

Test-Driven	Infrastructure	with
Chef

Stephen	Nelson-Smith

Beijing	•	Cambridge	•	Farnham	•	Köln	•	Sebastopol	•	Tokyo

Special	Upgrade	Offer

If	you	purchased	this	ebook	directly	from	oreilly.com,	you	have	the	following
benefits:

DRM-free	ebooks—use	your	ebooks	across	devices	without	restrictions	or
limitations

Multiple	formats—use	on	your	laptop,	tablet,	or	phone

Lifetime	access,	with	free	updates

Dropbox	syncing—your	files,	anywhere

If	you	purchased	this	ebook	from	another	retailer,	you	can	upgrade	your	ebook	to
take	advantage	of	all	these	benefits	for	just	$4.99.	Click	here	to	access	your
ebook	upgrade.
Please	note	that	upgrade	offers	are	not	available	from	sample	content.

http://oreilly.com

Preface

Conventions	Used	in	This	Book
The	following	typographical	conventions	are	used	in	this	book:

Italic
Indicates	new	terms,	URLs,	email	addresses,	filenames,	and	file	extensions.

Constant width
Used	for	program	listings,	as	well	as	within	paragraphs	to	refer	to	program
elements	such	as	variable	or	function	names,	databases,	data	types,
environment	variables,	statements,	and	keywords.

Constant width bold
Shows	commands	or	other	text	that	should	be	typed	literally	by	the	user.

Constant	width	italic

Shows	text	that	should	be	replaced	with	user-supplied	values	or	by	values
determined	by	context.

TIP
This	icon	signifies	a	tip,	suggestion,	or	general	note.

WARNING
This	icon	indicates	a	warning	or	caution.

Safari®	Books	Online
Safari	Books	Online	is	an	on-demand	digital	library	that	delivers	expert	content

http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content

in	both	book	and	video	form	from	the	world’s	leading	authors	in	technology	and
business.

Technology	professionals,	software	developers,	web	designers,	and	business	and
creative	professionals	use	Safari	Books	Online	as	their	primary	resource	for
research,	problem	solving,	learning,	and	certification	training.

Safari	Books	Online	offers	a	range	of	product	mixes	and	pricing	programs	for
organizations,	government	agencies,	and	individuals.	Subscribers	have	access	to
thousands	of	books,	training	videos,	and	prepublication	manuscripts	in	one	fully
searchable	database	from	publishers	like	O’Reilly	Media,	Prentice	Hall
Professional,	Addison-Wesley	Professional,	Microsoft	Press,	Sams,	Que,
Peachpit	Press,	Focal	Press,	Cisco	Press,	John	Wiley	&	Sons,	Syngress,	Morgan
Kaufmann,	IBM	Redbooks,	Packt,	Adobe	Press,	FT	Press,	Apress,	Manning,
New	Riders,	McGraw-Hill,	Jones	&	Bartlett,	Course	Technology,	and	dozens
more.	For	more	information	about	Safari	Books	Online,	please	visit	us	online.

How	to	Contact	Us
Please	address	comments	and	questions	concerning	this	book	to	the	publisher:

O’Reilly	Media,	Inc.

1005	Gravenstein	Highway	North

Sebastopol,	CA	95472

800-998-9938	(in	the	United	States	or	Canada)

707-829-0515	(international	or	local)

707-829-0104	(fax)

We	have	a	web	page	for	this	book,	where	we	list	errata,	examples,	and	any
additional	information.	You	can	access	this	page	at	http://oreil.ly/test-driven-
infra-chef.

To	comment	or	ask	technical	questions	about	this	book,	send	email	to
bookquestions@oreilly.com.

For	more	information	about	our	books,	courses,	conferences,	and	news,	see	our
website	at	http://www.oreilly.com.

Find	us	on	Facebook:	http://facebook.com/oreilly

http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/test-driven-infra-chef
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly

Follow	us	on	Twitter:	http://twitter.com/oreillymedia

Watch	us	on	YouTube:	http://www.youtube.com/oreillymedia

Acknowledgments
Writing	the	first	edition	of	this	book	was	an	order	of	magnitude	harder	than	I
could	ever	have	imagined.	I	think	this	is	largely	because	alongside	writing	a
book	I	was	also	writing	software.	Trying	to	do	both	things	concurrently	took	up
vast	quantities	of	time,	for	which	many	people	are	owed	a	debt	of	gratitude	for
their	patience	and	support.

Writing	the	second	edition,	however,	made	the	first	one	look	like	a	walk	in	the
park.	Since	the	first	edition	there’s	been	a	huge	explosion	in	philosophies,
technologies	and	enthusiastic	participants	in	the	field	of	TDI,	all	of	which	and
whom	are	moving	and	developing	fast.	This	has	not	only	added	massively	to	the
amount	there	is	to	say	on	the	subject	but	it	has	made	it	a	real	challenge	to	keep
the	book	up	to	date.

So	the	gratitude	is	bigger	than	before	too!	Firstly,	to	my	wonderful	family,
Helena,	Corin,	Wilfrid,	Atalanta	and	Melisande	(all	of	whom	appear	in	the	text)
—you’ve	been	amazing,	and	I	look	forward	to	seeing	you	all	a	lot	more.	Helena,
frankly,	deserves	to	be	credited	as	a	co-author.	She	has	proofed,	edited,
improved,	and	corrected	for	the	best	part	of	two	years,	and	has	devoted
immeasurable	hours	to	supporting	me,	both	practically	and	emotionally.	There	is
no	way	this	book	could	have	been	written	without	her	input—I	cannot	express
how	lucky	I	am	to	have	her	as	my	friend,	colleague,	and	beloved.

The	list	of	Opscoders	to	thank	is	also	longer,	and	is	testament	to	the	success	of
both	the	company	and	its	product.	My	understanding	would	be	naught	were	it
not	for	the	early	support	of	Joshua	Timberman,	Seth	Chisamore	and	Dan	DeLeo.
However,	the	second	edition	owes	also	a	debt	of	thanks	to	Seth	Vargo,	Charles
Johnson,	Nathen	Harvey,	and	Sean	O’Meara.	Further	thanks	to	Chris	Brown,	on
whose	team	I	worked	as	an	engineer	for	six	months,	giving	me	a	deeper	insight
into	the	workings	of	Chef,	and	the	depths	of	brilliance	in	the	engineering	team.

Inspirational	friends,	critics,	reviewers	and	sounding	boards	include	Aaron
Peterson,	Bryan	Berry,	Ian	Chilton,	Matthias	Lafeldt,	Torben	Knerr	and	John
Arundel.	Special	mention	must	go	firstly	to	Lindsay	Holmwood,	who	first	got

http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

me	thinking	about	the	subject,	and	has	continued	to	offer	advice	and
companionship,	and	secondly	to	Fletcher	Nichol,	who	has	been	a	constant	friend
and	advisor,	and	has	endured	countless	hours	of	being	subjected	to	pairing	with
me	in	Emacs	and	Tmux,	on	Solaris!	It	must	also	not	be	forgotten	that	without	the
early	support	of	Trang	and	Brian,	formerly	of	Sony	Computer	Entertainment
Europe—the	earliest	adopters	and	enthusiastic	advocates	of	my	whole	way	of
doing	Infrastructure	as	Code—I	doubt	I	would	have	achieved	what	I	have
achieved.

The	development	and	maintenance	of	Cucumber-Chef	has	been	educational	and
fascinating—Jon	Ramsey	and	especially	Zachary	Patten	deserve	particular
thanks	for	this.	The	project	has	seen	many	enthusiastic	adopters,	and	has	evolved
to	do	all	sorts	of	things	I	would	never	have	imagined.	Its	reincarnate	future	as
TestLab	is	in	safe	hands.

I’ve	been	fortunate	beyond	measure	to	work	with	a	team	of	intelligent	and
understanding	people	at	Atalanta	Systems—all	of	whom	have	put	up	with	my
book-obsessed	scattiness	for	the	best	part	of	two	years—Kostya,	Sergey,
Yaroslav,	Mike,	Herman,	and	Annie…you’re	all	awesome!

Lastly,	and	perhaps	most	importantly—to	my	incredibly	patient	and	supportive
editor	Meghan	Blanchette—thank	you	a	million	times.	I	think	you’ll	agree	it	was
worth	the	wait.

I	dedicate	this	book	to	my	Grandfather,	John	Birkin,	himself	one	of	the	earliest
computer	programmers	in	the	UK.	You	taught	me	to	program	some	thirty	years
ago,	and	it	is	the	greatest	blessing	to	me	that	you	have	been	able	to	see	the	fruit
of	the	seeds	that	you	sowed.

Chapter	1.	The	Philosophy	of
Test-Driven	Infrastructure

When	the	first	edition	of	this	book	was	published	in	late	summer	2011,	there	was
broad	skepticism	in	response	to	the	idea	of	testing	infrastructure	code	and	only	a
handful	of	pioneers	and	practitioners.

Less	than	a	year	later	at	the	inaugural	#ChefConf,	the	Chef	user	conference,	two
of	the	plenary	sessions	and	a	four-hour	hack	session	were	devoted	to	testing.
Later	that	year	at	the	Chef	Developer	Summit,	where	people	meet	to	discuss	the
state	and	direction	of	the	Chef	open	source	project,	code	testing	and	lifecycle
practices	and	techniques	emerged	as	top	themes	that	featured	in	many	heavily
attended	sessions—including	one	with	nearly	100	core	community	members.

Infrastructure	testing	is	a	hugely	topical	subject	now,	with	many	excellent
contributors	furthering	the	state	of	the	art.	The	tools	and	approaches	that	make
up	the	infrastructure	testing	ecosystem	have	evolved	significantly.	It’s	an	area
with	a	high	rate	of	change	and	few	established	best	practices,	and	it	is	easy	to	be
overwhelmed	at	the	amount	to	learn	and	bewildered	at	the	range	of	tools
available.	This	book	is	intended	to	be	the	companion	for	those	new	to	the	whole
idea	of	infrastructure	as	code,	as	well	as	those	who	have	been	working	within
that	paradigm	and	are	now	looking	fully	to	embrace	the	need	to	prioritize	testing.

This	update	is	much	expanded	and	provides	a	thorough	introduction	to	the
philosophy	and	basics	of	test-driven	development	and	behavior-driven
development	in	general,	as	well	as	the	application	of	these	techniques	to	the
writing	of	infrastructure	code	using	Chef.	It	includes	an	up-to-date	introduction
to	the	Chef	framework	and	discusses	the	most	widely	used	and	popular	tooling
in	use	with	Chef,	before	providing	a	recommended	toolkit	and	workflow	to
guide	adoption	of	test-driven	infrastructure	in	practice.

Underpinning	Philosophy

There	are	two	fundamental	philosophical	points	upon	which	this	book	is
predicated:
1.	 Infrastructure	can	and	should	be	treated	as	code.

2.	 Infrastructure	developers	should	adhere	to	the	same	principles	of
professionalism	as	other	software	developers.

While	there	are	a	number	of	implications	that	follow	from	these	assumptions,	the
primary	one	with	which	this	book	is	concerned	is	that	all	infrastructure	code
must	be	thoroughly	tested,	and	that	the	most	effective	way	to	develop
infrastructure	code	is	test-first,	allowing	the	writing	of	the	tests	to	drive	and
inform	the	development	of	the	infrastructure	code.	However,	before	we	get
ahead	of	ourselves,	let	us	consider	our	two	axiomatic	statements.

Infrastructure	as	Code
“When	deploying	and	administering	large	infrastructures,	it	is	still	common	to	think	in	terms	of
individual	machines	rather	than	view	an	entire	infrastructure	as	a	combined	whole.	This	standard
practice	creates	many	problems,	including	labor-intensive	administration,	high	cost	of	ownership,
and	limited	generally	available	knowledge	or	code	usable	for	administering	large	infrastructures.”

—	Steve	Traugott	and	Joel	Huddleston

“In	today’s	computer	industry,	we	still	typically	install	and	maintain	computers	the	way	the
automotive	industry	built	cars	in	the	early	1900s.	An	individual	craftsman	manually	manipulates	a
machine	into	being,	and	manually	maintains	it	afterwards.

The	automotive	industry	discovered	first	mass	production,	then	mass	customization	using	standard
tooling.	The	systems	administration	industry	has	a	long	way	to	go,	but	is	getting	there.”

—	Steve	Traugott	and	Joel	Huddleston

These	two	statements	came	from	the	prophetic	www.infrastructures.org	at	the
very	start	of	the	last	decade.	More	than	10	years	later,	a	whole	world	of	exciting
developments	have	taken	place:	developments	that	have	sparked	a	revolution,
and	given	birth	to	a	radical	new	approach	to	the	process	of	designing,	building,
and	maintaining	the	underlying	IT	systems	that	make	web	operations	possible.
At	the	heart	of	that	revolution	is	a	mentality	and	toolset	that	treats	infrastructure
as	code.

We	believe	in	this	approach	to	the	designing,	building,	and	running	of	Internet
infrastructures.	Consequently,	we’ll	spend	a	little	time	exploring	its	origin,
rationale,	and	principles	before	outlining	the	risks	of	the	approach—risks	that

http://www.infrastructures.org/

this	book	sets	out	to	mitigate.

The	Origins	of	Infrastructure	as	Code
Infrastructure	as	code	is	an	interesting	phenomenon,	particularly	for	anyone
wanting	to	understand	the	evolution	of	ideas.	It	emerged	over	the	last	six	or
seven	years	in	response	to	the	juxtaposition	of	two	pieces	of	disruptive
technology—utility	computing	and	second-generation	web	frameworks.

The	ready	availability	of	effectively	infinite	compute	power	at	the	touch	of	a
button,	combined	with	the	emergence	of	a	new	generation	of	hugely	productive
web	frameworks,	brought	into	existence	a	new	world	of	scaling	problems	that
had	previously	only	been	witnessed	by	the	largest	systems	integrators.	The	key
year	was	2006,	which	saw	the	launch	of	Amazon	Web	Services’	Elastic	Compute
Cloud	(EC2),	just	a	few	months	after	the	release	of	version	1.0	of	Ruby	on	Rails
the	previous	Christmas.	This	convergence	meant	that	anyone	with	an	idea	for	a
dynamic	website—an	idea	that	delivered	functionality	or	simply	amusement	to	a
rapidly	growing	Internet	community—could	go	from	a	scribble	on	the	back	of	a
beermat	to	a	household	name	within	weeks.

Suddenly,	very	small	developer-led	companies	found	themselves	facing	issues
that	were	previously	tackled	almost	exclusively	by	large	organizations	with	huge
budgets,	big	teams,	enterprise-class	configuration	management	tools,	and	lots	of
time.	The	people	responsible	for	these	websites	that	had	become	huge	almost
overnight	now	had	to	answer	questions	such	as	how	to	scale	databases,	how	to
add	many	identical	machines	of	a	given	type,	and	how	to	monitor	and	back	up
critical	systems.	Radically	small	teams	needed	to	be	able	to	manage
infrastructures	at	scale	and	to	compete	in	the	same	space	as	big	enterprises,	but
with	none	of	the	big	enterprise	systems.

It	was	out	of	this	environment	that	a	new	breed	of	configuration	management
tools	emerged.	Building	on	the	shoulders	of	existing	open	source	tools	like
CFEngine,	Puppet	was	created	in	part	to	facilitate	tackling	these	new	problems.

Given	the	significance	of	2006	in	terms	of	the	disruptive	technologies	we
describe,	it’s	no	coincidence	that	in	early	2006	Luke	Kanies	published	an	article
on	“Next-Generation	Configuration	Management”	in	;login:	(the	USENIX
magazine),	describing	his	Ruby-based	system	management	tool,	Puppet.	Puppet
provided	a	high	level	domain	specific	language	(DSL)	with	primitive

programmability,	but	the	development	of	Chef	(a	tool	influenced	by	Puppet,	and
released	in	January	2009)	brought	the	power	of	a	third-generation	programming
language	to	system	administration.	Such	tools	equipped	tiny	teams	and
developers	with	the	kind	of	automation	and	control	that	until	then	had	only	been
available	to	the	big	players	and	expensive	in-house	or	proprietary	software.
Furthermore,	being	built	on	open	source	tools	and	released	early	to	developer
communities,	allowed	these	tools	to	rapidly	evolve	according	to	demand,	and
they	swiftly	became	more	powerful	and	less	cumbersome	than	their	commercial
counterparts.

Thus	a	new	paradigm	was	introduced—infrastructure	as	code.	In	it,	we	model
our	infrastructure	with	code,	and	then	design,	implement,	and	deploy	our	web
application	infrastructure	with	software	best	practices.	We	work	with	this	code
using	the	same	tools	as	we	would	with	any	other	modern	software	project.	The
code	that	models,	builds,	and	manages	the	infrastructure	is	committed	into
source	code	management	alongside	the	application	code.	We	can	then	start	to
think	about	our	infrastructure	as	redeployable	from	a	code	base,	in	which	we	are
using	the	same	kinds	of	software	development	methodologies	that	have
developed	over	the	last	20	years	as	the	business	of	writing	and	delivering
software	has	matured.

This	approach	brings	with	it	a	series	of	benefits	that	help	the	small,	developer-
led	company	solve	some	of	the	scalability	and	management	problems	that
accompany	rapid	and	overwhelming	commercial	success:

Repeatability
Because	we’re	building	systems	in	a	high-level	programming	language	and
committing	our	code,	we	start	to	become	more	confident	that	our	systems	are
ordered	and	repeatable.	With	the	same	input,	the	same	code	should	produce
the	same	output.	This	means	we	can	now	be	confident	(and	ensure	on	a
regular	basis)	that	what	we	believe	will	recreate	our	environment	really	will
do	that.

Automation
By	utilizing	mature	tools	for	deploying	applications,	which	are	written	in
modern	programming	languages,	the	very	act	of	abstracting	out
infrastructures	brings	us	the	benefits	of	automation.

Agility
The	discipline	of	source	code	management	and	version	control	means	we
have	the	ability	to	roll	forward	or	backward	to	a	known	state.	Because	we
can	redeploy	entire	systems,	we	are	able	to	drastically	reconfigure	or	change
topology	with	ease,	responding	to	defects	and	business-driven	changes.	In
the	event	of	a	problem,	we	can	go	to	the	commit	logs	and	identify	what
changed	and	who	changed	it.	This	is	made	all	the	easier	because	our
infrastructure	code	is	just	text,	and	as	such	can	be	examined	and	compared
using	standard	file	comparison	tools,	such	as	diff.

Scalability
Repeatability	and	automation	make	it	possible	to	grow	our	server	fleet	easily,
especially	when	combined	with	the	kind	of	rapid	hardware	provisioning	that
the	cloud	provides.	Modular	code	design	and	reuse	manages	complexity	as
our	applications	grow	in	features,	type,	and	quantity.

Reassurance
While	all	the	benefits	bring	reassurance	in	their	way,	in	particular,	the	fact
that	the	architecture	and	design	of	our	infrastructure	is	modeled—and	not
merely	implemented—in	code	means	that	we	may	reasonably	use	the	source
code	as	documentation	and	see	at	a	glance	how	the	systems	work.	This
knowledge	repository	mitigates	the	risk	of	only	a	single	sysadmin	or
architect	having	the	full	understanding	of	how	the	system	hangs	together.
That	is	risky—this	person	is	now	able	to	hold	the	organization	ransom,	and
should	they	leave	or	become	ill,	the	company	is	endangered.

Disaster	recovery
In	the	event	of	a	catastrophic	event	that	wipes	out	the	production	systems,	if
our	entire	infrastructure	has	been	broken	down	into	modular	components	and
described	as	code,	recovery	is	as	simple	as	provisioning	new	compute	power,
restoring	from	backup,	and	redeploying	the	infrastructure	and	application
code.	What	may	have	been	a	business-ending	event	in	the	old	paradigm	of
custom-built,	partially	automated	infrastructure	becomes	a	manageable
outage	with	procedures	we	can	test	in	advance.

Infrastructure	as	code	is	a	powerful	concept	and	approach	that	promises	to	help
repair	the	split-brain	phenomenon	witnessed	so	frequently	in	organizations

where	developers	and	system	administrators	view	each	other	as	enemies,	to	the
detriment	of	the	common	good.	Through	co-design	of	the	infrastructure	code
that	runs	an	application,	we	give	operational	responsibilities	to	developers.	By
focusing	on	design	and	the	software	lifecycle,	we	liberate	system	administrators
to	think	at	higher	levels	of	abstraction.	These	new	aspects	of	our	professions
help	us	succeed	in	building	robust,	scaled	architectures.	We	open	up	a	new	way
of	working—a	new	way	of	cooperating—that	is	fundamental	to	the	emerging
DevOps	movement.

The	Principles	of	Infrastructure	as	Code
Having	explored	the	origins	and	rationale	for	managing	infrastructure	as	code,
we	now	turn	to	the	core	principles	we	should	put	into	practice	to	make	it	happen.

Adam	Jacob,	co-founder	of	Opscode	and	creator	of	Chef,	says	that	there	are	two
high-level	steps:
1.	 Break	the	infrastructure	down	into	independent,	reusable,	network-

accessible	services.

2.	 Integrate	these	services	in	such	a	way	as	to	produce	the	functionality	our
infrastructure	requires.

Adam	further	identifies	10	principles	that	describe	what	the	characteristics	of	the
reusable	primitive	components	look	like.	His	essay—Chapter	5	of	Web
Operations,	ed.	John	Allspaw	&	Jesse	Robbins	(O’Reilly)—is	essential	reading,
but	I	will	summarize	his	principles	here:

Modularity
Our	services	should	be	small	and	simple—think	at	the	level	of	the	simplest
freestanding,	useful	component.

Cooperation
Our	design	should	discourage	overlap	of	services	and	should	encourage	other
people	and	services	to	use	our	service	in	a	way	that	fosters	continuous
improvement	of	our	design	and	implementation.

Composability
Our	services	should	be	like	building	blocks—we	should	be	able	to	build

http://shop.oreilly.com/product/0636920000136.do

complete,	complex	systems	by	integrating	them.

Extensibility
Our	services	should	be	easy	to	modify,	enhance,	and	improve	in	response	to
new	demands.

Flexibility
We	should	build	our	services	using	tools	that	provide	unlimited	power	to
ensure	we	have	the	(theoretical)	ability	to	solve	even	the	most	complicated
problems.

Repeatability
With	the	same	inputs,	our	services	should	produce	the	same	results	in	the
same	way	every	time.

Declaration
We	should	specify	our	services	in	terms	of	what	we	want	to	do,	not	how	we
want	to	do	it.

Abstraction
We	should	not	worry	about	the	details	of	the	implementation,	and	think	at	the
level	of	the	component	and	its	function.

Idempotence
Our	services	should	be	configured	only	when	required;	action	should	be
taken	only	once.

Convergence
Our	services	should	take	responsibility	for	their	own	state	being	in	line	with
policy;	over	time,	the	overall	system	will	tend	to	correctness.

In	practice,	these	principles	should	apply	to	every	stage	of	the	infrastructure
development	process—from	low-level	operations	such	as	provisioning	(cloud-
based	providers	with	a	published	API	are	a	good	example),	backups,	and	DNS,
up	through	high-level	functions	such	as	the	process	of	writing	the	code	that
abstracts	and	implements	the	services	we	require.

This	book	concentrates	on	the	task	of	writing	infrastructure	code	that	meets	these
principles	in	a	predictable	and	reliable	fashion.	The	key	enabler	in	this	context	is
a	powerful,	declarative	configuration	management	system	that	enables	engineers
(I	like	the	term	infrastructure	developer)	to	write	executable	code	that	both
describes	the	shape,	behavior,	and	characteristics	of	the	infrastructure	that	they
are	designing,	and	when	actually	executed,	results	in	that	infrastructure	coming
to	life.

The	Risks	of	Infrastructure	as	Code
Although	the	potential	benefits	of	infrastructure	as	code	are	hard	to	overstate,	it
must	be	pointed	out	that	this	approach	is	not	without	its	dangers.	Production
infrastructures	that	handle	high-traffic	websites	are	hugely	complicated.
Consider,	for	example,	the	mix	of	technologies	involved	in	a	large	content
management	system	installation.	We	might	easily	have	multiple	caching
strategies,	a	full-text	indexer,	a	sharded	database,	and	a	load-balanced	set	of	web
servers.	That	is	a	significant	number	of	moving	parts	for	the	infrastructure
developer	to	manage	and	understand.

It	should	come	as	no	surprise	that	the	attempt	to	codify	complex	infrastructures
is	a	challenging	task.	As	I	visit	clients	embracing	the	approaches	outlined	in	this
chapter,	I	see	similar	problems	emerging	as	they	start	to	put	these	ideas	into
practice:

Sprawling	masses	of	infrastructure	code

Duplication,	contradiction,	and	a	lack	of	clear	understanding	of	what	it	all
does

Fear	of	change;	a	sense	that	we	dare	not	meddle	with	the	manifests	or	recipes
because	we’re	not	entirely	certain	how	the	system	will	behave

Bespoke	software	that	started	off	well-engineered	and	thoroughly	tested,	but
is	now	littered	with	TODOs,	FIXMEs,	and	quick	hacks

Despite	the	lofty	goal	of	capturing	the	expertise	required	to	understand	an
infrastructure	in	the	code	itself,	a	sense	that	the	organization	would	be	in
trouble	if	one	or	two	key	people	leave

War	stories	of	times	when	a	seemingly	trivial	change	in	one	corner	of	the
system	had	catastrophic	side	effects	elsewhere

These	issues	have	their	roots	in	the	failure	to	acknowledge	and	respond	to	a
simple	but	powerful	side	effect	of	treating	our	infrastructure	as	code:	if	our
environments	are	effectively	software	projects,	then	they	should	be	subject	to	the
same	meticulousness	as	our	application	code.	It	is	incumbent	upon	us	to	make
sure	we	apply	the	lessons	learned	by	the	software	development	world	in	the	last
10	years	as	they	have	strived	to	produce	high	quality,	maintainable,	and	reliable
software.	It’s	also	incumbent	upon	us	to	think	critically	about	some	of	the
practices	and	principles	that	have	been	effective	in	that	world	and	to	begin
introducing	our	own	practices	that	embrace	the	same	interests	and	objectives.
Unfortunately,	many	who	embrace	infrastructure	as	code	have	had	insufficient
exposure	to	or	experience	with	these	ideas.

There	are	six	areas	where	we	need	to	focus	our	attention	to	ensure	that	our
infrastructure	code	is	developed	with	the	same	degree	of	thoroughness	and
professionalism	as	our	application	code:

Design
Our	infrastructure	code	should	seek	to	be	simple	and	iterative,	and	we	should
avoid	feature	creep.

Collective	ownership
All	members	of	the	team	should	be	involved	in	the	design	and	writing	of
infrastructure	code	and,	wherever	possible,	code	should	be	written	in	pairs.

Code	review
The	team	should	be	set	up	to	pair	frequently	and	to	see	regular	notifications
when	changes	are	made.

Code	standards
Infrastructure	code	should	follow	the	same	community	standards	as	the	Ruby
world;	when	standards	and	patterns	have	grown	up	around	the	configuration
management	framework,	the	standards	and	patterns	should	be	adhered	to.

Refactoring
This	should	happen	at	the	point	of	need	as	part	of	the	iterative	and

collaborative	process	of	developing	infrastructure	code;	however,	it’s
difficult	to	do	this	without	a	safety	net	in	the	form	of	thorough	test	coverage
of	one’s	code.

Testing
Systems	should	be	in	place	to	ensure	that	one’s	code	produces	the
environment	needed	and	that	any	changes	have	not	caused	side	effects	that
alter	other	aspects	of	the	infrastructure.

I	would	argue	that	good	practice	in	all	six	of	these	areas	is	a	natural	by-product
of	bringing	development	best	practices	to	infrastructure	code—in	particular	by
embracing	the	idea	of	test-first	programming.	Good	leadership	can	lead	to	rapid
progress	in	the	first	five	areas	with	very	little	investment	in	new	technology.
However,	it	is	indisputable	that	the	final	area—that	of	testing	infrastructure
automation—is	a	difficult	endeavor.	As	such,	it	is	the	subject	of	this	book:	a
manifesto	for	bravely	rethinking	how	we	develop	infrastructure	code.

Professionalism
The	discipline	of	software	development	is	a	young	one.	It	was	not	until	the	early
1990s	that	the	Institute	of	Electrical	and	Electronics	Engineers	and	the
Association	for	Computing	Machinery	began	to	recognize	software	engineering
as	a	profession.	The	last	15	years	alone	have	seen	significant	advances	in
tooling,	methodology,	and	philosophy.	The	discipline	of	infrastructure
development	is	younger	still.	It	is	imperative	that	those	embarking	upon	or
moving	into	a	career	involving	infrastructure	development	absorb	the	hard
lessons	learned	by	the	rest	of	the	software	industry	over	the	previous	few
decades,	avoid	repeating	these	mistakes,	and	hold	themselves	accountable	to	the
same	level	of	professionalism.

Robert	C.	Martin	in,	Clean	Code:	A	Handbook	of	Agile	Software	Craftsmanship
(Prentice	Hall),	draws	upon	the	Hippocratic	oath	as	a	metaphor	for	the	standards
of	professionalism	demanded	within	the	software	development	industry:	Primum
non	nocere—first	do	no	harm.	This	is	the	foundational	ethical	principal	that	all
medical	students	learn.	The	essence	is	that	the	cost	of	action	must	be	considered.
It	may	be	wiser	to	take	no	action	or	not	to	take	a	specified	action	in	the	interests
of	not	harming	the	patient.	The	analogy	holds	as	a	software	developer.	Before

intervening	to	add	a	feature	or	to	fix	a	bug,	be	confident	that	you	aren’t	making
things	worse.	Robert	C.	Martin	suggests	that	the	kinds	of	harm	a	software
developer	can	inflict	can	be	classified	as	functional	and	structural.

By	functional	harm,	we	mean	the	introduction	of	bugs	into	the	system.	A
software	professional	should	strive	to	release	bug-free	software.	This	is	a
difficult	goal	for	developer	and	medical	practitioner	alike;	granted	that	software
(and	humans)	are	highly	complicated	systems,	as	professionals	we	must	make	it
our	mantra	to	“do	no	harm.”	We	won’t	ever	be	able	to	eradicate	mistakes,	but	we
can	accept	responsibility	for	them,	and	we	can	ensure	we	learn	from	them	and
put	mechanisms	in	place	to	avoid	repeating	them.

By	structural	harm	we	mean	introducing	inflexibility	into	our	systems,	making
software	harder	to	change.	To	put	the	concept	positively,	it	must	be	possible	to
make	changes	without	the	cost	of	change	being	exorbitantly	high.

I	like	this	analogy.	I	think	it	can	also	be	taken	a	little	further.	Of	all	medical
professionals,	the	one	I	would	most	want	to	be	certain	was	observing	the
Hippocratic	oath	would	be	a	brain	surgeon.	The	cost	of	error	is	almost	infinitely
higher	when	operating	upon	the	brain	than	when,	for	example,	operating	on	a
minor	organ,	or	performing	orthopedic	surgery.	I	think	this	applies	to	the	subject
of	this	book,	too.

As	infrastructure	developers,	the	software	we	have	written	builds	and	runs	the
entire	infrastructure	on	which	our	production	systems,	the	applications,	and
ultimately	the	business,	operate.	The	cost	of	a	bug,	or	of	introducing	structural
inflexibility	to	the	underpinning	infrastructure	on	which	our	business	runs,	is
potentially	even	greater	than	that	of	a	bug	in	the	application	code	itself.	An	error
in	the	infrastructure	could	lead	to	the	entire	system	becoming	compromised	or
could	result	in	an	outage	rendering	all	dependent	systems	unavailable.

How,	then,	can	we	take	responsibility	for,	and	excel	in,	our	oath-keeping?	How
can	we	introduce	no	bugs	and	maintain	system	flexibility?	The	answer	lies	in
testing.

The	only	way	we	can	be	confident	that	our	code	works	is	to	test	it.	Thoroughly.
Test	it	under	various	conditions.	Test	the	happy	path,	the	sad	path,	and	the	bad
path.	The	happy	path	represents	the	default	scenario,	in	which	there	are	no
exceptional	or	error	conditions.	The	sad	path	shows	that	things	fail	when	they
should.	The	bad	path	shows	the	system	when	fed	absolute	rubbish.	In	the	case	of

infrastructure	code,	we	want	to	verify	that	changes	made	for	one	platform	don’t
cause	unexpected	side	effects	on	other	platforms.	The	more	we	test,	the	more
confident	we	are.

When	it	comes	to	protecting	and	guaranteeing	the	flexibility	of	our	code,	there’s
one	easy	way	to	be	confident	of	code	flexibility.	Flex	it.	We	want	our	code	to	be
easy	to	change.	To	be	confident	that	it	is	easy	to	change,	we	need	to	make	easy
changes.	If	those	easy	changes	prove	to	be	difficult,	we	need	to	change	the	way
the	code	works.	We	must	be	committed	to	regular	refactoring	and	regular	small
improvements	across	the	team.	This	might	seem	to	be	at	odds	with	the	principle
of	doing	no	harm.	Surely	the	more	changes	we	make,	the	more	risk	we	are
taking	on.	Paradoxically,	this	isn’t	actually	the	case.	It	is	far,	far	riskier	to	leave
the	code	to	stagnate	with	little	or	no	attention.

As	infrastructure	developers,	if	we’re	afraid	to	make	changes	to	our	code,	that’s
a	big	red	flag.	The	biggest	reason	people	are	afraid	to	make	changes	is	that	they
aren’t	confident	that	the	code	won’t	break.	That’s	because	they	don’t	have	a	test
harness	to	protect	them	and	catch	the	breaks.	I	like	to	think	of	refactoring	as	a
little	like	walking	along	a	curbstone.	When	you	have	six	inches	to	fall,	you
won’t	have	any	fear	at	all.	If	you	had	to	walk	along	a	beam,	four	inches	in	width,
stretching	between	two	thirty	story	buildings,	I	bet	you’d	be	scared.	You	might
be	so	scared	that	you	wouldn’t	even	set	out.	The	same	is	so	with	refactoring.
When	you	have	a	fully	tested	code	base,	making	changes	is	done	with
confidence	and	zeal.	When	you	have	no	tests	at	all,	making	changes	is	avoided
or	undertaken	with	fear	and	dread.

The	trouble	is,	testing	takes	time.	Lots	of	testing	takes	lots	of	time.	In	the	world
of	infrastructure	code,	testing	takes	even	more	time	because	sometimes	the
feedback	loops	are	significantly	longer	than	traditional	test	scenarios.	This
makes	it	imperative	that	we	automate	our	testing.	Testing,	especially	for
complicated,	disparate	systems,	is	also	difficult.	Writing	good	tests	for	code	is
hard	to	do.	That	makes	it	imperative	for	us	to	write	code	that	is	easy	to	test.	The
best	way	to	do	that	is	to	write	the	tests	first.	We’ll	discuss	this	in	more	depth
later,	but	the	essential	and	applicable	takeaway	is	that	consistent,	automated,	and
quality	testing	of	infrastructure	code	is	mandatory	for	the	DevOps	professional.

At	this	stage	it’s	important	to	acknowledge	and	address	an	obvious	objection.	As
infrastructure	developers	we	are	asked	to	make	a	call	with	respect	to	a	risk/time

ratio.	If	it	delays	a	release	by	three	weeks,	but	delivers	100%	test	coverage,	is
this	the	right	approach,	given	our	maxim	“do	no	harm”?

As	is	the	case	in	many	such	trade-offs,	there	is	an	asymptotic	curve	describing	a
diminishing	return	after	a	certain	amount	of	time	and	test	coverage.	It	is	a	big
step	in	the	right	direction	to	be	making	the	decision	consciously.	Consider	what
part	of	the	“brain”	we	are	about	to	cut	in	to,	what	functions	it	performs	for	the
body	corporeal	or	corporate,	as	it	were,	and	where	we	draw	our	line	will	become
clear.

I’ll	summarize	by	making	a	bold	philosophical	statement	that	underpins	the	rest
of	this	book:

Testing	our	infrastructure	code,	thoroughly	and	repeatably,	is	non-negotiable,
and	is	an	essential	component	of	the	infrastructure	developer’s	work.

This	book	sets	out	to	provide	encouragement	for	those	learning	to	test	their
infrastructure	code,	and	guidance	for	those	already	on	the	path.	It	is	a	call	to
arms	for	infrastructure	developers,	DevOps	professionals,	if	you	like,	to
maximize	the	quality,	reliability,	repeatability,	and	production-readiness	of	their
work.

Chapter	2.	An	Introduction	to
Ruby

Before	we	go	any	further,	I’m	going	to	spend	a	little	time	giving	you	a	quick
overview	of	the	basics	of	the	Ruby	programming	language.	If	you’re	an	expert,
or	even	a	novice	Ruby	developer,	do	feel	free	to	skip	this	section.	However,	if
you’ve	never	used	Ruby,	or	rarely	programmed	at	all,	this	should	be	a	helpful
introduction.	The	objective	of	this	section	is	to	make	you	feel	comfortable
looking	at	infrastructure	code.	The	framework	we’re	focusing	our	attention	on	in
this	book—Chef—is	both	written	in	Ruby,	and	fundamentally	is	Ruby.	Don’t	let
that	scare	you—you	really	only	need	to	know	a	few	things	to	get	started.	I’ll	also
point	you	to	some	good	resources	to	take	your	learning	further.	Later	in	the
book,	we’ll	be	doing	more	Ruby,	but	I	will	explain	pretty	much	anything	that
isn’t	explicitly	covered	in	this	section.	Also,	remember	we	were	all	once	in	the
beginners’	seat.	One	of	the	great	things	about	the	Chef	community	is	the	extent
to	which	it’s	supporting	and	helpful.	If	you	get	stuck,	hop	onto	IRC	and	ask	for
help.

What	Is	Ruby?
Let’s	start	right	at	the	very	beginning.	What	is	Ruby?	To	quote	from	the	very
first	Ruby	book	I	ever	read,	the	delightfully	eccentric	Why	The	Lucky	Stiff’s
(poignant)	Guide	to	Ruby:
My	conscience	won’t	let	me	call	Ruby	a	computer	language.	That	would	imply	that	the	language
works	primarily	on	the	computer’s	terms.	That	the	language	is	designed	to	accommodate	the
computer,	first	and	foremost.	That	therefore,	we,	the	coders,	are	foreigners,	seeking	citizenship	in	the
computer’s	locale.	It’s	the	computer’s	language	and	we	are	translators	for	the	world.

But	what	do	you	call	the	language	when	your	brain	begins	to	think	in	that	language?	When	you	start
to	use	the	language’s	own	words	and	colloquialisms	to	express	yourself.	Say,	the	computer	can’t	do
that.	How	can	it	be	the	computer’s	language?	It	is	ours,	we	speak	it	natively!

We	can	no	longer	truthfully	call	it	a	computer	language.	It	is	coderspeak.	It	is	the	language	of	our
thoughts.

http://mislav.uniqpath.com/poignant-guide/book/

—	http://bit.ly/1fieouZ

So,	Ruby	is	a	very	powerful,	very	friendly	language.	If	you	like	comparisons,	I
like	to	think	of	Ruby	as	being	a	kind	of	hybrid	between	LISP,	Smalltalk,	and
Perl.	I’ll	explain	why	a	bit	later.	You	might	already	be	familiar	with	a
programming	language—Perl,	or	Python,	or	perhaps	C	or	Java.	Maybe	even
BASIC	or	Pascal.	As	an	important	aside,	if	you	consider	yourself	to	be	a	system
administrator,	and	don’t	know	any	programming	languages,	let	me	reassure	you
—you	already	know	heaps	of	languages.	Chances	are	you’ll	recognize	this:

divert(-1)

divert(0)

VERSIONID(`@(#)sendmail.mc 8.7 (Linux) 3/5/96')

OSTYPE(`linux')

#

Include support for the local and smtp mail transport protocols.

MAILER(`local')

MAILER(`smtp')

#

FEATURE(rbl)

FEATURE(access_db)

end

Or	possibly	this:

Listen 80

<VirtualHost :80>

 DocumentRoot wwwexample1

 ServerName www.example.com

 # Other directives here

</VirtualHost>

<VirtualHost :80>

 DocumentRoot wwwexample2

 ServerName www.example.org

 # Other directives here

</VirtualHost>

What	about	this?

LOGGER=/usr/bin/logger

DUMP=/sbin/dump

FSL="devaacd0s1a devaacd0s1g"

FSL="usr var"

NOW=$(date +"%a")

LOGFILE="varlog/dumps/$NOW.dump.log"

TAPE="devsa0"

mk_auto_dump(){

local fs=$1

local level=$2

local tape="$TAPE"

local opts=""

opts="-${level}uanL -f ${tape}"

run backup

$DUMP ${opts} $fs

if ["$?" != "0"];then

$LOGGER "$DUMP $fs FAILED!"

echo "*** DUMP COMMAND FAILED - $DUMP ${opts} $fs. ***"

else

$LOGGER "$DUMP $fs DONE!"

fi

}

Or	finally,	this:

CC=g++

CFLAGS=-c -Wall

LDFLAGS=

SOURCES=main.cpp hello.cpp factorial.cpp

OBJECTS=$(SOURCES:.cpp=.o)

EXECUTABLE=hello

all: $(SOURCES) $(EXECUTABLE)

$(EXECUTABLE): $(OBJECTS)

 $(CC) $(LDFLAGS) $(OBJECTS) -o $@

.cpp.o:

 $(CC) $(CFLAGS) $< -o $@

If	you’re	anything	like	me,	you’ll	know	what	all	four	of	these	are	right	away.
You	might	know	exactly	what	they	do.	They	almost	certainly	don’t	scare	you;
you	will	recognize	some	of	it,	and	you’d	know	where	to	go	to	find	out	more.	My

aim	is	to	get	you	to	the	same	point	with	Ruby.	The	thing	is,	a	sysadmin	knows	a
ton	of	languages;	they	just	mostly	suck	quite	badly.	Thankfully,	Ruby	doesn’t
suck	at	all—Ruby	is	awesome—it’s	easy	to	use	and	highly	capable.

Grammar	and	Vocabulary
All	languages	have	grammar	and	vocabulary.	Let’s	cover	the	basic	vocabulary
and	grammar	of	Ruby.	One	of	the	best	ways	to	learn	a	language	is	to	have	a	play
about	in	a	REPL.	REPL	stands	for	“Read,	Evaluate,	Print,	Loop.”	A	REPL	is	an
interactive	environment	in	which	the	user	writes	code,	and	the	shell	interprets
that	code	and	returns	the	results	immediately.	They’re	ideal	for	rapid	prototyping
and	language	learning,	because	the	feedback	loop	is	so	quick.

The	idea	of	a	REPL	originated	in	the	world	of	LISP.	Its	implementation	simply
required	that	three	functions	be	created	and	enclosed	in	an	infinite	loop	function.
Permit	me	some	hand-waving,	as	this	hides	much	deep	complexity,	but	at	the
simplest	level	the	three	functions	are:

read
Accept	an	expression	from	the	user,	parse	it,	and	store	it	as	a	data	structure	in
memory.

eval
Ingest	the	data	structure	and	evaluate	it.	This	translates	to	calling	the
function	from	the	initial	expression	on	each	of	the	arguments	provided.

print
Display	the	result	of	the	evaluation.

We	can	actually	write	a	Ruby	REPL	in	one	line	of	code:

$ ruby -e 'loop { p eval gets }'

1+1

2

puts "Hello"

Hello

nil

5.times { print 'Simple REPL' }

Simple REPLSimple REPLSimple REPLSimple REPLSimple REPL5

The	first	thing	to	note	is	every	expression	has	a	return	value,	without	exception.
The	result	of	the	expression	1+1	is	2.	The	result	of	the	expression	"puts
"Hello""	is	not	"hello".	The	result	of	the	expression	is	nil,	which	is	Ruby’s
way	of	expressing	nothingness.	I’m	going	to	dive	in	right	now,	and	set	your
expectations.	Unlike	languages	such	as	Java	or	C,	nil	is	not	a	special	value	or
even	a	keyword.	It’s	just	the	same	as	everything	else.	In	Ruby	terms,	it’s	an
object—more	on	this	in	a	moment.	For	now,	every	expression	has	a	return	value,
and	in	a	REPL,	we	will	always	see	this.

The	functions	in	our	basic	REPL	should	be	familiar—we	have	a	loop,	we	have
an	eval,	the	p	function	prints	the	output	of	the	eva,	and	gets	reads	from	the
keyboard.	Obviously	this	is	a	ridiculously	primitive	REPL,	and	very	brittle	and
unforgiving:

$ ruby -e 'loop { p eval gets }'

forgive me!

-e:1:in `eval': undefined method `me!' for main:Object (NoMethodError)

 from -e:1:in `eval'

 from -e:1:in `block in <main>'

 from -e:1:in `loop'

 from -e:1:in `<main>'

Thankfully	Ruby	ships	with	a	REPL—Interactive	Ruby,	or	irb.	The	Ruby	REPL
is	launched	by	typing	irb	in	a	command	shell.	It	also	takes	the	handy	command
switch	--simple-prompt,	which	declutters	the	display	for	our	simple	use	cases.

$ irb

irb(main):001:0> exit

$ irb --simple-prompt

>>

Go	ahead	and	try	talking	to	irb:

>> hello

NameError: undefined local variable or method `hello' for main:Object

 from (irb):1

 from optrubies/1.9.3-p429/bin/irb:12:in `<main>'

Methods	and	Objects

irb	isn’t	very	communicative.	I’d	like	to	draw	your	attention	to	two	words	in	the
preceding	output—method	and	Object.	This	introduces	one	of	the	most
important	things	to	understand	about	Ruby.	Ruby	is	a	pure	object-oriented
language.	Object-oriented	languages	encourage	the	idea	of	modeling	the	world
by	designing	programs	around	classes,	such	as	Strings	or	Files,	together	with
classes	we	define	ourselves.	These	classes	and	class	hierarchies	reflect	important
general	properties	of	individual	nails,	horseshoes,	horses,	kingdoms,	or	whatever
else	comes	up	naturally	in	the	application	we’re	designing.	We	create	instances
of	these	classes,	which	we	call	objects,	and	work	with	them.

In	object-oriented	programming	we	think	in	terms	of	sending	and	receiving
messages	between	objects.	When	these	instances	receive	the	messages,	they
need	to	know	what	to	do	with	them.	The	definition	of	what	to	do	with	a	message
is	called	a	method.	I	mentioned	that	Ruby	is	like	Smalltalk;	Smalltalk	epitomizes
this	model.	Smalltalk	allows	the	programmer	to	send	a	message	sqrt	to	an
object	2	(called	a	receiver	in	Smalltalk),	which	is	a	member	of	the	Integer
class.	To	handle	the	message,	Smalltalk	finds	the	appropriate	method	to	compute
the	required	answer	for	receivers	belonging	to	the	Integer	class.	It	produces	the
answer	1.41421,	which	is	an	instance	of	the	Float	class.	Smalltalk	is	a	100%
pure	object-oriented	language—absolutely	everything	in	Smalltalk	is	an	object,
and	every	object	can	send	and	receive	messages.	Ruby	is	almost	identical.

We	can	call	methods	in	Ruby	using	“dot”	syntax—e.g.,
some_object.my_method.	In	Ruby	everything	(pretty	much	everything)	is	an
object.	As	such	everything	(literally	everything)	has	methods,	even	nil.	In	Java
or	C,	NULL	holds	a	value	to	which	no	valid	pointer	will	ever	refer.	That	means
that	if	you	want	to	check	if	an	object	is	nil,	you	compare	it	with	NULL.	Not	so	in
Ruby!	Let’s	check	in	irb:

>> nil.nil?

=> true

So	if	everything	is	an	object,	what	is	nil	an	instance	of?

>> nil.class

>> nil.class

=> NilClass

OK,	and	what	about	NilClass?

>> NilClass.class

=> Class

Go	ahead	and	try	a	few	others—a	number	or	a	string	(strings	are	encased	in
single	or	double	quotes):

>> 37.class

=> Fixnum

>> "Thirty Seven".class

=> String

In	our	case,	hello	isn’t	anything—we	haven’t	assigned	it	to	anything,	and	it
isn’t	a	keyword	in	the	language,	so	Ruby	doesn’t	know	what	to	do.	Let’s	start,
then,	with	something	that	Ruby	does	know	about—numbers.	Have	a	go	at	using
Ruby	to	establish	the	following:
1.	 What	is	42	multiplied	by	412?

2.	 How	many	hours	are	there	in	a	week?

3.	 If	I	have	7	students,	and	they	wrote	17,891	lines	of	code,	how	many	did
they	write	each,	on	average?

>> 42 412

=> 17304

>> 24 7

=> 168

>> 17891/7

=> 2555

Hang	on,	that	last	number	doesn’t	look	right!	What’s	going	on	here?	Let’s
look	at	the	classes	of	our	numbers:

>> 17891.class

=> Fixnum

>> 7.class

=> Fixnum

Ruby	only	does	integer	division	with	Fixnum	objects:

>> 2/3

=> 0

Thankfully	Fixnum	objects	have	methods	to	convert	them	to	Floats,
which	means	we	can	do	floating	point	maths:

>> 2.to_f/3

=> 0.6666666666666666

Let’s	try	some	algebra:

>> hours_per_day = 24

=> 24

>> days_per_week = 7

=> 7

>> hours_per_week = hours_per_day * days_per_week

=> 168

This	introduces	assignment	and	variables.	Assignment	is	an	operation	that
binds	a	local	variable	(on	the	left)	to	an	object	(on	the	right).	We	can	see
that	now	hours_per_day	is	an	instance	of	class	Fixnum:

>> hours_per_week.class

=> Fixnum

A	variable	is	a	placeholder.	And	it	varies,	hence	the	name:

>> puts "Stephen likes " + drink

Stephen likes Rooibos

=> nil

>> drink = "Beetroot Juice"

=> "Beetroot Juice"

>> puts "Stephen likes " + drink

Stephen likes Beetroot Juice

=> nil

Identifiers

A	variable	is	an	example	of	a	Ruby	identifier.	Wikipedia	describes	an	identifier
as	follows:
An	identifier	is	a	name	that	identifies	(that	is,	labels	the	identity	of)	either	a	unique	object	or	a
unique	class	of	objects,	where	the	“object”	or	class	may	be	an	idea,	physical	[countable]	object	(or
class	thereof),	or	physical	[noncountable]	substance	(or	class	thereof).

There	are	four	main	kinds	of	identifiers	in	Ruby:
1.	 Variables

2.	 Constants

3.	 Keywords

4.	 Method	names

Variables
Looking	first	at	variables,	there	are	actually	four	types	of	variables	that	you’ll
encounter	in	Ruby:
1.	 Local	variables

2.	 Instance	variables

3.	 Class	variables

4.	 Global	variables

You’ll	mostly	interact	with	the	first	two.	Local	variables	begin	with	a	lowercase
letter,	or	an	underscore.	They	may	contain	only	letters,	underscores,	and/or
digits:

>> valid_variable = 9

=> 9

>> bogus-variable - 8

NameError: undefined local variable or method `bogus' for main:Object

 from (irb):34

 from optrubies/1.9.3-p429/bin/irb:12:in `<main>'

>> number9 = "ok"

=> "ok"

>> 9numbers = "not ok"

SyntaxError: (irb):36: syntax error, unexpected tIDENTIFIER, expecting $end

9numbers = "not ok"

 ^

 from optrubies/1.9.3-p429/bin/irb:12:in `<main>'

Instance	variables	store	information	for	an	individual	instance.	They	always
begin	with	the	“@”	sign,	and	then	follow	the	same	rules	as	local	variables.

Class	variables	are	more	rarely	seen—they	store	information	at	the	level	of	the
class—i.e.,	further	up	the	hierarchy	than	an	instance	of	an	object.	They	begin
with	“@@”.

Global	variables	begin	with	a	“$”—these	don’t	follow	the	same	rules	as	local
variables.	You	won’t	need	to	use	these	very	often.	These	can	have	cryptic
looking	names	such	as:

$! # The exception object passed to #raise.

$@ # The stack backtrace generated by the last exception raised.

$& # Depends on $~. The string matched by the last successful match.

$` # Depends on $~. The string to the left of the last successful match.

$' # Depends on $~. The string to the right of the last successful match.

$+ # Depends on $~. The highest group matched by the last successful match.

$1 # Depends on $~. The Nth group of the last successful match. May be > 1.

$~ # The MatchData instance of the last match. Thread and scope local. MAGIC

The	preceding	global	variables	are	taken	from	the	excellent	Ruby	quick
reference	by	Ryan	Davis	(creator	and	maintainer	of	Minitest)—I	recommend	you
bookmark	it,	or	print	it	out.

On	the	subject	of	cryptic	symbols,	I	mentioned	that	Ruby	is	akin	to	Perl.	Ruby’s
creator,	Yukihiro	Matsumoto	(Matz),	describes	the	history	of	Ruby	in	an
interview	with	Bruce	Stewart:
Back	in	1993,	I	was	talking	with	a	colleague	about	scripting	languages.	I	was	pretty	impressed	by
their	power	and	their	possibilities.	I	felt	scripting	was	the	way	to	go.

As	a	long	time	object-oriented	programming	fan,	it	seemed	to	me	that	OO	programming	was	very
suitable	for	scripting,	too.	Then	I	looked	around	the	Net.	I	found	that	Perl	5,	which	had	not	released
yet,	was	going	to	implement	OO	features,	but	it	was	not	really	what	I	wanted.	I	gave	up	on	Perl	as	an
object-oriented	scripting	language.

Then	I	came	across	Python.	It	was	an	interpretive,	object-oriented	language.	But	I	didn’t	feel	like	it
was	a	“scripting”	language.	In	addition,	it	was	a	hybrid	language	of	procedural	programming	and
object-oriented	programming.

I	wanted	a	scripting	language	that	was	more	powerful	than	Perl,	and	more	object-oriented	than
Python.	That’s	why	I	decided	to	design	my	own	language.

—	http://bit.ly/18FHd3p

http://bit.ly/1gHBmtD
http://bit.ly/18FHd3p

He	adds:
Ruby’s	class	library	is	an	object-oriented	reorganization	of	Perl	functionality—plus	some	Smalltalk
and	Lisp	stuff.	I	used	too	much	I	guess.	I	shouldn’t	have	inherited	$_,	$&,	and	the	other,	ugly	style
variables.

If	you’re	familiar	with	Perl,	I	commend	to	you:	comparing	Ruby	and	Perl.

Constants
Constants	are	like	variables,	only	their	value	is	supposed	to	remain	unchanged.
In	actual	fact,	this	isn’t	enforced	by	Ruby—it	just	complains	if	you	waver	in
your	constancy:

>> MY_LOVE = "infinite"

=> "infinite"

>> MY_LOVE = "actually, rather unreliable"

(irb):38: warning: already initialized constant MY_LOVE

=> "actually, rather unreliable"

Constants	begin	with	an	uppercase	letter—conventionally	they	may	simply	be
capitalized	(Washington),	be	in	all	caps	(SHOUTING),	camelcase
(StephenNelsonSmith),	or	capitalized	snakecase	(BOA_CONSTRICTOR).

Keywords
Keywords	are	built-in	terms	hardcoded	into	the	language.	You	can	find	them
listed	at	http://ruby-doc.org/docs/keywords/1.9/.	Examples	include	end,	false,
unless,	super,	break.	Trying	to	use	these	as	variables	will	result	in	errors:

>> super = "dooper"

SyntaxError: (irb):1: syntax error, unexpected '='

super = "dooper"

 ^

 from optrubies/1.9.3-p429/bin/irb:12:in `<main>'

>> false = "hope"

SyntaxError: (irb):2: Can't assign to false

false = "hope"

 ^

 from optrubies/1.9.3-p429/bin/irb:12:in `<main>'

>> unless = 63

SyntaxError: (irb):3: syntax error, unexpected '='

unless = 63

 ^

http://bit.ly/1fh3ZzJ
http://ruby-doc.org/docs/keywords/1.9/

 from optrubies/1.9.3-p429/bin/irb:12:in `<main>'

Method	names
Method	names	are	the	fourth	and	final	kind	of	identifier.	We’ve	already	seen	one
of	these	at	play:

>> 7.to_f

=> 7.0

Method	names	adhere	to	the	same	naming	constraints	as	local	variables,	with	a
few	exceptions.	They	can	end	in	“?”,	“!”,	or	“=”,	and	it’s	possible	to	define
methods	such	as	“[]”	or	“<=>”.	This	might	sound	like	a	recipe	for	confusion,	but
it’s	very	much	by	design.	Methods	are	just	part	of	the	furniture;	Ruby	without
methods	would	be	like	ice	cream…without	ice.	Or	cream.

More	About	Methods
We	discussed	the	idea	of	objects	and	methods	at	the	very	start	of	this	section.
However,	it	bears	repeating,	as	the	object	is	the	most	fundamentally	important
concept	in	Ruby.	When	we	send	a	message	to	an	object,	using	the	dot	operator,
we’re	calling	some	code	that	the	object	has	access	to.	Strings	have	some	nice
methods	to	illustrate	this:

>> "STOP SHOUTING".downcase

=> "stop shouting"

>> "speak louder".upcase

=> "SPEAK LOUDER"

The	pattern	is:	OBJECT	dot	METHOD.	To	the	left	of	the	dot	we	have	the
receiver	and	to	the	right,	the	method	we’re	calling,	or	the	message	we’re
sending.

Methods	can	take	arguments:

>> "Tennis,Elbow,Foot".split

=> ["Tennis,Elbow,Foot"]

>> "Tennis,Elbow,Foot".split(',')

=> ["Tennis", "Elbow", "Foot"]

The	first	attempted	to	split	the	string	on	white	space	but	didn’t	find	any.	The
second	split	the	string	on	the	comma.	The	result	of	each	method	is	an	Array—
more	on	arrays	shortly.

I	mentioned	that	methods	may	end	in	signs	such	as	“?”	or	“!”.	Here’s	an
example:

>> [1,2,3,4].include? 3

=> true

Here	we’re	asking	Ruby	if	the	array	[1,2,3,4]	includes	the	number	3.	The	answer
—the	result	of	evaluating	the	expression—was	true.	A	method	with	“!”	on	the
end	means	“Do	this,	and	make	the	change	permanent!”	We	looked	at	downcase.
Here	it	is	again:

>> curse = "BOTHERATION!"

=> "BOTHERATION!"

>> curse.downcase

=> "botheration!"

>> curse

=> "BOTHERATION!"

>> curse.downcase!

=> "botheration!"

>> curse

=> "botheration!"

One	final	important	idea	connected	with	methods	is	the	idea	of
method_missing.	It	is	possible	for	an	object	to	have	the	special	method
method_missing.	In	this	case,	if	the	object	receives	a	message	for	which	there	is
no	corresponding	method,	rather	than	just	throwing	away	the	message	and
raising	an	error,	Ruby	can	take	the	message	and	redirect	it	or	use	it	in	many
powerful	ways.	Chef	uses	this	functionality	extensively	to	implement	the
language	used	to	build	infrastructure.	This	is	an	advanced	topic,	and	I	refer	you
to	some	of	the	classic	texts—particularly	Metaprogramming	Ruby	(The
Pragmatic	Programmers)	if	you	wish	to	learn	more.

We	create	methods	using	the	def	keyword:

>> def shout(something)

>> puts something.upcase

http://pragprog.com/book/ppmetr/metaprogramming-ruby

>> end

=> nil

>> shout('i really like ruby')

I REALLY LIKE RUBY

=> nil

We	created	a	method	and	specified	that	it	take	an	argument	called	“something”.
We	then	called	the	upcase	method	on	the	something.	This	worked	fine,	because
the	argument	we	passed	was	a	string.	Look	what	happens	if	we	give	bogus	input:

>> shout(42)

NoMethodError: undefined method `upcase' for 42:Fixnum

 from (irb):7:in `shout'

 from (irb):10

 from optrubies/1.9.3-p429/bin/irb:12:in `<main>'

>> shout('more', 'than', 'one', 'thing')

ArgumentError: wrong number of arguments (4 for 1)

 from (irb):6:in `shout'

 from (irb):11

 from optrubies/1.9.3-p429/bin/irb:12:in `<main>'

You	might	be	wondering	on	what	object	the	shout	method	is	being	called!	The
answer	is	that	it’s	being	called	on	the	self	object.	The	self	object	provides
access	to	the	current	object—the	object	that	is	receiving	the	current	message.	If
the	receiver	is	explicitly	stated,	it’s	obvious	which	object	is	the	receiver.	If	the
receiver	is	not	specified,	it	is	implicitly	the	self	object.	The	self	object,	when	we
run	in	irb,	is:

>> self

=> main

>> self.class

=> Object

What’s	all	this	about?	We’re	basically	looking	at	the	top	level	of	Ruby.	If	we
type	methods,	we	see	there	are	some	methods	available	at	the	top	level:

>> methods

=> [:to_s, :public, :private, :include, :context, :conf, :irb_quit, :exit, :quit,

:irb_print_working_workspace, :irb_cwws, :irb_pwws, :cwws, :pwws,

:irb_current_working_binding, :irb_print_working_binding, :irb_cwb, :irb_pwb,

:irb_chws, :irb_cws, :chws, :cws, :irb_change_binding, :irb_cb, :cb, :workspaces,

:irb_bindings, :bindings, :irb_pushws, :pushws, :irb_push_binding, :irb_pushb,

:pushb, :irb_popws, :popws, :irb_pop_binding, :irb_popb, :popb, :source, :jobs, :fg,

:kill, :help, :irb_exit, :irb_context, :install_alias_method,

:irb_current_working_workspace, :irb_change_workspace, :irb_workspaces,

:irb_push_workspace, :irb_pop_workspace, :irb_load, :irb_require, :irb_source, :irb,

:irb_jobs, :irb_fg, :irb_kill, :irb_help, :nil?, :===, :=~, :!~, :eql?, :hash, :<=>,

:class, :singleton_class, :clone, :dup, :initialize_dup, :initialize_clone, :taint,

:tainted?, :untaint, :untrust, :untrusted?, :trust, :freeze, :frozen?, :inspect,

:methods, :singleton_methods, :protected_methods, :private_methods,

:public_methods, :instance_variables, :instance_variable_get,

:instance_variable_set, :instance_variable_defined?, :instance_of?, :kind_of?,

:is_a?, :tap, :send, :public_send, :respond_to?, :respond_to_missing?, :extend,

:display, :method, :public_method, :define_singleton_method, :object_id, :to_enum,

:enum_for, :==, :equal?, :!, :!=, :instance_eval, :instance_exec, :__send__,

:__id__]

These	methods	must	be	being	called	on	something.	We	know	that	something	is
self.	What	is	self?	When	we	inspect	it,	we	see:

>> self.inspect

=> "main"

>> self.class

=> Object

So	self	is	an	instance	of	Object	that	evaluates	to	the	string	main.	By	default	it
has	no	instance	variables:

>> instance_variables

=> []

But	we	can	add	them:

>> @loathing = true

=> true

>> instance_variables

=> [:@loathing]

So	self	is	just	an	instance	of	Object.	But	what’s	going	on	when	we	define	a
method?

>> def say_hello

>> puts "hello"

>> end

=> nil

We	can	see	that	the	method	is	now	available	to	self.

>> self.methods.grep hello

=> [:say_hello]

Here	we	called	the	methods	method,	which	we	know	returns	an	array,	and	then
called	the	grep	method	on	the	array.	The	grep	method	takes	a	pattern	to	match
—we	specified	hello,	which	matched	only	one	method,	so	Ruby	returned	it.
What	we’ve	effectively	done	is	defined	a	top-level	method	on	Object.	We	can
see	this	by	inspecting	the	method:

>> method(:say_hello).owner

=> Object

Normally	we	would	define	methods	in	the	context	of	a	class,	so	let’s	look	at
classes.

Classes
Classes	describe	the	characteristics	and	behavior	of	objects—simply	put,	a	class
is	just	a	collection	of	properties	with	methods	attached.	We’re	familiar	with	the
idea	of	biological	classification—a	mechanism	of	grouping	and	categorizing
organisms	into	genus	or	species.	For	example	the	walnut	tree	and	the	pecan	tree
are	both	instances	of	the	family	Juglandaceae.	In	Ruby	every	object	is	an
instance	of	precisely	one	class.	We	tend	not	to	deal	with	classes	as	much	as
instances	of	classes.	One	particularly	powerful	feature	of	Ruby	is	its	ability	to
give	instances	of	a	class	some	attributes	or	methods	belonging	to	a	different	type
of	object.	This	idea—the	Mixin—is	seen	fairly	frequently,	and	we’ll	cover	it
later.

Let’s	see	an	example	of	creating	a	class:

>> class Pet

>> end

=> nil

The	class	doesn’t	do	anything	interesting	yet,	but	we	can	create	an	instance	of	it:

>> rupert = Pet.new

=> #<Pet:0x00000001d97b68>

>> rupert.class

=> Pet

Let’s	extend	our	class	a	little.	It	might	be	nice	to	be	able	to	know	the	name	of	the
pet.	This	allows	us	to	introduce	the	idea	of	the	constructor.	The	constructor	is
the	method	that	is	called	when	a	new	instance	of	a	class	is	initialized.	We	can	use
it	to	set	up	state	for	the	object.	Let’s	switch	to	using	a	text	editor	for	this
example:

$ emacs pet.rb

class Pet

 def initialize(name)

 @name = name

 end

 def name

 @name

 end

end

corins_pet = Pet.new("Rupert")

puts "The pet is called " + corins_pet.name

$ ruby pet.rb

The pet is called Rupert

So	the	constructor	has	the	method	initialize.	We’ve	said	that	it	takes	an
argument,	and	we’re	setting	an	instance	variable	to	hold	the	state	of	the	pet’s
name.	Later	we	have	a	method,	name,	which	returns	the	value	of	the	instance
variable.	Simple.

The	trouble	is,	children	are	fickle.	What	they	thought	was	a	great	name	turns	out
to	be	a	dreadful	name	a	few	days	later.	Unless	we	were	going	to	be	draconian,
and	insist	that	pet	names	be	immutable,	it	might	be	nice	to	allow	the	child	to
rename	the	pet.	Let’s	add	an	instance	method	that	will	change	the	name:

$ emacs pet.rb

class Pet

 def initialize(name)

 @name = name

 end

 def name=(name)

 @name=name

 end

 def name

 @name

 end

end

pet = Pet.new("Rupert")

puts "The pet is called " + pet.name

puts "ALL CHANGE!"

pet.name = "Harry"

puts "The pet is now called " + pet.name

$ ruby pet.rb

The pet is called Rupert

ALL CHANGE!

The pet is now called Harry

Here’s	another	example	of	a	method	name	with	some	odd-looking	punctuation	at
the	end.	But	this	is	how	we	implement	a	method	that	allows	assignment.	This
class	is	looking	a	bit	lengthy	(and	frankly,	ugly)	for	such	a	featureless	class.
Thankfully	Ruby	provides	some	syntactic	sugar,	which	provides	the	ability	to	get
and	set	instance	variables.	Here’s	how	it	works:

class Pet

 attr_accessor :name

 def initialize(name)

 @name = name

 end

end

pet = Pet.new("Rupert")

puts "The pet is called " + pet.name

puts "ALL CHANGE!"

pet.name = "Harry"

puts "The pet is now called " + pet.name

What’s	actually	going	on	here	is	that	when	the	Class	block	is	evaluated,	the
attr_accessor	method	is	run,	which	generates	the	methods	we	need.	Ruby	is
particularly	good	at	this—metaprogramming—code	that	writes	code.	In	more
advanced	programming,	it’s	possible	to	overwrite	the	default	attr_accessor
method	and	make	it	do	what	we	want—great	is	the	power	of	Ruby.	But	why	all
the	fuss?	Why	can’t	we	just	peek	into	the	class	and	see	the	instance	variable?
Remember,	Ruby	operates	by	sending	and	receiving	messages,	and	methods	are
the	way	classes	deal	with	the	messages.	The	same	is	so	for	instance	variables.
We	can’t	access	them	without	calling	a	method—it’s	a	design	feature	of	Ruby.

Right,	that’s	enough	of	messages	and	classes	for	the	time	being.	Let’s	move	on
to	look	at	some	data	structures.

Arrays
Arrays	are	indexed	collections	of	objects,	which	keep	this	in	a	specific	order:

>> children = ["Melisande", "Atalanta", "Wilfrid", "Corin"]

=> ["Melisande", "Atalanta", "Wilfrid", "Corin"]

>> children[0]

=> "Melisande"

>> children[2]

=> "Wilfrid"

The	index	starts	at	zero,	and	we	can	request	the	nth	item	by	calling	the	“[]”
method.	This	is	very	important	to	grasp.	We’re	sending	messages	again!	We’re
sending	the	[]	message	to	the	children	array,	with	the	argument	“2”.	The	array
knows	how	to	handle	the	message	and	replies	with	the	child	at	position	2	in	the
array.	Arrays	have	convenient	aliases:

>> children.first

=> "Melisande"

>> children.last

=> "Corin"

We	can	append	to	an	array	using	the	“<<”	method.	Suppose	we	adopted	orphan
Annie:

>> children << "Annie"

=> ["Melisande", "Atalanta", "Wilfrid", "Corin", "Annie"]

>> children.count

=> 5

Collections	of	objects	can	be	iterated	over.	For	example:

>> children.each { |child| puts "This child is #{child}" }

This child is Melisande

This child is Atalanta

This child is Wilfrid

This child is Corin

This child is Annie

=> ["Melisande", "Atalanta", "Wilfrid", "Corin", "Annie"]

This	introduces	two	new	pieces	of	Ruby	syntax—the	block	and	string
interpolation.	String	interpolation	is	an	alternative	to	the	rather	clumsy	looking
use	of	the	“+”	operator.	Ruby	evaluates	the	expression	between	#{}	and	prints
the	result.

>> dinner = "curry"

=> "curry"

>> puts "Stephen is going to eat #{dinner} for dinner"

Stephen is going to eat curry for dinner

=> nil

Of	course	the	expression	could	be	much	more	complex:

>> foods = ["chips", "curry", "soup", "cat sick"]

=> ["chips", "curry", "soup", "cat sick"]

>> 10.times { puts "Stephen will eat #{foods.sample} for dinner this evening." }

Stephen will eat chips for dinner this evening.

Stephen will eat soup for dinner this evening.

Stephen will eat soup for dinner this evening.

Stephen will eat cat sick for dinner this evening.

Stephen will eat chips for dinner this evening.

Stephen will eat curry for dinner this evening.

Stephen will eat chips for dinner this evening.

Stephen will eat soup for dinner this evening.

Stephen will eat soup for dinner this evening.

Stephen will eat curry for dinner this evening.

=> 10

Here	we	see	another	example	of	a	block!	The	integer	“10”	has	a	method	times,
which	takes	a	block	as	an	argument.

Blocks	allow	a	set	of	instructions	to	be	grouped	together	and	associated	with	a
method.	In	essence,	they’re	a	block	of	code	that	can	be	passed	as	an	argument	to
a	method.	They’re	a	particular	speciality	of	Ruby	and	are	incredibly	powerful.
However,	they’re	also	a	bit	tricky	to	understand	at	first.
For	programmers	new	to	Ruby,	code	blocks	are	generally	the	first	sign	that	they	have	definitely
departed	Kansas.	Part	syntax,	part	method,	and	part	object,	the	code	block	is	one	of	the	key	features
that	gives	the	Ruby	programming	language	its	unique	feel.

—	Russ	Olser	Eloquent	Ruby

Blocks	are	created	by	appending	them	to	the	end	of	a	method.	Ruby	takes	the
content	of	the	block	and	passes	it	to	the	method.	Depending	on	the	length	of	the
block,	Ruby	convention	is	either:

If	one	line,	then	place	in	curly	braces	{}	(unless	the	code	has	a	side	effect,
such	as	writing	to	a	file,	in	which	case	the	do … end	form	applies)

If	more	than	one	line,	then	replace	curly	braces	with	do … end

The	method	definition	itself	has	code	to	handle	the	contents	of	the	block.	For
now	it’s	sufficient	to	understand	that	blocks	are	a	kind	of	anonymous	function—
that	is	a	function	that	we	defined	and	call,	without	ever	binding	it	to	an	identifier.
Ruby	uses	them	a	great	deal	to	implement	iterators.

Although	present	in	Smalltalk,	I	think	that	it’s	when	looking	at	blocks	that	we
see	most	evidence	of	Lisp	in	Ruby.	Lisp	provides	the	lambda	expression	as	a
mechanism	for	creating	a	nameless	or	anonymous	function,	and	passing	it	to
another	function.	Lisp	also	has	the	concept	of	a	closure—that	is	an	anonymous
function	that	can	refer	to	variables	visible	at	the	time	it	was	defined.	Referring
again	to	a	Matz	interview,	the	creator	of	Ruby	says:
…we	can	create	a	closure	out	of	a	block.	A	closure	is	a	nameless	function	the	way	it	is	done	in	Lisp.
You	can	pass	around	a	nameless	function	object,	the	closure,	to	another	method	to	customize	the
behavior	of	the	method.	As	another	example,	if	you	have	a	sort	method	to	sort	an	array	or	list,	you
can	pass	a	block	to	define	how	to	compare	the	elements.	This	is	not	iteration.	This	is	not	a	loop.	But
it	is	using	blocks	…	the	first	reason	[for	this	implementation]	is	to	respect	the	history	of	Lisp.	Lisp

provided	real	closures,	and	I	wanted	to	follow	that.

—	Bill	Venners	http://www.artima.com/intv/closuresP.html

Ruby	features	a	wide	range	of	iterators	for	various	purposes.	One	commonly
used	one	is	map.	The	map	method	takes	a	block,	and	produces	a	new	array	with
the	results	of	the	block	being	applied,	without	changing	the	initial	array:

>> children.map do |child|

?> if child == "Annie"

>> child + " the Orphan"

>> else

?> child + " NelsonSmith"

>> end

>> end

=> ["Melisande NelsonSmith", "Atalanta NelsonSmith", "Wilfrid NelsonSmith", "Corin

NelsonSmith", "Annie the Orphan"]

>> children

=> ["Melisande", "Atalanta", "Wilfrid", "Corin", "Annie"]

The	block	arguments	lie	between	the	two	pipe	symbols.	I	find	Why	The	Lucky
Stiff’s	description	particularly	apt:
The	curly	braces	give	the	appearance	of	crab	pincers	that	have	snatched	the	code	and	are	holding	it
together.	When	you	see	these	two	pincers,	remember	that	the	code	inside	has	been	pressed	into	a
single	unit….	I	like	to	think	of	the	pipe	characters	representing	a	tunnel.	They	give	the	appearance	of
a	chute	that	the	variables	are	sliding	down.	Variables	are	passed	through	this	chute	(or	tunnel)	into
the	block.

—	WTLSPGTR

Conditional	logic
Ruby	supports	various	control	structures	to	manage	the	flow	of	data	through	a
program.	The	most	commonly	used	are	those	that	fork	based	on	decisions:

>> 10.times do

?> grub = foods.sample

>> if grub == "cat sick"

>> puts "Stephen is not very hungry, for some reason."

>> else

?> puts "Stephen will eat #{grub} for dinner this evening."

>> end

>> end

Stephen will eat chips for dinner this evening.

Stephen will eat curry for dinner this evening.

Stephen will eat soup for dinner this evening.

Stephen is not very hungry, for some reason.

Stephen is not very hungry, for some reason.

Stephen will eat chips for dinner this evening.

Stephen will eat chips for dinner this evening.

Stephen will eat soup for dinner this evening.

Stephen will eat curry for dinner this evening.

Stephen will eat soup for dinner this evening.

=> 10

In	addition	to	if	and	else,	we	also	have	elsif:

>> def editor_troll(editor)

>> if editor == "emacs"

>> puts "Best editor in the world!"

>> elsif editor =~ vi

>> puts "Be gone with you, you bearded weirdo!"

>> else

?> puts "yawn - sorry - were you talking to me?"

>> end

>> end

=> nil

>> editor_troll("emacs")

Best editor in the world!

=> nil

>> editor_troll("elvis")

Be gone with you, you bearded weirdo!

=> nil

>> editor_troll("nano")

yawn - sorry - were you talking to me?

=> nil

>> editor_troll("vim")

Be gone with you, you bearded weirdo!

=> nil

>> editor_troll("textmate")

yawn - sorry - were you talking to me?

=> nil

A	handy	option	is	the	unless	keyword:

>> def mellow_opinion(editor)

>> unless editor.length == 0

>> puts "Cool, dude. I hear #{editor} is really nice."

>> end

>> end

=> nil

>> mellow_opinion("emacs")

Cool, dude. I hear emacs is really nice.

=> nil

>> mellow_opinion("notepad")

Cool, dude. I hear notepad is really nice.

=> nil

>> mellow_opinion("")

=> nil

The	final	control	structure	you’ll	come	across	is	the	case	statement:

>> def seasonal_garment(season)

>> case season

>> when "winter"

>> puts "Wooly jumper and hat!"

>> when "spring"

>> puts "Shirt and jacket!"

>> when "summer"

>> puts "Shorts and t-shirt!"

>> when "autumn"

>> puts "Hmm... English? Raincoat!"

>> when "fall"

>> puts "Bit like spring, really."

>> end

>> end

>> seasonal_garment("winter")

Wooly jumper and hat!

=> nil

>> seasonal_garment("fall")

Bit like spring, really.

=> nil

>> seasonal_garment("autumn")

Hmm... English? Raincoat!

=> nil

Typically,	the	case	statement	is	used	if	there	are	more	than	three	options,	as
multiple	elsif	statements	look	a	bit	ugly,	but	it’s	really	just	a	matter	of	style.

Hashes
A	hash	is	another	sort	of	collection	in	Ruby.	Variously	called	a	dictionary	or
associative	array	in	other	languages,	its	defining	feature	is	that	the	index	can	be
something	other	than	a	static	value.	Hashes	are	commonly	used	in	Chef	for

key/value	pairs:

>> wines = {}

=> {}

>> wines['red'] = ["Rioja", "Barolo", "Zinfandel"]

=> ["Rioja", "Barolo", "Zinfandel"]

>> wines['white'] = ["Chablis", "Riesling", "Sauvignon Blanc"]

=> ["Chablis", "Riesling", "Sauvignon Blanc"]

>> wines

=> {"red"=>["Rioja", "Barolo", "Zinfandel"], "white"=>["Chablis", "Riesling",

"Sauvignon Blanc"]}

The	great	thing	about	hashes	is	they	can	be	deeply	nested.	We	can	add,	for
example:

>> wines['sparkling'] = {"Cheap" => ["Asti Spumante", "Cava"], "Moderate" => ["Veuve

Cliquot", "Bollinger NV"], "Expensive" => ["Krug", "Cristal"]}

=> {"Cheap"=>["Asti Spumante", "Cava"], "Moderate"=>["Veuve Cliquot", "Bollinger

NV"], "Expensive"=>["Krug", "Cristal"]}

>> wines['sparkling']["Cheap"]

=> ["Asti Spumante", "Cava"]

>> wines['sparkling']["Expensive"]

=> ["Krug", "Cristal"]

Again,	of	great	significance	for	a	Chef	developer	is	to	understand	the	message
sending	aspects.	We’re	calling	the	[]	method	on	the	wines	hash,	which	gives	us
another	hash,	on	which	we’re	calling	the	[]	method,	to	get	the	expensive
sparkling	wines	array.	This	is	a	common	pattern	in	Chef	and	leads	to	perhaps	the
most	common	error	message	you’ll	see:

>> wines['sparklin']['Cheap']

NoMethodError: undefined method `[]' for nil:NilClass

 from (irb):88

 from optrubies/1.9.3-p429/bin/irb:12:in `<main>'

What	happened?	Well,	I’ve	drilled	you	so	hard,	I	am	sure	you	can	say	right
away.	Everything	in	Ruby	is	an	object.	Everything	is	an	instance	of	a	class.	Even
nothing	at	all:

>> nil.class

=> NilClass

>> nil.class.methods

=> [:allocate, :superclass, :freeze, :===, :==, :<=>, :<, :<=, :>, :>=,:to_s,

:included_modules, :include?, :name, :ancestors, :instance_methods,

:public_instance_methods, :protected_instance_methods, :private_instance_methods,

:constants, :const_get, :const_set, :const_defined?, :const_missing,

:class_variables, :remove_class_variable, :class_variable_get, :class_variable_set,

:class_variable_defined?, :public_constant, :private_constant, :module_exec,

:class_exec, :module_eval, :class_eval, :method_defined?, :public_method_defined?,

:private_method_defined?, :protected_method_defined?, :public_class_method,

:private_class_method, :autoload, :autoload?, :instance_method,

:public_instance_method, :editor_troll, :mellow_opinion, :seasonal_garment, :nil?,

:=~, :!~, :eql?, :hash, :class, :singleton_class, :clone, :dup, :initialize_dup,

:initialize_clone, :taint, :tainted?, :untaint, :untrust, :untrusted?, :trust,

:frozen?, :inspect, :methods, :singleton_methods, :protected_methods,

:private_methods, :public_methods, :instance_variables, :instance_variable_get,

:instance_variable_set, :instance_variable_defined?, :instance_of?, :kind_of?,

:is_a?, :tap, :send, :public_send, :respond_to?, :respond_to_missing?, :extend,

:display, :method, :public_method, :define_singleton_method, :object_id, :to_enum,

:enum_for, :equal?, :!, :!=, :instance_eval, :instance_exec, :__send__, :__id__]

So	an	instance	of	NilClass	has	some	methods,	but	it	doesn’t	have	a	[]	method!
Where	did	we	get	nil	from?	Well,	because	of	our	typo,	we	requested	the	value	of
a	non-existent	key.	Let’s	be	more	explicit:

>> wines['bogus']

=> nil

>> wines['bogus'].class

=> NilClass

>> wines['bogus']['reasonable']

NoMethodError: undefined method `[]' for nil:NilClass

 from (irb):93

 from optrubies/1.9.3-p429/bin/irb:12:in `<main>'

Hashes	have	a	number	of	convenient	methods	that	you’ll	see	used:

>> wines.keys

=> ["red", "white", "sparkling"]

>> wines.values

=> [["Rioja", "Barolo", "Zinfandel"], ["Chablis", "Riesling", "Sauvignon Blanc"],

{"Cheap"=>["Asti Spumante", "Cava"], "Moderate"=>["Veuve Cliquot", "Bollinger NV"],

"Expensive"=>["Krug", "Cristal"]}]

And,	by	definition,	hashes	are	enumerable—they	take	a	block	and	can	be	iterated

over.	When	iterating	over	a	block,	we	typically	pass	two	arguments	into	the
block,	representing	the	key	and	value:

>> wines.each do |color, types|

?> if types.respond_to?(:keys)

>> puts "For #{color} wine, you have more options: #{types.keys}"

>> end

>> end

For sparkling wine, you have more options: ["Cheap", "Moderate", "Expensive"]

Truthiness
Let’s	quickly	talk	about	the	abstract	notion	of	truth.	Truth,	for	Hegel,	and	many
who	followed	in	his	footsteps	is	not	merely	semantic.	It	is	a	much	richer
metaphysical	concept.	Oh,	sorry,	wrong	book.	In	Ruby,	everything	except	nil	and
false	is	considered	true.	This	includes	0.	Let	me	say	that	again.	In	Ruby,
absolutely	everything	is	considered	true.	If	in	doubt,	assume	true.	Obviously,
false	is	false.

>> if 0

>> puts "0 is true"

>> else

?> puts "0 is false"

>> end

0 is true

=> nil

Note	that	nil	is	also	not	explicitly	evaluated	to	false.	A	value	can	be	coerced	to
true	or	false	with	“!!”.	!!	is	just	!	(the	boolean	negation	operator)	written	twice.	It
will	negate	the	argument,	then	negate	the	negation:

>> !nil

=> true

>> !!nil

=> false

>> !0

=> false

>> !!0

=> true

The	first	!	will	convert	the	argument	to	a	boolean	(e.g.,	true	if	it’s	nil	or	false,

and	false	otherwise).	The	second	will	negate	that	again	so	that	you	get	the
boolean	value	of	the	argument,	false	for	nil	or	false,	true	for	just	about
everything	else.	This	is	mostly	useful	in	the	REPL,	but	occasionally	you	will	see
it	in	idiomatic	usage.

Here’s	a	little	table	of	truthiness	for	reference:

Operators
This	leads	nicely	into	a	quick	tour	of	Ruby	operators.	An	operator	is	a	token	that
represents	an	operation—for	example,	a	comparison	or	a	subtraction.	It	takes
action	on	an	operand	and	combines	to	form	an	expression.	Ruby	has	lots	of
operators,	covering	boolean	logic,	assignment,	and	arithmetic.	The	best
condensed	summary	is	to	be	found	in	David	Flanagan	and	Yukihiro	Matsumoto’s
The	Ruby	Programming	Language	(O’Reilly),	specifically	section	4.6.	We’ll
cover	only	those	most	pertinent	to	Chef.

First,	arithmetic.	Ruby	provides	the	\+,	-,	*,	/,	and	%	operators	to	perform
addition,	subtraction,	and	integer	division.	The	module	operator	can	be	used	to
calculate	the	remainder.	This	can	also	be	used	on	String	and	Array.	In	the	case
of	a	string,	\+	will	concatenate	and	*	will	repeat.	In	the	case	of	an	array,	+	will
concatenate	and	-	will	subtract:

>> 6*6

=> 36

>> 24/12

=> 2

>> 37-8

=> 29

>> 17+17

=> 34

>> 20/3

=> 6

>> 20 % 3

=> 2

>> "Classical" + "Dutch"

=> "ClassicalDutch"

>> "Ruby" * 4

=> "RubyRubyRubyRuby"

>> ["Gatting", "Gower"] + ["Embury", "Edmunds"]

=> ["Gatting", "Gower", "Embury", "Edmunds"]

>> ["Lineker", "Platt", "Waddle"] - ["Waddle"]

=> ["Lineker", "Platt"]

Secondly,	comparison.	The	<,	<=,	>,and	>=	operators	make	comparisons	between
objects	that	have	a	natural	order—such	as	numbers	or	strings:

>> "llama" > "frog"

=> true

http://shop.oreilly.com/product/9780596516178.do

>> "apple" > "elephant"

=> false

>> "zelda" < "ganon"

=> false

>> "art" < "life"

=> true

>> 7 > 4

=> true

>> 6 >= 6

=> true

Particularly	useful	is	the	so-called	“spaceship”	operator	<=>—another	import
from	Perl.	This	makes	a	relative	comparison	between	two	operands.	If	the	one
on	the	left	is	less	than	the	one	on	the	right,	it	returns	+1.	If	they	are	equal,	it
returns	nil	or	0,	and	if	the	one	on	the	right	is	greater	than	the	one	on	the	left,	it
returns	-1.	This	is	hugely	useful	in	sorting!

>> "Individuals and interactions" <=> "Processes and tools"

=> -1

>> "Working software" <=> "Comprehensive documentation"

=> 1

>> "Customer collaboration" <=> "Contract negotiation"

=> 1

>> "Responding to change" <=> "Following a plan"

=> 1

>> "SunBlade" <=> "SunBlade"

=> 0

Thirdly,	equality.	==	is	the	equality	operator—it	tests	whether	the	left	hand
operand	is	equal	to	the	right	hand	operand.	Its	opposite	is	!=.	Take	care	not	to
use	the	assignment	operator	=	in	place	of	the	equality	operator!

>> melisande = 4

=> 4

>> adam = 4

=> 4

>> melisande == adam

=> true

>> helena = 42

=> 42

>> stephen = 37

=> 37

>> helena = stephen

=> 37

>> helena

=> 37

>> stephen

=> 37

Also	very	handy	is	the	pattern-matching	operator,	=~.	I	think	the	characters	in
this	resemble	someone	saying	“kinda	like”	while	rocking	their	hand	in	a
circumspect	manner,	which	gives	a	useful	aide	memoire.	This	operator	is	most
commonly	used	when	comparing	strings:

>> "The Nimzo-Larsen attack" =~ ck$

=> 21

>> "The Nimzo-Larsen attack" =~ xy$

=> nil

The	operator	takes	a	regular	expression	as	its	rightmost	operand.	If	the	match	is
found,	the	index	position	where	the	match	began	is	returned.	Otherwise,	nil	is
returned.	Even	a	basic	discussion	of	regular	expressions	is	likely	to	be	beyond
the	scope	of	this	chapter,	but	with	a	little	practice	they’re	very	easy	to	pick	up.
One	of	the	best	recent	introductions	to	Ruby	regular	expressions	can	be	found	at
Bluebox.	This	is	the	first	of	a	three-part	article	and	is	highly	recommended.	The
standard	textbooks	referenced	in	the	bibliography	also	give	ample	coverage.	For
a	more	general	discussion	on	the	subject,	and	its	fascination	and	beauty,	see
Mastering	Regular	Expressions	by	Jeffrey	Friedl	(O’Reilly).

Bundler
The	final	subject	is	Bundler,	which	should	be	covered	before	moving	beyond	the
fundamentals	of	the	Ruby	language.	Bundler	is	so	fundamental	to	how	Ruby
development	is	carried	out,	and	how	tools	are	created	and	shared,	that	a	thorough
understanding	of	it	is	required.

Bundler	exists	to	solve	two	problems:
How	to	ensure	that	the	appropriate	dependencies	are	installed	for	a	given
problem	without	encountering	unpleasant	ordering	issues	or	cyclical
dependencies.

http://bit.ly/16kHkus
http://shop.oreilly.com/product/9780596528126.do

How	to	share	a	software	project	between	other	developers,	or	other	machines
or	environments,	and	be	confident	the	application	and	its	dependencies	will
behave	in	the	same	way.

The	first	problem	can	be	illustrated	by	three	imaginary	Rubygems:
1.	 Oxygen

2.	 Whale

3.	 Human

Let’s	imagine	that	we	have	Oxygen	3.1.1	and	Oxygen	1.8.5	installed	on	our
system.	Now,	imagine	that	we	want	to	install	Whale	1.0.0.	Whale	depends	on
Oxygen,	and	the	dependency	is	specified	as	“>=	1.5.0”.	When	we	run	gem
install whale,	Rubygems	will	solve	the	dependency	for	Whale,	and	identify
that	Oxygen	3.1.1	will	satisfy	the	dependency,	and	so	will	start	using	this	version
of	Oxygen.	Suppose	we	then	decide	to	install	Human	2.1.0.	Human	is	a	bit	more
picky	about	the	Oxygen	upon	which	it	depends	than	Whale,	and	the	dependency
has	been	specified	as	“=	1.8.5”.	If	we	type	gem install whale,	Rubygems	will
identify	that	to	solve	the	dependency,	it	will	need	to	install	version	1.8.5.	The
trouble	is,	3.1.1	is	already	in	use.	This	will	result	in	an	error.	The	problem	is	that
Whale	had	a	broader	acceptance	range	for	Oxygen	than	Human.	Rubygems	lacks
a	holistic	view,	and	simply	tries	to	solve	dependencies	on	a	case-by-case	basis,
resulting	in	nasty	traps	like	this.	The	problem	is	magnified	greatly	the	more
Gems	there	are	on	the	system.	When	you	consider	that	these	Gems	themselves
also	have	dependencies,	it	becomes	apparent	that	trying	to	solve	the
dependencies	one	at	a	time	isn’t	going	to	work.

The	second	problem	may	be	illustrated	by	imagining	two	scenarios	where	a
Ruby	developer	wishes	to	move	software	that	was	being	developed	on	her
workstation	and	share	it	with	another	team	member,	or	perhaps	run	the	code	on	a
staging	machine	somewhere.	If	our	developer	is	running	the	latest	patch	level	of
Ruby	1.9.3	on	a	Macbook,	and	her	colleague	is	running	Ruby	2.0.0	on	Windows,
ensuring	she	has	the	same	versions	of	the	Rubygems	that	are	needed	to	run	the
application	is	going	to	be	a	bit	of	a	challenge.	This	is	a	classic	recipe	for	“it
works	on	my	machine.”	How	can	we	somehow	freeze	known-good	versions	of
Rubygems	and	ensure	that	when	we	move	to	the	staging	server,	or	share	with

another	developer,	that	the	versions	are	the	same?

Bundler	solves	this	problem	in	two	ways.	First,	it	provides	an	algorithm	that
solves	all	the	dependencies	for	a	given	application	at	once.	This	is	a	more
holistic	and	reliable	approach.	Second,	it	provides	a	kind	of	manifest	file	called	a
Gemfile,	in	which	the	top	level	dependencies	for	an	application	are	specified,
together	with	constraints,	and	optionally	sources	for	the	code.	Between	these	two
mechanisms,	both	problems	are	resolved.

The	Gemfile	has	a	straightforward	syntax:

source 'https://rubygems.org'

gem 'some_dependency'

gem 'some_other_dependency'

Bundler	will	use	the	information	in	this	file	recursively	to	solve	dependencies	for
the	dependencies	specified	in	the	Gemfile,	and	to	build	a	graph	that	satisfies	the
dependencies	of	each	dependency	in	the	Gemfile.	The	Gemfile	allows	for	a	high
degree	of	sophistication	in	specifying	source	and	version	constraints.	We	can
specify	from	where	to	retrieve	the	Gems.	We	can	specify	a	particular	version.
We	can	specify	that	for	a	certain	Gem,	we	should	obtain	the	software	directly
from	a	Git	repository,	down	to	the	commit,	branch,	or	tag.	We	can	also	specify	to
use	files	on	the	local	machine.

Once	these	dependencies	have	been	resolved,	developers	can	guarantee	that	only
specific	versions	of	the	dependencies	are	used	when	the	application	is	running
on	another	user’s	computer	or	when	deployed	to	a	server.

Bundler	is	itself	a	Rubygem.	We	actually	ensured	it	was	installed	in	our
developer	role,	but	if	we	were	doing	things	manually,	we’d	simply	run:

$ gem install bundler

Once	bundler	has	been	installed,	we	create	a	Gemfile	for	the	project	and	start	to
specify	dependencies.	Bundler	provides	a	convenient	method	for	generating	a
Gemfile:

$ bundler init

$ bundle init

Writing new Gemfile to hometdi/example/Gemfile

Once	we’ve	specified	the	dependencies	in	the	Gemfile,	we	run:

$ bundle install

Bundler	solves	the	dependencies	and	installs	the	Gems	required.	If	those	Gems
are	already	on	the	system,	it	uses	them,	otherwise	it	fetches	them.	Once	the
dependencies	have	been	solved	and	the	Gems	installed,	Bundler	creates	a	file
called	Gemfile.lock,	which	represents	a	snapshot	of	the	dependency	graph	it
built,	and	the	versions	it	installed.	By	checking	this	and	the	Gemfile	into	version
control,	we	can	create	a	sandboxed	environment	for	other	users	and	be	confident
that	they	have	exactly	the	same	versions	as	we	have	on	our	system.

By	way	of	exploring	the	functionality	of	Bundler,	we’re	going	to	write	a	silly
task	to	say	“hello”	three	times	in	color.	There’s	a	very	handy	gem	that	is	ideal	for
helping	craft	tasks,	and	ultimately	provide	them	as	command-line	applications—
it’s	called	Thor.	To	print	output	in	color,	there	is	another	handy	Gem	called
Colorize.	The	process	of	setting	up	this	project	with	Bundler	looks	like	this:

$ mkdir tmpcolorsay

$ cd tmpcolorsay

$ bundle init

Writing new Gemfile to /privatetmpcolorsay/Gemfile

$ emacs Gemfile

$ cat Gemfile

source "https://rubygems.org"

gem "thor"

gem "colorize"

$ bundle install

Fetching gem metadata from https://rubygems.org/.........

Resolving dependencies...

Using colorize (0.5.8)

Using thor (0.18.1)

Using bundler (1.3.5)

Your bundle is complete!

Use `bundle show [gemname]` to see where a bundled gem is installed.

$ cat Gemfile.lock

GEM

 remote: https://rubygems.org/

 specs:

http://whatisthor.com/
https://github.com/fazibear/colorize

 colorize (0.5.8)

 thor (0.18.1)

PLATFORMS

 ruby

DEPENDENCIES

 colorize

 thor

Now	we	write	our	simple	task:

$ cat colorsay.thor

require 'colorize'

class ColorSay < Thor

 desc "hello", "Say hello in color"

 def hello

 puts "Hello".colorize(:red)

 puts "Hello".colorize(:green)

 puts "Hello".colorize(:yellow)

 end

end

This	is	our	first	case	of	requiring	an	external	library	or	extension.	In	this	case,
we’re	bringing	in	colorize	to	provide	strings	with	a	.colorize	method,	which
takes	a	symbol	as	its	argument.

Symbols	get	a	bit	of	bad	press	in	the	Ruby	world.	Well,	at	least	to	newcomers.
What’s	that	colon	thing	for?	Why	do	we	need	it?	Why	bother?	You’ll	see
symbols	cropping	up	in	Chef	recipes	from	time	to	time,	so	it’s	worth
understanding	what	they	are	and	what	they’re	for.

Symbols	are	really	just	strings,	dressed	up.	That’s	not	quite	fair,	but	they	really
don’t	deserve	their	exotic	and	sinister	reputation.	It	helps	if	we	think	a	little
about	the	purpose	of	strings.	The	common	use	of	strings	is	to	carry	some
meaning	or	data.	This	might	change	over	time,	and	is	generally	designed	to	carry
or	convey	information.	For	example,	we	might	set	the	value	of	the	variable	soup
to	be	the	string	value	"Leek and Potato".	However,	we	also	use	strings	as
references	or	tags.	We	do	this	especially	in	Chef,	when	we’re	locating	attributes
on	the	Node.	In	this	case,	the	string	isn’t	going	to	change,	and	the	extent	to

which	it	carries	meaning	is	restricted	to	its	role	as	a	placeholder,	or	indicator—a
pointer	to	somewhere	where	we’ll	find	information	that	probably	will	change.
Within	the	constructs	of	a	programming	language,	these	two	roles	exhibit
significantly	different	profiles	in	terms	of	the	resources,	algorithms,	and
functions	necessary	to	handle	them.	Strings	as	highly	mutable,	information
carrying	devices	may	need	much	manipulation	and	examination.	Strings	as
placeholders	just	hold	a	place.	That’s	it.	In	Ruby,	the	String	class	is	optimized
for	the	former	use	case,	and	the	Symbol	class	is	optimized	for	holding	a	place—
for	symbolizing	something.	Bringing	this	directly	into	the	context	of	Chef,	within
a	recipe,	we	may	access	the	attributes	of	a	Node	in	three	ways:

node.attribute

node['attribute\']

node[:attribute]

These	can	be	used	interchangeably	(a	side	effect	of	the	Node	object	actually
being	an	instance	of	Mash).	There’s	been	strong	debate	in	the	community	around
which	should	be	used	as	standard.	As	a	Rubyist,	I	would	advise	you	to	use
symbols.	As	a	pragmatist,	strings	are	perhaps	a	little	less	intimidating.	For	more
information	on	the	difference,	and	why	it	matters,	see	this	post	by	Robert
Sosinski.

The	other	characteristic	of	our	little	Thor	task	is	that	we	see	the	class	ColorSay
is	a	subclass	of	class	Thor.	This	is	the	meaning	of	the	<	symbol.	This	makes
Thor	the	parent,	the	superclass	of	ColorSay.	This	is	the	idea	of	inheritance	at
work.	Inheritance,	like	the	word	would	suggest,	is	all	about	passing	traits	down
from	parent	to	child.	Instances	of	the	subclass	pick	up	the	methods	of	the
superclass.

Now	let’s	run	our	task:

$ thor list

color_say

thor color_say:hello # Say hello in color

$ thor color_say:hello

http://bit.ly/16kJKcL

Hello

Hello

Hello

There’s	not	really	much	more	to	it	than	that.	For	more	comprehensive
documentation	and	discussion,	see	the	Bundler	website.

The	only	consideration	to	bear	in	mind	is	that	when	using	command-line	tools
provided	by	Rubygems,	such	as	Thor,	Rake,	Cucumber,	RSpec,	Chef—in	fact,
pretty	much	all	the	tools	we	discuss	in	this	chapter—there’s	the	potential	for
confusion	and	bugs	if	you	don’t	explicitly	use	the	version	installed	in	your
bundle.	Let	me	give	you	a	trivial	example.	Suppose	you	had	a	need	to	use	an
earlier	version	of	Thor	because	some	functionality	in	your	tasks	relied	upon
some	features	that	had	been	removed	in	the	latest	release.	That’s	easy	to	achieve
—we	simply	specify	the	version	we	need	in	the	Gemfile:

$ cat Gemfile

source "https://rubygems.org"

gem "thor", "= 0.15.4"

gem "colorize"

$ bundle install

Fetching gem metadata from https://rubygems.org/.........

Resolving dependencies...

Using colorize (0.5.8)

Installing thor (0.15.4)

Using bundler (1.3.5)

Your bundle is complete!

Use `bundle show [gemname]` to see where a bundled gem is installed.

If	we	run	Thor	now,	we’ll	get	version	0.15.4,	right?

$ thor version

Thor 0.18.1

What?	What’s	going	on?	The	answer	is,	our	shell	gave	us	the	path	to	the	newest
Thor.	This	could	well	have	undesired	effects.	Bundler	has	a	couple	of	ways
around	this.	The	first	is	bundle exec.	This	will	run	the	version	installed	in	your
bundle:

$ bundle exec thor version

http://gembundler.com/

Thor 0.15.4

There	are	three	problems	with	this	approach.	First,	it’s	easy	to	forget	and
accidentally	just	run	Thor.	This	can	lead	to	annoying	wastes	of	time	as	you	try	to
figure	out	why	your	beeping	code	isn’t	working	anymore.	Second,	it’s	a	pain	to
have	to	type	bundle exec	every	time.	Third,	there’s	a	significant	performance
penalty:

$ time thor version

Thor 0.18.1

real 0m0.263s

user 0m0.185s

sys 0m0.054s

$ time bundle exec thor version

Thor 0.15.4

real 0m0.565s

user 0m0.453s

sys 0m0.082s

Running	under	bundle exec	was	nearly	twice	as	slow.	I	can	offer	you	three
solutions	to	this	problem.	Pick	one	and	work	with	it,	for	the	sake	of	your	sanity
and	your	productivity.	The	first,	and	easiest,	is	just	to	create	a	shell	alias:

$ alias b='bundle exec'

$ b thor version

Thor 0.15.4

Put	this	in	your	shell	config	and	deal	with	the	hassle	of	having	to	type	two	extra
characters.	Try	not	to	forget,	and	deal	with	the	performance.

The	second	is	to	use	Bundler’s	own	solution—binstubs.	Bundle	install	supports
the	--binstubs	option,	which	will	create	a	local	bin	directory	in	your
application	root	and	a	little	wrapper	script	that	calls	the	bundled	command.	Now
you	can	just	type	./bin/thor.	It’s	fewer	keystrokes	than	bundle exec,	and	it’s
as	fast	as	thor	because	bundler	doesn’t	have	to	search	for	the	binary.	You	can
add	the	local	bin	directory	to	your	shell	path,	and	now	you	don’t	even	need	to
remember	./bin:

$ export PATH="./bin:$PATH"

$ thor --version

Thor 0.15.4

The	disadvantage	of	this	is	that	it’s	widely	accepted	as	a	security	risk	to	have	a
local	bin	directory	on	your	path,	especially	on,	for	example,	a	shared	host.	For
more	background,	see	the	Unix	FAQ.	My	preferred	solution	is	one	created	by	a
friend	and	former	colleague,	Graham	Ashton—bundler-exec.	Using	the	power	of
shell	aliases,	it	replaces	a	given	list	of	commands	with	a	shell	function	that
checks	for	a	Gemfile	in	your	current	directory,	or	one	of	its	parents,	and	then
prefixes	the	command	with	a	bundle exec	if	needed.	I	think	this	is	the	best	of
all	worlds.	You’ll	never	forget,	it’s	no	more	typing,	there’s	no	security	risk,	and
while	there	is	a	performance	penalty,	we’re	talking	in	the	region	of	milliseconds.
If	you’re	a	fan	of	zsh,	take	a	look	at	Robby	Russell’s	oh	my	zsh	GitHub	page,
which	provides	this	functionality	as	a	plug-in.	To	install	it	on	a	bash	shell,
simply	run	the	following:

$ curl -L https://github.com/Atalanta/bundler-exec/raw/master/bundler-exec.sh >

/.bundler-exec.sh

$ echo "[-f /.bundler-exec.sh] && source /.bundler-exec.sh" >> /.bashrc

Now	everything	works	beautifully:

$ cd tmpcolorsay/

$ thor version

Thor 0.15.4

$ cd ..

$ thor version

$ thor version

Thor 0.18.1

Once	you’ve	implemented	a	mitigating	strategy	for	the	bundle	exec	annoyance,
there	aren’t	really	any	obvious	disadvantages	to	using	Bundler.	It’s	the	standard
tool	in	the	Ruby	community	for	managing	and	solving	inter-gem	dependencies,
and	for	maintaining	shareable	sets	of	known-good	Gems.

Bundler	is	an	underpinning	tool	to	pretty	much	everything	we	do	in	this	book.
Spend	some	time	getting	familiar	with	it,	read	the	documentation,	and	take	the
time	to	set	up	your	shell	to	take	the	pain	out	of	the	need	to	bundle	exec.

http://bit.ly/16e4mKw
https://github.com/robbyrussell/oh-my-zsh

Chapter	3.	An	Introduction	to
Chef

The	best	way	to	learn	is	to	do.	A	lot	of	technical	books,	even	ones	aimed	at
beginners,	take	the	form	of	a	lengthy	discursive	preamble,	followed	by	some
abstract	example	for	the	reader	to	digest	and	understand.	The	trouble	with	this	is
it	doesn’t	map	well	onto	how	we	learn	technical	skills.	Learning	a	technical	skill
is	like	teaching	a	child	to	ride	a	bicycle.	You	can’t	really	teach	someone	the
theory,	and	then	show	them	a	video	of	someone	else	cycling,	and	then	expect
them	to	just	pick	it	up	by	themselves	at	some	point	in	the	future.	A	much	better
way	is	to	go	out	there	and	then,	with	a	bicycle,	plonk	them	on,	give	them	a	push,
and	help	them	when	they	wobble.

Learning	a	technical	skill	or	a	programming	language	is	very	much	about
immersion.	The	learning	process	is	reinforced	by	mistakes,	by	looking	up
documentation,	by	asking	other	more	experienced	people,	and	building	up
competence	ourselves.	So,	to	introduce	the	fundamental	ideas	of	Chef,	we’ll
build	some	real	infrastructure,	which	we’ll	actually	use	later	in	the	book.	This
chapter	and	the	next	are	unashamedly	influenced	by	the	excellent	series	of	books
and	courses	by	Zed	Shaw	found	at	Learn	Code	the	Hard	Way.	An	approach	that
focuses	on	diving	in	and	using	real	examples,	this	has	been	proven	to	be	an
excellent	method	for	building	confidence	and	expertise	in	a	technical	subject.

The	approach,	as	explained	on	the	website:
“…emphasizes	precision,	attention	to	detail,	and	persistence	by	requiring	you	to	type	each	exercise
(no	copy-paste!)	and	make	it	run,	as	well	as	to	read	up	on	outside	topics	and	to	return	to	exercises
and	ideas	that	you	don’t	understand,	and	understand	them.”

At	the	end	of	this	chapter	and	the	next,	you’ll	understand	the	basics	of	Chef,
have	hands-on	experience	writing	cookbooks	and	recipes,	and	use	community
resources	to	frame	your	infrastructure	as	code.	Once	we’ve	covered	these
fundamentals,	we’ll	go	on	to	look	at	some	of	the	tools	we	can	use	to	start
thinking	about	test-driven	infrastructure	development,	and	then	look	at	a	full

http://learncodethehardway.org

example	of	using	these	tools	in	practice.

I’m	making	some	broad	assumptions	about	your	ability	and	set-up.	They	are	as
follows:

You	can	type	instructions	into	a	command	prompt.

You	can	edit	text.

You	have	a	computer	and	have	administrative	power	over	it.

Your	computer	was	made	some	time	in	the	last	four	or	five	years,	and	has
about	2G	of	memory	or	more.

You	have	a	connection	to	the	Internet.

You	are	not	behind	a	proxy	server,	or	can	easily	disable	it.[1]

Anything	beyond	this	is	a	bonus.	For	example,	if	you	have	access	to	dedicated
test	hardware	and	several	machines,	that’s	excellent.	However,	that’s	not	needed
at	all.	If	you	don’t	have	administrative	control	over	your	computer,	or	have	a
very	old	computer	with	not	much	memory,	you	probably	want	to	fix	that	before
we	continue.	In	the	first	edition,	I	made	the	assumption	that	people	would	have
access	to	a	public-cloud	infrastructure,	or	would	be	prepared	to	pay	for	their	own
(minimal)	use.	In	this	edition	I’ve	moved	toward	the	view	that	people	are	more
likely	to	have	adequate	hardware,	and	want	to	work	with	local	virtual	machines
rather	than	machines	hosted	with	a	public	cloud	provider.	Most	Chef	users	these
days	make	heavy	use	of	local	virtualization	in	addition	to	the	cloud,	and	so	I’ve
decided	to	include	setting	up	such	a	capability	as	a	fundamental	task.	If	this	is
truly	impossible	for	you,	simply	skim	the	sections	in	Chapter	4	where	we	install
VirtualBox,	and	once	we	get	to	installing	Vagrant,	set	it	up	to	use	the	Rackspace
cloud	or	EC2.

The	basic	format	is	that	I	will	set	an	objective,	or	set	of	objectives,	that	you	will
be	asked	to	achieve.	The	objectives	will	be	the	equivalent	of	acceptance	criteria;
you’ll	know	you’re	done	when	those	objectives	have	been	met.	I’ll	then	give	you
high-level	directions	on	how	to	meet	the	objectives.	They	categorically	are	not
instructions	for	you	to	follow,	but	rather	an	outline	of	the	high-level	steps	you
need	to	follow.	My	expectation	is	that	you	will	be	able	to	work	out	how	to

follow	those	directions	by	a	combination	of	referring	to	other	sections	in	the
book,	using	your	own	knowledge	and	common	sense,	and	using	the	main	online
resources	for	Chef:
http://docs.opscode.com

http://wiki.opscode.com

#chef	and	#learnchef	on	irc.freenode.net

The	chef-users	mailing	list

I	will	follow	the	instructions	with	a	worked	example.	I	ask	explicitly	that,	if
you’re	reading	this	digitally,	you	don’t	simply	copy	and	paste	this	into	your	own
system—this	contravenes	the	spirit	of	“the	hard	way.”	Additionally,	your	system
may	be	subtly	different	from	mine.	I	suggest	you	use	my	worked	example	as
guidance	for	you	as	you	achieve	the	objectives	yourself.	If	you	want	to	use	the
material	in	the	worked	example,	I	ask	that	you	type	it	out	yourself.	Try	to	solve
the	exercises	yourself,	and	only	once	you’ve	tried,	move	on	to	look	at	the
worked	example.

Finally,	we’ll	discuss	the	way	we	achieved	the	objectives,	covering	any
interesting	points	that	arose,	and	ensuring	the	way	we	achieved	them	is	fully
understood.	Again,	I	would	firmly	ask	that	if	you	don’t	understand	the
discussion,	don’t	carry	on	with	the	next	set	of	objectives.	Go	back	over	the
instructions	and	discussion,	and	if	you’re	still	stuck,	seek	help	via	the	online
resources	previously	mentioned.	This	is	for	your	sake—master	the	fundamentals
and	build	on	them.

The	infrastructure	we’re	going	to	build	over	the	next	two	chapters	is	a	cookbook
development	and	testing	environment,	including	some	useful	tools,	and	setting
up	VirtualBox,	Vagrant,	and	Test	Kitchen.	We’re	going	to	imagine	we’re	in	a
position	where	we	want	to	share	this	infrastructure	with	a	few	other	users,	and
that	we’re	going	to	host	it	on	a	physical	machine	somewhere	on	the	public
Internet,	so	we	can	collaborate	with	our	friends	and	colleagues	in	different
locations	and	timezones.

Exercise	1:	Install	Chef

http://docs.opscode.com
http://wiki.opscode.com
http://lists.opscode.com/sympa

Objectives
After	completing	this	exercise,	you	will	have	done	the	following:

Installed	the	latest	version	of	the	Chef	client	tools	on	your	machine

Identified	how	to	find	help	on	your	machine

Understood	the	purpose	of	each	of	the	tools	that	ship	with	Chef

Directions
1.	 Search	for	the	term	“omnibus”	on	http://docs.opscode.com	and	read	and

understand	how	this	helps	us	install	Chef	on	our	systems.

2.	 Install	Chef	on	your	computer	using	the	Omnibus	package	for	your
platform.

3.	 Access	the	documentation	installed	on	the	computer	for	chef-apply,
chef-solo,	chef-client,	chef-shell,	and	knife.

4.	 Search	http://docs.opscode.com	for	each	tool	and	read	about	what	they	do.

Worked	Example
I	set	up	two	machines—one	running	Ubuntu	12.04,	one	running	CentOS	6.4,
both	64-bit.	I	then	browsed	to	http://docs.opscode.com/search.html,	and	searched
for	the	word	“Omnibus”.	The	top	link	provided	an	overview	of	how	to	install
Chef	on	a	workstation.	It	contained	more	information	than	I	needed,	but	I
identified	that	I	should	visit	the	http://www.opscode.com/chef/install	page,	and
that	for	Linux	and	Unix	machines,	the	installation	process	was	broadly	to	run	an
install	script,	piped	through	a	shell,	with	super-user	privileges.

I	browsed	to	the	install	page,	filled	out	the	form,	and	followed	the	instructions,
which	on	each	machine	amounted	to	me	running	the	following	command:

curl -L https://www.opscode.com/chef/install.sh | sudo bash

On	my	CentOS	machine,	sudo	was	not	configured,	so	I	changed	to	the	root	user,
and	ran	the	command	without	sudo.

http://docs.opscode.com
http://docs.opscode.com
http://docs.opscode.com/search.html
http://www.opscode.com/chef/install

During	the	writing	process,	I	also	had	32-bit	Ubuntu	13.04	machines.	I	mention
this	because	the	installation	process	was	a	bit	trickier,	as	there	weren’t	any	32-bit
packages	for	13.04.	Instead,	I	selected	12.10,	which	did	offer	a	32-bit	package,
downloaded	the	package	manually,	and	installed	it	with	the	following	command:

$ sudo dpkg --install chef-11.4-4.2.ubuntu*.deb

I	verified	the	installation	on	each	machine	by	opening	a	terminal	and	running:

$ chef-client --version

To	obtain	help	for	each	of	the	listed	commands,	I	ran	the	command	with	the	--
help	switch.	I	identified	that	chef-apply	didn’t	require	a	configuration	file,	but
the	others	did.	chef-solo	and	chef-shell	seemed	simpler	than	chef-client,
which	had	considerably	more	option	flags.	Knife	seemed	to	have	much	more
information	available,	including	a	knife help	subcommand.	I	ran	knife help
knife	and	knife help list,	and	skimmed	the	pages.

I	then	browsed	to	http://docs.opscode.com	and	searched	for	each	command.	I
found	that	I	needed	to	quote	the	commands	in	order	to	get	appropriate	results.	I
read	the	documentation	on	chef-solo	and	chef-client.	chef-apply	only	had
a	single	line,	and	chef-shell	yielded	only	a	result	telling	me	that	this	was	once
called	“Shef”.	A	search	for	“Shef”	didn’t	bring	results	either,	so	I	tried
http://wiki.opscode.com,	where	I	found	a	page	about	Shef,
http://wiki.opscode.com/display/chef/Shef,	which	I	skimmed.

Discussion
As	you	can	see,	installing	Chef	is	a	breeze!	Opscode	provides	a	fully	supported
package	install	for	most	platforms,	including	Windows	and	commercial	Unix
operating	systems.	These	packages	vendor	everything	needed	to	run	Chef	into	an
isolated	location	(typically	/opt)—this	includes	Ruby,	OpenSSL,	and	other
supporting	tools	and	libraries.

When	we	ran	the	following	code,	it	downloaded	and	executed	a	simple	shell
script	that	calculated	the	exact	version	of	the	native	OS	package	required,
downloaded	the	package,	installed	it,	and	added	the	vendored	location	of	the

http://docs.opscode.com
http://wiki.opscode.com
http://wiki.opscode.com/display/chef/Shef

Chef	commands	to	your	user’s	path:

curl -L https://www.opscode.com/chef/install.sh | bash

If	you	are	worried	about	running	arbitrary	shell	scripts	on	your	machine,	with
root	privileges	you	can	always	download	the	script,	inspect	it,	and	run	it
yourself.	However,	realistically,	if	you	trust	Opscode	to	develop	an	automation
framework	upon	which	you’re	going	to	base	the	running	of	your	entire
infrastructure,	I	think	you	can	probably	risk	running	the	shell	script	that	installs
it.

Having	installed	Chef,	we	saw	that	we	had	five	new	commands	available	on	our
system:

chef-apply

chef-shell

chef-solo

chef-client

knife

I	asked	you	to	make	yourself	familiar	with	the	help	available,	both	on	your
computer	and	on	the	Opscode	documentation	site.	Naturally	I	don’t	expect	much
of	this	to	make	sense	right	now,	but	it’s	vital	that	you	develop	the	impulse	of
using	--help,	help,	and	the	Opscode	documentation	sites	throughout	the	book.
While	I	am	“virtually”	with	you	on	this	journey,	in	the	real	world,	things	won’t
work	as	expected,	and	knowing	where	to	look	for	help	from	the	start	is	a	great
foundation.	I’ll	go	on	to	explain	what	each	of	these	tools	is	for,	but	first	let’s
cover,	at	a	high	level,	what	Chef	actually	is.

Chef	is	an	open	source	tool	and	framework	that	provides	system	administrators
and	developers	with	a	foundation	of	APIs	and	libraries,	which	makes	this	kind	of
workflow	possible.

Chef	allows	us	to	effectively	write	programs	that	generate	configuration	directly
on	the	machines	we	need	to	manage.	We	then	keep	these	programs	in	version

control,	and	use	them	to	gain	control	of	the	complex	systems	we	need	to
manage.

Navigating	the	labyrinth	of	resources	that	we	need	to	provide	an	application
infrastructure	becomes	achievable	because,	through	its	libraries	and	APIs,	Chef
presents	a	declarative	interface	to	these	resources.	This	allows	us	to	define	a
policy	and	express	the	infrastructure	requirements	at	a	higher	level—specifying
what	resources	are	required,	but	without	specifying	how.

Architecturally,	machines	managed	by	Chef	pull	configuration	information
rather	than	being	passive	receivers,	which	means	that	the	infrastructure	remains
convergent—over	time	it	will	move	into	line	with	defined	policy.	A	machine	that
was	down	for	maintenance	will	pull	its	config	as	soon	as	it	rejoins	the	network,
rather	than	receiving	a	push,	if	the	administrator	remembers	that	that	machine
didn’t	get	the	last	update.

Therefore,	Chef	furnishes	us	with	the	power	to	build	tools	to	help	us	manage
infrastructure	at	scale.	At	the	heart	of	the	Chef	approach	is	the	recognition	that
the	person	who	knows	best	how	to	run	their	own	infrastructure	is	the	person	who
lives	with	it	on	a	day-to-day	basis.	Encapsulated	in	that	daily	experience	is	a
wealth	of	domain	experience,	which	leads	to	a	clear	understanding	of	the
business	and	technology	problems	that	are	most	pressing.	Chef	aims	to	furnish
such	a	person	with	the	ability	to	solve	these	problems	in	a	creative,	scalable,
repeatable,	maintainable,	and	shareable	manner.

Let’s	explore	this	a	little	further—Chef	is	a	framework,	a	tool,	and	an	API.

The	Chef	framework
As	the	discipline	of	software	development	has	matured,	frameworks	have
emerged	with	the	aim	of	reducing	development	time	by	minimizing	the	overhead
of	having	to	implement	or	manage	low-level	details	that	support	the
development	effort.	This	allows	developers	to	concentrate	on	rapid	delivery	of
software	that	meets	customer	requirements.

The	common	use	of	the	word	framework	is	to	describe	a	supporting	structure
composed	of	parts	fitted	and	joined	together.	The	same	is	true	in	the	software
world.	Frameworks	tie	together	discrete	components	into	a	useful	organic	whole
to	provide	structural	support	to	the	building	of	a	software	project.	Frameworks
also	provide	consistent	and	simple	access	to	complex	technologies	by	making

wrappers	available	that	simplify	the	interface	between	the	programmer	and
underlying	libraries.

Frameworks	bring	with	them	numerous	benefits.	In	addition	to	increasing	the
speed	of	development,	they	can	improve	the	quality	of	the	software	that	is
produced.	Software	frameworks	provide	conventions	and	design	approaches
that,	if	adhered	to,	encourage	consistency	across	a	team.	Their	modular	design
encourages	code	re-use	and	they	frequently	provide	utilities	to	facilitate	testing
and	debugging.	By	providing	an	extensive	library	of	useful	tools,	frameworks
reduce	or	eliminate	the	need	for	repetitive	tasks	and	accord	the	developer	a	high
degree	of	flexibility	via	abstraction.

Chef	is	a	framework	for	infrastructure	development—a	supporting	structure	and
package	of	associated	benefits	of	direct	relevance	to	framing	one’s	infrastructure
as	code.	Chef	provides	an	extensive	library	of	primitives	for	managing	just	about
every	conceivable	resource	that	is	used	in	the	process	of	building	up	an
infrastructure	within	which	we	might	deploy	a	software	project.	It	also	provides
a	powerful	Ruby-based	language	for	modeling	infrastructure,	and	a	consistent
abstraction	layer	that	allows	developers	and	system	administrators	to	design	and
build	scalable	environments	without	getting	dragged	into	operating	system	and
low-level	implementation	details.	It	also	provides	some	design	patterns	and
approaches	for	producing	consistent,	shareable,	and	reusable	components.

The	Chef	tool
The	use	of	tools	is	viewed	by	anthropologists	as	a	hugely	significant
evolutionary	milestone	in	the	development	of	humans.	Primitive	tools	enabled	us
to	climb	to	the	top	of	the	food	chain	by	allowing	us	to	accomplish	tasks	that
could	not	be	carried	out	with	our	bodies	alone.	While	tools	have	been	available
to	system	administrators	and	developers	since	the	birth	of	computers,	recent
years	have	witnessed	a	further	evolutionary	leap,	with	the	availability	of
network-enabled	tools	that	can	drive	multiple	services	via	a	published	API.
These	tools	are	frequently	extensible,	written	in	a	modular	fashion	in	powerful,
flexible,	high-level	programming	languages	such	as	Python	or	Ruby.

Chef	provides	a	number	of	such	tools,	built	upon	the	framework:

Ohai
A	system	profiling	tool	that	gathers	large	quantities	of	data	about	the	system,

from	network	and	user	data	to	software	and	kernel	versions.	Ohai	is
extendable—plug-ins	can	be	written	(usually	in	Ruby)	that	will	furnish	data
in	addition	to	the	defaults.	The	collected	data	is	emitted	in	a	machine-
parseable	and	readable	format	(JSON),	and	is	used	to	build	up	a	database	of
facts	about	each	system	that	is	managed	by	Chef.

chef-shell
An	interactive	debugging	console	that	provides	command-line	access	to	the
framework’s	libraries,	the	API,	and	the	local	system’s	data.	This	is	an
excellent	tool	for	testing	and	exploring	how	Chef	will	behave	under	a	variety
of	conditions.	It	allows	the	developer	to	run	Chef	within	the	Ruby	interactive
interpreter,	IRB,	and	gives	a	read-eval-print	loop	ideal	for	debugging	and
exploring	the	data	held	on	the	Chef	server.

chef-solo
A	fully	featured	standalone	configuration	management	tool	that	allows
access	to	a	subset	of	Chef’s	features	without	using	a	Chef	server;	suitable	for
simple	deployments.

chef-client
An	agent	that	runs	on	systems	being	managed	by	Chef,	and	the	primary
mechanism	by	which	such	systems	communicate	with	the	Chef	server.	chef-
client	uses	the	framework’s	library	of	primitives	to	configure	resources	on
a	system	by	talking	to	a	central	server	API	to	retrieve	data.

chef-apply
A	lightweight	tool	for	configuring	a	machine	to	perform	a	function	with	a
single	command,	needing	no	configuration	or	Chef	server.

knife
A	multipurpose	command-line	tool	that	facilitates	system	automation,
deployment,	and	integration.	Knife	provides	command	and	control
capabilities	for	managing	physical,	virtual,	and	cloud	environments	across	a
range	of	Linux,	Unix,	and	Windows	platforms.	It	is	also	the	primary	means
by	which	the	underlying	model	that	makes	up	the	Chef	framework	is
managed.	Knife	is	extensible	and	has	a	pluggable	architecture,	meaning	that

it	is	straightforward	to	create	new	functionality	simply	by	writing	custom
Ruby	scripts	that	include	some	of	the	Chef	and	Knife	libraries.	Used	most
frequently	in	conjunction	with	the	client/server	model,	Knife	assumes	less
significance	if	one’s	primary	Chef	implementation	is	Chef-solo.

The	Chef	API
In	its	most	popular	incarnation,	Chef	functions	as	a	client/server	web	service.

The	server	component	is	written	in	Erlang	and	uses	a	JSON-oriented	document
datastore.	The	whole	Chef	framework	is	driven	via	a	RESTful	API,	of	which	the
Knife	command-line	tool	is	a	client.	We’ll	drill	into	this	API	shortly,	but	the
critical	thing	to	understand	is	that	in	most	cases,	day-to-day	use	of	the	Chef
framework	translates	directly	to	interfacing	with	the	Chef	server	via	its	RESTful
API.

The	server	is	open	sourced,	under	the	Apache	2.0	license,	and	is	considered	a
reference	implementation	of	the	Chef	Server	API.	The	API	is	also	implemented
as	a	hosted	software-as-a-service	offering.	The	hosted	version,	called	Hosted
Chef,	offers	a	fully	resilient,	highly	available,	multitenant	environment.	The
platform	is	free	to	use	for	fewer	than	five	nodes,	so	it’s	the	ideal	way	to
experiment	with	and	gain	experience	with	the	framework,	tool,	and	API.	The
pricing	for	the	hosted	platform	is	intended	to	be	less	than	the	cost	of	just	the
hardware	resources	to	run	a	standalone	server.	For	deployment	in	the	enterprise,
Opscode	also	provides	a	supported	install	on	customer	hardware,	called	Private
Chef.	This	provides	all	the	functionality	of	Hosted	Chef,	but	behind	the	firewall
with	no	multitenancy	compromises.

The	Chef	server	also	provides	an	indexing	service.	All	information	gathered
about	the	resources	managed	by	Chef	is	indexed	and	searchable,	meaning	that
Chef	becomes	a	coordination	point	for	dynamic,	data-driven	infrastructures.	It	is
possible	to	issue	queries	for	any	combination	of	attributes—for	example,
VMware	servers	on	VLAN	102	or	MySQL	slaves	running	CentOS	5.	This	opens
up	tremendously	powerful	capabilities—a	simple	example	would	be	a	dynamic
load	balancer	configuration	that	automatically	includes	the	web	servers	that
match	a	given	query	to	its	pool	of	backend	nodes.

The	most	important	thing	to	understand	is	that	the	Chef	server	is	fundamentally
nothing	more	than	a	publishing	platform	with	an	API,	an	index,	and	a

dependency	solver.	It	does	no	heavy	lifting.	All	interactions,	without	exception,
are	via	the	REST	API.

The	Chef	community
Chef	has	a	large	and	active	community	of	users,	with	over	14,000	registered
community	members,	over	700	individuals	and	companies	as	signed-up
contributors,	of	which	over	200	have	committed	code	to	the	project.	Opscode	is
a	community-focused	company.	In	the	55	releases	that	have	been	cut	in	the	last
four	plus	years,	there	have	been	61	awards	of	most	valuable	person	status	(and
another	24	for	Ohai	releases),	for	contributions	to	both	the	code	and	the
community	as	a	whole.

For	a	comparatively	young	product,	uptake	is	very	strong.	Over	a	million	known
downloads	of	Chef	have	been	recorded,	with	the	real	number	being	significantly
larger.	Adoption	is	on	an	exponential	scale,	from	startups	and	small	or	medium
enterprises	(SMEs)	through	web	operation	poster-people	such	as	Facebook,	Etsy,
37signals,	Rightscale,	and	Wikia	to	household	names	like	Sony,	Walt	Disney,
Turner,	HP,	and	Adobe.

These	companies	all	use	Chef	to	automate	the	deployment	of	thousands	of
servers	with	a	wide	variety	of	applications	and	environments.	Chef	users	can
share	their	“recipes”	for	installing	and	configuring	software	with	“cookbooks”
on	Opscode’s	community	website.	Cookbooks	exist	for	a	large	number	of
packages,	with	over	800	cookbooks	available	on	the	Opscode	community	site
alone.

The	cookbooks	aspect	of	the	community	site	can	be	thought	of	as	akin	to
RubyGems—although	the	source	of	most	of	the	cookbooks	can	be	obtained	at
any	time	from	GitHub,	stable	releases	are	made	in	the	form	of	versioned
cookbooks.	Both	the	Chef	project	itself	and	many	of	the	cookbooks	from	the
opscode-cookbooks	Git	organization	are	consistently	in	GitHub’s	list	of	the
most	popular	watched	repositories.	In	practice,	these	cookbooks	are	probably	the
most	reusable	IT	artifacts	I’ve	encountered,	partly	due	to	the	separation	of	data
and	behavior	that	the	Chef	framework	encourages,	and	also	due	to	the	inherent
power	and	flexibility	accorded	by	the	ability	to	configure	and	control	complex
systems	with	a	mature	3GL	programming	language.

The	community	tends	to	gather	around	the	mailing	lists	(one	for	users	and	one

http://community.opscode.com

for	developers),	and	the	IRC	channels	on	Freenode	(again	one	for	users,	and	one
for	developers).	Chef	users	and	developers	tend	to	be	highly	experienced	system
administrators,	developers,	and	architects,	and	are	an	outstanding	source	of
advice	and	inspiration	in	general,	as	well	as	being	friendly	and	approachable	on
the	subject	of	Chef	itself.

As	the	field	of	web	operations	has	grown,	the	need	to	have	a	community	of
people	who	are	solving	hard	problems,	building	tools,	and	sharing	ideas	has	also
expanded.	Chef,	as	an	expression	of	the	concept	of	infrastructure	as	code	is
precisely	that—a	sharing	of	minds,	ideas,	awesome-sauce,	and	expertise,	in
reusable,	testable,	auditable,	and	versionable	code.

Exercise	2:	Install	a	User

Objectives
After	completing	this	exercise,	you	will	have	achieved	the	following:

Used	Chef	to	create	a	user	on	your	machine

Understood	the	principles	behind	Chef’s	recipe	DSL

Understood	how	to	use	chef-apply,	and	what	its	limitations	are

Directions
1.	 Create	a	file	called	tdi.rb	using	your	text	editor.

2.	 Read	the	documentation	for	the	“user”	resource	at
http://docs.opscode.com/chef/resources.html#user.

3.	 Declare	a	resource	in	tdi.rb	to	create	a	user	called	“tdi”.

4.	 Create	the	user	by	running	chef-apply.

5.	 Verify	that	the	user	has	been	created.

6.	 Add	another	resource	of	type	dotfile	to	drop	off	a	configuration	file
called	.tdi	with	content	parameter	of	“bogus”.

http://docs.opscode.com/chef/resources.html#user

7.	 Run	chef-apply	again.

8.	 Observe	the	failure	characteristics.

9.	 Replace	the	resource	type	“dotfile”	with	“file”	and	run	chef-apply	again.

10.	 Replace	the	“file”	resource	with	a	“template”	resource,	and	change	the
“content”	parameter	to	“source”.

11.	 Run	chef-apply	once	more.

Worked	Example
In	my	tdi.rb	file	I	wrote	the	following:

user 'tdi' do

 action :create

 comment "Test Driven Infrastructure"

 home "hometdi"

 supports :manage_home => true

end

I	saved	the	file	and	ran	chef-apply.	On	my	CentOS	machine	I	was	still	using
the	root	user,	so	I	didn’t	need	to	use	sudo.	On	my	Ubuntu	machine	I	was	logged
in	as	my	sns	user,	so	I	used	sudo:

$ sudo chef-apply tdi.rb

Recipe: (chef-apply cookbook)::(chef-apply recipe)

 * user[tdi] action create

 - create user user[tdi]

I	then	verified	the	user	existed:

sns@ubuntu:~$ getent passwd | grep tdi

tdi:x:1001:1001:Test Driven Infrastructure:hometdi:binsh

[root@centos ~]# getent passwd | grep tdi

tdi:x:500:500:Test Driven Infrastructure:hometdi:binbash

I	noticed	that	on	the	Ubuntu	machine,	the	user	didn’t	set	the	default	shell	to
Bash.	Although	this	could	be	easily	done	by	updating	the	recipe,	I	decided	to	fix

it	the	quick	and	dirty	way,	with:

$ sudo chsh -s binbash tdi

I	added	a	bogus	resource	to	tdi.rb	as	follows:

dotfile 'hometdi/.tdi' do

 action :create

 content 'bogus'

end

When	I	ran	Chef,	I	saw:

sns@ubuntu:~$ sudo chef-apply tdi.rb

[2013-06-26T20:09:10+01:00] FATAL: Stacktrace dumped to varchef/cache/chef-

stacktrace.out

[2013-06-26T20:09:10+01:00] FATAL: NameError: Cannot find a resource for dotfile on

ubuntu version 12.04

[root@centos ~]# chef-apply tdi.rb

[2013-06-26T19:28:11+01:00] FATAL: Stacktrace dumped to varchef/cache/chef-

stacktrace.out

[2013-06-26T19:28:11+01:00] FATAL: NameError: Cannot find a resource for dotfile on

centos version 6.4

Changing	the	resource	to	a	“file”	yielded	the	following:

Recipe: (chef-apply cookbook)::(chef-apply recipe)

 user[tdi] action create (up to date)

 file[hometdi/.tdi] action create

 - create new file hometdi/.tdi with content checksum 81f7e3

 --- tmpchef-tempfile20130528-13007-1cgpj8 2013-05-28 11:20:11.932272825

+0100

 +++ tmpchef-diff20130528-13007-ipe5ju 2013-05-28 11:20:11.932272825 +0100

 @@ -0,0 +1 @@

 +bogus

I	altered	my	file	resource	as	follows:

template 'hometdi/.tdi' do

 action :create

 source 'tdi-bashfile'

end

When	I	ran	chef-apply,	this	time	I	saw:

chef-apply tdi.rb

Recipe: (chef-apply cookbook)::(chef-apply recipe)

 user[tdi] action create (up to date)

 template[hometdi/.tdi] action create

==

Error executing action `create` on resource 'template[hometdi/.tdi]'

==

NoMethodError

undefined method `preferred_filename_on_disk_location' for nil:NilClass

Resource Declaration:

In tdi.rb

 6: template 'hometdi/.tdi' do

 7: action :create

 8: source 'bogus'

 9: end

Compiled Resource:

Declared in tdi.rb:6:in `run_chef_recipe'

template("hometdi/.tdi") do

 provider Chef::Provider::Template

 action [:create]

 retries 0

 retry_delay 2

 path "hometdi/.tdi"

 backup 5

 source "bogus"

 cookbook_name "(chef-apply cookbook)"

 recipe_name "(chef-apply recipe)"

end

[2013-05-28T11:24:48+01:00] FATAL: Stacktrace dumped to varchef/cache/chef-

stacktrace.out

[2013-05-28T11:24:48+01:00] FATAL: NoMethodError: template[hometdi/.tdi] ((chef-

apply cookbook)::(chef-apply recipe) line 6) had an error: NoMethodError: undefined

method `preferred_filename_on_disk_location' for nil:NilClass

Discussion
To	use	Chef	to	manage	infrastructure	is	to	insert	a	very	powerful	and	flexible
abstraction	layer	between	the	engineer	and	the	system.	Instead	of	the	developer
logging	onto	three	different	types	of	machines	and	typing	commands	into	a
terminal,	or	navigating	a	sequence	of	menus,	he	types	in	a	text	editor,	commits	to
a	version	control	system,	and	effectively	deploys	what	was	written	to	a	series	of
machines.	We	are	practicing	the	discipline	of	infrastructure	as	code.

In	practical	terms,	the	way	we	do	this	is	by	thinking	about	the	abstract	system
components	that	we	need	to	configure	our	systems	as	we	want.	For	example,	if	I
want	to	ensure	the	clock	on	my	Linux	computer	is	regularly	synchronized	with
an	NTP	server,	I	might	need	to	install	the	package	that	provides	NTP	client
functionality,	alter	the	configuration	file	according	to	my	requirements,	and
ensure	the	NTP	daemon	is	running,	or	that	the	client	is	run	as	a	scheduled	task.
In	Chef	we	call	these	low-level	components	that	we	can	reason	about	and
discuss	“resources.”

Resources	are	the	very	essence	of	Chef—the	atoms,	if	you	like.	When	we	talk
about	a	complicated	or	even	a	simple	infrastructure,	that	conversation	takes
place	at	a	level	of	resources.	For	example,	we	might	discuss	a	web	server—what
are	the	components	of	a	web	server?	Well,	we	need	to	install	Apache,	we	need	to
specify	its	configuration	and	perhaps	some	virtual	hosts,	and	we	need	to	ensure
the	Apache	service	is	running.	Immediately,	we’ve	identified	some	resources—a
package,	a	file,	and	a	service.

Managing	infrastructure	using	Chef	is	a	case	of	specifying	what	resources	are
needed	and	how	they	interact	with	one	another.	We	call	this	setting	the	policy.

If	resources	are	the	fundamental	configuration	objects,	nodes	are	the
fundamental	things	that	are	configured.	It’s	possible	to	get	a	bit	confused	when
the	word	“node”	is	used.	For	most	engineers,	a	“node”	is	synonymous	with	a
physical	(or	virtual)	machine	on	a	network.	To	an	extent	this	meaning	is	carried
forward	in	Chef,	as	I	just	did:	nodes	are	the	things	we’re	configuring.	However,
most	of	the	time,	in	Chef,	the	term	“node”	refers	to	the	Chef	node,	which	is
ultimately	a	Ruby	object	representing	the	machine	we’re	configuring.	This
object	behaves	like	a	Hash:	it	has	keys	and	values,	getter	and	setter	methods,	and
can	be	viewed,	queried,	and	interacted	with	as	JSON.	With	that	caveat,	a	concise
definition	of	what	Chef	does	is	this:

Chef	manages	resources	on	the	node	so	they	comply	with	policy.

It’s	important	to	understand	that	when	we	talk	about	resources	in	Chef,	we’re	not
talking	about	the	actual	resource	that	ends	up	on	the	box.	Resources	in	Chef	are
an	abstraction	layer.	If	we	were	to	write	Chef	code	to	install	the	korn	shell
package	on	a	CentOS	box,	that	would	mean:

$ yum install ksh

This	would	be	represented	in	Chef	by:

package "ksh"

A	resource	in	Chef	can	take	action.	Here	again,	note	the	difference—the	user
resource	in	Chef	can	create	a	user	on	a	machine.	It	isn’t	the	user	on	the	machine.
Resources	take	action	through	providers.	A	provider	is	some	library	code	that
understands	two	things:	first,	how	to	determine	the	state	of	a	resource;	and
second,	how	to	translate	the	abstract	requirement	(install	Apache)	into	the
concrete	action	(run yum install httpd).	Additionally	it	understands	that,
depending	upon	the	underlying	operating	system	or	distribution,	the	utilities	or
commands	used	to	install	a	package	will	be	different—for	example,	on	a	Debian
system,	the	provider	would	use	dpkg	or	apt	rather	than	yum	or	rpm.	Determining
the	state	of	the	resource	is	important	in	configuration	management;	we	only	want
to	take	action	if	it	is	necessary.	If	the	user	has	already	been	created	or	the
package	has	already	been	installed,	we	don’t	need	to	take	action.	This	is	the
principle	of	idempotence.	(See	http://bit.ly/15M3qwJ	for	more	on	idempotency
and	its	meaning	in	this	context.)	A	provider	knows	how	to	check	whether	the
user	has	already	been	created,	and	won’t	take	action	if	it	has.	The
mathematicians	amongst	you	may	complain	about	this	appropriation	of	the	term.
Within	the	configuration	management	world,	we	understand	that	idempotence
literally	means	that	an	operation	will	produce	the	same	results	if	executed	once
or	multiple	times	(i.e.,	multiple	application	of	the	same	operation	has	no	side
effect).	We	take	this	principle,	specifically	the	idea	that	all	functions	should	be
idempotent	with	the	same	data,	and	use	this	as	a	metaphor.	Not	taking	action
unless	it’s	necessary	is	an	implementation	detail	designed	to	ensure
idempotence.

http://bit.ly/15M3qwJ

Resources	have	data.	If	we	were	to	write	code	to	create	a	user,	in	addition	to	a
default	action,	which	all	resources	have	(in	the	case	of	a	package	it’s	to	install
the	package;	in	the	case	of	a	user,	it’s	to	create	the	user),	we’d	also	probably
want	to	specify	some	additional	configuration	for	a	user.	For	example,	we	might
want	to	set	a	shell,	or	a	comment:

user "melisande" do

 comment "International Master Criminal"

 shell "binksh"

 home "/exporthomemelisande"

 supports :manage_home => true

 action :create

end

Resources,	then,	have	a	name	(in	this	case,	melisande),	a	type	(in	this	case,	a
user),	data	in	the	form	of	parameter	attributes	(in	this	case,	comment,	shell,
home	directory,	and	supports),	and	an	action	(in	this	case,	we’re	going	to
create	the	user).

In	our	exercise	we	used	the	user	resource	to	create	a	user	called	“tdi”.	I	asked
you	to	review	the	documentation	on	the	user	resource	on	the	docs	site.	Again,
there	is	far	more	information	there	than	you	need	now,	but	as	you	go	on	to	build
more	complex	infrastructure,	you	will	refer	to	the	resource	documentation	time
and	again.	The	most	confusing	aspect	of	the	documentation	(at	the	time	of
writing)	is	the	idea	of	“supported	features.”	The	resource	has	the	attribute
supports,	with	key/value	pairs	representing	whether	a	given	feature	is
supported	by	the	underlying	provider	(for	example,	useradd	on	Solaris	versus
Linux).	One	such	feature	is	manage_home.	This	flag	is	used	to	make	explicit
whether	a	home	directory	will	be	created	at	the	same	time	as	the	user	is	created.
The	supports	syntax	is	a	bit	cumbersome,	so	there’s	a	handy	convenience
method	manage_home	that	can	be	set	to	true	or	false.	It	has	the	same	effect,	but
looks	a	bit	cleaner.	I’ll	draw	your	attention	to	one	particular	wart	that	could	catch
you	if	you’re	a	RHEL/CentOS	user.	The	default	behavior	of	the	user	resource	is
not	to	create	the	home	directory.	This	is	pretty	much	standard	across	Linux	and
Unix.	However,	an	implementation	detail	of	RHEL-family	systems	is	that
'useradd	does	create	a	homeuser	directory	by	default.	The	result	is	that	you
could	get	away	with	never	declaring	home	or	manage_home	in	your	user

resources	on	RHEL	systems,	but	then	get	tripped	up	if	you	expected	your	code	to
work	on	other	Linux	systems.	For	this	purpose,	I	recommend	explicitly
specifying	both	the	home	directory	and	manage_home: true	in	your	user
resource	declarations.

You’ll	notice	that	we	called	the	file	we	wrote	tdi.rb.	It’s	actually	Ruby	code	(and
if	this	is	not	familiar	to	you,	don’t	worry—you’ll	learn	all	the	Ruby	you	need	to
know	in	Chapter	2).	We	can	prove	this	by	adding	some	Ruby	into	the	file,	and
running	it	again:

$ cat tdi.rb

10.times { puts "This is actually just Ruby" }

user 'tdi' do

 action :create

 comment "Test Driven Infrastructure"

 home "hometdi"

 supports :manage_home => true

end

template 'hometdi/.tdi' do

 action :create

 source 'bogus'

end

chef-apply tdi.rb

This is actually just Ruby

This is actually just Ruby

This is actually just Ruby

This is actually just Ruby

This is actually just Ruby

This is actually just Ruby

This is actually just Ruby

This is actually just Ruby

This is actually just Ruby

This is actually just Ruby

Recipe: (chef-apply cookbook)::(chef-apply recipe)

 user[tdi] action create (up to date)

 template[hometdi/.tdi] action create

==

Error executing action `create` on resource 'template[hometdi/.tdi]'

==

...

...

In	Chef	terms,	the	file	that	we	wrote	is	called	a	recipe.	It’s	a	set	of	instructions,	a
set	of	resources	that	we	need	to	configure	the	machine	in	the	way	we	want	it.
When	we	say	that	an	infrastructure	developer	is	writing	Chef	code,	we	are
typically	talking	about	using	Chef’s	“recipe”	DSL.	Let’s	quickly	explore	the	idea
of	a	DSL.

DSL,	or	domain	specific	language,	in	practice	means	a	way	of	encapsulating
shared	knowledge	relating	to	a	specific	task	or	series	of	tasks,	in	a	small,	clearly
defined	set	of	words,	with	a	small	and	clearly	defined	set	of	rules.

The	example	I	like	to	give	when	I’m	training	people	to	use	Chef	is	the	game	of
Blackjack.	I	used	to	take	a	ferry	from	the	south	of	England	to	the	north	of	France
or	Spain,	every	so	often.	Especially	on	the	longer	journeys,	I	used	to	sit	in	the
ship’s	casino	and	play	cards.	A	popular	game	was	blackjack.	The	passengers
were	frequently	French,	Spanish,	English,	Dutch,	or	German.	However,
everyone	was	able	to	play	blackjack	because	there	was	an	established	DSL	in
place.	Everyone	knew	that	“card”	means	“give	me	a	card.”	Everyone	knew	that
“stick”	means	“I	don’t	want	another	card.”	Everyone	knew	that	“split”	means
“separate	my	two	cards	into	two	piles	of	one,	and	deal	one	card	to	each	pile.”
There	were	rules	around	the	usage	of	the	terms;	you	can’t	use	the	language	when
it’s	someone	else’s	turn.	You	can’t	split	if	the	cards	aren’t	of	the	same	value.	This
is	the	same	of	all	DSLs—they	have	a	few	meaningful	keywords,	and	a	few
grammatical	and	syntactical	rules.

Whenever	we	speak	about	a	DSL,	it	naturally	follows	that	we	explain	the
purpose	of	the	DSL.	Thus	if	we	were	to	say,	“Gherkin	is	a	DSL,”	that	doesn’t
really	tell	us	much.	If,	however,	we	were	to	say,	“Gherkin	is	a	DSL	for
translating	stakeholder	requirements	to	executable	Ruby	acceptance	tests,”	it
makes	much	more	sense.	Similarly,	as	the	old	joke	goes,	Java	is	a	DSL	for
producing	stack	traces.[2]	It	turns	out	that	Chef	has	a	DSL	for	several	things:
recipes,	roles,	environments,	and	the	creation	of	custom	resources	and	providers.
We’ll	cover	most	of	the	Chef	DSLs	in	this	book,	but	at	a	high	level	Chef
provides	DSLs	for	programmatically	declaring	which	resources	should	be
configured	on	a	machine,	for	grouping	related	resources	together	and	applying
them	to	machines	of	the	same	sort,	for	isolating	systems	of	a	certain	class,
ensuring	they	remain	in	a	defined	state,	and	several	other	powerful	concepts.
This	allows	us	to	bring	into	being	services	using	code.

http://en.wikipedia.org/wiki/Blackjack

You’ll	notice	that	when	we	tried	to	use	a	bogus	resource	in	our	recipe,	Chef
complained	that	it	couldn’t	find	a	resource	of	the	type	we	declared:

[2013-05-28T11:11:59+01:00] FATAL: NameError: Cannot find a resource for dotfile on

centos version 6.4

Why	then	did	we	have	a	problem	when	we	tried	to	use	a	template	resource?	Here
we	hit	upon	the	limitations	of	chef-apply.	chef-apply	is	really	only	useful	for
a	quick	job,	or	(as	we’ve	seen)	for	instructional	purposes.	It	doesn’t	have	any
context	outside	the	single	Ruby	file	it	is	passed.	Templates,	by	their	very
definition,	have	a	source	template	that	is	populated	with	data.	We	don’t	have	any
way	of	providing	a	source	template	to	Chef	when	using	chef-apply,	and	so	we
get	an	error.	In	our	next	exercise,	we’ll	graduate	to	using	chef-solo,	and
explore	some	more	resource	types.

Exercise	3:	Install	an	IRC	Client

Objectives
After	completing	this	exercise,	you	will:

Be	familiar	with	the	package,	directory,	and	cookbook_file	resources

Understand	chef-solo,	and	how	it	is	configured

Understand	the	ideas	of	a	recipe,	a	cookbook,	and	a	run	list

Directions
1.	 Ensure	you	don’t	still	have	the	“This	is	actually	just	Ruby”	code	in	your

recipe.

2.	 Run	chef-solo	without	any	configuration	options,	and	read	the	output.

3.	 Look	at	the	knife help	output	for	the	cookbook	subcommand,	paying
particular	attention	to	cookbook path,	and	then	create	a	cookbook	called
irc.

4.	 Verify	that	a	skeleton	cookbook	has	been	created.

5.	 Read	the	package	resource	documentation	at
http://docs.opscode.com/resource_package.html

6.	 Read	the	cookbook_file	resource	documentation	at
http://docs.opscode.com/resource_cookbook_file.html

7.	 Read	the	directory	resource	documentation	at
http://docs.opscode.com/resource_directory.html

8.	 Open	the	default.rb	recipe	in	your	text	editor,	and	copy	the	user	resource
into	the	file.

9.	 Add	a	resource	to	install	the	irssi	package.

10.	 Add	a	resource	to	create	a	.irssi	directory	in	the	“tdi”	user’s	home
directory,	owned	by	the	“tdi”	user.

11.	 Add	a	resource	to	drop	off	an	irssi	config	file	at	~/.irssi/config,	also	owned
by	the	“tdi”	user.	Use	the	irssi	config	at
https://gist.github.com/Atalanta/5676662.

12.	 Create	a	solo.rb	config	file,	and	specify	your	cookbook	path.

13.	 Search	the	docs	site	for	“run	list”	to	understand	the	high	level	concept.

14.	 Run	chef-solo,	telling	it	to	converge	the	node	with	the	default	recipe
from	the	irc	cookbook.

15.	 Become	the	“tdi”	user,	and	launch	your	IRC	client,	by	typing	irssi	at	the
command	prompt,	and	say	“ohai!”	in	the	##tdi	chat	room!

Worked	Example
I	ran	chef-solo	on	one	of	the	machines,	and	read	the	output,	noting	that	it	was
unable	to	find	a	configuration	file,	but	would	take	its	configuration	from	the
command	line,	and	that	it	failed	to	compile	any	cookbooks,	having	looked	in	two
locations.	It	suggested	I	make	sure	my	cookbook_path	was	set	correctly:

http://docs.opscode.com/resource_package.html
http://docs.opscode.com/resource_cookbook_file.html
http://docs.opscode.com/resource_directory.html
https://gist.github.com/Atalanta/5676662

$ sudo chef-solo

[sudo] password for stephen:

[2013-05-28T18:05:01+01:00] WARN: ***

[2013-05-28T18:05:01+01:00] WARN: Did not find config file: etcchef/solo.rb, using

command line options.

[2013-05-28T18:05:01+01:00] WARN: ***

Starting Chef Client, version 11.4.4

Compiling Cookbooks...

[2013-05-28T18:05:03+01:00] FATAL: No cookbook found in ["varchef/cookbooks",

"varchef/site-cookbooks"], make sure cookbook_path is set correctly.

[2013-05-28T18:05:03+01:00] FATAL: No cookbook found in ["varchef/cookbooks",

"varchef/site-cookbooks"], make sure cookbook_path is set correctly.

[2013-05-28T18:05:03+01:00] ERROR: Running exception handlers

[2013-05-28T18:05:03+01:00] ERROR: Exception handlers complete

Chef Client failed. 0 resources updated

[2013-05-28T18:05:03+01:00] FATAL: Stacktrace dumped to varchef/cache/chef-

stacktrace.out

[2013-05-28T18:05:03+01:00] FATAL: Chef::Exceptions::CookbookNotFound: No cookbook

found in ["varchef/cookbooks", "varchef/site-cookbooks"], make sure cookbook_path is

set correctly.

I	looked	at	knife help cookbook	and	was	given	a	choice	of	two	pages	to	read:

$ knife help cookbook

WARNING: No knife configuration file found

Multiple help topics match your query. Pick one:

1. knife-cookbook-site

2. knife-cookbook

I	selected	the	second,	and	read	the	documentation,	discovering	that	I	could	set
the	cookbook	path	with	the	-o --cookbook-path	switch.	I	then	created	an	irc
cookbook	as	follows:

$ knife cookbook create irc -o .

WARNING: No knife configuration file found

** Creating cookbook irc

** Creating README for cookbook: irc

** Creating CHANGELOG for cookbook: irc

** Creating metadata for cookbook: irc

I	verified	the	skeleton	with	the	following:

$ ls -1F irc/

attributes/

CHANGELOG.md

definitions/

files/

libraries/

metadata.rb

providers/

README.md

recipes/

resources/

templates/

I	read	the	documentation	page	for	the	package	resource	on	the	docs	site,	and
concluded	that	I	didn’t	need	to	specify	any	particular	attributes,	and	that	Chef
would	work	out	the	right	thing	to	do	on	my	platform.

I	edited	the	recipe	at	irc/recipes/default.rb	and	added	the	user	resource	(with	the
neater	manage_home	syntax)	and	the	following	to	ensure	the	user	was	created,
and	to	install	the	irssi	package:

user 'tdi' do

 action :create

 comment "Test Driven Infrastructure"

 home "hometdi"

 manage_home true

end

package 'irssi' do

 action :install

end

I	read	the	documentation	for	the	directory	resource,	and	added	the	following:

directory 'hometdi/.irssi' do

 owner 'tdi'

 group 'tdi'

end

I	read	the	documentation	for	the	cookbook_file	resource,	and	added	the
following	resource:

cookbook_file 'hometdi/.irssi/config' do

 source 'irssi-config'

 owner 'tdi'

 group 'tdi'

end

I	then	created	a	file	at	files/default/irssi-config	with	the	following	content:

servers = (

 {

 address = "irc.freenode.net";

 chatnet = "Freenode";

 port = "6667";

 autoconnect = "Yes";

 }

);

chatnets = { Freenode = { type = "IRC"; }; };

settings = {

 core = {

 real_name = "Sir Edward Elgar";

 nick = "elgar";

 user_name = "elgar";

 };

 "fe-text" = { actlist_sort = "refnum"; };

};

channels = (

 { name = "#learnchef"; chatnet = "Freenode"; autojoin = "Yes"; },

 { name = "#chef"; chatnet = "Freenode"; autojoin = "Yes"; },

 { name = "##tdi"; chatnet = "Freenode"; autojoin = "Yes"; }

);

I	searched	the	docs	page	for	“run	list”	and	read	the	first	two	hits
(http://docs.opscode.com/essentials_node_object_run_lists.html	and
http://docs.opscode.com/essentials_cookbook_recipes_run_lists.html),	which
helped	me	to	understand	the	idea	of	a	run	list.	Having	run	chef-solo --help,	I
determined	that	I	could	pass	the	configuration	file	as	an	option	using	the	-c, --
config	option,	and	that	I	could	specify	a	run	list	using	-o, --override-
runlist.	Armed	with	this	knowledge	I	created	a	solo.rb	config	file	within	a
.chef	directory,	and	then	ran	Chef	(again	as	root	on	Centos,	and	with	sudo,	and	as
sns	on	Ubuntu):

http://docs.opscode.com/essentials_node_object_run_lists.html
http://docs.opscode.com/essentials_cookbook_recipes_run_lists.html

$ mkdir /.chef

$ cat /.chef/solo.rb

cookbook_path ENV['HOME']

$ sudo chef-solo --config ~/.chef/solo.rb --override-runlist 'recipe[irc]'

Starting Chef Client, version 11.4.4

[2013-05-30T10:46:23+01:00] WARN: Run List override has been provided.

[2013-05-30T10:46:23+01:00] WARN: Original Run List: []

[2013-05-30T10:46:23+01:00] WARN: Overridden Run List: [recipe[irc]]

Compiling Cookbooks...

Converging 4 resources

Recipe: irc::default

 user[tdi] action create (up to date)

 package[irssi] action install

 - install version 0.8.15-5.el6 of package irssi

 directory[hometdi/.irssi] action create

 - create new directory hometdi/.irssi

 - change owner from '' to 'tdi'

 - change group from '' to 'tdi'

 cookbook_file[hometdi/.irssi/config] action create

 - create a new cookbook_file hometdi/.irssi/config

 --- tmpchef-tempfile20130530-15376-1m5nhvp 2013-05-30 10:46:28.698288821

+0100

 +++ rootirc/files/default/irssi-config 2013-05-30 10:40:50.313288775

+0100

 @@ -0,0 +1,25 @@

 +servers = (

 + {

 + address = "irc.freenode.net";

 + chatnet = "Freenode";

 + port = "6667";

 + autoconnect = "Yes";

 + }

 +);

 +

 +chatnets = { Freenode = { type = "IRC"; }; };

 +

 +settings = {

 + core = {

 + real_name = "Sir Edward Elgar";

 + nick = "elgar";

 + user_name = "elgar";

 + };

 + "fe-text" = { actlist_sort = "refnum"; };

 +};

 +

 +channels = (

 + { name = "#learnchef"; chatnet = "Freenode"; autojoin = "Yes"; },

 + { name = "#chef"; chatnet = "Freenode"; autojoin = "Yes"; },

 + { name = "##tdi"; chatnet = "Freenode"; autojoin = "Yes"; }

 +);

Chef Client finished, 3 resources updated

I	su‘d	to	tdi,	ran	irssi,	and	found	the	##tdi	room,	and	said	“Ohai”.

Discussion
When	we	ran	chef-solo	we	learned	three	important	things:

chef-solo

[2013-03-12T16:41:53+00:00] WARN: ***

[2013-03-12T16:41:53+00:00] WARN: Did not find config file: etcchef/solo.rb, using

command line options.

[2013-03-12T16:41:53+00:00] WARN: ***

Starting Chef Client, version 11.4.0

Compiling Cookbooks...

[2013-03-12T16:41:54+00:00] FATAL: No cookbook found in ["varchef/cookbooks",

"varchef/site-cookbooks"], make sure cookbook_path is set correctly.

[2013-03-12T16:41:54+00:00] FATAL: No cookbook found in ["varchef/cookbooks",

"varchef/site-cookbooks"], make sure cookbook_path is set correctly.

[2013-03-12T16:41:54+00:00] ERROR: Running exception handlers

[2013-03-12T16:41:54+00:00] ERROR: Exception handlers complete

Chef Client failed. 0 resources updated

[2013-03-12T16:41:54+00:00] FATAL: Stacktrace dumped to varchef/cache/chef-

stacktrace.out

[2013-03-12T16:41:54+00:00] FATAL: Chef::Exceptions::CookbookNotFound: No cookbook

found in ["varchef/cookbooks", "varchef/site-cookbooks"], make sure cookbook_path is

set correctly.

1.	 Chef	expects	a	configuration	file,	but	will	accept	options	on	the	command
line,	in	lieu	of	a	configuration	file.

2.	 It	expects	the	configuration	file	to	reside	in	etcchef.

3.	 It	looked	for	cookbooks	in	the	varchef/cookbooks	directories	and	the
varchef/site-cookbooks	directory,	but	failed	to	find	any.

What	are	these	cookbooks	of	which	Chef	speaks?	My	Chambers	English

Dictionary	(highly	recommended	for	budding	cruciverbalists)	defines	a
cookbook	as:
A	book	of	recipes	for	cooking	dishes.

Well	obviously	we’re	not	cooking	dishes,	but	the	rest	of	the	metaphor	makes
sense—cookbooks	contain	recipes.	So	what’s	a	recipe?	Turning	again	to	my
trusty	dictionary,	I’m	told	that	one	definition	of	a	recipe	is:
A	method	laid	down	for	achieving	a	desired	end.

This	is	perfect!	That’s	exactly	what	a	recipe	is.	It’s	a	method	of	achieving	a
desired	outcome—the	desired	state	of	our	infrastructure.	That	method	might	be
fairly	complex	because	realistically	speaking,	our	infrastructures	are	much	more
complicated	than	can	be	expressed	in	a	single	or	even	a	collection	of
independent	resources.	As	infrastructure	developers,	the	bulk	of	the	code	we
write	will	be	in	the	form	of	these	recipes.

Recipes	in	Chef	are	written	in	a	domain-specific	language	(DSL),	which	allows
us	to	declare	the	state	in	which	a	node	should	be.	Remember,	a	domain-specific
language	is	a	computer	language	designed	to	address	a	very	specific	problem
space.	It	has	grammar	and	syntax	in	the	same	way	as	any	other	language	but	is
generally	much	simpler	than	a	general	purpose	programming	language.	Ruby	is
a	programming	language	particularly	suited	to	the	creation	of	DSLs.	It’s	very
powerful,	flexible,	and	expressive.	As	we	already	mentioned,	DSLs	are	used	in	a
number	of	places	throughout	the	framework.	However,	a	particularly	important
thing	to	understand	about	Chef	is	that	not	only	do	we	have	DSLs	to	address
particular	problem	spaces,	we	also	always	have	direct	access	to	the	entire	Ruby
programming	language.	This	means	that	if	at	any	stage	you	need	to	extend	the
DSL—or	perform	some	calculation,	transformation,	or	other	task—you	are
never	restricted	by	the	DSL.	This	is	one	of	the	great	advantages	of	Chef.

In	Chef,	order	is	highly	significant.	Recipes	are	processed	in	the	exact	order	in
which	they	are	written,	every	time.	Recipes	are	processed	in	two	stages—a
compile	stage	and	an	execute	stage.	The	compile	stage	consists	of	gathering	all
the	resources	that,	when	configured,	will	result	in	conformity	with	policy,	and
placing	them	in	a	kind	of	list	called	the	resource	collection.	At	the	second	stage,
Chef	processes	this	list	in	order,	taking	actions	as	specified.	As	you	become
more	advanced	in	Chef	recipe	development,	you	will	learn	that	there	are	ways	to
subvert	this	process,	and	when	it	is	appropriate	to	do	so.	However,	for	the

purposes	of	this	book,	it	is	sufficient	to	understand	that	recipes	are	processed	in
order,	and	actions	taken.

Recipes	by	themselves	are	frequently	not	much	use.	Many	resources	require
additional	data	as	part	of	their	action—for	example,	the	template	resource	will
require,	in	addition	to	the	resource	block	in	the	recipe,	an	Erubis	template	file.
As	you	advance	in	your	understanding	and	expertise,	you	may	find	that	you	need
to	extend	Chef	and	provide	your	own	custom	resources	and	providers.	For
example,	you	might	decide	you	want	to	write	a	resource	to	provide	configuration
file	snippets	for	a	certain	service.	Chef	provides	another	DSL	for	specifically	this
purpose.

If	recipes	require	supporting	files	and	code,	we	need	a	way	to	package	this	up
into	a	usable	component.	This	is	the	purpose	of	a	cookbook.	Cookbooks	can	be
thought	of	as	package	management	for	Chef	recipes	and	code.	They	may	contain
a	large	number	of	different	recipes	and	other	components.	Cookbooks	have
metadata	associated	with	them,	including	version	numbers,	dependencies,
license	information,	and	attributes.

Cookbooks	can	be	published	and	shared.	This	is	another	of	Chef’s	great
strengths.	Via	the	Opscode	Chef	community	website,	you	can	browse	and
download	over	800	different	cookbooks.	The	cookbooks	are	generally	of	very
high	quality,	and	a	significant	proportion	of	them	are	written	by	Opscode
developers.	Cookbooks	can	be	rated	and	categorized	on	the	community	site,	and
users	can	elect	to	“follow”	cookbooks	to	receive	updates	when	new	versions
become	available.

Knife	provides	a	subcommand	that	will	create	a	skeleton	cookbook,	ready	to	be
used	for	modeling	infrastructure.	By	default,	Knife	will	attempt	to	create	and
populate	a	directory	at	varchef/cookbooks;	this	is	the	cookbook	path,	the	place
Knife	looks	for	cookbooks:

$ knife cookbook create silly

WARNING: No knife configuration file found

** Creating cookbook silly

ERROR: Errno::EACCES: Permission denied - varchef/cookbooks

$ ls -ld varchef/*

drwxr-xr-x 2 root root 4096 May 28 18:05 varchef/cache

http://www.kuwata-lab.com/erubis/
http://community.opscode.com

$ sudo knife cookbook create silly

[sudo] password for stephen:

WARNING: No knife configuration file found

** Creating cookbook silly

** Creating README for cookbook: silly

** Creating CHANGELOG for cookbook: silly

** Creating metadata for cookbook: silly

$ ls -ld varchef/*

drwxr-xr-x 2 root root 4096 May 28 18:05 varchef/cache

drwxr-xr-x 3 root root 4096 May 30 08:59 varchef/cookbooks

$ ls -ld varchef/cookbooks/*/*

drwxr-xr-x 2 root root 4096 May 30 08:59 varchef/cookbooks/silly/attributes

-rw-r--r-- 1 root root 409 May 30 08:59 varchef/cookbooks/silly/CHANGELOG.md

drwxr-xr-x 2 root root 4096 May 30 08:59 varchef/cookbooks/silly/definitions

drwxr-xr-x 3 root root 4096 May 30 08:59 varchef/cookbooks/silly/files

drwxr-xr-x 2 root root 4096 May 30 08:59 varchef/cookbooks/silly/libraries

-rw-r--r-- 1 root root 274 May 30 08:59 varchef/cookbooks/silly/metadata.rb

drwxr-xr-x 2 root root 4096 May 30 08:59 varchef/cookbooks/silly/providers

-rw-r--r-- 1 root root 1439 May 30 08:59 varchef/cookbooks/silly/README.md

drwxr-xr-x 2 root root 4096 May 30 08:59 varchef/cookbooks/silly/recipes

drwxr-xr-x 2 root root 4096 May 30 08:59 varchef/cookbooks/silly/resources

drwxr-xr-x 3 root root 4096 May 30 08:59 varchef/cookbooks/silly/templates

This	configuration	can	be	set	in	Knife’s	own	configuration	file,	which	we’ll
come	to	later.	However,	it	can	also	be	set	on	the	command	line	with	the	-o, --
cookbook-path	option.

The	cookbook	generator	will	create	a	default	recipe	in	the	recipes	directory	of
the	cookbook.	It	was	this	file	we	opened	in	our	text	editor,	to	declare	the	package
resource	to	install	the	IRC	client.	You’ll	notice	that	at	the	top	of	the	file,	some
boilerplate	was	generated:

#

Cookbook Name:: irc

Recipe:: default

#

Copyright 2013, YOUR_COMPANY_NAME

#

All rights reserved - Do Not Redistribute

#

The	contents	of	this	can	be	modified	by	making	further	changes	in	your	Knife
configuration	file,	which	we’ll	come	to	in	the	next	exercise.

A	WORD	ABOUT	TEXT	EDITORS
The	art	of	modeling	infrastructure	as	code	is	a	discipline	that	fits	firmly	within	the	software
development	world.	We’re	writing	software	that	generates	configuration	dynamically	on	machines,	in
order	to	allow	us	to	deploy	and	run	applications	that	deliver	business	value.	Software	developers	use
full-featured	text	editors	that	remain	open	on	the	desktop	at	all	times.	They	support	syntax
highlighting,	may	have	the	concept	of	a	project	drawer,	may	provide	powerful	search	features,	may	be
programmable,	allow	for	multiple	files	to	be	edited	at	once	and	viewed	side-by-side,	and	offer
integration	with	source	code	management	systems.	Professional	software	developers	use	professional
tools.

As	an	infrastructure	developer,	you’re	now	a	professional	software	developer,	and	you	should	use	the
same	quality	of	tools.	If	you	already	use	an	editor	that	provides	these	kinds	of	features,	then	this
exhortation	is	not	for	you.	However,	if	you	use	vanilla	vi,	nano,	or	Notepad:	please	stop.	Different
editors	have	their	own	fierce	advocates.	Personally,	I’m	a	huge	fan	of	Emacs.	However,	TextMate,
Sublime	Text,	Vim,	Emacs,	or	maybe	even	Eclipse	would	make	a	fine	choice.	If	you’ve	never	used
such	a	tool,	I’d	suggest	starting	with	Sublime	Text	2—it’s	an	excellent,	modern	editor	with	plug-in
support	for	Chef	development,	and	it	works	on	Linux,	OSX,	and	Windows.	If	you’re	prepared	to	put	in
a	few	days	on	a	somewhat	steeper	learning	curve,	I	would	wholeheartedly	recommend	Emacs.
Whatever	you	do,	pick	an	editor,	make	it	part	of	your	professional	development	to	learn	its	features,
and	master	it	thoroughly.

So	now	that	we	have	a	recipe	and	a	cookbook,	how	can	we	apply	these	to	the
machine	we	want	to	configure?	We	already	know	we	can	use	chef-apply,	but
now	that	we	have	a	config	file	in	our	recipe,	we	need	something	a	bit	more
powerful.	We	placed	the	config	file	we	wanted	to	drop	off	into	the	cookbook.
Now	we	need	to	tell	chef-solo	where	to	find	the	cookbook.	chef-solo	takes	a
number	of	command-line	options,	but	not	one	that	tells	it	where	to	find	the
cookbooks.	This	gives	us	two	options:	either	we	put	the	cookbooks	where	chef-
solo	expects	to	find	them,	or	we	create	a	configuration	file	that	tells	chef-solo
to	find	them	where	we	want	them	to	be.	We	already	know	that	Chef	looks	for
cookbooks	in	varchef/cookbooks,	so	that’s	an	option,	but	for	my	local	machine,	I
prefer	to	keep	them	in	my	home	directory	and	tell	Chef	how	to	find	it.	Hence,	we
set	it	in	the	solo.rb	file.

cookbook_path ENV['HOME']

This	introduces	a	common	pattern	in	Chef:	configuration	files	are	Ruby	files	so
we	can	use	whatever	Ruby	constructs	we	need.

Now	we	can	tell	Chef	where	to	find	its	configuration	file	and	consequently	the
cookbooks,	but	Chef	doesn’t	know	which	recipe	to	run.	When	we	used	chef-

apply	it	was	simple:	we	just	told	Chef	exactly	which	recipe	to	run.	Obviously
this	doesn’t	scale	beyond	exceptionally	simple	cases.	Chef,	therefore,	has	the
concept	of	a	Run	List—a	list	of	recipes	to	run	on	the	node.	The	simplest	way	to
do	this	is	to	pass	it	as	a	command	line	to	chef-solo.	Recipes	on	the	run	list	take
the	following	form:	recipe[cookbook_name::recipe_name].	The	convention
is	that	if	the	“default”	recipe	is	run,	there’s	no	need	to	specify	it,	and	so	the	run
list	item	will	be	recipe[cookbook_name].

When	Chef	runs,	the	resources	in	the	recipes	on	the	run	list	are	evaluated	and
action	is	taken	to	bring	the	system	into	desired	state.

Exercise	4:	Install	Git

Objectives
Upon	completing	this	exercise,	you	should	have:

Used	community	cookbooks	to	build	infrastructure

Understood	how	Chef	differentiates	between	platforms,	taking	appropriate
action

A	Git	repository	containing	Chef	code	and	supporting	files,	and	be	able	to
interact	with	it

Understood	the	basics	of	Chef	node	attributes

Understood	the	concept	of	dependencies	in	cookbooks

Understood	the	mechanism	for	including	recipes	from	other	cookbooks	inside
another	recipe

Directions
1.	 Read	the	documentation	for	knife cookbook site.

2.	 Download	the	git	recipe	from	the	Opscode	community	site,	and	extract	it
within	your	cookbook	path.

3.	 Examine	the	metadata.rb	file	for	the	Git	cookbook,	and	download	the
cookbooks	upon	which	the	Git	cookbook	depends.

4.	 Recurse	through	each	downloaded	cookbook,	downloading	each	cook
dependency.

5.	 Ensure	all	the	cookbooks	are	on	the	cookbook	path.

6.	 Search	the	documentation	site	for	dna.json,	and	create	a	dna.json	file
containing	a	run	list	containing	the	default	recipe	from	both	the	irc	and	the
git	cookbooks.

7.	 Run	chef-solo	with	the	appropriate	arguments.

8.	 As	the	TDI	user,	find	or	locate	a	convenient	position	in	your	filesystem,	and
clone	the	https://github.com/opscode/chef-repo.git	repository.

9.	 Configure	Git	with	your	name	and	email	address.

10.	 Sign	up	for	a	GitHub	account	(if	you	don’t	have	one	already).

11.	 Create	an	ssh	key	pair,	and	upload	the	public	portion	to	GitHub.

12.	 Create	a	repository	called	chef-repo,	and	set	the	remote	origin	of	the	cloned
repository	to	this	new	repository.

13.	 Copy	your	cookbooks	into	the	cookbooks	directory	of	the	chef-repo,	add
them,	and	push	to	GitHub.

Worked	Example
I	ran	knife help cookbook site,	and	read	the	manual	page.	I	noted	an
install	option,	which	seemed	to	do	some	magic	with	Git.	Being	skeptical	of
magic,	I	read	on,	and	found	the	section	on	downloading	a	cookbook.	Having
digested	this,	I	ran	the	following:

$ cd

$ knife cookbook site download git

WARNING: No knife configuration file found

Downloading git from the cookbooks site at version 2.5.2 to homestephen/git-

2.5.2.tar.gz

Cookbook saved: homestephen/git-2.5.2.tar.gz

I	decided	that	if	I	were	going	to	have	multiple	cookbooks,	I	might	as	well	have	a
cookbooks	directory,	so	I	made	one,	and	updated	my	solo.rb:

$ mkdir ~/cookbooks

$ cat ~/.chef/solo.rb

cookbook_path "#{ENV['HOME']}/cookbooks"

I	moved	my	irc	cookbook	into	the	cookbooks	directory,	and	then	extracted	the
git	cookbook:

$ mv ~/irc ~/cookbooks

$ tar xzvf git-2.5.2.tar.gz -C cookbooks/

git/

git/.gitignore

git/.kitchen.yml

git/attributes/

git/Berksfile

git/CHANGELOG.md

git/CONTRIBUTING

git/Gemfile

git/LICENSE

git/metadata.json

git/metadata.rb

git/README.md

git/recipes/

git/templates/

git/TESTING.md

git/templates/default/

git/templates/default/git-xinetd.d.erb

git/templates/default/sv-git-daemon-log-run.erb

git/templates/default/sv-git-daemon-run.erb

git/recipes/default.rb

git/recipes/server.rb

git/recipes/source.rb

git/recipes/windows.rb

git/attributes/default.rb

I	looked	at	the	metadata.rb	of	the	cookbook	and	discovered	this:

%w{ dmg build-essential yum windows }.each do |cookbook|

 depends cookbook

end

depends "runit", ">= 1.0"

I	downloaded	these	dependencies	with	the	following:

$ for dep in dmg build-essential yum windows runit; do knife cookbook site download

$dep; tar xzvf $dep*gz -C cookbooks; done

I	then	recursed	into	these	cookbooks	as	follows:

$ cd cookbooks

$ grep depends */metadata.rb

git/metadata.rb: depends cookbook

git/metadata.rb:depends "runit", ">= 1.0"

runit/metadata.rb:depends "build-essential"

runit/metadata.rb:depends "yum"

windows/metadata.rb:depends "chef_handler"

And	downloaded	the	missing	dependency:

$ knife cookbook site download chef_handler && tar xzvf chef_handler*gz -C cookbooks

I	verified	that	this	in	turn	didn’t	have	a	dependency,	by	checking	its	metadata.rb
file.

Having	read	about	dna.json	(http://bit.ly/1fQWLQE),	I	created	a	dna.json	file	in
my	.chef	directory,	with	the	following	content:

{

 "run_list": ["recipe[irc]", "recipe[git]"]

}

Upon	running	Chef,	the	Git	package	was	successfully	installed:

$ sudo chef-solo --config ~/.chef/solo.rb --json-attributes ~/.chef/dna.json

Starting Chef Client, version 11.4.4

Compiling Cookbooks...

Converging 5 resources

Recipe: irc::default

 user[tdi] action create (up to date)

http://bit.ly/1fQWLQE

 package[irssi] action install (up to date)

 directory[hometdi/.irssi] action create (up to date)

 cookbook_file[hometdi/.irssi/config] action create (up to date)

Recipe: git::default

 * package[git] action install

 - install version 1:1.8.1.2-1 of package git

Chef Client finished, 1 resources updated

I	switched	to	the	tdi	user	(with	sudo	in	the	case	of	Ubuntu),	and	felt	that	the
root	of	the	tdi	home	directory	would	be	an	admirable	place	to	clone	the
Opscode	Git	repository.

$ sudo su - tdi

$ git clone git://github.com/opscode/chef-repo.git

Cloning into 'chef-repo'...

remote: Counting objects: 209, done.

remote: Compressing objects: 100% (128/128), done.

remote: Total 209 (delta 74), reused 170 (delta 47)

Receiving objects: 100% (209/209), 36.40 KiB, done.

Resolving deltas: 100% (74/74), done.

I	set	up	Git	to	use	my	name	and	address,	as	shown:

$ git config --global color.ui "auto"

$ git config --global user.email "stephen@atalanta-systems.com"

$ git config --global user.name "Stephen Nelson-Smith"

I	already	have	a	GitHub	account,	so	I	simply	created	a	key	pair:

$ ssh-keygen -t dsa -f tdi-example

Generating public/private dsa key pair.

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in tdi-example.

Your public key has been saved in tdi-example.pub.

The key fingerprint is:

98:fb:2d:c6:ff:66:76:ac:b0:da:1d:37:1e:92:ae:64 stephen@Stephens-MacBook-Air.local

The key's randomart image is:

+--[DSA 1024]----+

| |

| |

| |

| o |

| o S |

| . . |

| .. E +.+ |

| .+= =+=oo |

| .o+**=o. |

+-----------------+

To	add	my	key,	I	simply	logged	into	GitHub,	and	navigated	to
https://github.com/settings/ssh.	There	I	clicked	“Add	SSH	Key,”	gave	a	title,
pasted	the	public	key—which	was	created	in	my	working	directory—and	clicked
“Add	Key”.

I	then	clicked	the	“Create	a	new	repo”	button,	just	to	the	right	of	my	username,
and	created	a	repo	called	tdi-example.	I	gave	it	a	description,	and	clicked	the
button	to	create	the	repository.

I	then	changed	the	remote	URL	for	the	repository	I	cloned	to	match	the	one	I
created:

$ cd ~/chef-repo

$ git remote set-url origin git@github.com:atalanta-cookbooks/tdi-example

I	changed	back	to	a	user	with	appropriate	privileges	(root	or	sns	with	sudo)	and
returned	to	the	original	directory	where	I	had	created	my	cookbooks	directory
and	rsync’d	them	into	the	chef-repo/cookbooks	directory:

$ cd

$ sudo rsync -Pvar cookbooks/ hometdi/chef-repo/cookbooks/

$ sudo chown -R tdi: ~tdi/chef-repo

To	push	the	repo,	I	changed	back	to	the	tdi	user,	cached	my	ssh	key,	and	then
ran	git add	and	git push:

$ whoami

tdi

$ ssh-agent bash

$ ssh-add tdi-example

Identity added: tdi-example (tdi-example)

$ cd chef-repo/

$ git add cookbooks

$ git commit -m "Adding TDI cookbooks"

https://github.com/settings/ssh

$ git push -u origin master

The authenticity of host 'github.com (204.232.175.90)' can't be established.

RSA key fingerprint is 16:27:ac:a5:76:28:2d:36:63:1b:56:4d:eb:df:a6:48.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added 'github.com,204.232.175.90' (RSA) to the list of known

hosts.

Counting objects: 209, done.

Compressing objects: 100% (101/101), done.

Writing objects: 100% (209/209), 36.40 KiB, done.

Total 209 (delta 74), reused 209 (delta 74)

To git@github.com:atalanta-cookbooks/tdi-example

 * [new branch] master -> master

Branch master set up to track remote branch master from origin.

(((range="endofrange", startref="ix_2-Introduction-to-Chef-asciidoc14")))

(((range="endofrange", startref="ix_2-Introduction-to-Chef-asciidoc13")))

Discussion
Within	the	Chef	world,	pretty	much	everything	is	addressable	via	an	API.	This
extends	to	the	community	cookbook	site.	There	are	hundreds	of	cookbooks—
perhaps	now	even	more	than	a	thousand—available	on	the	community	cookbook
site.	Knife	provides	an	interface	to	the	site,	allowing	the	searching,
downloading,	and	sharing	of	cookbooks.	Although	for	the	purpose	of	this	series
of	exercises,	our	concern	is	to	learn	the	fundamentals	of	Chef	so	we’re	writing
recipes	ourselves,	a	fairly	standard	workflow	would	be	to	query	the	cookbooks
site	for	a	key	word,	and	then	inspect	or	use	an	open	source	cookbook.	To	pick	a
random	example,	suppose	I’d	been	discussing	setting	up	some	form	of	LDAP
service.	With	one	command,	I	immediately	have	a	set	of	candidate	cookbooks
written	using	a	framework	I	understand,	in	version	control,	rated	and	used	by
other	infrastructure	developers.	Even	if	I	decide,	having	reviewed	the	candidates,
to	write	(and	maybe	share)	my	own	cookbook,	I	have	the	work	of	other	people	to
inspire,	guide,	and	inform	me.

$ knife cookbook site search ldap

ca_openldap:

 cookbook: http://cookbooks.opscode.com/api/v1/cookbooks/ca_openldap

 cookbook_description: Configures a node to be an OpenLDAP server or client.

 cookbook_maintainer: carguel

 cookbook_name: ca_openldap

ldap:

 cookbook: http://cookbooks.opscode.com/api/v1/cookbooks/ldap

 cookbook_description: Installs/Configures ldap

 cookbook_maintainer: someara

 cookbook_name: ldap

ldapknife:

 cookbook: http://cookbooks.opscode.com/api/v1/cookbooks/ldapknife

 cookbook_description: Installs ldapknife.pl to usrlocal/bin

 cookbook_maintainer: jackl0phty

 cookbook_name: ldapknife

opendj:

 cookbook: http://cookbooks.opscode.com/api/v1/cookbooks/opendj

 cookbook_description: Installs OpenDJ LDAP server

 cookbook_maintainer: elliotkendall

 cookbook_name: opendj

opendj-openam:

 cookbook: http://cookbooks.opscode.com/api/v1/cookbooks/opendj-openam

 cookbook_description: Installs/Configures opendj

 cookbook_maintainer: thomasalrin

 cookbook_name: opendj-openam

openldap:

 cookbook: http://cookbooks.opscode.com/api/v1/cookbooks/openldap

 cookbook_description: Configures a server to be an OpenLDAP master, replication

slave or client for auth

 cookbook_maintainer: opscode

 cookbook_name: openldap

sssd_ldap:

 cookbook: http://cookbooks.opscode.com/api/v1/cookbooks/sssd_ldap

 cookbook_description: Installs/Configures LDAP on RHEL using SSSD

 cookbook_maintainer: tas50

 cookbook_name: sssd_ldap

zone2ldif:

 cookbook: http://cookbooks.opscode.com/api/v1/cookbooks/zone2ldif

 cookbook_description: Installs/Configures zone2ldif

 cookbook_maintainer: jackl0phty

 cookbook_name: zone2ldif

Once	a	cookbook	has	been	identified	as	worthy	of	further	investigation,	it	can	be
downloaded.	As	I	alluded	to	in	the	worked	example,	Chef	does	provide	a
somewhat	magical	install	subcommand,	which	will	install	upstream
community	cookbooks	to	a	local	Git	repository.	The	steps	it	takes	are	as	follows:
1.	 Create	a	fresh	pristine	copy	branch	for	tracking	upstream.

2.	 Remove	any	existing	cookbook	versions	from	the	branch.

3.	 Download	the	cookbook	tarball.

4.	 Extract	the	tarball	and	commits	the	contents	to	Git.

5.	 Merge	pristine	copy	into	master.

The	idea	is	that	upstream	changes	can	be	maintained	as	a	patch	and	merged	with
local	changes	when	needed.	This	pattern	was	pretty	common	in	CVS	and	is
called	“vendor	branching”	(see	http://bit.ly/19AU9os).	I	tend	not	to	recommend
this	approach.	First,	I	don’t	much	like	magic.	Git	is	complex.	Blindly	allowing
branching	and	merging	to	happen	without	clearly	understanding	what	is	going	on
is	a	recipe	for	future	pain.	I	also	don’t	tend	to	recommend	keeping	all	your
cookbooks	in	one	repository	for	anything	beyond	learning	the	basics,	and	the	site
install	mechanism	expects	you	to	be	already	within	a	Git	repository	when
running	the	command.	We’ll	discuss	this	in	more	depth	later,	but	for	now	I’d
caution	against	using	knife cookbook site install.	The	simplest	approach
is	to	use	the	download	subcommand,	which	simply	pulls	down	a	tarball	of	the
specified	cookbook	and	version.	You	can	then	extract	and	work	with	it	in	your
own	way.	Later	we’ll	discuss	more	powerful	ways	of	approaching	this	issue,
focused	particularly	on	treating	upstream	cookbooks	as	dependencies	and
artifacts,	rather	than	a	grab	bag	of	modifiable	source	code.	However,	for	now,
use	knife cookbook site download.

Cookbooks	are	effectively	the	packaging	system	for	infrastructure	code.	If
you’ve	ever	worked	with	a	packaging	system	before—RPM,	dpkg,	SVR4,	pkgsrc,
Rubygems—you	will	be	aware	that	there	is	a	known	set	of	problems	that	need	to
be	solved.	These	problems	include	how	to	express	dependencies	upon	other
cookbooks,	how	to	handle	versioning,	how	to	handle	potential	conflicts,	license
information,	discoverability,	and	so	forth.	The	common	component	of	all
approaches	to	the	solution	is	to	maintain	package	metadata	within	each	package.

Cookbook	dependencies	are	a	challenge	you	meet	very	quickly	when	you	start	to
build	on	and	use	community	cookbooks.	Unsurprisingly,	with	a	library	of	1,000+
high-quality	cookbooks,	cookbook	writers	tend	to	use	one	another’s	cookbooks
to	make	life	easy.	For	example,	one	cookbook	may	contain	functionality	for
service	management	(runit	or	daemontools),	and	another	for	managing	third-
party	upstream	package	repositories	(apt	or	yum).	A	cookbook	delivering	a
service	that	needs	process	management	across	platforms,	and	needs	to	configure
upstream	repositories,	might	well	make	use	of	the	yum,	apt,	and	runit	cookbooks

http://bit.ly/19AU9os

as	a	result.	It	gets	slightly	more	involved	when	Windows	and	OSX	are	included.
Additional	primitives	for	managing	Windows	and	OSX	are	provided	in
cookbooks,	and	not	yet	in	core	Chef.	The	Windows	cookbook	itself	depends	on
functionality	provided	by	the	Chef	Handler	cookbook.	All	these	dependencies
must	be	expressed	in	the	cookbook	metadata.	The	metadata	doesn’t	support
conditional	logic	so	we	can’t	say,	“If	this	machine	is	running	on	Linux,	we	don’t
need	the	Windows	or	OSX-specific	dependencies.”	This	means	that	in	the	case
of	a	cross-platform	community	cookbook,	you’ll	find	yourself	depending	on
cookbooks	for	a	platform	you’ll	never	use.	It’s	a	bit	of	a	bore,	but	it’s	not	a
solved	problem;	these	challenges	exist	in	all	packaging	solutions.

The	cookbook	metadata	file	is	another	Chef	DSL.	It’s	a	DSL	for	generating
JSON	that	Chef	uses	for	dependency	solving	and	package	management.	An
example	metadata	file	would	be:

name "windows"

maintainer "Opscode, Inc."

maintainer_email "cookbooks@opscode.com"

license "Apache 2.0"

description "Provides a set of useful Windows-specific primitives."

long_description IO.read(File.join(File.dirname(__FILE__), 'README.md'))

version "1.8.10"

supports "windows"

depends "chef_handler"

As	a	cookbook	author,	if	your	cookbook	makes	use	of	any	recipes	or	library
code	from	another	cookbook,	you	must	include	this	as	a	dependency	in	your
metadata.

Obviously,	this	manual	dependency	solving	is	a	bit	of	a	pain.	We’ll	introduce
tooling	that	removes	this	pain	later,	but	this	example	serves	to	demonstrate	how
the	dependencies	work	and	makes	their	existence	and	importance	explicit.

The	dna.json	file	introduces	an	important	new	concept—node	attributes.	An
attribute	is	that	which	inherently	belongs	to	and	can	be	predicated	of	anything.
The	sky	has	the	attribute	color: blue.	A	web	server	has	an	attribute:
listen_port: 80.	A	server	has	the	attribute	disks: 8.	Attributes,	therefore,	are
data	associated	with	the	node.

You’ll	remember	I	defined	a	node	as	a	Ruby	object	representing	the	machine

we’re	configuring.	This	object	behaves	like	a	Hash:	it	has	keys	and	values,	getter
and	setter	methods,	and	can	be	viewed,	queried,	and	interacted	with	as	JSON.
The	keys	and	values	are	referred	to	as	node	attribute	data.

Some	of	this	data	is	collected	automatically	by	Ohai,	such	as	the	hostname,	IP
address,	and	a	large	amount	of	other	pieces	of	information.	However,	arbitrary
data	can	be	associated	with	the	node	as	well.	Here	we	see	a	significant
implication	of	using	chef-solo.	With	chef-solo,	there	is	no	server;	there	is	no
persistent	state	that	records	the	attributes	of	the	node.	That	state	must	be	handed
to	Chef,	in	the	form	of	a	JSON	file.	In	our	simple	case,	the	only	attribute	that
we’re	setting	is	the	run_list	attribute.	However,	we	could	provide	any	number
of	keys	and	values.

Attributes	allow	sane	defaults	to	be	set	for	a	cookbook.	Rather	than	hardcoding
implementation	detail	in	a	recipe,	we	can	use	an	attribute	like	a	variable.	If	you
look	at	the	Git	cookbook	we	download,	you’ll	see	that	a	number	of	attributes	are
set	in	the	attributes/default.rb	file:

case node['platform_family']

when 'windows'

 default['git']['version'] = "1.8.1.2-preview20130201"

 default['git']['url'] = "https://msysgit.googlecode.com/files/Git-#{node['git']

['version']}.exe"

 default['git']['checksum'] =

"796ac91f0c7456b53f2717a81f475075cc581af2f447573131013cac5b63bb2a"

 default['git']['display_name'] = "Git version #{ node['git']['version'] }"

when "mac_os_x"

 default['git']['osx_dmg']['app_name'] = "git-1.8.2-intel-universal-snow-

leopard"

 default['git']['osx_dmg']['volumes_dir'] = "Git 1.8.2 Snow Leopard Intel

Universal"

 default['git']['osx_dmg']['package_id'] = "GitOSX.Installer.git182.git.pkg"

 default['git']['osx_dmg']['url'] = "https://git-osx-

installer.googlecode.com/files/git-1.8.2-intel-universal-snow-leopard.dmg"

 default['git']['osx_dmg']['checksum'] =

"e1d0ec7a9d9d03b9e61f93652b63505137f31217908635cdf2f350d07cb33e15"

else

 default['git']['prefix'] = "usrlocal"

 default['git']['version'] = "1.8.2.1"

 default['git']['url'] = "https://nodeload.github.com/git/git/tar.gz/v#

{node['git']['version']}"

 default['git']['checksum'] =

"bdc1768f70ce3d8f3e4edcdcd99b2f85a7f8733fb684398aebe58dde3e6bcca2"

end

default['git']['server']['base_path'] = "srvgit"

default['git']['server']['export_all'] = "true"

We’ll	cover	how	these	attributes	function	in	more	detail	shortly,	but	for	now,	I’d
draw	your	attention	to	the	conditional	logic.	The	node	has	an	attribute
platform_family.	This	comes	from	Ohai.	Ohai	is	able	to	determine	if	a
machine	is,	for	example,	of	Debian	flavor	or	Windows	flavor.	Based	on	that,	we
can	make	decisions	in	our	cookbooks	and	recipes.	In	this	case,	we’re	specifying
which	versions	of	Git	to	obtain	from	an	upstream	provider,	and	which
checksums	should	be	used	to	verify	that	we	obtained	the	correct	file.	Returning
briefly	to	the	metadata,	you’ll	also	note	that	the	metadata	specifies	which
platforms	the	cookbook	supports:

$ grep -C1 supports chef-repo/cookbooks/git/metadata.rb

%w{ amazon arch centos debian fedora redhat scientific oracle amazon ubuntu windows

}.each do |os|

 supports os

end

supports "mac_os_x", ">= 10.6.0"

Again,	as	a	cookbook	author,	you	should	specify	which	platforms	you	support.	If
you	don’t,	you’re	implicitly	stating	your	cookbook	supports	all	platforms,	which
is	almost	certainly	not	true.

So	we	set	the	run	list	to	be	an	array	of	recipes	in	order.	First	we	said	that	the
default	irc	recipe	should	be	applied,	and	then	the	default	git	recipe.	The	result
was	that	Git	was	installed	on	our	machine.

The	example	Opscode	chef-repo	contains	all	the	directories	you	will	need	and
work	with	as	part	of	your	regular	workflow	as	an	infrastructure	developer.	It	also
contains	a	Rakefile,	which	provides	some	useful	tasks,	such	as	creating	self-
signed	SSL	certificates.	In	practice,	you’re	unlikely	to	use	rake,	as	knife	will
do	more	than	99%	of	the	tasks	you’ll	find	yourself	needing	to	do.	The	chef-repo
pattern	is	somewhat	out	of	favor,	and	might	even	be	considered	an	anti-pattern.
The	reason	for	this	is	that	by	putting	absolutely	everything	in	a	single	repository,
we’re	mixing	temporal	data—things	that	might	change—with	versioned

artifacts.	It	also	runs	counter	to	the	Git	philosophy:	have	a	repository	for	each
software	project	and	keep	them	light	and	mobile.	Cookbooks	are	very	much
software	projects,	with	independent	versions,	tags,	development	teams,	and
purposes.	It	just	doesn’t	make	much	sense	to	stick	them	all	in	one	place.	The
emerging	recommendation	is	to	put	temporal	data	in	a	chef-data	repository	and
maintain	a	repository	per	cookbook.	This	makes	it	easy	to	track	upstream	by
adding	a	remote,	and	pulling	and	merging	when	required.	Note	that	this	is
without	the	magic	of	the	knife cookbook site install	command,	and	is	a
much	more	explicit	procedure.

However,	as	a	starting	point,	the	monolithic	Chef	repository	has	its	place.	It
gathers	everything	we	need	in	one	place.	For	users	new	to	the	idea	of	using
version	control	at	all,	let	alone	something	with	the	Byzantine	reputation	of	Git,
the	learning	curve	of	a	single	repository	is	pretty	low.	We	can	then	refactor	at	the
point	of	need—as	soon	as	we	start	to	feel	the	limitations	of	our	approach,	we
should	refactor—and	move	to	the	next	level.

Of	course	we	could	have	used	the	GitHub	fork	mechanism	within	the	web
interface	to	simplify	the	process	of	having	our	own	Chef	repository,	but	I	wanted
to	show	the	manual	process	and	support	the	ability	to	use	other	sources	of	Git
server—such	as	an	internally	hosted	Git	server	or	an	alternative	public	Git	serve,
such	as	Bitbucket.

In	the	next	chapter,	we’ll	build	on	the	work	done	here	by	installing	some
essential	tools	using	Chef.

[1]	Proxy	support	is	provided	in	Chef,	and	most	auxiliary	utilities,	but	it	can	be	a	bit	fiddly.	Improvements
are	ongoing,	and	there	are	frequent	discussions	on	the	Chef	mailing	lists,	and	IRC	and	GitHub	issues	that
will	be	relevant.	Basically,	you	will	be	able	to	get	up	and	running	if	you	do	have	a	proxy	server	in	your
environment,	but	it	would	be	better	for	me	to	direct	you	to	the	latest	discussion	and	details	rather	than
attempt	to	provide	a	guide	here,	which	will	almost	certainly	date,	rapidly.
[2]	The	original	line	is	from	Scott	Bellware.

http://harmful.cat-v.org/software/java

Chapter	4.	Using	Chef	with	Tools

In	the	last	chapter	we	installed	Chef	itself,	a	user,	an	IRC	client,	and	Git.	Now
we	move	on	to	develop	our	infrastructure	and	our	understanding	further	by
installing	and	using	Ruby,	VirtualBox,	and	Vagrant.

Exercise	1:	Ruby

Objectives
After	completing	this	exercise,	you	will:

Understand	the	differences	between	chef-solo	and	a	server-based	Chef
setup

Understand	the	node	object	in	more	detail

Be	set	up	to	use	Opscode’s	Hosted	Chef	service

Understand	the	authentication	mechanism	used	by	Hosted	Chef

Have	installed	a	modern	Ruby	on	your	system	using	Chef

Understand	the	roles	primitive	in	Chef

Understand	the	idea	of	attribute	precedence

Have	examined	the	components	of	a	Chef	run

Directions
1.	 Create	an	Opscode	community	login	(if	you	don’t	have	one	already).

2.	 Download	your	user’s	private	key.

https://community.opscode.com/users/new

3.	 Navigate	to	the	Hosted	Chef	Operations	Console.

4.	 Create	an	organization,	if	you	don’t	already	have	one,	selecting	the	free
tier.

5.	 Download	your	organization’s	validation	key.

6.	 Download	the	knife.rb	configuration	file	for	your	organization.

7.	 Create	a	.chef	directory	under	your	chef-repo	directory,	and	place	your	two
keys	and	knife.rb	inside	this	directory.

8.	 Read	the	knife configure	documentation,	and	use	it	to	create	a	client.rb
file	and	validation	certificate	in	etcchef.

9.	 Validate	your	setup	by	running	knife client list.

10.	 Look	at	the	chef-client	help	page,	and	identify	how	to	pass	JSON	to	a
chef-client	run.

11.	 Run	chef-client	with	the	dna.json	file	created	in	the	previous	exercise.

12.	 Upload	the	cookbooks	required	to	satisfy	the	run	list	to	the	Chef	server.

13.	 Run	chef-client	again	with	the	dna.json	file	created	in	the	previous
exercise.

14.	 Download	the	chruby,	ark,	and	ruby_build	cookbooks	and	place	them	in
your	chef-repo.

15.	 Upload	the	cookbooks	to	the	Chef	server.

16.	 Read	the	documentation	shipped	with	the	chruby	cookbook	to	understand
which	attributes	can	be	set.

17.	 Create	a	role	that,	in	addition	to	the	git	and	irc	recipes,	applies	the
system	recipe	from	the	chruby	cookbook,	and	set	the	attributes	to	install
the	latest	Ruby	1.9.3,	and	set	it	as	default.

https://manage.opscode.com

18.	 Upload	the	role	and	cookbooks	to	Hosted	Chef.

19.	 Update	the	node’s	run	list,	replacing	the	irc	and	git	recipes	with	the	role
you	created.

20.	 Run	chef-client.

21.	 Verify	that	your	user	has	the	version	of	Ruby	you	desired.

Worked	Example
I	already	have	an	Opscode	user	and	I	use	Hosted	Chef,	so	I	decided	I’d	create
another	user	for	the	purpose	of	demonstration.	I	browsed	to	the	community
website,	and	clicked	the	sign	up	link.

On	the	sign	up	page,	I	filled	out	the	form	with	a	username,	password,	name,
company	name,	country,	and	state,	and	agreed	to	the	terms	and	conditions.

This	took	me	to	a	welcome	page	that	read:
Your	new	Opscode	account	has	been	created,	but	some	features	of	your	account	will	not	work	until
you	verify	your	email	address.	To	complete	your	verification,	please	check	your	email.	Open	the
email	from	Opscode	and	click	the	enclosed	link.

It	also	read:
Your	User	Key

Opscode	uses	two	private	keys:	an	organization-wide	key	and	a	user	account-specific	key	(or	“user
key”).	Opscode	does	not	keep	a	copy	of	any	private	keys,	so	please	store	it	somewhere	safe.	Learn
more	about	private	keys	used	by	Chef.

A	private	key	was	displayed	on	the	screen.	However,	I’d	had	experiences	where
copying	and	pasting	the	key	gave	unexpected	results,	so	I	elected	to	download
the	key	as	a	file.	I	did	this	by	clicking	on	my	username	at	the	top-right	of	the
screen,	and	then	clicking	“Get	a	new	private	key.”

This	page	read:
Get	a	new	private	key

If	you’ve	lost	your	private	key,	or	would	like	to	replace	it,	click	the	button	below.	When	you	get	a	new
key,	your	old	key	will	stop	working.	This	private	key	replaces	your	old	key.	We	do	not	keep	a	copy	so
please	store	it	somewhere	safe.

I	clicked	“Get	a	new	key,”	and	the	key	was	downloaded	to	my	local	machine.

http://community.opscode.com

Next	I	checked	my	email,	and	found	one	that	read:
Hello	TDI	Example,

Thank	you	for	signing	up	with	us!

Please	click	this	link	to	verify	that	you’ve	signed	up	for	this	account:

https://community.opscode.com/users/tdiexample/email_addresses/30358/verification_requests/f8d32c8f-
2519-ee08-37ef-e3a21ed28e14

Your	Account	has	been	created	with	the	following	information:	User	Name	:	tdiexample	Email
Address	:	cookbooks@atalanta-systems.com

Thanks,	The	Opscode	Team

I	clicked	the	link	and	found	myself	on	a	landing	page	with	options	for	what	to	do
next:

Read	the	Getting	Started	Guide

Manage	your	org	with	the	Operations	Console

Need	Help?

I	selected	the	middle	option,	which	took	me	to	the	Opscode	Hosted	Chef
Operations	Console.	This	page	invited	me	to	create	an	organization.	I	filled	out
the	form	and	selected	the	free	tier.

On	the	resulting	page,	there	was	a	link	to	download	the	validation	key	and	to
generate	a	knife.rb.	I	clicked	both	links	and	saved	the	resulting	files.	At	the	end,
I	had	three	files:
tdiexample.pem

hunterhayes-validation.pem

knife.rb

I	created	a	.chef	directory	under	my	chef-repo	and	moved	these	three	files
under	it:

$ ls -1F chef-repo/.chef/

hunterhayes-validator.pem

knife.rb

tdiexample.pem

https://community.opscode.com/users/tdiexample/email_addresses/30358/verification_requests/f8d32c8f-2519-ee08-37ef-e3a21ed28e14
mailto:cookbooks@atalanta-systems.com

I	read	the	manual	page	for	knife configure	and	determined	that	knife
configure client	would	read	my	knife.rb	and	create	a	client.rb	file	and	a
validation	certificate.	I	ran	the	following	to	create	the	files:

$ knife configure client /tmp

Creating client configuration

Writing client.rb

Writing validation.pem

I	then	assumed	administrator	privileges,	ensured	the	etcchef	directory	existed,
and	copied	the	client.rb	and	validation.pem	files	into	the	etcchef	directory,	with
the	following	result:

find etcchef/

etcchef/

etcchef/validation.pem

etcchef/client.rb

I	returned	to	my	tdi	user,	changed	into	my	chef-repo	directory,	and	validated	my
setup	as	follows:

$ cd ~/chef-repo

$ knife client list

hunterhayes-validator

I	ran	chef-client --help	and	noted	that	with	the	-j, --json-attributes
flag,	I	could	pass	JSON	to	the	client.	Armed	with	this	knowledge,	I	returned	to
my	empowered	user	(sudo sns	or	root),	and	ran	the	following:

$ sudo chef-client -j .chef/dna.json

Starting Chef Client, version 11.4.4

[2013-06-27T09:25:51+01:00] INFO: *** Chef 11.4.4 ***

[2013-06-27T09:25:51+01:00] INFO: [inet6] no default interface, picking the first

ipaddress

Creating a new client identity for ubuntu using the validator key.

[2013-06-27T09:25:52+01:00] INFO: Client key etcchef/client.pem is not present -

registering

[2013-06-27T09:25:54+01:00] INFO: Setting the run_list to ["recipe[irc]",

"recipe[git]"] from JSON

[2013-06-27T09:25:54+01:00] INFO: Run List is [recipe[irc], recipe[git]]

[2013-06-27T09:25:54+01:00] INFO: Run List expands to [irc, git]

[2013-06-27T09:25:54+01:00] INFO: Starting Chef Run for ubuntu

[2013-06-27T09:25:54+01:00] INFO: Running start handlers

[2013-06-27T09:25:54+01:00] INFO: Start handlers complete.

resolving cookbooks for run list: ["irc", "git"]

[2013-06-27T09:25:55+01:00] INFO: HTTP Request Returned 412 Precondition Failed:

{"message"=>"Run list contains invalid items: no such cookbooks irc, git.",

"non_existent_cookbooks"=>["irc", "git"], "cookbooks_with_no_versions"=>[]}

==

Error Resolving Cookbooks for Run List:

==

Missing Cookbooks:

The following cookbooks are required by the client but don't exist on the server:

 irc

 git

Expanded Run List:

 irc

 git

[2013-06-27T09:25:55+01:00] ERROR: Running exception handlers

[2013-06-27T09:25:55+01:00] FATAL: Saving node information to varchef/cache/failed-

run-data.json

[2013-06-27T09:25:55+01:00] ERROR: Exception handlers complete

Chef Client failed. 0 resources updated

[2013-06-27T09:25:55+01:00] FATAL: Stacktrace dumped to varchef/cache/chef-

stacktrace.out

[2013-06-27T09:25:55+01:00] FATAL: Net::HTTPServerException: 412 "Precondition

Failed"

I	checked	the	cookbooks	I	had	in	my	cookbooks	directory:

$ ls -1F cookbooks

build-essential/

chef_handler/

dmg/

git/

irc/

README.md

runit/

windows/

yum/

And	uploaded	them	all	using:

$ knife cookbook upload -a

Uploading build-essential [1.4.0]

Uploading chef_handler [1.1.4]

Uploading dmg [1.1.0]

Uploading git [2.5.2]

Uploading irc [0.1.0]

Uploading runit [1.1.6]

Uploading windows [1.10.0]

Uploading yum [2.3.0]

Uploaded all cookbooks.

I	returned	to	my	power	user	and	ran	chef-client	again,	this	time	noting	that
the	node	converged,	but	without	taking	any	action,	as	the	system	was	already
configured	from	the	previous	chef-solo	exercise:

$ sudo chef-client -j .chef/dna.json

Starting Chef Client, version 11.4.4

[2013-06-27T09:41:40+01:00] INFO: *** Chef 11.4.4 ***

[2013-06-27T09:41:40+01:00] INFO: [inet6] no default interface, picking the first

ipaddress

[2013-06-27T09:41:41+01:00] INFO: Setting the run_list to ["recipe[irc]",

"recipe[git]"] from JSON

[2013-06-27T09:41:41+01:00] INFO: Run List is [recipe[irc], recipe[git]]

[2013-06-27T09:41:41+01:00] INFO: Run List expands to [irc, git]

[2013-06-27T09:41:42+01:00] INFO: Starting Chef Run for ubuntu

[2013-06-27T09:41:42+01:00] INFO: Running start handlers

[2013-06-27T09:41:42+01:00] INFO: Start handlers complete.

resolving cookbooks for run list: ["irc", "git"]

[2013-06-27T09:41:43+01:00] INFO: Loading cookbooks [build-essential, chef_handler,

dmg, git, irc, runit, windows, yum]

Synchronizing Cookbooks:

 - yum

 - build-essential

 - runit

 - chef_handler

 - windows

 - dmg

 - git

 - irc

Compiling Cookbooks...

Converging 5 resources

Recipe: irc::default

 user[tdi] action create[2013-06-27T09:41:43+01:00] INFO: Processing user[tdi]

action create (irc::default line 1)

 (up to date)

 package[irssi] action install[2013-06-27T09:41:43+01:00] INFO: Processing

package[irssi] action install (irc::default line 8)

 (up to date)

 directory[/home/tdi/.irssi] action create[2013-06-27T09:41:43+01:00] INFO:

Processing directory[/home/tdi/.irssi] action create (irc::default line 12)

 (up to date)

 cookbook_file[/home/tdi/.irssi/config] action create[2013-06-27T09:41:43+01:00]

INFO: Processing cookbook_file[/home/tdi/.irssi/config] action create (irc::default

line 17)

 (up to date)

Recipe: git::default

 * package[git] action install[2013-06-27T09:41:43+01:00] INFO: Processing

package[git] action install (git::default line 24)

 (up to date)

[2013-06-27T09:41:44+01:00] INFO: Chef Run complete in 1.996144727 seconds

I	finally	returned	to	the	tdi	user,	and	downloaded	the	chruby,	ark,	and
ruby_build	cookbooks	in	the	usual	way:

$ for cb in ark chruby ruby_build; do knife cookbook site download $cb && tar xvf

$cb*gz -C ~/chef-repo/cookbooks/; done

I	attempted	to	upload	the	cookbooks,	beginning	with	the	chruby	cookbook,	but
discovered	that	I	needed	to	upload	them	in	order:

$ knife cookbook upload chruby

Uploading chruby [0.1.5]

ERROR: Cookbook chruby depends on cookbook 'ark' version '>= 0.0.0',

ERROR: which is not currently being uploaded and cannot be found on the server.

I	checked	the	dependencies	in	the	metadata	file,	and	first	uploaded	the	cookbook
on	which	chruby	depended:

$ cd ~/chef-repo

$ knife cookbook upload {ark,ruby_build,chruby}

Uploading ark [0.2.2]

Uploading ruby_build [0.8.0]

Uploading chruby [0.1.5]

Uploaded 3 cookbooks.

I	read	the	documentation	of	the	chruby	cookbook,	and	identified	that	I	needed	to
specify	the	Rubies	I	wanted	to	install	and	the	version	I	wanted	to	use	by	default.
Armed	with	this	information,	I	created	a	role	as	follows:

$ cat developer.rb

name "developer"

description "For Developer machines"

run_list(

 "recipe[irc]",

 "recipe[git]",

 "recipe[chruby::system]"

)

default_attributes(

 "chruby" => {

 "rubies" => {

 "1.9.3-p392" => false,

 "1.9.3-p429" => true

 },

 "default" => "1.9.3-p429"

 }

)

I	uploaded	the	role	to	the	Chef	server	using	Knife:

$ knife role from file developer.rb

To	alter	the	run	list,	I	used	knife node edit.	This	required	me	to	set	an	EDITOR
environment	variable:

$ export EDITOR=vi

$ knife node edit ubuntu

$ knife node edit centos

I	updated	the	JSON	to	set	the	run	list	to	role[developer],	and	saved	the	file.
After	checking	the	run	list,	I	ran	chef-client:

$ knife node show centos -r

romanesco:

 run_list: role[developer]

$ sudo chef-client

Starting Chef Client, version 11.4.4

resolving cookbooks for run list: ["irc", "git", "chruby::system"]

Synchronizing Cookbooks:

 - runit

 - ruby_build

 - windows

 - irc

 - ark

 - yum

 - git

 - build-essential

 - chef_handler

 - dmg

 - chruby

Compiling Cookbooks...

Converging 22 resources

Recipe: irc::default

 user[tdi] action create (up to date)

 package[irssi] action install (up to date)

 directory[/home/tdi/.irssi] action create (up to date)

 cookbook_file[/home/tdi/.irssi/config] action create (up to date)

Recipe: git::default

 package[git] action install (up to date)

Recipe: ruby_build::default

 package[tar] action install (up to date)

 package[bash] action install (up to date)

 package[curl] action install (up to date)

 package[git-core] action install (skipped due to not_if)

 execute[Install ruby-build] action nothing (skipped due to not_if)

 directory[varchef/cache] action create (up to date)

 git[varchef/cache/ruby-build] action checkout (up to date)

Recipe: chruby::system

 ruby_build_ruby[1.9.3-p429] action installRecipe: <Dynamically Defined Resource>

 package[build-essential] action install

 - install version 11.6ubuntu4 of package build-essential

 package[bison] action install

 - install version 2:2.5.dfsg-3ubuntu1 of package bison

 package[openssl] action install (up to date)

 package[libreadline6] action install (up to date)

 package[libreadline6-dev] action install

 - install version 6.2-9ubuntu1 of package libreadline6-dev

 package[zlib1g] action install (up to date)

 package[zlib1g-dev] action install

 - install version 1:1.2.7.dfsg-13ubuntu2 of package zlib1g-dev

 package[libssl-dev] action install

 - install version 1.0.1c-4ubuntu8 of package libssl-dev

 package[libyaml-dev] action install

 - install version 0.1.4-2build1 of package libyaml-dev

 package[libsqlite3-0] action install (up to date)

 package[libsqlite3-dev] action install

 - install version 3.7.15.2-1ubuntu1 of package libsqlite3-dev

 package[sqlite3] action install

 - install version 3.7.15.2-1ubuntu1 of package sqlite3

 package[libxml2-dev] action install

 - install version 2.9.0+dfsg1-4ubuntu4 of package libxml2-dev

 package[libxslt1-dev] action install

 - install version 1.1.27-1ubuntu2 of package libxslt1-dev

[2013-06-02T20:47:16+00:00] WARN: Cloning resource attributes for package[autoconf]

from prior resource (CHEF-3694)

[2013-06-02T20:47:16+00:00] WARN: Previous package[autoconf]:

varchef/cache/cookbooks/ark/recipes/default.rb:25:in `from_file'

[2013-06-02T20:47:16+00:00] WARN: Current package[autoconf]:

varchef/cache/cookbooks/ruby_build/providers/ruby.rb:84:in `block in

install_ruby_dependencies'

 package[autoconf] action install

 - install version 2.69-1ubuntu1 of package autoconf

 package[libc6-dev] action install (up to date)

 package[ssl-cert] action install

 - install version 1.0.32 of package ssl-cert

 package[subversion] action install

 - install version 1.7.5-1ubuntu3 of package subversion

 execute[ruby-build[1.9.3-p429]] action run

 - execute usrlocalbinruby-build "1.9.3-p429" "optrubies/1.9.3-p429"

 package[build-essential] action nothing (up to date)

 package[bison] action nothing (up to date)

 package[openssl] action nothing (up to date)

 package[libreadline6] action nothing (up to date)

 package[libreadline6-dev] action nothing (up to date)

 package[zlib1g] action nothing (up to date)

 package[zlib1g-dev] action nothing (up to date)

 package[libssl-dev] action nothing (up to date)

 package[libyaml-dev] action nothing (up to date)

 package[libsqlite3-0] action nothing (up to date)

 package[libsqlite3-dev] action nothing (up to date)

 package[sqlite3] action nothing (up to date)

 package[libxml2-dev] action nothing (up to date)

 package[libxslt1-dev] action nothing (up to date)

 package[autoconf] action nothing (up to date)

 package[libc6-dev] action nothing (up to date)

 package[ssl-cert] action nothing (up to date)

 package[subversion] action nothing (up to date)

 execute[ruby-build[1.9.3-p429]] action nothing (up to date)

Recipe: ark::default

 package[unzip] action install

 - install version 6.0-8ubuntu1 of package unzip

 package[libtool] action install

 - install version 2.4.2-1.2ubuntu1 of package libtool

 package[rsync] action install (up to date)

 package[autoconf] action install (up to date)

 package[make] action install (up to date)

 package[autogen] action install

 - install version 1:5.17.1-1ubuntu2 of package autogen

Recipe: chruby::default

 ark[chruby] action install_with_makeRecipe: <Dynamically Defined Resource>

 directory[usrlocal/chruby-1] action create

 - create new directory usrlocal/chruby-1

 remote_file[varchef/cache/chruby.tar.gz] action create

 - copy file downloaded from [] into varchef/cache/chruby.tar.gz

 (new content is binary, diff output suppressed)

 execute[unpack varchef/cache/chruby.tar.gz] action nothing (up to date)

 execute[autogen usrlocal/chruby-1] action nothing (skipped due to only_if)

 execute[configure usrlocal/chruby-1] action nothing (skipped due to only_if)

 execute[make usrlocal/chruby-1] action nothing (up to date)

 execute[make install usrlocal/chruby-1] action nothing (up to date)

 execute[unpack varchef/cache/chruby.tar.gz] action run

 - execute bintar xzf varchef/cache/chruby.tar.gz --strip-components=1

 execute[autogen usrlocal/chruby-1] action run (skipped due to only_if)

 execute[configure usrlocal/chruby-1] action run (skipped due to only_if)

 execute[make usrlocal/chruby-1] action run

 - execute make

 execute[make install usrlocal/chruby-1] action run

 - execute make install

Recipe: chruby::default

 link[usrlocal/chruby] action create

 - create symlink at usrlocal/chruby to usrlocal/chruby-1

 template[etcprofile.d/chruby.sh] action create

 - create template[etcprofile.d/chruby.sh]

 --- tmpchef-tempfile20130602-3703-1u9rms9 2013-06-02 20:53:55.387078184

+0000

 +++ tmpchef-rendered-template20130602-3703-1jtacvw 2013-06-02

20:53:55.387078184 +0000

 @@ -0,0 +1,7 @@

 +source usrlocal/chruby/share/chruby/chruby.sh

 +source usrlocal/chruby/share/chruby/auto.sh

 +RUBIES+=(optchef/embedded)

 +

 +

 +

 +chruby 1.9.3-p429

Chef Client finished, 26 resources updated

Chef	ran,	installed	dependent	software,	and	compiled	and	made	Ruby	available.
I	verified	as	follows:

$ ruby --version

ruby 1.9.3p429 (2013-05-15 revision 40747) [x86_64-linux]

Discussion
At	its	simplest,	the	process	of	developing	infrastructure	with	Chef	looks	like
this:

Declare	policy	using	resources.

Collect	resources	into	recipes.

Package	recipes	and	supporting	code	into	cookbooks.

Apply	recipes	from	cookbook	to	nodes.

Run	Chef	to	configure	nodes.

A	useful	abstraction	in	this	process	is	the	idea	of	a	role.	A	role	is	a	way	of
characterizing	a	class	of	node.	If	you	could	hold	a	conversation	with	someone
and	refer	to	a	node	as	being	a	certain	type	of	machine,	you’re	probably	talking
about	a	node.	If	you	were	to	say	“zircon	is	a	mysql	slave”	you’d	be	talking	about
a	role	called	“mysql_slave”.

Of	all	the	primitives	available	in	Chef,	roles	are	at	the	top	of	the	evolutionary
tree.[3]	Everything	points	to	roles,	and	roles	can	encompass	everything.	In	this
respect,	what	they	achieve	is	arguably	the	most	important	concept	to	understand.
A	role	can	be	very	simple.	A	common	pattern	is	to	have	a	base	role,	which	every
machine	might	share.	This	could	be	responsible	for	configuring	an	NTP	server,
ensuring	Git	is	installed,	and	could	include	sudo	and	users.

Roles	are	composed	of	two	sections:	a	run	list	and	a	set	of	attributes.	In	this
respect,	they	mirror	nodes.	Nodes	are	objects	that	represent	the	machine	that	is
being	configured,	and	also	contain	a	set	of	attributes	and	a	run	list.

We’ve	already	encountered	the	run	list—it’s	simply	a	list	of	recipes	and/or	roles
that	should	be	present	on	the	node.	If	a	node	has	an	empty	run	list,	it	will	remain
unconfigured.	If	a	node	has	a	run	list	containing	the	memcached	recipe,	the
resources	and	actions	specified	in	that	recipe	will	be	applied	to	that	node.	This
process	is	known	as	node	convergence.	Importantly,	the	run	list	can	contain
recipes	or	roles,	resulting	in	the	ability	to	nest	roles	for	certain	types	of
infrastructure	modeling.

We’ve	also	touched	on	the	idea	of	attributes—attributes	are	data	associated	with
the	node.	Some	of	this	data	is	collected	automatically,	such	as	the	hostname,	IP
address,	and	a	large	amount	of	other	pieces	of	information.	However,	arbitrary
data	can	be	associated	with	the	node	as	well.	This	is	particularly	useful	for
specifying	configuration	defaults,	while	enabling	the	user	to	override	them	with
values	that	suit	themselves.	Cookbooks	are	typically	shipped	with	some	sane
default	values.	Roles	provide	an	opportunity	to	change	that	sane	default.	Any
machines	that	then	have	the	role	on	their	run	list	will	get	the	value	of	the
attribute	set	in	the	role	rather	than	the	one	set	by	default	in	the	cookbook.	In	our
case,	the	chruby	cookbook	set	the	version	of	Ruby	to	be	installed	to	a	patch

version	older	than	the	one	we	wanted,	and	also	elected	to	set	the	default	Ruby	to
the	one	embedded	with	the	Chef	package:

$ cat cookbooks/chruby/attributes/default.rb

default['chruby']['version'] = '0.3.4'

default['chruby']['gpg_check'] = false

default['chruby']['use_rvm_rubies'] = false

default['chruby']['use_rbenv_rubies'] = false

default['chruby']['auto_switch'] = true

default['chruby']['rubies'] = {'1.9.3-p392' => true}

default['chruby']['default'] = 'embedded'

default['chruby']['user_rubies'] = {}

We	didn’t	want	those	defaults,	so	we	changed	them	in	the	role:

default_attributes(

 "chruby" => {

 "rubies" => {

 "1.9.3-p392" => false,

 "1.9.3-p429" => true

 },

 "default" => "1.9.3-p429"

 }

)

So	far	in	our	examples,	we’ve	only	used	either	chef-solo	or	chef-apply.	This
is	fine,	in	that	it	allows	recipes	to	be	executed	on	an	individual	node	and	gives
access	to	the	core	recipe	DSL,	together	with	all	the	configuration	primitives	it
provides.	It’s	easy	to	get	started	with	these	tools,	and	it’s	fast.	It	also	provides
great	power	for	little	investment.	However	there	are	a	number	of	constraints	that
are	quickly	felt.

First,	chef-solo	doesn’t	have	a	trivial	implementation	of	persistent	node	data.
During	node	convergence,	the	data	produced	by	ohai	is	available,	but	any	other
data	needs	to	be	provided	in	the	form	of	JSON	files.	This	is	simple	enough	for	a
few	attributes	for	a	few	nodes,	but	it	quickly	becomes	a	pain	and	requires	the
creation	of	a	solution	to	store,	distribute,	and	update	these	JSON	files.	chef-
solo	can	take	the	JSON	from	an	HTTP	URL,	but	this	requires	the	construction
and	maintenance	of	that	service.

Second,	chef-solo	requires	that	the	cookbooks	be	provided	to	it	prior	to	node

convergence.	This	means	that	all	changes	to	cookbooks	need	to	be	distributed	to
all	nodes.	Additionally,	chef-solo	does	not	have	a	dependency	solver,	so	either
a	dependency	solver	needs	to	be	written	or	located	that	can	check	each
cookbook’s	metadata	and	ensure	that	the	required	cookbooks	are	delivered	to	the
node,	or	every	cookbook	is	delivered	for	good	measure.	Notwithstanding	the
realization	that	it	isn’t	very	elegant	or	efficient	to	do	this—sometimes	there	can
be	large	binary	files	in	cookbooks.	This	is	certainly	an	anti-pattern,	but	it’s	not
uncommon,	and	the	inability	to	select	which	cookbooks	are	or	are	not	needed	on
a	node	rapidly	gets	painful.	There	are	also	questions	around	the	security
implications	of	having	the	infrastructure	code	that	builds	your	entire
environment	on	every	server,	visible	in	the	event	of	a	compromise.	In	addition	to
this,	not	only	do	the	cookbooks	need	to	be	distributed	to	each	node,	a	careful
decision	needs	to	be	made	about	which	exact	versions	of	which	cookbooks	are
distributed	to	each	node.	It’s	not	unusual	to	run	different	versions	of	cookbooks
on	different	nodes—either	for	development	reasons,	or	simply	because	some
nodes	serve	a	subtly	different	purpose.	Accommodating	this	requirement	makes
the	cookbook	distribution	problem	exponentially	harder.	Again,	chef-solo	can
take	an	HTTP	URL,	and	the	cookbooks	can	be	cleared	away	afterwards,	but	now
there’s	another	service	that	needs	to	be	built,	and	for	which	access	control,
security,	and	hosting	need	to	be	considered.

Third,	one	of	the	core	ideas	of	Chef	is	that	there	should	be	a	canonical,
searchable	source	of	information	about	the	infrastructure	that	can	be	used
dynamically	to	build	infrastructure	accordingly.	In	simple	terms,	we	want	to	find
things	out	about	our	infrastructure.	We	want	to	be	able	to	ask	questions	such	as,
“Which	machines	have	the	web	server	role?”	or	“Tell	me	nodes	in	Rackspace
that	use	the	postgresql::client	recipe”.	We	also	want	to	be	able	to	look	at	a
record	of	convergence:	how	many	machines	haven’t	had	Chef	run	on	them	in	the
last	24	hours?	How	many	machines	are	running	a	certain	version	of	OpenSSL?
Using	a	server-based	implementation	immediately	provides	this	functionality—
every	node	attribute,	plus	arbitrary,	system-wide	data,	is	stored	and	indexed,	and
available	for	querying	at	any	stage.

The	result	of	these	constraints	is	that	people	determined	to	use	Chef	Solo	end	up
trying	to	build	the	basic	primitives	of	a	Chef	Server—node	storage,	search,	and
cookbook	distribution.

In	my	view,	it	boils	down	to	this:	a	significant	amount	of	thought	went	into
deciding	how	to	build	an	outstanding	automation	framework.	This	thought	was
informed	by	deep	experience	of	using	other	configuration	management
approaches	and	of	having	to	solve	infrastructure	automation,	at	scale	and
complexity,	across	a	large	number	of	different	technical	environments	and
commercial	applications.	A	significant	amount	of	thought	went	into	working	out
how	to	separate	data	and	configuration	to	allow	maximum	power	and	flexibility
in	modeling	infrastructure.	A	significant	amount	of	thought	went	into	how	to
model	the	storage	of	canonical	infrastructure	data.	The	result	of	that	thought
wasn’t	“let’s	write	a	DSL	and	ship	JSON	around	via	random	websites	or	Rsync
or	Git.”	The	solution	was	to	build	a	REST	API	with	a	dependency	solver,	an
index,	and	a	publishing	service.	This	is	the	function	of	the	Chef	Server.

The	Chef	Server	is	available	in	three	forms:

The	open	source	Chef	Server
Opscode	ships	a	free	version	of	the	Chef	Server	in	the	same	easy-to-use
format	as	the	Chef	Client	package.[4]	This	represents	the	reference	API	for
Chef	and	provides	all	the	core	functionality	that	is	required	to	build	and
maintain	infrastructure	with	Chef.	Certain	enterprise	features	around	security
and	access	control	are	not	available,	and	while	Opscode	remains	committed
to	trickling	down	advanced	features	as	they	are	developed,	there	is	a	time
delay,	and	under	certain	circumstances,	the	decision	may	be	made	that	a
feature	will	not	be	released	into	the	open	source	product	at	all.	When	running
the	open	source	Chef	Server	(OSC),	it	is	incumbent	upon	the	infrastructure
developer	or	sysadmin	to	configure	and	manage	each	instance	of	the	server
locally.	If	any	data	migrations	are	needed,	or	updates	or	patches	required,
these	must	be	carried	out.	Additionally,	ensuring	the	system	scales	in	line
with	the	infrastructure	it	supports	is	also	the	responsibility	of	the	engineer(s)
who	elected	to	use	OSC.	Support	is	available	from	within	the	Chef
community;	Opscode	does	not	directly	support	users	of	OSC.

Hosted	Chef
Hosted	Chef	(OHC)	is	a	fully	managed,	multitenant,	highly	available	version
of	a	Chef	Server	that	is	hosted	by	Opscode.	OHC	is	cloud-based,	very
scalable,	supported	24/7/365.	It	includes	enterprise	features	such	as	resource-
based	access	control	and,	on	account	of	its	design,	allows	for	multiple
sandboxed	servers	to	be	run	in	one	location.	Functionally	identical	to	OSC,

Hosted	Chef	has	the	advantage	of	not	needing	any	local	setup	or
management.

Private	Chef
Private	Chef	(OPC)	is	effectively	the	same	code	base	as	OHC,	delivered	on-
premise,	to	be	run	behind	your	firewall.	Managed	by	the	purchasing
organization	with	support	from	Opscode,	OPC	is	identical	to	OHC.	Hosted
Chef	is	the	largest	Private	Chef	deployment	in	the	world.

Space	does	not	permit	a	detailed	discussion	of	setting	up	and	running	a	local
Chef	server,	however,	Opscode	provides	Omnibus	packages	and	a	fully	featured
configuration	toolkit.	The	documentation	is	excellent,	and	support	from	the
community	is	equally	good.	For	our	examples,	we’re	going	to	use	Hosted	Chef.

I’ve	emphasized	a	number	of	times	already—the	Chef	framework,	at	its	core,	is
simply	a	REST	API.	Every	single	interaction	with	the	Chef	server	is	over	HTTP
using	the	API.	This	means	that	every	time	you	interact	with	the	Chef	server	you
are	using	an	API	client.	This	includes	the	web	interface,	which	is	itself	an	API
client.	A	Chef	client	running	on	a	node	we	are	managing	is	also	an	API	client,	as
is	the	Knife	command-line	utility.	The	Chef	Shell	can	also	function	as	an	API
client.	However,	the	need	to	secure	API	traffic	is	paramount,	especially	in	a
hosted,	multitenant	environment.	For	this	reason,	each	API	transaction	is
digitally	signed,	and	each	API	client	needs	a	valid	identity	in	order	to	interact
with	the	Chef	server,	and	to	authenticate	using	RSA	public/private	key	pairs.

The	authentication	process	is	designed	to	ensure	the	API	request	has	not	been
tampered	with,	is	from	the	client	claiming	to	make	the	request,	and	has	arrived	in
reasonable	time,	not	having	been	subjected	to	a	replay	attack.	To	achieve	this,	a
string	is	compiled	by	combining	four	pieces	of	data	to	form	a	unique	signature,
and	then	encrypted	with	a	private	RSA	key.	This	is	decrypted	on	the	server	side
and	validated.	The	data	used	to	form	the	signature	includes	the	HTTP	method,
the	timestamp,	the	API	client	ID,	and	the	request	body	itself.	This	requires	every
API	client	to	have	its	own	public/private	key	pair.

Because	Hosted	Chef	is	multitenant,	there	needs	to	be	a	way	to	divide	up	API
requests	into	meaningful	groups.	Hosted	Chef	uses	the	idea	of	organizations	to
achieve	this.	An	organization	is	like	a	sandboxed	Chef	server	and	represents	a
way	of	grouping	bits	of	infrastructure	that	you	wish	to	manage	using	Chef.	You

http://docs.opscode.com/install_server.html

can	think	of	it	as	your	own	dedicated	Chef	server	in	the	cloud.	In	Hosted	Chef,
when	you	read	“organization,”	you	can	think	“dedicated	Chef	server.”

Each	organization	has	its	own	private	key.	This	key	can	be	considered	the	master
key;	it	is	the	key	that	enables	other	API	clients	to	be	granted	keys.	Sometimes
called	the	validation	key,	it	must	be	kept	safe—without	it,	your	ability	to	interact
with	Hosted	Chef	will	be	restricted.	Although	it	can	be	regenerated	from	the	web
console,	it	still	needs	to	be	kept	very	secure,	as	it	allows	unlimited	use	of	the
platform,	which	could	be	very	dangerous	in	the	wrong	hands.

Users	of	Hosted	Chef	also	need	an	Opscode	user	account.	An	Opscode	user
account	is	shared	across	the	Opscode	Platform,	the	Hosted	Chef	Management
Console,	the	community	site,	and	Opscode’s	support	page.	This	user	also	has	a
public/private	key	pair	that	is	used	to	authenticate	with	the	Chef	server.	Usually
this	interaction	will	use	the	Knife	command-line	tool;	however,	using	that	key,
you	can	make	direct	API	calls	if	you	so	desire.	As	an	API	client,	Knife	needs	a
configuration	file:	knife.rb.	Amongst	other	settings,	this	specifies	the	URL	of	the
API,	and	where	to	find	the	private	key	for	the	API	requests.

As	an	infrastructure	developer,	you	want	to	be	able	to	build	new	machines	using
Chef.	This	means	you	need	to	be	able	to	create	new	API	clients	for	nodes	you
wish	to	configure,	and	key	pairs	for	authentication.	To	do	this,	there	is	a	special
sort	of	API	client	called	a	validation	client.	This	is	used	in	the	situation	where	an
API	client	cannot	yet	make	authenticated	requests	to	the	server	because	it	lacks
an	identity	and	a	key	pair.	This	key	is	highly	powerful	and	allows	the	creation	of
API	clients.

Your	Opscode	user	is	associated	with	one	or	more	organizations,	allowing	you	to
interact	with	the	API	either	directly	or	via	Knife.	Similarly,	the	validation	client
is	also	tied	directly	to	an	organization.

To	summarize,	these	five	components	are	required	to	operate	with	Hosted	Chef:
An	Opscode	user,	which	grants	access	to	the	Hosted	Chef	Management
Console

An	organization—effectively	a	sandboxed,	dedicated	Chef	Server	in	the
cloud

A	private	key	associated	with	your	Opscode	user	and	used	by	Knife	to

http://www.opscode.com/support

interact	with	the	Chef	server

A	validation	client	(and	key)	with	the	power	to	create	API	clients	for	an
organization

A	Knife	configuration	file,	ensuring	you	interact	with	the	correct
organization	using	the	correct	keys

We	satisfied	these	requirements	in	our	example	by	ensuring	we	had:
Our	Opscode	user’s	private	key

Membership	of	an	organization

The	validation	key	for	the	organization

A	knife.rb	configuration	file

As	an	infrastructure	developer,	the	majority	of	your	interaction	with	the	Chef
server	is	via	the	Knife	command-line	tool.	Let’s	take	a	look	at	the	knife.rb	file
that	was	generated	and	downloaded	from	the	operations	console:

$ cat .chef/knife.rb

current_dir = File.dirname(__FILE__)

log_level :info

log_location STDOUT

node_name "tdiexample"

client_key "#{current_dir}/tdiexample.pem"

validation_client_name "hunterhayes-validator"

validation_key "#{current_dir}/hunterhayes-validator.pem"

chef_server_url "https://api.opscode.com/organizations/hunterhayes"

cache_type 'BasicFile'

cache_options(:path => "#{ENV['HOME']}/.chef/checksums")

cookbook_path ["#{current_dir}/../cookbooks"]

We’ve	already	seen	that	most	of	Chef’s	configuration	files	are	written	in	Ruby.
This	is	no	exception.	Let’s	pick	this	file	apart	a	little.

First	we	set	the	current_dir	directory	to	the	directory	in	which	the	knife.rb	file
resides.	Then	we	set	the	log	level	and	location;	these	can	be	safely	left	at	their
defaults.	The	node_name	is	a	slightly	confusing	term,	but	in	your	Knife
configuration	this	basically	maps	to	your	Opscode	Username.	We	next	set	the

path	of	the	client	key	to	be	the	same	location	as	where	we	have	our	knife.rb.	We
also	specify	that	the	validation	key	is	in	the	same	place,	and	we	explicitly	name
the	validation	client.	The	Chef	Server	URL	is	always	the	same—it’s	just
api.opscode.com	with	the	organization	tacked	on	the	end.	Cache	type	and	cache
options	again	can	be	overlooked,	and	finally	we	tell	Knife	that	our	cookbooks
are	found	in	a	directory	called	cookbooks	in	the	directory	above	the	location	of
our	Knife	config	file	and	our	keys.	All	this	represents	standard	Ospcode
convention,	which	can	be	met	by	ensuring	the	following	are	in	place:

A	directory	called	chef-repo

Another	directory	called	.chef	inside	the	chef-repo	directory

Knife	config	and	keys	located	inside	the	.chef	directory

Be	in	your	chef-repo	directory	when	using	Knife

This	file,	then,	allows	the	tdiexample	user	to	interact	with	the	Chef	API	for	the
hunterhayes	organization.	Incidentally,	the	tdiexample	user,	being	a	global
Opscode	user,	is	also	handy	for	a	number	of	other	interactions.	It	can	be	used	to
interact	with	other	Chef	users	on	the	Opscode	community	portal,	and	also	it	is
your	mechanism	for	logging	into	the	Hosted	Chef	operations	console,	which
provides	a	useful	web	interface	to	your	infrastructure.

A	little	more	on	the	subject	of	organizations:	organizations	are	a	convenient	way
of	grouping	together	related	systems	that	are	going	to	be	managed	using	Chef.	In
actual	fact,	a	system	cannot	be	managed	unless	it	belongs	to	an	organization,	and
an	Opscode	user	cannot	do	anything	meaningful	without	also	being	associated
with	an	organization.	Users	can	belong	to	more	than	one	organization,	and	can
be	invited	to	join	the	organizations	belonging	to	other	users.	As	each
organization	has	a	private	key	associated	with	it,	knife	needs	to	be	configured
on	a	per	organization	basis.	At	some	stage,	you	may	find	you	need	to	work	with
many	organizations.	In	that	case,	something	akin	to	the	following	knife.rb	may
be	a	convenient	solution:

current_dir = File.dirname(__FILE__)

user = ENV['OPSCODE_USER'] || ENV['USER']

log_level :info

http://community.opscode.com

log_location STDOUT

node_name user

client_key "#ENV['HOME']}/.chef/#{user}.pem"

validation_client_name "#{ENV['ORGNAME']}-validator"

validation_key "#{ENV['HOME']}/.chef/#{ENV['ORGNAME']}-validator.pem"

chef_server_url "https://api.opscode.com/organizations/#{ENV['ORGNAME']}"

cache_type 'BasicFile'

cache_options(:path => "#{ENV['HOME']}/.chef/checksums")

cookbook_path ["#{current_dir}/../cookbooks"]

This	allows	you	to	keep	all	Chef-related	keys	in	a	.chef	directory	in	the	home
directory.	This	has	the	added	benefit	of	preventing	the	accidental	checking-in	of
user	keys	into	Git!	All	that	is	required	to	use	knife	is	to	export	the	ORGNAME	and
OPSCODE_USER	environment	variables	in	your	shell,	and	then	to	be	the	username
you	used	to	sign	up	for	the	Opscode	community	pages.	For	example:

$ export ORGNAME=hunterhayes

$ export OPSCODE_USER=tdiexample

With	the	keys	and	Knife	configuration	file	in	place,	we	can	now	test	that	we	can
successfully	speak	to	the	Chef	server.	The	simplest	approach	is	to	ask	the	Chef
server	which	API	clients	it	knows	about.	If	chef-client	has	not	been	run	on
any	servers,	the	only	client	it	would	know	about	is	the	so-called	validation
client.	Since	by	now	we’ve	run	chef-client	on	our	machine,	we	should	also
see	our	own	machine	in	the	client	list.	Consequently,	running	knife client
list	should	yield	an	entry,	matching	the	organization	name	you	set	up	on
Hosted	Chef,	and	the	name	of	your	machine:

$ knife client list

hunterhayes-validator

romanesco

An	important	workflow	difference	between	chef-solo	and	using	a	Chef	server
is	that	when	using	a	Chef	server,	it’s	necessary	to	publish	or	upload	cookbooks
to	the	Chef	server.	Then,	when	Chef	runs,	the	Chef	server	can	solve
dependencies	and	make	available	whatever	cookbooks	are	needed.	The	chef-
client	then	downloads	the	required	cookbooks	and	converges	the	node.	The
process	of	uploading	the	cookbooks	to	the	Chef	server	is	achieved	using	knife

cookbook upload.	You’ll	have	noticed	in	our	example,	the	Chef	server	rejected
the	chruby	cookbook,	when	the	cookbooks	upon	which	chruby	depended	were
not	on	the	Chef	server.	Later	in	the	book,	I’ll	introduce	a	workflow	that	removes
these	headaches,	both	in	terms	of	downloading	and	uploading	cookbooks,	but	for
now	the	important	concept	to	grasp	is	simply	that	dependencies	exist	between
cookbooks,	and	all	cookbooks	in	the	dependency	chain	need	to	be	on	the	Chef
server.	While	the	Chef	server	solves	dependencies	for	the	chef-client	run,
Knife	does	not;	it	is	necessary	for	you	to	either	solve	the	dependencies	yourself
(or	with	a	tool,	as	we’ll	see	later),	or	rely	on	error	messages	from	the	Chef
server.

Let’s	quickly	run	through	the	steps	that	are	followed	when	Chef	is	run	on	a	node,
and	compare	and	contrast	chef-client	and	chef-solo:
1.	 Build	the	node

2.	 Synchronize	cookbooks

3.	 Compile	the	resource	collection

4.	 Converge	the	node

5.	 Notify	and	handle	exceptions

Remember,	the	node	is	a	Ruby	object	that	represents	the	machine	we’re
configuring.	It	contains	attributes	and	a	run	list.	This	object	is	rebuilt	every	time,
merging	input	from	the	local	machine	(via	Ohai,	the	system	profiler	that
provides	basic	information	about	the	node),	the	Chef	API	(which	contains	the
last	known	state	of	the	node),	and	attributes	and	run	lists	from	roles.	In	the	case
of	chef-solo,	since	there	is	no	API	to	speak	to,	information	about	the	node
must	be	passed	directly	to	chef-solo	in	the	form	of	JSON.

Cookbooks	contain	a	range	of	data—recipes,	attributes,	and	other	supporting
data	and	code.	chef-client	requests	this	data	via	an	API	call.	The	Chef	server
performs	some	complex	dependency	management	and	serves	only	those
cookbooks	that	are	required	for	the	node	in	question.	By	contrast,	chef-solo
simply	ingests	every	cookbook,	either	from	the	local	filesystem	or	over	HTTP.

The	resource	collection,	which	we	mentioned	in	our	introductory	discussion,	is
simply	a	list	of	resources	that	will	be	used	to	configure	the	node.	In	addition	to
the	results	of	each	evaluated	recipe	(and	strictly	speaking	before),	supporting
code	and	attributes	are	loaded.	This	step	is	the	same	for	chef-solo	and	chef-
client.

Once	the	resource	collection	has	been	compiled,	the	required	actions	are	taken

by	the	appropriate	providers.	chef-client	then	saves	the	node	status	back	to
the	server,	where	it	is	indexed	for	search.	chef-solo	takes	no	such	action	by
default,	and	although	community	projects	exist	to	extend	chef-solo	in	this
direction,	my	feeling	is	that	once	you	start	wanting	to	use	the	full	power	of	Chef
to	index	nodes	for	search	and	provide	an	API-addressable	source	of	information
in	this	manner,	it’s	time	to	bite	the	bullet	and	use	the	tool	in	the	way	it	was
fundamentally	designed	to	be	used.

Finally,	once	the	run	has	completed,	action	is	taken	dependent	upon	whether	the
run	was	successful	or	not.	Chef	provides	the	ability	to	write	and	use	custom
reporting	and	exception	handlers,	allowing	sophisticated	reporting,	analytics,
and	notification	strategies	to	be	developed.	We’ll	cover	this	in	a	bit	more	detail
later,	as	this	capability	opens	up	some	very	interesting	opportunities	for	making
and	verifying	assertions	about	the	Chef	run.

We	can	see	these	steps	in	the	output	of	the	Chef	run:

Starting Chef Client, version 11.4.4

resolving cookbooks for run list: ["irc", "git", "chruby::system"]

Synchronizing Cookbooks:

 - runit

 - ruby_build

 - windows

 - irc

 - ark

 - yum

 - git

 - build-essential

 - chef_handler

 - dmg

 - chruby

We	don’t	see	the	node	being	built	at	this	log	level.	Had	we	run	with	-l debug
we’d	have	seen	output	like	this:

[2013-06-03T12:11:36+01:00] INFO: *** Chef 11.4.4 ***

[2013-06-03T12:11:36+01:00] DEBUG: Loading plugin os

[2013-06-03T12:11:36+01:00] DEBUG: Loading plugin kernel

[2013-06-03T12:11:36+01:00] DEBUG: Loading plugin ruby

[2013-06-03T12:11:36+01:00] DEBUG: Loading plugin languages

...

This	is	ohai	profiling	the	system.	After	all	the	plugins	finish,	we’d	see,	among
other	things,	lines	like	these:

[2013-06-03T12:11:36+01:00] DEBUG: Building node object for romanesco

[2013-06-03T12:11:37+01:00] DEBUG: Extracting run list from JSON attributes provided

on command line

[2013-06-03T12:11:37+01:00] DEBUG: Applying attributes from json file

[2013-06-03T12:11:37+01:00] DEBUG: Platform is ubuntu version 13.04

Returning	to	the	output	from	our	non-debug	chef-client	run,	we	see:

Compiling Cookbooks...

Converging 22 resources

We	then	see,	for	each	recipe,	the	resources,	and	what	was	done.	For	example:

Recipe: irc::default

 user[tdi] action create (up to date)

 package[irssi] action install (up to date)

 directory[/home/tdi/.irssi] action create (up to date)

 cookbook_file[/home/tdi/.irssi/config] action create (up to date)

Here,	Chef	takes	no	action	(idempotence);	we’ve	already	applied	the	default	irc
recipe	to	the	node,	using	chef-solo.	The	providers	can	see	that	the	system	is	in
the	desired	state,	so	chef-client	does	not	need	to	do	anything.

However,	in	the	Recipe: chruby::system	recipe,	we	see	action	being	taken:

 package[build-essential] action install

 - install version 11.6ubuntu4 of package build-essential

 package[bison] action install

 - install version 2:2.5.dfsg-3ubuntu1 of package bison

...

* execute[ruby-build[1.9.3-p429]] action run

 - execute usrlocalbinruby-build "1.9.3-p429" "optrubies/1.9.3-p429"

We	also	need	to	the	final	step—handling	reporting	and	exceptions—under	debug
mode	to	see	the	following:

[2013-06-03T12:32:07+01:00] INFO: Chef Run complete in 5.191436914 seconds

[2013-06-03T12:32:07+01:00] INFO: Running report handlers

[2013-06-03T12:32:07+01:00] INFO: Report handlers complete

The	standard	handlers	are	just	to	print	to	screen,	but	this	is	configurable	to	send
email,	alert	via	IRC	or	Hipchat,	make	a	Nabaztag	Rabbit’s	ear	flap,	or	whatever
you	feel	is	appropriate!

The	fundamental	additions	that	are	necessary	to	these	steps	when	using	a	Chef
server	are	those	around	authentication.	New	users	tend	to	find	this	a	little
perplexing,	but	it’s	not	actually	that	tricky	to	understand.	I	liken	it	to	a	scenario
in	which	a	group	of	people	want	to	have	a	drink	in	a	private	members	bar.	I’m	a
member	of	such	an	establishment	in	Oxford.	If	I	want	to	find	somewhere	quiet	to
sit	down,	have	a	drink,	and	read	the	newspaper,	I	can	do	so	with	ease.	The
authentication	process	looks	like	this:

Me: Good morning!

Doorkeeper: Good morning, sir, may I see your members' card?

Me: Certainly...<fx>presents membership card</fx>

Doorkeeper: Thank you very much, sir.

Now,	suppose	a	friend	of	mine	wants	to	meet	me	for	coffee	and	a	chat.	The
authentication	process	looks	like	this:

Friend: Good morning!

Doorkeeper: Good morning, sir, may I see your member's card?

Friend: I'm sorry, I'm not a member.

Doorkeeper: I'm sorry, sir, this is a members' only club.

Friend: Actually I'm meeting a friend here. I believe you have a guest policy?

Doorkeeper: That's correct, sir. May I take your name?

Friend: George Romney.

Doorkeeper: Very good, sir. And the member you are meeting?

Friend: Stephen Nelson-Smith.

Doorkeeper: Please wait a moment, sir.

Doorkeeper (to me): Sir, do you know a gentleman by the name of George Romney?

Me: Absolutely, I'm meeting him for coffee.

Doorkeeper (to friend): Come with me, please, sir.

Now,	my	friend	might	like	the	club	so	much,	that	he	decides	to	join.	In	which
case,	I	can	recommend	him,	he	can	fill	out	the	appropriate	forms,	pay	his
membership	fee,	and	join	the	club.	Thereafter	if	he	wants	to	spend	time	in	the
club,	the	authentication	process	looks	like	this:

George: Good morning!

Doorkeeper: Good morning, sir, may I see your member's card?

George: Certainly...<fx>presents membership card</fx>

Doorkeeper: Thank you very much, sir.

The	final	option,	of	course,	looks	like	this:

Chancer: Hello!

Doorkeeper: Good morning, sir, may I see your member's card?

Chancer: Oh, I'm sorry, I forgot it...

Doorkeeper: I'm sorry, sir, without your membership card, I can't permit you to

enter.

Chancer: Oh...but I know...umm...John Smith!

Doorkeeper (consults records): I'm sorry, I don't have a record of John Smith, sir.

Chancer: Umm...I know...George Romney!

Doorkeeper: Please wait a moment, sir.

Doorkeeper (to George): Sir, do you know a gentleman by the name of Chancer?

George: No! Never heard of him!

Doorkeeper (to Chancer): I'm sorry, sir, we can't help you. Have a splendid day.

This	process	is	very	similar	to	the	process	that	happens	when	chef-client
authenticates	against	the	Chef	server.	For	a	machine	that	is	an	existing	API	client
and	has	a	client	key,	the	discussion	looks	like	this:

Node: Hello Chef server, I'd like to use your API, please.

Server: Do you have a private key?

Node: I do! Here it is!

Server: Great, let me just use that to sign your request, and we'll be converging in

no time!

In	the	case	of	a	brand	new	node,	which	we	wish	to	set	up	to	speak	to	a	Chef
server,	the	discussion	looks	like	this:

Node: Hello Chef server, I'd like to use your API, please.

Server: Do you have a private key?

Node: I'm sorry, not yet.

Server: OK...do you have an organization's validation key?

Node: I do! Here it is!

Server: Excellent, bear with me one moment while I create a key for you. OK, here's

your client key for future reference. Let's get converging!

The	final	case	looks	like	this:

Node: Hello Chef server, I'd like to use your API, please.

Server: Do you have a private key?

Node: I'm sorry, not yet.

Server: OK...do you have an organization's validation key?

Node: I'm sorry, I don't.

Server: Then I'm afraid I can't help you.

We	can	see	this	transaction	in	the	debug	log,	too.	If	we	run	Chef	again,	we’ll	see
the	client	key	has	been	created	and	is	used	to	sign	requests:

[2013-06-03T12:11:36+01:00] DEBUG: Client key etcchef/client.pem is present -

skipping registration

[2013-06-03T12:11:36+01:00] DEBUG: Building node object for romanesco

[2013-06-03T12:11:36+01:00] DEBUG: Signing the request as romanesco

If	I	install	and	run	Chef	on	a	completely	new	machine,	we	see:

Creating a new client identity for ip-10-35-147-80.eu-west-1.compute.internal using

the validator key.

[2013-06-03T11:46:53+00:00] INFO: Client key etcchef/client.pem is not present -

registering

==

Chef encountered an error attempting to create the client "ip-10-35-147-80.eu-west-

1.compute.internal"

==

When	I	make	the	client.rb	file	available,	but	not	the	validation.pem,	we	see:

[2013-06-03T11:49:18+00:00] INFO: Client key etcchef/client.pem is not present -

registering

[2013-06-03T11:49:18+00:00] WARN: Failed to read the private key

etcchef/validation.pem: #<Errno::ENOENT: No such file or directory -

etcchef/validation.pem>

[2013-06-03T11:49:18+00:00] FATAL: Chef::Exceptions::PrivateKeyMissing: I cannot

read etcchef/validation.pem, which you told me to use to sign requests!

And	when	I	make	both	the	client.rb	and	validation.pem	files	available	we	see:

[2013-06-03T11:51:30+00:00] INFO: Client key etcchef/client.pem is not present -

registering

[2013-06-03T11:51:30+00:00] DEBUG: Signing the request as hunterhayes-validator

...

[2013-06-03T11:51:32+00:00] DEBUG: Signing the request as ip-10-35-147-80.eu-west-

1.compute.internal

The	one	final	aspect	that	is	different	with	Chef	server	is	that	upon	successful
completion	of	a	Chef	run,	the	node	object	is	saved	on	the	Chef	server,	recording
the	state	of	the	machine	and	its	attributes,	indexing	them	for	search.	We	can
search	for	data	using	knife search:

$ knife search node 'platform:ubuntu'

2 items found

Node Name: carrot

Environment: default

FQDN: ip-10-228-118-28.eu-west-1.compute.internal

IP: 54.246.56.172

Run List: role[developer]

Roles: developer

Recipes: irc, git, chruby::system

Platform: ubuntu 13.04

Tags:

Node Name: romanesco

Environment: default

FQDN: romanesco

IP: 192.168.26.2

Run List: recipe[developer]

Roles:

Recipes: developer

Platform: ubuntu 13.04

Tags:

A	full	discussion	of	the	search	facilities	of	Chef	is	outside	the	scope	of	this	book.
Refer	to	the	Chef	documentation	for	further	examples	and	explanation.

The	attributes	system	in	Chef	is	one	of	the	most	complex	facets	of	the	Chef
framework.	First,	a	quick	recap:	an	attribute	is	that	which	inherently	belongs	to
and	can	be	predicated	of	anything.	They	describe	the	detail	of	a	machine	we’re
configuring	and	have	three	underlying	purposes:	they	can	be	used	to	indicate	the
current	state	of	a	node;	they	can	be	used	to	store	the	state	of	the	node	when	Chef
last	ran	and	the	node	object	was	saved;	and	they	can	be	used	to	specify	desired
state—the	state	the	machine	should	be	in	after	Chef	runs.

Digging	a	little	deeper,	attributes	have	a	type,	corresponding	to	the	source	of	the

data.	We	can	derive	attributes	from	five	places:

The	node	itself	(via	ohai,	or	by	knife node edit)

Attribute	files	in	a	cookbook

Recipes	in	a	cookbook

Roles

Environments

Additionally,	in	each	of	these	five	places,	there	are	up	to	six	types	of	attributes
that	can	be	set.	When	Chef	runs,	all	these	sources	and	types	are	merged	together,
and	Chef	calculates	what	the	definitive	state	of	the	node	attribute	list	should	be.
At	the	end	of	the	Chef	run,	this	is	saved	and	indexed	for	search.

The	result	is	a	rather	complex	matrix	of	precedence.	The	rationale	for	this	lies	in
the	philosophical	position	of	the	creators	of	Chef.	The	underpinning	view	is	that
the	tool	should	provide	power	and	flexibility.	Chef	provides	the	framework	and
the	primitives.	The	infrastructure	developer	is	the	expert;	they	are	in	possession
of	domain	knowledge,	and	understand	deeply	the	various	unique	ways	in	which
the	configuration	of	the	systems	they	manage	relate	to	one	another.	All	Chef
needs	to	know	is	the	desired	state,	how	to	achieve	it,	and	what	the	functionality
of	that	intended	state	should	be,	once	achieved.	The	cost	of	this	flexible
philosophy	is—at	times—a	complex	implementation	lurking	beneath	the
surface.	Thankfully,	the	design	of	Chef	is	such	that	for	the	vast	majority	of	cases,
you	need	never	know	about	or	use	the	hidden	depths	of	flexibility,	and	can	thrive
on	a	few	simple	rules.

For	the	gory	details,	please	see	the	Opscode	documentation.	However,	the
general	rules	are	as	follows:

Set	sane	defaults	in	your	cookbook	attribute	files,	using	the	default	method:

default['apache']['dir'] = 'etcapache2'

Overwrite	the	sane	defaults	either	on	a	per	role	basis,	using	the
default_attributes	method:

http://docs.opscode.com/chef_overview_attributes.html

default_attributes({ "apache" => {"dir" => "etcapache2"}})

Or	overwrite	the	sane	defaults	within	a	so-called	wrapper	cookbook,	either	in
a	recipe	with	the	node.default	method	or	in	an	attribute	file	with	the
normal	method:

node.default["apache"]["dir"] = "etcapache2"

normal["apache"]["dir"] = "etcapache2"

If	you	need	to	set	an	attribute	on	the	basis	of	a	calculation	or	expression	in	a
recipe,	use	the	node.override!	method:

node.override!["something"]["calculated"] = some_ruby_expression

These	rules	of	thumb	will	serve	you	more	than	80%	of	the	time.	By	the	time	you
realize	you	need	something	more	flexible,	you’ll	have	enough	experience	and
understanding	to	work	out	the	right	approach	from	the	documentation.

This	has	been	a	pretty	content-heavy	discussion.	I	recommend	you	read	over	the
example	again	and	digest	the	information	presented	in	this	section.	Take	a	coffee
break—go	on,	you	deserve	it!

Exercise	2:	Virtualbox
So	far	the	infrastructure	we’ve	built	has	provided	the	following:

An	installation	of	the	various	Chef	client	tools	and	commands

An	unprivileged	tdi	user

The	Git	source	code	management	system

A	Git	repository	containing	a	mixture	of	community	and	hand-built
cookbooks

An	IRC	client,	preconfigured	to	allow	you	to	ask	for	help	in	any	of	the	main
channels

A	modern	version	of	Ruby

As	well	as	providing	a	useful	set	of	tools	for	future	work,	building	this
infrastructure	has	allowed	us	to	cover	many	of	the	fundamentals	of	Chef.	We’re
now	going	to	put	in	place	the	final	pieces	that	will	allow	us	to	iterate	more
quickly	on	cookbook	development	using	local	virtualization.

If	you’ve	been	unable	to	follow	the	examples	up	to	this	point,	as	long	as	you
have	installed	Chef,	you	should	be	able	to	get	started	here,	as	we’re	going	to	be
using	community	cookbooks	for	both	VirtualBox	and	Vagrant,	both	of	which
support	Windows	and	OSX.

Objectives
Upon	completing	this	exercise	you	will	have:

VirtualBox	installed	on	your	local	machine

Familiarity	with	using	Lightweight	Resources	and	Providers	(LWRPs)

An	understanding	of	how	to	structure	resource	declarations	for	multiplatform
support

Directions
1.	 Install	the	Chef	Rubygem.

2.	 Download	and	extract	the	VirtualBox	cookbook	from	the	community	site.

3.	 Solve	any	dependencies	recursively	and	ensure	all	cookbooks	are	in	your
chef-repo.

4.	 Upload	the	new	cookbooks	to	the	Chef	Server.

5.	 Open	up	the	default	recipe	in	the	VirtualBox	and	look	at	the	resources.

6.	 Update	the	developer.rb	role	and	append	the	default	VirtualBox	recipe	to
the	run	list,	and	upload	the	role	to	the	Chef	server.

7.	 If	you’re	on	a	Red	Hat–derived	system,	ensure	your	kernel,	kernel	headers,
and	kernel	devel	packages	are	in	sync.

8.	 Run	chef-client.

9.	 Verify	VirtualBox	installed	correctly	by	running	vboxmanage list vms.

Worked	example
I	installed	the	Chef	Ruby	gem	as	follows:

$ gem install chef --no-ri --no-rdoc

Fetching: mixlib-config-1.1.2.gem (100%)

Fetching: mixlib-cli-1.3.0.gem (100%)

Fetching: mixlib-log-1.6.0.gem (100%)

Fetching: mixlib-authentication-1.3.0.gem (100%)

Fetching: mixlib-shellout-1.1.0.gem (100%)

Fetching: systemu-2.5.2.gem (100%)

Fetching: yajl-ruby-1.1.0.gem (100%)

Building native extensions. This could take a while...

Fetching: ipaddress-0.8.0.gem (100%)

Fetching: ohai-6.16.0.gem (100%)

Fetching: mime-types-1.23.gem (100%)

Fetching: rest-client-1.6.7.gem (100%)

Fetching: net-ssh-2.6.7.gem (100%)

Fetching: net-ssh-gateway-1.2.0.gem (100%)

Fetching: net-ssh-multi-1.1.gem (100%)

Fetching: highline-1.6.19.gem (100%)

Fetching: erubis-2.7.0.gem (100%)

Fetching: chef-11.4.4.gem (100%)

Successfully installed mixlib-config-1.1.2

Successfully installed mixlib-cli-1.3.0

Successfully installed mixlib-log-1.6.0

Successfully installed mixlib-authentication-1.3.0

Successfully installed mixlib-shellout-1.1.0

Successfully installed systemu-2.5.2

Successfully installed yajl-ruby-1.1.0

Successfully installed ipaddress-0.8.0

Successfully installed ohai-6.16.0

Successfully installed mime-types-1.23

Successfully installed rest-client-1.6.7

Successfully installed net-ssh-2.6.7

Successfully installed net-ssh-gateway-1.2.0

Successfully installed net-ssh-multi-1.1

Successfully installed highline-1.6.19

Successfully installed erubis-2.7.0

Successfully installed chef-11.4.4

17 gems installed

Downloading	and	extracting	the	VirtualBox	cookbook	was	a	straightforward
matter	of	using	the	following:

$ cd

$ knife cookbook site download virtualbox

$ tar xzvf virtualbox*gz -C chef-repo/cookbooks

I	checked	the	metadata,	as	previously,	and	identified	that	I	needed	the	apt
cookbook,	so	I	obtained	this,	and	uploaded	the	two	cookbooks	to	the	Chef
server:

$ cd ~/chef-repo

$ knife cookbook site download apt

$ tar xzvf apt*gz -C cookbooks

$ knife cookbook upload {apt,virtualbox}

I	opened	the	default	recipe	and	looked	at	the	resources,	noting	that	this	recipe
included	conditional	logic,	and	new	resources	that	we	hadn’t	yet	investigated.

I	updated	the	developer	role,	adding	the	virtualbox	recipe	to	the	run	list:

name "developer"

description "For Developer machines"

run_list(

 "recipe[irc]",

 "recipe[git]",

 "recipe[chruby::system]",

 "recipe[virtualbox]"

)

default_attributes(

 "chruby" => {

 "rubies" => {

 "1.9.3-p392" => false,

 "1.9.3-p429" => true

 },

 "default" => "1.9.3-p429"

 }

)

I	uploaded	the	role:

$ knife role from file roles/developer.rb

On	my	CentOS	machine,	I	ensured	I	was	running	the	latest	kernel,	and	installed
the	kernel-devel	package	to	match	the	kernel:

yum -y update

yum -y install kernel-devel

uname -r

2.6.32-358.el6.x86_64

rpm -q kernel-{devel,headers}

kernel-devel-2.6.32-358.11.1.el6.x86_64

kernel-headers-2.6.32-358.11.1.el6.x86_64

From	previous	experience,	I	opted	to	reboot	the	system,	as	I’ve	found	without
doing	so,	the	VirtualBox	kernel	modules	don’t	install.	When	the	system	came
back	up,	I	ran	chef-client	and	observed	the	resources	taking	action,	and	the
repository	and	packages	being	set	up	accordingly.	I	verified	that	VirtualBox	was
operational	using	the	vboxmanage -version	and	vboxmanage list vms
command:

[root@centos]# VBoxManage -version

4.2.12r84980

[root@centos]# VBoxManage list vm

sns@ubuntu:~$ VBoxManage -version

4.2.12r84980

sns@ubuntu:~$ VBoxManage list vms

I	also	checked	that	the	vboxdrv	service	was	running:

sns@ubuntu:~$ sudo service vboxdrv status

VirtualBox kernel modules (vboxdrv, vboxnetflt, vboxnetadp, vboxpci) are loaded.

[root@centos ~]# service vboxdrv status

VirtualBox kernel modules (vboxdrv, vboxnetflt, vboxnetadp, vboxpci) are loaded.

WARNING
At	the	time	of	this	writing,	there’s	a	bug	introduced	in	VirtualBox	4.12.14,	which	breaks	the
import	functionality.	In	practice,	this	means	that	Vagrant	and	VirtualBox	4.12.14	won’t
function	together.	My	expectation	is	that	by	the	time	you	read	this,	the	bug	will	be	fixed,	and
you’ll	get	version	4.12.16	or	some	such,	and	everything	will	work.	However,	if	it	doesn’t,
you’ll	need	to	downgrade	to	4.12.12.	There	isn’t	an	easy	way	to	do	this	in	the	current

VirtualBox	cookbook,	so	you’ll	probably	need	to	do	that	manually.	Hopefully	this	issue	will	be
fixed	by	the	time	you	read	this,	but	I	include	this	note	by	way	of	warning.	For	more	details,	see
https://www.virtualbox.org/ticket/11895	and	https://github.com/mitchellhvagrantissues/1850.

Discussion
VirtualBox	is	a	freely	available	virtualization	tool,	originally	created	by	innotek
GmbH,	purchased	by	Sun	Microsystems	(before	Oracle’s	purchase	of	Sun)	and
now	maintained	and	developed	by	Oracle.	Although	not	ideal	for	heavy
workloads,	it’s	very	handy	for	testing	systems.	VirtualBox	emulates	PC-like
hardware	and	allows	various	operating	systems	to	be	installed	and	tested
alongside	one	another	on	one	host	operating	system.	We’re	installing	it,	as	it’s	a
simple	and	free	virtualization	backend	to	Vagrant,	which	we’ll	introduce	in	the
next	exercise.

The	VirtualBox	cookbook	is	pretty	straightforward.	It	simply	sets	up	the	relevant
Oracle	package	repository	and	then	installs	the	VirtualBox	package.	The	two
noteworthy	items	are	the	way	multiplatform	support	is	implemented,	and	the	use
of	lightweight	resource	providers	in	the	default	recipe.

If	we	look	at	the	default	recipe,	we’ll	see	some	basic	conditional	logic	in	place:

case node['platform_family']

when 'mac_os_x'

 sha256sum = vbox_sha256sum(node['virtualbox']['url'])

 dmg_package 'VirtualBox' do

 source node['virtualbox']['url']

 checksum sha256sum

 type 'mpkg'

 end

when 'windows'

 sha256sum = vbox_sha256sum(node['virtualbox']['url'])

 win_pkg_version = node['virtualbox']['version']

 Chef::Log.debug("Inspecting windows package version: #{win_pkg_version.inspect}")

 windows_package "Oracle VM VirtualBox #{win_pkg_version}" do

 action :install

 source node['virtualbox']['url']

https://www.virtualbox.org/ticket/11895
https://github.com/mitchellh<i>vagrant</i>issues/1850

 checksum sha256sum

 installer_type :custom

 options "-s"

 end

when 'debian'

 apt_repository 'oracle-virtualbox' do

 uri 'http://download.virtualbox.org/virtualbox/debian'

 key 'http://download.virtualbox.org/virtualbox/debian/oracle_vbox.asc'

 distribution node['lsb']['codename']

 components ['contrib']

 end

 package "virtualbox-#{node['virtualbox']['version']}"

 package 'dkms'

when 'rhel'

 yum_key 'oracle-virtualbox' do

 url 'http://download.virtualbox.org/virtualbox/debian/oracle_vbox.asc'

 action :add

 end

 yum_repository 'oracle-virtualbox' do

 description 'Oracle Linux RHEL CentOS-$releasever $basearch - VirtualBox'

 url 'http:/download.virtualbox.org/virtualbox/rpm/el/$releasever/$basearch'

 end

 package "VirtualBox-#{node['virtualbox']['version']}"

end

Platform	family	is	a	convenient	method	that	allows	infrastructure	developers	to
test	whether	the	node	under	management	matches	one	of	the	listed	“families”—
for	example	rhel	or	debian.	This	is	then	used	to	execute	different	resources	based
on	the	value.

Now	if	we	look	at	the	default	attribute	file,	we’ll	see	similar	logic	to	set	the
correct	URL	for	the	package	repositories	from	which	the	packages	will	be
downloaded:

default['virtualbox']['url'] = ''

default['virtualbox']['version'] = ''

case node['platform_family']

http://docs.opscode.com/dsl_recipe_method_platform_family.html

when 'mac_os_x'

 default['virtualbox']['url'] =

'http://download.virtualbox.org/virtualbox/4.2.8/VirtualBox-4.2.8-83876-OSX.dmg'

when 'windows'

 default['virtualbox']['url'] =

'http://download.virtualbox.org/virtualbox/4.2.8/VirtualBox-4.2.8-83876-Win.exe'

 default['virtualbox']['version'] = Vbox::Helpers.vbox_version(node['virtualbox']

['url'])

when 'debian', 'rhel'

 default['virtualbox']['version'] = '4.2'

end

Within	these	conditional	blocks,	the	resources	make	use	of	platform-specific
providers—apt_repository,	windows_package,	yum_repository,	and	so	on.
These	are	examples	of	Lightweight	Resource	Providers	(LWRPs).

If	we	think	about	the	way	Chef	operates	at	its	core,	it	breaks	down	to	resources
and	providers.	Every	yin	has	its	yang,	and	every	resource	has	its	provider.	Like
any	great	two-person	team—Watson	and	Holmes,	Cagney	and	Lacey,	Bostridge
and	Drake—one	would	be	ineffective	without	the	other.	Behind	the	scenes	of
every	resource,	there	is	Ruby	code	in	the	core	Chef	libraries,	which	knows	how
to	take	the	actions	we	specified.	Not	only	that,	it	knows	how	to	take	those
actions	on	any	platform.	It	knows	how	to	create	users	on	Windows,	Solaris,
FreeBSD,	and	Linux.	It	knows	how	to	install	packages	on	distributions	like
Debian,	CentOS,	Gentoo,	and	Suse.	It	also	knows	how	to	check	if	the	action	has
already	been	taken,	how	to	verify	whether	the	node	is	already	in	the	desired
state.	However,	there	are	only	a	few	dozen	resources	and	providers	built	into
Chef.	Not	infrequently,	there	comes	a	time	when	we	want	to	abstract	a	repeated
pattern	of	behavior	with	a	declarative	interface,	but	find	that	no	Chef	resource
exists	for	this.	Sometimes	this	happens	when	we	realize	we’re	making	the	same
set	of	calls	to	resources,	and	we’d	like	to	tidy	them	up.	Sometimes	we	might
need	to	call	specialist	library	code	to	perform	an	action,	but	we’d	like	to	address
this	in	the	recipe	DSL.	There	are	a	large	number	of	these	use	cases	dotted
throughout	the	community	and	Opscode	cookbooks.

I	remember	many	years	ago,	as	a	keen	Puppet	user,	I	wanted	to	be	able	to
manage	some	Solaris	machines	that	used	pkgsrc	as	the	main	package
management	system.	I	understood	I	would	need	to	create	a	provider	for	this,	but
the	process	was	very	difficult	for	me	at	the	time.	I	needed	to	understand	how	the

internals	of	Puppet	functioned,	and	then	I’d	have	had	to	monkey-patch	Puppet,
or	submit	pull	requests,	and	wait	for	my	changes	to	be	accepted	and	then
released.	Really	all	I	wanted	to	do	was	run	pkg-add	with	a	few	arguments.	I
gave	up.

Chef	provides	a	DSL	for	building	resources	and	providers,	with	the	aim	of
making	it	easy	to	extend	Chef	with	custom	resources	and	providers,	or	to	chain
existing	resources	and	providers	together	to	carry	out	a	given	task.	There	isn’t
scope	in	the	present	work	to	cover	the	writing	of	LWRPs,	and	the	examples	used
here—especially	the	yum	or	apt	examples—are	probably	more	complex	than	I’d
like	at	this	stage.	However,	you’ll	come	across	these	in	community	cookbooks,
and	soon	enough	you’ll	want	to	write	your	own.

Exercise	3:	Vagrant
VirtualBox	is	a	powerful,	easy-to-use,	and	flexible	desktop	virtualization
solution.	However,	initial	setup	and	ongoing	maintenance	of	virtual	machines
(VMs)	is	rather	a	pain.	Vagrant	takes	that	pain	away	by	providing	a	convenient
command-line	wrapper	around	creating	and	managing	virtual	machines.	The
Vagrant	documentation	provides	a	good	summary	of	what	Vagrant	provides,	and
how	it	works:
Vagrant	provides	easy	to	configure,	reproducible,	and	portable	work	environments	built	on	top	of
industry-standard	technology	and	controlled	by	a	single	consistent	workflow	to	help	maximize	the
productivity	and	flexibility	of	you	and	your	team.

To	achieve	its	magic,	Vagrant	stands	on	the	shoulders	of	giants.	Machines	are	provisioned	on	top	of
VirtualBox,	VMware,	AWS,	or	any	other	provider.	Then,	industry	standard	provisioning	tools	such	as
shell	scripts,	Chef,	or	Puppet	can	be	used	to	automatically	install	and	configure	software	on	the
machine.

—	http://docs.vagrantup.com/v2/why-vagrant/

Objectives
Upon	completing	this	section,	you	will	have:

Vagrant	installed	on	your	local	machine

A	CentOS	basebox	downloaded	and	available

An	understanding	of	how	to	start,	stop,	and	interact	with	Vagrant	boxes

An	understanding	of	the	Vagrant	plug-in	architecture

Installed	the	vagrant-omnibus	plug-in

Used	vagrant ssh	to	connect	to	a	machine

Become	familiar	with	the	Vagrantfile,	which	configures	the	behavior	of
Vagrant

Familiarity	with	the	idea	of	a	platform-based	role

Directions
1.	 Download	and	extract	the	vagrant	cookbook.

2.	 Browse	to	http://downloads.vagrantup.com,	select	the	latest	release,	and
then	identify	the	URL	to	the	download	package.

3.	 Create	a	role	for	your	platform	family	(e.g.,	windows,	rhel,	or	debian).

4.	 Set	the	default[vagrant][url]	to	the	URL	of	the	appropriate	download	for
your	platform	in	your	platform	role.

5.	 Append	the	default	vagrant	recipe	to	the	run	list	in	the	developer	role,
and	prepend	the	platform	role	to	the	run	list	of	your	node.

6.	 Upload	the	roles	and	Vagrant	cookbook	to	the	Chef	server.

7.	 Run	chef-client	on	your	machine.

8.	 Identify	the	URL	of	a	CentOS	base	box	for	your	architecture	from	GitHub.

9.	 Read	the	vagrant box add	documentation.

10.	 Add	a	Vagrant	box	called	opscode-centos-6.4-yourarch.

11.	 Read	the	vagrant init	documentation.

12.	 Make	a	temporary	directory,	and	initialize	it	for	Vagrant	use	with	the	box
you	added.

http://downloads.vagrantup.com
https://github.com/opscode/bento#current-baseboxes
http://docs.vagrantup.com/v2/cli/box.html
http://docs.vagrantup.com/v2/cli/init.html

13.	 Read	the	vagrant up	documentation.

14.	 Launch	the	Vagrant	box.

15.	 Read	the	vagrant ssh	documentation.

16.	 Connect	to	the	Vagrant	machine,	check	the	kernel	and	Chef	version,	then
exit	again.

17.	 Read	the	vagrant plug-in	documentation.

18.	 Install	the	omnibus-berkshelf	plug-in,	read	its	documentation,	and
integrate	it	with	Vagrant.

19.	 Read	the	vagrant destroy	documentation.

20.	 Destroy	and	recreate	the	box,	then	connect,	checking	the	kernel	and	Chef
version	again.

Worked	Example
As	the	tdi	user,	I	downloaded	and	extracted	the	Vagrant	cookbook	in	the	usual
way:

$ cd

$ knife cookbook site download vagrant

$ tar xzvf vagrant*gz -C chef-repo/cookbooks

I	checked	on	the	Vagrant	downloads	page	and	selected	version	1.2.2.	I	noted	the
packages	for	both	RPM	and	.deb	packages.

I	created	a	role	for	the	Ubuntu	machine	as	follows:

name "debian"

description "Attributes specific to the Debian platform family"

run_list(

)

default_attributes(

 "vagrant" => {

 "url" =>

http://docs.vagrantup.com/v2/cli/up.html
http://docs.vagrantup.com/v2/cli/ssh.html
http://docs.vagrantup.com/v2/cli/plugin.html
http://docs.vagrantup.com/v2/cli/destroy.html
http://downloads.vagrantup.com

"http://files.vagrantup.com/packages/7e400d00a3c5a0fdf2809c8b5001a035415a607b/vagrant_1.2.2_x86_64.deb"

 }

)

I	created	a	role	for	the	CentOS	machine	as	follows:

$ cat roles/rhel.rb

name "rhel"

description "Attributes specific to the RHEL platform family"

run_list(

)

default_attributes(

 "vagrant" => {

 "url" =>

"http://files.vagrantup.com/packages/7e400d00a3c5a0fdf2809c8b5001a035415a607b/vagrant_1.2.2_i686.rpm"

 }

)

I	altered	the	developer	role	to	be	as	follows:

$ knife role show developer

chef_type: role

default_attributes:

 chruby:

 default: 1.9.3-p429

 rubies:

 1.9.3-p392: false

 1.9.3-p429: true

description: For Developer machines

env_run_lists:

json_class: Chef::Role

name: developer

override_attributes:

run_list:

 recipe[irc]

 recipe[git]

 recipe[chruby::system]

 recipe[virtualbox]

 recipe[vagrant]

I	edited	the	run	list	of	the	machine	to	appear	as	follows:

$ knife node show ubuntu -r

tk00.cheftraining.eu:

 run_list:

 role[debian]

 role[developer]

$ knife node show centos -r

tk01:

 run_list:

 role[rhel]

 role[developer

I	uploaded	the	roles	and	the	cookbook:

$ knife role from file roles/{debian,developer,rhel}.rb

Updated Role debian!

Updated Role developer!

Updated Role rhel!

$ knife cookbook upload vagrant

Uploading vagrant [0.2.0]

Uploaded 1 cookbook.

I	ran	Chef	and	observed	the	relevant	recipe	being	applied:

Recipe: vagrant::rhel

 remote_file[varchef/cache/vagrant.rpm] action create

 - copy file downloaded from [] into varchef/cache/vagrant.rpm

 (file sizes exceed 10000000 bytes, diff output suppressed)

 rpm_package[vagrant] action install

 - install version 1.2.2-1 of package vagrant

 * rpm_package[vagrant] action install (up to date)

Chef Client finished, 3 resources updated

I	looked	on	the	Bento	page	and	selected	a	64-bit	box,	and	having	read	the
vagrant box add,	vagrant init,	vagrant up,	vagrant ssh,	vagrant
plugin,	and	vagrant destroy	documentation,	added	a	box	as	follows:

vagrant box add opscode-centos-6.4-x86_64 https://opscode-

vm.s3.amazonaws.comvagrantopscode_centos-6.4_provisionerless.box

Downloading or copying the box...

Extracting box...te: 1537k/s, Estimated time remaining: 0:00:01)

Successfully added box 'opscode-centos-6.4-x86_64' with provider 'virtualbox'!

Next	I	made	a	temporary	directory,	and	initialized	it	for	use	with	Vagrant:

$ mkdir tmpvagrant-example

$ cd tmpvagrant-example

$ vagrant init opscode-centos-6.4-x86_64

A `Vagrantfile` has been placed in this directory. You are now

ready to `vagrant up` your first virtual environment! Please read

the comments in the Vagrantfile as well as documentation on

`vagrantup.com` for more information on using Vagrant.

I	launched	the	machine:

vagrant up

Bringing machine 'default' up with 'virtualbox' provider...

[default] Importing base box 'opscode-centos-6.4-x86_64'...

[default] Matching MAC address for NAT networking...

[default] Setting the name of the VM...

[default] Clearing any previously set forwarded ports...

[default] Creating shared folders metadata...

[default] Clearing any previously set network interfaces...

[default] Preparing network interfaces based on configuration...

[default] Forwarding ports...

[default] -- 22 => 2222 (adapter 1)

[default] Booting VM...

[default] Waiting for VM to boot. This can take a few minutes.

[default] VM booted and ready for use!

[default] Configuring and enabling network interfaces...

[default] Mounting shared folders...

[default] -- /vagrant

And	connected	to	it:

vagrant ssh

Last login: Sat May 11 04:55:22 2013 from 10.0.2.2

[vagrant@localhost ~]$ uname -a

Linux localhost.localdomain 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC

2013 x86_64 x86_64 x86_64 GNU/Linux

[vagrant@localhost]$

[vagrant@localhost]$ chef-client --version

-bash: chef-client: command not found

I	installed	the	vagrant-omnibus	plug-in:

vagrant plugin install vagrant-omnibus

Installing the 'vagrant-omnibus' plugin. This can take a few minutes...

Installed the plugin 'vagrant-omnibus (1.0.2)'!

I	edited	the	Vagrantfile	and	added	the	configuration	directive	to	use	the
omnibus	plug-in:

-*- mode: ruby -*-

vi: set ft=ruby :

Vagrant.configure("2") do |config|

 # All Vagrant configuration is done here. The most common configuration

 # options are documented and commented below. For a complete reference,

 # please see the online documentation at vagrantup.com.

 # Every Vagrant virtual environment requires a box to build off of.

 config.vm.box = "opscode-centos-6.4-x86_64"

 config.omnibus.chef_version = :latest

...

...

I	destroyed	and	recreated	the	machine,	logged	in,	and	verified	that	Chef	had
been	installed:

vagrant destroy

Are you sure you want to destroy the 'default' VM? [y/N] y

[default] Forcing shutdown of VM...

[default] Destroying VM and associated drives...

root@tk00:tmpexample# vagrant up

Bringing machine 'default' up with 'virtualbox' provider...

[default] Importing base box 'opscode-centos-6.4-x86_64'...

[default] Matching MAC address for NAT networking...

[default] Setting the name of the VM...

[default] Clearing any previously set forwarded ports...

[default] Creating shared folders metadata...

[default] Clearing any previously set network interfaces...

[default] Preparing network interfaces based on configuration...

[default] Forwarding ports...

[default] -- 22 => 2222 (adapter 1)

[default] Booting VM...

[default] Waiting for VM to boot. This can take a few minutes.

[default] VM booted and ready for use!

[default] Ensuring Chef is installed at requested version of 11.4.4.

[default] Chef 11.4.4 Omnibus package is not installed...installing now.

Downloading Chef 11.4.4 for el...

Installing Chef 11.4.4

warning: tmptmp.PTLPHw62/chef-11.4.4.x86_64.rpm: Header V4 DSA/SHA1 Signature, key

ID 83ef826a: NOKEY

Preparing... ##

chef ##

Thank you for installing Chef!

[default] Configuring and enabling network interfaces...

[default] Mounting shared folders...

[default] -- /vagrant

root@tk00:tmpexample#

vagrant ssh

Last login: Sat May 11 04:55:22 2013 from 10.0.2.2

[vagrant@localhost ~]$ chef-client --version

Chef: 11.4.4

Discussion
When	it	was	introduced	in	2010,	Vagrant	revolutionized	the	infrastructure
development	world.	I	remember	recommending	people	take	a	look	at	it	during
my	keynote	at	the	second	ever	devopsdays	conference	in	Hamburg,	and	sitting	in
on	an	open	space	session	where	a	bunch	of	people	started	hacking	on	it.	What
does	Vagrant	do	that’s	so	awesome?

Vagrant	is	a	tool	for	creating,	managing,	and	distributing	portable	development
environments.	It	enables	complete	machines	to	be	automatically	created,
configures	them	repeatably,	and	allows	the	entire	lifecycle	to	be	managed	from
the	command	line	or	via	an	API.	These	machines	(called	boxes)	can	be	shared
with	other	team	members	and	are	portable;	they	can	run	on	a	wide	range	of
platforms	and	allow	a	unified	development	and	testing	experience.	It	allows	a
user	to	go	from	nothing	to	a	fully	functioning	local	machine	of	pretty	much	any
desired	flavor,	in	one	minute.	As	an	infrastructure	developer,	this	is	an	excellent
boost	to	productivity	and	reliability.	It	tightens	the	feedback	loop	and	allows
machines	to	be	rapidly	destroyed	and	created,	reducing	the	chance	that	one’s
cookbooks	work	because	of	historical	side	effects.	It	reduces	the	familiar	cry	of
“It	worked	on	my	machine!”	Every	user,	whether	Linux,	Windows,	or	Mac,	can
have	a	machine	of	the	same	sort	used	in	production,	with	the	same	cookbooks
that	are	used	in	production.

Vagrant	is	well-documented,	and	its	author,	Mitchel	Hashimoto,	has	just	released
his	book,	Vagrant	Up	and	Running	(O’Reilly).

Actually,	we	won’t	be	using	Vagrant	directly	very	much	in	this	book,	as	my
recommended	integration	test	harness	actually	wraps	Vagrant	(among	other
provisioning	strategies),	but	it’s	a	powerful	and	valuable	tool,	and	I	believe	in
understanding	things	from	first	principles,	so	it’s	worth	understanding	some	of
the	fundamentals	of	Vagrant.

The	Vagrant	cookbook	is	nothing	particularly	interesting.	It	simply	performs
some	platform-conditional	logic,	and	downloads	a	package	and	installs	it.	It
provides	an	LWRP	for	installing	plugins,	but	we	elected	to	install	our	plug-in
manually	to	understand	the	concept.

In	Chef	terms,	the	interesting	pattern	we	saw	was	that	of	the	platform	role.	In	a
heterogenous	environment,	a	common	strategy	is	to	build	out	roles	of	the	sort:

Base
Something	that	all	machines	get,	regardless	of	platform	or	function

Platform
Attributes	or	recipes	that	are	specific	to	the	OS	(for	example	yum,	Windows
cookbooks,	or	URLs)

Service
Something	that	describes	a	functional	component,	such	as	web	server	or
database	server

The	Vagrant	cookbook	explicitly	sets	the	URL	from	which	to	pull	the	package	to
nil.	This	is	because	there’s	no	trivial	way	to	work	out	what	the	path	to	the
package	will	be—the	path	is	made	from	the	Git	commit	hash.	Rather	than	have
to	maintain	a	complex	attributes	file,	the	cookbook	maintainer	has	left	setting	the
URL	as	an	exercise	for	the	user.

In	my	experience,	this	was	a	case	of	creating	a	debian	and	a	rhel	role,	and
setting	the	attribute	there.	Attributes	in	a	role	are	at	a	higher	precedence	level
than	default	attributes	in	a	cookbook	attributes	file,	and	so	the	version	from	the
role	will	take	effect.

Vagrant,	as	a	technology,	is	pretty	easy	to	understand.	The	place	to	begin	is	the

http://shop.oreilly.com/product/0636920026358.do

Vagrantfile.	The	Vagrantfile	resides	at	the	root	of	the	directory	of	your	project.
Vagrant	will	build	a	virtual	machine,	but	for	what	purpose?	Not	just	because	it
can,	but	to	test	or	demonstrate	software.	In	Chef	terms,	it	makes	sense	to	keep	a
Vagrantfile	within	the	cookbook	to	test	the	functionality	of	the	cookbook.	The
Vagrantfile	is	a	kind	of	manifest	that	describes	how	the	Vagrant	box	you	will	be
launching	will	behave.	You	can	craft	one	manually,	but	Vagrant	provides	a
generator	in	the	form	of	the	vagrant init	command,	which	will	create	one	for
you	in	the	current	directory.	The	Vagrantfile	itself	is	heavily	commented	and
pretty	easy	to	navigate.	If	you	need	to	do	anything	more	complex	or	advanced,
check	out	the	documentation.

The	simplest	possible	Vagrantfile	would	simply	contain	the	following:

Vagrant.configure("2") { |config| config.vm.box = "opscode-centos-6.4-x86_64" }

This	tells	Vagrant	to	launch	a	machine	based	on	the	“opscode-centos-6.4-
x86_64”	box,	with	some	default	configuration.	This	must	match	a	box	on	the
system.	The	available	boxes	can	be	listed	with	the	following:

vagrant box list

opscode-centos-6.4-x86_64 (virtualbox)

Note	that	the	provider	is	specified	after	the	box	name.	Vagrant	supports	multiple
alternative	providers—VMware,	EC2,	Rackspace,	LXC—we’re	currently	using
the	(default)	VirtualBox	provider.

Vagrant	boxes	are	the	templates	from	which	Vagrant	constructs	a	VM.	The
format	of	a	box	is	described	in	Vagrant	docs,	but	broadly	speaking,	they’re	just
archives	of	a	specially	prepared	virtual	machine	for	the	provider	required,
together	with	a	metadata	file.	We	need	to	make	Vagrant	boxes	available	to
Vagrant.	Many	Vagrant	boxes	are	available	on	the	Internet—some	prepared	and
published	by	vendors,	for	example,	Canonical	or	Opscode.	Adding	a	Vagrant
box	is	as	simple	as	running	the	following:

vagrant box add name url

The	name	is	how	the	machine	will	be	referred	to	by	the	Vagrantfile	or	command
line,	and	the	URL	is	a	remote	or	local	path	to	the	box	itself,	which	you	will	need

http://docs.vagrantup.com/v2/vagrantfile/index.html
http://docs.vagrantup.com/v2/boxes/format.html

to	download	or	create.	We	used	the	Opscode	Bento	boxes.	Bento	is	a	tool	for
automating	the	creation	of	VirtualBox–based	Vagrant	boxes,	using	defintions	to
work	with	Patrick	Debois’	Veewee	utility.	It	tries	to	remain	as	close	as	possible
to	upstream	vendor	standards.	You	can	read	more	at	GitHub.

Vagrant up	is	the	command	that	builds	the	local	instance	of	a	virtual	machine.[5]
It	takes	the	template	box	and	configures	it	using	the	Vagrantfile,	and	then
launches	the	machine.	The	output	explains	the	steps	it	goes	through:	it	imports
the	machine,	sorts	out	networking,	ensures	the	system	is	clean,	boots	the
machine,	and	sets	up	a	shared	directory.	The	two	most	noteworthy	features	are
the	networking	and	the	shared	directory.	By	default,	Vagrant	will	use	a
VirtualBox	configuration	where	the	network	interfaces	on	the	virtual	machine
are	running	in	NAT	mode.	That	is,	they	are	not	externally	routable.	VirtualBox
provides	a	port-forwarding	service	that	allows	the	user	to	connect	to	the	virtual
machine	from	their	local	machine	on	a	specified	port;	the	connection	will	be
forwarded	to	the	port	on	the	local	machine.	By	default,	Vagrant	sets	up	a
forwarder	on	localhost:2222,	which	connects	to	port	22	on	the	VM	(i.e.,	it
allows	the	user	to	connect	to	the	virtual	machine	using	ssh).

The	vagrant ssh	command	uses	a	pre-prepared	ssh	key	pair,	which	it	stores	in
~/.vagrant.d/insecure_private_key.	Running	vagrant ssh	will	initiate	a
passwordless	connection	direct	to	the	virtual	machine,	using	the	forwarded	port.

The	shared	folder	allows	the	running	virtual	machine	to	have	access	to	the
project	directory	in	which	the	Vagrantfile	exists.	So,	in	the	case	of	a	cookbook,
the	virtual	machine	would	be	able	to	see	the	metadata,	readme,	recipes,
templates,	and	so	forth.	By	default,	this	will	be	available	under	/vagrant	on	the
local	machine.	We	can	demonstrate	this	by	creating	a	file	on	the	local	system,
watching	it	appear	on	the	Vagrant	box,	and	then	touching	a	different	file	within
the	VM:

root@tk00:tmpexample# ls -al

total 20

drwxr-xr-x 3 root root 4096 Jun 4 20:01 .

drwxrwxrwt 6 root root 4096 Jun 4 19:17 ..

-rw-r--r-- 1 root root 0 Jun 4 20:01 this-is-a-local-file

drwxr-xr-x 3 root root 4096 Jun 4 13:08 .vagrant

-rw-r--r-- 1 root root 4421 Jun 4 13:17 Vagrantfile

http://www.github.com/opscode/bento

[vagrant@localhost ~]$ cd vagrant

[vagrant@localhost vagrant]$ ls

this-is-a-local-file Vagrantfile

[vagrant@localhost vagrant]$ touch this-is-a-vm-file

[vagrant@localhost vagrant]$ ls -l

total 8

-rw-r--r-- 1 vagrant vagrant 0 Jun 4 19:01 this-is-a-local-file

-rw-r--r-- 1 vagrant vagrant 0 Jun 4 19:01 this-is-a-vm-file

-rw-r--r-- 1 vagrant vagrant 4421 Jun 4 12:17 Vagrantfile

root@tk00:tmpexample# ls -l

total 8

-rw-r--r-- 1 root root 0 Jun 4 20:01 this-is-a-local-file

-rw-r--r-- 1 root root 0 Jun 4 20:01 this-is-a-vm-file

-rw-r--r-- 1 root root 4421 Jun 4 13:17 Vagrantfile

Vagrant	is	designed	from	the	ground	up	to	be	extensible	and	pluggable.	Much	of
the	core	functionality	of	Vagrant	is	implemented	using	plugins,	and	there	is	a
large	range	of	external	plugins	available.	Rubygems	lists	over	100	gems
beginning	with	“vagrant-”.	All	of	these	can	be	installed	using	Vagrant’s	vagrant
plugin install	command.	The	plug-in	we	installed	works	with	Vagrant	boxes
that	do	not	have	Chef	installed,	and	adds	a	hook	to	vagrant up	to	install	Chef
using	the	omnibus	package,	just	as	we	did	in	Exercise	1:	Install	Chef.	This	helps
keep	the	Vagrant	box	slim	and	as	close	to	upstream	as	possible,	and	does	not
require	a	fleet	of	Vagrant	boxes	to	be	created	with	every	Chef	patch	release.

The	final	command	we	used	was	vagrant destroy.	This	simply	powers	off	the
virtual	machine	and	deletes	all	traces	of	it.	The	idea	is	to	return	the	host	system
to	a	clean	state.

Conclusion
The	objective	of	this	and	the	previous	chapter	was	to	give	you	a	hands-on,	from-
first-principles	introduction	to	the	fundamentals	of	Chef.	We	have	covered:

Installing	Chef

The	idea	of	resources

The	recipe	DSL

https://github.com/mitchellh<i>vagrant</i>tree/master/plugins

Some	common	resources—package,	user,	file

The	idea	of	roles

The	node	object,	node	attributes,	and	node	attribute	precedence

The	roles	primitive

Use	of	Chef	Server	and	Chef	Solo	(and	apply)

The	architecture	of	the	Chef	server

The	components	of	a	Chef	run

Getting	started	with	Opscode’s	Hosted	Chef	Service

In	the	process,	we	have	introduced	the	following	resources	for	additional
documentation	and	support:

The	in-line	documentation	shipped	with	Chef

http://docs.opscode.com

http://wiki.opscode.com

The	#chef,	#chef-hacking,	#learnchef,	and	##tdi	IRC	channels

Hopefully,	if	you’ve	followed	the	examples	as	I	intended,	you’ve	developed	the
habit	of	reading	(or	at	least	skimming)	documentation	and	helping	yourself.	Of
course	we’ve	been	able	to	skim	only	the	surface	of	the	Chef	framework,	but	my
hope	is	that	the	present	and	previous	chapters	have	given	you	a	solid	grounding
in	the	fundamentals	of	Chef.	As	we	work	through	the	book,	further	aspects	of
Chef	will	be	introduced,	including	Chef	environments,	the	use	of	templates	and
service	notifications,	as	well	as	enhanced	workflow	models	to	make	your	life	as
an	infrastructure	developer	more	effective.

Regardless	of	what	else	we	learn,	the	infrastructure	we’ve	built	in	this	series	of
exercises	has	laid	the	foundation	for	our	future	work;	we	have	a	modern	Ruby,
we	have	VirtualBox	and	Vagrant	set	up	and	installed,	and	we	have	a	configured
IRC	client	should	we	need	online	help.

http://docs.opscode.com
http://wiki.opscode.com

In	the	next	chapter,	we’ll	turn	to	Ruby	and	some	of	the	core	Ruby	testing	ideas,
before	moving	on	to	discuss	the	ideas	of	test-driven	and	behavior-driven
development.

[3]	In	recent	times	it	has	been	argued	that	roles	have	some	disadvantages,	and	alternative	approaches	have
become	popular.	We	discuss	this	in	more	detail	in	Chapter	7.
[4]	This	is	for	Chef	11.	If	you	need	the	older,	Chef	10	server,	you	might	like	to	take	a	look	at
http://fnichol.github.io/knife-server,	which	simplifies	the	process	of	installing	a	Chef	server	and	provides
some	other	helpful	capabilities.
[5]	Vagrant	does	support	alternative	providers,	for	example,	EC2	or	Rackspace.	Obviously	in	these	cases,	the
machine	being	built	will	be	remote.

Chapter	5.	An	Introduction	to
Test-and	Behavior-Driven
Development

The	Principles	of	TDD	and	BDD
In	Chapter	1,	I	argued	that,	to	mitigate	against	the	risks	of	adopting	the
infrastructure	as	code	paradigm,	systems	should	be	in	place	to	ensure	that	our
code	produces	the	environment	needed,	and	to	ensure	that	our	changes	have	not
caused	side	effects	that	alter	other	aspects	of	the	infrastructure.

What	we’re	describing	here	is	automated	testing.	In	his	book	Managing	Software
Debt:	Building	for	Inevitable	Change	(Addison-Wesley),	Chris	Sterling	uses	the
phrase	“a	supportable	structure	for	imminent	change”	to	describe	what	I	am
calling	for.	Particularly	as	infrastructure	developers,	we	have	to	expect	our
systems	to	be	in	a	state	of	flux.	We	may	need	to	add	components	to	our	systems,
refine	the	architecture,	tweak	the	configuration,	or	resolve	issues	with	its	current
implementation.	When	making	these	changes	using	Chef,	we’re	effectively
doing	exactly	what	a	traditional	software	developer	does	in	response	to	a	bug	or
feature	request.	As	complexity	and	size	grow,	it	becomes	increasingly	important
to	have	safe	ways	to	support	change.	The	approach	I’m	recommending	has	its
roots	firmly	in	the	historic	evolution	of	best	practices	in	the	software
development	world.

A	Very	Brief	History	of	Agile	Software	Development
By	the	end	of	the	1990s,	the	software	industry	did	not	enjoy	a	particularly	good
reputation—across	four	critical	areas,	customers	were	feeling	let	down.	Firstly,
the	perception	(and	expectation,	and	experience)	was	often	that	software	would
be	delivered	late	and	over	budget.	Secondly,	despite	a	lengthy	cycle	of
requirement	gathering,	analysis,	design,	implementation,	testing,	and

deployment,	it	was	not	uncommon	for	the	customer	to	discover	that	this	late,
expensive	software	didn’t	really	do	what	was	needed.	Whether	this	was	due	to	a
failure	in	initial	requirement-gathering	or	a	shift	in	needs	over	the	lifecycle	of
the	software’s	development	wasn’t	really	the	point—the	software	didn’t	fully
meet	the	customer’s	requirements.	Thirdly,	a	frequent	complaint	was	that,	once
live	and	a	part	of	the	critical	business	processes,	the	software	itself	was	unstable
or	slow.	Software	that	fails	under	load	or	crashes	every	few	hours	is	of	negligible
value,	regardless	of	whether	it	has	been	delivered	on	budget,	on	time,	and
meeting	the	functional	requirements.	Finally,	ongoing	maintenance	of	the
software	was	very	costly.	An	analysis	of	this	led	to	a	recognition	that	the	later	in
the	software	lifecycle	that	problems	were	identified	or	new	requirements
emerged,	the	more	expensive	they	were	to	service.

In	2001,	a	small	group	of	professionals	got	together	to	try	to	tackle	some	tough
questions	about	why	the	software	industry	was	so	frequently	characterized	by
failed	projects	and	an	inability	to	deliver	quality	code,	on	time	and	in	budget.
Together	they	put	gathered	a	set	of	ideas	that	began	to	revolutionize	the	software
development	industry.	Thus	began	the	Agile	movement.	Its	history	and
implementations	are	outside	the	scope	of	this	book,	but	the	key	point	is	that
more	than	a	decade	ago,	professional	developers	started	to	put	into	practice
approaches	to	tackle	the	seemingly	inherent	problems	of	the	business	of	writing
software.

Now,	I’m	not	suggesting	that	the	state	of	infrastructure	code	today	is	as	bad	as
the	software	industry	in	the	late	90s.	However,	if	we’re	to	deliver	infrastructure
code	that	is	of	high	quality,	easy	to	maintain,	reliable,	and	delivers	business
value,	I	think	it	stands	to	reason	that	we	must	take	care	to	learn	from	those	who
have	already	put	mechanisms	in	place	to	help	solve	some	of	the	problems	we’re
facing	today.

Test-Driven	Development
Out	of	the	Agile	movement	emerged	a	number	of	core	practices	that	were	felt	to
be	important	to	guarantee	not	only	quality	software	but	also	an	enjoyable
working	experience	for	developers.	Ron	Jeffries	summarizes	these	excellently	in
his	article	introducing	Extreme	Programming,	one	of	a	family	of	Agile
approaches	that	emerged	in	the	early	2000s.	Some	of	these	practices	can	be

http://agilemanifesto.org/
http://bit.ly/18fH7vn

introduced	as	good	habits,	and	don’t	require	much	technology	to	support	their
implementation.	Of	this	family,	the	practice	most	crucial	for	creating	a
supportable	structure	for	imminent	change,	providing	insurance	and	warning
against	unwanted	side	effects,	is	that	of	test-driven	development	(TDD).	For
infrastructure	developers,	the	practice	is	both	the	most	difficult	to	introduce	and
implement,	and	also	the	one	that	promises	the	biggest	return	on	investment.

TDD	is	a	widely	adopted	way	of	working	that	facilitates	the	creation	of	highly
reliable	and	maintainable	code.	The	philosophy	of	TDD	is	encapsulated	in	the
phrase	Red,	Green,	Refactor.	This	is	an	iterative	approach	that	follows	these	six
steps:
1.	 Write	a	test	based	on	requirements.

2.	 Run	the	test	and	watch	it	fail.

3.	 Write	the	simplest	code	you	can	to	make	the	test	pass.

4.	 Run	the	test	and	watch	it	pass.

5.	 Improve	the	code	as	required	to	make	it	perform	well,	be	readable,	and
reusable,	but	without	changing	its	behavior.

6.	 Repeat	the	cycle.

Kent	Beck	and	Cynthia	Andres,	in	Extreme	Programmng	Explained	(Addison-
Wesley),	suggest	this	way	of	working	brings	benefits	in	four	clear	areas:
1.	 It	helps	prevent	scope	from	growing.	We	write	code	only	to	make	a

failing	test	pass.

2.	 It	reveals	design	problems.	If	the	process	of	writing	the	test	is	laborious,
that’s	a	sign	of	a	design	issue;	loosely	coupled,	highly	cohesive	code	is
easy	to	test.

3.	 It	builds	trust.	The	ongoing,	iterative	process	of	demonstrating	clean,
well-written	code,	with	intent	indicated	by	a	suite	of	targeted,	automated
tests,	builds	trust	with	team	members,	managers,	and	stakeholders.

4.	 It	helps	programmers	get	into	a	rhythm.	Test,	code,	refactor—a	rhythm
that	is	at	once	productive,	sustainable,	and	enjoyable.

Behavior-Driven	Development
However,	in	2007,	a	group	of	Agile	practitioners,	including	Dan	North	and	Dave
Astels,	started	rocking	the	boat	with	presentations	and	tool	development	work.
Their	key	observation	seemed	to	be	that	it’s	perfectly	possible	to	write	high
quality,	well-tested,	reliable,	and	maintainable	code,	and	miss	the	point
altogether.	As	software	developers,	we	are	employed	not	to	write	code,	but	to
help	our	customers	to	solve	problems.	In	practice,	the	problems	we	solve	pretty
much	always	fit	into	one	of	three	categories:
1.	 Help	the	customer	make	more	money.

2.	 Help	the	customer	spend	less	money.

3.	 Help	the	customer	protect	the	money	they	already	have.

Around	this	recognition	grew	up	an	evolution	of	TDD	focused	specifically
around	helping	developers	write	code	that	matters.	Just	as	TDD	proved	to	be	a
hugely	effective	tool	in	enhancing	the	technical	quality	of	software,	behavior-
driven	development	(BDD)	set	out	to	enhance	the	success	with	which	software
fulfilled	the	business’	need.

The	shift	from	TDD	to	BDD	is	subtle	but	significant.	Instead	of	thinking	in
terms	of	verification	of	a	unit	of	code,	we	think	in	terms	of	a	specification	of
how	that	code	should	behave—what	it	should	do.	Our	task	is	to	write	a
specification	of	system	behavior	that	is	precise	enough	for	it	to	be	executed	as
code.

Importantly,	BDD	is	about	conversations.	The	whole	point	of	BDD	is	to	ensure
that	the	real	business	objectives	of	stakeholders	get	met	by	the	software	we
deliver.	If	stakeholders	aren’t	involved,	if	discussions	aren’t	taking	place,	BDD
isn’t	happening.	BDD	yields	benefits	across	many	important	areas.

Building	the	right	thing
BDD	helps	to	ensure	that	the	right	features	are	built	and	delivered	the	first	time.
By	remembering	the	three	categories	of	problems	that	we’re	typically	trying	to
solve,	and	by	beginning	with	the	stakeholders—the	people	who	are	actually
going	to	be	using	the	software	we	write—we	are	able	to	clearly	specify	what	the
most	important	features	are,	and	arrive	at	a	definition	of	done	that	encapsulates

the	business	driver	for	the	software.

Reducing	risk
BDD	also	reduces	risk—the	risk	that,	as	developers,	we’ll	go	off	at	a	tangent.	If
our	focus	is	on	making	a	test	pass,	and	that	test	encapsulates	the	customer
requirement	in	terms	of	the	behavior	of	the	end	result,	the	likelihood	that	we’ll
get	distracted	or	write	something	unnecessary	is	greatly	reduced.	Interestingly,	a
suite	of	acceptance	tests	developed	this	way,	in	partnership	with	the	stakeholder,
also	forms	an	excellent	starting	point	for	monitoring	the	system	throughout	its
lifecycle.	We	know	how	the	system	should	behave,	and	if	we	can	automate	tests
that	prove	the	system	is	working	according	to	specification,	and	put	alerts
around	them	(both	in	the	development	process	so	we	capture	defects,	and	when
live	so	we	can	resolve	and	respond	to	service	degradation),	we	have	grounded
our	monitoring	in	the	behavior	of	the	application	that	the	stakeholder	has	defined
as	being	of	paramount	importance	to	the	business.

Evolving	design
It	also	helps	us	to	think	about	the	design	of	the	system.	The	benefits	of	writing
unit	tests	to	increase	confidence	in	our	code	are	pretty	obvious.	Maturing	to	the
point	that	we	write	these	tests	first	helps	us	focus	on	writing	only	the	code	that	is
explicitly	needed.	The	tests	also	serve	as	a	map	to	the	code	and	offer	lightweight
documentation.	By	tweaking	our	approach	towards	thinking	about	specifying
behavior	rather	than	testing	classes	and	methods,	we	come	to	appreciate	test-
driven	development	as	a	practice	that	helps	us	discover	how	the	system	should
work,	and	molds	our	thinking	towards	elegant	solutions	that	meet	the
requirements.

How	does	all	of	this	relate	to	infrastructure	as	code?	Well,	as	infrastructure
developers,	we	are	providing	the	underlying	systems	that	make	it	possible	to
deliver	software	effectively.	This	means	our	customers	are	often	application
developers	or	test	and	QA	teams.	Of	course,	our	customers	are	also	the	end	users
of	the	software	that	runs	on	our	systems,	so	we’re	responsible	for	ensuring	our
infrastructure	performs	well	and	remains	available	when	needed.	Having
accepted	that	we	need	some	kind	of	mechanism	for	testing	our	infrastructure	to
ensure	it	evolves	rapidly	without	unwanted	side	effects,	bringing	the	principle	of
BDD	into	the	equation	helps	us	to	ensure	that	we’re	delivering	business	value	by

providing	the	infrastructure	that	is	actually	needed.	We	can	avoid	wasting	time
pursuing	the	latest	and	greatest	technology	by	realizing	we	could	meet	the
requirements	of	the	business	more	readily	with	a	simpler	and	established
solution.

TDD	and	BDD	with	Ruby
Ruby	has	always	been	a	language	in	which	testing,	and	particularly	testing	up-
front,	has	been	popular.	Also,	the	development	community	around	Ruby	has
historically	been	particularly	positive	about	Agile	software	development	in
general,	and	as	such	has	spawned	a	great	many	creative	and	powerful	testing
tools	and	frameworks.	I	think	it’s	fair	to	say	that	as	a	language	and	environment
in	which	to	work,	Ruby	is	probably	the	best	served	for	libraries,	tools,	and
frameworks.	Within	this	ecosystem,	I’m	going	to	discuss	three	tools	that,	when
used	together,	provide	a	full	coverage	of	testing	capabilities,	from	the	lowest	to
the	highest	level—Cucumber,	RSpec,	and	Minitest.

As	this	is	a	book	about	test-driven	infrastructure	development,	I’m	going	to
make	sure	we’ve	got	a	reasonable	understanding	of	testing	in	general	and	test-
first	development,	before	we	go	on	to	discuss	writing	infrastructure	code	using
Chef.

For	the	purposes	of	the	exercise,	we’re	going	to	write	a	Ruby	class	that	assesses
whether	a	team	member	is	a	hipster.	(I’m	guessing	everyone	knows	what	a
hipster	is	by	now,	but	there’s	always	Google	if	you	don’t!)

Minitest:	Unit	Testing	for	the	21st	Century
A	unit	test	is	pretty	much	the	simplest	and	lowest	level	kind	of	test	we	can	write.
It	is	designed	to	verify	whether	a	precise,	small,	tightly	defined	piece	of
functionality	behaves	as	it	should.	Typically,	a	unit	test	will	exercise	a	single
method.	The	seminal	unit	testing	framework	was	JUnit.	Conceived	by	Kent
Beck	and	Erich	Gamma,	it	built	on	SUnit,	written	by	Kent	Beck	for	Smalltalk.
JUnit	quickly	became	the	standard	approach	to	unit	testing,	to	the	extent	that	the
term	xUnit	began	to	appear	to	describe	a	test	framework	in	any	language	that
broadly	implemented	the	same	approach	to	unit	testing.	Ruby’s	xUnit
implementation	was	Test::Unit.

The	pattern	is	pretty	much	always	the	same.	You	create	a	class	as	a	subclass	of
Test::Unit::TestCase,	write	methods	beginning	with	the	word	test,	set	up
some	state	to	exercise	a	method,	and	make	an	assertion	about	what	the	method
should	do.

We’ll	set	the	background	with	a	little	history	lesson,	and	look	at	the	original	and
most	basic	unit	testing	capabilities	of	Ruby—the	faithful	old	workhorse
Test::Unit.

First,	ensure	that	the	test-unit	gem	is	installed:

$ gem install test-unit

Create	a	directory	for	the	project	and	a	file	for	a	test:

$ mkdir tdd-principles $ cd tdd-principles $ touch test_hipster.rb

Now,	let’s	write	a	very	simple	test	using	the	traditional	test/unit	approach:

require "test/unit"

class HipsterTest < Test::Unit::TestCase

def setup @developer = HipsterAssessor.new(gears_on_bike=1) end

def test_has_fixie? assert_equal true, @developer.has_fixie? end

end

We’re	setting	up	the	test	by	creating	an	instance	of	the	HipsterAssessor,	and
passing	in	that	the	developer	we	are	assessing	has	a	single	gear	on	their	bicycle.
We’re	going	to	test	the	has_fixie?	method,	and	we’re	setting	up	the
expectation	that	the	method	will	return	true.

Let’s	run	the	test:

$ ruby test_hipster.rb Loaded suite test_hipster Started E Finished in 0.000294

seconds.

1) Error: test_has_fixie?(HipsterTest): NameError: uninitialized constant

HipsterTest::HipsterAssessor test_hipster.rb:6:in `setup'

1 tests, 0 assertions, 0 failures, 1 errors

This	is	the	standard	approach	for	test-first	programming.	We’ve	written	the	test.
The	test	has	failed.	Now	we	make	it	pass.	In	this	case	the	test	wasn’t	able	to	run
yet—it	errored	out	because	we’re	trying	to	instantiate	a	HipsterAssessor,	but
we’ve	not	written	the	code	for	that	yet,	nor	is	it	available	to	the	test.	Let’s	fix	that
by	creating	a	new	file	called	hipsterassessor.rb,	which	contains	the	following:

class HipsterAssessor end

And	let’s	require	that	file	in	our	test	by	adding:

require './hipsterassessor'

Let’s	run	the	test	again:

$ ruby test_hipster.rb Loaded suite test_hipster Started E Finished in 0.000345

seconds.

1) Error: test_has_fixie?(HipsterTest): ArgumentError: wrong number of arguments (1

for 0) test_hipster.rb:7:in `initialize' test_hipster.rb:7:in `new'

test_hipster.rb:7:in `setup'

1 tests, 0 assertions, 0 failures, 1 errors

Now	the	problem	we	have	is	that	we’ve	instantiated	an	assessor,	but	we’ve	also
passed	in	an	argument	to	it,	and	our	class	definition	doesn’t	accommodate	this.
Let’s	fix	that	by	adding	an	initialize	method,	which	takes	an	argument.	We’re
not	going	to	do	anything	with	the	argument	yet—at	this	point,	we’re	concerned
with	getting	to	the	point	where	we	see	the	test	fail,	not	return	an	error.

class HipsterAssessor

def initialize(bike_gears)

end

end

Run	the	test	again:

$ ruby test_hipster.rb Loaded suite test_hipster Started E Finished in 0.000322

seconds.

1) Error: test_has_fixie?(HipsterTest): NoMethodError: undefined method `has_fixie?'

for nil:NilClass test_hipster.rb:11:in `test_has_fixie?'

1 tests, 0 assertions, 0 failures, 1 errors

Right	now	the	error	is	that	we	haven’t	written	the	has_fixie?	method.	Let’s	go
ahead	and	write	that,	but	without	an	implementation.	Your	hipsterassessor.rb
should	look	like	this	now:

class HipsterAssessor

def initialize(bike_gears) end

def has_fixie? end

end

And	running	the	test	should	now	result	in	a	failure,	not	an	error:

$ ruby test_hipster.rb Loaded suite test_hipster Started F Finished in 0.011201

seconds.

1) Failure: test_has_fixie?(HipsterTest) [test_hipster.rb:11]: <true> expected but

was <nil>.

1 tests, 1 assertions, 1 failures, 0 errors

Alright,	we’re	getting	somewhere.	The	test	expected	the	method	to	return	true,
but	since	we’ve	not	written	the	code	yet,	we	got	nil.	Now	let’s	write	the	actual
code:

class HipsterAssessor

def initialize(bike_gears) @gears = bike_gears end

def has_fixie? @gears == 1 end

end

And	finally,	run	the	test	and	see	it	pass:

$ ruby test_hipster.rb Loaded suite test_hipster Started . Finished in 0.000259

seconds.

1 tests, 1 assertions, 0 failures, 0 errors

So,	that’s	an	example	of	a	simple	unit	test.	Obviously	these	tests	can	get	a	lot
more	complicated,	but	other	than	adding	methods	that	set	up	some	state	and
ensure	that	state	is	no	longer	there	at	the	end	of	the	test,	there’s	not	much	more	to
Test::Unit.	The	end	result	is	that	while	Test::Unit	is	by	far	the	most	widely
used	test	tool	in	the	wild,	it’s	almost	never	used	by	itself.	Most	Ruby	projects
will	pull	in	a	large	number	of	additional	Rubygems	to	provide	more	advanced
testing	capabilities—test	randomization,	allowing	more	natural	test	descriptions,
and	adding	the	ability	to	set	up	ephemeral	test	fixtures	to	allow	complex,	time-
consuming,	or	third-party	libraries	or	processes.

In	Ruby	1.9,	Minitest	replaced	Test::Unit,	built	into	the	standard	library	for
Ruby	1.9.	This	clears	out	some	of	the	old	and	rarely	used	cruft	from
Test::Unit,	and	brings	powerful,	modern	testing	functionality	right	into	the
standard	library.	An	important	thing	to	note	about	Minitest	is	that	the	version
built	into	Ruby	lags	considerably	behind	the	current	latest	version;	indeed	the
version	of	Minitest	built	into	my	version	of	Ruby	is	2.5.1.	I	would	typically
recommend	you	install	the	latest	version	from	Rubygems,	but	at	the	time	of
writing,	Minitest	5.0.0	has	only	just	been	released	with	a	number	of	breaking
changes.	For	this	reason,	in	the	present	work,	I	recommend	taking	advantage	of
the	so-called	PessimisticVersionConstraint.

In	the	Gemfile,	set	your	Minitest	line	to	the	following:

gem 'minitest', '~> 4.7'

This	will	ensure	that	you	stay	on	the	version	below	the	major	5.0	breaking
release.

The	newer	Minitest	syntax	is	backwards-compatible	with	Test::Unit,	but	the
superclass	has	a	different	name.	Let’s	convert	it:

require 'minitest/autorun' require_relative 'hipsterassessor'

class HipsterTest < MiniTest::Unit::TestCase

def setup @developer = HipsterAssessor.new(gears_on_bike=1) end

def test_has_fixie? assert_equal true, @developer.has_fixie? end

end

$ ruby test_hipster.rb Run options: --seed 37275

Running tests:

.

Finished tests in 0.000873s, 1145.4754 tests/s, 1145.4754 assertions/s.

1 tests, 1 assertions, 0 failures, 0 errors, 0 skips

You’ll	notice	right	away	that	the	test	is	much	faster.	You	might	also	notice	the	--
seed	run	option.	This	is	because	Minitest	runs	your	tests	in	a	random	order	to
prevent	you	getting	into	the	situation	where	your	tests	pass	because	of	so-called
state	leakage—i.e.,	some	state	remained	from	the	previous	test,	which	allowed
the	subsequent	test	to	pass.	Randomizing	the	order	of	the	tests	catches	this.	The
seed	is	the	number	used	to	initialize	a	pseudorandom	number	generator,	which
provides	the	randomness	upon	which	Minitest	bases	its	decision	about	ordering.
You	can	reproduce	the	same	state	by	passing	the	same	seed	manually.

That	concludes	our	whirlwind	tour	of	traditional,	backwards-compatible	xUnit-
style	unit	testing.	Although	you’re	fairly	unlikely	to	test	your	infrastructure	code
using	this	traditional	approach,	it’s	valuable	to	have	some	familiarity	with	it,	and
the	general	approach	of	iterating	on	failing	tests	until	they	pass	is	the	same
regardless	of	the	testing	framework	being	used.

RSpec:	The	Transition	to	BDD
I	mentioned	earlier	that	while	there	is	great	value	in	traditional	unit	testing,	it’s
still	possible	to	write	code	that	passes	unit	tests	but	doesn’t	deliver	value	to	the
customer.	Unit	tests	assert	that	the	code	behaves	as	it	should,	but	what	asserts
how	the	code	should	behave?	In	order	to	be	sure	that	we’re	building	code	that

matters,	we	need	some	kind	of	specification	that	describes	what	the	code	should
do.	This	is	exactly	the	transition	that	is	made	when	we	start	to	think	about
behavior-driven	development	against	test-driven	development.	We	first	specify
what	the	behavior	should	be,	in	a	written	form.	We	then	test	that	the	code
behaves	as	specified	(which	will,	of	course,	fail).	We	then	make	the	tests	pass,
and	check	against	the	specification.	A	core	principle	of	BDD	is	that	this
specification	be	code	itself—that	the	description	of	how	our	software	behaves
should	itself	be	executable.

RSpec	was	developed	around	a	recognition	that	looking	at	low-level	code,	with
not	entirely	obvious	assertion	syntax	and	class	and	method	definitions,	was	not
really	the	ideal	vehicle	for	expressing	and	communicating	the	intended	behavior
of	code.	It	was	inspired	by	an	early	Thoughtworks	tool,	Agiledox,	which
converted	code	that	looked	like	this:

public class CustomerLookupTest extends TestCase { testFindsCustomerById() { ... }

testFailsForDuplicateCustomers() { ... } ... }

To	a	specification	like	this:

CustomerLookup - finds customer by id - fails for duplicate customers - ...

The	effect	is	remarkable.	Immediately	the	intention	is	clear,	and	the	brain	takes	it
in.	RSpec’s	output	looks	similar,	and	its	input	is	more	palatable.

Let’s	write	some	specifications	for	the	behavior	of	the	HipsterAssessor.

First,	let’s	install	the	RSpec	gem	and	create	a	directory	to	contain	our
specifications,	called	spec.

$ gem install rspec $ mkdir spec

Inside	the	spec	directory,	create	a	file	called	hipster_assessor_spec.rb	with	the
following	contents:

require 'rspec' require_relative '../hipsterassessor'

describe HipsterAssessor do context "assessing whether a developer is a hipster" do

it "can establish if the developer has a fixed-wheel bicycle" do developer =

HipsterAssessor.new(gears_on_bike=1) expect(developer.has_fixie?).to be_true end end

end

The	first	line	simply	makes	the	RSpec	gem	available,	and	the	second	line	makes
our	HipsterAssessor	class	available.	The	describe	block	describes	in	a	high
level	domain-specific	language	(DSL)	what	the	class	should	do,	and	in	what
context	it	functions.	If	you	read	the	code	as	English,	it	makes	pretty	easy
reading:

You:	Describe	the	HipsterAssessor!

Me:	In	the	context	of	assessing	whether	a	developer	is	a	hipster,	it	can	establish
if	the	developer	has	a	fixed-wheel	bicycle.

Let’s	run	the	test:

$ rspec -fd spec/

HipsterAssessor assessing whether a developer is a hipster can establish if the

developer has a fixed-wheel bicycle

Finished in 0.00048 seconds 1 example, 0 failures

This	is	much	closer	to	describing	the	behavior	of	the	code	than	just	testing	a
method.

Let’s	add	another	feature.	I	think	the	HipsterAssessor	should	give	the	developer
a	hipster	score.	To	this	end,	it	would	be	good	to	see	the	score	and	set	the	score.

I’m	going	to	add	the	following:

it "reports a hipster assessment score" do developer =

HipsterAssessor.new(gears_on_bike=1) expect(developer.score).to be_kind_of(Numeric)

end

This	gives	us	the	following	spec:

require 'rspec' require_relative '../hipsterassessor'

describe HipsterAssessor do context "assessing whether a developer is a hipster" do

it "can establish if the developer has a fixed-wheel bicycle" do developer =

HipsterAssessor.new(gears_on_bike=1) developer.has_fixie?.should == true end

it "reports a hipster assessment score" do developer =

HipsterAssessor.new(gears_on_bike=1) expect(developer.score).to be_kind_of(Numeric)

end end end

Rather	than	running	the	whole	spec	each	time,	during	development	it’s	useful	to
use	the	-e,	--example	argument,	which	will	only	run	the	examples	that	match	a
given	string:

$ rspec -fd -e "score" spec/ Run options: include {:full_description=>/score/}

HipsterAssessor assessing whether a developer is a hipster reports a hipster

assessment score (FAILED - 1)

Failures:

1) HipsterAssessor assessing whether a developer is a hipster reports a hipster

assessment score Failure/Error: expect(developer.score).to be_kind_of(Numeric)

NoMethodError: undefined method `score' for #<HipsterAssessor:0x000000020bb128

@gears=1> # ./spec/hipster_assessor_spec.rb:13:in `block (3 levels) in <top

(required)>'

Finished in 0.00052 seconds 1 example, 1 failure

Failed examples:

rspec ./spec/hipster_assessor_spec.rb:11 # HipsterAssessor assessing whether a

developer is a hipster reports a hipster assessment score

The	process	should	be	familiar	now.	We	need	to	write	the	code	to	make	the	test
pass.	We	can	make	the	test	pass	trivially	simply	by	adding:

def score 10 end

Our	test	now	passes:

$ rspec -fd -e "score" spec/ Run options: include {:full_description=>/(?-

mix:score)/}

HipsterAssessor assessing whether a developer is a hipster reports a hipster

assessment score

Finished in 0.00147 seconds 1 example, 0 failures

This	is	fine	and	meets	our	specification.	This	might	seem	a	bit	silly—surely	the
developer	won’t	always	get	a	score	of	10?	Well,	this	is	the	point	of	BDD.	We
iterate	quickly,	and	drive	out	the	requirements.	What’s	wrong	with	score	10?
Maybe	it’s	that	it’s	meaningless?	Maybe	it’s	that	it	never	varies?	In	which	case
we	need	to	specify	what	the	code	should	do.	An	important	concept	here	is	to	ask
the	question,	“What’s	the	next	most	important	thing	that	the	system	does	not
currently	do?”	In	our	case,	let’s	say	we	want	the	score	to	vary	depending	on
criteria.	For	example,	let’s	say	that	having	a	fixie	scores	five	points,	and	then	add
another	thing	to	test	for,	let’s	say,	empty	spectacle	frames.	So,	we	add:

it "awards five points for having a fixie" do developer =

HipsterAssessor.new(gears_on_bike=1) expect(developer.score).to eq 5 end

And	run	the	test	(again,	using	the	-e	argument),	which	shows:

$ rspec -fd -e "points" spec/ Run options: include {:full_description=>/points/}

HipsterAssessor assessing whether a developer is a hipster awards five points for

having a fixie (FAILED - 1)

Failures:

1) HipsterAssessor assessing whether a developer is a hipster awards five points for

having a fixie Failure/Error: expect(developer.score).to eq 5

expected: 5 got: 10

(compared using ==) # ./spec/hipster_assessor_spec.rb:18:in `block (3 levels) in

<top (required)>'

Finished in 0.00112 seconds 1 example, 1 failure

Failed examples:

rspec ./spec/hipster_assessor_spec.rb:16 # HipsterAssessor assessing whether a

developer is a hipster awards five points for having a fixie

Let’s	change	the	code	to	make	it	pass.	This	requires	a	few	changes,	so	I’ll	now
show	the	whole	class	to	date:

class HipsterAssessor

def initialize(bike_gears) @gears = bike_gears @score = 0 end

def has_fixie? @gears == 1 end

def score if self.has_fixie? @score = @score + 5 end @score end end

Let’s	run	all	the	tests	now.	Our	full	spec	looks	like	this:

require 'rspec' require_relative '../hipsterassessor'

describe HipsterAssessor do context "assessing whether a developer is a hipster" do

it "can establish if the developer has a fixed-wheel bicycle" do developer =

HipsterAssessor.new(gears_on_bike=1) expect(developer.has_fixie?).to be_true end

it "reports a hipster assessment score" do developer =

HipsterAssessor.new(gears_on_bike=1) expect(developer.score).to be_kind_of(Numeric)

end

it "awards five points for having a fixie" do developer =

HipsterAssessor.new(gears_on_bike=1) expect(developer.score).to eq 5 end

end

end

And	if	we	run	RSpec,	we	get:

$ rspec -fd spec/

HipsterAssessor assessing whether a developer is a hipster can establish if the

developer has a fixed-wheel bicycle reports a hipster assessment score awards five

points for having a fixie

Finished in 0.00161 seconds 3 examples, 0 failures

The	eagle-eyed	amongst	you	will	probably	have	noticed	that	our	score
increasing	method	will	continue	to	add	five	points	every	time.	Adding	a	test	for
this,	and	refactoring	the	code	is	just	the	sort	of	thing	that	would	happen	in	real
life.	Of	course,	additionally,	specs	can	get	much	more	complex	than	this,	but	you
should	now	appreciate	the	difference	between	behavior-driven	and	test-driven
development.

In	the	previous	section,	we	looked	at	Minitest	as	a	drop-in	replacement	for
Test::Unit.	In	addition	to	the	speed	improvements	and	general	leanness	of	the
tool,	another	addition	is	the	inclusion	of	a	spec-like	DSL,	which	brings	BDD
into	the	core	library.	Let’s	look	at	how	we’d	express	the	preceding	test	using
Minitest	rather	than	RSpec.

Rewriting	the	tests	also	gives	us	a	chance	to	refactor.	I	don’t	like	that	we	have
repeated	instantiating	the	HipsterAssessor	three	times.

Both	RSpec	and	Minitest	support	hooks	to	set	up	state	before	tests.	This	allows
us	to	simplify	the	test.	Here’s	the	equivalent	code	for	Minitest:

require 'minitest/autorun'

class HipsterTest < MiniTest::Unit::TestCase

describe HipsterAssessor do

before do @developer = HipsterAssessor.new(gears_on_bike=1) end

describe "when assessing whether a developer is a hipster" do

it "can establish if the developer has a fixed-wheel bicycle" do

@developer.has_fixie?.must_equal true end

it "can report a hipster assessment score" do @developer.score.must_be_instance_of

Fixnum end

it "can award five points for having a fixie" do @developer.score.must_equal 5 end

end

end

end

I’ve	added	a	before	block,	which	sets	up	the	state	before	each	test.	This	is	a
pretty	common	pattern,	and	one	you’ll	see	when	we	apply	these	principles	to
infrastructure	code.

The	syntax	of	Minitest	is	slightly	different,	and	the	matching	and	expectation
grammar	is	not	identical,	but	it’s	clear	that	at	this	level	of	simplicity,	Minitest
can	do	exactly	what	RSpec	does.	Not	having	to	include	another	gem	makes	this

an	attractive	option.	However,	RSpec	is	very	widely	used,	and	in	the	context	of
testing	infrastructure,	the	Chef	community	hasn’t	yet	settled	on	which	it	favors,
so	I’ve	given	a	brief	introduction	to	both.	In	terms	of	how	this	applies	to	testing
infrastructure	code,	my	feeling	is	that	the	community	is	equally	undecided,	and
we’ll	cover	both	when	we	look	at	writing	tests	for	Chef	recipes	later	in	the	book.

Let’s	run	the	refactored	test	now,	simply	calling	it	with	Ruby,	now	we’re	using
Minitest:

$ ruby test_hipster.rb Loaded suite test_hipster Started ... Finished in 0.000808

seconds.

3 tests, 3 assertions, 0 failures, 0 errors, 0 skips

Test run options: --seed 57543

Now	that	we’ve	covered	the	basics	of	both	RSpec	and	MiniTest::Spec,	we’ll
move	on	to	examine	Cucumber.

Cucumber:	Acceptance	Testing	for	the	Masses
When	Dan	North	first	started	thinking	about	BDD	back	in	2003,	the	context	was
not	one	of	replacing	TDD	with	a	different	set	of	practices	or	tools,	but	rather
about	how	to	go	about	explaining	the	reasons	for,	and	the	underpinning	ideas
behind	TDD	itself.	As	we’ve	seen	in	this	contrived	example,	it	seems	to	make
sense	to	start	with	tests	right	at	the	level	of	the	application.	However,	as	thought
around	BDD	began	to	mature,	and	more	people	started	to	explore	the	perspective
it	offered,	so	the	focus	of	the	tests	started	to	move	towards	the	stakeholders—
those	for	whom	the	software	was	being	built.	We	can	see	this	starting	to	happen
in	our	RSpec	example,	but	it	hasn’t	fully	matured.	The	main	thing	missing	is
how	to	connect	the	stories—the	self-contained	units	of	work	that	developers
commit	to	in	an	agile	project—to	work	that	represents	real	value	to	the
stakeholder.	Somehow	we	need	to	be	able	to	demonstrate	that	the	code	we’re
writing,	and	indeed	testing,	is	applicable	to	the	stories	we’ve	committed	to
delivering.

A	useful	template	for	capturing	the	story	looks	like	this:
In	order	to	achieve	some	specific,	measurable,	definable	goal

As	some	kind	of	stake	holder

I	want	a	feature

Moving	to	a	BDD	way	of	thinking	brings	many	benefits.	It	helps	to	tease	out
how	the	software	we	write	should	behave,	and	it	serves	as	an	executable
specification	of	what	the	software	should	do.	This	is	undeniably	a	step	in	the
right	direction,	but	BDD-influenced	thinkers	wanted	to	take	it	a	little	further
again.	Using	RSpec,	or	Minitest’s	spec	capabilities,	might	answer	questions
about	how	it	should	behave,	but	it	doesn’t	explain	why.	We	never	develop
software	in	a	vacuum.	We	rarely	develop	software	just	for	fun.	There’s	always	a
reason	behind	it—some	kind	of	driving	force	behind	the	project.	In	order	best	to
understand	that,	and	be	sure	we’re	building	the	right	features,	for	the	right
reasons,	with	the	right	priority,	it’s	necessary	to	engage	the	stakeholders—the
people	for	whom	we’re	building	the	software.

An	early	attempt	to	connect	these	kinds	of	stories	to	RSpec	was	written	by	Dan
North,	but	greatly	improved	and	released	by	Aslak	Hellesoy	in	2008	as
Cucumber.	Cucumber	takes	the	obvious	benefits	of	test-first	programming,	and
adds	to	it	a	whole	series	of	further	benefits.	In	his	book,	The	Cucumber	Book,
Aslak	Hellesoy	and	Matt	Wynne	(Pragmatic	Bookshelf),	Aslak	describes
Cucumber	as	somewhat	akin	to	a	cheerful	and	friendly	but	rather	nerdy	team
member,	with	a	terrifyingly	precise	recollection	of	what	it	is	the	team	is	building
and	why,	and	who	doesn’t	mind	the	grunt	work	of	repeatedly	checking	that	what
the	team	is	working	on	is	the	right	thing,	running	tests,	and	reporting	back.

The	key	concept	we’re	exploring	here	is	that	software—and	of	course
infrastructure—begins	with	an	idea.	Usually	the	idea	is	tied	in	some	way	to
making	something	that	can	be	sold,	used	to	reduce	cost,	improve	efficiency,	or
add	enjoyment—whatever	it	is,	there’s	almost	always	an	idea—a	germ	of	an	idea
at	the	genesis	of	a	software	or	infrastructure	project.	The	point	is	that	unless	the
person	who	has	the	idea	is	an	incredibly	gifted	person,	it’s	unlikely	that	they’ll
be	able	to	build	the	idea	themselves,	from	scratch,	without	getting	some	help.	As
soon	as	you	introduce	help,	especially	if	it’s	technical	help,	you	introduce	the
requirement	to	communicate.	Even	in	an	experienced	agile	team,	with	short
iterations	and	a	fast	feedback	cycle,	it’s	possible	to	spend	a	two	week	period	of
time	working	on	the	wrong	thing,	delivering	something	that	the	developers

thought	was	right,	but	which	somehow	got	confused,	miscommunicated,	or
misunderstood.	Cucumber	offers	a	way	to	ease	the	communication	and
cooperation	between	people	and	teams.

At	the	heart	of	eXtreme	programming	is	the	idea	of	automated	acceptance	tests.
An	acceptance	test	is	simply	some	code	that	we	can	run,	which	captures	at	its
heart	some	aspect	of	the	functionality	of	the	system.	The	idea	is	that	the
developer	and	a	stakeholder	collaborate	on	writing	this	test	together	to	capture
requirements	in	code,	which	when	it	passes,	forms	some	kind	of	seal	of
approval.	These	are	distinct	from	the	kind	of	unit	tests	we	looked	at	previously.
Unit	tests	are	largely	written	by	the	developer	and	for	the	developer.	They	help
emerge	and	validate	design	and	protect	against	errors.	Acceptance	tests	are
written	by	the	stakeholder	and	the	developer,	for	the	stakeholder	and	the
developer.	A	commonly	used	expression	is	that	the	difference	between	unit	tests
and	acceptance	tests	is	that	unit	tests	help	you	build	the	thing	right,	whereas
acceptance	tests	help	you	build	the	right	thing.

Despite	the	obvious	benefits	of	automated	acceptance	tests,	in	practice	even
among	experienced	XP	and	TDD	teams,	it’s	rarely	done,	or	done	well.	One	of
the	reasons	is	that	finding	a	stakeholder	with	the	technical	ability,	interest,	and
patience	to	sit	at	a	computer	writing	pure	Ruby	code,	even	a	DSL	like	RSpec,	is
incredibly	hard.	I	remember	working	on	an	accounts	package	in	PHP	and	pairing
with	a	product	manager,	and	actually	writing	SimpleTest	acceptance	tests.	It
worked	really	well,	but	I’ve	never	found	a	stakeholder	since	who	is	comfortable
with	that	kind	of	technical	involvement.

Cucumber	helps	to	make	automated	acceptance	testing	a	reality.	If	we	think
about	what	an	acceptance	test	is,	it’s	really	just	an	example.	We’re	saying	we
need	this	feature	for	this	purpose.	Here	are	a	few	examples	of	how	the	system
would	behave	if	we’d	implemented	the	feature	I	want.	If	you	can	prove	to	me
that	these	examples	do	what	I’ve	asked,	then	I’ll	be	happy	that	the	requirement	is
met.	The	challenge	in	making	this	happen	is	that	in	most	cases,	the	areas	of
expertise	of	the	stakeholder	and	the	developer	don’t	coincide.	Often	radically	so.
This	is	because	each	person	is	an	expert	in	their	own	domain.	I’m	an	expert	at
Chef,	and	a	pretty	competent	Ruby	and	Python	developer.	I’m	not	an	expert	in
social	media	advertising.	The	problem	Cucumber	sets	out	to	solve	is	that	of
making	it	easy	to	find	a	shared	language—a	ubiquitous	language—that	everyone
can	use	that	describes	what	we’re	trying	to	build	and	why	we’re	trying	to	build

it.	This	language	should	neither	be	mired	in	the	jargon	of	the	developer,	nor	the
person	who	had	the	idea	in	the	first	place.

Beyond	making	acceptance	tests	a	reality,	Cucumber	also	becomes
documentation.	Not	documentation	that	slowly	decays	on	a	wiki—
documentation	that	is	an	executable	specification,	that	lives	with	and	shapes	the
creation	of	the	software.	Documentation	that	can	be	shared,	explored,	grown,
and	that,	ultimately,	can	be	run	from	the	command	line,	and	should	pass	tests.
This	makes	Cucumber	potentially	a	very	powerful	source	of	truth	and	a
barometer	of	health	in	a	project.	That’s	a	pretty	awesome	state	of	affairs.

Let’s	look	at	how	Cucumber	works.	At	the	highest	level,	it’s	just	another
command-line	tool.	It	reads	in	plain	text	files	called	features,	which	contain
scenarios	that	describe	examples	of	use	cases	for	the	feature.	The	features	and
scenarios	are	written	in	what	is	very	close	to	natural	language,	but	with	a	dozen
or	so	grammar	and	syntax	rules—a	DSL	called	Gherkin.	Each	scenario	is	a
sequence	of	steps	that	need	to	be	carried	out	in	order,	setting	up	state,	doing
something,	and	then	checking	state	again.	These	steps	are	then	mapped	onto
Ruby	code,	which	takes	real	action.	These	are	called	step	definitions.	Step
definitions	typically	delegate	to	support	code	shipped	with	the	test	suite	and	call
out	to	automation	libraries	for	helper	functions	for	doing	things	like	driving	a
web	browser	or	using	a	graphical	interface.	When	Cucumber	runs,	it	executes
each	step	in	turn.	If	all	the	steps	complete	successfully,	the	test	is	said	to	have
passed,	otherwise	the	user	is	informed	that	the	test	didn’t	pass,	and	the	exact
state	of	the	test	is	reported.

I	mentioned	before	that	software	begins	with	an	idea.	Cucumber	helps	us	to
capture	what	the	vision	behind	the	idea	is.	We	need	to	understand	what	the	goal
is.	The	vision	might	be	massive,	complex,	and	exciting.	Our	task	is	to	work	with
the	visionary	to	achieve	something	of	value	that	moves	them	in	the	right
direction.	In	recent	years,	this	has	started	to	be	called	a	Minimum	Marketable
Feature	or	Minimum	Viable	Product.	Whatever	you	call	it,	we’re	looking	for	a
description	of	something	achievable	that	captures	and	advances	the	vision	and
purpose	behind	the	software.

Let’s	use	Cucumber	to	write	acceptance	tests	for	the	HipsterAssessor	as	a	way	to
explore	how	the	approach	works.

Enter	the	HipsterAssessor	project	directory	and	run	Cucumber:

$ gem install cucumber $ cucumber You don't have a 'features' directory. Please

create one to get started. See http://cukes.info/ for more information.

OK,	let’s	create	a	directory	for	the	features,	and	try	again:

$ mkdir features $ cucumber 0 scenarios 0 steps 0m0.000s

This	illustrates	two	important	concepts:	Cucumber	is	made	from	scenarios	and
steps.	Each	test	that	we	write	represents	a	scenario	that	we	describe—it	tests	an
aspect	of	the	broader	feature	that	we’re	going	to	help	implement.	Each	scenario
contains	steps	that	will	tell	Cucumber	how	to	actually	carry	out	the	test	and
verify	that	the	intended	feature	works	as	specified.

Features	are	written	in	a	file	with	a	.feature	suffix,	in	the	Gherkin	language.
Open	your	text	editor	and	create	a	file	called	features/assess_hipster.feature.
This	is	a	plain	text	document,	written	with	a	few	constraints.	The	constraints	are
minimal—the	idea	is	that	the	feature	we	write	should	be	in	a	natural	language.	In
fact,	one	of	the	benefits	of	Gherkin	is	it	supports	over	40	languages,	so	you	can
write	your	features	in	Russian	or	Welsh	if	you	wish.	Actually,	this	provides	a
good	way	to	demonstrate	how	small	the	DSL	is:

$ cucumber --i18 cy-GB | feature | "Arwedd" | | background

| "Cefndir" | | scenario | "Scenario" | |

scenario_outline | "Scenario Amlinellol" | | examples | "Enghreifftiau"

| | given | " ", "Anrhegedig a " | | when | " ", "Pryd "

| | then | " ", "Yna " | | and | " ", "A "

| | but | "* ", "Ond " | | given (code) | "Anrhegediga"

| | when (code) | "Pryd" | | then (code) | "Yna"

| | and (code) | "A" | | but (code) | "Ond"

|

That’s	the	extent	of	the	DSL.	Using	these	keywords,	we	express	our	feature.	In
terms	of	grammar,	the	rules	are	very	simple.	The	file	must	begin	with	a	feature,
followed	by	a	title.	This	may	be	followed	by	an	arbitrary	number	of	lines	of
freeform	text	to	document	the	feature.

Feature: Assess hipster

In order to make sure developers are comfortable in their workplace As a manager who

has just hired a developer I want to be able to assess whether the new developer is

a hipster

Hipsters like to have Pabst Blue Ribbon in the fridge, listen to vinyl recordings of

Lily Allen, and need a place to store their fixed-wheel bicycles. As a manager I

need to be sure I can accommodate hipsters, so I want a simple web app that gives a

questionnaire which will advise me if the developer is a hipster.

Scenario: Fixed-wheel bicycle scores 5 points Given a developer with a fixed-wheel

bike When I request a hipster assessment Then the score should be 5

Scenario: Spectacles despite 20/20 vision scores 10 points Given a developer with a

pair of empty frames When I request a hipster assessment Then the score should be 10

The	preceding	code	block	is	a	full	feature,	expressed	in	Gherkin.	The	idea
behind	Gherkin	is	to	be	able	to	provide	concrete	examples	that	illustrate	the
required	feature.	As	a	language,	Gherkin	has	been	optimized	for	readability	and
portability.	As	you	can	see,	Gherkin	is	pretty	much	indistinguishable	from
natural	language.

A	scenario	describes	the	behavior	of	the	system.	Each	scenario	shares	a	common
pattern.	First	we	set	up	some	state:	what	is	the	prerequisite	to	test	the
functionality?	In	this	case,	since	we’re	assessing	developers,	we	need	a
developer.	Next	we	take	an	action	that	we	anticipate	will	change	some	state.	In
this	case,	we’re	going	to	ask	for	a	score.	Finally,	we	check	the	new	state	and
compare	it	to	what	we	expected.	In	this	case,	we	expect	that	the	HipsterAssessor
will	award	our	developer	some	points.

The	keywords	‘Scenario’,	‘Given’,	‘When’,	and	‘Then’	map	onto	Ruby	code
called	step	definitions.	If	we	go	ahead	and	run	Cucumber	now,	we’ll	see	some
progress:

$ cucumber Feature: Assess hipster

In order to make sure developers are comfortable in their workplace As a manager who

has just hired a developer I want to be able to assess whether the new developer is

a hipster

Hipsters like to have Pabst Blue Ribbon in the fridge, listen to vinyl recordings of

Lily Allen, and need a place to store their fixed-wheel bicycles. As a manager I

need to be sure I can accommodate hipsters, so I want a simple web app that gives a

questionnaire which will advise me if the developer is a hipster.

Scenario: Fixed-wheel bicycle scores 5 points # features/assess_hipster.feature:13

Given a developer with a fixed-wheel bike # features/assess_hipster.feature:14

When I request a hipster assessment # features/assess_hipster.feature:15

Then the score should be 5 # features/assess_hipster.feature:16

Scenario: Spectacles despite 20/20 vision scores 10 points #

features/assess_hipster.feature:18 Given a developer with a pair of empty frames

features/assess_hipster.feature:19 When I request a hipster assessment

features/assess_hipster.feature:20 Then the score should be 10

features/assess_hipster.feature:21

2 scenarios (2 undefined) 6 steps (6 undefined) 0m0.003s

You	can	implement	step	definitions	for	undefined	steps	with	these	snippets:

Given(/^a developer with a fixed\-wheel bike$/) do pending # express the regexp

above with the code you wish you had end

When(/^I request a hipster assessment$/) do pending # express the regexp above with

the code you wish you had end

Then(^the score should be (\d+)$) do |arg1| pending # express the regexp above with

the code you wish you had end

Given(/^a developer with a pair of empty frames$/) do pending # express the regexp

above with the code you wish you had end

If	you	want	snippets	in	a	different	programming	language,	just	make	sure	a	file
with	the	appropriate	file	extension	exists	where	Cucumber	looks	for	step
definitions.

Cucumber	has	generated	some	code	snippets	to	get	us	started.	Step	definitions
by	convention	reside	in	a	step_definitions	directory,	under	the	features	directory.
Let’s	create	that	directory,	and	inside	there	paste	the	suggested	snippets	into	a
file	called	assess_hipster_steps.rb.

Now	if	we	run	Cucumber	we	get	a	bit	further:

$ cucumber Feature: Assess hipster

In order to make sure developers are comfortable in their workplace As a manager who

has just hired a developer I want to be able to assess whether the new developer is

a hipster

Hipsters like to have Pabst Blue Ribbon in the fridge, listen to vinyl recordings of

Lily Allen, and need a place to store their fixed-wheel bicycles. As a manager I

need to be sure I can accommodate hipsters, so I want a simple web app that gives a

questionnaire which will advise me if the developer is a hipster.

Scenario: Fixed-wheel bicycle scores 5 points # features/assess_hipster.feature:13

Given a developer with a fixed-wheel bike #

features/step_definitions/assess_hipster_steps.rb:1 TODO (Cucumber::Pending)

./features/step_definitions/assess_hipster_steps.rb:2:in `/^a developer with a

fixed\-wheel bike$/' features/assess_hipster.feature:14:in `Given a developer with a

fixed-wheel bike' When I request a hipster assessment #

features/step_definitions/assess_hipster_steps.rb:5 Then the score should be 5

features/step_definitions/assess_hipster_steps.rb:9

Scenario: Spectacles despite 20/20 vision scores 10 points #

features/assess_hipster.feature:18 Given a developer with a pair of empty frames

features/step_definitions/assess_hipster_steps.rb:13 TODO (Cucumber::Pending)

./features/step_definitions/assess_hipster_steps.rb:14:in `/^a developer with a pair

of empty frames$/' features/assess_hipster.feature:19:in `Given a developer with a

pair of empty frames' When I request a hipster assessment #

features/step_definitions/assess_hipster_steps.rb:5 Then the score should be 10

features/step_definitions/assess_hipster_steps.rb:9

2 scenarios (2 pending) 6 steps (4 skipped, 2 pending) 0m0.004s

Cucumber	is	now	calling	our	step	definitions.	But	our	step	definitions	don’t
contain	any	code	that	does	anything	noteworthy,	and	so	Cucumber	stops	and
tells	us	that	the	first	two	steps	of	each	scenario	are	pending—i.e.,	unwritten—
and	therefore	it	skipped	the	rest	of	the	test.

Let’s	look	at	the	structure	of	a	step	within	a	step	definition:

Given ^a developer with a fixed wheel bike$ do pending # express the regexp above

with the code you wish you had end

We’re	now	in	pure	Ruby—well,	we’re	in	a	pure	Ruby	DSL.	Given	is	a	DSL
method	that	takes	a	regular	expression	and	a	block.	The	regular	expression
matches	the	step	in	the	Gherkin	scenario,	and	the	contents	of	the	block	specifies
what	to	do	when	this	step	is	matched.	The	fact	that	we’re	using	regular
expressions	to	match	the	steps	in	the	Gherkin	scenario	gives	us	two	very
powerful	capabilities—we	can	use	capture	groups	and	wildcards.	This	is	just	the
same	as	capture	groups	in	sed—you	can	put	parentheses	around	some	text	and
store	what	they	match	in	a	variable	for	later	use.	Wildcards	are	like	a	more

powerful	and	flexible	form	of	shell	globbing—we	can	match	non-whitespace
characters,	digits,	lowercase	letters,	or	combinations	thereof.	We’ll	see	this	in
action	in	the	score	step	in	a	moment.	Let’s	write	the	step	definitions	for	real	now.

The	first	is	pretty	straightforward.	We’re	going	to	do	the	same	as	we	did	in	the
previous	steps	and	instantiate	a	developer.	Take	a	look	at	the	comment	that	the
automatically	generated	snippet	contains.	The	key	idea	here	is	that	we	should
write	the	code	we	wish	we	had.	We	don’t	have	any	code	at	all.	We’re	simply
expressing	the	interface	we’d	like	to	see.	Interestingly,	when	we	do	it	this	way,
we	tend	to	think	with	a	more	design-oriented	head.	The	code	we	have	in	the
RSpec	test	is	actually	a	bit	ugly:

developer = HipsterAssessor.new(gears_on_bike=1)

Wouldn’t	it	be	nicer	to	have	a	method	on	the	assessor	that	sets	the	number	of
gears	to	a	certain	value?	This	would	certainly	be	nicer	if	we	were	to	think	of	an
interface	that	we	could	use	with	a	webform,	or	some	other	way	to	populate	the
object.	Simply	calling	the	constructor	with	an	argument	is	rather	clumsy.	Let’s
write	the	code	we	wish	we	had:

Given(/^a developer with a fixed\-wheel bike$/) do @developer = HipsterAssessor.new

@developer.set(:gears_on_bike, 1) end

Now,	let’s	fulfill	the	when	step.	This	is	just	calling	a	method:

When(/^I request a hipster assessment$/) do @result = @developer.score.to_s end

We	need	to	convert	the	score	to	a	string	because	in	our	feature	the	value	appears
as	a	string,	not	an	integer.

Now	we	come	to	the	then	step.	Here	we	can	see	the	power	of	the	regular
expression.	Cucumber	has	already	suggested	we	might	be	interested	in	the	score
and	has	suggested	a	capture	group	and	wildcard.	The	value	of	this	will	be	passed
into	the	block	as	arg1.	We	should	change	that	to	something	more	readable.

Then ^the score should be (\d+)$ do |score| expect(@result).to eq score end

While	we’re	at	it,	let’s	add	the	developer	with	empty	frames	given,	and	then	we

can	run	the	whole	feature.

Given(/^a developer with a pair of empty frames$/) do @developer =

HipsterAssessor.new @developer.set(:glasses_prescription, nil) end

We	should	probably	move	this	up,	so	it	reads	nicely,	too.	At	this	stage	our	steps
look	like	this:

Given(/^a developer with a fixed\-wheel bike$/) do @developer = HipsterAssessor.new

@developer.set(:gears_on_bike, 1) end

Given(/^a developer with a pair of empty frames$/) do @developer =

HipsterAssessor.new @developer.set(:glasses_prescription, nil) end

When(/^I request a hipster assessment$/) do @result = @developer.score.to_s end

Then ^the score should be (\d+)$ do |score| expect(@result).to eq score end

OK…what	happens	when	we	run	Cucumber?

$ cucumber Feature: Assess hipster

In order to make sure developers are comfortable in their workplace As a manager who

has just hired a developer I want to be able to assess whether the new developer is

a hipster

Hipsters like to have Pabst Blue Ribbon in the fridge, listen to vinyl recordings of

Lily Allen, and need a place to store their fixed-wheel bicycles. As a manager I

need to be sure I can accommodate hipsters, so I want a simple web app that gives a

questionnaire which will advise me if the developer is a hipster.

Scenario: Fixed-wheel bicycle scores 5 points # features/assess_hipster.feature:13

Given a developer with a fixed-wheel bike #

features/step_definitions/assess_hipster_steps.rb:1 uninitialized constant

HipsterAssessor (NameError) ./features/step_definitions/assess_hipster_steps.rb:2:in

`/^a developer with a fixed\-wheel bike$/' features/assess_hipster.feature:14:in

`Given a developer with a fixed-wheel bike' When I request a hipster assessment

features/step_definitions/assess_hipster_steps.rb:6 Then the score should be 5

features/step_definitions/assess_hipster_steps.rb:10

Scenario: Spectacles despite 20/20 vision scores 10 points #

features/assess_hipster.feature:18 Given a developer with a pair of empty frames

features/step_definitions/assess_hipster_steps.rb:14 undefined method `set' for

nil:NilClass (NoMethodError)

./features/step_definitions/assess_hipster_steps.rb:15:in `/^a developer with a pair

of empty frames$/' features/assess_hipster.feature:19:in `Given a developer with a

pair of empty frames' When I request a hipster assessment #

features/step_definitions/assess_hipster_steps.rb:6 Then the score should be 10

features/step_definitions/assess_hipster_steps.rb:10

Failing Scenarios: cucumber features/assess_hipster.feature:13 # Scenario: Fixed-

wheel bicycle scores 5 points cucumber features/assess_hipster.feature:18 #

Scenario: Spectacles despite 20/20 vision scores 10 points

2 scenarios (2 failed) 6 steps (2 failed, 4 skipped) 0m0.004s

OK,	this	is	familiar—we	have	a	failing	test!	We	haven’t	connected	the	test	to	our
code.	Let’s	do	that	by	adding	the	require_relative	to	the	top	of	the	steps:

require_relative '../../hipsterassessor'

Now	the	test	runs,	and	the	relevant	part	of	the	output	is:

Scenario: Fixed-wheel bicycle scores 5 points # features/assess_hipster.feature:13

Given a developer with a fixed-wheel bike #

features/step_definitions/assess_hipster_steps.rb:3 wrong number of arguments (0 for

1) (ArgumentError) ./hipsterassessor.rb:3:in `initialize'

./features/step_definitions/assess_hipster_steps.rb:4:in `new'

./features/step_definitions/assess_hipster_steps.rb:4:in `/^a developer with a

fixed\-wheel bike$/' features/assess_hipster.feature:14:in `Given a developer with a

fixed-wheel bike' When I request a hipster assessment #

features/step_definitions/assess_hipster_steps.rb:12 Then the score should be 5

features/step_definitions/assess_hipster_steps.rb:16

Now,	here	we’re	working	slightly	outside	the	standard	pattern	I	would
recommend	because	I	chose	to	introduce	testing	from	the	unit	tests	out.	We’ve
actually	already	got	code,	which	we’re	calling,	that	we	need	to	change.	Let’s
follow	through	and	see	what	happens.	So	at	the	moment,	our	test	code	is	calling
the	constructor	with	no	arguments:

Given(/^a developer with a fixed\-wheel bike$/) do @developer = HipsterAssessor.new

@developer.set(:gears_on_bike, 1) end

But	in	the	actual	class,	we	specify	that	the	constructor	took	an	argument.	Let’s
remove	that:

def initialize @gears = bike_gears @score = 0 end

While	we’re	there,	our	constructor	shouldn’t	try	to	set	gears	any	more	either,	so
let’s	remove	that	line:

def initialize @score = 0 end

Running	Cucumber	now	yields	the	following:

$ cucumber features/assess_hipster.feature:13 Feature: Assess hipster

In order to make sure developers are comfortable in their workplace As a manager who

has just hired a developer I want to be able to assess whether the new developer is

a hipster

Hipsters like to have Pabst Blue Ribbon in the fridge, listen to vinyl recordings of

Lily Allen, and need a place to store their fixed-wheel bicycles. As a manager I

need to be sure I can accommodate hipsters, so I want a simple web app that gives a

questionnaire which will advise me if the developer is a hipster.

Scenario: Fixed-wheel bicycle scores 5 points # features/assess_hipster.feature:13

Given a developer with a fixed-wheel bike #

features/step_definitions/assess_hipster_steps.rb:3 undefined method `set' for #

<HipsterAssessor:0x00000002aaf648 @score=0> (NoMethodError)

./features/step_definitions/assess_hipster_steps.rb:5:in `/^a developer with a

fixed\-wheel bike$/' features/assess_hipster.feature:14:in `Given a developer with a

fixed-wheel bike' When I request a hipster assessment #

features/step_definitions/assess_hipster_steps.rb:12 Then the score should be 5

features/step_definitions/assess_hipster_steps.rb:16

Failing Scenarios: cucumber features/assess_hipster.feature:13 # Scenario: Fixed-

wheel bicycle scores 5 points

1 scenario (1 failed) 3 steps (1 failed, 2 skipped) 0m0.002s

We	need	a	set	method.	At	this	point,	we	should	drop	down	a	level	to	RSpec	or
Minitest	and	write	a	test	for	the	set	method.

First,	let’s	run	the	test	and	see	what	breaks:

$ ruby test_hipster.rb Run options: --seed 59310

Running tests:

EEE

Finished tests in 0.000963s, 3113.7225 tests/s, 0.0000 assertions/s.

1) Error: HipsterAssessor::when assessing whether a developer is a

hipster#test_0001_can establish if the developer has a fixed-wheel bicycle:

ArgumentError: wrong number of arguments (1 for 0) hometdi/tdd-

principles/hipsterassessor.rb:3:in `initialize' test_hipster.rb:8:in `new'

test_hipster.rb:8:in `block (2 levels) in <main>'

2) Error: HipsterAssessor::when assessing whether a developer is a

hipster#test_0002_can report a hipster assessment score: ArgumentError: wrong number

of arguments (1 for 0) hometdi/tdd-principles/hipsterassessor.rb:3:in `initialize'

test_hipster.rb:8:in `new' test_hipster.rb:8:in `block (2 levels) in <main>'

3) Error: HipsterAssessor::when assessing whether a developer is a

hipster#test_0003_can award five points for having a fixie: ArgumentError: wrong

number of arguments (1 for 0) hometdi/tdd-principles/hipsterassessor.rb:3:in

`initialize' test_hipster.rb:8:in `new' test_hipster.rb:8:in `block (2 levels) in

<main>'

3 tests, 0 assertions, 0 failures, 3 errors, 0 skips

Unsurprisingly,	everything	breaks	because	we’re	calling	the	constructor
differently.	Thankfully	that’s	trivial	to	fix	in	our	Minitest	test;	we	only	instantiate
the	assessor	in	one	place.	Change	that	to:

before do @developer = HipsterAssessor.new end

Now	running	the	test	returns	failures	not	errors:

$ ruby test_hipster.rb Run options: --seed 21627

Running tests:

FF.

Finished tests in 0.040021s, 74.9611 tests/s, 74.9611 assertions/s.

1) Failure: HipsterAssessor::when assessing whether a developer is a

hipster#test_0001_can establish if the developer has a fixed-wheel bicycle

[test_hipster.rb:14]: Expected: true Actual: false

2) Failure: HipsterAssessor::when assessing whether a developer is a

hipster#test_0003_can award five points for having a fixie [test_hipster.rb:22]:

Expected: 5 Actual: 0

3 tests, 3 assertions, 2 failures, 0 errors, 0 skips

We	need	also	to	write	a	test	for	the	set	method,	and	then	turn	to	fixing	the
remaining	tests.	As	we	think	about	it,	we	realize	we	need	a	get	method,	too,	and
this	is	needed	for	the	test:

it "can set a hipster credential to a given value" do @developer.set(:favorite_beer,

"PBR") @developer.get(:favorite_beer).must_equal "PBR" end

Let’s	run	the	test:

$ ruby test_hipster.rb Run options: --seed 44375

Running tests:

E.FF

Finished tests in 0.018478s, 216.4764 tests/s, 162.3573 assertions/s.

1) Error: HipsterAssessor::when assessing whether a developer is a

hipster#test_0004_can set a hipster credential to a given value: NoMethodError:

undefined method `set' for #<HipsterAssessor:0x00000000efe890 @score=0>

test_hipster.rb:26:in `block (3 levels) in <main>'

2) Failure: HipsterAssessor::when assessing whether a developer is a

hipster#test_0003_can award five points for having a fixie [test_hipster.rb:22]:

Expected: 5 Actual: 0

3) Failure: HipsterAssessor::when assessing whether a developer is a

hipster#test_0001_can establish if the developer has a fixed-wheel bicycle

[test_hipster.rb:14]: Expected: true Actual: false

4 tests, 3 assertions, 2 failures, 1 errors, 0 skips

Right,	let’s	implement	the	set	method.	Add	a	hipster_credentials	hash	to
the	constructor,	and	then	the	set	method:

def initialize @score = 0 @hipster_credentials = {} end

def set(key, value) @hipster_credentials[key] = value end

Running	the	tests	now	reveals	that	we	need	a	get	method.	We	already	exercise
this	in	the	test,	so	let’s	write	the	method	for	that:

def get(key) @hipster_credentials[key] end

Now	run	the	tests:

$ ruby test_hipster.rb Run options: --seed 32953

Running tests:

F..F

Finished tests in 0.018647s, 214.5123 tests/s, 214.5123 assertions/s.

1) Failure: HipsterAssessor::when assessing whether a developer is a

hipster#test_0003_can award five points for having a fixie [test_hipster.rb:22]:

Expected: 5 Actual: 0

2) Failure: HipsterAssessor::when assessing whether a developer is a

hipster#test_0001_can establish if the developer has a fixed-wheel bicycle

[test_hipster.rb:14]: Expected: true Actual: false

4 tests, 4 assertions, 2 failures, 0 errors, 0 skips

OK,	now	our	get	and	set	methods	work.	We	still	have	other	failing	tests
though,	which	we	need	to	make	pass.	When	we	set	up	state	in	the	test	we	need	to
use	the	HipsterAssessor#get	and	HipsterAssessor#set,	for	those	cases
where	a	fixed-wheel	bicycle	is	mentioned.	We	also	need	to	make	the
has_fixie	method	use	the	hipster_credentials	hash.

In	our	test,	we	make	the	updates:

it "can establish if the developer has a fixed-wheel bicycle" do

@developer.set(:gears_on_bike, 1) @developer.has_fixie?.must_equal true end

it "can award five points for having a fixie" do @developer.set(:gears_on_bike, 1)

@developer.score.must_equal 5 end

And	in	the	class:

def has_fixie? @hipster_credentials[:gears_on_bike] == 1 end

Now	all	the	tests	pass!

$ ruby test_hipster.rb Run options: --seed 44033

Running tests:

....

Finished tests in 0.000843s, 4744.1706 tests/s, 4744.1706 assertions/s.

4 tests, 4 assertions, 0 failures, 0 errors, 0 skips

Let’s	quickly	summarize	the	state	of	the	test	and	the	class.	Here’s	the	test:

require 'minitest/autorun' require_relative 'hipsterassessor'

describe HipsterAssessor do

before do @developer = HipsterAssessor.new end

describe "when assessing whether a developer is a hipster" do

it "can establish if the developer has a fixed-wheel bicycle" do

@developer.set(:gears_on_bike, 1) @developer.has_fixie?.must_equal true end

it "can report a hipster assessment score" do @developer.score.must_be_instance_of

Fixnum end

it "can award five points for having a fixie" do @developer.set(:gears_on_bike, 1)

@developer.score.must_equal 5 end

it "can set a hispter credential to a given value" do @developer.set(:favorite_beer,

"PBR") @developer.get(:favorite_beer).must_equal "PBR" end

end

end

And	here’s	the	class:

class HipsterAssessor

def initialize @score = 0 @hipster_credentials = {} end

def set(key, value) @hipster_credentials[key] = value end

def get(key) @hipster_credentials[key] end

def has_fixie? @hipster_credentials[:gears_on_bike] == 1 end

def score if self.has_fixie? @score = @score + 5 end @score end end

Now	that	the	tests	pass,	we	can	go	back	out	to	Cucumber.

Running	Cucumber	now	shows	the	first	scenario	passing!	The	second	doesn’t
pass:

$ cucumber Feature: Assess hipster

In order to make sure developers are comfortable in their workplace As a manager who

has just hired a developer I want to be able to assess whether the new developer is

a hipster

Hipsters like to have Pabst Blue Ribbon in the fridge, listen to vinyl recordings of

Lily Allen, and need a place to store their fixed-wheel bicycles. As a manager I

need to be sure I can accommodate hipsters, so I want a simple web app that gives a

questionnaire which will advise me if the developer is a hipster.

Scenario: Fixed-wheel bicycle scores 5 points # features/assess_hipster.feature:13

Given a developer with a fixed-wheel bike #

features/step_definitions/assess_hipster_steps.rb:3 When I request a hipster

assessment # features/step_definitions/assess_hipster_steps.rb:13 Then the

score should be 5 #

features/step_definitions/assess_hipster_steps.rb:17

Scenario: Spectacles despite 20/20 vision scores 10 points #

features/assess_hipster.feature:18 Given a developer with a pair of empty frames

features/step_definitions/assess_hipster_steps.rb:8 When I request a hipster

assessment #

features/step_definitions/assess_hipster_steps.rb:13 Then the score should be 10

features/step_definitions/assess_hipster_steps.rb:17

expected: "10" got: "0"

(compared using ==) (RSpec::Expectations::ExpectationNotMetError)

./features/step_definitions/assess_hipster_steps.rb:18:in `^the score should be

(\d+)$' features/assess_hipster.feature:21:in `Then the score should be 10'

Failing Scenarios: cucumber features/assess_hipster.feature:18 # Scenario:

Spectacles despite 20/20 vision scores 10 points

2 scenarios (1 failed, 1 passed) 6 steps (1 failed, 5 passed) 0m0.004s

This	requires	us	to	go	back	to	the	lower	level,	and	write	a	test	for	applying	a
value	on	the	basis	of	phoney	spectacles.	Let’s	add	that	test:

it "can award ten points for phoney spectacles" do

@developer.set(:glasses_prescription, nil) @developer.score.must_equal 10 end

Watch	it	fail:

$ ruby test_hipster.rb Run options: --seed 36835

Running tests:

..F..

Finished tests in 0.018249s, 273.9899 tests/s, 273.9899 assertions/s.

1) Failure: HipsterAssessor::when assessing whether a developer is a

hipster#test_0004_can award ten points for phoney spectacles [test_hipster.rb:29]:

Expected: 10 Actual: 0

5 tests, 5 assertions, 1 failures, 0 errors, 0 skips

Now	we	realize	that	we	should	have	a	test	that	the	assessor	can	use	to	establish	if
the	developer	has	phoney	specs.	Let’s	add	that,	too:

it "can establish if the developer has phoney spectacles" do

@developer.set(:glasses_prescription, nil) @developer.has_phoney_specs?.must_equal

true end

Run	the	tests,	watch	it	fail:

$ ruby test_hipster.rb Run options: --seed 36835

Running tests:

..F..

Finished tests in 0.018249s, 273.9899 tests/s, 273.9899 assertions/s.

1) Failure: HipsterAssessor::when assessing whether a developer is a

hipster#test_0004_can award ten points for phoney spectacles [test_hipster.rb:29]:

Expected: 10 Actual: 0

5 tests, 5 assertions, 1 failures, 0 errors, 0 skips tdi@tk00:~/tdd-principles$ vi

test_hipster.rb tdi@tk00:~/tdd-principles$ ruby test_hipster.rb Run options: --seed

7359

Running tests:

.F..E.

Finished tests in 0.018551s, 323.4269 tests/s, 269.5224 assertions/s.

1) Failure: HipsterAssessor::when assessing whether a developer is a

hipster#test_0005_can award ten points for phoney spectacles [test_hipster.rb:34]:

Expected: 10 Actual: 0

2) Error: HipsterAssessor::when assessing whether a developer is a

hipster#test_0002_can establish if the developer has phoney spectacles:

NoMethodError: undefined method `has_phoney_specs?' for #

<HipsterAssessor:0x0000000136db38> test_hipster.rb:20:in `block (3 levels) in

<main>'

6 tests, 5 assertions, 1 failures, 1 errors, 0 skips

Now	add	the	method	which	checks	for	the	specs,	and	then	update	the	score
method	to	return	10	in	the	case	of	phoney	specs:

def has_phoney_specs? @hipster_credentials[:gears_on_bike] == nil end

def score if self.has_fixie? @score = @score + 5 elsif self.has_phoney_specs? @score

= @score + 10 end @score end

Once	more	with	feeling!

ruby test_hipster.rb Run options: --seed 15341

Running tests:

......

Finished tests in 0.000912s, 6581.1700 tests/s, 6581.1700 assertions/s.

6 tests, 6 assertions, 0 failures, 0 errors, 0 skips

And	with	Cucumber?

$ cucumber Feature: Assess hipster

In order to make sure developers are comfortable in their workplace As a manager who

has just hired a developer I want to be able to assess whether the new developer is

a hipster

Hipsters like to have Pabst Blue Ribbon in the fridge, listen to vinyl recordings of

Lily Allen, and need a place to store their fixed-wheel bicycles. As a manager I

need to be sure I can accommodate hipsters, so I want a simple web app that gives a

questionnaire which will advise me if the developer is a hipster.

Scenario: Fixed-wheel bicycle scores 5 points # features/assess_hipster.feature:13

Given a developer with a fixed-wheel bike #

features/step_definitions/assess_hipster_steps.rb:3 When I request a hipster

assessment # features/step_definitions/assess_hipster_steps.rb:13 Then the

score should be 5 #

features/step_definitions/assess_hipster_steps.rb:17

Scenario: Spectacles despite 20/20 vision scores 10 points #

features/assess_hipster.feature:18 Given a developer with a pair of empty frames

features/step_definitions/assess_hipster_steps.rb:8 When I request a hipster

assessment #

features/step_definitions/assess_hipster_steps.rb:13 Then the score should be 10

features/step_definitions/assess_hipster_steps.rb:17

2 scenarios (2 passed) 6 steps (6 passed) 0m0.004s

So,	at	the	end	of	that	whistlestop	tour	of	testing	in	Ruby,	you	should	now	feel
confident	that	you	understand	the	rationale,	toolchain,	and	workflow	of	test-and
behavior-driven	development.	Let’s	now	move	on	to	discuss	how	to	go	about
implementing	some	of	these	ideas	with	respect	to	infrastructure	coding.

Chapter	6.	A	Test-Driven
Infrastructure	Framework

At	the	time	of	the	first	edition	of	this	book,	there	was	only	one	tool	and	a	handful
of	people	exploring	the	ideas	of	infrastructure	testing.	The	first	edition	covered
that	tool—a	tool	written	by	me	as	a	proof	of	concept	to	demonstrate	that	the
project	of	testing	infrastructure	code	was	achievable.	This	tool,	Cucumber-Chef,
was	intentionally	narrow	in	its	purview,	in	that	it	attempted	to	explore	one
particular	aspect	of	the	broader	infrastructure-testing	landscape,	in	a	way	that
reduced	the	commitment	in	terms	of	acquiring	new	machines	to	zero.	Based
around	Opscode’s	Hosted	Chef	service	and	Amazon’s	EC2	platform,	it	set	out	to
open	the	discussion	and	get	the	conversation	moving.

The	testing	ecosystem	has	blossomed	since	the	first	edition	of	this	book.	Mature
frameworks	are	emerging,	significant	community	adoption	of	the	testing	of
cookbooks	and	infrastructure	is	taking	place,	and	helper	tools	and	knife	plug-ins
specifically	targeted	at	infrastructure	testing	are	released	regularly.

This	chapter	takes	a	high-level	philosophical	overview	of	the	business	of	testing
infrastructure	code.	It	sets	out	a	vision	for	what	the	landscape	should	look	like.
This	is	a	landscape	that	changes	day	by	day.	At	the	time	of	this	writing—early
summer	2013—there	is	a	profound	level	of	interest	in	infrastructure	testing.
Discussions	abound	on	the	mailing	lists,	IRC,	Twitter,	and	in	various	podcasts.
It’s	a	dynamic,	exciting,	and	fast-moving	subject	area.

That	said,	I	believe	it	is	possible	both	to	set	a	conceptual	framework	for	what
needs	to	be	in	place,	and	to	outline	a	workflow	based	on	the	current	best-of-
breed	tooling	available.	Having	presented	a	conceptual	framework,	we	will
survey	a	selection	of	the	currently	available	tools,	providing	examples	of	each
tool	together	with	a	discussion	of	their	merits	and	demerits,	and	how	they	fit	into
an	overarching	testing	strategy.

Naturally	in	a	fast-moving	technology	space	such	as	infrastructure	as	code,	the

state	of	the	art	is	in	flux;	however,	I	think	we	can	be	confident	that	a	philosophy,
methodology,	and	requirements	list	against	which	we	can	continue	to	measure
tools	as	they	emerge	can	be	synthesized.

Test-Driven	Infrastructure:	A	Conceptual
Framework
I’ll	start	by	setting	out	a	high-level	vision.	I’m	not	a	believer	in	luck;	although	I
share	the	observation	of	legendary	South	African	golfer,	Gary	Player,	who
maintained,	“The	harder	I	practice,	the	luckier	I	get.”	That	said,	I	think	it	does	no
harm,	as	a	community,	or	a	movement,	to	have	a	mascot.	The	MASCOT	I
propose	upholds	the	following	six	objectives:

Test-driven	infrastructure	should	be:
Mainstream

Automated

Side	effect	aware

Continuously	integrated

Outside-in

Test-first

Test-Driven	Infrastructure	Should	Be	Mainstream
My	vision	is	that	soon	it	won’t	even	be	questioned	that	developing	infrastructure
is	done	in	a	test-driven	way.	Although	a	very	strong	case	can	be	made	for	the
approach,	it	will	never	become	mainstream	until	the	barriers	to	entry	are
lowered.	It’s	no	surprise	that,	of	modern	languages,	Ruby	has	most
comprehensively	embraced	test-driven	engineering.	The	quality	of	tooling	is
tremendously	high	with	innovation	and	improvement	seen	on	a	regular	basis.
The	passion	and	enthusiasm	of	the	community	has	made	testing	a	popular	topic,
and	within	the	web	development	world,	Ruby	leads	the	way,	and	test-driven
development	is	mainstream.	Within	our	world	of	infrastructure	as	code,	the

tooling	we	have	isn’t	yet	sufficiently	powerful	or	easy	to	use	to	encourage	mass
adoption,	but	we’re	on	the	right	trajectory.

In	order	for	testing	to	become	mainstream,	it’s	necessary	to	agree	to	a	set	of
standards	around	which	to	organize.	Of	particular	concern	is	community
agreement	about	the	general	syntax	and	style	of	cookbooks.	When	developing
infrastructure	code	in	a	shared	environment,	enforcing	a	house	style	can	be	a
very	valuable	thing	to	implement.	It	encourages	the	team	to	work	in	a	consistent
way	and	ensures	that	code	is	maximally	shareable	and	portable.

Test-Driven	Infrastructure	Should	Be	Automated
In	order	for	testing	to	become	mainstream	and	effective,	it’s	essential	that	it’s
automated.	This	is	especially	the	case	for	long-running,	complex	integration
tests.	Without	a	workflow	that	includes	automation	of	these	high-value,	but
labor-intensive	tests,	they	simply	won’t	be	run	with	sufficient	frequency	to
deliver	consistent	improvements.

Automation	takes	place	at	a	number	of	levels.	To	an	extent,	the	very	act	of
writing	test	code	is	a	kind	of	automation.	We’re	encoding	the	steps	that	need	to
be	taken	to	verify	that	a	given	state	has	been	achieved,	or	that	a	given	behavior	is
being	exhibited.	However,	it’s	not	just	the	encoding	of	the	steps	required	to	carry
out	the	test	that	needs	to	be	automated.	We	also	need	to	automate	the	running	of
the	tests	with	a	degree	of	frequency	that	is	meaningful,	and	a	degree	of	feedback
that	is	noticeable	and	unignorable.

To	draw	a	parallel	with	the	mainstream	software	development	world,	when
writing	tests,	some	tests	are	harder	to	write	than	others.	Specifically,	writing	unit
tests	is	pretty	easy.	Writing	integration	tests	is	harder.	Writing	end-to-end
acceptance	tests	is	hardest.	This	means	that	sometimes	the	hardest	tests	are
simply	not	automated—in	some	cases	the	testing	is	left	to	the	customer.	The
same	applies	when	testing	infrastructure.	It’s	not	difficult	to	write	a	test	that
asserts	that	a	resource	has	been	brought	into	the	correct	state.	It’s	harder	to	test
connectivity	between	two	layers	of	infrastructure,	such	as	between	database	and
web	server.	It’s	hardest	of	all	to	verify	that	the	infrastructure	behaves	as	it
should,	from	monitoring	to	backups,	from	top	to	bottom.	In	both	worlds,	the
most	value	is	in	the	hardest	stuff.

Martin	Fowler	likes	the	sound	byte,	“If	it	hurts,	do	more	of	it.”	The	logic	behind

http://bit.ly/1evgo4s

this	seemingly	paradoxical	statement	is	that	there’s	an	exponential	relationship
between	the	amount	of	pain	experienced	and	the	amount	of	time	between
occurrences	of	the	thing	that	causes	pain.	This	is	the	case	for	converging	nodes,
rebuilding	servers,	migrating	databases,	speaking	to	stakeholders,	releasing
software,	and	of	course,	running	tests.	Thus	it	stands	to	reason	that	by	doing	it
more	frequently,	it	will,	in	fact,	start	to	hurt	less.

If	there’s	any	pain	associated	with	the	frequent	running	of	tests—unreliable	tests,
flakey	interfaces,	slow	test	machines,	very	long-running	tests,	or	the	like—it’s
especially	important	to	automate	them.

Our	infrastructure	tests	should	run	automatically—ideally	on	every	commit.
Even	better	would	be	to	move	to	a	continuous	deployment	model,	where	every
commit	not	only	kicks	off	a	test	run,	but	deploys	the	code	on	a	test	environment
and	then	traverses	a	build	pipeline	with	appropriate	yes/no	gates,	ultimately
resulting	in	an	update	of	the	production	infrastructure.	This	is	the	current	state	of
the	art	in	the	software	development	world.	If	infrastructure	is	code,	we	should
give	serious	thought	to	adopting	the	same	mentality	when	writing	Chef	recipes
and	cookbooks.

Test-Driven	Infrastructure	Should	Be	Side-Effect	Aware
In	his	State	of	the	Union	presentation	at	the	inaugural	Chefconf	event	in
Burlingame,	CA,	Adam	Jacob	made	the	observation	that	configuration
management	is	effectively	the	study	of	side-effects.	When	we	write
infrastructure	code	to	capture	a	set	of	complex	requirements,	what	we’re	really
doing	is	commanding	one	system	to	take	action	in	a	way	that	affects	another
system,	which	in	turn	impacts	other	systems	in	such	a	way	as	to	bring	the	world
into	a	desired	state.	Chef	takes	this	challenge	in	its	stride—it	aims	to	make
systems	easy	to	reason	about,	to	remain	predictable,	and	understandable	in	the
event	of	a	mistake.

The	bigger	challenge	comes	in	the	inherent	portability	of	Chef	cookbooks	and
recipes.	Especially	amongst	the	popular	community	cookbooks—such	as
Apache	or	MySQL,	with	dozens	of	contributors	across	a	range	of	Linux,	Unix,
and	Windows	systems—it’s	entirely	possible	that	a	change	or	improvement
introduced	for	one	platform	will	have	an	unexpected	and	adverse	side-effect	on
users	on	a	different	platform.	Our	test-driven	infrastructure	vision	needs	to

acknowledge	and	mitigate	against	this	risk.

Fundamentally,	we	want	to	be	confident	that	seemingly	trivial	changes	to	our
cookbooks	don’t	have	unwanted	side-effects.	This	becomes	more	of	a	challenge
if	our	cookbooks	grow	to	support	multiple	platforms.	The	possibility	that	a
trivial	change	for	a	system	running	on	Red	Hat	breaks	compatibility	for
FreeBSD	is	something	that	needs	to	be	guarded	against.	Naturally	this	can	be
achieved	manually,	by	spinning	up	a	virtual	machine,	running	Chef,	and	looking
at	the	output,	but	automating	this	makes	it	far	more	likely	that	it	will	happen	as	a
matter	of	course.	This	is	especially	valuable	as	the	number	and	complexity	of
our	cookbooks	grow,	and	even	more	especially	in	an	environment	in	which
many	different	developers	are	cooperating.

Test-Driven	Infrastructure	Should	Be	Continuously
Integrated
A	key	component	of	constructing	a	world	in	which	our	infrastructure	testing	is
both	automated	and	side-effect	aware	is	that	the	code	we	write	should	be
continuously	integrated.

Another	core	practice	from	eXtreme	programming,	the	idea	of	continuous
integration	lies	in	the	recognition	that	the	traditional	approach	of	periodically
integrating	the	code	of	a	number	of	different	people	is	invariably	an	error-prone,
time-consuming,	and	painful	endeavor.	Ron	Jeffries	quips,	on	the	C2	wiki:
I’ve	been	working	on	my	classes	and	think	they	are	perfect.	You’ve	been	working	on	yours	and	I
suppose	you	think	they’re	pretty	good,	too.	Carl	has	been	working	on	his,	and	you	know	how	that
goes.

Now	we	have	to	integrate	them	to	build	a	new	system.	Carl’s	code,	as	usual,	breaks	everything.	It
looks	to	me	as	if	you	have	a	few	problems,	too.	My	code	is	solid,	I	know	that	because	I	worked	hard
on	it.

What	I	can’t	understand	is	why	you	think	there	might	be	something	wrong	with	my	code,	and	Carl,
the	idiot,	is	after	both	of	us.

We’re	in	for	a	few	really	unpleasant	days.	Maybe	next	time	we	shouldn’t	wait	so	long	to	integrate…

—	Ron	Jeffries

The	response	is	the	principle	that	developers	should	be	integrating	and
committing	code	very	frequently.	This	avoids	diverging	or	fragmented
development	efforts,	especially	where	team	members	are	not	in	direct
communication	with	each	other.	In	a	community	development	effort,	such	as

cookbooks,	this	is	even	more	vital.

In	an	XP	team,	the	process	of	integrating	the	code	means	gathering	the	latest
code,	and	running	all	the	tests.	If	tests	fail,	collaborating	on	what	caused	the
failure	and	committing	a	fix	becomes	the	priority	task.

If	we’re	to	be	serious	about	developing	quality	infrastructure	code,	we	need	to
bring	the	same	practices	to	bear.	This	means	that	our	tests	need	to	be	run
automatically	on	commits,	and	the	results	shared	visibly	and	publicly.

Test-Driven	Infrastructure	Should	Be	Outside	In
One	of	the	maxims	of	BDD	is	that	we	take	an	outside-in	approach.	Imagine	I	set
a	group	of	people	in	a	room	to	a	programming	task	of	moderate	complexity.	If
you	were	to	watch	each	person	in	the	room	after	I’d	finished	explaining	the	task,
I	think	you’d	find	that	the	most	natural	approach,	and	the	statistically	most	likely
approach	of	each	person	would	be	to	open	up	their	editor	of	choice	and	start
hacking	away.	You	might	find	some	people	opening	up	some	kind	of	interactive
REPL	and	experimenting.	Those	with	a	grounding	in	agile	programming
approaches	might	even	start	writing	some	basic	unit	tests.	This	kind	of	approach
is	what	I	call	“inside-out.”	Straight	away	we’re	starting	to	write	the	code	to	solve
the	problem,	even	if	we’re	writing	tests	first.

BDD	encourages	thinking	about	the	problem	a	different	way.	This	is	the	great
thing	about	Cucumber—it	allows	and	to	an	extent,	even	forces	the	developer	to
step	right	away	from	the	implementation	details	and	think	about	how	the
software	should	look,	feel,	behave,	act.	This	is	outside-in.	We	describe	a	feature
that	delivers	value	as	an	executable	specification.	Only	once	we	have	this	feature
described,	and	failing	a	test,	do	we	start	to	think	about	how	to	make	it	pass.

The	same	approach	makes	a	great	deal	of	sense	when	we	are	doing	infrastructure
development.	If	I	set	a	task,	such	as	setting	up	an	issue	tracker,	and	asked	a
number	of	people	in	a	room	to	carry	this	out,	you’d	see	similar	behavior.	Most
would	start	by	installing	Apache	and	PHP,	and	then	maybe	think	about	a	user,
and	hack	forward	from	there.	A	smaller	number	would	start	to	write	or	even
reuse	Chef	cookbooks	and	recipes.	The	outside-in	approach	starts	by	writing	the
feature	that	defines	how	the	piece	of	infrastructure	should	behave.

We	want	to	ensure	that	our	cookbooks	deliver	the	intended	behavior—that	they

solve	the	particular	problem	we	have	in	mind	when	we	set	out.

I’ve	already	covered	the	foundational	principles	of	behavior-driven
development,	but	I	will	re-emphasize	the	fact	that	none	of	our	development
efforts	are	worth	a	thing	if	they	don’t	address	a	specific	business	value.	Test-
driven	infrastructure	means	committing	to	build	the	right	thing,	not	just	build	the
thing	right.

Test-Driven	Infrastructure	Should	Be	Test-First
The	final	objective	of	my	mascot	manifesto	is	that	as	we	write	our	infrastructure,
not	only	should	we	be	ensuring	our	code	is	under	test,	but	that	those	tests	should
be	written	before	we	write	any	Chef	code.	This	discipline	recognizes	that	the
tests	we	write	are	actually	a	development	tool	in	themselves.	The	benefits	are
clear:

It	focuses	attention	on	precisely	what	the	cookbook/recipe	needs	to	do.

It	makes	it	very	clear	where	the	development	should	start.

There	is	never	any	question	about	the	definition	of	done—the	test	owns	this.

It	encourages	a	lean	and	efficient	development	approach:	we	build	only	as
much	infrastructure	as	is	needed	to	make	the	tests	pass.

In	the	spirit	of	Chef,	it	makes	our	code	easy	to	reason	about—the	target	is
reproducible,	predictable	results.

Dependencies	are	flushed	out	early,	and	their	minimization	is	a	core	activity.

It	surfaces	good	design	decisions	by	encouraging	the	creation	of	solutions
that	are	simple	enough	to	make	the	test	pass,	but	no	simpler.

In	the	event	of	unexpected	failures,	the	debugging	process	is	targeted.

It	encourages	refactoring—as	we	write	code	to	make	our	tests	pass,	so	we
should	identify	hints	that	refactoring	is	needed.

I	asked	my	family	what	animal	they	felt	would	be	appropriate	as	a	mascot	for	a
test-driven	infrastructure	manifesto.	They	gave	it	careful	deliberation	before

suggesting	that	the	best	choice	was	a	tortoise.	Their	reasoning	was	that	tortoises
like	eating	cucumbers,	don’t	dash	head	first	into	things,	but	take	a	measured	and
careful	approach,	and	in	fine	Aesopian	tradition,	win	the	race	anyway.

I’m	not	sure	it’ll	catch	on,	but	I	am	sure	that	to	achieve	this	sextuplet	of
objectives,	we	need	to	overcome	a	number	of	technical	hurdles.

The	Pillars	of	Test-Driven	Infrastructure
What,	then,	should	be	the	conceptual	framework	that	informs	our	choice	of
tools?	How	do	we	go	about	ensuring	that	TDI	is	MASCOT?	If	we	want	TDI	to
be	mainstream,	what	needs	to	be	in	place?	If	we	want	our	testing	to	be
automated,	what	do	we	need	to	accomplish	that?	What	does	it	mean	for	our	tests
to	be	side-effect	aware?	What	specifically	do	we	need	to	make	sure	this	is
happening?	What	about	continuous	integration—how	do	we	go	about	that?	Are
there	tools?	Workflows?	What	do	we	require,	and	what	do	we	lack?	In	order	to
perform	the	whole	endeavor	test-first,	what	do	we	need?	Or	perhaps,	what	does
the	beginning	infrastructure	developer	lack,	and	if	they	were	to	be	handed	a
starter	pack,	with	“TDI	Essentials:	A	Toolkit	for	Success”	written	on	the	front,
what	would	it	contain?

I	think	it	makes	sense	to	try	to	break	the	requirements	down	into	four	broad
areas.	Obviously	we	need	to	write	the	tests	themselves,	which	requires	that	we
have	access	to	a	testing	framework,	and	supporting	tools	and	documentation	to
help	us	write	those	tests.	Naturally	we	need	to	run	our	tests,	and	indeed	have
them	run	in	our	absence,	without	our	constant	input.	Given	that	we’re	testing
infrastructure,	we	need	to	be	able	to	set	up	and	tear	down—to	build	a	test
infrastructure	for	the	purposes	of	testing.	This	is	effectively	a	provisioning
problem.	And	finally,	we	need	to	be	told	the	results,	in	a	meaningful	way,	in	a
timely	manner,	and	in	such	a	way	that	encourages	us	to	take	action.	That	is	to
say,	the	feedback	we	get	needs	to	be	directed,	relevant,	and	accurate.

Let’s	unpack	these	four	supporting,	conceptual	pillars:
Writing

Running

Provisioning

Feedback

Writing	Tests
The	process	of	testing	code	consists	of	setting	up	state,	introducing	some	input
that	changes	that	state,	and	then	comparing	the	resulting	state	with	our
expectations.	As	discussed	in	Chapter	5,	it’s	apparent	that	this	test	writing	needs
to	take	place	at	several	different	levels—from	the	high-level	behavior	of	the
overall	system	we’re	building,	to	the	verification	that	distribution-specific
variables	are	evaluated	correctly.

The	main	challenge	here	is	in	making	this	process	easy.	Having	to	write	verbose,
manual	expectations	to	assert	that,	for	example,	a	package	was	installed,	is
tiresome.	Such	expectations	and	assertions	can	be	simplified	and	shared.	The
more	complex,	end-to-end	systems	are	more	likely	to	require	the	solutions	to
more	involved	and	bespoke	challenges,	however	as	the	corpus	of	tests	in	the
community	grows,	so	will	the	body	of	experience	and	confidence.

It	needs	to	be	easy	for	infrastructure	developers	to	assert	that	a	resource	is	in	the
desired	state.	Ideally	this	should	be	in	the	form	of	providing	potted	assertions
that	can	be	reused,	rather	than	requiring	the	developer	to	create	this	scaffolding
him	or	herself.

Running	Tests
Once	infrastructure	developers	feel	confident	in	writing	tests,	they	need	to
establish	the	most	effective	way	to	run	both	their	tests,	and	in	cases	Chef	itself,
on	or	against	a	range	of	systems.

I	don’t	think	it’s	unfair	to	claim	that	the	mechanism	by	which	tests	are	run
automatically	is	pretty	much	a	solved	problem.	There	are	mature	job	runners	and
continuous	integration	frameworks	and	even	online	services	that	are	designed
specifically	for	this	task	and	are	used	every	day	by	countless	software
development	organizations.

However,	orchestrating	the	running	of	tests	we	have	written	is	not	without	its
own	challenges,	especially	if	the	tests	are	to	be	run	on	remote	machines	or	to
span	multiple	systems.	In	line	with	our	desire	for	maximum	automation,	we	also
need	to	establish	the	most	effective	way	to	run	tests	in	an	unattended	way,	on

commit,	or	with	predictable	periodicity.

Of	course,	a	prerequisite	for	being	able	to	run	these	tests	is	the	ability	to
provision	test	infrastructure	rapidly	and	painlessly.	We	consider	this	next.

Provisioning	Machines
The	holy	grail	of	infrastructure	testing	is	the	ability	to	specify	an	infrastructure
feature,	provision	some	hardware,	apply	Chef,	and	verify	that	the	intended
behavior	has	been	met,	all	quickly	and	automatically.

Primitive	testing	can	be	carried	out	on	one’s	own	development	workstation,	but
pretty	soon	a	need	to	provision	fresh	machines,	run	Chef	against	them,	and	then
test	them,	becomes	a	clear	requirement.

As	soon	as	the	infrastructure	we’re	building	has	one	or	more	of	the	following
characteristics,	we	need	to	solve	this	problem:

The	infrastructure	runs	on	a	different	OS	from	that	of	the	developer’s
workstation.

The	infrastructure	runs	on	more	than	one	OS	or	distribution.

And,	in	fact,	there	is	always	going	to	be	a	need	for	a	complete	end-to-end	test,
which	at	the	very	least	demands	a	brand	new,	fresh,	unadulterated	machine	from
which	to	start,	and	which	may	involve	a	large	number	of	different	machines.

Advances	in	desktop	virtualization	technology,	and	the	ready	availability	of
highly	powered	laptops	and	workstations	does	make	keeping	this	test
environment	on	one’s	local	machine	more	achievable	than	it	was	a	few	years
ago.	Indeed	the	ready	availability	of	local	test	machines	has	brought	about	a
significant	upsurge	in	people	starting	to	take	infrastructure	testing	seriously.
However,	we	need	to	think	beyond	our	local	machines	to	facilitate	unattended
testing,	shared	infrastructure,	and	to	accommodate	the	reality	of	a	world	in
which	some	developers	suffer	under	highly	restrictive	IT	policies,	and	in	which
some	organizations—especially	charities,	non-profits,	and	businesses	in	the
developing	world—simply	don’t	have	the	same	degree	of	power	and	freedom
with	their	local	machines	as	others.

The	requirement,	therefore,	is	to	be	able	to	provision	machines,	install	Chef,
create	and	apply	appropriate	run	lists,	and	then	run	Chef	to	bring	the	machines	in

line	with	our	stated	policy.	This	is	a	pretty	in-depth	process.	Assuming	the	Chef
code	has	been	written,	we	still	need	to	make	the	latest	version	of	the	code
available,	and	then	converge	the	node	or	nodes.	We	then	need	to	be	able	to	run
some	kind	of	test	against	the	converged	nodes,	from	a	machine	that	behaves	like
an	external	client.

Virtualization	has	made	this	process	much	simpler	than	it	was	even	10	years	ago,
and	excellent	network	APIs	exist	for	many	cloud	providers,	which	makes
automated	provisioning	as	a	part	of	the	testing	process	well	within	our
capabilities.

Provisioning	is	made	much	simpler	with	the	use	of	virtualization-based
technologies.	The	ability	to	create	snapshots,	roll	forwards	and	backwards,	or
clone	or	freshly	provision	machines	makes	the	setting	up	of	a	platform	on	which
or	against	which	to	run	tests	an	achievable	aim.	One	variable	to	consider,
however,	is	the	number	of	machines	required.	If	your	infrastructure	supports
three	or	more	different	underlying	platforms—such	as	two	different	Linux
distributions	and	a	flavor	of	BSD,	or	Windows—the	requirement	is	now	to	be
able	to	run	and	work	with	three	machines.	If	these	machines	are	to	be	reasonably
responsive	and	performant,	resources	in	terms	of	processor	power	and	memory
need	to	be	appropriately	allocated.	Modern	hardware	brings	this	within	reach,
with	multi-core	laptops	with	8G	of	memory	now	not	uncommon,	but	cases
where	developer	workstations	are	insufficiently	powerful	are	still	common,	so
alternative	approaches	need	to	be	considered.

Feedback	of	Results
It’s	actually	the	speed	of	the	tests	that	represents	one	of	the	biggest	challenges.
We	want	the	feedback	time	to	be	sufficiently	quick	as	to	be	rewarding	and	not
frustrating.

The	main	constraining	factor	when	testing	Chef	code,	which	impacts	the	speed
of	tests,	is	the	time	taken	to	convergence	of	the	node	during	a	Chef	run.	A
complex	cookbook,	making	use	of	search,	and	using	the	Opscode	Hosted	Chef
platform,	could	take	a	minute	or	more	to	run	per	node.	Unit	tests	that	take	three
minutes	to	run	have	a	high	likelihood	of	being	skipped	or	ignored,	so	working
out	the	most	effective	way	to	converge	nodes	is	highly	significant.

Related	to	the	running	of	the	tests	is	the	mechanism	for	extracting	the	results.

Again,	at	small	scale,	running	tests	and	observing	the	results	is	trivial.	However,
storing	these	results	for	later	analysis,	or	running	the	tests	and	being	able	to	see
the	results	some	hours	later	requires	more	thought.

In	order	to	achieve	continuous	integration,	we	need	to	make	the	connection
between	a	line	of	text	on	a	console	indicating	a	failed	test,	and	something	that	an
automated	test	runner	can	understand	to	mean	that	the	build	failed.

Finally,	in	line	with	our	desire	to	encourage	and	enforce	shared	standards	for
quality,	it’s	necessary	to	provide	a	means	of	both	defining	and	assessing
compliance	against	those	standards.	This	has	both	a	community	and
technological	aspect—the	standards	need	to	be	discussed	and	agreed,	and	then
an	approach	to	validating	code	against	those	standards	that	is	flexible,	fast,	and
automated	is	required.

Having	drawn	up	a	framework	for	Test-driven	infrastructure,	we	now	turn	to
building	a	toolkit.

Chapter	7.	Test-Driven
Infrastructure:	A	Recommended
Toolchain

This	book	began	with	two	philosophical	foundations:
1.	 Infrastructure	can	and	should	be	treated	as	code.

2.	 Infrastructure	developers	should	adhere	to	the	same	principles	of
professionalism	as	other	software	developers.

It	then	outlined	how	to	go	about	endeavoring	to	fulfill	the	second	by	the
mechanism	of	practicing	the	first.

We’ve	provided	a	thorough	introduction	to	the	core	principles	and	primitives	of
Chef,	and	we’ve	explored	them	through	the	means	of	a	thorough	set	of	worked
examples.

We	then	set	the	groundwork	for	the	program	of	developing	the	highest	standards
of	software	professionalism	by	presenting	a	directed	but	thorough	introduction	to
the	Ruby	programming	language,	and	the	principles	and	practices	of	test-driven
and	behavior-driven	development.

We	set	out	a	manifesto	and	framework	around	which	to	organize	ourselves	as	we
seek	to	apply	these	TDD	and	BDD	principles	and	practices	to	the	paradigm	of
infrastructure	as	code.

In	this	closing	chapter,	we	give	a	clear	recommendation	and	strategy	for	top-to-
bottom	test-driven	infrastructure	by	illustrating	and	evaluating	the	leading	tools
and	workflows	available	to	assist	us	in	our	quest	at	this	point	in	the	evolution	of
this	young	but	exciting	discipline.

Tool	Selection

There	is	surely	nothing	quite	so	useless	as	doing	with	great	efficiency	that	which	should	not	be	done
at	all.

—	Peter	Drucker

Our	selection	of	tools	and	recommended	workflow	and	approach	needs	to	be
informed	by	a	holistic	perspective	on	testing	(and	building)	software	in	general.
Underpinning	our	every	decision	must	be	the	core	mantra	that	the	purpose	of	our
testing	endeavors	is	to	ensure	that	not	only	do	we	build	the	thing	right,	but	that
we	build	the	right	thing.

We	need	to	check	that	our	infrastructure	code	works—that	it	does	what	we
intended,	but	also	that	our	infrastructure	delivers	the	functionality	that	is
required.	Beyond	these	considerations,	our	testing	strategy	must	also	account	for
ongoing	maintainability;	we	need	to	be	confident	in	our	ability	to	refactor,	share,
and	reuse	our	work.	This	moves	the	conversation	beyond	simplistic	unit	testing
to	be	an	all-encompassing	testing	strategy.

When	thinking	about	what	a	testing	strategy	should	look	like,	I	find	Brian
Marick’s	testing	quadrant	diagram	to	be	particularly	helpful.

A	successful	infrastructure-testing	strategy	must	encapsulate	behaviors	in	all
four	of	the	quadrants;	that	is,	it	must	include	activities	directed	around
supporting	the	engineering	effort,	both	in	terms	of	the	people	doing	the	work,
and	the	technology	and	implementation,	but	also	in	terms	of	supporting	the
business	it	serves,	in	terms	of	the	core	stakeholders,	but	also	at	the	highest	level,
in	terms	of	verifying	that	value	has	been	delivered	to	the	business.

There	are	some	observations	associated	with	activities	in	this	matrix.	Activities
towards	the	left—those	that	support	the	engineering	effort—tend	to	lend
themselves	to	automation.	Activities	towards	the	top—those	that	face	the

business	and	the	stakeholder—tend	to	be	more	resource-intensive,	but	ultimately
deliver	the	most	value.

Tasks	such	as	load	testing,	penetration	testing,	usability	testing,	and	exploratory
testing	are	really	out	of	the	scope	of	this	book.	With	that	in	mind,	of	the	plethora
of	tools	and	approaches	available	within	the	world	of	infrastructure	testing,	I’m
aiming	to	recommend	a	subset	that	will	assist	us	in	our	activities	in	quadrants
one	and	three	(i.e.,	tasks	that	support	the	delivery	of	infrastructure,	rather	than
critique	it,	but	face	both	the	business	and	the	engineering	sides).

Let’s	quickly	clarify	terms	before	proceeding	to	a	deeper	discussion	of	the
tooling	that	supports	their	implementation.

Unit	Testing
Within	quadrant	three,	we	have	traditional	unit	tests	and	integration	tests.	A
simple	definition	of	a	unit	test	is:
The	execution	of	a	complete	class,	routine,	or	small	program	that	has	been	written	by	a	single
programmer	or	team	of	programmers,	which	is	tested	in	isolation	from	the	more	complete	system.

—	by	Steve	McConnell	“Code	Complete”	(Microsoft	Press)

This	simple	definition	suffices	to	describe	what	a	unit	test	looks	like.	However,	I
think	it’s	valuable	to	express	explicitly	what	a	unit	test	does	not	look	like.	A	test
is	not	a	unit	test	if:

The	test	is	not	automated	and	not	repeatable.

It	is	difficult	to	implement.

It	isn’t	kept	around	for	future	use.

Only	a	few	informed	people	know	how	to	run	it.

It	requires	more	than	one	step	to	run.

It	takes	more	than	a	few	seconds.

Integration	Testing
Where	unit	tests	are	designed	to	test	individual	units	of	code	(in	as	much
isolation	as	possible),	integration	tests	explore	how	the	code	units	interact.	This

could	be	as	simple	as	removing	any	mocks	and	stubs,	but	it	could	also	involve
crafting	a	special	test	that	explicitly	tests	relationships	between	components.

Both	have	value,	and	both	need	to	be	in	place.

When	thinking	about	unit	and	integration	tests	for	Chef,	it	makes	sense	to	think
about	testing	in	terms	of	signal	in,	signal	processing,	and	signal	out.	Signal	input
asks	the	question,	“Did	we	send	Chef	the	correct	command?”	Signal	processing
asks	the	question,	“Did	Chef	carry	out	my	instructions?”	Signal	output	asks	the
question:	“Did	my	expressed	intent,	executed	by	Chef,	deliver	the	intended
result?”

Chef	itself	is	fully	tested—we	don’t	need	to	test	that	Chef	providers	will	do	what
we	ask.	But	we	do	need	to	check	that	we	asked	Chef	to	do	the	right	thing,	and
that	what	Chef	did	was	what	we	actually	wanted.

For	testing	signal	input,	I	recommend	Chefspec.	For	testing	signal	output,	I
recommend	running	tests	using	Test	Kitchen,	using	a	framework	that	allows	you
to	be	effective.	I	think	there’s	significant	value	using	the	same	expectation
syntax	for	signal	in	and	signal	out,	so	I	offer	as	an	option	the	use	of	Serverspec,
but	also	give	an	example	of	a	different	approach,	using	Bats.	Honorable	mention
goes	to	Minitest	Handler	on	account	of	its	ease	and	speed	of	use.

Acceptance	Testing
Acceptance	tests	describe	a	requirement	or	a	feature.	They	are	a	clear	indicator
of	success	or	completion—passing	acceptance	tests	are	an	unambiguous
definition	of	“done.”	They	involve	close	collaboration	with	stakeholders	and
clarify	the	expectations	of	the	end	users.	In	his	book,	Lean-Agile	Acceptance
Test-Driven	Development	(Addison-Wesley),	Ken	Pugh	gives	as	an	example	the

following	kind	of	discussion:

Ken: Does anyone want a fast car?

Student: Yes please

Ken: Stand by...OK, here's a fast car! It goes 0-60 in 20 seconds!

Student: That's not fast!

Ken: Oh...I thought that was fast. Give me a test that would indicate that the car

is fast?

Student: It does 0-60 in 4.5 seconds.

Ken: Stand by...OK, here's the fast car! It does 0-60 in 4.5 seconds. By the way,

the top speed is 60 mph.

Student: That's not fast!

Ken: Oh...OK, give me a test that would indicate that the car is fast?

Student: The top speed is 150 mph.

Ken: Stand by...OK, here's the fast car! 0-60 in 4.5 seconds, top speed 150 mph,

60-150 in 2 minutes.

The	point	being	made	is	that	without	customer-facing	acceptance	tests,	it’s
difficult	to	know	if	we’ve	built	the	right	thing.	Leaving	an	engineer	to	make	that
decision	is	probably	not	a	great	idea.	Something	similar	happens	when	building
infrastructure.	We’re	never	building	infrastructure	in	a	vacuum,	there’s	always	a
reason	for	the	infrastructure,	and	the	person	who’s	going	to	use	it	almost
certainly	has	some	requirements.	Leaving	the	requirements	down	to	the
implementor	opens	up	a	high	risk	of	the	endeavor	being	wasteful.	To	give	a
trivial	example:

Me: Do you need a load balancer?

Stakeholder: Yes!

Me: <some time later> There, a load balancer! It uses a simple round-robin

algorithm.

Stakeholder: Oh...I wanted to balance based on number of sessions.

Me: Oh...<replaces load balancer> There, a load balancer!

Stakeholder: Oh...I wanted to terminate SSL.

Me: Oh...

The	following	diagram,	from	Gojko	Adžić,	illustrates	the	importance	of	striving
to	build	both	the	right	thing	and	the	thing	right—a	philosophy	that	is	every	bit	as
applicable	in	the	world	of	infrastructure	as	code	as	it	is	in	the	world	of	building
the	software	that	runs	on	top	of	the	infrastructure.

Speaking	from	personal	experience,	as	a	consultant	specializing	in	building
automated	infrastructures,	and	having	worked	with	dozens	of	clients,	I’ve	seen	a
number	of	expensive	failures	and	presided	over	more	than	one	myself.	It’s	all	too
easy	to	spend	time,	and	the	customer’s	money,	building	a	perfect	infrastructure
that	doesn’t	do	the	right	thing.	I’ve	also	seen	cases	where	the	operations	team
has	been	forced	into	building	a	system	that	meets	business	requirements	but	is	a
nightmare	to	maintain.	Succeeding	in	infrastructure	development	means	striking
the	right	balance,	to	land	in	quadrant	two,	and	deliver	success.

Striking	this	balance	demands	collaboration	to	drive	out	precise	examples	that
encapsulate	requirements,	and	making	these	examples	the	single	source	of	truth.
These	examples	become	the	documentation,	the	acceptance	criteria,	and	the
implementation	plan—all	in	one	place.	This	delivers	the	following	advantages:

Stakeholders	and	implementors	have	a	common	understanding	of	the
requirements.

Requirements	are	captured	in	a	precise	and	unambiguous	format.

Documentation	that	enables	change	remains	fresh	and	meaningful.

An	objective	definition	of	“done”	is	universally	understood.

The	building	of	automated	acceptance	tests	that	represent	these	requirements	and
can	demonstrate	repeatably	that	the	right	thing	has	been	built,	from	an	external
perspective,	requires	a	different	approach	to	test	writing	and	a	different	set	of
tools.

For	acceptance	testing,	I	recommend	Cucumber,	paired	with	the	orchestration
capabilities	of	Test	Kitchen.	The	enabling	agent—which	makes	it	easy	for
Cucumber	and	Test	Kitchen	to	work	together—is	a	theoretically	simple	task,	but
at	present	there	isn’t	an	obvious	stand-out	exemplar,	so	I’ve	written	one,	which
I’ve	called	Leibniz.

Testing	Workflow
I	think	at	this	stage	it	makes	sense	to	describe	the	workflow	that	I	feel	best
delivers	results	against	our	desired	objectives.	I	am	much	indebted	to	the
excellent	description	of	the	Red/Green/Refactor	workflow	described	by	David
Chelimsky	in	“The	RSpec	Book”	(Pragmatic	Bookshelf).	This	is	the	standard
methodology	used	by	BDD	practitioners:

As	engineers	we	navigate	a	continuously	iterative	cycle	of	testing	and
development,	until	we	have	met	the	acceptance	criteria.	The	three	phases	are:

Red
We’ve	written	a	failing	test,	which	describes	the	behavior	of	a	feature	we
need	to	implement,	but	we	haven’t	written	the	code.

Green
We’ve	written	just	enough	code	make	the	test	pass.

Refactor
Having	got	the	feature	to	work	and	the	test	to	pass,	we	refactor	the	code	to
improve	its	structure,	maintainability,	or	performance,	without	altering	its
external	behavior.

It’s	accepted	practice	to	navigate	this	cycle	from	the	outside-in;	that	is,	to	start
with	the	acceptance	tests,	and	move	in	to	unit	tests,	and	then	back	out	again.	I
propose	a	variation	on	this	patten	for	infrastructure	code.

By	this	approach,	we	would	structure	our	workflow	as	follows:
1.	 Capture	examples	that	specify	external	acceptance	criteria,	from	the

perspective	of	a	consumer	of	the	infrastructure	we	are	building.

2.	 Write	executable	specifications	using	Cucumber.

3.	 Watch	them	fail.

4.	 Write	integration	tests	that	describe	the	intended	behavior	of	a	machine
once	a	run	list	has	been	applied	to	it,	from	the	perspective	of	an	engineer
looking	at	the	machine	itself.

5.	 Watch	them	fail.

6.	 Write	unit	tests	that	describe	the	messages	we	pass	to	Chef,	and	the	state	of
the	resource	collection,	from	the	perspective	of	a	recipe	author.

7.	 Watch	them	fail.

8.	 Write	the	recipe	to	make	the	unit	tests	pass.

9.	 Navigate	back	up	the	hierarchy	until	all	tests	pass.

10.	 Refactor.

Before	examining	the	recommended	toolchain	that	helps	us	achieve	this
approach,	we	need	first	to	discuss	some	supporting	tooling,	which	will	assist	us
in	our	quest.

Supporting	Tools:	Berkshelf
It	is	widely	accepted	and	understood	that	effective	use	of	Chef	requires	the
employment	of	a	dependency	management	system.	This	is	a	common
requirement	in	the	software	development	world.	Berkshelf	is	the	leading	solution
in	the	Chef	community	at	present.

Overview
At	the	conclusion	of	our	introduction	to	Ruby,	we	discussed	Bundler—a
dependency	solver	and	portable	sandboxing	tool	for	Rubygems.	If	you
understood	the	principles	of	Bundler,	the	basic	idea	of	Berkshelf	should	be	very
easy	to	grasp.	Berkshelf	is,	at	its	most	basic	level,	Bundler	for	cookbooks.	Let’s
review	the	twin	goals	of	Bundler:

Ensure	that	the	appropriate	dependencies	are	installed	for	a	given	problem
without	encountering	unpleasant	ordering	issues	or	cyclical	dependencies.

Ensure	code	can	be	shared	between	other	developers,	or	other	machines	or
environments,	and	be	confident	the	code	and	its	dependencies	will	behave	in
the	same	way.

Berkshelf	solves	these	problems	for	cookbooks,	only	in	the	place	of	a	Gemfile,
Berkshelf	has	a	Berksfile.

You’ll	remember	from	our	introduction	to	Chef	that	as	soon	as	we	started	relying
on	recipes	from	other	cookbooks	and	made	use	of	the	include_recipe
resource,	we	needed	to	update	the	metadata.rb	file	to	specify	an	explicit
dependency	on	the	cookbook	that	provided	the	recipe	or	LWRP	that	we	wanted.
That’s	perfectly	reasonable	and	to	be	expected.	However,	my	expectation	is	that
you	pretty	soon	got	tired	of	having	to	solve	cookbook	dependencies	manually
and	recursively.	Similarly,	having	to	upload	cookbooks	in	the	right	order,	one	at
a	time,	was	equally	tiresome.	Berkshelf	takes	these	pains	away	by	providing	a
local	dependency	solving	solution,	and	by	functioning	as	a	Chef	API	client	for
uploading	cookbooks.

Berkshelf	provides	considerably	more	functionality	than	this.	It’s	pivotal	to	an
entire	Chef	development	workflow,	dubbed	“The	Berkshelf	Way”	by	the	group
of	developers	from	Riot	Games,	the	company	behind	Berkshelf,	who	open
sourced	it	and	its	component	tools.	We’ll	touch	on	many	of	these	capabilities	and
concepts	as	we	explore	the	tooling	in	this	chapter.

Getting	Started
Berkshelf	is	distributed	as	a	Rubygem.	This	gives	you	the	opportunity	simply	to
install	it	with	gem install berkshelf,	or	ensure	it’s	installed	as	part	of	your
Ruby/Developer	cookbooks	and/or	roles.	The	other	obvious	approach	is	to	use
Bundler.

$ gem install berkshelf

Fetching: nio4r-0.4.6.gem (100%)

Building native extensions. This could take a while...

Successfully installed nio4r-0.4.6

Fetching: celluloid-io-0.14.1.gem (100%)

Successfully installed celluloid-io-0.14.1

Fetching: ridley-1.0.1.gem (100%)

Successfully installed ridley-1.0.1

Fetching: safe_yaml-0.9.3.gem (100%)

Successfully installed safe_yaml-0.9.3

Fetching: test-kitchen-1.0.0.alpha.7.gem (100%)

Successfully installed test-kitchen-1.0.0.alpha.7

Fetching: berkshelf-2.0.1.gem (100%)

Successfully installed berkshelf-2.0.1

Installing ri documentation for nio4r-0.4.6

Installing ri documentation for celluloid-io-0.14.1

Installing ri documentation for ridley-1.0.1

Installing ri documentation for safe_yaml-0.9.3

Installing ri documentation for test-kitchen-1.0.0.alpha.7

Installing ri documentation for berkshelf-2.0.1

6 gems installed

Once	Berkshelf	is	installed,	access	the	help	by	running	the	following:

$ berks help

Commands:

 berks apply ENVIRONMENT # Apply the cookbook version locks from Berksfile.lock

to a Chef environment

 berks configure # Create a new Berkshelf configuration file

 berks contingent COOKBOOK # List all cookbooks that depend on the given cookbook

 berks cookbook NAME # Create a skeleton for a new cookbook

 berks help [COMMAND] # Describe available commands or one specific command

 berks init [PATH] # Initialize Berkshelf in the given directory

 berks install # Install the cookbooks specified in the Berksfile

 berks list # List all cookbooks (and dependencies) specified in

the Berksfile

 berks outdated [COOKBOOKS] # Show outdated cookbooks (from the community site)

 berks package [COOKBOOK] # Package a cookbook (and dependencies) as a tarball

 berks shelf SUBCOMMAND # Interact with the cookbook store

 berks show [COOKBOOK] # Display name, author, copyright, and dependency

information about a cookbook

 berks update [COOKBOOKS] # Update the cookbooks (and dependencies) specified in

the Berksfile

 berks upload [COOKBOOKS] # Upload the cookbook specified in the Berksfile to

the Chef Server

 berks version # Display version and copyright information

Options:

 -c, [--config=PATH] # Path to Berkshelf configuration to use.

 -F, [--format=FORMAT] # Output format to use.

 # Default: human

 -q, [--quiet] # Silence all informational output.

 -d, [--debug] # Output debug information

Example
Find	the	irc	cookbook	we	created	in	Chapter	3.	Change	into	its	top-level
directory,	and	have	a	look	at	the	files:

$ ls

CHANGELOG.md files metadata.rb README.md recipes

Now,	let’s	initialize	the	cookbook,	so	we	can	manage	its	dependencies	with
Berkshelf:

$ berks init

 create Berksfile

 create Thorfile

 create chefignore

 create .gitignore

 run git init from "."

 create Gemfile

 create .kitchen.yml

 append Thorfile

 create test/integration/default

 append .gitignore

 append .gitignore

 append Gemfile

 append Gemfile

You must run `bundle install' to fetch any new gems.

 create Vagrantfile

Successfully initialized

Wow,	that	did	a	lot!	Some	of	these	files	will	look	familiar;	we	know	about
Vagrantfiles	and	Gemfiles,	and	I’ve	already	indicated	that	Berkshelf	uses	a
Berksfile.	We’ve	had	a	look	at	Thor—it,	too,	has	a	file	of	its	own.	The	.gitignore
and	chefignore	files	are	simply	there	to	blacklist	files	and	directories	from	being
uploaded	to	the	Chef	server	or	checked	into	version	control.	That	leaves	us	with
the	.kitchen.yml	and	test/integration/default	directory.	We’ll	cover	these	later	in
this	chapter.

Let’s	have	a	look	at	the	Gemfile	and	the	Berksfile:

$ cat Gemfile

source 'https://rubygems.org'

gem 'berkshelf'

gem 'test-kitchen', :group => :integration

gem 'kitchen-vagrant', :group => :integration

$ cat Berksfile

site :opscode

metadata

The	Gemfile	shows	three	dependencies.	Berkshelf	itself,	plus	two	others.	We’ll
discuss	the	kitchen-related	files	when	we	get	to	our	section	on	Test	Kitchen.	The
main	thing	of	note	here	is	the	use	of	the	:integration	group.	This	allows	us	to
install	the	core	dependency,	Berkshelf,	on	a	continuous	integration	server,	where
we	might	want	to	solve	dependencies,	and	carry	out	lint	and	static	analysis	tests
—and	perhaps	fast	unit	tests—but	where	we	don’t	want	to	ever	run	integration
tests,	which	is	the	purpose	of	Test	Kitchen.	This	uses	Bundler’s	--without	flag,
allowing	us	to	specify	to	install	the	dependencies,	omitting	certain	groups.

The	Berksfile	follows	the	same	pattern	as	the	Gemfile.	We	specify	a	source—in
this	case,	we’re	stating	that	by	default	we	want	to	pull	in	dependencies	from	the
Opscode	community	site.	The	metadata	line	delegates	dependencies	to	the
cookbook	metadata.rb	file.	It’s	effectively	saying,	“I’m	a	cookbook.	If	you	want
to	know	my	dependencies,	check	out	my	metadata	file.”

Unsurprisingly,	Berkshelf	follows	Bundler	in	having	an	install	command:

$ berks install

Using irc (0.1.0) at path: 'hometdi/chef-repo/cookbooks/irc'

Using yum (2.2.2)

Again,	like	Bundler,	Berkshelf	recognizes	that	it	already	has	local	cookbooks
that	satisfy	the	dependency,	so	it	“uses”	them.	Note	that	these	cookbooks,	and	all
other	versions	of	the	cookbook	ever	used	by	Berkshelf,	are	all	stored	in	a
conventional	directory	(.berkshelf,	in	this	case).	If	there	were	not	local	copies
available,	it	would	download	them	from	the	community	site.

At	this	stage,	the	similarities	with	Bundler	evaporate,	and	we	start	to	see	some	of
the	individual	power	and	characteristics	of	Berkshelf.	Reviewing	the	commands
in	the	help	text,	I	would	draw	your	attention	to	three	in	particular:

berks configure # Create a new Berkshelf configuration file

berks upload [COOKBOOKS] # Upload the cookbook specified in

the Berksfile to the Chef Server

berks apply ENVIRONMENT # Apply the cookbook version locks

from Berksfile.lock to a Chef environment

Berkshelf	and	Vagrant
Berkshelf	provides	some	of	the	functionality	we	found	in	Knife	to	interact	with
a	Chef	server.	Now,	remember,	everything	in	Chef	is	an	API	client;	this	means
we	need	to	configure	Berkshelf	as	an	API	client.	Berkshelf	provides	and	uses	its
own	API	client	library,	Ridley.	We	could	create	a	new	key	pair,	but	it’s	simpler
just	to	use	the	key	pair	we	used	ourselves,	when	we	used	Knife.

The	berks configure	command	will	make	educated	guesses	based	on	the
content	of	your	knife.rb	file.	This	will	be	fine	in	our	case.	Let’s	run	the
command,	and	accept	all	the	defaults:

$ berks configure

Enter value for chef.chef_server_url (default:

'https://api.opscode.com/organizations/hunterhayes'):

Enter value for chef.node_name (default: 'tdiexample'):

Enter value for chef.client_key (default: 'hometdi/chef-repo/.chef/tdiexample.pem'):

Enter value for chef.validation_client_name (default: 'hunterhayes-validator'):

Enter value for chef.validation_key_path (default: 'hometdi/chef-

repo/.chef/hunterhayes-validator.pem'):

Enter value for vagrant.vm.box (default: 'Berkshelf-CentOS-6.3-x86_64-minimal'):

Enter value for vagrant.vm.box_url (default:

'https://dl.dropbox.com/u/31081437/Berkshelf-CentOS-6.3-x86_64-minimal.box'):

Config written to: 'hometdi/.berkshelf/config.json'

This	all	looks	plausible.	The	only	values	I	would	draw	your	attention	to	are	those
for	vagrant.vm.	These	values	exist	because	Berkshelf	is	designed	to	interact
with	Vagrant,	such	that	when	running	vagrant up,	any	cookbook	dependencies
are	solved	and	made	available	on	the	machine	under	test,	and	the	default	recipe
is	converged.	Now,	we	already	downloaded	a	Vagrant	box	from	the	Opscode
Bento	project.	We	should	use	that	in	preference	to	the	default.	We	can	find	out
its	name	by	running	vagrant box list,	and	then	we	can	edit	the	config	file:

$ vagrant box list

opscode-ubuntu-10.04 (virtualbox)

opscode-ubuntu-12.04 (virtualbox)

opscode-centos-6.4 (virtualbox)

opscode-centos-5.9 (virtualbox)

On	this	particular	machine,	I	have	four	machines,	provided	by	the
Vagrant/VirtualBox	combination.	Let’s	stick	with	the	CentOS	6.4	machine.

https://github.com/RiotGames/ridley

Unfortunately,	the	output	of	the	berks configure	command	seems	to	be	a	bit
hard	to	read:

{"chef":

{"chef_server_url":"https://api.opscode.com/organizations/hunterhayes","validation_client_name":"hunterhayes-

validator","validation_key_path":"hometdi/chef-repo/.chef/hunterhayes-

validator.pem","client_key":"hometdi/chef-

repo/.chef/tdiexample.pem","node_name":"tdiexample"},"cookbook":

{"copyright":"YOUR_NAME","email":"YOUR_EMAIL","license":"reserved"},"allowed_licenses":

[],"raise_license_exception":false,"vagrant":{"vm":{"box":"Berkshelf-CentOS-6.3-

x86_64-minimal","box_url":"https://dl.dropbox.com/u/31081437/Berkshelf-CentOS-6.3-

x86_64-minimal.box","forward_port":{},"network":

{"bridged":false,"hostonly":"33.33.33.10"},"provision":"chef_solo"}},"ssl":

{"verify":true}}

But	we	can	fix	this	easily	enough:[6]

$ python -mjson.tool < hometdi/.berkshelf/config.json >

hometdi/.berkshelf/config.json.readable

$ grep box hometdi/.berkshelf/config.json.readable

 "box": "Berkshelf-CentOS-6.3-x86_64-minimal",

 "box_url": "https://dl.dropbox.com/u/31081437/Berkshelf-CentOS-6.3-

x86_64-minimal.box",

Open	the	file	in	an	editor,	remove	the	box_url	line,	and	update	the	box	entry.
This	will	ensure	that	the	next	time	berks init	is	run,	it	will	set	the	Vagrantfile
to	use	our	favored	box.	We’re	going	to	need	to	make	the	same	edit	to	the
Vagrantfile	within	the	irc	cookbook:	remove	the	box_url	entry	and	change	the
box	entry.	While	we’re	there,	we	should	add	the	config	entry,	which	tells	the
Vagrant	machine	to	install	the	latest	Chef	client	from	the	omnibus	package.	This
leaves	our	Vagrantfile	looking	like	this:

$ grep -v '^$' Vagrantfile |grep -v '^ *#'

Vagrant.configure("2") do |config|

 config.omnibus.chef_version = :latest

 config.vm.hostname = "irc-berkshelf"

 config.vm.box = "opscode-centos-6.4"

 config.vm.network :private_network, ip: "33.33.33.10"

 config.ssh.max_tries = 40

 config.ssh.timeout = 120

 config.berkshelf.enabled = true

 config.vm.provision :chef_solo do |chef|

 chef.json = {

 :mysql => {

 :server_root_password => 'rootpass',

 :server_debian_password => 'debpass',

 :server_repl_password => 'replpass'

 }

 }

 chef.run_list = [

 "recipe[irc::default]"

]

 end

end

All	that	remains	to	do	is	to	ensure	the	vagrant-berkshelf	plug-in	is	installed,
and	then	run	vagrant up	to	watch	the	magic!

$ vagrant plugin install vagrant-berkshelf

...

$ vagrant plugin install vagrant-omnibus

...

$ vagrant up

Bringing machine 'default' up with 'virtualbox' provider...

[default] Importing base box 'opscode-centos-6.4'...

[default] Matching MAC address for NAT networking...

[default] Setting the name of the VM...

[default] Clearing any previously set forwarded ports...

[Berkshelf] This version of the Berkshelf plugin has not been fully tested on this

version of Vagrant.

[Berkshelf] You should check for a newer version of vagrant-berkshelf.

[Berkshelf] If you encounter any errors with this version, please report them at

https://github.com/RiotGames/vagrant-berkshelf/issues

[Berkshelf] You can also join the discussion in #berkshelf on Freenode.

[Berkshelf] Updating Vagrant's berkshelf: 'hometdi/.berkshelf/vagrant/berkshelf-

20130607-26262-mra02l'

[Berkshelf] Using irc (0.1.0) at path: 'hometdi/chef-repo/cookbooks/irc'

[Berkshelf] Using yum (2.2.2)

[default] Fixed port collision for 22 => 2222. Now on port 2202.

[default] Creating shared folders metadata...

[default] Clearing any previously set network interfaces...

[default] Preparing network interfaces based on configuration...

[default] Forwarding ports...

[default] -- 22 => 2202 (adapter 1)

[default] Booting VM...

[default] Waiting for VM to boot. This can take a few minutes.

[default] VM booted and ready for use!

[default] Ensuring Chef is installed at requested version of 11.4.4.

[default] Chef 11.4.4 Omnibus package is not installed...installing now.

Downloading Chef 11.4.4 for el...

Installing Chef 11.4.4

warning: tmptmp.OQLalPCu/chef-11.4.4.x86_64.rpm: Header V4 DSA/SHA1 Signature, key

ID 83ef826a: NOKEY

Preparing... ##

chef ##

Thank you for installing Chef!

[default] Setting hostname...

[default] Configuring and enabling network interfaces...

[default] Mounting shared folders...

[default] -- /vagrant

[default] -- tmpvagrant-chef-1/chef-solo-1/cookbooks

[default] Running provisioner: chef_solo...

Generating chef JSON and uploading...

Running chef-solo...

[2013-06-07T08:38:25+00:00] INFO: *** Chef 11.4.4 ***

[2013-06-07T08:38:25+00:00] INFO: Setting the run_list to ["recipe[irc::default]"]

from JSON

[2013-06-07T08:38:25+00:00] INFO: Run List is [recipe[irc::default]]

[2013-06-07T08:38:25+00:00] INFO: Run List expands to [irc::default]

[2013-06-07T08:38:25+00:00] INFO: Starting Chef Run for irc-berkshelf

[2013-06-07T08:38:25+00:00] INFO: Running start handlers

[2013-06-07T08:38:25+00:00] INFO: Start handlers complete.

[2013-06-07T08:38:25+00:00] INFO: Processing yum_key[RPM-GPG-KEY-EPEL-6] action add

(yum::epel line 22)

[2013-06-07T08:38:25+00:00] INFO: Adding RPM-GPG-KEY-EPEL-6 GPG key to etcpki/rpm-

gpg/

[2013-06-07T08:38:25+00:00] INFO: Processing package[gnupg2] action install

(tmpvagrant-chef-1/chef-solo-1/cookbooks/yum/providers/key.rb line 32)

[2013-06-07T08:38:32+00:00] INFO: Processing execute[import-rpm-gpg-key-RPM-GPG-KEY-

EPEL-6] action nothing (tmpvagrant-chef-1/chef-solo-1/cookbooks/yum/providers/key.rb

line 35)

[2013-06-07T08:38:32+00:00] INFO: Processing remote_file[etcpki/rpm-gpg/RPM-GPG-KEY-

EPEL-6] action create (tmpvagrant-chef-1/chef-solo-1/cookbooks/yum/providers/key.rb

line 61)

[2013-06-07T08:38:32+00:00] INFO: remote_file[etcpki/rpm-gpg/RPM-GPG-KEY-EPEL-6]

updated

[2013-06-07T08:38:32+00:00] INFO: remote_file[etcpki/rpm-gpg/RPM-GPG-KEY-EPEL-6]

mode changed to 644

[2013-06-07T08:38:32+00:00] INFO: remote_file[etcpki/rpm-gpg/RPM-GPG-KEY-EPEL-6]

sending run action to execute[import-rpm-gpg-key-RPM-GPG-KEY-EPEL-6] (immediate)

[2013-06-07T08:38:32+00:00] INFO: Processing execute[import-rpm-gpg-key-RPM-GPG-KEY-

EPEL-6] action run (tmpvagrant-chef-1/chef-solo-1/cookbooks/yum/providers/key.rb

line 35)

[2013-06-07T08:38:33+00:00] INFO: execute[import-rpm-gpg-key-RPM-GPG-KEY-EPEL-6] ran

successfully

[2013-06-07T08:38:33+00:00] INFO: Processing yum_repository[epel] action create

(yum::epel line 27)

[2013-06-07T08:38:33+00:00] INFO: Adding and updating epel repository in

etcyum.repos.d/epel.repo

[2013-06-07T08:38:33+00:00] WARN: Cloning resource attributes for yum_key[RPM-GPG-

KEY-EPEL-6] from prior resource (CHEF-3694)

[2013-06-07T08:38:33+00:00] WARN: Previous yum_key[RPM-GPG-KEY-EPEL-6]: tmpvagrant-

chef-1/chef-solo-1/cookbooks/yum/recipes/epel.rb:22:in `from_file'

[2013-06-07T08:38:33+00:00] WARN: Current yum_key[RPM-GPG-KEY-EPEL-6]: tmpvagrant-

chef-1/chef-solo-1/cookbooks/yum/providers/repository.rb:85:in `repo_config'

[2013-06-07T08:38:33+00:00] INFO: Processing yum_key[RPM-GPG-KEY-EPEL-6] action add

(tmpvagrant-chef-1/chef-solo-1/cookbooks/yum/providers/repository.rb line 85)

[2013-06-07T08:38:33+00:00] INFO: Processing execute[yum-makecache] action nothing

(tmpvagrant-chef-1/chef-solo-1/cookbooks/yum/providers/repository.rb line 88)

[2013-06-07T08:38:33+00:00] INFO: Processing ruby_block[reload-internal-yum-cache]

action nothing (tmpvagrant-chef-1/chef-solo-1/cookbooks/yum/providers/repository.rb

line 93)

[2013-06-07T08:38:33+00:00] INFO: Processing template[etcyum.repos.d/epel.repo]

action create (tmpvagrant-chef-1/chef-solo-1/cookbooks/yum/providers/repository.rb

line 100)

[2013-06-07T08:38:33+00:00] INFO: template[etcyum.repos.d/epel.repo] updated content

[2013-06-07T08:38:33+00:00] INFO: template[etcyum.repos.d/epel.repo] mode changed to

644

[2013-06-07T08:38:33+00:00] INFO: template[etcyum.repos.d/epel.repo] sending run

action to execute[yum-makecache] (immediate)

[2013-06-07T08:38:33+00:00] INFO: Processing execute[yum-makecache] action run

(tmpvagrant-chef-1/chef-solo-1/cookbooks/yum/providers/repository.rb line 88)

[2013-06-07T08:38:42+00:00] INFO: execute[yum-makecache] ran successfully

[2013-06-07T08:38:42+00:00] INFO: template[etcyum.repos.d/epel.repo] sending create

action to ruby_block[reload-internal-yum-cache] (immediate)

[2013-06-07T08:38:42+00:00] INFO: Processing ruby_block[reload-internal-yum-cache]

action create (tmpvagrant-chef-1/chef-solo-1/cookbooks/yum/providers/repository.rb

line 93)

[2013-06-07T08:38:42+00:00] INFO: ruby_block[reload-internal-yum-cache] called

[2013-06-07T08:38:42+00:00] INFO: Processing user[tdi] action create (irc::default

line 11)

[2013-06-07T08:38:42+00:00] INFO: user[tdi] created

[2013-06-07T08:38:42+00:00] INFO: Processing package[irssi] action install

(irc::default line 18)

[2013-06-07T08:38:46+00:00] INFO: package[irssi] installing irssi-0.8.15-5.el6 from

base repository

[2013-06-07T08:38:50+00:00] INFO: Processing directory[hometdi/.irssi] action create

(irc::default line 26)

[2013-06-07T08:38:50+00:00] INFO: directory[hometdi/.irssi] created directory

hometdi/.irssi

[2013-06-07T08:38:50+00:00] INFO: directory[hometdi/.irssi] owner changed to 901

[2013-06-07T08:38:50+00:00] INFO: directory[hometdi/.irssi] group changed to 901

[2013-06-07T08:38:50+00:00] INFO: Processing cookbook_file[hometdi/.irssi/config]

action create (irc::default line 31)

[2013-06-07T08:38:50+00:00] INFO: cookbook_file[hometdi/.irssi/config] owner changed

to 901

[2013-06-07T08:38:50+00:00] INFO: cookbook_file[hometdi/.irssi/config] group changed

to 901

[2013-06-07T08:38:50+00:00] INFO: cookbook_file[hometdi/.irssi/config] created file

hometdi/.irssi/config

[2013-06-07T08:38:50+00:00] INFO: Chef Run complete in 25.150121171 seconds

[2013-06-07T08:38:50+00:00] INFO: Running report handlers

[2013-06-07T08:38:50+00:00] INFO: Report handlers complete

Well,	that’s	pretty	impressive!	In	the	time	it	would	have	taken	us	to	read	the
metadata	file	of	a	single	machine—let	alone	upload	all	the	cookbooks,	connect
to	the	machine,	run	chef-client,	and	wait	for	it	to	finish—we’ve	built	a	brand
new	machine	from	scratch,	installed	Chef,	solved	dependencies,	and	converged	a
node.

We	can	connect	to	the	machine	as	before,	using	vagrant ssh,	and	check	out	the
configuration.	This	increase	of	speed	in	the	feedback	loop	is	vital	if	we’re	to
make	testing	of	infrastructure	mainstream.

One	caveat	here:	the	current	Vagrant	machine	is	using	chef-solo	rather	than
chef-client.	Frankly,	for	testing	functionality	within	a	single	cookbook,	this	is
frequently	sufficient,	and	the	speed	of	feedback	is	a	tremendous	bonus.
However,	if	a	convergence	against	a	Chef	server	is	needed,	Vagrant	can	be	easily
configured	to	use	chef-client.	Also	worthy	of	attention	is	chef-zero—an	in-
memory	implementation	of	the	Chef	server,	designed	for	rapid	testing	against	a
real	API.	As	this	is	a	very	new	project,	I	haven’t	explored	it	in	sufficient	detail	to
be	able	to	discuss	it	with	authority,	but	I	recommend	at	least	checking	out	the
Chef	Zero	project.

Berkshelf	and	Chef	environments
The	second	command	I	wanted	to	draw	your	attention	to	was	the	berks upload
command.	You’ll	recall	when	we	first	began	interacting	with	the	Chef	server,
using	Knife,	we	used	knife cookbook upload.	This	was	a	little	frustrating	if
we	didn’t	upload	the	cookbooks	in	the	correct	order.	Berkshelf	combines	the
package	set	functionality	of	Bundler	with	the	cookbook	uploading	functionality

https://github.com/jkeiser/chef-zero

of	Knife.	This	means	that	once	a	set	of	cookbooks	has	been	tested	on	a	Vagrant
machine,	that	set	of	cookbooks	can	be	uploaded	to	the	Chef	server,	dependencies
and	all,	in	a	single	command.	Just	like	Bundler	had	a	Gemfile.lock,	if	we	now
take	a	look	in	the	base	directory	of	the	cookbook,	we’ll	see	a	Berkshelf.lock	file:

$ cat Berksfile.lock

{

 "sha": "6ef716553a56267bb3eb743ece483db8aa94cecb",

 "sources": {

 "irc": {

 "locked_version": "0.1.0",

 "constraint": "= 0.1.0",

 "path": "."

 },

 "yum": {

 "locked_version": "2.2.2"

 }

 }

}

This	introduces	a	vitally	important	question	in	Chef.	Once	we’ve	tested	and
approved	cookbooks,	and	pushed	them	to	a	Chef	server,	how	can	we	be
confident	that	these	are	the	cookbooks	that	will	be	used	in	perpetuity,	or	at	least
until	we	decide	to	introduce	a	change?

At	the	same	time,	it	is	likely	that	we	will	be	enhancing,	fixing,	or	otherwise
refactoring	perhaps	the	same	cookbooks,	following	the	test-first	paradigm
explored	in	this	book.	In	order	to	protect	against	the	cookbooks	under	test
interfering	with	our	production	systems,	Chef	provides	a	mechanism	for
specifying	exactly	which	version	of	a	cookbook	should	be	used	for	machines	in
this	environment.	Chef	also	supports	the	idea	of	freezing	cookbooks,	to	prevent
them	from	being	accidentally	updated	or	altered	once	uploaded	to	a	server.	This
mechanism	is	referred	to	as	Chef	Environments.

Let’s	take	a	quick	look	at	the	node	attributes	of	one	our	machines:

$ knife node show romanesco

Node Name: romanesco

Environment: _default

FQDN: romanesco

IP: 192.168.26.2

Run List: role[debian], role[developer]

http://docs.opscode.com/essentials_environments.html

Roles:

Recipes:

Platform: ubuntu 13.04

Tags:

Unless	explicitly	set,	a	node	in	Chef	will	belong	to	a	default	environment	called
default.	In	the	default	environment,	nodes	will	simply	use	the	most	recently
uploaded	cookbook	on	the	platform,	regardless	of	version	number	or	quality.
There	is	no	policy	at	all.	Obviously	this	is	a	dangerous	state	of	affairs,	so	it’s
considered	best	practice	to	manage	the	versioning	of	your	cookbooks	in	such	a
way	as	to	make	it	easy	for	you	to	set	a	policy	determining	which	versions	of
your	cookbooks	are	to	be	used	in	which	environment.

When	you	feel	you	have	cookbooks	and	recipes	that	are	of	production	quality,
create	an	environment	to	enforce	safe	version	constraints	for	machines	whose
stability	is	vital.	Once	the	node	attribute	of	the	servers	you	feel	should	have
these	stable,	reliable	cookbooks	has	been	set,	they	will	not	get	any	other
versions,	and	the	versions	in	use	can	be	frozen,	so	they	aren’t	accidentally
overwritten.

A	small	aside	on	the	name	“environments”:	I	feel	that	the	term	“environment”	is
one	of	those	rather	overloaded	terms	in	our	industry.	When	I	work	with	clients,
and	they	describe	environments	to	me,	they	are	usually	referring	to	phases	in	the
application	lifecycle	and	use	names	such	as	“development,”	“staging,”	“uat,”
“perftest,”	or	“preprod.”	It’s	pretty	clear	that	the	comparison	between	these
environments	is	a	function	of	the	version	of	the	application	deployed	on	them,
and	the	type	of	people	who	will	be	using	them.	By	contrast,	the	problem	domain
that	Chef	environments	addresses	is	related	primarily	to	the	ability	to	set	and
enforce	version	constraints	on	the	infrastructure	code—the	code	that	delivers	the
core	platform	upon	which	the	“development”	or	“staging”	or	“live”
environments	are	deployed.	I	think	this	namespace	collision	is	both	unfortunate
and	confusing.	We’re	not	really	talking	about	the	same	kinds	of	environments	at
all.	While	there	may	well	be	differences	in	the	way	in	which	the	staging,
development,	and	production	systems	are	configured,	the	core	functionality	and
behavior	of	the	Chef	code	should	actually	be	fundamentally	identical	between
“development,”	“staging,”	and	“live.”	For	this	reason,	I	prefer	to	think	of	Chef
environments	more	in	terms	of	“testing”	and	“stable,”	or	perhaps,	to	borrow
vocabuary	from	Maven,	“RELEASE”	and	“SNAPSHOT.”	If	you’re	familiar

with	Linux	distribution	development,	you’ll	probably	recognize	this	model	as
being	that	around	which	the	Debian	project	package	maintainers	organize.	This
approach	to	environments	takes	cookbooks	that	are	known	to	be	stable,
production-ready,	and	trusted	and	sets	and	freezes	their	known	versions.
Development	of	new	features	and	bug	fixing	can	take	place	in	the	testing
environment,	pending	promotion	to	stable.	Should	there	be	a	need	to	test
multiple	combinations	of	multiple	versions,	there’s	no	limit	to	the	number	of
environments	on	a	Chef	server,	so	one	could	be	created	and	mapped	onto	a
project	or	branch.

Although	this	approach	is	the	one	I	like	most,	as	with	pretty	much	all	aspects	of
Chef,	there	is	great	flexibility	and	plenty	of	opportunity	to	use	a	different	model.
For	example,	if	you	are	attracted	to	using	environments	in	Chef	in	a	way	that
models	software	development	lifecycles	akin	to
DEV→TEST→STAGING→PROD,	this	can	be	achieved.	In	this	instance,	use
the	cookbook	metadata,rb	as	the	place	to	lock	dependencies.	A	straightforward
approch	to	generating	these	dependencies	is	to	take	the	output	of	berks list
and	simply	transform	the	output	to	depends	statements.	This	works	particularly
well	with	the	“application	cookbook”	pattern,	which	we	will	discuss	later	in	this
chapter.	There	are	clear	advantages	and	disadvantages	to	both	approaches.	If	I’m
honest,	I’d	state	that	I	am	not	convinced	with	the	current	environments
implementation,	and	that	the	various	approaches	in	place	all	feel	a	little
uncomfortable.	For	one	more	approach,	I	recommend	you	take	a	look	at	Dan
DeLeo’s	knife boxer.	Born	out	of	Dan’s	experience	that	“the	default
environments	workflow	makes	me	want	to	punch	someone	in	the	face,”	it	offers
an	alternative	approach	based	on	Dan’s	rethinking	of	the	whole	environment’s
concept.	I	urge	you	to	give	thought	to	these	alternatives,	to	experiment,	and	find
the	approach	that	works	best	for	you.	However,	for	the	time	being,	we’ll	work
with	my	model.

Chef	has	a	DSL	for	creating	and	managing	environments.	Simply	change	into
the	environment’s	directory	in	your	Chef	repository	and	create	a	file	named
stable.rb.	The	DSL	only	needs	a	name,	and	zero	or	more	cookbook	constraints.
These	can	be	entered	individually,	or	using	the	cookbook_versions	method,
which	takes	a	hash	of	cookbook	name	and	version:

name "stable"

http://www.debian.org/releases/
https://github.com/danielsdeleo/knife-boxer
https://gist.github.com/danielsdeleo/7c55ebe39639928134df

description "Stable Cookbooks"

cookbook_versions({

 "irc"=>"= 0.1.0",

 "yum"=>"~> 2.2.0"

})

This	specifies	that	in	the	stable	environment	only	version	0.1.0	of	the	irc
cookbook	will	be	used;	any	version	greater	than	or	equal	to	2.2.0	but	less	than
3.0.0	is	acceptable	for	the	yum	cookbook.	The	version	constraint	syntax	mirrors
that	of	Rubygem’s.	To	freeze	a	version	of	a	cookbook,	such	that	a	developer	is
prevented	from	attempting	to	upload	an	altered	version	of	the	cookbook	with	the
same	version	number,	--freeze	is	appended	to	knife cookbook upload.	By
combining	freezing	and	environments,	you	can	be	maximally	confident	that	your
production	environments	will	be	secure	and	safe.

Maintaining	this	environment	is	a	case	of	keeping	track	of	versions	that	you
believe	to	be	stable,	maintaining	their	versions	in	a	stable.rb	environment	file,
and	periodically	running	knife environment from file	to	upload	the
environment	to	the	server.	Chef	does	provide	an	alternative	mechanism	via	the
knife environment edit	command.	This	invocation,	similar	to	knife node
edit,	allows	the	JSON	representation	of	the	Chef	environment	to	be	set	in	real
time	on	the	Chef	server,	over	the	API.

The	berks apply	command	takes	this	complexity	out	of	the	environment
management	process:

$ knife environment create berks_stable

Created berks_stable

$ berks apply berks_stable

Using irc (0.1.0) at path: 'hometdi/chef-repo/cookbooks/irc'

Using yum (2.2.2) at path

[tdi@tk01 irc]$ knife environment show berks_stable

chef_type: environment

cookbook_versions:

 irc: 0.1.0

 yum: 2.2.2

default_attributes:

description:

json_class: Chef::Environment

name: berks_stable

override_attributes:

http://docs.opscode.com/essentials_cookbook_versions.html

This	has	the	effect	of	both	setting	and	freezing	the	known	stable	cookbooks
tested	via	Berkshelf.

Nodes	are	associated	with	environments	by	means	of	the	chef_environment
attribute.	This	must	be	explicitly	set.	The	simplest	way	to	ensure	your	production
nodes	are	associated	with	the	production	environment	is	to	specify	it	explicitly
on	the	command	line	when	provisioning	or	bootstrapping	a	machine.	For	more
information	on	the	process	of	provisioning	a	machine,	see
http://docs.opscode.com/knife_bootstrap.html.

Advantages	and	Disadvantages
Berkshelf	was	developed	with	the	principal	aim	of	simplifying	the	workflow
required	to	interact	with	a	Chef	server	in	a	production-responsible	fashion.	Its
main	advantage	is	that	it	provides	slick	usability	with	much	less	hassle	than
interacting	with	the	server	via	a	series	of	knife	commands.	A	further	advantage
is	that,	within	the	Chef	community,	the	Berkshelf	tool,	and	the	workflow	patterns
it	encourages,	have	gained	a	lot	of	traction.	You	are	likely	to	enjoy	responsive
support,	and	enthusiastic	associates	on	the	mailing	lists	and	IRC	channels.

If	there’s	a	disadvantage	to	Berkshelf,	it’s	that	the	tool	is	integral	to	a	highly
opinionated	set	of	principles	around	how	cookbook	development	should	take
place,	including	a	number	of	design	patterns	such	as	wrapper	and	library
cookbooks.	This	approach	is	at	odds	with	the	way	in	which	Chef	has	been
traditionally	taught	and	documented,	and	introduces	a	number	of	additional	and
new	tools.	We’ll	discuss	this	in	more	detail	later	in	the	chapter.

Summary	and	Conclusion
Berkshelf	is	fundamental	to	a	whole	philosophical	approach	to	cookbook
development.	However,	at	its	core,	it’s	just	a	dependency	solver	and	publishing
tool.	Whether	you	agree	with	the	underlying	philosophy	about	roles	and	wrapper
cookbooks	and	libraries,	it’s	a	tool	that	will	make	your	life	easier,	and	should	be
in	your	toolkit.	We’ll	assume	its	use	henceforth.

Supporting	Tools:	Test	Kitchen

http://docs.opscode.com/knife_bootstrap.html

In	my	preliminary	comments	about	tool	selection	I	identified	Test	Kitchen	as	a
cornerstone.	It’s	a	great	enabler,	allowing	us	to	automate	the	running	of	tests	and
the	building	of	infrastructure.	In	this	respect,	it	stands	outside	the	workflow	I
describe	but	as	one	of	its	dependencies.

Overview
Test	Kitchen	is	an	orchestration	tool—it	runs	tests	across	multiple	nodes,
converging	them,	verifying	the	resulting	state	across	different	platforms,	and	in
complete	isolation.	It	is	designed	to	ensure	an	entirely	clean	state	for	testing.
However,	it	isn’t	a	testing	tool,	it	doesn’t	makes	sense	to	speak	of	writing	tests
“in”	Test	Kitchen.	Rather,	it	provides	a	framework	that	enables	you	to	verify	the
state	of	a	node.

As	cookbook	developers,	it’s	common	to	want	a	simple	way	to	increase	our
confidence	that	our	Chef	code	will	work	on	a	real	platform	in	a	real	situation.
For	example,	we’d	like	to	be	confident	that	our	recipes	will	work	repeatably
against	different	operating	systems	or	flavors	of	operating	system,	especially	if
our	cookbooks	are	designed	to	work	across	a	large	number	of	platforms.	My
reference	Linux	platform	is	CentOS,	but	I	try	to	ensure	my	cookbook	will	also
work	on	Debian-derived	systems.	However,	if	a	community	member	submits	a
pull	request	to	add	support	for	Arch	Linux	or	Suse,	I	first	want	to	be	reassured
that	this	enhancement	doesn’t	introduce	any	regressions	that	the	cookbook	still
works	on	CentOS	and	Ubuntu,	and	second,	if	I	accept	the	pull	request,	I	now
have	a	responsibility	to	ensure	that	the	cookbook	continues	to	work	on	Arch
Linux	or	Suse.	I	don’t	develop	on	or	use	these	distributions	very	frequently,	so
the	ability	to	be	able	to	verify	the	functionality	of	the	cookbook	on	all	supported
platforms	is	very	advantageous.

Running	these	tests	is	expensive,	in	terms	of	time.	Anything	that	can	be	done	to
automate	and	speed	up	the	feedback	loop	is	attractive.	The	foundational	design
goal	for	Test	Kitchen	was	to	provide	the	simplest,	leanest	orchestration
framework	possible	that	would	deliver	the	requirements	for	continuously
integrating	cookbooks	across	multiple	platforms.	The	simplest	way	to	achieve
this	would	be	for	the	continuous	integration	server	to	be	preinstalled	with
Rubygem,	or	have	a	Gemfile,	followed	by	a	bundle	install.	Then	simply	running
a	Rake	or	Thor	task	will	carry	out	everything	required	to	test	the	cookbooks,

with	no	need	for	further	configuration	unless	the	specific	behavior	of	Test
Kitchen	needs	to	be	altered.	To	support	operation	in	continuous	integration
environments,	the	tasks	finish	with	a	non-zero	exit	code	only	if	something	in	the
testing	process	failed.	Otherwise	the	explicit	assumption	is	that	the	tests	passed.

Although	specifically	built	to	facilitate	continuous	integration,	Test	Kitchen	also
provides	a	complete	cookbook	development	testing	environment	for	the	user
simply	wishing	to	write	cookbooks	in	an	iterative	and	test-driven	fashion.

The	current	version	of	Test	Kitchen	is	effectively	a	complete	rewrite	of	an	earlier
project.	Although	an	excellent	utility,	the	earlier	version	didn’t	meet	the
requirement	of	doing	the	simplest	thing	that	could	possibly	work	for	CI.	For
example,	it	provided	the	apt	cookbook	and	ran	apt-get update,	it	installed
Rsync,	and	assumed	the	use	of	Minitest	Handler.	All	machines	were	created	in
serial,	which	meant	the	process	of	testing	across	many	platforms	was	very	time-
consuming.	The	new	version	tackles	these	weaknesses	and	provides	a	complete
framework	for	creating,	provisioning,	testing,	and	destroying	a	range	of	systems,
rapidly,	in	parallel,	and	in	a	way	that	is	designed	to	plug	into	continuous
integration	and	deployment	pipelines.

Getting	Started
At	the	time	of	this	writing,	the	1.0	release	of	Test	Kitchen	is	being	prepared;	by
the	time	you	read	this,	it’ll	be	released.	To	make	the	tool	available,	simply	add
test-kitchen	to	your	Gemfile.	Since	Berkshelf	2.0,	Test	Kitchen	support	is
included	in	the	Gemfile	created	by	berks cookbook	or	berks init.

$ gem install test-kitchen

The	primary	context	in	which	Test	Kitchen	operates	is	a	single	cookbook.	The
expectation	is	that	it	will	be	used	to	test	and	maintain	the	functionality	of	a	given
individual	cookbook	across	multiple	platforms,	ensuring	that	the	contract	it
claims	to	provide	to	infrastructure	developers	using	the	cookbook	is	honored.

Test	Kitchen	is	driven	entirely	by	a	YAML	file:	a	simple	data	representation
format,	which	describes	the	configuration	of	systems	and	the	tests	we	wish	to
run.	If	you’ve	used	TravisCI,	this	will	be	very	familiar	as	an	approach.	The	idea
is	to	have	an	expressive	way	to	define	our	testing	strategy	statically.	It	allows	the

developer	to	define	that	these	tests	should	be	run	on	these	platforms,	in	these
places.	For	example,	we	might	wish	to	run	all	tests	on	EC2	with	one	exception,
which	we	want	to	run	on	Rackspace.	The	file	that	describes	this—.kitchen.yml—
is,	therefore,	a	testing	manifest,	and	is	explicitly	not	executable	code.

Test	Kitchen	additionally	has	a	command-line	interface	and	is	built	upon	Thor,
meaning	each	command	is	also	accessible	as	a	Thor	task,	executable	by	a	job
runner	or	continuous	delivery	server.

Running	kitchen	without	arguments	gives	the	various	options	available:

kitchen

Commands:

 kitchen console # Kitchen Console!

 kitchen converge [(all|<REGEX>)] [opts] # Converge one or more instances

 kitchen create [(all|<REGEX>)] [opts] # Create one or more instances

 kitchen destroy [(all|<REGEX>)] [opts] # Destroy one or more instances

 kitchen driver # Driver subcommands

 kitchen driver create [NAME] # Create a new Kitchen Driver gem project

 kitchen driver discover # Discover Test Kitchen drivers published

on RubyGems

 kitchen driver help [COMMAND] # Describe subcommands or one specific

subcommand

 kitchen help [COMMAND] # Describe available commands or one

specific command

 kitchen init # Adds some configuration to your

cookbook so Kitchen can rock

 kitchen list [(all|<REGEX>)] # List all instances

 kitchen login (['REGEX']|[INSTANCE]) # Log in to one instance

 kitchen setup [(all|<REGEX>)] [opts] # Setup one or more instances

 kitchen test [all|<REGEX>)] [opts] # Test one or more instances

 kitchen verify [(all|<REGEX>)] [opts] # Verify one or more instances

 kitchen version # Print Kitchen's version information

The	basic	unit	of	reasoning	in	Test	Kitchen	is	called	an	instance.	An	instance	is
composed	of	a	platform	and	a	suite.	A	platform	is	a	combination	of	operating
system,	version,	Chef	version,	architecture,	and	name.	Conceivably	it	could	also
include	a	specification	as	to	whether	the	instance	is	a	physical	or	virtual
machine.	A	suite	is	a	run	list	with	optional	node	attributes.	It	represents
something	we	wish	to	test,	for	example,	a	Redis	cookbook	using	a	package	or
building	from	source.

Test	Kitchen	will	then	build	a	pairwise	matrix	of	platforms	and	suites,	resulting

in	the	final	set	of	instances	that	will	be	managed.

There	are	five	lifecycle	events	in	the	existence	of	an	instance:

create
Brings	an	instance	into	existence	and	boots	it,	providing	a	system	ready	for
work	to	begin

converge
Installs	Chef,	creates	a	sandbox	of	what	is	needed	for	testing—roles,
databags,	attribute	data—and	uploads	it	to	the	instance.	Next,	Chef	is	run,
either	in	chef-solo	or	chef-zero	form.

setup
Sets	up	a	gem,	called	Busser,	on	the	instance,	which	is	responsible	for
preparing	whatever	test	harness	runners	and	plugins	are	needed	to	test	the
cookbook.	The	mechanism	has	no	dependencies,	and	uses	the	embedded
Ruby	provided	by	Chef.

verify
Runs	any	test	suites	that	have	been	written.	It	will	take	no	action	if	no	tests
are	found.	In	the	event	of	a	test	failure,	the	action	will	return	with	a	non-zero
exit	code,	suitable	for	signalling	a	broken	build	to	a	continuous	integration
service.

destroy
Simply	destroys	the	instance	and	returns	the	host	system	to	a	clean	state.

Additionally,	there	is	a	master	action—test—designed	for	clean	CI	purposes,
which	will	run	the	destroy,	create,	converge,	setup,	and	verify	tasks,	before
finally	running	destroy	once	more.

Test	Kitchen	has	the	concept	of	drivers,	which	determine	how	and	where	the
infrastructure	required	for	the	tests	will	be	built.	By	default,	the	driver	used	is
Vagrant,	but	Test	Kitchen	also	supports	cloud-based	systems	and	is	easily
extensible.

Summary	and	Conclusion

We	will	cover	detailed	use	of	Test	Kitchen	shortly,	with	examples,	when	we	look
at	using	Serverspec	and	Bats	for	integration	testing,	but	in	summary,	let	me	state
that	Test	Kitchen	is	shaping	up	to	be	the	one-stop-shop	for	cookbook	testing.	It	is
very	actively	developed	and	has	considerable	community	traction.	Support	for
Windows	systems	is	under	active	development,	and	while	improvements	and
enhancements	are	happening	on	a	daily	basis,	the	core	design	and	API	has	been
stable	for	a	number	of	months.

Test	Kitchen	is	the	tool	you	should	have	at	the	very	heart	of	your	workflow.
Because	of	its	integration	with	Berkshelf	and	Vagrant,	it	replaces	these	as	your
primary	interface	to	provisioning	systems.	It	can	easily	be	configured	to	use
alternative	provisioning	backends,	instead	of	Vagrant,	and	with	the	chef-zero
driver,	provides	a	complete	client/server	testing	experience	with	a	very	fast
feedback	loop.

The	Busser	architecture	makes	Test	Kitchen	an	effectively	unlimited	framework
in	terms	of	flexibility.	The	growing	ecosystem	of	plugins	can	be	observed	by
performing	a	search	on	rubygems.org	for	the	string	“busser-”.

The	high-level	tasks	available	on	the	command	line	make	the	iterative	process	of
creating,	converging,	verifying,	and	destroying	simple	and	effective.	And	the
ability	to	develop	on	a	preferred	platform	and	then	test	across	a	range	of
platforms	all	from	the	same	interface	is	extremely	convenient.

For	further	documentation	and	examples,	I	recommend	looking	at	the	project
homepage	on	GitHub,	and	at	Fletcher	Nichol’s	cookbooks,	particularly	the	rbenv
and	razor	cookbooks.

Acceptance	Testing:	Cucumber	and	Leibniz
The	first	edition	of	this	book	introduced	the	fundamental	idea	of	applying
behavior-driven	development	(BDD)	and	the	acceptance	testing	paradigm	to
infrastructure	code.	As	the	world	of	test-driven	infrastructure	has	matured,	the
approach	of	the	first	infrastructure	BDD	tool,	Cucumber-Chef,	has	been
superseded	by	a	more	modular	approach,	which	can	be	implemented	by	writing
examples	using	Gherkin/Cucumber,	and	orchestrating	the	provisioning	of
infrastructure	and	running	of	tests	using	a	separate	tool—one	such	example	is
the	newly	released	Leibniz	project	by	the	current	author.

Overview
Testing	classes	and	methods	is	trivial.	Mature	unit	testing	frameworks	exist	that
make	it	very	easy	to	write	simple	code	test-first.	As	the	complexity	of	the	system
under	test	increases	and	the	requirement	to	test	code	that	depends	on	other
services	arises,	the	frameworks	become	more	sophisticated,	allowing	for	the
creation	of	mock	services	and	the	ability	to	stub	out	slow-responding	or	third-
party	interfaces.	As	a	relevant	aside,	see	“Mocks	Aren’t	Stubs”	by	Martin
Fowler	for	an	excellent	discussion	of	the	difference	between	mocking	and
stubbing.

Writing	integration	tests	that	exercise	the	code	end-to-end	is	an	order	of
magnitude	more	involved.	A	successful	integration	testing	strategy	will	require
the	use	of	specialist	testing	libraries	for	testing	network	services,	GUI
components,	or	JavaScript.

Testing	code	that	builds	an	entire	infrastructure	is	a	different	proposition
altogether.	Not	only	do	we	need	sophisticated	libraries	of	code	to	verify	the
intended	behavior	of	our	systems,	we	need	to	be	able	to	build	and	install	the
systems	themselves.	Consider	the	following	test:

Scenario: Bluepill restarts Unicorn

 Given I have a newly installed Ubuntu machine managed by Chef

 And I apply the Unicorn role

 And I apply the Bluepill role

 And the Unicorn service is running

 When I kill the Unicorn process

 Then within 2 seconds the Unicorn process should be running again

To	test	this	manually	we	would	need	to	find	a	machine,	install	Ubuntu	on	it,
bootstrap	it	with	Chef,	apply	the	role,	run	Chef,	log	onto	the	machine,	check
Unicorn	is	running,	kill	Unicorn,	then	finally	check	that	it	has	restarted.	This
would	be	tremendously	time-consuming	and	expensive—so	much	so	that
nobody	would	do	it.	Indeed,	almost	no	one	does	because	despite	the	benefits	of
being	able	to	be	sure	that	our	recipe	does	as	it	is	supposed	to,	the	cost	definitely
outweighs	the	benefit.

The	answer	is,	of	course,	automation.	The	explosion	of	adoption	of
virtualization,	both	on	workstations	and	servers,	and	the	widespread	adoption	of

http://bit.ly/1gamvHM

public	and	private	cloud	computing,	makes	it	much	easier	to	provision	new
machines,	and	most	implementations	expose	an	API	to	make	it	easy	to	bring	up
machines	programmatically.	Similarly	of	course,	Chef	is	designed	from	the
ground	up	as	a	RESTful	API.	Libraries	exist	and	can	be	built	upon	to	access
remote	machines	and	perform	various	tests.	What	is	required	is	a	way	to
integrate	the	Chef	management,	the	machine	provisioning,	and	the	verification
steps	with	a	testing	framework	that	enables	us	to	build	our	infrastructure	in	a
behavior-driven	way.

Cucumber	provides	the	ideal	framework	for	capturing	requirements	in	a	form	in
which	they	can	be	tested.	It	provides	a	very	high-level	domain	specific	language
for	achieving	this.	By	following	a	few	simple	language	rules,	it’s	possible	to
write	something	that	is	highly	readable	and	understandable	by	the	business,	but
which	itself	is	an	executable	specification—something	that	functions	as	an
automated	acceptance.

Cucumber	achieves	this	by	wiring	the	high-level	requirements	to	Ruby	code	that
sets	up	state	and	makes	assertions.	In	Cucumber	terminology,	we	capture
features,	which	are	mapped	onto	tests	in	steps.	These	steps	have	the
responsibility	of	setting	up	the	state	we	need	prior	to	making	assertions	against
the	requirements,	perhaps	making	changes	to	the	state,	in	line	with	the
requirements,	before	finally	tearing	down	whatever	state	was	needed	in	order	to
be	able	to	run	the	tests.

The	significant	difference	when	compared	to	unit	testing,	especially	in	our
specific	context,	is	that	the	number	of	steps	and	relative	complexity	is
considerably	higher.	We	need	to	write	steps	that	build	machines,	install	Chef,	set
up	run	lists,	make	cookbooks	available,	maybe	make	changes,	maybe	disable
services.	We	then	need	to	carry	out	external	probes:	for	example,	using	a	web
page,	logging	onto	a	machine,	or	speaking	to	a	service	over	the	network.	These
kinds	of	steps	are	difficult	to	write	and	time-consuming.	However,	they	do
provide	excellent	value—they	truly	demonstrate	whether	the	infrastructure	code
we	have	developed	has	delivered	the	functionality	that	is	needed.

My	first	foray	into	this	space	was	to	write	an	integrated	tool	that	generated
examples	tests,	built	infrastructure,	handled	all	aspects	of	the	Chef	provisioning
process,	and	finally	reported	results.	That	tool—Cucumber-Chef—is	still	widely
used,	but	with	the	benefit	of	a	few	years’	more	experience,	I	now	feel	a	slightly

different	model	is	called	for.

With	recent	releases	of	both	Vagrant	and	Test	Kitchen,	we	now	have	mature
tooling	for	provisioning	infrastructure	and	running	Chef,	fully	customizable	to
our	needs,	whether	those	are	containerized	app	or	OS	deployments	with	Linux
Containers,	local	virtualization	solutions	with	VirtualBox	or	VMware,	private
cloud	infrastructures	with	Openstack	or	Openshift,	or	public	cloud
infrastructures	with	Amazon	AWS,	Rackspace	cloud,	or	Microsoft	Azure.	In	the
same	way	that	Chef	provides	primitives	for	automating	the	components	of	an
infrastructure	upon	which	we	deploy	our	applications,	what	is	needed	is	a	set	of
primitives	for	building	stacks	of	machines	and	delivering	desired	state	through
configuration	management.	In	the	spirit	of	the	Unix	philosophy,	we	should	write
programs	that	do	one	thing	and	do	it	well,	and	write	programs	to	work	together.

Cucumber	admirably	fits	into	this	philosophy—it	runs	executable	specifications
and	reports	their	result.	Vagrant	and	Test	Kitchen	similarly.	What	is	missing	is	a
tool	that	ties	them	together,	which	would	make	it	easy,	in	the	context	of
Cucumber	steps,	to	provision	and	test	infrastructure.	Leibniz	provides	this
capability.

Leibniz	provides	an	integration	layer	between	Cucumber	and	Test	Kitchen,	in
the	form	of	steps	that	can	be	used	in	feature	files	to	describe	and	provision
infrastructure	for	acceptance	testing.

Getting	Started
We	already	know	how	to	get	started	with	Cucumber,	as	we	covered	it	in	the
Hipster	Assessor.	Leibniz	is	a	very	simple	Rubygem,	which	provides	steps	to
Cucumber	to	provision	machines	via	Test	Kitchen.

Therefore	we	need	only	add	the	following	three	things	to	a	Gemfile:

gem 'cucumber'

gem 'rspec-expectations'

gem 'leibniz'

However,	where	should	the	Gemfile	be?	That	may	seem	like	a	ridiculous
question,	but	think	for	a	moment.	As	a	cookbook	author,	especially	a	cookbook
that	is	widely	used	in	the	community,	the	task	of	developing,	testing,	and

http://www.faqs.org/docs/artu/ch01s06.html
http://leibniz.cc

releasing	code	is	somewhat	akin	to	that	of	a	Rubygem,	or	even	of	working	on	an
aspect	of	a	core	library	within	Ruby.	This	is	code	that	is	used	by	people	to
perform	a	task.	It’s	building-block	code.	The	way	we	test	a	library	in	Ruby	is
very	different	from	the	way	we	test	a	Rails	application.	The	Rails	application
provides	a	service	to	an	external	user.	Sure	it	might	actually	just	be	an	internal
API,	but	it	sets	up	a	contract	with	and	is	consumed	by	an	external	agency.	That’s
not	quite	the	same	as	StringIO	within	the	Ruby	standard	library.	Let	me	come	at
this	from	a	different	perspective.

When	we	are	building	infrastructure	with	Chef,	it’s	essential	to	think	from	the
outside	in.	Why	are	we	actually	building	this	infrastructure?	What	service	does	it
provide?	As	Jamie	Winsor,	developer	at	Riot	Games,	creators	of	Berkshelf	and
makers	of	League	of	Legends,	says,	“Nobody	plays	CentOS,	or	Nginx.	They
play	League	of	Legends!”

With	this	in	mind,	I	would	argue	that	the	kind	of	acceptance	testing	that	I
advocate	makes	most	sense	not	so	much	in	the	context	of	the	Nginx	cookbook,
as	in	a	cookbook	that	describes	the	top-level	service	that	consumes	the	Nginx
cookbook.	This	pattern	is	known	as	The	Application	Cookbook.

The	application	cookbook	pattern	is	characterized	by	having	decided	the	top-
level	service	that	we	provide	and	creating	a	cookbook	for	that	service.	That
cookbook	wraps	all	the	dependent	services	that	are	needed	to	deliver	the	top-
level	service.	For	example,	an	“awesome”	web	application	might	need
components	such	as	an	app	server,	a	database	server,	a	load	balancer.	Each	of
these	components	is	given	a	recipe	that	includes—and	if	necessary	alters	the
behavior	of—cookbooks	that	provide	infrastructure	modeling	primitives	such	as
Nginx,	MySQL,	and	Redis.

This	looks	a	lot	like	the	kind	of	thing	that	might	be	accomplished	using	a	Chef
role,	but	has	some	significant	advantages.

First	of	all,	cookbooks	can	be	explicitly	versioned	and	tracked	in	a	way	that	roles
can’t.	Roles	function	as	a	(potentially	dangerous)	global	variable	that,	when
changed,	will	impact	every	node	that	has	the	role	on	its	run	list.	Cookbooks	can
be	explicitly	versioned,	frozen,	and	pinned,	depending	on	use	case.

Second,	the	behavior	that	the	role	describes,	and	encapsulates	its	meaning,
should	be	tested.	Where	do	we	keep	the	tests?	Where	do	we	keep	any
documentation	or	change	log?	If	the	need	should	arise	(and	we	should	avoid	it)

to	incorporate	logic	to	control	the	behavior	of	the	role,	we	have	the	power	and
flexibility	to	do	so,	and	to	test	that	logic.	None	of	these	options	look	easy	when
using	the	role	DSL	and	a	run	list.

Third,	we	can	use	precisely	the	same	toolkit	for	solving	dependencies,
interacting	with	the	Chef	API,	and	performing	local	testing,	without	having	to
maintain	an	additional	primitive	and	its	state.

If	we	look	at	the	function	of	a	role,	it	really	does	three	things:
1.	 Contains	and	manipulates	run	lists

2.	 Alters	recipe	behavior	using	attributes

3.	 Provides	simple	taxonomy	to	label	and	tag	nodes

The	use	of	an	application	cookbook	removes	the	need	for	the	first	and	the
second,	although	one	consideration	is	that	with	a	single	cookbook/recipe	on	the
run	list,	it’s	not	possible	to	find,	via	the	Chef	API,	which	recipes	will	be	run	on	a
node.	This	can	be	found,	however,	using	the	knife audit	command.

Nodes	simply	get	either	the	top-level	awesome	recipe,	if	the	node	includes
absolutely	everything	in	one	place,	or	it	is	given	the	recipe	that	corresponds	to
the	logical	function	in	the	application,	such	as	awesome::cache_server.

If	there	is	a	need	to	alter	the	behavior	of	an	upstream	cookbook,	attributes	can	be
set	in	a	recipe,	and	if	functionality	needs	to	be	added,	tested,	or	tweaked,	this	can
be	achieved	by	wrapping	upstream	cookbooks	in	a	manner	that	looks	much	like
object	inheritance.	This	has	the	twin	advantages	again	of	being	testable,	but	also
of	avoiding	constant	forking	of	upstream	cookbooks.

Tagging	can	be	achieved	by	using	the	explicit	tagging	capabilities	of	Chef,	or
with	a	custom	attribute	set	with	a	recipe	in	a	cookbook.	On	occasions	where
cookbooks	search	for	machines	having	a	certain	role,	this	can	be	supported	by
using	an	empty	“marker”	role,	or	by	modifying	the	recipe	to	use	a	different	way
to	categorize	and	find	nodes.

Finally,	I	think	that	keeping	as	much	as	possible	in	cookbooks	allows	us	to
design	our	cookbooks	in	accordance	with	good	object-oriented	design	principles.
This	is	because	we	can	treat	cookbooks,	recipes,	and	resources	much	more	like
objects	than	we	can	a	mixture	of	data	and	code,	which	is	what	we	have	with	the

https://github.com/jbz/knife-audit

combination	of	roles	and	cookbooks.

At	this	point	I	urge	you	to	buy	and	read	the	excellent	Practical	Object-Oriented
Design	in	Ruby	by	Sandi	Metz	(Addison-Wesley).	Let	me	summarize	very
briefly	some	key	takeaways	as	directly	applicable	to	infrastructure	as	code:

Change	is	inevitable.	We	can’t	predict	how	things	will	change,	but	they	will.
We	should	design	our	infrastructure	code	in	such	a	way	as	to	accommodate
the	inevitability	of	change.

Tying	tests	to	the	implementation	makes	refactoring	difficult,	so	testing	the
external	interface,	outside-in,	is	the	best	way	to	build	for	change.

We	should	favor	loose	coupling	and	build	to	test,	valuing	highly	ease	of
change	and	embracing	refactoring.

Dependencies	are	inevitable.	We	will	need	to	express	and	use	dependencies	in
our	designs,	but	should	think	carefully	about	them.

Building	our	cookbooks	to	be	pluggable	and	reusable,	with	clearly	defined
behavior,	will	help	keep	dependencies	healthy.

Object-orientation	is	all	about	message-sending.	We	should	follow	the
principles	of	encapsulation	and	trust;	our	cookbooks	don’t	need	to	know	a	lot
about	each	other.

With	this	in	mind,	I	would	advocate	that	when	modeling	infrastructure,	the	first
thing	we	should	do	is	create	a	cookbook	that	presents	the	external	service	in	a
way	that	can	be	reasoned	about	and	tested.

Example
The	use	of	Cucumber	and	Leibniz	is	actually	fundamentally	pretty	trivial.	The
value	is	first	in	the	conversations,	and	second	in	the	downward	descent	into	the
lower	regions	of	the	testing	workflow.	It’s	here	that	the	design	will	emerge,	and
that	the	nuts	and	bolts	infrastructure	code	takes	place.

All	we’re	doing	at	the	top-most	level	is	writing	a	test	that	will	exercise	the
external	interface	of	the	infrastructure	we’re	building.

Of	course,	such	words	cover	a	multitude	of	complications,	and	the	actual	process

http://www.poodr.info/

of	writing	those	steps	is	not	actually	so	easy.	Nevertheless,	I’ll	show	an	example
of	testing	an	application	cookbook,	from	the	outside	in,	beginning	with
Cucumber,	and	ending	with	the	test	passing.

Let’s	start	with	the	requirements.

We’re	going	to	begin	with	a	trivially	simple	infrastructure	project.	I	usually	find
that	it	makes	sense	to	make	it	into	a	bit	of	a	story,	to	get	into	the	mood	of
capturing	requirements.	In	practice,	I’m	going	to	have	you	serve	a	simple
website.	But	let’s	make	it	a	bit	more	fun.

The	scenario	I	am	painting	for	you	is	that	we,	as	infrastructure	developers,	have
been	approached	by	a	small	graphic	design	agency.	This	sort	of	thing	happens
quite	often	at	Atalanta	Systems—because	we	provide	outsourced	sysadmin	and
infrastructure	development	services,	it’s	not	uncommon	for	even	very	small
companies	to	approach	us	and	ask	us	to	help	them	with	their	infrastructure.

The	owner	of	the	company	has	sent	you	an	email,	which	reads:
Hi	there,

I	run	a	small	graphic	design	agency.	It’s	been	running	for	a	year	or	two,	mostly	on	the	basis	of	word-
of-mouth	and	referral.	However,	we’d	like	to	expand	our	horizons	a	little,	and	so	we’d	like	to	put
together	a	simple	website	that	describes	what	we	do,	with	a	few	case	studies	or	references.	A	friend
of	mine	suggested	you	might	be	a	good	person	to	speak	to	about	putting	together	whatever	is
necessary	to	get	this	running	in	the	cloud.	We	can	handle	the	design	of	the	content,	and	we’ve	hired	a
web	designer	who	is	going	to	pull	it	together.	However,	we’re	not	really	technically	minded,	so	we’d
appreciate	some	help	with	actually	getting	it	live	in	a	reliable	and	secure	fashion.	Can	you	help?

Best,

Miles	Hunt

This	sounds	pretty	trivial	to	you;	all	that’s	needed	is	a	web	server	and	a
mechanism	of	getting	their	content	onto	it.	Of	course	we	don’t	yet	know
anything	about	whether	the	design	agency	is	using	a	CMS,	and	we	don’t	know
about	the	various	non-functional	requirements,	such	as	how	frequently	it	should
be	backed	up,	how	many	users	are	expected,	what	a	reasonable	response	time
might	be,	and	so	on.

The	very	first	step,	therefore,	is	to	find	the	stakeholder,	and	book	some	time	with
her.	You	arrange	a	meeting	and	bring	your	laptop	with	you	to	the	meeting.	This
is	important	because	in	the	meeting	you’re	going	to	talk	about	the	rationale	for
the	project	and	the	acceptance	criteria,	and	these	need	to	go	into	the	feature
specification.	You	could	take	notes	on	paper	and	then	go	away,	but	part	of	the

beauty	of	Cucumber	is	that	you	can	sit	down	with	non-technical	people	and	start
writing	the	test	right	there	and	then.

I	found	one	of	my	children	roaming	around	the	house	looking	for	something	to
do,	so	I	sat	him	down	and	made	him	pretend	to	be	a	person	wanting	a	website,
like	our	fictional	depiction	of	Miles	Hunt.

I	opened	up	a	buffer	in	Emacs,	and	I	wrote:

Feature:

We	talked	for	a	bit,	and	we	agreed	that	the	minimum	viable	feature	for	the
project	was	that	a	prospective	customer	could	browse	to	the	website	and	read
about	the	services	offered	by	the	design	agency.	As	a	result,	we	added	“Potential
customer	can	read	about	services”	to	the	feature,	and	described	the	feature	as
follows:

Feature: Potential customer can read about services

In order to generate more leads for my business

As a business owner

I want web users to be able to read about my services

We	then	talked	about	a	possible	example	that	would	demonstrate	that	the	most
fundamental	requirements	had	been	met.	We	agreed	that	the	following	would
make	sense:

Scenario: User visits home page

 Given a url http://wonderstuff-design.me

 When a web user browses to the URL

 Then the user should see "Wonderstuff Design is a boutique graphics design

agency."

We	agreed	that	if	this	test	passed,	we’d	feel	that	significant	progress	had	been
made,	so	we	didn’t	write	any	more	scenarios	at	this	stage.

As	we	discussed	earlier,	Gherkin	is	a	plain	text	DSL	for	mapping	high-level
stakeholder	requirements	to	source	code	that	sets	up	state	and	verifies	it	against
those	requirements.	When	starting	an	infrastructure	project,	I’d	recommend
setting	aside	some	time	to	talk	through	the	reasons	for	the	requirement,	and	to

understand	what	the	simplest	thing	would	be	that	would	deliver	value	and	move
the	project	forward.

I’m	not	a	big	fan	of	capturing	dozens	of	detailed	stories	at	the	start;	I’d	rather	get
two	or	three	down	first	and	get	started	on	that.	You	can	always	go	back	for	more
later.

It	doesn’t	matter	if	the	form	in	which	you	take	down	the	initial	requirement
doesn’t	end	up	being	exactly	the	form	you	use—you	can	go	back	and	check
language	later;	the	most	important	thing	to	do	is	have	the	conversation	and
capture	the	output	of	that	conversation.	For	this	reason,	I	asked	you	to	write	the
feature	before	anything	else.

Having	captured	the	requirement,	we	need	to	work	out	how	to	test	it.

Let’s	start	by	creating	a	cookbook	to	encapsulate	the	services	we	need:

$ berks cookbook wonderstuff

 create wonderstuff/files/default

 create wonderstuff/templates/default

 create wonderstuff/attributes

 create wonderstuff/definitions

 create wonderstuff/libraries

 create wonderstuff/providers

 create wonderstuff/recipes

 create wonderstuff/resources

 create wonderstuff/recipes/default.rb

 create wonderstuff/metadata.rb

 create wonderstuff/LICENSE

 create wonderstuff/README.md

 create wonderstuff/Berksfile

 create wonderstuff/Thorfile

 create wonderstuff/chefignore

 create wonderstuff/.gitignore

 run git init from "./wonderstuff"

 create wonderstuff/Gemfile

 create .kitchen.yml

 append Thorfile

 create test/integration/default

 append .gitignore

 append .gitignore

 append Gemfile

 append Gemfile

You must run `bundle install' to fetch any new gems.

 create wonderstuff/Vagrantfile

Now	let’s	update	the	Gemfile	and	then	run	Bundle:

$ cat Gemfile

source 'https://rubygems.org'

gem 'berkshelf'

gem 'test-kitchen', :group => :integration

gem 'kitchen-vagrant', :group => :integration

gem 'cucumber', :group => :integration

gem 'rspec-expectations', :group => :integration

gem 'leibniz', :group => :integration

Now,	we	already	know	from	our	Hipster	Assessor,	that	we	need	to	create	a
features	directory	and	a	steps	directory,	and	then	create	a	feature	containing	the
acceptance	criteria:

$ mkdir -p wonderstuff/features/step_definitions

$ cat <<EOF > wonderstuff/features/readable_services.feature

> Feature: Potential customer can read about services

>

> In order to generate more leads for my business

> As a business owner

> I want web users to be able to read about my services

>

> Scenario: User visits home page

> Given a url http://wonderstuff-design.me

> When a web user browses to the URL

> Then the user should see "Wonderstuff Design is a boutique graphics design

agency."

> EOF

Now,	let’s	think	about	this	a	little	bit.	We’ve	captured	the	basic	requirement,	now
let’s	think	about	what’s	involved	in	testing	this	infrastructure.	We’re	going	to
need	a	machine,	an	operating	system,	Chef,	a	cookbook,	a	run	list,	and	then	we
need	to	run	Chef.	Leibniz	exists	to	make	this	easy	for	us.	To	use	Leibniz,	all	we
need	to	do	is	add	a	background	description,	containing	a	table	detailing	the
infrastructure	we	want	to	build:

Background:

 Given I have provisioned the following infrastructure:

 | Server Name | Operating System | Version | Chef Version | Run List |

 | wonderstuff | ubuntu | 12.04 | 11.4.4 | wonderstuff::default |

 And I have run Chef

What	this	will	do	is	launch	a	machine	using	Test	Kitchen,	with	the	preceding
specification,	and	make	available	an	object	that	provides	instance	data	from	Test
Kitchen.

Let’s	look	again	at	the	example	we	took	from	Corin,	I	mean,	Miles	Hunt:

Scenario: User visits home page

 Given a url http://wonderstuff-design.me

 When a web user browses to the URL

 Then the user should see "Wonderstuff Design is a boutique graphics design

agency."

This	seems	fine—it	describes	the	behavior	as	needed.	Let’s	run	our	test,	which
currently	reads:

Feature: Potential customer can read about services

 In order to generate more leads for my business

 As a business owner

 I want web users to be able to read about my services

 Background:

 Given I have provisioned the following infrastructure:

| Server Name | Operating System | Version | Chef Version | Run List |

| wonderstuff | ubuntu | 12.04 | 11.4.4 | wonderstuff::default |

 And I have run Chef

 Scenario: User visits home page

 Given a url http://wonderstuff-design.me

 When a web user browses to the URL

 Then the user should see "Wonderstuff Design is a boutique graphics design

agency."

Now	let’s	run	our	test:

$ cucumber

Feature: Potential customer can read about services

 In order to generate more leads for my business

 As a business owner

 I want web users to be able to read about my services

 Background: #

features/readable_services.feature:7

 Given I have provisioned the following infrastructure:#

features/readable_services.feature:9

| Server Name | Operating System | Version | Chef Version | Run List |

| wonderstuff | ubuntu | 12.04 | 11.4.4 | wonderstuff::default |

 And I have run Chef #

features/readable_services.feature:12

 Scenario: User visits home page

features/readable_services.feature:14

 Given a url http://wonderstuff-design.me

features/readable_services.feature:16

 When a web user browses to the URL

features/readable_services.feature:17

 Then the user should see "Wonderstuff Design is a boutique graphics design

agency." # features/readable_services.feature:18

1 scenario (1 undefined)

5 steps (5 undefined)

0m0.003s

You can implement step definitions for undefined steps with these snippets:

Given(/^I have provisioned the following infrastructure:$/) do |table|

 # table is a Cucumber::Ast::Table

 pending # express the regexp above with the code you wish you had

end

Given(/^I have run Chef$/) do

 pending # express the regexp above with the code you wish you had

end

Given(/^a url http:\/\/wonderstuff\-design\.me$/) do

 pending # express the regexp above with the code you wish you had

end

When(/^a web user browses to the URL$/) do

 pending # express the regexp above with the code you wish you had

end

Then(/^the user should see "(.*?)"$/) do |arg1|

 pending # express the regexp above with the code you wish you had

end

If you want snippets in a different programming language,

just make sure a file with the appropriate file extension

exists where Cucumber looks for step definitions.

This	should	look	familiar.	We’re	now	going	to	write	the	steps	that	map	the
Gherkin	code	to	real	Ruby	that	will	provision	and	exercise	our	infrastructure.

require 'leibniz'

require 'faraday'

Given(/^I have provisioned the following infrastructure:$/) do |specification|

 @infrastructure = Leibniz.build(specification)

end

Given(/^I have run Chef$/) do

 @infrastructure.destroy

 @infrastructure.converge

end

Given(/^a url "(.*?)"$/) do |url|

 @host_header = url.split('').last

end

When(^a web user browses to the URL$/) do

 connection = Faraday.new(:url => "http://#{@infrastructure['wonderstuff'].ip}",

 :headers => {'Host' => @host_header}) do |faraday|

 faraday.adapter Faraday.default_adapter

 end

 @page = connection.get('').body

end

Then(^the user should see "(.*?)"$/) do |content|

 expect(@page).to match #{content}

end

We	begin	by	requiring	the	Leibniz	library	to	give	us	access	to	the	steps	that
allow	us	to	interact	with	Test	Kitchen.	We	also	require	the	Faraday	library,	which
is	a	powerful	and	pleasant-to-use	Ruby	HTTP	client	library.

The	first	two	steps	come	from	Leibniz,	and	do	pretty	much	exactly	what	they

say:	they	build	infrastructure	according	to	the	specification	in	the	table,	run	the
destroy	task	to	ensure	a	clean	environment,	and	then	run	the	converge	task.

The	third	step	simply	takes	the	URL	and	extracts	what	will	be	necessary	to	pass
as	the	Host	header	to	the	web	server.	Given	that	we’re	not	going	to	have	a	real
DNS	entry,	this	is	a	tidy	way	to	have	a	scenario	devoid	of	testing	and
implementation	detail,	which	translates	to	a	trivial	Ruby	method.

The	fourth	step	instantiates	an	instance	of	the	Faraday	HTTP	client,	passing	as
its	arguments	the	IP	address	of	the	machine	we	provisioned,	and	the	Host	header
we	calculated.	We	then	perform	an	HTTP	GET	and	capture	the	body.

Finally	we	assert	that	the	page	will	match	the	content	we	specified	in	the
scenario.

A	very	simple	example,	but	one	that	exercises	the	system	from	top	to	bottom	and
demonstrates	the	principles	at	play.

Let’s	run	the	test:

$ cucumber

Feature: Potential customer can read about services

 In order to generate more leads for my business

 As a business owner

 I want web users to be able to read about my services

 Background: #

features/readable_services.feature:7

 Given I have provisioned the following infrastructure: #

features/step_definitions/visit-home-page-steps.rb:4

 | Server Name | Operating System | Version | Chef Version | Run List

|

 | wonderstuff | ubuntu | 12.04 | 11.4.4 |

wonderstuff::default |

 And I have run Chef #

features/step_definitions/visit-home-page-steps.rb:8

 Scenario: User visits home page

features/readable_services.feature:14

 Given a url "http://wonderstuff-design.me"

features/step_definitions/visit-home-page-steps.rb:13

 When a web user browses to the URL

features/step_definitions/visit-home-page-steps.rb:18

 Connection refused - connect(2) (Faraday::Error::ConnectionFailed)

 optrubies/1.9.3-p429/lib/ruby/1.9.1/net/http.rb:763:in `initialize'

 optrubies/1.9.3-p429/lib/ruby/1.9.1/net/http.rb:763:in `open'

 optrubies/1.9.3-p429/lib/ruby/1.9.1/net/http.rb:763:in `block in connect'

 optrubies/1.9.3-p429/lib/ruby/1.9.1/timeout.rb:55:in `timeout'

 optrubies/1.9.3-p429/lib/ruby/1.9.1/timeout.rb:100:in `timeout'

 optrubies/1.9.3-p429/lib/ruby/1.9.1/net/http.rb:763:in `connect'

 optrubies/1.9.3-p429/lib/ruby/1.9.1/net/http.rb:756:in `do_start'

 optrubies/1.9.3-p429/lib/ruby/1.9.1/net/http.rb:745:in `start'

 optrubies/1.9.3-p429/lib/ruby/1.9.1/net/http.rb:1285:in `request'

 optrubies/1.9.3-p429/lib/ruby/1.9.1/net/http.rb:1027:in `get'

 hometdi/.gem/ruby/1.9.3/gems/faraday-

0.8.7/lib/faraday/adapter/net_http.rb:73:in `perform_request'

 hometdi/.gem/ruby/1.9.3/gems/faraday-

0.8.7/lib/faraday/adapter/net_http.rb:38:in `call'

 hometdi/.gem/ruby/1.9.3/gems/faraday-0.8.7/lib/faraday/connection.rb:247:in

`run_request'

 hometdi/.gem/ruby/1.9.3/gems/faraday-0.8.7/lib/faraday/connection.rb:100:in

`get'

 ./features/step_definitions/visit-home-page-steps.rb:23:in `/^a web user

browses to the URL$/'

 features/readable_services.feature:17:in `When a web user browses to the URL'

 Then the user should see "Wonderstuff Design is a boutique graphics design

agency." # features/step_definitions/visit-home-page-steps.rb:27

Failing Scenarios:

cucumber features/readable_services.feature:14 # Scenario: User visits home page

1 scenario (1 failed)

5 steps (1 failed, 1 skipped, 3 passed)

1m5.946s

We	have	a	failing	acceptance	test—unsurprisingly	because	we	haven’t	built
anything.	I’m	now	going	to	race	through	the	steps	of	adding	integration	tests	and
unit	tests,	without	comment,	as	we’ll	discuss	these	in	detail	shortly.	Once	we
have	the	unit	and	integration	tests	passing,	we’ll	run	the	Cucumber	test	again,
and	we	should	be	all	green!

Next	we	write	the	integration	tests:

require 'spec_helper'

describe 'Wonderstuff Design' do

 it 'should install the lighttpd package' do

 expect(package 'lighttpd').to be_installed

 end

 it 'should enable and start the lighttpd service' do

 expect(service 'lighttpd').to be_enabled

 expect(service 'lighttpd').to be_running

 end

 it 'should render the Wonderstuff Design web page' do

 expect(file('varwww/index.html')).to be_file

 expect(file('varwww/index.html')).to contain 'Wonderstuff Design is a boutique

graphics design agency.'

 end

end

And	run	it:

$ kitchen verify

-----> Starting Kitchen (v1.0.0.alpha.7)

-----> Verifying <default-ubuntu-1204>

 Removing optbusser/suites/serverspec

Uploading optbusser/suites/serverspec/spec_helper.rb (mode=0664)

Uploading optbusser/suites/serverspec/localhost/cisco_spec.rb (mode=0664)

Uploading optbusser/suites/serverspec/localhost/cisco_spec.rb~ (mode=0664)

-----> Running serverspec test suite

optchef/embedded/bin/ruby -Ioptbusser/suites/serverspec -S

optchef/embedded/bin/rspec optbusser/suites/serverspec/localhost/cisco_spec.rb

Package `lighttpd' is not installed and no info is available.

Use dpkg --info (= dpkg-deb --info) to examine archive files,

and dpkg --contents (= dpkg-deb --contents) to list their contents.

FFF

Failures:

 1) Wonderstuff Design should install the lighttpd package

 Failure/Error: expect(package 'lighttpd').to be_installed

 dpkg -s lighttpd && ! dpkg -s lighttpd | grep -E '^Status: .+ not-installed$'

 # optbusser/suites/serverspec/localhost/cisco_spec.rb:5:in `block (2 levels) in

<top (required)>'

 2) Wonderstuff Design should enable and start the lighttpd service

 Failure/Error: expect(service 'lighttpd').to be_enabled

 ls etcrc3.d/ | grep -- lighttpd || grep 'start on' etcinit/lighttpd.conf

 grep: etcinit/lighttpd.conf: No such file or directory

 # optbusser/suites/serverspec/localhost/cisco_spec.rb:9:in `block (2 levels) in

<top (required)>'

 3) Wonderstuff Design should render the Wonderstuff Design web page

 Failure/Error: expect(file('varwww/index.html')).to be_file

 test -f varwww/index.html

 # optbusser/suites/serverspec/localhost/cisco_spec.rb:14:in `block (2 levels)

in <top (required)>'

Finished in 0.02524 seconds

3 examples, 3 failures

Failed examples:

rspec optbusser/suites/serverspec/localhost/cisco_spec.rb:4 # Wonderstuff Design

should install the lighttpd package

rspec optbusser/suites/serverspec/localhost/cisco_spec.rb:8 # Wonderstuff Design

should enable and start the lighttpd service

rspec optbusser/suites/serverspec/localhost/cisco_spec.rb:13 # Wonderstuff Design

should render the Wonderstuff Design web page

Now	we	write	the	unit	tests:

require 'spec_helper'

describe "wonderstuff::default" do

 let(:chef_run) do

 runner = ChefSpec::ChefRunner.new(

 log_level: :error,

 cookbook_path: COOKBOOK_PATH,

)

 Chef::Config.force_logger true

 runner.converge('recipe[wonderstuff::default]')

 end

 it "installs the lighttpd package" do

 expect(chef_run).to install_package 'lighttpd'

 end

 it "creates a webpage to be served" do

 expect(chef_run).to create_file_with_content 'varwww/index.html', 'Wonderstuff

Design is a boutique graphics design agency.'

 end

 it "starts the lighttpd service" do

 expect(chef_run).to start_service 'lighttpd'

 end

 it "enables the lighttpd service" do

 expect(chef_run).to set_service_to_start_on_boot 'lighttpd'

 end

end

And	run	them:

$ rspec -fd

Using wonderstuff (0.1.0) at path: 'hometdi/wonderstuff'

wonderstuff::default

 installs the lighttpd package (FAILED - 1)

 creates a webpage to be served (FAILED - 2)

 starts the lighttpd service (FAILED - 3)

 enables the lighttpd service (FAILED - 4)

Failures:

 1) wonderstuff::default installs the lighttpd package

 Failure/Error: expect(chef_run).to install_package 'lighttpd'

 No package resource named 'lighttpd' with action :install found.

 # ./spec/unit/recipes/default_spec.rb:14:in `block (2 levels) in <top

(required)>'

 2) wonderstuff::default creates a webpage to be served

 Failure/Error: expect(chef_run).to create_file_with_content

'varwww/index.html', 'Wonderstuff Design is a boutique graphics design agency.'

 File content:

 does not match expected:

 Wonderstuff Design is a boutique graphics design agency.

 # ./spec/unit/recipes/default_spec.rb:18:in `block (2 levels) in <top

(required)>'

 3) wonderstuff::default starts the lighttpd service

 Failure/Error: expect(chef_run).to start_service 'lighttpd'

 No service resource named 'lighttpd' with action :start found.

 # ./spec/unit/recipes/default_spec.rb:22:in `block (2 levels) in <top

(required)>'

 4) wonderstuff::default enables the lighttpd service

 Failure/Error: expect(chef_run).to set_service_to_start_on_boot 'food'

 expected chef_run: recipe[wonderstuff::default] to set service to start on

boot "lighttpd"

 # ./spec/unit/recipes/default_spec.rb:26:in `block (2 levels) in <top

(required)>'

Finished in 0.00969 seconds

4 examples, 4 failures

Failed examples:

rspec ./spec/unit/recipes/default_spec.rb:13 # wonderstuff::default installs the

lighttpd package

rspec ./spec/unit/recipes/default_spec.rb:17 # wonderstuff::default creates a

webpage to be served

rspec ./spec/unit/recipes/default_spec.rb:21 # wonderstuff::default starts the

lighttpd service

rspec ./spec/unit/recipes/default_spec.rb:25 # wonderstuff::default enables the

lighttpd service

Now	we	write	the	cookbook:

$ cat recipes/default.rb

package 'lighttpd'

service 'lighttpd' do

 action [:enable, :start]

end

cookbook_file 'varwww/index.html' do

 source 'wonderstuff.html'

end

$ cat files/default/wonderstuff.html

<html>

<body>

<p>Wonderstuff Design is a boutique graphics design agency.</p>

</body>

</html>

Now	we	run	the	unit	tests	again:

$ rspec -fd

Using wonderstuff (0.1.0) at path: 'hometdi/wonderstuff'

wonderstuff::default

 installs the lighttpd package

 creates a webpage to be served

 starts the lighttpd service

 enables the lighttpd service

Finished in 0.01352 seconds

4 examples, 0 failures

Now	we	run	the	integration	tests:

$ kitchen verify 12

-----> Starting Kitchen (v1.0.0.dev)

-----> Setting up <default-ubuntu-1204>

-----> Setting up Busser

 Creating BUSSER_ROOT in optbusser

 Creating busser binstub

 Plugin serverspec already installed

 Finished setting up <default-ubuntu-1204> (0m3.21s).

-----> Verifying <default-ubuntu-1204>

 Removing optbusser/suites/serverspec

Uploading optbusser/suites/serverspec/spec_helper.rb (mode=0664)

Uploading optbusser/suites/serverspec/localhost/cisco_spec.rb (mode=0664)

Uploading optbusser/suites/serverspec/localhost/cisco_spec.rb~ (mode=0664)

-----> Running serverspec test suite

optchef/embedded/bin/ruby -Ioptbusser/suites/serverspec -S

optchef/embedded/bin/rspec optbusser/suites/serverspec/localhost/cisco_spec.rb

...

Finished in 0.04747 seconds

3 examples, 0 failures

 Finished verifying <default-ubuntu-1204> (0m2.12s).

-----> Kitchen is finished. (0m6.40s)

And	finally,	we	run	Cucumber	again:

$ cucumber

Feature: Potential customer can read about services

 In order to generate more leads for my business

 As a business owner

 I want web users to be able to read about my services

 Background: #

features/readable_services.feature:7

 Given I have provisioned the following infrastructure: #

features/step_definitions/visit-home-page-steps.rb:4

 | Server Name | Operating System | Version | Chef Version | Run List

|

 | wonderstuff | ubuntu | 12.04 | 11.4.4 |

wonderstuff::default |

Using wonderstuff (0.1.0) at path: 'hometdi/wonderstuff'

 And I have run Chef #

features/step_definitions/visit-home-page-steps.rb:8

 Scenario: User visits home page

features/readable_services.feature:14

 Given a url "http://wonderstuff-design.me"

features/step_definitions/visit-home-page-steps.rb:13

 When a web user browses to the URL

features/step_definitions/visit-home-page-steps.rb:18

 Then the user should see "Wonderstuff Design is a boutique graphics design

agency." # features/step_definitions/visit-home-page-steps.rb:27

 expected "<?xml version=\"1.0\" encoding=\"iso-8859-1\"?>\n<!DOCTYPE html

PUBLIC \"-//W3C//DTD XHTML 1.0 Transitional//EN\"\n

\"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd\">\n<html

xmlns=\"http://www.w3.org/1999/xhtml\" xml:lang=\"en\" lang=\"en\">\n <head>\n

<title>403 - Forbidden</title>\n </head>\n <body>\n <h1>403 - Forbidden</h1>\n

</body>\n</html>\n" to match Wonderstuff Design is a boutique graphics design

agency. (RSpec::Expectations::ExpectationNotMetError)

 ./features/step_definitions/visit-home-page-steps.rb:28:in `/^the user should

see "(.*?)"$/'

 features/readable_services.feature:18:in `Then the user should see

"Wonderstuff Design is a boutique graphics design agency."'

Failing Scenarios:

cucumber features/readable_services.feature:14 # Scenario: User visits home page

1 scenario (1 failed)

5 steps (1 failed, 4 passed)

1m11.921s

Aha!	What	happened!

Upon	investigation,	we	discover	that	we	didn’t	set	the	ownership	and	group	of
the	html	page,	so	the	user	under	which	lighttpd	runs	won’t	be	able	to	read	it!

Now,	at	this	point	it	is	very	important	to	write	a	failing	test	that	catches	the
mistake:

it "creates a webpage to be served" do

 expect(chef_run).to create_file_with_content 'varwww/index.html', 'Wonderstuff

Design is a boutique graphics design agency.'

 expect(file).to be_owned_by('www-data', 'www-data')

 end

Let’s	run	the	test:

$ rspec -fd

Using wonderstuff (0.1.0) at path: 'hometdi/wonderstuff'

wonderstuff::default

 installs the lighttpd package

 creates a webpage to be served (FAILED - 1)

 starts the lighttpd service

 enables the lighttpd service

Failures:

 1) wonderstuff::default creates a webpage to be served

 Failure/Error: expect(file).to be_owned_by('www-data', 'www-data')

 NameError:

 undefined local variable or method `file' for #

<RSpec::Core::ExampleGroup::Nested_1:0x00000003ddd418>

 # ./spec/unit/recipes/default_spec.rb:19:in `block (2 levels) in <top

(required)>'

Finished in 0.013 seconds

4 examples, 1 failure

Failed examples:

rspec ./spec/unit/recipes/default_spec.rb:17 # wonderstuff::default creates a

webpage to be served

Now	let’s	make	the	test	pass	by	updating	the	resource	in	the	recipe:

package 'lighttpd'

service 'lighttpd' do

 action [:enable, :start]

end

cookbook_file 'varwww/index.html' do

 source 'wonderstuff.html'

 owner 'www-data'

 group 'www-data'

end

Now,	let’s	run	Cucumber	one	last	time:

$ cucumber

Feature: Potential customer can read about services

 In order to generate more leads for my business

 As a business owner

 I want web users to be able to read about my services

 Background: #

features/readable_services.feature:7

 Given I have provisioned the following infrastructure: #

features/step_definitions/visit-home-page-steps.rb:4

 | Server Name | Operating System | Version | Chef Version | Run List

|

 | wonderstuff | ubuntu | 12.04 | 11.4.4 |

wonderstuff::default |

Using wonderstuff (0.1.0) at path: 'hometdi/wonderstuff'

 And I have run Chef #

features/step_definitions/visit-home-page-steps.rb:8

 Scenario: User visits home page

features/readable_services.feature:14

 Given a url "http://wonderstuff-design.me"

features/step_definitions/visit-home-page-steps.rb:13

 When a web user browses to the URL

features/step_definitions/visit-home-page-steps.rb:18

 Then the user should see "Wonderstuff Design is a boutique graphics design

agency." # features/step_definitions/visit-home-page-steps.rb:27

1 scenario (1 passed)

5 steps (5 passed)

1m10.105s

Although	a	truly	trivial	example,	I	hope	this	gives	a	sense	of	the	workflow	and
the	ideas	behind	writing	acceptance	tests	for	application	cookbooks.	Indeed,
even	on	this	simple	example	we	see	the	benefit	of	a	true	acceptance	test—our
unit	tests	passed,	our	integration	tests	passed,	but	what	we	delivered	was	useless
crap.	Only	with	the	true	exercising	of	the	system	we	built	did	we	discover	our
mistake!

I	will	be	documenting	far	more	complex	examples	on	the	website	or	on	my	blog.
I	would	welcome	your	enthusiastic	contributions	and	discussions	on	the	Chef
users’	mailing	list.

As	an	appetite	whetter,	I	offer	the	following	feature:

Feature: Highly Available Jenkins

http://leibniz.cc
http://agilesysadmin.net

Infrastructure developers should be able to enjoy uninterrupted access to their

build jobs.

 Background:

 Given I have provisioned the following infrastructure:

| Server Name | Operating System | Architecture | Version | Chef Version | Run

List |

| lb1 | CentOS | 64 bit | 6.4 | 11.4.4 |

tedious::ha |

| lb2 | CentOS | 64 bit | 6.4 | 11.4.4 |

tedious::ha |

| jenkins1 | CentOS | 64 bit | 6.4 | 11.4.4 |

tedious::jenkins |

| jenkins2 | CentOS | 64 bit | 6.4 | 11.4.4 |

tedious::jenkins |

 And 'http://tedio.us' resolves to the virtual IP of the loadbalancer

 Scenario: Jenkins should be available

 Infrastructure developers should be able to reach and use a Jenkins server.

 When I try to download the Jenkins CLI tool

 Then the download will succeed

 And when I query the version number

 Then the version number will be returned

 Scenario: Jenkins should be loadbalanced

 Infrastructure developers should be able to use Jenkins in the event of a

Jenkins server failure

 Given I am using a Jenkins server

 When that Jenkins server is switched off

 Then I should be able to reach an alternative Jenkins server

 Scenario: Load balancers should be in a redundant pair

 Given that I am using Jenkins

 When one of the load balancers is switched off

 Then I should still be able to use Jenkins

Advantages	and	Disadvantages

The	advantages	of	writing	executable	specifications,	using	Gherkin	and
Cucumber,	have	been	expressed	throughout	this	book.	As	an	approach,	it	is
widely	regarded	as	offering	outstanding	value.

The	main	disadvantage	is	simply	that	it’s	not	easy.	The	tooling	is	immature
compared	to	the	other	resources	discussed	in	this	section.	In	its	current
evolutionary	state,	the	requirement	to	do	one’s	own	heavy	lifting	is	not
inconsiderable.	However,	the	more	people	that	engage	in	the	process,	and	the
more	the	tooling	matures,	the	greater	the	differential	between	effort	in	and	value
out.

Other	than	this,	I	would	like	to	address	two	particular	objections	to	the	approach.

The	first	is	the	argument	that	“a	good	monitoring	system”	takes	care	of	the
requirement	for	externally	facing	acceptance	tests.

While	I	certainly	agree	that	a	monitoring	system	should	be	measuring	the	extent
to	which	one’s	system	meets	its	acceptance	criteria,	I	think	this	is	missing	the
point	to	a	significant	degree.

Doubtless,	a	monitoring	system	that	doesn’t	measure	and	alert	on	the
fundamental	purpose	of	the	business	is	not	a	very	valuable	monitoring	system.
Indeed,	it’s	for	this	reason	that	I	have	long	advocated	that	acceptance	tests	can	be
used	as	an	input	to,	or	in	certain	cases,	even	directly	as	one’s	monitoring	system.
However,	the	tests	that	comprise	that	monitoring	system	still	need	to	be	written,
the	requirements	still	need	to	be	captured,	and	that	is	a	collaborative	effort	that
belongs	squarely	in	the	same	conversation	and	workflow	as	the	rest	of	the
program	of	cookbook	testing.	Ducking	the	issue,	or	delegating	it	to	a	separate
monitoring	discussion,	is	to	introduce	segregation	and	siloization	where	there
should	be	none.

Furthermore,	certain	acceptance	tests,	or	even	smoke	tests,	could	be	destructive,
expensive,	or	impose	hostile	load	burdens,	or	probe	security	issues.	These	don’t
belong	in	a	production	monitoring	system,	but	they	are	very	much	requirements
and	specifications	that	need	to	be	considered	when	beginning	to	build
infrastructure	as	code.

If	we	accept	the	view	that	acceptance	tests	are	the	same	as,	or	function	as,
monitoring	checks,	then	these	monitoring	checks	should	be	the	first	thing	we
write.	This	is	the	purest	interpretation	of	the	mandate	to	develop	outside-in.

On	this	point,	it’s	illuminating	to	think	about	outside-in	as	being	fractal.	Post
Chef-run	convergence	testing	is	outside-in	from	the	perspective	of	the	Chef	run,
although	it’s	not	truly	at	the	level	of	a	test	from	outside	the	node	itself.	Thus	the
kind	of	approach	that	Cucumber	and	Leibniz	offer	can	be	viewed	as	a	higher-
order	testing	approach.

Ultimately,	I	think	it’s	as	plain	as	this:	for	most	organizations	building
infrastructure	at	scale	using	Chef,	the	business	is	the	application.	If	the
application	doesn’t	function—if	customers	cannot	login	and	perform	critical
business	actions—then	all	other	monitoring	is	for	naught.

The	second	objection	is	that	when	building	infrastructure,	the	stakeholders	are
frequently	technical,	so	the	domain	language	is	shared,	and	the	value	in
capturing	requirements	in	Gherkin	is	diminished.

This	is	a	deceptively	attractive	sounding	position.	It	is	indeed	frequently	the	case
that	the	stakeholders	for	infrastructure	projects	are	technical	architects,
developers,	or	even	system	administrators.	In	these	cases	the	ubiquitous
language	shared	between	stakeholders	and	implementers	is	imbued	with
technical	concepts	to	a	more	significant	degree	than	when	designing	software	to
be	consumed	by	users.

However,	this	does	not	remove	the	need	for	acceptance	tests	or	documentation.	It
is	still	imperative	that,	as	engineers,	we	both	build	the	thing	right	and	build	the
right	thing.	To	do	so,	we	need	to	ensure	the	following	are	in	place:

A	common	and	unambiguous	understanding	of	what	needs	to	be	delivered

Explicit	and	univocal	specification	of	requirements	to	minimize	rework

A	concrete	and	measurable	definition	of	done

Documentation	to	support	future	change	and	maintenance

Traditional	project	management	approaches	invested	large	amounts	of	time	and
money	in	big	upfront	specifications	and	testing	phases,	which,	to	an	extent,
assisted	(although	some	might	argue	hindered)	the	achievement	of	these
prerequisites.	However,	in	today’s	fast-paced,	continuously	delivering	universe,
such	an	approach	simply	isn’t	an	option	anymore.	Nonetheless,	the	necessity	of
these	foundational	cornerstones	is	still	apparent.

Now,	more	than	ever,	there	is	an	urgent	need	for	efficient	specification,	and	lean
planning;	for	reliable,	always-right,	and	easily	changeable	documentation;	for
objective	mechanisms	to	verify	that	the	system	meets	requirements.	How	can
this	be	achieved	in	a	world	of	constant	improvement,	rapid	change,	auto-scaling,
and	cloud-bursting?

Gojko	Adzic	offers	the	following	visualization:

The	intersection	of	just-in-time	delivery,	highly	maintainable	documentation,
and	precise	and	objectively	testable	specifications	lies	in	the	very	thing	this	book
holds	as	pivotal—in	requirements	as	executable	acceptance	tests.	And	this	is
required	as	much	for	highly	technical	stakeholders	as	for	any	other	consumer	of
services.

Summary	and	Conclusion
Full	acceptance	testing	of	complex	multi-node	systems,	conducted	from	a

perspective	outside	of	the	systems	under	test,	is	the	holy	grail	of	test-driven
infrastructure.	The	tooling	is	not	yet	up	to	scratch	for	solving	problems	of	this
complexity,	but	it’s	without	a	doubt	an	area	where	much	experimentation	and
research	is	being	carried	out.

With	hindsight,	my	decision	to	begin	my	crusade	to	bring	test-driven	and
behavior-driven	development	practices	into	the	world	of	infrastructure	as	code,
with	the	purest	form	of	outside-in	acceptance	testing,	was	wildly	optimistic.
However,	I	stand	by	my	view	that	this	is	the	correct	methodology,	and	we	should
be	pushing	at	the	boundaries	of	the	possible.

Leibniz	is	a	brand	new	project,	but	initial	feedback	on	the	concept	has	been
positive,	and	the	problems	it	attempts	to	solve	are	real,	topical,	and	tractable.
Doubtless,	its	implementation	and	approach	will	change	rapidly,	so	please
consider	this	section	very	much	an	appetite-whetter	and	discussion-starter	rather
than	a	definitive	description	of	a	mature	framework.

The	other	area	where	we	are	sure	to	see	important	developments	is	in	the
emergence	of	mature	orchestration	frameworks	functioning	at	a	level	higher	than
the	node.	Opscode’s	"push	jobs"	looks	to	be	the	beginning	of	a	process	of
releasing	primitives	for	sophisticated	orchestration	capability	within	the	Opscode
product	roadmap.	At	the	same	time,	Riot	Games	has	been	promising	to	open
source	Motherbrain,	their	orchestration	system.	Alongside	this,	the	engineers	at
Heavy	Water	have	also	been	experimenting	with	proofs	of	concept	playing	in
this	space.	Add	to	this	the	role	already	played	by	the	popular	MCollective
framework	in	current	orchestration	frameworks,	and	it’s	clear	this	is	an	area	of
great	potential.

Integration	Testing:	Test	Kitchen	with
Serverspec	and	Bats
We	introduced	Test	Kitchen	as	a	foundational	tool	for	orchestration	and	test
running	earlier	in	the	chapter.	We	now	turn	to	a	detailed	worked	example	of
building	infrastructure	tests	using	both	Serverspec	and	Bats.

Within	a	cookbook,	the	kitchen init	command	will	generate	a	core	testing
structure,	consisting	of	a	YAML	file,	.kitchen.yml,	which	describes	the	various
run	configurations	to	test,	and	a	directory	for	tests	and	supporting	material,

http://bit.ly/1aIwxPR
http://bit.ly/14fFZII

test/integration/default.

A	default	.kitchen.yml	file	contains	the	following:

driver_plugin: vagrant

driver_config:

 require_chef_omnibus: true

platforms:

- name: ubuntu-12.04

 driver_config:

 box: opscode-ubuntu-12.04

 box_url: https://opscode-vm.s3.amazonaws.com/vagrant/opscode_ubuntu-

12.04_provisionerless.box

- name: ubuntu-10.04

 driver_config:

 box: opscode-ubuntu-10.04

 box_url: https://opscode-vm.s3.amazonaws.com/vagrant/opscode_ubuntu-

10.04_provisionerless.box

- name: centos-6.4

 driver_config:

 box: opscode-centos-6.4

 box_url: https://opscode-vm.s3.amazonaws.com/vagrant/opscode_centos-

6.4_provisionerless.box

- name: centos-5.9

 driver_config:

 box: opscode-centos-5.9

 box_url: https://opscode-vm.s3.amazonaws.com/vagrant/opscode_centos-

5.9_provisionerless.box

suites:

- name: default

 run_list: ["recipe[ruby-install]"]

 attributes: {}

The	driver	plug-in	is	Vagrant,	as	mentioned.	We	hand	off	installation	of	Chef	to
the	Omnibus	plug-in,	enabling	us	to	keep	our	base	boxes	as	minimal	as	possible.
We	then	specify	the	platforms	we’re	interested	in	testing	against.	By	default,	the
assumption	is	that	a	cookbook	developer	wants	to	test	against	CentOS	and
Ubuntu,	on	both	CentOS	5	and	6	and	Ubuntu	10.04	and	12.04.	These	can	easily
be	altered,	as	they	are	simply	references	to	a	Vagrant	box	name	and	source	URL,
exactly	as	would	go	into	a	Vagrantfile.	Finally,	we	list	suites	of	tests	we	want	to
run	against	each	platform—in	this	case,	by	default,	we	want	to	apply	the	default

recipe	from	the	ruby-install	cookbook.	The	possibility	of	specifying	node
attributes	in	the	suite	is	also	available.

It’s	entirely	possible	that	you	decide	you	don’t	want	to	test	against	all	four	of
these	systems—in	which	case,	simply	delete	the	ones	that	aren’t	relevant.

Running	kitchen list	will	give	a	quick	status	review	of	your	test	kitchen:

$ bundle exec kitchen list

Instance Last Action

default-ubuntu-1204 <Not Created>

default-ubuntu-1004 <Not Created>

default-centos-64 <Not Created>

default-centos-59 <Not Created>

Let’s	create	a	cookbook	that	will	install	the	Pound	load	balancer.	We	want	to	be
sure	it	will	work	on	CentOS	5	as	well	as	CentOS	6.	We	don’t	have	any	CentOS	5
machines,	but	we	want	to	support	this	platform	for	the	sake	of	the	community,
and	as	responsible	cookbook	developers,	we	want	to	be	sure	that	as	we	develop
on	a	Mac	and	deploy	on	CentOS	6,	we	don’t	introduce	any	regressions	that
would	cause	a	problem	on	an	earlier	version	of	CentOS.

$ berks cookbook pound

 create pound/files/default

 create pound/templates/default

 create pound/attributes

 create pound/definitions

 create pound/libraries

 create pound/providers

 create pound/recipes

 create pound/resources

 create pound/recipes/default.rb

 create pound/metadata.rb

 create pound/LICENSE

 create pound/README.md

 create pound/Berksfile

 create pound/Thorfile

 create pound/chefignore

 create pound/.gitignore

 run git init from "./pound"

 create pound/Gemfile

 create .kitchen.yml

 append Thorfile

 create test/integration/default

 append .gitignore

 append .gitignore

 append Gemfile

 append Gemfile

You must run `bundle install' to fetch any new gems.

 create pound/Vagrantfile

Now	let’s	slim	down	the	platforms:

driver_plugin: vagrant

driver_config:

 require_chef_omnibus: true

platforms:

- name: centos-6.4

 driver_config:

 box: opscode-centos-6.4

 box_url: https://opscode-vm.s3.amazonaws.com/vagrant/opscode_centos-

6.4_provisionerless.box

- name: centos-5.9

 driver_config:

 box: opscode-centos-5.9

 box_url: https://opscode-vm.s3.amazonaws.com/vagrant/opscode_centos-

5.9_provisionerless.box

suites:

- name: default

 run_list: ["recipe[pound]"]

 attributes: {}

Now	we	can	create	the	base	machines	using	the	kitchen create	command:

$ kitchen create all

-----> Starting Kitchen (v1.0.0.alpha.7)

-----> Creating <default-centos-64>

 [kitchen::driver::vagrant command] BEGIN (vagrant up --no-provision)

 Bringing machine 'default' up with 'virtualbox' provider...

 [default] Importing base box 'opscode-centos-6.4'...

 [default] Matching MAC address for NAT networking...

 [default] Setting the name of the VM...

 [default] Clearing any previously set forwarded ports...

 [Berkshelf] Skipping Berkshelf with --no-provision

 [default] Fixed port collision for 22 => 2222. Now on port 2204.

 [default] Creating shared folders metadata...

 [default] Clearing any previously set network interfaces...

 [default] Preparing network interfaces based on configuration...

 [default] Forwarding ports...

 [default] -- 22 => 2204 (adapter 1)

 [default] Running any VM customizations...

 [default] Booting VM...

 [default] Waiting for VM to boot. This can take a few minutes.

 [default] VM booted and ready for use!

 [default] Setting hostname...

 [default] Configuring and enabling network interfaces...

 [default] Mounting shared folders...

 [default] -- vagrant

 [kitchen::driver::vagrant command] END (0m37.01s)

 [kitchen::driver::vagrant command] BEGIN (vagrant ssh-config)

 [kitchen::driver::vagrant command] END (0m1.27s)

 Vagrant instance <default-centos-64> created.

 Finished creating <default-centos-64> (0m38.95s).

-----> Creating <default-centos-59>

 [kitchen::driver::vagrant command] BEGIN (vagrant up --no-provision)

 Bringing machine 'default' up with 'virtualbox' provider...

 [default] Box 'opscode-centos-5.9' was not found. Fetching box from specified

URL for

 the provider 'virtualbox'. Note that if the URL does not have

 a box for this provider, you should interrupt Vagrant now and add

 the box yourself. Otherwise Vagrant will attempt to download the

 full box prior to discovering this error.

 Downloading or copying the box...

 Extracting box...3ks, Estimated time remaining: --:--:--)

 Successfully added box 'opscode-centos-5.9' with provider 'virtualbox'!

 [default] Importing base box 'opscode-centos-5.9'...

 [default] Matching MAC address for NAT networking...

 [default] Setting the name of the VM...

 [default] Clearing any previously set forwarded ports...

 [Berkshelf] Skipping Berkshelf with --no-provision

 [default] Fixed port collision for 22 => 2222. Now on port 2205.

 [default] Creating shared folders metadata...

 [default] Clearing any previously set network interfaces...

 [default] Preparing network interfaces based on configuration...

 [default] Forwarding ports...

 [default] -- 22 => 2205 (adapter 1)

 [default] Running any VM customizations...

 [default] Booting VM...

 [default] Waiting for VM to boot. This can take a few minutes.

 [default] VM booted and ready for use!

 [default] Setting hostname...

 [default] Configuring and enabling network interfaces...

 [default] Mounting shared folders...

 [default] -- /vagrant

 [kitchen::driver::vagrant command] END (6m6.32s)

 [kitchen::driver::vagrant command] BEGIN (vagrant ssh-config)

 [kitchen::driver::vagrant command] END (0m1.26s)

 Vagrant instance <default-centos-59> created.

 Finished creating <default-centos-59> (6m14.04s).

-----> Kitchen is finished. (6m54.05s)

This	will	download	the	boxes	if	needed.	After	the	creation	has	finished,	kitchen
list	will	show	the	updated	status:

$ bundle exec kitchen list

Instance Last Action

default-centos-64 Created

default-centos-59 Created

Now	that	we	have	the	platforms	available,	we	can	attempt	to	converge	the	nodes
with	kitchen converge.	Even	though	we	haven’t	written	a	recipe	yet,	this	will
install	Chef	using	the	Omnibus	plug-in,	and	prove	that	we	have	machines	ready
to	test:

$ bundle exec kitchen converge

-----> Starting Kitchen (v1.0.0.alpha.7)

-----> Converging <default-centos-64>

 [local command] BEGIN (if ! command -v berks >/dev/null; then exit 1; fi)

 [local command] END (0m0.01s)

 [local command] BEGIN (berks install --path tmpdefault-centos-64-

cookbooks20130613-31209-12t45x0)

 Using pound (0.1.0) at path: 'hometdi/pound'

 [local command] END (0m0.99s)

 Uploaded pound/chefignore (985 bytes)

 Uploaded pound/Berksfile.lock (179 bytes)

 Uploaded pound/Vagrantfile (3259 bytes)

 Uploaded pound/recipes/default.rb (127 bytes)

 Uploaded pound/metadata.rb (267 bytes)

 Uploaded pound/Gemfile.lock (2830 bytes)

 Uploaded pound/Berksfile (24 bytes)

 Uploaded pound/README.md (112 bytes)

 Uploaded pound/Gemfile (136 bytes)

 Uploaded pound/Thorfile (241 bytes)

 Uploaded pound/LICENSE (72 bytes)

 Starting Chef Client, version 11.4.4

 [2013-06-13T04:53:31+00:00] INFO: *** Chef 11.4.4 ***

 [2013-06-13T04:53:31+00:00] INFO: Setting the run_list to ["recipe[pound]"]

from JSON

 [2013-06-13T04:53:31+00:00] INFO: Run List is [recipe[pound]]

 [2013-06-13T04:53:31+00:00] INFO: Run List expands to [pound]

 [2013-06-13T04:53:31+00:00] INFO: Starting Chef Run for default-centos-64

 [2013-06-13T04:53:31+00:00] INFO: Running start handlers

 [2013-06-13T04:53:31+00:00] INFO: Start handlers complete.

 Compiling Cookbooks...

 Converging 0 resources

 [2013-06-13T04:53:31+00:00] INFO: Chef Run complete in 0.001873196 seconds

 [2013-06-13T04:53:31+00:00] INFO: Running report handlers

 [2013-06-13T04:53:31+00:00] INFO: Report handlers complete

 Chef Client finished, 0 resources updated

 Finished converging <default-centos-64> (0m3.05s).

-----> Converging <default-centos-59>

 [local command] BEGIN (if ! command -v berks >/dev/null; then exit 1; fi)

 [local command] END (0m0.01s)

 [local command] BEGIN (berks install --path tmpdefault-centos-59-

cookbooks20130613-31209-dcec44)

 Using pound (0.1.0) at path: 'hometdi/pound'

 [local command] END (0m0.99s)

 Uploaded pound/chefignore (985 bytes)

 Uploaded pound/Berksfile.lock (179 bytes)

 Uploaded pound/Vagrantfile (3259 bytes)

 Uploaded pound/recipes/default.rb (127 bytes)

 Uploaded pound/metadata.rb (267 bytes)

 Uploaded pound/Gemfile.lock (2830 bytes)

 Uploaded pound/Berksfile (24 bytes)

 Uploaded pound/README.md (112 bytes)

 Uploaded pound/Gemfile (136 bytes)

 Uploaded pound/Thorfile (241 bytes)

 Uploaded pound/LICENSE (72 bytes)

Starting Chef Client, version 11.4.4

 [2013-06-13T04:53:34+00:00] INFO: *** Chef 11.4.4 ***

 [2013-06-13T04:53:34+00:00] INFO: Setting the run_list to ["recipe[pound]"]

from JSON

 [2013-06-13T04:53:34+00:00] INFO: Run List is [recipe[pound]]

 [2013-06-13T04:53:34+00:00] INFO: Run List expands to [pound]

 [2013-06-13T04:53:34+00:00] INFO: Starting Chef Run for default-centos-59

 [2013-06-13T04:53:34+00:00] INFO: Running start handlers

 [2013-06-13T04:53:34+00:00] INFO: Start handlers complete.

Compiling Cookbooks...

Converging 0 resources

 [2013-06-13T04:53:34+00:00] INFO: Chef Run complete in 0.002037 seconds

 [2013-06-13T04:53:34+00:00] INFO: Running report handlers

 [2013-06-13T04:53:34+00:00] INFO: Report handlers complete

Chef Client finished, 0 resources updated

 Finished converging <default-centos-59> (0m2.99s).

-----> Kitchen is finished. (0m7.15s)

After	converge,	the	state	is	reported	as:

$ bundle exec kitchen list

Instance Last Action

default-centos-64 Converged

default-centos-59 Converged

Note	that	Test	Kitchen	uploaded	the	cookbooks,	and	would	have	solved	any
dependencies	if	we’d	needed.	The	next	step	is	to	get	it	to	run	some	tests.	It’s
critical	at	this	stage	to	understand	how	Test	Kitchen	achieves	this.	While	it’s
perfectly	possible	to	use	Test	Kitchen	to	run	Minitest	Handler	tests,	it’s
essentially	designed	to	run	what	I	call	“Post	Chef-run”	tests.	That	is,	after	the
Chef	run	has	completely	finished,	inspect	the	state	of	the	converged	node,	and
report	back.	Minitest	Handler	is	a	nice	approach	and	brings	post-converge
testing	with	minimal	setup,	but	it	does	rely	on	being	able	to	peek	into	Chef’s
internals,	and	the	tests	won’t	even	attempt	to	run	if	Chef	doesn’t	finish
converging	cleanly.	The	Test	Kitchen	approach	is	to	allow	the	node	to	converge
fully	and	after	Chef	has	finished,	inspect	the	state.

Test	Kitchen	achieves	this	testing	using	the	concept	of	a	Busser.	Unless	you’re
from	North	America,	this	term	could	be	puzzling.	The	best	explanation	I	can
give	is	to	refer	you	to	a	classic	early	episode	of	Seinfeld,	called	“The	Busboy.”	If
you’ve	never	watched	Seinfeld	before,	stop	what	you’re	doing	right	now,	go
watch	Seinfeld,	and	then	come	back.	Seriously—work	can	wait.	Back?	Great,	so
in	“The	Busboy,”	the	three	friends	Jerry,	George,	and	Elaine,	are	eating	in	a
restaurant,	where	the	adjacent	table	catches	fire.	George	explains	to	the	manager
of	the	restaurant	that	the	fire	was	caused	by	the	busboy	leaving	the	menu	too
close	to	the	candle.	Elaine	comments	that	she’ll	never	eat	at	the	restaurant	again,
and	the	manager,	taking	this	seriously,	fires	the	busboy.	I	won’t	spoil	the	rest	of
the	episode,	but	you	get	the	picture:	a	busboy,	or	busser,	is	a	waiter’s	helper	in	a
restaurant.	It’s	his	responsibility	to	ensure	that	the	fruits	of	the	chef,	the	produce
from	the	kitchen,	can	be	enjoyed	by	the	patrons	of	the	establishment.	In	Test
Kitchen,	the	metaphor	is	similar.	Busser	is	a	Rubygem	that	is	responsible	for
ensuring	whatever	is	needed	to	run	tests	after	a	kitchen converge	is	in	place.

Specifically,	it	installs	any	required	testing	Gems,	and	generally	helps	get	the
remote	node	ready	to	receive	test	files	and	run	them.

In	theory,	we	could	use	anything	we	liked	to	test	the	system,	after	Chef	has	run.
If	you	were	particularly	keen	on	Perl	or	Python,	there	would	be	no	reason	not	to
write	tests	in	Perl	or	Python	to	verify	the	state;	as	long	as	it	reports	back	test
results,	it	doesn’t	matter	what	is	used.	Busser	is	fully	pluggable,	and	creation	of
plugins	is	very	easy.	We’ll	look	at	two	Busser	plugins	to	demonstrate	the
principle.

When	thinking	about	these	sorts	of	tests,	I	think	it	makes	sense	to	consider	the
steps	you	might	take	if	you	were	asked	to	manually	examine	a	machine	to	verify
that	something	had	been	set	up	or	installed.	In	the	case	of	Pound,	what	would	we
do?	Off	the	top	of	my	head,	if	someone	gave	me	a	computer,	told	me	that
another	sysadmin	had	installed	Pound,	and	asked	me	to	verify	it,	I’d	probably	do
some	of	the	following:

Check	to	see	if	a	Pound	service	was	running.

See	if	I	could	find	a	Pound	config	file.

Look	at	the	Pound	config	file	to	see	if	it	looked	sane.

Look	at	what	backends	were	configured.

Make	an	HTTP	request	to	a	backend	and	note	the	response.

Make	an	HTTP	request	to	Pound,	and	compare	the	response	to	the	request
from	the	backend.

These	are	the	sorts	of	tests	we	want	Test	Kitchen	to	run.	How,	then,	shall	we
construct	these	tests?	Well,	as	I	mentioned,	the	possibilities	are	effectively
limitless,	but	I	will	draw	attention	to	two	particularly	interesting	options,	then
mention	alternatives	you	might	like	to	consider.

Introducing	Bats
The	first	is	to	use	Bats,	the	Bourne-again	shell	(Bash)	testing	framework.	About
as	simple	as	a	test	framework	can	be,	a	Bats	test	is	simply	a	shell	function	with	a
description.	Here’s	an	example	from	Fletcher	Nichol’s	rbenv	cookbook:

@test "global Ruby can install nokogiri gem" {

 export RBENV_VERSION=$global_ruby

 run gem install nokogiri --no-ri --no-rdoc

 [$status -eq 0]

}

Just	like	any	test	framework,	we	set	up	some	state,	and	then	make	an	assertion.
In	this	case,	the	assertion	is	simply	the	exit	status	of	a	shell	command.	An	exit
status	of	0	is	interpreted	as	a	test	passing,	while	any	non-zero	exit	status	is
interpreted	as	a	test	failure.	Assertions	can	be	any	valid	shell	command,	but	the
Bats	framework	also	provides	a	helper	method,	run,	which	will	run	a	command
and	store	the	exit	status	and	output.	These	are	available	as	three	variables:

$status
The	exit	code	of	the	command	passed	as	an	argument	to	run.

$output
The	combined	contents	of	the	shell’s	standard	out	and	standard	error.

$lines
An	array	that	stores	multiple	lines	of	output.

This	makes	the	final	assertion	as	simple	as	utilizing	the	bash	shell’s	[]	testing
mechanism;	examples	might	include:

[$status -eq 0]

[$(echo "$output" | grep "^$global_ruby$") = "$global_ruby"]

[${lines[0]} = "$global_ruby"]

If	you	come	from	a	Linux	or	Unix	system	administration	background,	you’ll	find
this	a	powerful,	quick,	and	effective	way	to	investigate	state.	If	this	looks
somewhat	arcane	to	you,	but	you	can	see	its	inherent	simplicity	and	power,	there
are	a	number	of	excellent	introductory	works	on	shell	scripting,	study	of	which
would	yield	reward.	Alternatively,	of	course,	you	could	simply	ignore	this
option,	and	move	on	to	a	testing	mechanism	that	suits	your	background	and
purposes.

Introducing	Serverspec

The	second	option	I	want	to	draw	your	attention	to	is	Serverspec.	Serverspec	is	a
set	of	custom	matchers	and	expectations	for	RSpec,	designed	specifically	to	test
configured	infrastructure.	Although	it	can	be	configured	to	use	SSH	and	connect
to	a	remote	machine,	for	our	purposes,	we’re	simply	going	to	run	the	test	after
the	Chef	run	has	finished	and	return	the	result.

The	project	offers	the	following	examples.	I	would	point	out	that	these	examples
use	the	old	RSpec	expectation	format,	which	is	no	longer	the	preferred	or
recommended	approach.	Later,	we’ll	use	the	current	approach,	but	I	leave	these
examples	per	the	documentation,	so	you	can	see	examples	of	each.

describe 'Apache package' do

 it 'should be installed' do

end

package('httpd') do

 it { should be_installed }

describe service('httpd') do

 it { should be_enabled }

 it { should be_running }

end

describe port(80) do

 it { should be_listening }

end

describe file('etchttpd/conf/httpd.conf') do

 it { should be_file }

 it { should contain "ServerName www.example.jp" }

end

This	approach	has	the	advantage	of	being	familiar	for	anyone	who	has	done	any
development	in	Ruby	and	has	any	exposure	to	RSpec.	It	also	has	the	advantage
that	we’re	already	using	RSpec	expectations	in	Chefspec,	and	RSpec
expectations	are	commonly	used	with	Cucumber;	this	gives	us	the	opportunity	to
standardize	on	a	single	testing	format.	Additionally,	there	is	a	large	number	of
very	useful,	pre-defined	matchers,	which	makes	the	task	of	creating	some
immediately	useful	tests	very	easy	to	achieve,	quickly.	Finally,	the	project	has
broad	cross-config-management	support,	being	used	by	Puppet	and	CFengine
users,	so	the	community	support	and	development	effort	is	healthy.

The	final	two	options	I’ll	mention	are	simply	writing	your	own	tests	in	either
Minitest	or	RSpec.	In	this	case,	you	simply	write	tests	using	the	standard	library
or	importing	any	gems	you	need.	This	has	the	advantage	of	minimum	fuss	and
maximum	flexibility.	If	you’re	comfortable	in	the	world	of	Ruby	and	Ruby
testing,	this	will	be	no	different	from	your	day-to-day	test-writing.

The	Busser	is	responsible	for	installing	any	software	that	is	required	for	running
tests.	It	does	this	via	a	plug-in	mechanism	and	by	filesystem	layout	convention.
Busser	will	load	the	plug-in	that	corresponds	to	the	name	of	the	directory.	The
format	is	as	follows:

pathto/my/cookbooktestintegration/<SUITE-NAME>/<BUSSER-PLUGIN>

So,	to	run	Bats	tests	for	the	default	suite,	simply	drop	tests	in:

pathto/my/cookbooktestintegration/default/bats

Let’s	write	some	tests	for	the	Pound	cookbook	using	Bats.	Create	a	file
pound.bats	under	testintegration/default/bats/	with	the	following	content:

match() {

 local p=$1 v

 shift for v

 do [[$v = $p]] && return

 done

 return 1

}

@test "The Pound service is running" {

 run service pound status

 echo "$output" | grep -Eq 'pound.*is running'

}

@test "Two Pound backends are active" {

 run poundctl -c varlib/pound/pound.cfg

 match "Backend8000*active*" "${lines[@]}"

 match "Backend8001*active*" "${lines[@]}"

}

@test "Pound has an HTTP listener" {

 run poundctl -c varlib/pound/pound.cfg

 match "http Listener" "${lines[@]}"

}

@test "Pound does not have an HTTPS listener" {

 run poundctl -c varlib/pound/pound.cfg

 ! match "HTTPS Listener" "${lines[@]}"

}

@test "Server is listening on port 80" {

 run nmap -sT -p80 localhost

 match "80/tcp open http" "${lines[@]}"

}

@test "Server accepts HTTP requests" {

 echo "GET HTTP1.1" | nc localhost 80

}

Obviously	being	able	to	write	this	test	assumes	some	degree	of	familiarity	with
the	system	you’re	going	to	configure.	Naturally	you	could	write	much	more
basic	tests	at	first	and	evolve	more	complex	ones	as	you	discover	functionality
you	want	to	test.

Let’s	quickly	run	through	the	test.	First,	we	set	up	a	function	that	will	check	for	a
match	in	the	lines	of	an	array.	In	the	first	test,	we’re	just	checking	that	we	see	the
Pound	service	running.	This	isn’t	very	cross-platform,	as	we’re	relying	on	the
format	of	the	service	command,	which	may	be	different	on	alternative	versions
or	distributions,	but	it	illustrates	a	simple	grep.	The	next	three	tests	all	use	the
match	function,	and	the	built-in	run	function.	Poundctl	is	a	command-line
utility	that	will	dump	out	the	running	configuration	of	the	service—we’re	just
checking	against	its	output.	The	final	two	tests	use	the	netcat	and	nmap
commands	to	do	primitive	network	testing.	These	could	be	much	more	complex
if	needed.	The	latter	of	the	two	tests	simply	makes	use	of	the	return	code—if
netcat	cannot	reach	the	machine	on	port	80,	it	will	have	a	non-zero	exit	code.

These	two	tests	illustrate	a	further	important	feature	of	Test	Kitchen.	Fairly	often
we	find	that	for	test	purposes	we	would	like	to	have	some	handy	commands—
for	example	netcat,	lsof,	or	telnet.	We	might	not	normally	have	these	in	our
base	build,	but	we	want	them	to	be	available	for	running	our	post–Chef-run	tests.
Test	Kitchen	allows	these	prerequisites	to	be	installed	after	the	Chef	run	by
dropping	off	a	file	called	prepare_recipe.rb,	containing	recipe	DSL	code,	which
is	executed	using	a	slightly	modified	chef-apply.	In	our	case	we	would	add:

$ cat test/integration/default/bats/prepare_recipe.rb

%w{ nc nmap }.each { |pkg| package pkg }

Of	course,	to	be	truly	cross-platform,	we’d	need	to	take	into	account	the	different
naming	conventions	of	various	Linux	distributions,	but	the	principle	is	clear.

Having	written	the	tests,	we	now	want	to	run	them.	Based	on	the	five	lifecycle
phases,	as	described	earlier,	Test	Kitchen	provides	a	number	of	commands	that
control	the	lifecycle	of	a	test	suite.	In	order,	they	are:

kitchen create
Creates	the	base	machine

kitchen converge
Installs	and	runs	Chef	with	the	run	list	specified	in	the	.kitchen.yml	file

kitchen setup
Instructs	Busser	to	set	up	whatever	is	needed	to	run	tests

kitchen verify
Runs	the	tests	to	verify	that	the	state	of	the	machine	is	as	desired	and/or
expected

kitchen destroy
Destroys	the	machine	entirely,	leaving	the	host	OS	in	a	clean	state

These	tasks	can	be	called	individually—one	at	a	time—but	later	commands	in
the	lifecycle	will	attempt	to	call	previous	steps.	So,	running	kitchen verify
will	create,	converge,	and	set	up	a	machine	before	verifying.	The	tasks	take	an
argument	of	which	instance	to	control.	The	commands	perform	a	regular
expression	match,	which	makes	it	convenient	to	run	actions	against	a	specified
subset	of	machines	reported	by	kitchen list.	With	no	pattern,	the	default	is	to
take	action	against	all	the	instances.	This	can	be	made	explicit	with	the	all
keyword.

Let’s	run	them	one	at	a	time	to	see	how	they	function:

$ kitchen create 6

-----> Starting Kitchen (v1.0.0.alpha.7)

-----> Creating <default-centos-64>

 [kitchen::driver::vagrant command] BEGIN (vagrant up --no-provision)

 Bringing machine 'default' up with 'virtualbox' provider...

 [default] Importing base box 'opscode-centos-6.4'...

 [default] Matching MAC address for NAT networking...

 [default] Setting the name of the VM...

 [default] Clearing any previously set forwarded ports...

 [Berkshelf] Skipping Berkshelf with --no-provision

 [default] Fixed port collision for 22 => 2222. Now on port 2204.

 [default] Creating shared folders metadata...

 [default] Clearing any previously set network interfaces...

 [default] Preparing network interfaces based on configuration...

 [default] Forwarding ports...

 [default] -- 22 => 2204 (adapter 1)

 [default] Running any VM customizations...

 [default] Booting VM...

 [default] Waiting for VM to boot. This can take a few minutes.

 [default] VM booted and ready for use!

 [default] Setting hostname...

 [default] Configuring and enabling network interfaces...

 [default] Mounting shared folders...

 [default] -- /vagrant

 [kitchen::driver::vagrant command] END (0m37.19s)

 [kitchen::driver::vagrant command] BEGIN (vagrant ssh-config)

 [kitchen::driver::vagrant command] END (0m1.25s)

 Vagrant instance <default-centos-64> created.

 Finished creating <default-centos-64> (0m39.43s).

-----> Kitchen is finished. (0m40.49s)

We	now	have	a	CentOS	6.4	machine	ready	for	action.	We	can	connect	to	the
machine	and	look	around	using	kitchen login:

$ kitchen login 6

Last login: Sat May 11 04:55:22 2013 from 10.0.2.2

[vagrant@default-centos-64]$ uname -a

Linux default-centos-64.vagrantup.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22

00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux

[vagrant@default-centos-64]$ exit

logout

Connection to 127.0.0.1 closed.

Now	let’s	converge	the	node:

$ kitchen converge 6

-----> Starting Kitchen (v1.0.0.alpha.7)

-----> Converging <default-centos-64>

-----> Installing Chef Omnibus (true)

 --2013-06-15 02:56:11-- https://www.opscode.com/chef/install.sh

Resolving www.opscode.com... 184.106.28.83

 Connecting to www.opscode.com|184.106.28.83|:443...

 connected.

HTTP request sent, awaiting response... 200 OK

 Length: 6510 (6.4K) [application/x-sh]

 Saving to: “STDOUT”

 0% [] 0 --.-K/s

100%[======================================>] 6,510 --.-K/s in 0s

 2013-06-15 02:56:11 (1.28 GB/s) - written to stdout [6510/6510]

 Downloading Chef for el...

 Installing Chef

 warning: tmptmp.69MKcEOA/chef-.x86_64.rpm: Header V4 DSA/SHA1 Signature, key

ID 83ef826a: NOKEY

Preparing... ##### ###

[100%]

 1:chef ###

[100%]

 Thank you for installing Chef!

 [local command] BEGIN (if ! command -v berks >/dev/null; then exit 1; fi)

 [local command] END (0m0.01s)

 [local command] BEGIN (berks install --path tmpdefault-centos-64-

cookbooks20130615-18465-o79vfq)

 Using pound (0.1.0) at path: 'hometdi/pound'

 [local command] END (0m1.63s)

 Uploaded pound/chefignore (985 bytes)

 Uploaded pound/Berksfile.lock (179 bytes)

 Uploaded pound/Vagrantfile (3259 bytes)

 Uploaded pound/recipes/default.rb (226 bytes)

 Uploaded pound/metadata.rb (281 bytes)

 Uploaded pound/Gemfile.lock (2830 bytes)

 Uploaded pound/Berksfile (24 bytes)

 Uploaded pound/README.md (112 bytes)

 Uploaded pound/Gemfile (136 bytes)

 Uploaded poundtestintegration/default/bats/.kitchen/logs/celluloid.log (0

bytes)

 Uploaded poundtestintegration/default/bats/.kitchen/logs/kitchen.log (3033

bytes)

 Uploaded poundtestintegration/default/bats/pound.bats-disabled (942 bytes)

 Uploaded poundtestintegration/default/bats/prepare_recipe.rb (42 bytes)

 Uploaded poundtestintegration/default/bats/pound.bats (942 bytes)

 Uploaded poundtest.kitchen/logs/celluloid.log (0 bytes)

 Uploaded poundtest.kitchen/logs/kitchen.log (3735 bytes)

 Uploaded pound/Thorfile (241 bytes)

 Uploaded pound/LICENSE (72 bytes)

 Starting Chef Client, version 11.4.4

 [2013-06-15T02:56:35+00:00] INFO: *** Chef 11.4.4 ***

 [2013-06-15T02:56:35+00:00] INFO: Setting the run_list to ["recipe[pound]"]

from JSON

 [2013-06-15T02:56:35+00:00] INFO: Run List is [recipe[pound]]

 [2013-06-15T02:56:35+00:00] INFO: Run List expands to [pound]

 [2013-06-15T02:56:35+00:00] INFO: Starting Chef Run for default-centos-64

 [2013-06-15T02:56:35+00:00] INFO: Running start handlers

 [2013-06-15T02:56:35+00:00] INFO: Start handlers complete.

 Compiling Cookbooks...

 Converging 0 resources

 [2013-06-15T02:56:35+00:00] INFO: Chef Run complete in 0.001689128 seconds

 [2013-06-15T02:56:35+00:00] INFO: Running report handlers

 [2013-06-15T02:56:35+00:00] INFO: Report handlers complete

 Chef Client finished, 0 resources updated

 Finished converging <default-centos-64> (0m24.62s).

-----> Kitchen is finished. (0m25.69s)

Test	Kitchen	installs	Chef,	and	then	runs	it.	It	also	uses	Berkshelf	to	solve	any
dependencies.	Now	let’s	run	the	setup	task:

$ kitchen setup 6

-----> Starting Kitchen (v1.0.0.alpha.7)

-----> Setting up <default-centos-64>

Fetching: thor-0.18.1.gem (100%)

Fetching: busser-0.4.1.gem (100%)

 Successfully installed thor-0.18.1

 Successfully installed busser-0.4.1

 2 gems installed

-----> Setting up Busser

 Creating BUSSER_ROOT in optbusser

 Creating busser binstub

 Plugin bats installed (version 0.1.0)

-----> Running postinstall for bats plugin

 create tmpbats20130615-2256-hylsr3/bats

 create tmpbats20130615-2256-hylsr3/bats.tar.gz

 Installed Bats to optbusser/vendor/bats/bin/bats

 remove tmpbats20130615-2256-hylsr3

 Finished setting up <default-centos-64> (0m8.30s).

-----> Kitchen is finished. (0m9.37s)

We’re	ready	to	run	the	tests	now:

$ kitchen verify 6

-----> Starting Kitchen (v1.0.0.alpha.7)

-----> Verifying <default-centos-64>

 Suite path directory optbusser/suites does not exist, skipping.

 Uploading optbusser/suites/bats/prepare_recipe.rb (mode=0664)

 Uploading optbusser/suites/bats/pound.bats (mode=0664)

 Uploading optbusser/suites/bats/pound.bats-disabled (mode=0664)

-----> Running bats test suite

-----> Preparing bats suite with optbusser/suites/bats/prepare_recipe.rb

 [2013-06-15T02:58:27+00:00] INFO: Run List is []

 [2013-06-15T02:58:27+00:00] INFO: Run List expands to []

 Recipe: (chef-apply cookbook)::(chef-apply recipe)

 package[nc] action install[2013-06-15T02:58:27+00:00] INFO: Processing

package[nc] action install ((chef-apply cookbook)::(chef-apply recipe) line 1)

 [2013-06-15T02:58:37+00:00] INFO: package[nc] installing nc-1.84-22.el6 from

base repository

 - install version 1.84-22.el6 of package nc

 package[nmap] action install[2013-06-15T02:58:40+00:00] INFO: Processing

package[nmap] action install ((chef-apply cookbook)::(chef-apply recipe) line 1)

 [2013-06-15T02:58:40+00:00] INFO: package[nmap] installing nmap-5.51-2.el6

from base repository

 - install version 5.51-2.el6 of package nmap

 1..6

 not ok 1 The Pound service is running

 # optbusser/suites/bats/pound.bats:12

 not ok 2 Two Pound backends are active

 # optbusser/suites/bats/pound.bats:17

 not ok 3 Pound has an HTTP listener

 # optbusser/suites/bats/pound.bats:7

 ok 4 Pound does not have an HTTPS listener

 not ok 5 Server is listening on port 80

 # optbusser/suites/bats/pound.bats:7

 not ok 6 Server accepts HTTP requests

 # optbusser/suites/bats/pound.bats:38

 Command [optbusser/vendor/bats/bin/bats optbusser/suites/bats] exit code was

1

>>>>>> Verify failed on instance <default-centos-64>.

>>>>>> Please see .kitchen/logs/default-centos-64.log for more details

>>>>>> ------Exception-------

>>>>>> Class: Kitchen::ActionFailed

>>>>>> Message: SSH exited (1) for command: [sudo -E optbusser/bin/busser test]

>>>>>> ----------------------

Alright!	Failing	tests!	We	see	the	extra	tools	being	installed,	and	then	the	tests
running	and	failing.	Note	that	we	could	have	done	this	in	one	go,	by	calling	the
kitchen verify	step,	rather	than	each	individual	step.

We	can	make	these	tests	pass	very	easily.	Open	up	the	default	recipe	and	add	the
following:

include_recipe 'yum::epel'

package 'Pound'

service 'pound' do

 action [:enable, :start]

end

Add	the	dependency	on	the	yum	cookbook	to	the	metadata	and	run	kitchen
converge.	Take	a	deep	breath,	there’s	a	lot	of	output	to	read:

$ kitchen converge 6

-----> Starting Kitchen (v1.0.0.alpha.7)

-----> Converging <default-centos-64>

 [local command] BEGIN (if ! command -v berks >/dev/null; then exit 1; fi)

 [local command] END (0m0.01s)

 [local command] BEGIN (berks install --path tmpdefault-centos-64-

cookbooks20130615-31535-12jfpi7)

 Using pound (0.1.0) at path: 'hometdi/pound'

 Using yum (2.2.2)

 [local command] END (0m1.75s)

 Uploaded yum/metadata.json (11004 bytes)

 Uploaded yum/CONTRIBUTING.md (10811 bytes)

 Uploaded yum/resources/key.rb (831 bytes)

 Uploaded yum/resources/repository.rb (1585 bytes)

 Uploaded yum/files/default/tests/minitest/support/helpers.rb (1280 bytes)

 Uploaded yum/files/default/tests/minitest/test_test.rb (1709 bytes)

 Uploaded yum/files/default/tests/minitest/default_test.rb (828 bytes)

 Uploaded yum/recipes/ius.rb (1537 bytes)

 Uploaded yum/recipes/remi.rb (1140 bytes)

 Uploaded yum/recipes/test.rb (1150 bytes)

 Uploaded yum/recipes/repoforge.rb (1716 bytes)

 Uploaded yum/recipes/yum.rb (748 bytes)

 Uploaded yum/recipes/elrepo.rb (1028 bytes)

 Uploaded yum/recipes/default.rb (625 bytes)

 Uploaded yum/recipes/epel.rb (1181 bytes)

 Uploaded yum/metadata.rb (1492 bytes)

Uploaded yum/Berksfile (81 bytes)

 Uploaded yum/providers/key.rb (2242 bytes)

 Uploaded yum/providers/repository.rb (4235 bytes)

 Uploaded yum/templates/default/yum-rhel6.conf.erb (1367 bytes)

 Uploaded yum/templates/default/yum-rhel5.conf.erb (900 bytes)

 Uploaded yum/templates/default/repo.erb (803 bytes)

 Uploaded yum/README.md (8405 bytes)

 Uploaded yum/CHANGELOG.md (2797 bytes)

 Uploaded yum/attributes/remi.rb (1146 bytes)

 Uploaded yum/attributes/elrepo.rb (970 bytes)

 Uploaded yum/attributes/default.rb (1076 bytes)

 Uploaded yum/attributes/epel.rb (1448 bytes)

 Uploaded yum/LICENSE (10850 bytes)

 Uploaded pound/chefignore (985 bytes)

 Uploaded pound/Berksfile.lock (179 bytes)

 Uploaded pound/Vagrantfile (3259 bytes)

 Uploaded pound/recipes/default.rb (223 bytes)

 Uploaded pound/metadata.rb (280 bytes)

 Uploaded pound/Gemfile.lock (2830 bytes)

 Uploaded pound/Berksfile (24 bytes)

 Uploaded pound/README.md (112 bytes)

 Uploaded pound/Gemfile (136 bytes)

 Uploaded poundtestintegration/default/bats/.kitchen/logs/celluloid.log (0

bytes)

 Uploaded poundtestintegration/default/bats/.kitchen/logs/kitchen.log (3033

bytes)

 Uploaded poundtestintegration/default/bats/pound.bats-disabled (942 bytes)

 Uploaded poundtestintegration/default/bats/prepare_recipe.rb (42 bytes)

 Uploaded poundtestintegration/default/bats/pound.bats (942 bytes)

 Uploaded poundtest.kitchen/logs/celluloid.log (0 bytes)

 Uploaded poundtest.kitchen/logs/kitchen.log (3735 bytes)

 Uploaded pound/Thorfile (241 bytes)

 Uploaded pound/LICENSE (72 bytes)

 Starting Chef Client, version 11.4.4

 [2013-06-15T05:43:35+00:00] INFO: *** Chef 11.4.4 ***

 [2013-06-15T05:43:36+00:00] INFO: Setting the run_list to ["recipe[pound]"]

from JSON

 [2013-06-15T05:43:36+00:00] INFO: Run List is [recipe[pound]]

 [2013-06-15T05:43:36+00:00] INFO: Run List expands to [pound]

 [2013-06-15T05:43:36+00:00] INFO: Starting Chef Run for default-centos-64

 [2013-06-15T05:43:36+00:00] INFO: Running start handlers

 [2013-06-15T05:43:36+00:00] INFO: Start handlers complete.

 Compiling Cookbooks...

 Converging 4 resources

 Recipe: yum::epel

 yum_key[RPM-GPG-KEY-EPEL-6] action add[2013-06-15T05:43:36+00:00] INFO:

Processing yum_key[RPM-GPG-KEY-EPEL-6] action add (yum::epel line 22)

 [2013-06-15T05:43:36+00:00] INFO: Adding RPM-GPG-KEY-EPEL-6 GPG key to

etcpki/rpm-gpg/

 (up to date)

 Recipe: <Dynamically Defined Resource>

 package[gnupg2] action install[2013-06-15T05:43:36+00:00] INFO: Processing

package[gnupg2] action install (tmpkitchen-chef-solo/cookbooks/yum/providers/key.rb

line 32)

 (up to date)

 execute[import-rpm-gpg-key-RPM-GPG-KEY-EPEL-6] action nothing[2013-06-

15T05:43:37+00:00] INFO: Processing execute[import-rpm-gpg-key-RPM-GPG-KEY-EPEL-6]

action nothing (tmpkitchen-chef-solo/cookbooks/yum/providers/key.rb line 35)

 (skipped due to not_if)

 remote_file[etcpki/rpm-gpg/RPM-GPG-KEY-EPEL-6] action create

 [2013-06-15T05:43:37+00:00] INFO: Processing remote_file[etcpki/rpm-gpg/RPM-

GPG-KEY-EPEL-6] action create (tmpkitchen-chef-solo/cookbooks/yum/providers/key.rb

line 61)

 [2013-06-15T05:43:38+00:00] INFO: remote_file[etcpki/rpm-gpg/RPM-GPG-KEY-

EPEL-6] updated

 - copy file downloaded from [] into etcpki/rpm-gpg/RPM-GPG-KEY-EPEL-6

 --- tmpchef-tempfile20130615-578-gjrfug 2013-06-15 05:43:38.676574342

+0000

 +++ tmpchef-rest20130615-578-1bv08zs 2013-06-15 05:43:38.676574339 +0000

 @@ -0,0 +1,29 @@

 +-----BEGIN PGP PUBLIC KEY BLOCK-----

 +Version: GnuPG v1.4.5 (GNU/Linux)

 +

 +mQINBEvSKUIBEADLGnUj24ZVKW7liFN/JA5CgtzlNnKs7sBg7fVbNWryiE3URbn1

 +JXvrdwHtkKyY96/ifZ1Ld3lE2gOF61bGZ2CWwJNee76Sp9Z+isP8RQXbG5jwj/4B

 +M9HK7phktqFVJ8VbY2jfTjcfxRvGM8YBwXF8hx0CDZURAjvf1xRSQJ7iAo58qcHn

 +XtxOAvQmAbR9z6Q/h/D+Y/PhoIJp1OV4VNHCbCs9M7HUVBpgC53PDcTUQuwcgeY6

 +pQgo9eT1eLNSZVrJ5Bctivl1UcD6P6CIGkkeT2gNhqindRPngUXGXW7Qzoefe+fV

 +QqJSm7Tq2q9oqVZ46J964waCRItRySpuW5dxZO34WM6wsw2BP2MlACbH4l3luqtp

 +Xo3Bvfnk+HAFH3HcMuwdaulxv7zYKXCfNoSfgrpEfo2Ex4Im/I3WdtwME/Gbnwdq

 +3VJzgAxLVFhczDHwNkjmIdPAlNJ9/ixRjip4dgZtW8VcBCrNoL+LhDrIfjvnLdRu

 +vBHy9P3sCF7FZycaHlMWP6RiLtHnEMGcbZ8QpQHi2dReU1wyr9QgguGU+jqSXYar

 +1yEcsdRGasppNIZ8+Qawbm/a4doT10TEtPArhSoHlwbvqTDYjtfV92lC/2iwgO6g

 +YgG9XrO4V8dV39Ffm7oLFfvTbg5mv4Q/E6AWo/gkjmtxkculbyAvjFtYAQARAQAB

 +tCFFUEVMICg2KSA8ZXBlbEBmZWRvcmFwcm9qZWN0Lm9yZz6JAjYEEwECACAFAkvS

 +KUICGw8GCwkIBwMCBBUCCAMEFgIDAQIeAQIXgAAKCRA7Sd8qBgi4lR/GD/wLGPv9

 +qO39eyb9NlrwfKdUEo1tHxKdrhNz+XYrO4yVDTBZRPSuvL2yaoeSIhQOKhNPfEgT

 +9mdsbsgcfmoHxmGVcn+lbheWsSvcgrXuz0gLt8TGGKGGROAoLXpuUsb1HNtKEOwP

 +Q4z1uQ2nOz5hLRyDOV0I2LwYV8BjGIjBKUMFEUxFTsL7XOZkrAg/WbTH2PW3hrfS

 +WtcRA7EYonI3B80d39ffws7SmyKbS5PmZjqOPuTvV2F0tMhKIhncBwoojWZPExft

 +HpKhzKVh8fdDO/3P1y1Fk3Cin8UbCO9MWMFNR27fVzCANlEPljsHA+3Ez4F7uboF

 +p0OOEov4Yyi4BEbgqZnthTG4ub9nyiupIZ3ckPHr3nVcDUGcL6lQD/nkmNVIeLYP

 +x1uHPOSlWfuojAYgzRH6LL7Idg4FHHBA0to7FW8dQXFIOyNiJFAOT2j8P5+tVdq8

 +wB0PDSH8yRpn4HdJ9RYquau4OkjluxOWf0uRaS//SUcCZh+1/KBEOmcvBHYRZA5J

 +l/nakCgxGb2paQOzqqpOcHKvlyLuzO5uybMXaipLExTGJXBlXrbbASfXa/yGYSAG

 +iVrGz9CE6676dMlm8F+s3XXE13QZrXmjloc6jwOljnfAkjTGXjiB7OULESed96MR

 +XtfLk0W5Ab9pd7tKDR6QHI7rgHXfCopRnZ2VVQ==

 +=V/6I

 +-----END PGP PUBLIC KEY BLOCK-----[2013-06-15T05:43:38+00:00] INFO:

remote_file[etcpki/rpm-gpg/RPM-GPG-KEY-EPEL-6] mode changed to 644

 - change mode from '' to '0644'

 [2013-06-15T05:43:38+00:00] INFO: remote_file[etcpki/rpm-gpg/RPM-GPG-KEY-

EPEL-6] sending run action to execute[import-rpm-gpg-key-RPM-GPG-KEY-EPEL-6]

(immediate)

 execute[import-rpm-gpg-key-RPM-GPG-KEY-EPEL-6] action run[2013-06-

15T05:43:38+00:00] INFO: Processing execute[import-rpm-gpg-key-RPM-GPG-KEY-EPEL-6]

action run (tmpkitchen-chef-solo/cookbooks/yum/providers/key.rb line 35)

 [2013-06-15T05:43:38+00:00] INFO: execute[import-rpm-gpg-key-RPM-GPG-KEY-

EPEL-6] ran successfully

 - execute rpm --import etcpki/rpm-gpg/RPM-GPG-KEY-EPEL-6

 Recipe: yum::epel

 yum_repository[epel] action create[2013-06-15T05:43:38+00:00] INFO:

Processing yum_repository[epel] action create (yum::epel line 27)

 [2013-06-15T05:43:38+00:00] INFO: Adding and updating epel repository in

etcyum.repos.d/epel.repo

 [2013-06-15T05:43:38+00:00] WARN: Cloning resource attributes for

yum_key[RPM-GPG-KEY-EPEL-6] from prior resource (CHEF-3694)

 [2013-06-15T05:43:38+00:00] WARN: Previous yum_key[RPM-GPG-KEY-EPEL-6]:

tmpkitchen-chef-solo/cookbooks/yum/recipes/epel.rb:22:in `from_file'

 [2013-06-15T05:43:38+00:00] WARN: Current yum_key[RPM-GPG-KEY-EPEL-6]:

tmpkitchen-chef-solo/cookbooks/yum/providers/repository.rb:85:in `repo_config'

 (up to date)

 Recipe: <Dynamically Defined Resource>

 yum_key[RPM-GPG-KEY-EPEL-6] action add[2013-06-15T05:43:38+00:00] INFO:

Processing yum_key[RPM-GPG-KEY-EPEL-6] action add (tmpkitchen-chef-

solo/cookbooks/yum/providers/repository.rb line 85)

 (up to date)

 execute[yum-makecache] action nothing[2013-06-15T05:43:38+00:00] INFO:

Processing execute[yum-makecache] action nothing (tmpkitchen-chef-

solo/cookbooks/yum/providers/repository.rb line 88)

 (up to date)

 ruby_block[reload-internal-yum-cache] action nothing[2013-06-

15T05:43:38+00:00] INFO: Processing ruby_block[reload-internal-yum-cache] action

nothing (tmpkitchen-chef-solo/cookbooks/yum/providers/repository.rb line 93)

 (up to date)

 template[etcyum.repos.d/epel.repo] action create

 [2013-06-15T05:43:38+00:00] INFO: Processing

template[etcyum.repos.d/epel.repo] action create (tmpkitchen-chef-

solo/cookbooks/yum/providers/repository.rb line 100)

 [2013-06-15T05:43:38+00:00] INFO: template[etcyum.repos.d/epel.repo] updated

content

 [2013-06-15T05:43:38+00:00] INFO: template[etcyum.repos.d/epel.repo] mode

changed to 644

 - create template[etcyum.repos.d/epel.repo]

 --- tmpchef-tempfile20130615-578-1rq8217 2013-06-15 05:43:38.819576393

+0000

 +++ tmpchef-rendered-template20130615-578-z3junu 2013-06-15

05:43:38.819576393 +0000

 @@ -0,0 +1,8 @@

 +# Generated by Chef for default-centos-64.vagrantup.com

 +# Local modifications will be overwritten.

 +[epel]

 +name=Extra Packages for Enterprise Linux

 +mirrorlist=http://mirrors.fedoraproject.org/mirrorlist?repo=epel-

6&arch=$basearch

 +gpgcheck=1

 +gpgkey=file://etcpki/rpm-gpg/RPM-GPG-KEY-EPEL-6

 +enabled=1

 [2013-06-15T05:43:38+00:00] INFO: template[etcyum.repos.d/epel.repo] sending

run action to execute[yum-makecache] (immediate)

 execute[yum-makecache] action run[2013-06-15T05:43:38+00:00] INFO:

Processing execute[yum-makecache] action run (tmpkitchen-chef-

solo/cookbooks/yum/providers/repository.rb line 88)

 [2013-06-15T05:43:57+00:00] INFO: execute[yum-makecache] ran successfully

 - execute yum -q makecache

 [2013-06-15T05:43:57+00:00] INFO: template[etcyum.repos.d/epel.repo] sending

create action to ruby_block[reload-internal-yum-cache] (immediate)

 ruby_block[reload-internal-yum-cache] action create[2013-06-

15T05:43:57+00:00] INFO: Processing ruby_block[reload-internal-yum-cache] action

create (tmpkitchen-chef-solo/cookbooks/yum/providers/repository.rb line 93)

 [2013-06-15T05:43:57+00:00] INFO: ruby_block[reload-internal-yum-cache]

called

 - execute the ruby block reload-internal-yum-cache

 Recipe: pound::default

 package[Pound] action install[2013-06-15T05:43:57+00:00] INFO: Processing

package[Pound] action install (pound::default line 11)

 [2013-06-15T05:44:00+00:00] INFO: package[Pound] installing Pound-2.6-2.el6

from epel repository

 - install version 2.6-2.el6 of package Pound

 service[pound] action enable[2013-06-15T05:44:03+00:00] INFO: Processing

service[pound] action enable (pound::default line 13)

 [2013-06-15T05:44:03+00:00] INFO: service[pound] enabled

 - enable service service[pound]

 * service[pound] action start[2013-06-15T05:44:03+00:00] INFO: Processing

service[pound] action start (pound::default line 13)

 [2013-06-15T05:44:03+00:00] INFO: service[pound] started

 - start service service[pound]

 [2013-06-15T05:44:03+00:00] INFO: Chef Run complete in 27.503439435 seconds

 [2013-06-15T05:44:03+00:00] INFO: Running report handlers

 [2013-06-15T05:44:03+00:00] INFO: Report handlers complete

 Chef Client finished, 8 resources updated

 Finished converging <default-centos-64> (0m32.78s).

-----> Kitchen is finished. (0m33.85s)

Test	Kitchen	passed	off	the	dependency	to	Berkshelf,	the	node	was	converged,
the	EPEL	repo	was	installed,	then	Pound	was	installed,	and	the	service	was
started.	In	30	seconds.	Now	let’s	look	at	the	tests:

$ kitchen verify 6

-----> Starting Kitchen (v1.0.0.alpha.7)

-----> Verifying <default-centos-64>

 Removing optbusser/suites/bats

 Uploading optbusser/suites/bats/prepare_recipe.rb (mode=0664)

 Uploading optbusser/suites/bats/pound.bats (mode=0664)

 Uploading optbusser/suites/bats/pound.bats-disabled (mode=0664)

-----> Running bats test suite

-----> Preparing bats suite with optbusser/suites/bats/prepare_recipe.rb

 [2013-06-15T05:48:23+00:00] INFO: Run List is []

 [2013-06-15T05:48:23+00:00] INFO: Run List expands to []

 Recipe: (chef-apply cookbook)::(chef-apply recipe)

 * package[nc] action install[2013-06-15T05:48:23+00:00] INFO: Processing

package[nc] action install ((chef-apply cookbook)::(chef-apply recipe) line 1)

 (up to date)

 * package[nmap] action install[2013-06-15T05:48:26+00:00] INFO: Processing

package[nmap] action install ((chef-apply cookbook)::(chef-apply recipe) line 1)

 (up to date)

 1..6

 ok 1 The Pound service is running

 ok 2 Two Pound backends are active

 ok 3 Pound has an HTTP listener

 not ok 4 Pound does not have an HTTPS listener

 # optbusser/suites/bats/pound.bats:5

 ok 5 Server is listening on port 80

 ok 6 Server accepts HTTP requests

 Command [optbusser/vendor/bats/bin/bats optbusser/suites/bats] exit code was

1

>>>>>> Verify failed on instance <default-centos-64>.

>>>>>> Please see .kitchen/logs/default-centos-64.log for more details

>>>>>> ------Exception-------

>>>>>> Class: Kitchen::ActionFailed

>>>>>> Message: SSH exited (1) for command: [sudo -E optbusser/bin/busser test]

>>>>>> ----------------------

Five	out	of	six	tests	pass.	However,	we	do	have	an	HTTPS	listener.	We’ll	need	to
disable	that	in	the	configuration.	This	allows	us	to	introduce	another	feature	of
the	Chef	DSL:	templates.

Templates
Templates	are	much	like	the	parlor	game	“Consequences,”	one	version	of	which
has	the	following	rules:	The	object	is	to	construct	an	amusingly	random	narrative
based	around	a	chance	encounter	between	two	people.	Three	or	more	players	get
together.	Each	player	takes	a	sheet	of	blank	paper	and	writes	one	section	of	the
narrative.	The	paper	is	then	folded	and	passed	on.	Here	are	the	sections:
1.	 A	description	beginning	with	the	word	the	(e.g.,	The	beautiful,	The	very
talkative)

2.	 A	man’s	name

3.	 A	second	description,	as	above

4.	 A	woman’s	name

5.	 Where	they	met

6.	 What	he	gave	her

7.	 What	she	said

8.	 What	he	did

9.	 What	the	consequence	was

10.	 What	the	world	said	about	it

After	all	the	sections	have	been	completed,	each	part	of	the	narrative	is	read
aloud,	inserting	the	words	“met,”	“at,”	and	so	on,	where	appropriate.	Much
hilarity	ensues.

We	all	understand	these	instructions;	we	interpret	the	sections	and	replace	each
one	with	appropriate	words.	What	we’re	doing	is	following	a	template.	Ruby
(and	indeed	Chef)	has	this	concept.	Let’s	illustrate	this	with	the	same	game.	A
template	that	matches	these	instructions	might	look	like	the	following:

The <%= @description_one.downcase %> <%= @man %> met the <%=

@description_two.downcase %> <%= @woman %> at <%= @location %>.

He gave her <%= @gift.downcase %>, and she said "<%= @woman_saying %>". He did <%=

@man_action.downcase %>.

The consequence was <%= @consequence %>, and the world said "<%= @world_saying %>"

This	is	an	Embedded	Ruby,	or	ERB,	template.	This	allows	Ruby	code	to	be
embedded	within	a	pair	of	<%	and	%>	delimiters.	These	embedded	code	blocks
are	then	evaluated	in	place	(they	are	replaced	by	the	result	of	their	evaluation).
In	this	example,	we’re	using	expression	result	substitution,	which	is	denoted	by
<%= %>	delimiters.	The	result	of	the	Ruby	expression	is	printed.	The
@something	variables	are	instance	variables,	which	you’ll	remember	are
variables	that	describe	the	attributes	of	an	instance	of	a	class,	in	object-oriented
programming.	They’re	always	preceded	with	the	@	sign—you	can	remember
them	by	the	connection	between	the	@	symbol,	and	the	attributes	they	describe.
In	this	case	we’re	seeing	the	attributes	of	an	ERB	template.	These	variables	are
said	to	be	passed	into	the	template—in	this	case	as	strings,	which	is	why	in
places	we	can	call	the	String#downcase	method.

I	wrote	this	silly	example	to	introduce	ERB	templates:

require 'ztk'

male_descriptions = [

 "dashingly handsome",

 "tanned, muscular",

 "shockingly rude",

 "diffident, bespectacled"

]

men = [

 "Karl Barth",

 "Nelson Mandela",

 "Tigran Petrosian",

 "Ian Botham"

]

female_descriptions = [

 "doughty, tweedy",

 "ravishing",

 "brilliantly intelligent",

 "austere, high-minded"

]

women = [

 "Zola Budd",

 "Margaret Thatcher",

 "Audrey Hepburn",

 "Marie Antoinette"

]

locations = [

 "the pub",

 "freshers' fair",

 "Chefconf",

 "the opera"

]

gifts = [

 "jam trousers",

 "chocolate cake",

 "fish knives",

 "a blank cheque"

]

woman_sayings = [

 "I have a dream!",

 "The future is much like the present, only longer",

 "The wisest men follow their own direction",

 "I despise the pleasure of pleasing people that I despise"

]

man_actions = [

 "Danced a jig",

 "joined a Buddhist monastery",

 "fell dead on the spot",

 "sold all his possessions"

]

consequences = [

 "world peace",

 "global warming",

 "a sharp rise in interest rates",

 "entirely unremarkable"

]

world_sayings = [

 "I don't suffer from insanity. I enjoy every minute of it.",

 "I'll be the in to your sane.",

 "Use it or lose it is a cliche because it's true.",

 "That which does not kill us makes us stronger."

]

output = ZTK::Template.render("consequences.erb",

 {

 :description_one => male_descriptions.sample,

 :man => men.sample,

 :description_two => female_descriptions.sample,

 :woman => women.sample,

 :location => locations.sample,

 :gift => gifts.sample,

 :woman_saying => woman_sayings.sample,

 :man_action => actions.sample,

 :consequence => consequences.sample,

 :world_saying => world_sayings.sample

 }

)

puts output

All	this	does	is	feed	random	strings	into	the	template	and	print	the	output.	It	uses
the	handy	ZTK	template	class	from	Zachary	Patten,	co-author	of	Cucumber-
Chef.	Let’s	give	it	a	few	spins:

> ruby consequences.rb

The dashingly handsome Karl Barth met the austere, high-minded Audrey Hepburn at

Chefconf.

He gave her jam trousers, and she said "The wisest men follow their own direction".

He fell dead on the spot.

The consequence was entirely unremarkable, and the world said "Use it or lose it is

a cliche because it's true."

> ruby consequences.rb

The diffident, bespectacled Nelson Mandela met the brilliantly intelligent Margaret

Thatcher at the pub.

He gave her fish knives, and she said "The wisest men follow their own direction".

He joined a Buddhist monastery.

The consequence was entirely unremarkable, and the world said "I don't suffer from

insanity. I enjoy every minute of it."

> ruby consequences.rb

The shockingly rude Tigran Petrosian met the doughty, tweedy Audrey Hepburn at

freshers' fair.

He gave her a blank cheque, and she said "The future is much like the present, only

longer". He sold all his possessions.

The consequence was global warming, and the world said "That which does not kill us

makes us stronger."

The	Chef	template	resource	behaves	very	similarly.	We	can	pass	in	variables	that
are	rendered	as	instance	variables	in	the	template,	or	we	can	use	attributes	on	the
node,	directly	within	<%= %>	tags.

Copy	the	config	file	from	the	machine	under	test	into
templates/default/pound.cfg.erb/.

User "pound"

Group "pound"

Control "varlib/pound/pound.cfg"

ListenHTTP

 Address 0.0.0.0

 Port 80

End

ListenHTTPS

 Address 0.0.0.0

 Port 443

 Cert "etcpki/tls/certs/pound.pem"

End

Service

 BackEnd

 Address 127.0.0.1

 Port 8000

 End

 BackEnd

 Address 127.0.0.1

 Port 8001

 End

End

We	need	to	disable	the	HTTPS	functionality.	We	could	simply	delete	it	and	serve
the	configuration	file	as	a	static	asset.	However,	as	a	cookbook	maintainer,	it’s
usually	wise	to	provide	attributes	to	make	the	cookbook	flexible	and	easy	to
configure.	Looking	at	this	file,	I	can	see	a	number	of	candidates	for	abstraction
into	attributes—the	user	and	group,	the	ports,	whether	or	not	to	even	run	SSL,
where	the	SSL	certificate	is	found,	the	control	file,	and	even	the	address	of	the
backends.	All	these	are	data	that	we	would	like	to	be	able	to	control.	Let’s	leave
the	backend	config	for	now,	but	configure	the	rest.	Create	a	default	attributes	file
in	the	cookbook:

default['pound']['user'] = 'pound'

default['pound']['group'] = 'pound'

default['pound']['port'] = '80'

default['pound']['control'] = 'varlib/pound/pound.cfg'

default['pound']['ssl']['enabled'] = false

default['pound']['ssl']['cert'] = 'etcpki/tls/certs/pound.pem'

default['pound']['ssl']['port'] = '443'

Now	we	need	to	get	these	values	into	the	template:

User "<%= node['pound']['user'] %>"

Group "<%= node['pound']['group'] %>"

Control "<%= node['pound']['control'] %>"

ListenHTTP

 Address 0.0.0.0

 Port <%= node['pound']['port'] %>

End

<% if node['pound']['ssl']['enabled'] -%>

ListenHTTPS

 Address 0.0.0.0

 Port <%= node['pound']['ssl']['port'] %>

 Cert "<%= node['pound']['ssl']['cert'] %>"

End

<% end -%>

Service

 BackEnd

 Address 127.0.0.1

 Port 8000

 End

 BackEnd

 Address 127.0.0.1

 Port 8001

 End

End

Finally	we	need	to	render	the	config	file	in	the	recipe	by	adding	the	following
resource:

template 'etcpound.cfg' do

 source 'pound.cfg.erb'

end

Now	let’s	converge	the	node	and	run	the	tests	again.	If	you	look	carefully	at	the
output	you	should	see:

[2013-06-15T06:18:54+00:00] INFO: template[etcpound.cfg] backed up to

varchef/backupetcpound.cfg.chef-20130615061854

 [2013-06-15T06:18:54+00:00] INFO: template[etcpound.cfg] updated content

 - update template[etcpound.cfg] from bc2726 to d81205

 --- etcpound.cfg 2013-06-15 06:17:31.154571676 +0000

 +++ tmpchef-rendered-template20130615-3712-1nfupzj 2013-06-15

06:18:54.694571487 +0000

 @@ -16,11 +16,6 @@

 Port 80

 End

 -ListenHTTPS

 - Address 0.0.0.0

 - Port 443

 - Cert "etcpki/tls/certs/pound.pem"

 -End

 Service

 BackEnd

So	Chef	has	removed	the	HTTPS	block.	Now	the	tests	should	pass:

1..6

 ok 1 The Pound service is running

 ok 2 Two Pound backends are active

 ok 3 Pound has an HTTP listener

 not ok 4 Pound does not have an HTTPS listener

 # optbusser/suites/bats/pound.bats:5

 ok 5 Server is listening on port 80

 ok 6 Server accepts HTTP requests

What?	What	happened?	We	just	saw	the	file	change!	Why	didn’t	the	test	pass?
Well,	what	would	you	do	as	a	sysadmin,	after	making	a	change	to	the
configuration?	You’d	restart	the	service!	We	didn’t	ask	Chef	to	do	that,	so	it
didn’t.	This	allows	us	to	introduce	the	idea	of	notifications.	We	want	to	restart
the	service	if	the	config	file	changes.	All	resources	can	send	and	receive
messages	using	the	notifies	metaparameter.	Update	the	template	resource	as
follows:

template 'etcpound.cfg' do

 source 'pound.cfg.erb'

 notifies :restart, 'service[pound]'

end

Converge	the	node	again,	and	see	what	happens:

* template[etcpound.cfg] action create[2013-06-15T06:24:17+00:00] INFO: Processing

template[etcpound.cfg] action create (pound::default line 17)

 (up to date)

 [2013-06-15T06:24:17+00:00] INFO: Chef Run complete in 5.792886113 seconds

 [2013-06-15T06:24:17+00:00] INFO: Running report handlers

 [2013-06-15T06:24:17+00:00] INFO: Report handlers complete

 Chef Client finished, 0 resources updated

 Finished converging <default-centos-64> (0m11.22s).

Curiouser	and	curiouser.	Why	didn’t	the	service	get	restarted?	This	is	a	common
gotcha	in	Chef	and	requires	careful	attention.	The	config	file	didn’t	change	so
we	didn’t	trigger	a	restart.	Conceivably	our	system	could	now	be	in	a	broken
state	and	not	recoverable	without	either	manually	logging	onto	the	machine	and
removing	the	file,	so	Chef	can	replace	it,	or	by	making	a	change	in	the	template.
The	lesson	to	learn	is	to	make	sure	you	pay	careful	attention	to	your	resources
and	messages.

I	logged	on	with	kitchen login	and	deleted	the	file,	before	finally	converging
the	node	again.	This	time	we	see	the	following	message:

[2013-06-15T06:29:56+00:00] INFO: template[etcpound.cfg] sending restart action to

service[pound] (delayed)

 * service[pound] action restart[2013-06-15T06:29:56+00:00] INFO: Processing

service[pound] action restart (pound::default line 13)

 [2013-06-15T06:29:57+00:00] INFO: service[pound] restarted

 - restart service service[pound]

And	now	all	our	tests	pass!

1..6

 ok 1 The Pound service is running

 ok 2 Two Pound backends are active

 ok 3 Pound has an HTTP listener

 ok 4 Pound does not have an HTTPS listener

 ok 5 Server is listening on port 80

 ok 6 Server accepts HTTP requests

A	brief	discussion	on	services	and	templates	is	needed	at	this	stage.	This	basic
pattern—install	a	package,	render	a	dynamic	config	file	using	a	template,	and
manage	a	service—is	what	I	call	the	holy	trinity	of	configuration	management.
About	80%	of	the	configuration	management	you’ll	need	to	do	will	be	a
variation	on	this	theme.

Installing	the	package	is	the	obvious	part	of	the	trinity—we	want	to	provide
some	kind	of	functionality	and	that	requires	us	to	install	some	software.
Software	is	frequently	distributed	in	packages,	and	Chef	knows	how	to	install
them.	Nothing	much	to	say	here.

Templates	represent	the	most	obviously	flexible	way	to	manage	files	on	a	node.

Because	we	can	pass	in	data	either	from	an	external	place	or	insert	values	from
the	node	attributes,	it’s	the	perfect	way	to	separate	configuration	from	data.
When	combined	with	Chef’s	ability	to	search	for	data,	it	opens	up	effectively
limitless	opportunity	for	dynamic	configuration.	The	most	obvious	example
would	be	the	case	where	the	backends	for	a	load	balancer	could	be	determined	in
real	time	by	searching	for	all	machines	with	an	application	server	recipe	or	role,
and	returning	the	IP	address.

When	a	template	changes,	we	want	to	be	able	to	restart	the	service	it	configures.
In	order	to	do	that	we	need	to	explicitly	declare	the	service,	but	then	having
declared	it,	we	can	send	it	a	message	in	the	event	of	a	change	to	the	template.
This	is	what’s	going	on	in	the	preceding	template	resource:

notifies :restart, 'service[pound]'

We	do	that	using	the	notifies	metaparameter.	It’s	called	a	“metaparameter”
because	all	services	can	send	(and	receive)	notifications.	The	syntax	is	as
follows:

resource "name" do

 ...

 notifies :restart, "resource[something]"

end

In	our	case	we	used:

template 'etcpound.cfg' do

 source 'pound.cfg.erb'

 notifies :restart, 'service[pound]'

end

The	ordering	sounds	a	bit	funny—you	don’t	notify	a	restart.	I	find	it	helps	to
think	of	the	resource	doing	the	notifying	as	a	rather	keen	but	desperately
unreliable	child	to	whom	you	have	entrusted	a	message:

"Wilfrid, please will you tell Atty to feed her Guinea Pigs?"

"OK! <scurries off>"

"Wait a second Wilfrid... tell me the message..."

"Feed the Guinea Pigs!"

"And who are you going to tell?"

"Atty."

"Jolly good."

Similarly,	we	say,	“What’s	the	message?	And	what	resource	is	getting	the
message?”

Before	we	move	on,	I	want	to	demonstrate	the	same	procedure	using	Serverspec
instead	of	Bats.	First,	destroy	your	instance	using	kitchen destroy,	and	then
comment	out	the	default	recipe	so	no	action	is	taken.

Now,	rename	the	Bats	file	to	pound.bats-disabled.	We	do	this	because	the	tests
run	in	alphabetical	order,	and	will	stop	as	soon	as	a	failure	is	reached.	This
means	we’d	never	see	our	Serverspec	tests!

Create	a	directory	for	the	Serverspec	tests,	and	add	the	following	file:

$ cat test/integration/default/serverspec/spec_helper.rb

require 'serverspec'

require 'pathname'

include Serverspec::Helper::Exec

include Serverspec::Helper::DetectOS

RSpec.configure do |c|

 c.before :all do

 c.os = backend(Serverspec::Commands::Base).check_os

 end

end

This	file	is	needed	to	ensure	the	helpers	and	operating	system	detection	is	in
place.	Now	create	a	subdirectory	inside	Serverspec,	called	localhost,	and	add	the
following	test:

$ cat test/integration/default/serverspec/localhost/pound_spec.rb

require 'spec_helper'

describe 'Pound Loadbalancer' do

 it 'should be listening on port 80' do

 expect(port 80).to be_listening

 end

 it 'should be running the pound service' do

 expect(service 'pound').to be_running

 end

 it 'should have two active backends' do

 expect(command 'poundctl -c varlib/pound/pound.cfg').to return_stdout

/.*Backend.*800[01].*active/

 end

 it 'should have an HTTP listener' do

 expect(command 'poundctl -c varlib/pound/pound.cfg').to return_stdout /.*http

Listener.*/

 end

 it 'should not have an HTTPS listener' do

 expect(command 'poundctl -c varlib/pound/pound.cfg').not_to return_stdout

/.*HTTPS Listener.*/

 end

 it 'should accept HTTP connections on port 80' do

 expect(command "echo 'GET HTTP1.1' | nc localhost 80").to return_stdout

/Content-Length:.*/

 end

end

We’re	testing	more	or	less	the	same	thing,	but	with	a	different	testing
framework.	This	time	we	can	run	kitchen verify	in	one	go,	which	will	create
the	machine,	install	Chef,	run	Chef,	and	run	the	tests:

-----> Running serverspec test suite

 optchef/embedded/bin/ruby -Ioptbusser/suites/serverspec -S

optchef/embedded/bin/rspec optbusser/suites/serverspec/localhost/pound_spec.rb

FFFF. F

 Failures:

 1) Pound Loadbalancer should be listening on port 80

 Failure/Error: expect(port 80).to be_listening

 netstat -tunl | grep -- :80\

 # optbusser/suites/serverspec/localhost/pound_spec.rb:6:in `block (2

levels) in <top (required)>'

 2) Pound Loadbalancer should be running the pound service

 Failure/Error: expect(service 'pound').to be_running

 service pound status

 pound: unrecognized service

 # optbusser/suites/serverspec/localhost/pound_spec.rb:10:in `block (2

levels) in <top (required)>'

 3) Pound Loadbalancer should have two active backends

 Failure/Error: expect(command 'poundctl -c varlib/pound/pound.cfg').to

return_stdout /.*Backend.*800[01].*active/

 poundctl -c varlib/pound/pound.cfg

 sh: poundctl: command not found

 # optbusser/suites/serverspec/localhost/pound_spec.rb:14:in `block (2

levels) in <top (required)>'

 4) Pound Loadbalancer should have an HTTP listener

 Failure/Error: expect(command 'poundctl -c varlib/pound/pound.cfg').to

return_stdout /.*http Listener.*/

 poundctl -c varlib/pound/pound.cfg

 sh: poundctl: command not found

 # optbusser/suites/serverspec/localhost/pound_spec.rb:18:in `block (2

levels) in <top (required)>'

 5) Pound Loadbalancer should accept HTTP connections on port 80

 Failure/Error: expect(command "echo 'GET HTTP1.1' | nc localhost

80").to return_stdout /Content-Length:.*/

 echo 'GET HTTP1.1' | nc localhost 80

 # optbusser/suites/serverspec/localhost/pound_spec.rb:26:in `block (2

levels) in <top (required)>'

 Finished in 0.05315 seconds

 6 examples, 5 failures

The	output	of	the	failures	is	much	more	verbose,	but	very	much	as	expected.
Now	uncomment	the	recipe,	converge	the	node,	and	run	the	tests	again:

-----> Running serverspec test suite

 optchef/embedded/bin/ruby -Ioptbusser/suites/serverspec -S

optchef/embedded/bin/rspec optbusser/suites/serverspec/localhost/pound_spec.rb

..... .

 Finished in 0.11034 seconds

 6 examples, 0 failures

 Finished verifying <default-centos-64> (0m12.07s).

We	already	covered	the	basics	of	RSpec	in	Chapter	5.	All	Serverspec	adds	is	a
set	of	matchers	that	check	the	state	of	various	common	resources	across	a	range
of	operating	systems.	The	resources	are	documented	at	Serverspec’s	website,

http://serverspec.org/resource_types.html

although	the	example	code	given	uses	the	deprecated	expectation	syntax.	My
examples	use	the	recommended	and	current	approach,	and	I	recommend	you
follow	this	format.

Integration	Testing:	Minitest	Handler
One	of	the	early	approaches	to	integration	testing	with	Chef	is	Minitest	Handler.
Considered	by	some	to	be	no	longer	as	relevant,	given	the	advent	of	the	latest
breed	of	tools,	it	is	nevertheless	a	popular	and	useful	tool.

Overview
We	can	view	unit	tests	as	being	simple,	discrete,	isolated	tests,	exercising	one
piece	of	functionality,	and	integration	tests	as	tests	that	exercise	examples	of
those	units	of	functionality	talking	to	one	another.	We	described	this	in	Chef
terms,	as	signal	in	and	signal	out.

Minitest	Handler	allows	Minitest	suites	to	be	run	after	recipes	have	been	applied
to	a	node	to	verify	the	status	of	the	system.	In	this	respect,	it’s	a	good	approach
to	testing	signal	out.

Unlike	most	of	the	other	tools	we	discuss	in	this	chapter,	the	process	of	writing
and	running	tests	via	Minitest	Handler	is	managed	through	a	combination	of	a
cookbook	and	a	Chef	run	itself.

When	Chef	runs,	and	configures	a	node,	the	last	stage	of	the	process	is	to	run	so-
called	report	and	exception	handlers.	In	simple	terms,	these	provide	an	interface
through	which	we	can	collect	and	display	information	about	the	result	of	a	Chef
run.	The	report	handler	displays	information	about	what	happened;	the	exception
handler	displays	information	about	what	went	wrong.	The	design	of	the	system
is	such	that	anyone	can	write	a	custom	handler	that	takes	data	from	the	Chef	run
and	formats	it,	sends	it,	processes	it,	or	displays	it	in	whichever	way	suits	the
user.

While	these	are	frequently	used	to	provide	notification,	for	example	via	IRC	or
Campfire,	they	can,	of	course,	be	used	to	do	anything	at	all.	Minitest	Handler
uses	this	feature	to	run	Minitest	suites	at	the	end	of	the	Chef	run.	This	is
achieved	by	adding	an	entry	to	the	run	list	to	ensure	the	tests	run.

The	Minitest	Handler	cookbook	sets	up	everything	needed	to	use	it	for	the
running	of	tests.	The	naming	is	slightly	confusing,	so	I’ll	clarify	quickly:
Minitest	Handler	is	a	cookbook	that	sets	up	your	system	to	enable	you	to
write	Minitest	examples	to	verify	the	state	of	your	system	after	your	Chef
node	has	converged.

Minitest	Chef	Handler	is	a	Rubygem	that	provides	the	handler	itself,	and

library	code	for	assertions,	matchers,	and	helpers	to	make	the	writing	and
running	of	these	tests	possible.

The	cookbook	carries	out	the	following	tasks:
Installs	the	latest	Minitest	gem

Installs	the	Chef	Minitest	gem

Places	test	files	from	cookbooks	on	the	target	node	as	part	of	a	Chef	run

For	each	recipe	we	wish	to	test,	we	must	create	a	corresponding	test	under	the
files/default/tests/minitest	directory.	The	naming	of	the	test	is	significant	and
follows	the	name	of	the	recipe.	So,	if	we	had	a	recipe	called	server.rb,	the	test
file	would	be	located	at	files/default/tests/minitest/server_test.rb.

These	tests	are	just	the	same	as	the	Minitest	spec	examples	we	wrote	when	we
were	developing	the	Hipster	assessor.	The	only	difference	is	that	instead	of
testing	an	instance	of	a	Ruby	class	we	wrote,	we’re	testing	the	results	of	a	Chef
run.

Running	the	tests	is	simply	a	matter	of	running	Chef	and	looking	at	the	output
printed	to	the	screen.	In	this	respect,	Minitest	Handler	is	one	of	the	simplest	tools
to	start	using.

Getting	Started
Berkshelf	has	a	command-line	option	that	will	add	Minitest	Handler	support	to	a
cookbook	it	creates.	This	is	the	best	way	to	get	started.	Let’s	create	a	cookbook
to	install	GNU	Screen—a	common	screen	multiplexer:

$ berks cookbook --chef-minitest screen

 create screen/files/default

 create screen/templates/default

 create screen/attributes

 create screen/definitions

 create screen/libraries

 create screen/providers

 create screen/recipes

 create screen/resources

 create screen/recipes/default.rb

 create screen/metadata.rb

 create screen/LICENSE

 create screen/README.md

 create screen/Berksfile

 create screen/Thorfile

 create screen/chefignore

 create screen/.gitignore

 run git init from "./screen"

 create screen/files/default/tests/minitest/support

 create screen/files/default/tests/minitest/default_test.rb

 create screen/files/default/tests/minitest/support/helpers.rb

 create screen/Gemfile

 create .kitchen.yml

 append Thorfile

 create test/integration/default

 append .gitignore

 append .gitignore

 append Gemfile

 append Gemfile

You must run `bundle install' to fetch any new gems.

 create screen/Vagrantfile

The	key	sections	here	are	as	follows:

create screen/files/default/tests/minitest/support

 create screen/files/default/tests/minitest/default_test.rb

 create screen/files/default/tests/minitest/support/helpers.rb

This	sets	up	an	example	test	and	a	helper	file,	which	includes	the	Chef-Minitest
code,	and	provides	a	convenient	place	for	us	to	put	any	of	our	own	functions	to
support	our	tests.	The	helper	file	created	for	us	by	Berkshelf	looks	like	this:

module Helpers

 module Screen

 include MiniTest::Chef::Assertions

 include MiniTest::Chef::Context

 include MiniTest::Chef::Resources

 end

end

And	the	example	test	looks	like	this:

$ cat default_test.rb

require File.expand_path('../support/helpers', __FILE__)

describe 'screen::default' do

 include Helpers::Screen

 # Example spec tests can be found at http://git.io/Fahwsw

 it 'runs no tests by default' do

 end

end

This	introduces	the	important	ideas	of	Modules	and	Mixins,	which	we
mentioned	earlier.	Modules	are	a	particularly	excellent	feature	of	Ruby.	They
serve	two	purposes;	they	implement	namespaces,	so	that	as	program	complexity
and	size	grows,	we	don’t	get	into	a	situation	where	multiple	methods	with	the
same	name,	but	serving	very	different	purposes,	clash	with	each	other.	Instead,
we	use	modules	to	make	it	clear	which	we	mean:

module Trig

 def sin(degrees)

 end

 def tan(degrees)

 end

 def cos(degrees)

 end

end

module Catholic

 def sin(naughty_thing)

 end

 def confess(naughty_thing)

 end

 def pray(saint)

 end

end

If	there	was	a	situation	in	which	the	programmer	wanted	to	use	both	Trig	and

Catholic	modules,	all	that	would	be	required	would	be	to	specify	the	dependency
on	the	module,	and	then	use	the	namespace:

require 'trig'

require 'catholic'

dice_roll = rand(5)+1

def do_maths_homework

 def find_opposite(theta, hypotenuse)

 Trig::sin(theta) * hypotenuse

 end

 def submit_homework

 ...

 end

 result = find_opposite(30, 100)

 if dice_roll > 3

 Catholic::sin("Lie about using a computer")

 submit_homework

 Catholic::confess("I claimed I didn't use a computer, but I did!")

 else

 submit_homework

 end

end

The	second,	and	more	immediately	relevant	benefit	of	modules,	is	the	concept	of
“mixing	in.”	We’ve	already	seen	in	my	silly	example	earlier	that	modules	can
have	methods.	If	you	include	a	module	in	a	class,	all	the	methods	from	that
class	automatically	become	available	to	the	class.	This	is	known	as	the	mixin
facility.	We	see	this	facility	in	use	throughout	Ruby’s	core.

>= ri Array

= Array <= Object

--

= Includes:

Enumerable (from ruby core)

(from ruby core)

--

Arrays are ordered, integer-indexed collections of any object. Array indexing

starts at 0, as in C or Java. A negative index is assumed to be relative to

the end of the array---that is, an index of -1 indicates the last element of

the array, -2 is the next to last element in the array, and so on.

--

The	Array	class	mixes	in	the	Enumerable	module:

>= ri Enumerable

= Enumerable

(from ruby core)

--

The Enumerable mixin provides collection classes with several traversal and

searching methods, and with the ability to sort. The class must provide a

method each, which yields successive members of the collection. If

Enumerable#max, #min, or #sort is used, the objects in the collection must

also implement a meaningful <=> operator, as these methods rely on an ordering

between members of the collection.

--

Here	we	see	the	Enumerable	mixin	and	our	class	can	interact.	As	long	as	we
define	an	“each”	method,	and	include	Enumerable,	we’ll	get	a	whole	bunch	of
extra	stuff.

Normally	to	include	a	mixin,	we	explicitly	call	include mymixin,	and	that’s
exactly	what	we	see	in	the	example	test.	By	including	Helpers::Screen,	we	get
access	to	the	functionality	within	that	module.

The	last	relevant	step	that	the	Berkshelf	generator	took	was	to	add	a	line	to	our
Berksfile,	ensuring	that	we	have	access	to	the	cookbook	and	its	content:

$ cat Berksfile

site :opscode

group :integration do

 cookbook 'minitest-handler'

end

metadata

Berkshelf	has	provided	everything	we	need:	the	cookbook	itself,	an	example
test,	and	helper	code.	To	run	the	tests,	all	we	need	to	do	is	run	vagrant up:

$ vagrant up

Bringing machine 'default' up with 'virtualbox' provider...

[default] Setting the name of the VM...

[default] Clearing any previously set forwarded ports...

[Berkshelf] This version of the Berkshelf plugin has not been fully tested on this

version of Vagrant.

[Berkshelf] You should check for a newer version of vagrant-berkshelf.

[Berkshelf] If you encounter any errors with this version, please report them at

https://github.com/RiotGames/vagrant-berkshelf/issues

[Berkshelf] You can also join the discussion in #berkshelf on Freenode.

[Berkshelf] Updating Vagrant's berkshelf: 'hometdi/.berkshelf/vagrant/berkshelf-

20130618-27272-1cv4qos'

[Berkshelf] Using minitest-handler (0.2.1)

[Berkshelf] Using screen (0.1.0) at path: 'hometdi/screen'

[Berkshelf] Using chef_handler (1.1.4)

[default] Creating shared folders metadata...

[default] Clearing any previously set network interfaces...

[default] Preparing network interfaces based on configuration...

[default] Forwarding ports...

[default] -- 22 => 2222 (adapter 1)

[default] Booting VM...

[default] Waiting for VM to boot. This can take a few minutes.

[default] VM booted and ready for use!

[default] Setting hostname...

[default] Configuring and enabling network interfaces...

[default] Mounting shared folders...

[default] -- /vagrant

[default] -- tmpvagrant-chef-1/chef-solo-1/cookbooks

[default] Running provisioner: chef_solo...

Generating chef JSON and uploading...

Running chef-solo...

[2013-06-18T06:06:02+00:00] INFO: *** Chef 10.14.2 ***

[2013-06-18T06:06:03+00:00] INFO: Setting the run_list to ["recipe[minitest-

handler::default]", "recipe[screen::default]"] from JSON

[2013-06-18T06:06:03+00:00] INFO: Run List is [recipe[minitest-handler::default],

recipe[screen::default]]

[2013-06-18T06:06:03+00:00] INFO: Run List expands to [minitest-handler::default,

screen::default]

[2013-06-18T06:06:03+00:00] INFO: Starting Chef Run for screen-berkshelf

[2013-06-18T06:06:03+00:00] INFO: Running start handlers

[2013-06-18T06:06:03+00:00] INFO: Start handlers complete.

[2013-06-18T06:06:03+00:00] INFO: Processing chef_gem[minitest] action nothing

(minitest-handler::default line 2)

[2013-06-18T06:06:03+00:00] INFO: Processing chef_gem[minitest] action install

(minitest-handler::default line 2)

[2013-06-18T06:06:03+00:00] INFO: Processing chef_gem[minitest-chef-handler] action

nothing (minitest-handler::default line 9)

[2013-06-18T06:06:03+00:00] INFO: Processing chef_gem[minitest-chef-handler] action

install (minitest-handler::default line 9)

[2013-06-18T06:06:34+00:00] INFO: Processing chef_gem[minitest] action nothing

(minitest-handler::default line 2)

[2013-06-18T06:06:34+00:00] INFO: Processing chef_gem[minitest-chef-handler] action

nothing (minitest-handler::default line 9)

[2013-06-18T06:06:34+00:00] INFO: Processing directory[minitest test location]

action delete (minitest-handler::default line 18)

[2013-06-18T06:06:34+00:00] INFO: Processing directory[minitest test location]

action create (minitest-handler::default line 18)

[2013-06-18T06:06:34+00:00] INFO: directory[minitest test location] created

directory varchef/minitest

[2013-06-18T06:06:34+00:00] INFO: directory[minitest test location] owner changed to

0

[2013-06-18T06:06:34+00:00] INFO: directory[minitest test location] group changed to

0

[2013-06-18T06:06:34+00:00] INFO: directory[minitest test location] mode changed to

775

[2013-06-18T06:06:34+00:00] INFO: Processing ruby_block[load tests] action create

(minitest-handler::default line 29)

[2013-06-18T06:06:34+00:00] INFO: Processing directory[varchef/minitest/minitest-

handler] action create (dynamically defined)

[2013-06-18T06:06:34+00:00] INFO: directory[varchef/minitest/minitest-handler]

created directory varchef/minitest/minitest-handler

[2013-06-18T06:06:34+00:00] INFO: Processing directory[varchef/minitest/screen]

action create (dynamically defined)

[2013-06-18T06:06:34+00:00] INFO: directory[varchef/minitest/screen] created

directory varchef/minitest/screen

[2013-06-18T06:06:34+00:00] INFO: Enabling minitest-chef-handler as a report handler

[2013-06-18T06:06:34+00:00] INFO: ruby_block[load tests] called

[2013-06-18T06:06:34+00:00] INFO: Chef Run complete in 31.002947638 seconds

[2013-06-18T06:06:34+00:00] INFO: Running report handlers

Run options: -v --seed 30025

Running tests:

screen::default#test_0001_runs no tests by default =

0.00 s =

.

Finished tests in 0.001883s, 531.0494 tests/s, 0.0000 assertions/s.

1 tests, 0 assertions, 0 failures, 0 errors, 0 skips

[2013-06-18T06:06:34+00:00] INFO: Report handlers complete

Naturally,	this	used	the	default	Vagrantfile	created	by	Berkshelf,	which	might	not
use	the	Vagrant	box	you	want,	and	at	the	time	of	this	writing,	installs	Chef	10
rather	than	Chef	11.	But	this	is	mere	detail—we	already	know	how	to	swap	out
Vagrant	boxes.

Berkshelf	made	the	Minitest	Handler	cookbook	available,	and	the	existence	of
the	tests	under	the	files/default/tests/minitest	location	meant	that	the	tests	were
picked	up	and	run,	with	the	test	results	visible	at	the	conclusion	of	the	Chef	run.

Example
Let’s	write	a	couple	of	trivial	tests	for	our	screen	cookbook	before	looking	at
some	more	involved	examples.

I	think	the	two	obvious	things	we’d	want	to	test	when	installing	Screen	would	be
that	the	package	was	installed	and	that	a	standard,	customized	screen	config	was
made	available	to	users.	We	can	make	assertions	about	this	as	follows.	Edit	the
files/default/tests/minitest/default.rb	file:

require File.expand_path('../support/helpers', __FILE__)

describe 'screen::default' do

 include Helpers::Screen

 it "installs Screen" do

 package("screen").must_be_installed

 end

 it "provides a global, customized default configuration" do

 file("usrlocaletcscreenrc").must_exist

 file('usrlocaletcscreenrc').must_match /^caption string .*%\?%F%{= Bk}%\?.*$/

 file('usrlocaletcscreenrc').must_match /^hardstatus string '%{= kG}.*$/

 end

end

We	can	run	these	tests	with	vagrant provision:

[2013-06-18T08:32:52+00:00] INFO: Running report handlers

Run options: -v --seed 16917

Running tests:

screen::default#test_0001_installs Screen =

5.73 s = F

screen::default#test_0002_provide a global, customized default configuration =

0.00 s = F

Finished tests in 5.735119s, 0.3487 tests/s, 0.3487 assertions/s.

 1) Failure:

screen::default#test_0001_installs Screen

[varchef/minitest/screen/default_test.rb:8]:

Expected package 'screen' to be installed

 2) Failure:

screen::default#test_0002_provide a global, customized default configuration

[varchef/minitest/screen/default_test.rb:12]:

Expected path 'usrlocaletcscreenrc' to exist

2 tests, 2 assertions, 2 failures, 0 errors, 0 skips

[2013-06-18T08:32:58+00:00] INFO: Report handlers complete

[2013-06-18T08:32:58+00:00] ERROR: Running exception handlers

[2013-06-18T08:32:58+00:00] ERROR: Exception handlers complete

[2013-06-18T08:32:58+00:00] FATAL: Stacktrace dumped to tmpvagrant-chef-1/chef-

stacktrace.out

[2013-06-18T08:32:58+00:00] FATAL: RuntimeError: MiniTest failed with 2 failure(s)

and 0 error(s).

Failure:

screen::default#test_0001_installs Screen

[varchef/minitest/screen/default_test.rb:8]:

Expected package 'screen' to be installed

Failure:

screen::default#test_0002_provide a global, customized default configuration

[varchef/minitest/screen/default_test.rb:12]:

Expected path 'usrlocaletcscreenrc' to exist

Now	let’s	write	the	code	to	make	the	test	pass:

$ cat recipes/default.rb

package "screen"

cookbook_file "etcscreenrc" do

 source "screenrc"

end

$ cat files/default/screenrc

caption string "%?%F%{= Bk}%? %C%A %D %d-%m-%Y %{= kB} %t%= %?%F%{= Bk}%:%{= wk}%?

%n "

hardstatus alwayslastline

hardstatus string '%{= kG}[%{G}%H %{g}][%= %{= kw}%?%-Lw%?%{r}(%{W}%n*%f%t%?(%u)%?%

{r})%{w}%?%+Lw%?%?%= %{g}][%{B} %d/%m %{W}%c %{g}]'

defscrollback 30000

escape ^Zz

Now	if	we	run	vagrant provision,	Chef	should	apply	our	recipe	and	then	run
the	tests,	and	they	should	pass:

[default] Running provisioner: chef_solo...

Generating chef JSON and uploading...

Running chef-solo...

[2013-06-18T08:55:34+00:00] INFO: *** Chef 10.14.2 ***

[2013-06-18T08:55:34+00:00] INFO: Setting the run_list to ["recipe[minitest-

handler::default]", "recipe[screen::default]"] from JSON

[2013-06-18T08:55:34+00:00] INFO: Run List is [recipe[minitest-handler::default],

recipe[screen::default]]

[2013-06-18T08:55:34+00:00] INFO: Run List expands to [minitest-handler::default,

screen::default]

[2013-06-18T08:55:34+00:00] INFO: Starting Chef Run for screen-berkshelf

[2013-06-18T08:55:34+00:00] INFO: Running start handlers

[2013-06-18T08:55:34+00:00] INFO: Start handlers complete.

[2013-06-18T08:55:34+00:00] INFO: Processing chef_gem[minitest] action nothing

(minitest-handler::default line 2)

[2013-06-18T08:55:34+00:00] INFO: Processing chef_gem[minitest] action install

(minitest-handler::default line 2)

[2013-06-18T08:55:34+00:00] INFO: Processing chef_gem[minitest-chef-handler] action

nothing (minitest-handler::default line 9)

[2013-06-18T08:55:34+00:00] INFO: Processing chef_gem[minitest-chef-handler] action

install (minitest-handler::default line 9)

[2013-06-18T08:56:02+00:00] INFO: Processing chef_gem[minitest] action nothing

(minitest-handler::default line 2)

[2013-06-18T08:56:02+00:00] INFO: Processing chef_gem[minitest-chef-handler] action

nothing (minitest-handler::default line 9)

[2013-06-18T08:56:02+00:00] INFO: Processing directory[minitest test location]

action delete (minitest-handler::default line 18)

[2013-06-18T08:56:02+00:00] INFO: Processing directory[minitest test location]

action create (minitest-handler::default line 18)

[2013-06-18T08:56:02+00:00] INFO: directory[minitest test location] created

directory varchef/minitest

[2013-06-18T08:56:02+00:00] INFO: directory[minitest test location] owner changed to

0

[2013-06-18T08:56:02+00:00] INFO: directory[minitest test location] group changed to

0

[2013-06-18T08:56:02+00:00] INFO: directory[minitest test location] mode changed to

775

[2013-06-18T08:56:02+00:00] INFO: Processing ruby_block[load tests] action create

(minitest-handler::default line 29)

[2013-06-18T08:56:02+00:00] INFO: Processing directory[varchef/minitest/minitest-

handler] action create (dynamically defined)

[2013-06-18T08:56:02+00:00] INFO: directory[varchef/minitest/minitest-handler]

created directory varchef/minitest/minitest-handler

[2013-06-18T08:56:02+00:00] INFO: Processing directory[varchef/minitest/screen]

action create (dynamically defined)

[2013-06-18T08:56:02+00:00] INFO: directory[varchef/minitest/screen] created

directory varchef/minitest/screen

[2013-06-18T08:56:02+00:00] INFO: Enabling minitest-chef-handler as a report handler

[2013-06-18T08:56:02+00:00] INFO: ruby_block[load tests] called

[2013-06-18T08:56:02+00:00] INFO: Processing package[screen] action install

(screen::default line 10)

[2013-06-18T08:56:09+00:00] INFO: package[screen] installing screen-4.0.3-16.el6

from base repository

[2013-06-18T08:56:13+00:00] INFO: Processing cookbook_file[usrlocaletcscreenrc]

action create (screen::default line 12)

[2013-06-18T08:56:13+00:00] INFO: cookbook_file[usrlocaletcscreenrc] created file

usrlocaletcscreenrc

[2013-06-18T08:56:13+00:00] INFO: Chef Run complete in 38.732347486 seconds

[2013-06-18T08:56:13+00:00] INFO: Running report handlers

Run options: -v --seed 23177

Running tests:

screen::default#test_0001_installs Screen =

0.16 s = .

screen::default#test_0002_provides a global, customized default configuration =

0.00 s = .

Finished tests in 0.168615s, 11.8613 tests/s, 23.7227 assertions/s.

2 tests, 4 assertions, 0 failures, 0 errors, 0 skips

[2013-06-18T08:56:13+00:00] INFO: Report handlers complete

Although	very	simple,	this	should	give	a	good	sense	of	how	easy	it	is	to	use	the
Minitest	Handler	process	to	carry	out	integration	tests	with	nothing	more	than
Vagrant	and	Berkshelf.

Moving	on	to	a	more	complex	example,	consider	the	following	tests	from	the
Opscode	apache	cookbook:

it 'installs apache' do

 package(node['apache']['package']).must_be_installed

end

it 'starts apache' do

 apache_service.must_be_running

end

it 'enables apache' do

 apache_service.must_be_enabled

end

it 'creates the conf.d directory' do

 directory("#{node['apache']['dir']}/conf.d").must_exist.with(:mode, "755")

end

it 'creates the logs directory' do

 directory(node['apache']['log_dir']).must_exist

end

it 'enables the default site' do

 file("#{node['apache']['dir']}/sites-enabled/000-default").must_exist

 file("#{node['apache']['dir']}/sites-available/default").must_exist

end

it 'ensures the debian-style apache module scripts are present' do

 %w{a2ensite a2dissite a2enmod a2dismod}.each do |mod_script|

 file("usrsbin/#{mod_script}").must_exist

 end

end

it 'reports server name only, not detailed version info' do

 assert_match(/^ServerTokens Prod *$/, File.read("#{node['apache']

['dir']}/conf.d/security"))

end

These	tests	demonstrate	one	very	important	feature	of	Minitest	Handler—the
tests	are	all	executed	in	the	context	of	a	Chef	run.	This	has	profound
implications	for	testing.	At	any	point	we	have	access	to	three	important	objects
from	Chef:	the	run_status,	the	node	itself,	and	the	run_context.	This	is

potentially	very	useful	to	us;	in	these	examples,	we’re	using	node	attributes	in
our	test.	However,	it’s	also	important	to	understand	that	the	tests	we’re	carrying
out	are	often	based	on	knowledge	Chef	has	rather	than	external	validation	of
desired	state.	Now,	of	course,	we	implicitly	trust	Chef,	but	it’s	worth	stating
explicitly	that,	in	certain	cases,	what	these	tests	are	doing	is	inspecting	Chef’s
knowledge	rather	than	carrying	out	probes	on	a	configured	server.

The	final	example	I’ll	cover	is	one	where	we	use	a	helper	method:

it 'listens on port 80' do

 apache_configured_ports.must_include(80)

end

it 'only listens on port 443 when SSL is enabled' do

 unless ran_recipe?('apache2::mod_ssl')

 apache_configured_ports.wont_include(443)

 end

end

Here	we	have	an	example	of	helper	code.	This	could	go	in	the	helper	module	we
already	discussed:

def apache_configured_ports

 port_config = File.read("#{node['apache']['dir']}/ports.conf")

 port_config.scan(/^Listen ([0-9]+)/).flatten.map{|p| p.to_i}

 end

def ran_recipe?(recipe)

 node.run_state[:seen_recipes].keys.include?(recipe)

end

Herein	we	see	examples	of	the	kind	of	heavy	lifting	that	is	necessary	to	make	the
writing	of	tests	more	accessible	to	infrastructure	developers.	A	line	must
carefully	be	walked	between	providing	reusable	helper	methods	that	make	the
writing	of	tests	fast	and	easy,	and	creating	chunks	of	code	that	encourage	lazy
and	brittle	test	writing.	The	right	balance	will	emerge	as	the	discipline	and
community	matures,	but	for	now,	the	infrastructure	developer	is	well-served	by
matchers	and	expectations	built	into	minitest-chef-handler,	and	creative
programming	will	furnish	helper	methods	that	over	time	may	emerge	as	reusable
patterns.

Minitest	Handler	with	Test	Kitchen
Before	looking	at	the	advantages	and	disadvantages	and	drawing	a	conclusion,	I
want	to	demonstrate	how	to	run	Minitest	Handler	tests	using	Test	Kitchen.

Here’s	an	example	.kitchen.yml	file:

$ cat .kitchen.yml

driver_plugin: vagrant

driver_config:

 require_chef_omnibus: true

platforms:

- name: ubuntu-10.04

 driver_config:

 box: opscode-ubuntu-10.04

 box_url: https://opscode-vm.s3.amazonaws.com/vagrant/opscode_ubuntu-

10.04_provisionerless.box

- name: centos-5.9

 driver_config:

 box: opscode-centos-5.9

 box_url: https://opscode-vm.s3.amazonaws.com/vagrant/opscode_centos-

5.9_provisionerless.box

suites:

- name: default

 run_list: ["recipe[minitest-handler]", "recipe[screen]"]

 attributes: {}

All	we	need	to	do	is	ensure	that	the	minitest-handler	recipe	is	included	on	the
run	list	for	whichever	suite	we	care	about.	As	long	as	we	have	minitest-handler
in	the	Berksfile	(or	in	the	cookbook	metadata),	the	cookbook	will	be	made
available	and	applied,	and	the	tests	will	be	run	on	a	kitchen converge	action:

[2013-06-18T09:33:35+00:00] INFO: Chef Run complete in 26.619225 seconds

 [2013-06-18T09:33:35+00:00] INFO: Running report handlers

Run options: -v --seed 2739

Running tests:

screen::default#test_0001_installs Screen = 0.00 s = .

screen::default#test_0002_provides a global, customized default configuration = 0.00

s = .

Finished tests in 0.003959s, 505.1781 tests/s, 1010.3562 assertions/s.

2 tests, 4 assertions, 0 failures, 0 errors, 0 skips

 [2013-06-18T09:33:35+00:00] INFO: Report handlers complete

Chef Client finished, 5 resources updated

 Finished converging <default-centos-59> (0m30.77s).

-----> Kitchen is finished. (1m0.12s)

Advantages	and	Disadvantages
The	immediate	advantage	of	Minitest	Handler	is	that	the	barrier	to	entry	is	very
low.	If	you’re	using	Berkshelf,	and	you	should	be,	the	generator	will	create	all
you	need	to	start	writing	and	running	tests.	There’s	good	coverage	in	terms	of
assertions	and	matchers,	and	the	feedback	cycle	is	quick.

I	have	two	main	concerns	with	this	approach,	though.	First,	I’m	not	entirely
comfortable	with	expecting	new	users	to	learn	and	use	two	different	expectation
syntaxes.	On	the	assumption	that	unit	testing	will	be	done	using	Chefspec,	it’s
rather	irksome	that	the	integration	tests	use	a	different	approach.	The	second	area
where	I	feel	a	certain	skepticism	is	in	the	reliance	upon,	or	use	of,	Chef’s
internal	knowledge.	I	feel	that	we’re	not	really	doing	true	integration	testing
here.	In	places,	we’re	relying	on	magical	knowledge	from	within	the	framework
that	had	responsibility	for	bringing	our	infrastructure	in	line	with	policy.	For
these	reasons,	I	feel	much	more	comfortable	recommending	an	integration
framework	that	is	entirely	ignorant	of	Chef,	as	this	provides	the	opportunity	to
standardize	on	RSpec	expectation	syntax	and	to	run	tests	that	have	absolutely	no
knowledge	of,	or	dependence	upon,	the	configuration	management	framework.

A	final	potential	gotcha	should	be	noted.	The	most	recent	release	of	the	Minitest
Handler	cookbook	altered	the	mechanism	that	makes	the	test	files	available	to
the	host	upon	which	the	tests	are	being	run.	This	means	that	tests	will	not	be	run
on	machines	using	a	client/server	model	rather	than	chef-solo.	At	the	time	of
this	writing,	there	is	work	ongoing	to	resolve	this	issue,	but	for	now	this	should
be	noted	as	a	consideration	for	this	testing	approach.

Summary	and	Conclusion
Minitest	Handler	is	easy	to	use,	capable,	and	fast.	It	needs	minimal	setup	and
offers	immediate	value.	However,	I	feel	that	the	central	tool	in	the	infrastructure

developer’s	kit	is	going	to	be	Test	Kitchen,	and	having	invested	in	making	the
Test	Kitchen	framework	available,	I	see	little	use	for	Minitest	Handler,	and
prefer	to	use	tests	run	by	the	kitchen	Busser.

Unit	Testing:	Chefspec
The	purest,	fastest,	and	most	lightweight	unit-testing	approach	belongs	to
Chefspec—a	popular	and	powerful	tool	enabling	the	infrastructure	developer	to
create	RSpec	examples	for	cookbook	code.

Overview
Well-written	unit	tests	have	the	following	characteristics:

Exercise	every	aspect	of	the	code	under	test

Run	in	isolation,	shielded	from	external	forces,	with	any	external	functions
(including	the	operating	system)	mocked	out,	to	give	complete	control	over
the	environment

Written	in	such	a	way	as	to	be	easy	for	any	developer	to	run

Run	very	quickly,	giving	fast	feedback

Checked	into	the	same	version	control	system	as	the	code	they	test

Chefspec	allows	the	infrastructure	developer	to	write	RSpec	examples	for
cookbooks	that	meet	these	characteristics.	The	Chef	run	itself	is	mocked,
allowing	us	to	assert	that	the	Chef	providers	are	called	with	the	correct
parameters.	Any	input	data,	including	attribute	data	from	Ohai,	roles,
cookbooks,	or	recipes	can	be	set	on	whatever	platform	is	required,	giving
comprehensive	coverage.	Because	the	node	is	never	actually	converged,	and
because	there	is	never	any	genuine	API	traffic,	the	tests	are	very	fast	and	give
extremely	rapid	feedback.

It’s	important	to	emphasize	that,	as	I	argued	in	the	first	edition,	there	is	little
point	in	writing	tests	that	verify	the	Chef	resources	and	providers	behave	as	they
should.	We	trust	that	behavior	implicitly.	Chef	is	tested,	and	Chef	is	production
quality	code,	widely	deployed	across	hundreds	of	thousands	of	machines	all	over

the	world.	We	don’t	need	to	test	that	when	we	ask	Chef	to	install	Apache	that
Chef	does	indeed	install	Apache.	If	the	Chef	run	completes	without	error,	and
you	asked	it	to	install	Apache,	Apache	will	be	installed.	That’s	the	whole	point
of	Chef	as	a	declarative	interface	to	infrastructure	resources.

However,	what	we	do	need	to	test	is	that	we	asked	Chef	to	do	the	right	thing.
Chefspec	provides	this	capability—it	allows	us	to	check	what	is	in	the	resource
collection	and	what	actions	would	be	taken.	We	can	compare	that	against	what
we	expected.	This	is	useful	on	a	couple	of	levels.	First,	as	we	grow	our	test
coverage,	so	we	will	catch	regressions	and	foolish	errors.	Especially	when
developing	for	multiple	operating	systems	or	distributions,	the	task	of	ensuring
that	no	unwanted	side	effects	have	been	introduced	is	very	valuable.	Second,	the
discipline	of	writing	the	tests	(especially	writing	the	tests	first)	helps	the
infrastructure	developer	think	through	the	feature	being	added.	By	thinking
about	the	intended	outcome,	and	by	writing	a	test	to	capture	that,	the	features	are
emerged	incrementally,	and	in	accordance	with	demand.

When	writing	Chefspec	tests	it	makes	sense	to	think	of	the	cookbooks	as	a	black
box.	We’re	interested	in	how	the	code	handles	various	inputs.	Just	as	when
writing	unit	tests	for	traditional	software,	where	we	would	write	tests	to	verify
the	behavior	of	the	code	when	given	different	arguments,	so	we	do	the	same	with
Chef.	In	Chef	we	can	provide	input	to	our	cookbooks	from	attributes	(whether
from	Ohai,	or	cookbooks,	roles	or	environments),	search	results,	and	databag
look-ups.	We	could	also,	of	course,	provide	input	from	arbitrary	helper	methods
calling	external	services,	or	making	calculations	during	the	Chef	run.

Given	that	one	of	the	great	advantages	of	the	Chef	framework	is	the	ease	with
which	we	can	write	data-driven	cookbooks,	it’s	very	helpful	to	be	able	to
exercise	our	code	by	feeding	it	data,	allowing	us	to	test	edge	cases	and	verify	our
reasoning	and	understanding	about	how	Chef	will	behave,	but	without	having	to
provision	a	large	number	of	different	machines	to	run	Chef	a	large	number	of
times.

Getting	Started
Chefspec	is,	again,	distributed	as	a	Rubygem.	Simply	add	it	to	the	Gemfile,	and
run	bundle update.

Once	installed,	Chefspec	provides	an	extension	to	the	knife cookbook
command,	which	will	create	a	basic	RSpec	boilerplate.	Let’s	create	a	cookbook
that	installs	the	handy	network	utility	netcat.

For	the	purposes	of	illustration,	we’ll	create	this	cookbook	using	Knife	rather
than	Berkshelf.

$ knife cookbook create netcat -o .

WARNING: No knife configuration file found

** Creating cookbook netcat

** Creating README for cookbook: netcat

** Creating CHANGELOG for cookbook: netcat

** Creating metadata for cookbook: netcat

$ knife cookbook create_specs netcat -o .

WARNING: No knife configuration file found

** Creating specs for cookbook: netcat

This	creates	a	spec	directory	and	populates	it	with	an	example	test:

$ cat netcat/spec/default_spec.rb

require 'chefspec'

describe 'netcat::default' do

 let (:chef_run) { ChefSpec::ChefRunner.new.converge 'netcat::default' }

 it 'should do something' do

 pending 'Your recipe examples go here.'

 end

end

Again,	note	the	naming	convention.	We’re	initially	testing	the	default	cookbook;
create	a	file	named	default_spec.rb.	Running	the	test	is	a	simple	matter	of
running	the	rspec	command	in	the	top-level	directory	of	the	cookbook:

$ rspec

Pending:

 netcat::default should do something

 # Your recipe examples go here.

 # ./spec/default_spec.rb:5

Finished in 0.00028 seconds

1 example, 0 failures, 1 pending

Example
Let’s	look	again	at	the	boilerplate	example	that	we	created	with	knife
cookbook	create_specs:

require 'chefspec'

describe 'netcat::default' do

 let (:chef_run) { ChefSpec::ChefRunner.new.converge 'netcat::default' }

 it 'should do something' do

 pending 'Your recipe examples go here.'

 end

end

The	first	line	simply	pulls	in	Chefspec,	much	like	our	Thor	example,	when	we
pulled	in	library	code	from	elsewhere.	Next	we	do	exactly	as	we	did	in	the
Hipster	test—set	up	a	describe	block.	I	always	like	to	imagine	having	a
conversation	here:

Me: "Describe the default recipe in the netcat cookbook."

You: "It installs netcat!"

It’s	helpful	to	remember	when	we’re	writing	these	tests	that	we’re	describing	the
behavior	of	the	system,	in	terms	of	examples	that	demonstrate	the	intended
functionality	of	the	thing	we’re	building.

The	next	thing	we	need	to	do	is	create	an	instance	of	a	Chef	Runner.	A	Chef
Runner	is	the	object	responsible	for	running	Chef	in	the	context	of	our	tests.
Incidentally,	here’s	a	cutely	recursive	way	to	learn	what	a	Chef	Runner	is:

$ cd ~/src/chefspec

$ rspec -fd spec/chefspec/chef_runner_spec.rb

ChefSpec::ChefRunner

 #initialize

 should create a node for use within the examples

 should set the chef cookbook path to a default if not provided

 should set the chef cookbook path to any provided value

 should support the chef cookbook path being passed as a string for backwards

compatibility

 should default the log_level to warn

 should set the log_level to any provided value

 should alias the real resource actions

 should capture the resources created

 should execute the real action if resource is in the step_into list

 should accept a block to set node attributes

 should allow evaluate_guards to be falsey

 should allow evaluate_guards to be truthy

...

...

I	throw	that	in	as	an	example	of	how	tests	can	function	as	documentation,	and
shed	light	on	our	understanding	of	how	software	functions.

So	we	need	an	instance	of	a	Chef	Runner.	There	are	a	couple	of	ways	to	do	this,
but	the	approach	adopted	here	is	the	most	commonly	used:

let (:chef_run) { ChefSpec::ChefRunner.new.converge 'netcat::default' }

This	line	of	code	introduces	a	couple	of	useful	Ruby	ideas,	so	I’ll	cover	them
briefly.

The	let	method	defines	a	memoized	helper	method.	What	does	this	mean?	Well,
memoization	is	a	simple	pattern,	which	simply	means	“cache	the	result	of	the
method.”	This	is	a	handy	technique	for	storing	values	of	a	function	instead	of
recomputing	them	each	time	the	function	is	called.

Suppose	we	had	a	method	to	run,	which	we	know	is	always	going	to	return	the
same	result.	Suppose	we	also	knew	that	running	this	method	was	rather	slow,	or
resource	intensive.	Wouldn’t	it	make	sense	to	cache	the	result	the	first	time	we
ran	it?	That’s	the	basic	idea	behind	memoization.	Here’s	a	dumb	example:

def album_and_song

 "#{album} - #{song}"

end

Although	not	hugely	expensive,	this	method	does	require	the	string	to	be
reconstructed	every	time.	The	classic	way	to	memoize	in	Ruby	is	to	use	the
conditional	assignment	operator,	||=.

def album_and_song

 @album_and_song ||= "#{album} - #{song}"

end

This	means,	if	@album_and_song	is	not	initialized,	or	if	it	is	set	to	nil	or	false,	it
will	be	assigned	to	the	value	of	the	expression	to	the	right—the	result	of	the
string	interpolation	creating	the	album/song	combination.	However,	if	it’s
already	set	to	a	truthy	value	(anything	other	than	nil	or	false),	it	will	remain
unchanged.

This	is	a	handy	technique	when	writing	tests	that	instantiate	something	we	want
to	use.	We	can	define	a	method	that	describes	the	thing	we	want	to	instantiate,
use	memoization	behind	the	scenes,	and	henceforth	just	use	the	method	without
ever	having	to	worry	about	instantiating	it.

The	let	method	does	exactly	this—it	gives	us	an	instance	of	something	we	need
to	use	but	with	some	handy	advantages.	Specifically,	using	let()	over	instance
variables	is	safer	because	it	creates	a	method	rather	than	a	variable,	and	so	if	we
ever	mistype	the	name	we’ll	get	a	clear	NameError	rather	than	nil,	which	you’ll
quickly	learn	is	hard	to	track	down.	let	is	also	lazy-evaluated—that	is,	it	is	not
evaluated	until	the	first	time	the	method	it	defines	is	invoked,	so	the	code	runs
only	if	the	example	calls	it;	by	contrast,	the	obvious	alternative,	which	is	to	use
an	instance	variable	in	a	before(:each),	will	run	before	every	example,	which
is	wasteful.

Now	we	have	the	Chef	Runner	available	to	use,	and	we	set	it	up	to	converge	the
default	recipe	in	our	netcat	cookbook.	All	we	need	to	do	is	use	the	chef_run
object	to	make	assertions.

The	simplest	thing	we	could	assert	would	be	that	the	Chef	Runner	will	install	the
netcat	package:

it 'installs the netcat package' do

 expect(chef_run).to install_package('netcat')

end

Let’s	try	running	the	test:

$ rspec

F

Failures:

 1) netcat::default installs the netcat package

 Failure/Error: expect(chef_run).to install_package('netcat')

 No package resource named 'netcat' with action :install found.

 # ./spec/default_spec.rb:6:in `block (2 levels) in <top (required)>'

Finished in 0.05371 seconds

1 example, 1 failure

Failed examples:

rspec ./spec/default_spec.rb:5 # netcat::default installs the netcat package

As	we	expected,	we	have	a	failure.	We’ve	asserted	that	when	we	converge	the
default	recipe,	the	Chef	runner	will	be	asked	to	install	the	netcat	package.	But	we
haven’t	written	the	default	recipe	yet,	so	the	test	fails.	Let’s	fix	that:

$ cat recipes/default.rb

package 'netcat'

Now	when	we	run	RSpec,	the	test	passes:

$ rspec

.

Finished in 0.01144 seconds

1 example, 0 failures

This	is	great,	but	remember,	we’ve	tested	only	signal	in.	We	need	to	test	signal
out.	Also,	we	might	want	to	support	installing	netcat	on	multiple	platforms,	so	it
would	be	sensible	to	test	it	on	multiple	platforms.	Let’s	fire	up	Test	Kitchen
again,	and	see	what	happens	when	we	converge	the	recipe	for	real	on	both
CentOS	and	Ubuntu:

$ kitchen converge

[tdi@tk01 netcat]$ kitchen converge

-----> Starting Kitchen (v1.0.0.dev)

-----> Creating <default-ubuntu-1204>

...

...

-----> Converging <default-ubuntu-1204>

...

Converging 1 resources

Recipe: netcat::default

 package[netcat] action install[2013-06-18T11:47:02+00:00] INFO: Processing

package[netcat] action install (netcat::default line 1)

 - install version 1.10-39 of package netcat

[2013-06-18T11:47:06+00:00] INFO: Chef Run complete in 4.114389784 seconds

 Finished converging <default-ubuntu-1204> (0m17.76s).

-----> Creating <default-centos-64>

...

...

-----> Converging <default-centos-64>

...

 Converging 1 resources

 Recipe: netcat::default

 package[netcat] action install[2013-06-18T11:48:41+00:00] INFO: Processing

package[netcat] action install (netcat::default line 1)

 * No version specified, and no candidate version available for netcat

==

 Error executing action `install` on resource 'package[netcat]'

==

 Chef::Exceptions::Package

 No version specified, and no candidate version available for netcat

...

Chef::Exceptions::Package: No version specified, and no candidate version available

for netcat

>>>>>> Converge failed on instance <default-centos-64>.

>>>>>> Please see .kitchen/logs/default-centos-64.log for more details

>>>>>> ------Exception-------

>>>>>> Class: Kitchen::ActionFailed

>>>>>> Message: SSH exited (1) for command: [sudo -E chef-solo --config tmpkitchen-

chef-solo/solo.rb --json-attributes tmpkitchen-chef-solo/dna.json --log_level info]

>>>>>> ----------------------

Here	we	see	the	value	of	having	Test	Kitchen	to	hand.	We	didn’t	even	write	any
tests,	but	we	were	able	to	see,	with	a	single	command,	whether	our	recipe	would
even	converge	on	both	platforms.	And	we	learned	it	wouldn’t.	The	reason	for
this	is	that,	although	Chef	providers	know	how	to	take	appropriate	action	on	all
supported	platforms,	Chef	isn’t	clever	enough	to	know	that	Debian	calls	netcat

“netcat,”	whereas	CentOS	calls	it	“nc.”	We	need	to	put	that	logic	in	the	recipe.

You’ll	remember	that	when	we	run	Chef	on	a	node,	one	of	the	first	things	that
happens	is	Ohai	runs,	profiling	the	system,	and	providing	useful	information	to
the	recipe	DSL,	such	as	the	platform	version	or	the	family	of	operating	system.
Chefspec	has	the	ability	to	mock	this	data,	using	a	little	library	called	Fauxhai.
Fauxhai	is	effectively	an	open	source	store	of	Ohai	data	for	multiple	platforms,
which	Chefspec	can	use	in	order	to	pretend	to	be	a	machine	running	on,	for
example,	Solaris	10.

We	make	use	of	this	capability	by	providing	a	platform	and	version	to	the
constructor	when	we	instantiate	a	Chef	runner.	Our	current	Chef	runner	looks
like	this:

let (:chef_run) { ChefSpec::ChefRunner.new.converge 'netcat::default' }

If	we	want	the	runner	to	look	like	a	CentOS	machine,	we	instead	call	it	like	this:

let(:chef_run) do

 runner = ChefSpec::ChefRunner.new(

 platform: 'centos',

 version: '6.3'

)

 runner.converge 'netcat::default'

end

However,	we	want	to	do	this	for	more	than	one	platform.	This	is	where	RSpec
contexts	come	in	handy.

A	context	is	an	important	concept	in	RSpec.	In	RSpec,	we	are	generally
concerned	with	an	Example	Group.	This	is	a	set	of	tests	that	describe	the
behavior	of	the	item	under	test.	The	two	keywords	used	to	build	and	test
example	groups	are	describe()	and	it().	For	example:

describe "MusicPlayer" do

 it "lists available tracks" do

 end

end

Describe	blocks	can	be	nested	to	provide	a	richer	description	of	behavior.	For

https://github.com/customink/fauxhai

example:

describe "MusicPlayer" do

 describe "when in select music mode" do

 it "lists available tracks" do

 end

 end

end

RSpec	provides	the	context()	method	as	an	alias	for	describe().	This	allows
us	to	word	our	examples	to	set	the	context	in	which	the	item	under	test	is	used.
For	example,	we	could	express	the	previous	example	as:

describe "MusicPlayer" do

 context "when in select music mode" do

 it "lists available tracks" do

 end

 end

end

We	can	use	the	same	pattern	in	our	Chefspec	examples,	by	using	a	context	for
each	platform:

require 'chefspec'

describe 'netcat::default' do

 context 'centos' do

 let(:chef_run) do

 runner = ChefSpec::ChefRunner.new(

 platform: 'centos',

 version: '6.3'

)

 runner.converge 'netcat::default'

 end

 it 'installs the nc package' do

 expect(chef_run).to install_package('nc')

 end

 end

 context 'ubuntu' do

 let(:chef_run) do

 runner = ChefSpec::ChefRunner.new(

 platform: 'ubuntu',

 version: '12.04'

)

 runner.converge 'netcat::default'

 end

 it 'installs the netcat package' do

 expect(chef_run).to install_package('netcat')

 end

 end

end

Now	let’s	run	the	test:

$ rspec

.

Failures:

 1) netcat::default centos installs the nc package

 Failure/Error: expect(chef_run).to install_package('nc')

 No package resource named 'nc' with action :install found.

 # ./spec/default_spec.rb:13:in `block (3 levels) in <top (required)>'

Finished in 0.04224 seconds

2 examples, 1 failure

Failed examples:

rspec ./spec/default_spec.rb:12 # netcat::default centos installs the nc package

So,	as	we	already	know,	the	recipe	doesn’t	try	to	install	“nc”	when	the	machine
is	a	CentOS	machine.	We	need	to	fix	this	in	the	recipe:

package 'nc' do

 package_name case node['platform_family']

 when 'debian'

 'netcat'

 else

 'nc'

 end

end

Now	the	test	passes:

$ rspec

..

Finished in 0.04242 seconds

2 examples, 0 failures

And	when	we	converge	the	node:

$ kitchen converge

-----> Starting Kitchen (v1.0.0.dev)

-----> Converging <default-ubuntu-1204>

 Resolving cookbook dependencies with Berkshelf

Using netcat (0.1.0)

 Removing non-cookbook files in sandbox

 Uploaded tmpdefault-ubuntu-1204-sandbox-20130618-30672-y0aiqp/solo.rb (168

bytes)

 Uploaded tmpdefault-ubuntu-1204-sandbox-20130618-30672-

y0aiqp/cookbooks/netcat/recipes/default.rb (180 bytes)

 Uploaded tmpdefault-ubuntu-1204-sandbox-20130618-30672-

y0aiqp/cookbooks/netcat/metadata.rb (276 bytes)

 Uploaded tmpdefault-ubuntu-1204-sandbox-20130618-30672-

y0aiqp/cookbooks/netcat/README.md (1447 bytes)

 Uploaded tmpdefault-ubuntu-1204-sandbox-20130618-30672-y0aiqp/dna.json (31

bytes)

Starting Chef Client, version 11.4.4

[2013-06-18T12:42:55+00:00] INFO: *** Chef 11.4.4 ***

[2013-06-18T12:42:55+00:00] INFO: Setting the run_list to ["recipe[netcat]"] from

JSON

[2013-06-18T12:42:55+00:00] INFO: Run List is [recipe[netcat]]

[2013-06-18T12:42:55+00:00] INFO: Run List expands to [netcat]

[2013-06-18T12:42:55+00:00] INFO: Starting Chef Run for default-ubuntu-1204

[2013-06-18T12:42:55+00:00] INFO: Running start handlers

[2013-06-18T12:42:55+00:00] INFO: Start handlers complete.

Compiling Cookbooks...

Converging 1 resources

Recipe: netcat::default

 package[nc] action install[2013-06-18T12:42:55+00:00] INFO: Processing

package[nc] action install (netcat::default line 1)

 (up to date)

[2013-06-18T12:42:55+00:00] INFO: Chef Run complete in 0.027679985 seconds

[2013-06-18T12:42:55+00:00] INFO: Running report handlers

[2013-06-18T12:42:55+00:00] INFO: Report handlers complete

Chef Client finished, 0 resources updated

 Finished converging <default-ubuntu-1204> (0m2.29s).

-----> Converging <default-centos-64>

 Resolving cookbook dependencies with Berkshelf

Using netcat (0.1.0)

 Removing non-cookbook files in sandbox

 Uploaded tmpdefault-centos-64-sandbox-20130618-30672-131b8ou/solo.rb (166

bytes)

 Uploaded tmpdefault-centos-64-sandbox-20130618-30672-

131b8ou/cookbooks/netcat/recipes/default.rb (180 bytes)

 Uploaded tmpdefault-centos-64-sandbox-20130618-30672-

131b8ou/cookbooks/netcat/metadata.rb (276 bytes)

 Uploaded tmpdefault-centos-64-sandbox-20130618-30672-

131b8ou/cookbooks/netcat/README.md (1447 bytes)

 Uploaded tmpdefault-centos-64-sandbox-20130618-30672-131b8ou/dna.json (31

bytes)

 Starting Chef Client, version 11.4.4

 [2013-06-18T12:43:18+00:00] INFO: ** Chef 11.4.4 ***

 [2013-06-18T12:43:18+00:00] INFO: Setting the run_list to ["recipe[netcat]"]

from JSON

 [2013-06-18T12:43:18+00:00] INFO: Run List is [recipe[netcat]]

 [2013-06-18T12:43:18+00:00] INFO: Run List expands to [netcat]

 [2013-06-18T12:43:18+00:00] INFO: Starting Chef Run for default-centos-64

 [2013-06-18T12:43:18+00:00] INFO: Running start handlers

 [2013-06-18T12:43:18+00:00] INFO: Start handlers complete.

 Compiling Cookbooks...

 Converging 1 resources

 Recipe: netcat::default

 * package[nc] action install[2013-06-18T12:43:18+00:00] INFO: Processing

package[nc] action install (netcat::default line 1)

 [2013-06-18T12:43:20+00:00] INFO: package[nc] installing nc-1.84-22.el6 from

base repository

 - install version 1.84-22.el6 of package nc

 [2013-06-18T12:43:22+00:00] INFO: Chef Run complete in 4.099788551 seconds

 [2013-06-18T12:43:22+00:00] INFO: Running report handlers

 [2013-06-18T12:43:22+00:00] INFO: Report handlers complete

 Chef Client finished, 1 resources updated

 Finished converging <default-centos-64> (0m5.62s).

-----> Kitchen is finished. (0m8.97s)

[tdi@tk01 netcat]$ kitchen list

Instance Driver Provisioner Last Action

default-ubuntu-1204 Vagrant Chef Solo Converged

default-centos-64 Vagrant Chef Solo Converged

Now	everything	works	fine!

Advantages	and	Disadvantages
I	started	out	as	a	skeptic,	when	it	came	to	Chefspec.	The	system	doesn’t	do	a	real

converge	and	is	really	only	decoration	atop	Chef’s	own	recipe	DSL.	Chef,	by
virtue	of	being	a	declarative	system,	is	inherently	providing	the	most	basic	test
of	all.	If	I	declare	the	state	I	want,	and	I	run	Chef,	Chef	will	take	action	to	make
my	wishes	take	effect.	The	Chef	run	will	either	succeed,	in	which	case	my
desired	state	will	take	effect,	or	it	will	fail,	with	an	error	message	and	a	stack
trace.

However,	the	fact	is	that	this	is	a	clumsy	and	ineffective	way	of	catching
mistakes.	Chefspec	allows	us	to	get	feedback	almost	instantly,	without	having	to
take	action	on	a	real	node,	and	very	rapidly	pays	for	itself	in	terms	of	time	saved.
Because	the	Chef	run	takes	place	in	memory,	and	the	provider	actions	are	always
set	to	not	truly	take	effect,	the	speed	of	the	test	is	remarkable.	To	give	a	sense	of
the	speed,	it’s	possible	to	run	10,000	tests	in	30	seconds.	Realistically	you	might
have	as	many	as	50	tests	in	a	single	cookbook,	and	they	should	all	run	in	about	a
second.	This	is	a	much	more	effective	and	efficient	way	to	catch	mistakes.	When
Chefspec	is	partnered	with	Guard,	for	immediate	feedback	whenever	the
filesystem	changes,	the	feedback	is	even	quicker.

One	common	mistake	I	see	people	make	is	to	forget	to	create	a	cookbook	file	or
template,	or	to	give	it	a	subtly	incorrect	name,	or	perhaps	to	fail	to	put	it	in	the
default	directory.	Chefspec	catches	such	errors	without	us	having	to	go	through
the	cycle	of	cookbook	edit,	cookbook	upload,	run	Chef,	and	then	wait	for	a
bunch	of	resources	to	be	applied,	only	to	discover	a	simple	error.

The	ability	to	test	multiplatform	logic	without	ever	needing	to	fire	up	machines
of	different	types	is	also	hugely	advantageous.	Fauxhai	allows	us	to	mock	any
platform	and	test	the	logic	of	our	recipes	even	if	we	only	ever	develop	on	a	Mac
or	Windows	machine.

Perhaps	the	biggest	business	benefit	that	Chefspec	delivers	is	in	supporting	the
effort	of	refactoring	a	recipe.	A	common	example	would	be	perhaps	reaching	a
decision	to	split	up	a	large	and	complex	cookbook	into	smaller,	more	logical
components.	This	could	deliver	results	in	terms	of	faster	Chef	runs,	and
enhanced	readability	and	maintainability.	However,	when	refactoring,	it’s
surprisingly	easy	to	miss	a	resource	out—perhaps	a	seemingly	insignificant	file,
or	package	resource.	I’ve	certainly	experienced	exactly	this	scenario:	the	recipe
computes,	the	Chef	run	completes,	with	no	indication	of	a	problem.	On	a
machine	that	has	already	been	configured	with	Chef,	the	error	may	not	ever	be

discovered	because	the	effect	of	running	Chef	previously	was	to	configure	the
resource,	and	simply	removing	the	resource	from	the	recipe	won’t	undo	the	state
of	the	machine	where	Chef	previously	took	action.	This	means	that	only	when
Chef	is	run	against	a	new	machine	does	the	missing	resource	cause	an	issue,
often	to	the	bafflement	of	the	developer.	Chefspec	catches	these	regressions.	If
we	write	a	test	for	the	resource,	and	then	accidentally	change	or	delete	the
resource	in	the	recipe,	Chefspec	will	fail,	immediately,	never	leaving	a	real
machine	in	an	incorrect	or	unknown	state.

Sometimes	the	errors	that	Chefspec	could	catch	or	prevent	are	surprisingly
inconvenient	or	damaging.	Imagine	the	case	of	a	cookbook	responsible	for
configuring	ssh	access,	or	firewall	or	network	settings.	It’s	very	easy	to	make	a
silly	mistake—forget	to	write	out	a	config,	or	set	an	incorrect	permission—and
when	working	with	a	remote	machine,	access	to	the	whole	system	could	be	lost,
with	costly	consequences.

Yet	another	example	is	the	use	of	search	to	write	out	hosts	entries,	or	perhaps
load	balancer	configuration.	A	simple	typing	mistake—specifying	the	wrong
index,	or	a	subtly	incorrect	query—could	result	in	a	badly	misconfigured	system.
With	Chefspec,	we	stub	out	the	search	but	make	explicit	the	expectation	that
search	should	be	called	against	a	specific	node	with	a	specific	query.	If	by	some
means,	this	query	is	incorrect	in	the	recipe,	our	tests	will	fail,	and	we’ll	avoid
misconfiguring	the	system.	I’ve	certainly	had	the	experience	where	I’ve
accidentally	pressed	a	key	in	an	open	buffer,	saved	the	buffer,	and	uploaded	a
recipe	with	a	syntax	error.	Running	Chefspec,	under	Guard,	alerts	in	this
situation	immediately,	resulting	in	far	fewer	silly	mistakes.

However,	it’s	not	just	catching	silly	mistakes	or	regressions	that	delivers	value.
There’s	something	deeply	satisfying,	something	addictively	enjoyable	about
watching	a	recipe’s	journey	from	red	to	green.	It	introduces	a	sense	of
achievement,	a	yardstick	for	progress,	and	delivers	a	delicious	experience	of
knowing	when	you’re	done,	an	experience	that	is	painfully	absent	in	most	forms
of	knowledge	work.

The	simple	fact	is	that	writing	your	cookbooks	test-first	and	using	Chefspec	as
part	of	your	development	workflow	will	result	in	you	writing	better	cookbooks.

Summary	and	Conclusion

Chefspec	has	deservedly	earned	a	strong	following	within	the	Chef	community
already.	It	provides	excellent	return	on	investment,	delivers	rapid	feedback,	and
enhances	code	quality	and	maintainability.	The	project	is	actively	developed	and
well-documented.	Unit	testing	at	the	level	of	resources	and	recipes	is	an	essential
part	of	the	infrastructure	developer’s	workflow,	and	Chefspec	is	the	tool	to	use
for	this	purpose.

Chefspec	is	a	very	powerful	tool	and	can	be	used	to	perform	very	complex	tests
involving	sophisticated	mocking	and	stubbing,	stepping	into	LWRPs	to	test	their
internal	actions,	and	working	with	Berkshelf.	It’s	also	highly	extensible—third-
party	additions	exist,	and	if	you	write	cookbooks	including	library	or	LWRP
resources,	you	can	create	and	ship	custom	matchers	for	other	people	to	use.
Although	already	providing	rapid	feedback,	this	can	be	improved	and	made
near-instantaneous	by	using	Guard—a	command-line	tool	that	watches	for
filesystem	events	and	runs	tests	as	soon	as	a	file	is	changed.	Sadly	these	subjects
are	beyond	the	scope	of	this	book,	but	examples	and	documentation	can	be
found	online,	or	guidance	can	be	found	via	the	usual	channels.

Static	Analysis	and	Linting	Tools
As	a	wrapper	around	the	testing	workflow	I	recommended	earlier,	there	is
tremendous	value	in	having	mechanisms	in	place	to	help	maintain	code	quality
and	standards,	and	reduce	waste	and	rework	owing	to	trivial	mistakes.	This	brief
section	discusses	tools	that	support	this	effort.

Overview
I’m	often	asked	“How	can	I	get	started	with	testing?	What’s	the	simplest	thing	I
can	do	that	adds	value?”	The	lowest	level	of	syntax,	style,	and	lint	testing	is
probably	the	answer.

Writing	Chef	recipes	is,	in	some	respects,	similar	to	the	slower	pace	of	the	early
computer	programmers.	Running	Chef	on	a	node	could	take	a	few	minutes	to
complete,	only	to	yield	an	error	that	was	the	result	of	a	foolish	mistake.	If	this
happens	two	or	three	times,	we	could	easily	have	wasted	10	minutes	or	more.	It’s
not	uncommon	to	introduce	peculiar	little	bugs	such	as	a	misnamed	action
argument	or	a	typo	on	an	attribute.	This	all	builds	up.	When	added	to	the	already

https://github.com/guard/guard

stated	desire	to	start	to	define	and	check	against	community-agreed	coding
standards,	it	seems	that	what	would	be	ideal	would	be	some	kind	of	static
analysis	of	our	Chef	code	before	we	run	it.

There	are	a	number	of	related	tools	that	provide	elements	of	this	functionality.
We’ll	look	at:
Foodcritic

Knife	Cookbook	Test

Tailor

Strainer

Foodcritic	is	a	linting	tool	for	cookbooks.	It	sets	out	its	two	primary	objectives
as	follows:
To	make	it	easier	to	flag	problems	in	your	Chef	cookbooks	that	will	cause	Chef	to	blow	up	when	you
attempt	to	converge.	This	is	about	faster	feedback.	If	you	automate	checks	for	common	problems	you
can	save	a	lot	of	time.

To	encourage	discussion	within	the	Chef	community	on	the	more	subjective	stuff—what	does	a	good
cookbook	look	like?	Opscode	has	avoided	being	overly	prescriptive,	which	by	and	large	I	think	is	a
good	thing.	Having	a	set	of	rules	to	base	discussion	on	helps	drive	out	what	we	as	a	community	think
is	good	style.

Foodcritic	ships	with	more	than	30	default	rules	and	can	be	easily	extended.
Both	Etsy	and	CustomInk	have	contributed	extensive	and	valuable	rules,	which
extend	the	coverage,	and	the	Foodcritic	documentation	gives	clear	instructions
on	how	to	add	your	own,	either	to	be	considered	as	default	rules	or	pertinent	to
your	own	organization’s	standards.

Foodcritic	is	an	excellent	tool,	but	it	doesn’t	actually	test	the	syntax	of	your
Ruby.	Thankfully,	Knife	already	has	built-in	functionality	for	this.	It’s	simple
but	effective,	using	Ruby	syntax	checking	to	verify	every	file	in	a	cookbook
ending	in	.rb	and	erb.

The	final	obvious	area	to	test	is	the	style	of	your	cookbooks	against	community
Ruby	standards.	An	ideal	tool	for	this	is	Tailor.	The	project	describes	itself	as
follows:
Tailor	parses	Ruby	files	and	measures	them	with	some	style	and	static	analysis	“rulers.”	Default
values	for	the	Rulers	are	based	on	a	number	of	style	guides	in	the	Ruby	community	as	well	as	what
seems	to	be	common.	More	on	this	here.

https://github.com/turboladen/tailor
http://wiki.github.com/turboladen/tailor

Tailor’s	goal	is	to	help	you	be	consistent	with	your	style	throughout	your	project,	whatever	style	that
may	be.

Strainer	grew	out	of	the	realization	that	with	the	combination	of	a	linter,	syntax
checker,	and	style	guide,	one	potentially	has	three	separate	commands	to	run	to
test	one’s	code.	That’s	not	very	convenient	or	efficient.	Strainer	allows	a
collection	of	testing	tools	to	be	grouped	together	under	one	file	and	run	with	one
command.	This	makes	it	very	easy	to	plumb	the	whole	collection	of	tools
together,	and	run	as	a	single	job	on	a	continuous	integration	server.

Getting	Started
Knife cookbook test	is	already	included	for	you	if	you	installed	Chef.	To
check	syntax,	simply	run:

$ knife cookbook test mycookbook

You	may	need	to	specify	your	cookbook	path	with	the	-o, --cookbook-path
option.

Assuming	you	have	already	run	berks init	in	your	cookbook	directory,	you
will	already	have	a	Gemfile.	Foodcritic,	Tailor,	and	Strainer	are	all	shipped	as
Rubygems,	so	add	a	line	in	your	Gemfile	for	each	gem,	and	then	run	bundle
install.	For	now	we’ll	remove	the	kitchen	paraphernalia,	and	concentrate
purely	on	the	linting	and	static	analysis	aspects.	Our	Gemfile,	therefore,	looks
like	this:

$ cat Gemfile

source 'https://rubygems.org'

gem 'berkshelf'

gem 'foodcritic'

gem 'tailor'

gem 'strainer'

Running	bundle install	yields:

$ bundle install

Fetching gem metadata from https://rubygems.org/........

Fetching gem metadata from https://rubygems.org/..

Resolving dependencies...

Using i18n (0.6.1)

Using multi_json (1.7.6)

Using activesupport (3.2.13)

Using addressable (2.3.4)

Using builder (3.2.2)

Using gyoku (1.0.0)

Using nokogiri (1.5.9)

Using akami (1.2.0)

Using timers (1.1.0)

Using celluloid (0.14.1)

Using hashie (2.0.5)

Using chozo (0.6.1)

Using multipart-post (1.2.0)

Using faraday (0.8.7)

Using json (1.8.0)

Using minitar (0.5.4)

Using mixlib-config (1.1.2)

Using mixlib-shellout (1.1.0)

Using retryable (1.3.3)

Using erubis (2.7.0)

Using mixlib-log (1.6.0)

Using mixlib-authentication (1.3.0)

Using net-http-persistent (2.8)

Using net-ssh (2.6.7)

Using solve (0.4.4)

Using ffi (1.8.1)

Using gssapi (1.0.3)

Using httpclient (2.2.0.2)

Using little-plugger (1.1.3)

Using logging (1.6.2)

Using rubyntlm (0.1.1)

Using rack (1.5.2)

Using httpi (0.9.7)

Using nori (1.1.5)

Using wasabi (1.0.0)

Using savon (0.9.5)

Using uuidtools (2.1.4)

Using winrm (1.1.2)

Using ridley (0.12.4)

Using thor (0.18.1)

Using yajl-ruby (1.1.0)

Using berkshelf (1.4.5)

Using gherkin (2.11.8)

Using rak (1.4)

Using polyglot (0.3.3)

Using treetop (1.4.14)

Using foodcritic (2.1.0)

Using log_switch (0.4.0)

Using strainer (2.1.0)

Using tins (0.8.0)

Using term-ansicolor (1.2.2)

Using text-table (1.2.3)

Using tailor (1.2.1)

Using bundler (1.3.5)

Your bundle is complete!

Gems in the group integration were not installed.

Use `bundle show [gemname]` to see where a bundled gem is installed.

Once	installed,	running	foodcritic	without	options	will	yield	the	following	(or
similar)	options:

> foodcritic

foodcritic [cookbook_paths]

 -r, --[no-]repl Drop into a REPL for interactive rule editing.

 -t, --tags TAGS Only check against rules with the specified

tags.

 -f, --epic-fail TAGS Fail the build if any of the specified tags are

matched.

 -c, --chef-version VERSION Only check against rules valid for this version

of Chef.

 -C, --[no-]context Show lines matched against rather than the

default summary.

 -I, --include PATH Additional rule file path(s) to load.

 -S, --search-grammar PATH Specify grammar to use when validating search

syntax.

 -V, --version Display the foodcritic version.

Foodcritic	has	the	idea	of	rules,	against	which	your	cookbook	code	is	tested.
Examples	range	from	stylistic—FC019: Access node attributes in a

consistent manner—to	syntactical—FC010: Invalid search syntax—to
portable:	FC024: Consider adding platform equivalents.

To	get	started,	simply	navigate	to	a	directory	or	folder	containing	a	cookbook
and	run:

> foodcritic .

If	you	wish	to	include	extra	rules,	clone	the	CustomInk	and	Etsy	repositories	into

https://github.com/customink-webops/foodcritic-rules
https://github.com/etsy/foodcritic-rules

a	convenient	location,	and	include	the	location	with	the	-I --include
argument.

The	tailor	command	line	will,	by	default,	look	in	a	lib	directory	for	Ruby	files,
and	check	style	against	a	standard	set	of	guidelines.	These	guidelines	are
configurable,	either	on	the	command	line	or	in	a	configuration	file.	For	testing
cookbooks,	the	following	command	line	will	provide	a	sensible	testing	regime:

$ tailor */**/*.rb

Note	that	this	will	not	check	ERB	templates,	and	it	won’t	find	any	files	more
than	one	directory	deep.	You	can	compare	what	Tailor	tested	against	what	you
have	in	your	cookbook	by	running	the	following	(on	a	Linux/Unix	system):

$ find . -name *.rb

Example
To	explore	Foodcritic,	let’s	pick	a	cookbook	from	the	community	site	at	random,
and	see	how	it	measures	up:

PS C:\Users\stephen\src> knife cookbook site download monit

Downloading monit from the cookbooks site at version 0.7.0 to

C:/Users/stephen/src/monit-0.7.0.tar.gz

Cookbook saved: C:/Users/stephen/src/monit-0.7.0.tar.gz

PS C:\Users\stephen\src> tar xzvf .\monit-0.7.0.tar.gz

...

PS C:\Users\stephen\src> cd .\monit

PS C:\Users\stephen\src\monit> foodcritic .

FC012: Use Markdown for README rather than RDoc: ./README.rdoc:1

FC023: Prefer conditional attributes: ./recipes/default.rb:5

FC027: Resource sets internal attribute: ./recipes/default.rb:14

FC043: Prefer new notification syntax: ./libraries/monitrc.rb:8

FC043: Prefer new notification syntax: ./recipes/default.rb:20

FC045: Consider setting cookbook name in metadata: ./metadata.rb:1

PS C:\Users\stephen\src\monit>

In	this	case,	the	Monit	cookbook	is	using	an	out-of-date	README	format.
Additionally,	when	dropping	off	the	default	Monit	config,	it	wraps	the	resource
in	an	if	condition	rather	than	using	the	cookbook_file only_if

metaparameter.	The	Monit	service	explicitly	sets	the	enabled	attribute	to	true,
when	this	would	be	better	set	by	using	the	action	parameter.	On	two	occasions,
deprecated	notification	syntax	is	used	and	finally,	the	name	of	the	cookbook	is
not	explicitly	set	in	the	metadata.

Let’s	fix	each	of	these	in	turn.	First,	on	closer	inspection,	there’s	already	a
README.md,	but	it	isn’t	written	in	Markdown.	Fixing	that	is	pretty	simple	in
this	case.	Now	let’s	remove	the	old	rdoc	version.

Looking	at	the	conditional	logic	in	the	default	recipe:

if platform?("ubuntu")

 cookbook_file "etcdefault/monit" do

 source "monit.default"

 owner "root"

 group "root"

 mode 0644

 end

end

The	cookbook	metadata	doesn’t	specify	which	platforms	it	supports,	but	it	seems
to	assume	based	on	which	Monit	is	available	in	the	default	package	repositories.
Rather	than	leave	it	to	guesswork,	it	would	be	better	to	remove	the	platform
check	altogether	and	explicitly	state	that	the	cookbook	supports	only	Ubuntu.	As
other	platforms	are	tested,	they	can	and	should	be	added	to	both	the	README
and	the	metadata.	While	we’re	at	it,	we	can	add	a	name	parameter	to	the
metadata,	so	if	the	name	of	the	directory	containing	the	cookbook	changes,
knife cookbook	commands	still	function.	The	metadata	now	reads:

name "monit"

maintainer "Alex Soto"

maintainer_email "apsoto@gmail.com"

license "MIT"

description "Configures monit. Originally based off the 37 Signals Cookbook."

long_description IO.read(File.join(File.dirname(__FILE__), 'README.md'))

version "0.7"

supports "ubuntu"

The	notification	syntax	is	next.	It	currently	reads:

notifies :restart, resources(:service => "monit"), :immediately

This	should	be:

notifies :restart, "service[monit]", :immediately

Finally,	let’s	change	the	service	resource	to	start	and	enable	Monit:

service "monit" do

 action [:enable, :start]

 supports [:start, :restart, :stop]

end

Having	made	these	changes,	let’s	run	Foodcritic	again:

PS C:\Users\stephen\src\monit> foodcritic .

PS C:\Users\stephen\src\monit>

We	now	have	a	clean	cookbook,	which	meets	all	the	default	Foodcritic	rules.

So	what	about	knife cookbook test?	You	get	this	for	free,	it’s	just	available
within	Chef.	We	can	test	our	irc	cookbook:

$ knife cookbook test irc

checking irc

Running syntax check on irc

Validating ruby files

Validating templates

Running	Tailor	against	our	irc	cookbook	gives	promising	results:

$ tailor **/*.rb

#--#

Tailor Summary |

#--#

File | Probs |

#--#

recipes/default.rb | 0 |

#--#

TOTAL | 0 |

#--#

However,	running	against	another	randomly	selected	cookbook	from	the

community	site	yields	complaints	about	line	length:

$ tailor **/*.rb

#--#

File:

attributes/default.rb

#

File Set:

default

#

Problems:

1.

position: 20:114

property: max_line_length

message: Line is 114 chars long, but should be 80.

2.

position: 21:99

property: max_line_length

message: Line is 99 chars long, but should be 80.

#

#--#

#--#

File:

recipes/default.rb

#

File Set:

default

#

Problems:

1.

* position: 22:99

property: max_line_length

message: Line is 99 chars long, but should be 80.

#

#--#

#--#

Tailor Summary |

#--#

File | Probs |

#--#

attributes/default.rb | 2 |

recipes/default.rb | 1 |

#--#

Error | 3 |

#--#

TOTAL | 3 |

#--#

Strainer	is	designed	to	funnel	a	range	of	disparate	tests	into	one	place.	With	a
single	configuration	file,	we	can	encapsulate	all	the	tests	we	want	to	run,	into	a
single	command	that	is	trivial	for	a	continuous	integration	server	to	run.	All	that
is	required	is	the	creation	of	a	Strainerfile	in	the	root	of	the	cookbook:

$ cat Strainerfile

Strainerfile

knife test: bundle exec knife cookbook test $COOKBOOK

foodcritic: bundle exec foodcritic -f any $SANDBOX/$COOKBOOK

tailor: bundle exec tailor $SANDBOX/$COOKBOOK/**/*.rb

Now	in	a	single	command	we	can	see	the	health	of	our	cookbook:

$ bundle exec strainer test

Straining 'irc (v0.1.0)'

knife test | bundle exec knife cookbook test irc

knife test | hometdi/.gem/ruby/1.9.3/gems/bundler-

1.3.5/lib/bundler/rubygems_integration.rb:214:in `block in replace_gem': chef is not

part of the bundle. Add it to Gemfile. (Gem::LoadError)

knife test | from hometdi/.gem/ruby/1.9.3/bin/knife:22:in `<main>'

knife test | Terminated with a non-zero exit status. Strainer assumes this

is a failure.

knife test | FAILURE!

foodcritic | bundle exec foodcritic -f any hometdi/chef-repo/cookbooks/irc

foodcritic | FC008: Generated cookbook metadata needs updating:

hometdi/chef-repo/cookbooks/irc/metadata.rb:2

foodcritic | FC008: Generated cookbook metadata needs updating:

hometdi/chef-repo/cookbooks/irc/metadata.rb:3

foodcritic | Terminated with a non-zero exit status. Strainer assumes this

is a failure.

foodcritic | FAILURE!

tailor | bundle exec tailor hometdi/chef-repo/cookbooks/irc/**/*.rb

tailor | #--

------------------#

tailor | # Tailor Summary

|

tailor | #--

------------------#

tailor | # File

| Probs |

tailor | #--

------------------#

tailor | # irc/recipes/default.rb

| 0 |

tailor | #--

------------------#

tailor | # TOTAL

| 0 |

tailor | #--

------------------#

tailor | SUCCESS!

Aha,	we	just	need	to	ensure	that	Chef	is	in	the	Gemfile.	I	know	from	experience
that	if	we	don’t	set	a	version	constraint,	Bundler	installs	a	prehistoric	version	of
Chef,	which	breaks	everything.	I	don’t	fully	understand	why,	but	in	the	spirit	of
full	disclosure,	I	tell	you.	This	sort	of	thing	will	happen—you’ll	bash	your	head
on	the	desk	for	a	few	hours	wondering	why	things	aren’t	working	as	they	should,
but	at	times	like	this,	I	think	it’s	valuable	to	reflect	on	quite	how	pioneering	this
discipline	is.	Many	of	the	ideas	we’re	putting	into	practice,	and	the	tools	we’re
using,	are	very	new.	The	community	is	responsive,	supportive,	and	fun.	The	cost
of	this	is	that	sometimes	things	don’t	always	go	as	smoothly	as	we’d	like.

Update	the	Gemfile,	include	Chef,	and	run	bundle install.	Once	the	bundle
has	installed,	we	can	run	Strainer	one	more	time:

$ bundle exec strainer test

Straining 'irc (v0.1.0)'

knife test | bundle exec knife cookbook test irc

knife test | checking irc

knife test | Running syntax check on irc

knife test | Validating ruby files

knife test | Validating templates

knife test | SUCCESS!

foodcritic | bundle exec foodcritic -f any hometdi/chef-repo/cookbooks/irc

foodcritic | FC008: Generated cookbook metadata needs updating:

hometdi/chef-repo/cookbooks/irc/metadata.rb:2

foodcritic | FC008: Generated cookbook metadata needs updating:

hometdi/chef-repo/cookbooks/irc/metadata.rb:3

foodcritic | Terminated with a non-zero exit status. Strainer assumes this

is a failure.

foodcritic | FAILURE!

tailor | bundle exec tailor hometdi/chef-repo/cookbooks/irc/**/*.rb

tailor | #--

------------------#

tailor | # Tailor Summary

|

tailor | #--

------------------#

tailor | # File

| Probs |

tailor | #--

------------------#

tailor | # irc/recipes/default.rb

| 0 |

tailor | #--

------------------#

tailor | # TOTAL

| 0 |

tailor | #--

------------------#

tailor | SUCCESS!

Our	irc	cookbook	has	failed	on	FC008.	Fixing	this	is	left	as	an	exercise	for	the
reader!

Advantages	and	Disadvantages
The	advantage	of	this	set	of	tools	is	that	they	are	absolutely	the	lowest	barrier	to
entry	possible.	They	can	be	built	right	into	a	simple	continuous	integration	or
continuous	delivery	pipeline.	For	an	example	of	how	simple	this	is	to	achieve
with	a	public	service	such	as	TravisCI,	see	Nathen	Harvey’s	blog	posts	on
Foodcritic	and	TravisCI	and	Knife	Test	and	TravisCI.

Once	you’ve	got	the	discipline	of	running	regular	tests,	checking	your	style	and
syntax	against	community	standards,	you	can	start	to	layer	in	more	complex
testing.

The	only	disadvantage	is	that	there	can	be	some	tension	in	finding	a	community
style	that	suits	all	the	members	of	your	team,	and	then	enforcing	it.	Thankfully,
Tailor	is	pretty	much	infinitely	configurable,	so	as	long	as	you	can	find	a	style
that	you	all	agree	on,	and	isn’t	massively	at	odds	with	the	rest	of	the	Ruby	or
Chef	community,	you’re	probably	going	to	derive	benefit	from	monitoring,
measuring,	and	enforcing	adherence	to	that	style.

Summary	and	Conclusion

http://bit.ly/16fLLXy
http://bit.ly/19fRcYp

If	you	do	nothing	else,	do	this.	The	cost	of	implementation	is	low,	and	the	return
on	investment	is	high.	Get	yourself	set	up	with	the	basics	of	a	continuous
integration	pipeline,	where	your	static	analysis	and	linting	tests	are	run	on	every
commit,	and	then	start	to	layer	on	more	advanced	testing.

To	Conclude
The	workflow	and	tooling	recommended	in	this	chapter	represent	a	snapshot	in
time.	It	is	very	much	my	hope	that	by	emphasizing	the	philosophical	aspects	of
test-driven	infrastructure	and	the	rationale	behind	the	current	selection	of	tools,
there	is	value	in	this	book	that	extends	way	beyond	a	specific	set	of
recommendations.

However,	to	summarize,	my	current	recommended	toolchain	and	workflows	are,
in	brief,	as	follows:
1.	 Build	upon	a	solid	foundation	by	using	a	combination	of	Berkshelf	and

Test	Kitchen	to	orchestrate	and	manage	the	infrastructure	and	cookbooks
that	build	it.

2.	 Write	acceptance	tests	first,	using	Gherkin	as	the	requirements	capturing
language,	Cucumber	as	the	test	runner,	and	Leibniz	as	the	interface	to	the
provisioning	engine	of	Test	Kitchen	and	Berkshelf.

3.	 Write	integration	tests	next,	using	Test	Kitchen	as	the	test	runner,	and	using
whichever	test	framework	most	suits	your	experience	and	skillset.

4.	 Write	unit	tests	last,	using	Chefspec,	and	think	seriously	about	the	art	and
science	of	unit	testing,	and	making	appropriate	use	of	RSpec’s	mocking
and	stubbing	capabilities	to	keep	tests	isolated	and	fast.

5.	 Wrap	all	your	cookbook	development	endeavors	in	a	process	that
reinforces	agreed	standards	of	code	quality	and	style,	using	Strainer	as	the
collecting	and	running	mechanism,	and	using	Knife	Cookbook	Test,
Foodcritic,	and	Tailor.

6.	 Automate	the	running	of	your	static,	linting,	and	unit	tests,	using	Guard,
and	also	a	form	of	continuous	integration	such	as	Travis	CI	or	Jenkins.

7.	 Automate	the	running	of	cookbook	integration	tests	by	driving	Test
Kitchen	from	within	a	continuous	integration	system	such	as	Jenkins,	or	if
using	an	appropriate	driver,	Travis.

8.	 Treat	your	acceptance	tests	as	a	foundation	for	monitoring	the	day-to-day
behavior	of	your	built	systems,	plugging	relative	components	into	your
monitoring	and	alerting	systems.

[6]	We	can	do	this	with	Ruby	easily	enough,	too:	ruby -e "require 'json';
JSON.pretty_generate(IO.read('hometdi/.berkshelf/config.json'\))"

Chapter	8.	Epilogue

This	is	a	substantial	book,	covering	a	large	and	rapidly	expanding	subject	area.
Constraints	have	been	imposed	at	various	stages	for	purely	practical	reasons.	In
this	final	section,	I	want	to	enumerate	very	briefly	what	some	of	these
constraints	are,	what	has	been	specifically	left	out	of	scope,	what	I	hope	to	be
able	to	include	in	further	incarnations,	and	where	additional	guidance,
documentation,	and	support	may	be	found.

An	immediate	constraint	is	that	while	I	had	every	intention	of	making	this	book
100%	compatible	with	Microsoft	Windows,	doing	so	would	have	expanded	the
examples	and	setup	by	a	significant	factor.	It’s	not	that	Windows	is	in	any	way	a
less	supported	citizen,	it’s	just	that	there	are	nuances	involved,	both	in	terms	of
its	automation	as	a	server	platform	and	its	use	as	a	development	platform,	which
led	me	to	focus	my	attentions	on	Linux	as	the	primary	use	case	in	this	text.	As	a
technologist,	I	am	very	enthusiastic	about	the	Microsoft	technology	stack,	and	as
a	consultant	and	trainer,	I	have	worked	extensively	with	Windows	infrastructure
automation.	As	an	area	of	interest,	it	is	something	I	intend	to	devote	more
dedicated	time	and	material	to	in	the	near	future.

An	explicit	and	hopefully	obvious	constraint	is	that	this	is	a	practical	and
philosophical	book	about	the	process	by	which	we	develop	infrastructure	code.
It’s	not	a	complete	introduction	or	tutorial	for	Chef,	nor	is	it	an	advanced	or
comprehensive	discussion	of	the	framework.	That	said,	I	have	explicitly
assumed	absolutely	no	familiarity	with	the	framework,	and	the	reader	who	works
her	way	through	the	book	will	find	herself	rapidly	able	to	be	effective	in	Chef.	In
that	respect,	the	present	volume	serves	admirably	well	as	an	introduction	to	Chef
when	used	alongside	the	existing	documentation	and	materials	provided	by	both
Opscode	and	the	community.

There	are	areas	to	which,	owing	to	the	constraints	of	time	and	space,	I	was
unable	to	devote	attention.	The	whole	process	by	which	we	automate	the	running
of	tests	and	their	feedback—the	building	of	a	continuous	integration	system,	and
the	path	towards	a	build	pipeline	for	infrastructure	code—is	a	highly	relevant

and	most	fascinating	subject.	Opscode	is	increasingly	positioning	itself	as	a
specialist	in	the	field	of	continuous	delivery,	and	its	consultants	have	valuable
and	unique	insights	to	share.	This	is	certainly	an	area	where	I	intend	to	focus
time	in	both	research	and	writing,	and	I	would	not	be	surprised	to	see
contributions	to	the	discussions	and	literature	on	the	subject	coming	from
Opscode—either	formally	or	informally.

Similarly,	I	feel	some	of	the	social	aspects	of	agile	and	lean	development	are
very	highly	relevant	to	the	discipline	of	infrastructure	as	code.	I	would	love	to
have	been	able	to	discuss	and	demonstrate	code	review	processes	using,	for
example,	Gerrit	or	Reviewboard,	and	to	explore	some	of	the	principles	around
which	I	feel	effective	teams	organize,	such	as	pair	programming	and	flow-based
workflow	management.

The	publishing	industry	has	changed	beyond	all	recognition	in	the	last	20	years.
The	emergence	of	digital	delivery	and	multimedia-enriched	content	has	made	the
task	of	an	author	somewhat	different.	In	my	heart,	I	believe	that	writing	(and
publishing)	exists	because	there	are	problems	to	be	solved,	and	people	who	want
to	help	solve	them.	The	fact	that	we	can’t	solve	all	these	problems	in	a	single
book,	and	the	fact	that	the	present	problem	domain	is	so	volatile,	should	not
discourage	us.	As	an	author,	I	am	committed	to	continue	to	educate,	entertain,
and	synthesize,	so	where	I’ve	been	unable	to	cover	all	that	I	would	have	liked	to,
I	am	confident	that	content	on	these	subjects	will,	nevertheless,	be	forthcoming.

This	book	includes	a	comprehensive	bibliography	and	has	referenced	and
encouraged	the	user	to	make	use	of	the	excellent	community	in	which	the	Chef
framework	is	developed.	I	would	urge	the	reader	to	engage	with	the	community,
via	the	mailing	lists,	IRC,	the	frequent	conferences	and	user	groups,	and	by
creating	and	consuming	online	content.	It’s	my	sincere	hope	that	this	book	has
whet	your	appetite,	and	that	you	will	add	your	voice	to	the	conversation.

Appendix	A.	Bibliography

There	are	many	excellent	books	on	test-driven	and	behavior-driven
development,	plus	several	on	the	tools	that	underpin	the	approaches	discussed	in
this	book.	Here’s	a	selection	of	books	that	have	informed	my	own	views,	and
books	that	will	reward	further	study.

Books	on	TDD	and	ATDD
Test-Driven	Development:	By	Example	by	Kent	Beck	(Addison-Wesley
Professional,	2002)

Test-Driven	Development:	A	Practical	Guide	by	David	Astels	(Prentice	Hall,
2003)

Agile	Testing:	A	Practical	Guide	for	Testers	and	Agile	Teams	by	Lisa	Crispin;
Janet	Gregory	(Addison-Wesley	Professional,	2008)

Lean-Agile	Acceptance	Test-Driven	Development:	Better	Software	Through
Collaboration	by	Ken	Pugh,	Aslak	Hellesoy,	et	al.(Addison-Wesley
Professional,	2010)

ATDD	by	Example:	A	Practical	Guide	to	Acceptance	Test-Driven
Development	by	Markus	Gärtner	(Addison-Wesley	Professional,	2012)

Specification	by	example:	How	successful	teams	deliver	the	right	software	by
Adžić,	Gojko	(Manning,	2011)

Bridging	the	communication	gap:	Specification	by	Example	and	Agile
Acceptance	Testing,	by	Adžić,	Gojko	(Neuri	Ltd.,	2009)

Books	and	Articles	on	BDD
Instant	Cucumber	BDD	How-to	by	Wayne	Ye	(Packt	Publishing,	2013)

Introducing	BDD	by	Dan	North

What’s	in	a	story?	by	Dan	North

Books	on	Agile	Testing	in	General
Beautiful	Testing,	ed.	by	Adam	Goucher	and	Tim	Riley	(O’Reilly,	2009)

Impact	Mapping:	Making	a	Big	Impact	with	Software	Products	and	Projects
by	Gojko	Adzic,	Marjory	Bisset,	and	Nikola	Korac	(Provoking	Thoughts,
2012)

Chef	Articles	and	Presentations
Guide	on	Authoring	Cookbooks

Slideshare:	The	Berkshelf	Way

Books	on	Tools
The	RSpec	Book	by	David	Chelimsky	et	al.	(Pragmatic	Bookshelf,	2010)

Learning	GNU	Emacs,	Third	Edition	by	Debra	Cameron,	James	Elliott,	Marc
Loy,	Eric	S.	Raymond,	and	Bill	Rosenblatt	(O’Reilly,	2004)

Version	Control	with	Git,	Second	Edition	by	Jon	Loeliger	and	Matthew
McCullough	(O’Reilly,	2012)

Jenkins:	The	Definitive	Guide	by	John	Ferguson	Smart	(O’Reilly,	2011)

Jenkins	Continuous	Integration	Cookbook	by	Alan	Berg	(Packt	Publishing,
2012)

Books	on	Ruby
The	Ruby	Way:	Solutions	and	Techniques	in	Ruby	Programming,	Second
Edition	by	Hal	Fulton	and	Russ	Olsen	(Addison-Wesley	Professional,	2006)

http://dannorth.net/introducing-bdd/
http://dannorth.net/whats-in-a-story/
http://vialstudios.com/guide-authoring-cookbooks.html
http://www.slideshare.net/resetexistence/the-berkshelf-way-21787019
http://shop.oreilly.com/product/9780596006488.do
http://shop.oreilly.com/product/0636920022862.do
http://shop.oreilly.com/product/0636920010326.do

(A	third	edition	is	scheduled	for	publication	in	December	2013.)

Why	the	Lucky	Stiff’s	(Poignant)	Guide	to	Ruby

Programming	Ruby,	Second	Edition	by	Dave	Thomas,	with	Chad	Fowler	and
Andy	Hunt	(Pragmatic	Programmers,	2005)

The	Ruby	Programming	Language	by	David	Flanagan	and	Yukihiro
Matsumoto	(O’Reilly,	2008)

Eloquent	Ruby	by	Russ	Olsen	(Addison-Wesley	Professional,	2011)

The	Well-Grounded	Rubyist	by	David	A.	Black	(Manning	Publications,	2009)

Metaprogramming	Ruby	by	Paolo	Perrotta	(Pragmatic	Bookshelf,	2010)

Design	Patterns	in	Ruby	by	Russ	Olsen	(Addison-Wesley	Professional,	2007)

Practical	Object-Oriented	Design	in	Ruby	by	Sandi	Metz	(Addison-Wesley
Professional,	2012)

Books	on	Bash	and	Shell	Scripting
Classic	Shell	Scripting	by	Arnold	Robbins	and	Nelson	H.	F.	Beebe	(O’Reilly,
2005)

Shell	Scripting	by	Steve	Parker	(Wrox,	2011)

Learning	the	bash	Shell	(A	Nutshell	Handbook)	by	Cameron	Newham	and
Bill	Rosenblatt	(O’Reilly,	1998)

bash	Cookbook	by	Carl	Albing,	JP	Vossen,	and	Cameron	Newham	(O’Reilly,
2007)

See	also	Bash	Guide	(excellent	for	beginners)	and	BashFAQ	(for
FAQ/cookbooks)

General	Programming	Books

http://mislav.uniqpath.com/poignant-guide/book/
http://shop.oreilly.com/product/9780596516178.do
http://shop.oreilly.com/product/9780596005955.do
http://shop.oreilly.com/product/9780596009656.do
http://shop.oreilly.com/product/9780596526788.do
http://mywiki.wooledge.org/BashGuide
http://mywiki.wooledge.org/BashFAQ

Extreme	Programming	Explained	by	Kent	Beck	and	Cynthia	Andres
(Addison	Wesley,	First	edition,	1999,	and	Second	edition,	2004)

Mastering	Regular	Expressions	by	Jeffrey	E.F.	Friedl	(O’Reilly,	1997)

Clean	Code:	A	Handbook	of	Agile	Software	Craftsmanship	by	Robert	C.
Martin	(Prentice	Hall,	2008)

Other	Great	Books
Web	Operations,	ed.	John	Allspaw	and	Jesse	Robbins	(O’Reilly,	2010)

Continuous	Delivery	by	Jez	Humble	and	David	Farley	(Addison	Wesley,
2010)

The	Art	of	Capacity	Planning:	Scaling	Web	Resources	by	John	Allspaw
(O’Reilly,	2008)

The	Art	of	Agile	Development	by	James	Shore	(O’Reilly,	2007)

Domain-Driven	Design:	Tackling	Complexity	in	the	Heart	of	Software	by	Eric
Evans	(Addison-Wesley,	2003)

Kanban:	Successful	Evolutionary	Change	for	Your	Technology	Business	by
David	Anderson	(Blue	Hole	Press,	2010)

Growing	Object-Oriented	Software,	Guided	by	Tests	by	Steve	Freeman	and
Nat	Pryce	(Addison-Wesley,	2009)

Exploring	Requirements:	Quality	Before	Design	by	Donald	C.	Gause	and
Gerald	M.	Weinberg	(Dorset	House	Publishing,	2011)

Lean	Software	Development:	An	Agile	Toolkit	by	Mary	Poppendieck	and	Tom
Poppendieck	(Addison-Wesley	Professional,	2003)

User	Stories	Applied:	For	Agile	Software	Development	by	Mike	Cohn
(Addison-Wesley,	2004)

Refactoring:	Improving	the	Design	of	Existing	Code	by	Martin	Fowler,	Kent
Beck,et	al.(Addison-Wesley,	1999)

http://shop.oreilly.com/product/9780596528126.do
http://shop.oreilly.com/product/0636920000136.do
http://shop.oreilly.com/product/9780596518585.do
http://shop.oreilly.com/product/9780596527679.do

Agile	Software	Development,	Principles,	Patterns,	and	Practices	by	Robert
C.	Martin	(Pearson,	2011)

The	Visible	Ops	Handbook	by	Kevin	Behr,	Gene	Kim	and	George	Spafford
(IT	Process	Institute,	2005)

Introduction	to	Real	ITSM	by	Rob	England	(CreateSpace,	2008)

Devops	for	Developers	by	Michael	Hüttermann	(Apress,	2012)

High	Performance	Web	Sites:	Essential	Knowledge	for	Front-End	Engineers
by	Steve	Souders	(O’Reilly,	2007)

Even	Faster	Web	Sites:	Performance	Best	Practices	for	Web	Developers	by
Steve	Souders	(O’Reilly,	2009)

Scalable	Internet	Architectures	by	Theo	Schlossnagle	(Developer’s	Library,
2007)

Release	It!:	Design	and	Deploy	Production-Ready	Software	by	Michael	T.
Nygard	(Pragmatic	Programmers,	2007)

Building	Scalable	Web	Sites:	Building,	Scaling,	and	Optimizing	the	Next
Generation	of	Web	Applications	by	Cal	Henderson	(O’Reilly,	2006)

Cloud	Application	Architectures:	Building	Applications	and	Infrastructure	in
the	Cloud	by	George	Reese	(Theory	in	Practice)	(O’Reilly,	2009)

High	Performance	MySQL:	Optimization,	Backups,	Replication,	and	More	by
Baron	Schwartz,	Peter	Zaitsev	et	al.	(O’Reilly,	2008)

Continuous	Delivery:	Reliable	Software	Releases	through	Build,	Test,	and
Deployment	Automation	by	Jez	Humble	David	Farley	(Addison-Wesley
Signature	Series,	2010)

MySQL	High	Availability:	Tools	for	Building	Robust	Data	Centres	by	Charles
Bell,	Mats	Kindahl	and	Lars	Thalmann	(O’Reilly,	2010)

Continuous	Integration	by	Paul	M	Duvall,	Steve	Matyas	and	Andrew	Glover
(Addison-Wesley,	2007)

http://shop.oreilly.com/product/9780596529307.do
http://shop.oreilly.com/product/9780596522315.do
http://shop.oreilly.com/product/9780596102357.do
http://shop.oreilly.com/product/9780596156374.do
http://shop.oreilly.com/product/0636920022343.do
http://shop.oreilly.com/product/0636920026907.do

Lean	IT	by	Stephen	C	Bell	and	Michael	A	Orzen	(Productivity	Press,	2010)

Management	Challenges	for	the	21st	Century	by	Peter	F.	Drucker
(Butterworth-Heinemann,	2007)

Index

A	NOTE	ON	THE	DIGITAL	INDEX
A	link	in	an	index	entry	is	displayed	as	the	section	title	in	which	that	entry	appears.
Because	some	sections	have	multiple	index	markers,	it	is	not	unusual	for	an	entry	to	have
several	links	to	the	same	section.	Clicking	on	any	link	will	take	you	directly	to	the	place	in
the	text	in	which	the	marker	appears.

Symbols

$lines	variable,	Introducing	Bats

$output	variable,	Introducing	Bats

$status	variable,	Introducing	Bats

@something	variables,	Templates

[]	method,	Arrays

A

abstraction,	The	Principles	of	Infrastructure	as	Code

acceptance	testing,	Acceptance	Testing

advantages/disadvantages	of,	Advantages	and
Disadvantages–Advantages	and	Disadvantages

application	cookbooks	and,	Getting	Started

building	automated,	Acceptance	Testing

Cucumber	and,	Acceptance	Testing

customer-facing,	Acceptance	Testing

with	Cucumber/Leibniz,	Overview–Summary	and	Conclusion

actions,	Discussion

Agile	software	development	process,	A	Very	Brief	History	of	Agile	Software
Development–Evolving	design

behavior-driven	development,	Behavior-Driven	Development

Cucumber	and,	Cucumber:	Acceptance	Testing	for	the
Masses–Cucumber:	Acceptance	Testing	for	the	Masses

test-driven	development	and,	Test-Driven	Development

Agiledox,	RSpec:	The	Transition	to	BDD

agility,	The	Origins	of	Infrastructure	as	Code

Amazon,	The	Origins	of	Infrastructure	as	Code

application	cookbooks,	Getting	Started

arrays,	More	About	Methods,	Arrays–Arrays

attributes,	Discussion,	Discussion,	Templates

attr_accessor	method,	Classes

automated	acceptance	tests,	Acceptance	Testing

automation,	The	Origins	of	Infrastructure	as	Code

B

base	roles,	Discussion,	Discussion

Bats,	Introducing	Bats

integration	testing	with,	Integration	Testing:	Test	Kitchen	with
Serverspec	and	Bats–Templates

variables,	Introducing	Bats

BDD	(Behavior	Driven	Development),	The	Principles	of	TDD	and
BDD–Cucumber:	Acceptance	Testing	for	the	Masses

Agile	software	development	process,	A	Very	Brief	History	of	Agile
Software	Development–Evolving	design

Cucumber,	Cucumber:	Acceptance	Testing	for	the	Masses–Cucumber:
Acceptance	Testing	for	the	Masses

risk,	reducing	with,	Reducing	risk

with	RSpec,	RSpec:	The	Transition	to	BDD–RSpec:	The	Transition	to
BDD

before	block,	RSpec:	The	Transition	to	BDD

berks	apply	command,	Berkshelf	and	Chef	environments

Berksfile,	Overview

Berkshelf,	Overview–Summary	and	Conclusion,	Overview

advantages/disadvantages	of,	Advantages	and	Disadvantages

and	Chef	environments,	Berkshelf	and	Chef	environments–Berkshelf
and	Chef	environments

installing,	Getting	Started–Example

Minitest	Handler	and,	Getting	Started–Getting	Started

usage,	Example

Vagrant	and,	Berkshelf	and	Vagrant–Berkshelf	and	Vagrant

binstubs,	Bundler

Bitbucket,	Discussion

blocks,	Arrays,	RSpec:	The	Transition	to	BDD

bundler	(Ruby),	Bundler–Bundler

Busser	architecture,	Summary	and	Conclusion

bussers,	Integration	Testing:	Test	Kitchen	with	Serverspec	and	Bats

C

capture	groups,	Cucumber:	Acceptance	Testing	for	the	Masses

case	statements,	Conditional	logic

CentOS,	Overview

CFengine,	Introducing	Serverspec

challenges,	The	Risks	of	Infrastructure	as	Code

Chef,	An	Introduction	to	Chef–Discussion

API,	The	Chef	API

as	tool,	The	Chef	tool

attributes	system,	Discussion

commands,	Discussion

community,	The	Chef	community

community	cookbook	site,	Discussion–Discussion

configuration	files,	Discussion–Discussion

configuration	information,	Discussion

cookbooks,	Discussion–Discussion

developing	infrastructure,	automation	of,	Discussion–Discussion

environments,	Berkshelf	and,	Berkshelf	and	Chef
environments–Berkshelf	and	Chef	environments

framework,	The	Chef	framework

git,	installing,	Objectives

Hosted,	The	Chef	API

HostedChef,	Discussion–Discussion

installing,	Objectives–Discussion

IRC	client,	installing,	Objectives–Worked	Example

Private,	The	Chef	API

recipes,	Discussion–Discussion

resources	in,	Discussion–Discussion

Ruby,	installing,	Objectives–Worked	Example

Server,	Discussion–Discussion

Solo,	Discussion–Discussion

user	resource,	Discussion

users,	installing,	Objectives–Discussion

Vagrant,	installing,	Exercise	3:	Vagrant–Discussion

VirtualBox,	installing,	Exercise	2:	Virtualbox–Discussion

Chef	Handler	Cookbook,	Discussion

Chef	Runners,	Example

Chef	Server,	Discussion–Discussion

forms,	Discussion

Hosted	Chef,	Discussion

open	source,	Discussion

Private	Chef,	Discussion

Chef	Shell,	as	REST	API,	Discussion

chef	users	mailing	list,	An	Introduction	to	Chef

chef-apply,	Discussion,	Discussion,	Discussion

chef-client,	The	Chef	tool

chef-data	repository,	Discussion

chef-shell	debugging	console,	The	Chef	tool

chef-solo,	The	Chef	tool,	Discussion,	Discussion–Discussion

Chefspec,	Integration	Testing,	Overview–Summary	and	Conclusion

advantages/disadvantages	of,	Advantages	and
Disadvantages–Advantages	and	Disadvantages

installing,	Getting	Started

usage,	Example–Example

Class	block,	Classes

class	variables,	Variables

classes,	Classes–Classes

closures,	Arrays

code	review,	The	Risks	of	Infrastructure	as	Code,	Professionalism

code	standards,	The	Risks	of	Infrastructure	as	Code

collective	ownership,	The	Risks	of	Infrastructure	as	Code

Colorize,	Bundler

commands,	Discussion

Test	Kitchen,	Introducing	Serverspec

components,	reusable,	The	Principles	of	Infrastructure	as	Code

composability,	The	Principles	of	Infrastructure	as	Code

conditional	logic,	Conditional	logic–Conditional	logic

truthiness	in	Ruby,	Truthiness

configuration

information,	Discussion

management	tools,	The	Origins	of	Infrastructure	as	Code

configuration	files,	Discussion–Discussion

constants,	Identifiers,	Constants

constraints,	Feedback	of	Results,	Epilogue

constructors,	Classes

continuous	integration,	Feedback	of	Results,	Summary	and	Conclusion

converge	command,	Getting	Started

convergence,	The	Principles	of	Infrastructure	as	Code

conversations,	Behavior-Driven	Development

cookbooks,	The	Chef	community,	Discussion–Discussion

community	cookbook	site,	Discussion–Discussion

finding/installing,	Discussion–Discussion

Nginx,	Getting	Started

Opscode,	Discussion

uploading,	Discussion

VirtualBox,	Discussion

cookbook_versions	method,	Berkshelf	and	Chef	environments

cooperation,	The	Principles	of	Infrastructure	as	Code

create	command,	Getting	Started

Cucumber,	Cucumber:	Acceptance	Testing	for	the	Masses–Cucumber:
Acceptance	Testing	for	the	Masses,	Acceptance	Testing

advantages/disadvantages	of,	Advantages	and
Disadvantages–Advantages	and	Disadvantages

Leibniz	and,	Overview–Summary	and	Conclusion

usage,	Example–Advantages	and	Disadvantages

Cucumber-Chef,	A	Test-Driven	Infrastructure	Framework,	Overview

customer-facing	acceptance	tests,	Acceptance	Testing

CustomInk,	Overview

D

Debian-derived	systems,	Overview

declaration,	The	Principles	of	Infrastructure	as	Code

default	directories,	Advantages	and	Disadvantages

default	environments,	Berkshelf	and	Chef	environments

design,	The	Risks	of	Infrastructure	as	Code

destory	command,	Getting	Started

developing	infrastructure,	The	Chef	framework

disaster	recovery,	The	Origins	of	Infrastructure	as	Code

download	subcommand,	Discussion

DSL,	Discussion

methods,	Cucumber:	Acceptance	Testing	for	the	Masses

E

each	methods,	Getting	Started

efficient	specification,	Advantages	and	Disadvantages

Elastic	Compute	Cloud	(EC2),	The	Origins	of	Infrastructure	as	Code

elsif	statements,	Conditional	logic

Emacs,	Discussion

Embedded	Ruby,	Templates

enforcing	quality,	Feedback	of	Results

environments,	Berkshelf	and	Chef	environments

equality	operator,	Operators

Erlang,	The	Chef	API

Etsy,	Overview

eval	function,	Grammar	and	Vocabulary

exercises,	format	of,	An	Introduction	to	Chef

expression	result	substitution,	Templates

extensibility,	The	Principles	of	Infrastructure	as	Code

extracting	results,	Feedback	of	Results

eXtreme	programming,	Cucumber:	Acceptance	Testing	for	the	Masses

F

families,	Discussion

features,	Overview

supported,	Discussion

flexibility,	The	Principles	of	Infrastructure	as	Code

guaranteeing,	Professionalism

protecting,	Professionalism

flow	control	(Ruby),	Conditional	logic–Conditional	logic

truthiness	and,	Truthiness

Foodcritic,	Overview

installing,	Getting	Started–Getting	Started

format	of	exercises,	An	Introduction	to	Chef

Fowler,	Martin,	Test-Driven	Infrastructure	Should	Be	Automated

Freenode,	The	Chef	community

functional	harm,	Professionalism

G

Gemfile,	Bundler

git,	installing,	Objectives

GitHub,	The	Chef	community

givens,	Cucumber:	Acceptance	Testing	for	the	Masses,	Cucumber:
Acceptance	Testing	for	the	Masses

global	variables,	Variables

green	phase,	Testing	Workflow

grep	method,	More	About	Methods

guaranteeing	flexibility,	Professionalism

H

harm

functional,	Professionalism

structural,	Professionalism

hashes,	Hashes–Hashes

helper	methods,	memoized,	Example

hooks,	RSpec:	The	Transition	to	BDD

Hosted	Chef,	The	Chef	API,	Worked	Example,	Discussion–Discussion

using,	Discussion

I

idempotence,	The	Principles	of	Infrastructure	as	Code

identifiers,	Identifiers

constants,	Identifiers

keywords,	Identifiers

method	names,	Identifiers

variables,	Identifiers

include_recipe	resource,	Overview

indexing,	The	Chef	API

infrastructure	as	code,	Underpinning	Philosophy–Professionalism

challenges	of,	The	Risks	of	Infrastructure	as	Code

code	review,	The	Risks	of	Infrastructure	as	Code

code	standards,	The	Risks	of	Infrastructure	as	Code

collective	ownership,	The	Risks	of	Infrastructure	as	Code

design,	The	Risks	of	Infrastructure	as	Code

development,	The	Chef	framework

focusing	attention	on,	The	Risks	of	Infrastructure	as	Code

history	of,	The	Origins	of	Infrastructure	as	Code–The	Origins	of
Infrastructure	as	Code

principles	of,	The	Principles	of	Infrastructure	as	Code–The	Principles	of
Infrastructure	as	Code

professionalism	and,	Professionalism–Professionalism

refractoring,	The	Risks	of	Infrastructure	as	Code

risks	of,	The	Risks	of	Infrastructure	as	Code

side	effects	of,	The	Risks	of	Infrastructure	as	Code

testing,	The	Risks	of	Infrastructure	as	Code

tools	for,	Infrastructure	as	Code

infrastructure	development,	automation	of,	Discussion–Discussion

infrastructure	tests,	Test-Driven	Infrastructure	Should	Be	Automated

inheritances,	Bundler

initialize	method,	Classes,	Minitest:	Unit	Testing	for	the	21st	Century

install	subcommand,	Discussion

instance	variables,	Variables

instances,	Getting	Started

integration	testing,	Integration	Testing

continuous,	Feedback	of	Results

templates,	Templates–Templates

with	Bats,	Integration	Testing:	Test	Kitchen	with	Serverspec	and
Bats–Templates

with	Minitest	Handler,	Overview–Summary	and	Conclusion

with	Serverspec,	Integration	Testing:	Test	Kitchen	with	Serverspec	and
Bats–Templates

Interactive	Ruby,	Grammar	and	Vocabulary

irb,	Grammar	and	Vocabulary

IRC	channels,	The	Chef	community

J

Jacob,	Adam,	The	Principles	of	Infrastructure	as	Code,	Test-Driven
Infrastructure	Should	Be	Side-Effect	Aware

Jeffries,	Ron,	Test-Driven	Infrastructure	Should	Be	Continuously
Integrated

JSON-oriented	document	datastores,	The	Chef	API

JUnit,	Minitest:	Unit	Testing	for	the	21st	Century

K

keys,	Discussion

keywords,	Identifiers,	Keywords

kitchen	converge	command,	Integration	Testing:	Test	Kitchen	with
Serverspec	and	Bats,	Introducing	Serverspec

kitchen	create	command,	Introducing	Serverspec

kitchen	destroy	command,	Introducing	Serverspec

kitchen	list	command,	Introducing	Serverspec

kitchen	setup	command,	Introducing	Serverspec

kitchen	verify	command,	Introducing	Serverspec

knife,	The	Chef	tool,	Discussion

client	list,	Discussion

knife	audit	command,	Getting	Started

knife	cookbook	site	download,	Discussion

knife	cookbook	site	install	command,	Discussion

knife	cookbook	test,	Getting	Started

knife	environment	edit	command,	Berkshelf	and	Chef	environments

knife	node	edit	command,	Berkshelf	and	Chef	environments

L

Leibniz,	Overview–Summary	and	Conclusion

advantages/disadvantages	of,	Advantages	and
Disadvantages–Advantages	and	Disadvantages

usage,	Example–Advantages	and	Disadvantages

let	method,	Example

lighttpd,	Example

Lightweight	Resource	Providers	(LWRPs),	Discussion

linting	tools,	Static	Analysis	and	Linting	Tools–Summary	and	Conclusion

advantages/disadvantages	of,	Advantages	and	Disadvantages

usage,	Example–Example

LISP,	What	Is	Ruby?

local	variables,	Variables

localhosts,	Discussion,	Templates

LWRP,	Overview

M

mailing	lists,	An	Introduction	to	Chef,	The	Chef	community

mainstream	TDI,	The	Pillars	of	Test-Driven	Infrastructure

maintenance,	Exercise	3:	Vagrant

manage_home	method,	Discussion

maps,	Arrays

marker	roles,	Getting	Started

Martin,	Robert	C.,	Professionalism

MASCOT,	for	test-driven	infrastructure,	Test-Driven	Infrastructure:	A
Conceptual	Framework

match	function,	Introducing	Serverspec

memoized	help	method,	Example

metadata,	Example

metaparameters,	Templates

methods,	Discussion

names	for,	Identifiers,	Method	names

Minimum	Marketable	Features,	Cucumber:	Acceptance	Testing	for	the
Masses

Minimum	Viable	Products,	Cucumber:	Acceptance	Testing	for	the	Masses

Minitest,	Minitest:	Unit	Testing	for	the	21st	Century–Minitest:	Unit	Testing
for	the	21st	Century,	RSpec:	The	Transition	to	BDD

Handler,	Integration	Testing

Minitest	Chef	Handler,	Overview

Minitest	Handler,	Overview,	Integration	Testing:	Test	Kitchen	with
Serverspec	and	Bats,	Overview–Summary	and	Conclusion

advantages/disadvantages	of,	Advantages	and	Disadvantages

Berkshelf	and,	Getting	Started–Getting	Started

Test	Kitchen	and,	Minitest	Handler	with	Test	Kitchen

usage,	Example–Advantages	and	Disadvantages

mistakes,	Advantages	and	Disadvantages

mixin	facility,	Getting	Started

mixins,	Classes,	Getting	Started

modifying	recipes,	Getting	Started

modularity,	The	Principles	of	Infrastructure	as	Code

modules,	Getting	Started

Monit,	Example

Motherbrain,	Summary	and	Conclusion

N

names,	Classes,	Discussion

netcat,	Getting	Started

netcat	command,	Introducing	Serverspec

network-enabled	tools,	The	Chef	tool

chef-apply,	The	Chef	tool

chef-client,	The	Chef	tool

chef-shell,	The	Chef	tool

chef-solo,	The	Chef	tool

knife,	The	Chef	tool

Ohai,	The	Chef	tool

Nginx	cookbook,	Getting	Started

nmap	commands,	Introducing	Serverspec

node	attributes,	Discussion

data,	Discussion

node	convergence,	Discussion

nodes,	Discussion

North,	Dan,	Cucumber:	Acceptance	Testing	for	the	Masses

Notepad,	Discussion

notifies	metaparameter,	Templates

O

object-oriented	language,	Methods	and	Objects

objections,	Advantages	and	Disadvantages

Ohai,	The	Chef	tool,	Discussion

open	source	Chef	Server,	Discussion

operands,	Operators

operators	(Ruby),	Operators–Operators

Opscode,	The	Principles	of	Infrastructure	as	Code,	Discussion,	Worked
Example,	Discussion

Bento	boxes,	Discussion

cookbooks,	Discussion

OPSCODE_USER	environment	variable,	Discussion

organization,	Discussion

ORGNAME	variable,	Discussion

P

packaging	systems,	Discussion

parameter	attributes,	Discussion

passing	variables,	Templates

pattern	matching	operator,	Operators

Perl,	What	Is	Ruby?

philosophical	points,	Underpinning	Philosophy

pkgsrc,	Discussion

platform	roles,	Discussion

platforms,	Getting	Started

Player,	Gary,	Test-Driven	Infrastructure:	A	Conceptual	Framework

policy	setting,	Discussion

print	function,	Grammar	and	Vocabulary

Private	Chef,	The	Chef	API,	Discussion

protecting	flexibility,	Professionalism

providers,	Discussion,	Discussion,	Discussion

publishing	industry,	Epilogue

Puppet,	Introducing	Serverspec

push	jobs,	Summary	and	Conclusion

Q

quality,	Feedback	of	Results

R

Rails	application,	Getting	Started

read	function,	Grammar	and	Vocabulary

reassurance,	The	Origins	of	Infrastructure	as	Code

receivers,	Methods	and	Objects,	More	About	Methods

recipes,	The	Chef	community,	Discussion–Discussion

modifying,	Getting	Started

red	phase,	Testing	Workflow

refactor	phase,	Testing	Workflow

refractoring,	The	Risks	of	Infrastructure	as	Code

repeatability,	The	Origins	of	Infrastructure	as	Code,	The	Principles	of
Infrastructure	as	Code

REPLs,	Grammar	and	Vocabulary

basic	functions	in,	Grammar	and	Vocabulary

functions	in,	Grammar	and	Vocabulary

resource	collection,	Discussion

resources,	Discussion–Discussion

actions,	Discussion

names,	Discussion

parameter	attributes,	Discussion

type,	Discussion

user,	Discussion

RESTful	API,	The	Chef	API,	Overview

reusable	components,	The	Principles	of	Infrastructure	as	Code

abstraction,	The	Principles	of	Infrastructure	as	Code

composability,	The	Principles	of	Infrastructure	as	Code

convergence,	The	Principles	of	Infrastructure	as	Code

cooperation,	The	Principles	of	Infrastructure	as	Code

declaration,	The	Principles	of	Infrastructure	as	Code

extensibility,	The	Principles	of	Infrastructure	as	Code

flexibility,	The	Principles	of	Infrastructure	as	Code

idempotence,	The	Principles	of	Infrastructure	as	Code

modularity,	The	Principles	of	Infrastructure	as	Code

repeatability,	The	Principles	of	Infrastructure	as	Code

reviewing	code,	The	Risks	of	Infrastructure	as	Code

roles,	Discussion

base,	Discussion,	Discussion

platform,	Discussion

sections	of,	Discussion

service,	Discussion

RSA	keys,	Discussion

RSpec,	RSpec:	The	Transition	to	BDD,	RSpec:	The	Transition	to	BDD,
Introducing	Serverspec

Rsync,	Overview

Ruby,	An	Introduction	to	Ruby–Bundler

and	RSpec,	RSpec:	The	Transition	to	BDD–RSpec:	The	Transition	to
BDD

arrays,	Arrays–Arrays

BDD	and,	TDD	and	BDD	with	Ruby–Cucumber:	Acceptance	Testing	for
the	Masses

bundler,	Bundler–Bundler

classes,	Classes–Classes

conditional	logic,	Conditional	logic–Conditional	logic

constants,	Constants

Cucumber	and,	Cucumber:	Acceptance	Testing	for	the
Masses–Cucumber:	Acceptance	Testing	for	the	Masses

flow	control,	Conditional	logic–Conditional	logic

grammar,	Grammar	and	Vocabulary–Grammar	and	Vocabulary

hashes,	Hashes–Hashes

identifiers,	Identifiers–Method	names

installing	with	Chef,	Objectives–Worked	Example

interactive,	Grammar	and	Vocabulary

keywords,	Keywords

method	names,	Method	names

methods,	Methods	and	Objects–Methods	and	Objects,	More	About
Methods–More	About	Methods

Minitest	and,	Minitest:	Unit	Testing	for	the	21st	Century–Minitest:	Unit
Testing	for	the	21st	Century

objects,	Methods	and	Objects–Methods	and	Objects

operators,	Operators–Operators

TDD	and,	TDD	and	BDD	with	Ruby–Cucumber:	Acceptance	Testing	for
the	Masses

truthiness	of,	Truthiness

variables,	Variables–Variables

vocabulary,	Grammar	and	Vocabulary–Grammar	and	Vocabulary

RubyGems,	The	Chef	community,	Overview

run	lists,	Discussion,	Discussion

S

scalability,	The	Origins	of	Infrastructure	as	Code

scenarios,	Cucumber:	Acceptance	Testing	for	the	Masses

serve	roles,	Discussion

Serverspec,	Integration	Testing,	Introducing	Serverspec–Introducing
Serverspec

integration	testing	with,	Integration	Testing:	Test	Kitchen	with
Serverspec	and	Bats–Templates

setting	policy,	Discussion

setup	command,	Getting	Started

Shaw,	Zed,	An	Introduction	to	Chef

SimpleTest,	Cucumber:	Acceptance	Testing	for	the	Masses

Smalltalk,	What	Is	Ruby?,	Arrays

spaceship	operator,	Operators

standards,	The	Risks	of	Infrastructure	as	Code

state	leakage,	Minitest:	Unit	Testing	for	the	21st	Century

static	analysis,	Static	Analysis	and	Linting	Tools–Summary	and	Conclusion

steps,	Overview

Strainer,	Example

string	interpolation,	Arrays

StringIO,	Getting	Started

structural	harm,	Professionalism

structuring	workflow,	Testing	Workflow

subclasses,	Bundler

subcommands,	Discussion

successful	TDI,	Tool	Selection

suites,	Getting	Started

Sun	Microsystems,	Discussion

SUnit,	Minitest:	Unit	Testing	for	the	21st	Century

superclasses,	Bundler

supported	features,	Discussion

symbolizing,	Bundler

symbols,	Bundler

syntactic	sugar,	Classes

T

tagging,	Getting	Started

tailor	command,	Getting	Started

TDD	(Test	Driven	Development),	The	Principles	of	TDD	and
BDD–Cucumber:	Acceptance	Testing	for	the	Masses

Agile	software	development	process,	A	Very	Brief	History	of	Agile
Software	Development–Evolving	design

templates,	Templates–Templates

Test	Kitchen,	Integration	Testing,	Supporting	Tools:	Test
Kitchen–Summary	and	Conclusion

commands,	Getting	Started,	Introducing	Serverspec

integration	testing	with,	Integration	Testing:	Test	Kitchen	with
Serverspec	and	Bats–Templates

Minitest	Handler	and,	Minitest	Handler	with	Test	Kitchen

templates,	Templates–Templates

usage,	Getting	Started–Getting	Started

test-driven	infrastructure	framework,	A	Test-Driven	Infrastructure
Framework–Feedback	of	Results

automation	of,	Test-Driven	Infrastructure	Should	Be	Automated

benefits	of,	Test-Driven	Infrastructure	Should	Be	Test-First

constraints	of,	Feedback	of	Results

continuous	integration	of,	Test-Driven	Infrastructure	Should	Be
Continuously	Integrated

feedback,	Feedback	of	Results

mainstreaming,	The	Pillars	of	Test-Driven	Infrastructure

outside-in	approach	to,	Test-Driven	Infrastructure	Should	Be	Outside	In

pillars	of,	The	Pillars	of	Test-Driven	Infrastructure

provisioning	machines	for,	Provisioning	Machines

results	of,	Feedback	of	Results

side-effects,	awareness	of,	Test-Driven	Infrastructure	Should	Be	Side-
Effect	Aware

standardization	of,	Test-Driven	Infrastructure	Should	Be	Mainstream

successful,	Tool	Selection

test-first	protocol	for,	Test-Driven	Infrastructure	Should	Be	Test-First

tests,	writing/running,	Writing	Tests

toolchain	for,	Tool	Selection–Testing	Workflow

top-to-bottom,	Test-Driven	Infrastructure:	A	Recommended	Toolchain

testing

code,	Professionalism

unit,	Minitest:	Unit	Testing	for	the	21st	Century–Minitest:	Unit	Testing
for	the	21st	Century

with	RSpec,	RSpec:	The	Transition	to	BDD–RSpec:	The	Transition	to
BDD

testing	phases,	Testing	Workflow

green,	Testing	Workflow

red,	Testing	Workflow

refactor,	Testing	Workflow

tests,	Minitest:	Unit	Testing	for	the	21st	Century

feedback	from,	Feedback	of	Results

infrastructure,	Test-Driven	Infrastructure	Should	Be	Automated

running,	Running	Tests

writing,	Writing	Tests

text	editors,	Discussion

tools,	Test-Driven	Infrastructure:	A	Recommended	Toolchain–Summary
and	Conclusion

Bats,	Introducing	Bats

Berkshelf,	Overview–Summary	and	Conclusion

Chefspec,	Overview–Summary	and	Conclusion

Cucumber,	Overview–Summary	and	Conclusion

for	acceptance	testing,	Acceptance	Testing,	Overview–Summary	and
Conclusion

for	functionality,	Overview

for	integration	testing,	Integration	Testing,	Integration	Testing:	Test
Kitchen	with	Serverspec	and	Bats–Summary	and	Conclusion

for	linting,	Static	Analysis	and	Linting	Tools–Summary	and	Conclusion

for	static	analysis,	Static	Analysis	and	Linting	Tools–Summary	and
Conclusion

for	testing	workflow,	Testing	Workflow–Testing	Workflow

for	unit	testing,	Unit	Testing,	Overview–Summary	and	Conclusion

Leibniz,	Overview–Summary	and	Conclusion

Minitest	Handler,	Overview–Summary	and	Conclusion

network-enables,	The	Chef	tool

selecting,	Tool	Selection–Testing	Workflow

Serverspec,	Introducing	Serverspec–Introducing	Serverspec

Test	Kitchen,	Supporting	Tools:	Test	Kitchen–Summary	and	Conclusion

top-to-bottom	TDI,	Test-Driven	Infrastructure:	A	Recommended	Toolchain

TravisCI,	Getting	Started

types,	Discussion

U

Ubuntu,	Overview

unit	testing,	Minitest:	Unit	Testing	for	the	21st	Century–Minitest:	Unit
Testing	for	the	21st	Century,	Unit	Testing

with	Chefspec,	Overview–Summary	and	Conclusion

uploading	cookbooks,	Discussion

user	resources,	Discussion

useradd,	Discussion

users,	installing,	Objectives–Discussion

V

Vagrant,	Discussion,	Discussion–Discussion

Berkshelf	and,	Berkshelf	and	Vagrant–Berkshelf	and	Vagrant

installing,	Exercise	3:	Vagrant–Discussion

vagrant	plug-in	install	command,	Discussion

Vagrant	up	command,	Discussion

Vagrantfile,	Discussion

Validation	Clients,	Discussion,	Discussion

validation	keys,	Discussion

variables,	Variables–Variables

Bats,	Introducing	Bats

class,	Variables

global,	Variables

instance,	Variables

local,	Variables

passing,	Templates

verify	command,	Getting	Started

VirtualBox,	Discussion

cookbook,	Discussion

installing,	Exercise	2:	Virtualbox–Discussion

virtualization,	Provisioning	Machines

W

wildcards,	Cucumber:	Acceptance	Testing	for	the	Masses

workflow

structuring,	Testing	Workflow

testing,	Testing	Workflow–Testing	Workflow

About	the	Author
Stephen	Nelson-Smith	(@LordCope)	is	principal	consultant	at	Atalanta	Systems,
a	fast-growing	agile	infrastructure	consultancy,	and	Opscode	training	and
solutions	partner	in	Europe.	One	of	the	foundational	members	of	the	emerging
Devops	movement,	he	has	been	implementing	configuration	management	and
automation	systems	for	five	years	for	clients	ranging	from	Sony,	the	UK
government	and	Mercado	Libre	to	startups	amongst	the	burgeoning	London
'Silicon	Roundabout'	community.	A	UNIX	sysadmin,	Ruby	and	Python
programmer,	and	lean	and	agile	practitioner,	his	professional	passion	is	ensuring
operations	teams	deliver	value	to	the	business.	He	is	the	author	of	the	popular
blog	http://agilesysadmin.net,	and	lives	in	Hampshire,	UK,	where	he	enjoys
outdoor	pursuits,	his	family,	reading,	and	opera.

http://agilesysadmin.net

Colophon
The	animal	on	the	cover	of	Test-Driven	Infrastructure	with	Chef,	Second	Edition
is	an	edible-nest	swiftlet	(Aerodramus	fuciphagus).	This	small	bird,	of	the	swift
family,	is	found	in	southeast	Asia.

The	bird	itself	is	11–12	cm	long	and	weighs	around	15–18	grams.	The	top
plumage	is	a	blackish-brown	with	paler	underparts;	its	bill	and	feet	are	black.	It
has	a	slightly	forked	tail	and	long,	narrow	wings.	When	in	caves—usually	for
breeding—these	birds	are	known	to	use	loud,	rattling	calls	for	echolocation.

This	swiftlet’s	diet	consists	of	flying	insects	that	get	caught	in	its	wings.	It	feeds
in	large	flocks,	often	with	other	species	of	swift	and	swallow.	The	swiftlet’s	nest,
shaped	like	brackets,	is	made	from	solidified	saliva	and	is	among	the	most
expensive	animal	products	consumed	by	humans,	going	for	an	average	of	$2,500
per	kg	in	Asia.	It	is	used	primarily	as	an	ingredient	in	bird’s	nest	soup,	where	the
nest	is	soaked	and	steamed	in	water.	The	nests	are	said	to	be	an	aphrodisiac	with
medicinal	qualities.	Because	of	extensive	commercial	harvesting,	the	IUCN	has
labeled	several	populations—in	the	Andaman	and	Nicobar	Islands—as	critically
threatened.	To	combat	the	effects	of	harvesting,	the	use	of	artificial	bird	houses
is	growing.

The	cover	image	is	from	Cassells	Natural	History.	The	cover	font	is	URW
Typewriter	and	Guardian	Sans.	The	text	font	is	Adobe	Minion	Pro;	the	heading
font	is	Adobe	Myriad	Condensed;	and	the	code	font	is	Dalton	Maag’s	Ubuntu
Mono.

Special	Upgrade	Offer

If	you	purchased	this	ebook	from	a	retailer	other	than	O’Reilly,	you	can	upgrade
it	for	$4.99	at	oreilly.com	by	clicking	here.

http://opds.oreilly.com/buy/9781449372194.EBOOK?source=ibooks

Test-Driven	Infrastructure	with	Chef
Stephen	Nelson-Smith
Editor
Mike	Loukides

Editor
Meghan	Blanchette

Revision	History

2013-10-10 First	release

Copyright	©	2013	Atalanta	Systems	LTD.
O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales	promotional	use.	Online	editions	are
also	available	for	most	titles	(http://my.safaribooksonline.com).	For	more	information,	contact	our
corporate/institutional	sales	department:	800-998-9938	or	corporate@oreilly.com.

Nutshell	Handbook,	the	Nutshell	Handbook	logo,	and	the	O’Reilly	logo	are	registered	trademarks	of
O’Reilly	Media,	Inc.	Test-Driven	Infrastructure	with	Chef,	the	cover	image	of	an	edible-nest	swiftlet,	and
related	trade	dress	are	trademarks	of	O’Reilly	Media,	Inc.

Many	of	the	designations	used	by	manufacturers	and	sellers	to	distinguish	their	products	are	claimed	as
trademarks.	Where	those	designations	appear	in	this	book,	and	O’Reilly	Media,	Inc.,	was	aware	of	a
trademark	claim,	the	designations	have	been	printed	in	caps	or	initial	caps.

While	every	precaution	has	been	taken	in	the	preparation	of	this	book,	the	publisher	and	authors	assume	no
responsibility	for	errors	or	omissions,	or	for	damages	resulting	from	the	use	of	the	information	contained
herein.

	

O’Reilly	Media
1005	Gravenstein	Highway	North
Sebastopol,	CA	95472

2013-10-10T13:52:42-07:00

	

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

	Special Upgrade Offer
	Preface
	Conventions Used in This Book
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	1. The Philosophy of Test-Driven Infrastructure
	Underpinning Philosophy
	Infrastructure as Code
	The Origins of Infrastructure as Code
	The Principles of Infrastructure as Code
	The Risks of Infrastructure as Code

	Professionalism

	2. An Introduction to Ruby
	What Is Ruby?
	Grammar and Vocabulary
	Methods and Objects
	Identifiers
	Variables
	Constants
	Keywords
	Method names

	More About Methods
	Classes
	Arrays
	Conditional logic
	Hashes
	Truthiness
	Operators
	Bundler

	3. An Introduction to Chef
	Exercise 1: Install Chef
	Objectives
	Directions
	Worked Example
	Discussion
	The Chef framework
	The Chef tool
	The Chef API
	The Chef community

	Exercise 2: Install a User
	Objectives
	Directions
	Worked Example
	Discussion

	Exercise 3: Install an IRC Client
	Objectives
	Directions
	Worked Example
	Discussion

	Exercise 4: Install Git
	Objectives
	Directions
	Worked Example
	Discussion

	4. Using Chef with Tools
	Exercise 1: Ruby
	Objectives
	Directions
	Worked Example
	Discussion

	Exercise 2: Virtualbox
	Objectives
	Directions
	Worked example
	Discussion

	Exercise 3: Vagrant
	Objectives
	Directions
	Worked Example
	Discussion

	Conclusion

	5. An Introduction to Test- and Behavior-Driven Development
	The Principles of TDD and BDD
	A Very Brief History of Agile Software Development
	Test-Driven Development
	Behavior-Driven Development
	Building the right thing
	Reducing risk
	Evolving design

	TDD and BDD with Ruby
	Minitest: Unit Testing for the 21st Century
	RSpec: The Transition to BDD
	Cucumber: Acceptance Testing for the Masses

	6. A Test-Driven Infrastructure Framework
	Test-Driven Infrastructure: A Conceptual Framework
	Test-Driven Infrastructure Should Be Mainstream
	Test-Driven Infrastructure Should Be Automated
	Test-Driven Infrastructure Should Be Side-Effect Aware
	Test-Driven Infrastructure Should Be Continuously Integrated
	Test-Driven Infrastructure Should Be Outside In
	Test-Driven Infrastructure Should Be Test-First

	The Pillars of Test-Driven Infrastructure
	Writing Tests
	Running Tests
	Provisioning Machines
	Feedback of Results

	7. Test-Driven Infrastructure: A Recommended Toolchain
	Tool Selection
	Unit Testing
	Integration Testing
	Acceptance Testing
	Testing Workflow

	Supporting Tools: Berkshelf
	Overview
	Getting Started
	Example
	Berkshelf and Vagrant
	Berkshelf and Chef environments

	Advantages and Disadvantages
	Summary and Conclusion

	Supporting Tools: Test Kitchen
	Overview
	Getting Started
	Summary and Conclusion

	Acceptance Testing: Cucumber and Leibniz
	Overview
	Getting Started
	Example
	Advantages and Disadvantages
	Summary and Conclusion

	Integration Testing: Test Kitchen with Serverspec and Bats
	Introducing Bats
	Introducing Serverspec
	Templates

	Integration Testing: Minitest Handler
	Overview
	Getting Started
	Example
	Minitest Handler with Test Kitchen

	Advantages and Disadvantages
	Summary and Conclusion

	Unit Testing: Chefspec
	Overview
	Getting Started
	Example
	Advantages and Disadvantages
	Summary and Conclusion

	Static Analysis and Linting Tools
	Overview
	Getting Started
	Example
	Advantages and Disadvantages
	Summary and Conclusion

	To Conclude

	8. Epilogue
	A. Bibliography
	Books on TDD and ATDD
	Books and Articles on BDD
	Books on Agile Testing in General
	Chef Articles and Presentations
	Books on Tools
	Books on Ruby
	Books on Bash and Shell Scripting
	General Programming Books
	Other Great Books

	Index
	About the Author
	Colophon
	Special Upgrade Offer
	Copyright

