 221, 222
scenario outline 224, 225

M

machine setup, for macOS
about 21
Android SDK, installing with Android command-
line tool 22, 23
Android SDK, installing with HomeBrew 23
Android Virtual Device, creating 23, 24
Appium Server, installing 32
Appium, installing 30, 31
IDE, selecting 32
Java, installing 21, 22
machine setup, for Windows
about 32
Android SDK, installing with Android command-
line tool 33, 34, 35, 36
Appium, installing 36
Genymotion, installing 37
IDE, selecting 38
Java, installing 33
Node JS, installing 36
ManifestViewer app
using 228,229, 230
methods, TouchAction
long press 134
move 135
perform 136
press 133
release 134
tap 136
mobile application

[237]

interacting, with other app 198
mobile apps

about 8, 9

hybrid app 13

Mobile Web app 11

native app 9
Mobile Web app

about 11
mobile web app

automating, Appium used 73

debugging, Chrome Inspect used 121

Mobile Web app
example 12, 13

mobile website, The New York Times
reference 12

MultiTouch gesture 137

N

native app
about 9
example 10, 11
Netty 19
network conditioning 202, 204
Node.js 31
npm
Appium server, installing via 37

O

orientation
example 140

P

Page Object pattern

about 148

applying 149

assertions, implementing in 156
parallel

test, running in 200, 202

Q

Quikr app
reference 32

R test script
assertions, implementing in 158

refactoring test
example 143,144, 146, 150, 151, 152, 153 running, in parallel 200, 202
RemoteWebDriver 125 running, on Android devices 169
reports running, on Genymotion emulator 163
viewing, in Jenkins 190 running, on iOS devices 170
TestObject
S about 214
Saucelabs reference 214
about 214 third-party runner
reference 214 used, for running Cucumber 227
scenario 51, 220, 221, 222 TouchAction gesture
scenario outline 224, 225 about 133
screenshot methods 133, 134, 135, 136
taking 194, 197
Scroll gesture 138 U
server argument 92, 93, 94, 95 Ul Automator Viewer
server capabilities using 118,119, 120
about 97 UlAutomator 2 18
app 98
automationName 97 V

autoWebview 98

) video execution
deviceName 97

recording 197

fullReset 98 views

language 98 switching between 193

locale 98 . virtual devices

newCommandTimeout 98 creating, in GenyMotion 26, 27, 28, 29
noReset 98

orientation 98 W

platformName 97)))
platformVersion 97 WebView, and native view

udid 98 switching between 193

setup 159 X
Swipe gesture 139
XCUITest 17,105

tear down 160 Y
test runner 51 YAML Ain't Markup Language (YAML) 219

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Introduction to Appium
	Native app
	Mobile Web app
	Hybrid app
	Appium architecture
	XCUITest
	UiAutomator 2
	Pros of using Appium

	Summary

	Chapter 2: Setting Up the Machine
	Machine setup for macOS
	Installing Java
	Installing Android SDK (using the Android command-line tool)
	Installing Android SDK (using Homebrew) (Optional)
	Creating Android Virtual Device (Optional)
	Genymotion emulator
	Debug help

	Installing Appium
	Installing Appium server (From Source) (Optional)
	Selecting IDE
	App under test

	Machine setup for Windows
	Installing Java
	Installing Android SDK (using Android command-line tool)
	Installing Node JS
	Installing Appium
	Installing Appium server (via npm)

	Installing Genymotion
	Selecting IDE

	Appium GUI app
	Summary

	Chapter 3: Writing Your First Appium Test
	Creating an Appium Java project (using gradle)
	Introduction to Cucumber
	Writing our first Appium test
	Running the feature file
	Refactoring
	Implementing the remaining steps
	Running the scenario
	Automating a mobile web app using Appium
	Implementing the remaining steps
	Automating the iOS app using Appium
	Build the app
	Deploying the app on the iOS Simulator
	Via xcrun command
	Using Appium

	Generating Boilerplate code for iOS

	Summary

	Chapter 4: Understanding Desired Capabilities
	Refactoring -1
	Server argument
	Refactoring -2

	Server capabilities
	Refactoring -3

	Android-only capabilities
	Refactoring -4

	iOS-only capabilities
	Summary

	Chapter 5: Understanding Appium Inspector to Find Locators
	Appium inspector
	Implementing the other steps
	UI Automator Viewer
	Debugging mobile web apps using Chrome Inspect

	Summary

	Chapter 6: How to Synchronize Tests
	AppiumDriver
	Implicit wait
	Explicit wait
	Fluent wait
	Summary

	Chapter 7: How to Automate Gestures
	Gestures
	TouchAction
	MultiTouch
	Scroll
	Swipe
	Orientation

	Summary

	Chapter 8: Design Patterns in Test Automation
	Refactor -1
	Page Object pattern
	Refactor-2
	Assertions
	Implementing assertions in Page Object
	Implementing assertion in test script
	Avoiding dependencies between tests
	Introducing set up and tear down

	Summary

	Chapter 9: How to Run Appium Test on Devices and Emulators
	Emulator
	Running test on the Genymotion emulator

	Devices
	Running a test on actual Android devices
	Running a test on actual iOS devices

	Summary

	Chapter 10: Continuous Integration with Jenkins
	Refactoring -1
	Setting up Jenkins
	Moving a project to Git
	Adding Jenkins plugin
	Setting up the Jenkins task
	Viewing reports in Jenkins

	Summary

	Chapter 11: Appium Tips and Tricks
	Switching between views - web and native
	Taking screenshots
	Recording video execution
	Interacting with another app
	Running the test in parallel
	Network conditioning
	Summary

	Chapter 12: Appium Desktop App
	Installing the new Appium app
	Starting a simple server
	Start New Session
	Attach to an existing session

	Desired Capabilities
	Appium Inspector
	Starting the server with advanced options
	Appium Endpoints

	Summary

	Appendix
	Introduction to Cucumber
	How does Cucumber work?
	Feature
	Scenario
	Background
	Scenario Outline
	Hooks in Cucumber

	Running Cucumber
	CLI Runner
	JUnit Runner
	Third-Party Runner (Via IntelliJ)

	Finding an app's package name and launch activity
	Using the ManifestViewer app
	Using the Appium GUI app

	Installing Google Play services in the Genymotion emulator
	Summary

	Index

