OREILLY"

Infrastructure
with Chef

BRING BEHAVIOR-DRIVEN DEVELOPMENT
TO INFRASTRUCTURE AS CODE

Stephen Nelson-Smith

Test-Driven Infrastructure with
Chef

Stephen Nelson-Smith

Beijing « Cambridge ¢ Farnham ¢ K&ln ¢ Sebastopol « Tokyo

Special Upgrade Offer

If you purchased this ebook directly from oreilly.com, you have the following
benefits:

m DRM-free ebooks—use your ebooks across devices without restrictions or
limitations

m Multiple formats—use on your laptop, tablet, or phone
m Lifetime access, with free updates
= Dropbox syncing—your files, anywhere

If you purchased this ebook from another retailer, you can upgrade your ebook to
take advantage of all these benefits for just $4.99. Click here to access your
ebook upgrade.

Please note that upgrade offers are not available from sample content.

http://oreilly.com

Preface

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLS, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program

elements such as variable or function names, databases, data types,
environment variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values
determined by context.

TIP

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Safari® Books Online

Safari Books Online is an on-demand digital library that delivers expert content

http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content

in both book and video form from the world’s leading authors in technology and
business.

Technology professionals, software developers, web designers, and business and
creative professionals use Safari Books Online as their primary resource for
research, problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for
organizations, government agencies, and individuals. Subscribers have access to
thousands of books, training videos, and prepublication manuscripts in one fully
searchable database from publishers like O’Reilly Media, Prentice Hall
Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan
Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning,
New Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and dozens
more. For more information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at http://oreil.ly/test-driven-
infra-chef.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our
website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/test-driven-infra-chef
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

Writing the first edition of this book was an order of magnitude harder than I
could ever have imagined. I think this is largely because alongside writing a
book I was also writing software. Trying to do both things concurrently took up
vast quantities of time, for which many people are owed a debt of gratitude for
their patience and support.

Writing the second edition, however, made the first one look like a walk in the
park. Since the first edition there’s been a huge explosion in philosophies,
technologies and enthusiastic participants in the field of TDI, all of which and
whom are moving and developing fast. This has not only added massively to the
amount there is to say on the subject but it has made it a real challenge to keep
the book up to date.

So the gratitude is bigger than before too! Firstly, to my wonderful family,
Helena, Corin, Wilfrid, Atalanta and Melisande (all of whom appear in the text)
—you’ve been amazing, and I look forward to seeing you all a lot more. Helena,
frankly, deserves to be credited as a co-author. She has proofed, edited,
improved, and corrected for the best part of two years, and has devoted
immeasurable hours to supporting me, both practically and emotionally. There is
no way this book could have been written without her input—I cannot express
how lucky I am to have her as my friend, colleague, and beloved.

The list of Opscoders to thank is also longer, and is testament to the success of
both the company and its product. My understanding would be naught were it
not for the early support of Joshua Timberman, Seth Chisamore and Dan DelL.eo.
However, the second edition owes also a debt of thanks to Seth Vargo, Charles
Johnson, Nathen Harvey, and Sean O’Meara. Further thanks to Chris Brown, on
whose team I worked as an engineer for six months, giving me a deeper insight
into the workings of Chef, and the depths of brilliance in the engineering team.

Inspirational friends, critics, reviewers and sounding boards include Aaron
Peterson, Bryan Berry, Ian Chilton, Matthias Lafeldt, Torben Knerr and John
Arundel. Special mention must go firstly to Lindsay Holmwood, who first got

http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

me thinking about the subject, and has continued to offer advice and
companionship, and secondly to Fletcher Nichol, who has been a constant friend
and advisor, and has endured countless hours of being subjected to pairing with
me in Emacs and Tmux, on Solaris! It must also not be forgotten that without the
early support of Trang and Brian, formerly of Sony Computer Entertainment
Europe—the earliest adopters and enthusiastic advocates of my whole way of
doing Infrastructure as Code—I doubt I would have achieved what I have
achieved.

The development and maintenance of Cucumber-Chef has been educational and
fascinating—Jon Ramsey and especially Zachary Patten deserve particular
thanks for this. The project has seen many enthusiastic adopters, and has evolved
to do all sorts of things I would never have imagined. Its reincarnate future as
TestLab is in safe hands.

I’ve been fortunate beyond measure to work with a team of intelligent and
understanding people at Atalanta Systems—all of whom have put up with my
book-obsessed scattiness for the best part of two years—Kostya, Sergey,
Yaroslav, Mike, Herman, and Annie...you’re all awesome!

Lastly, and perhaps most importantly—to my incredibly patient and supportive
editor Meghan Blanchette—thank you a million times. I think you’ll agree it was
worth the wait.

I dedicate this book to my Grandfather, John Birkin, himself one of the earliest
computer programmers in the UK. You taught me to program some thirty years
ago, and it is the greatest blessing to me that you have been able to see the fruit
of the seeds that you sowed.

Chapter 1. The Philosophy of
Test-Driven Infrastructure

When the first edition of this book was published in late summer 2011, there was
broad skepticism in response to the idea of testing infrastructure code and only a
handful of pioneers and practitioners.

Less than a year later at the inaugural #ChefConf, the Chef user conference, two
of the plenary sessions and a four-hour hack session were devoted to testing.
Later that year at the Chef Developer Summit, where people meet to discuss the
state and direction of the Chef open source project, code testing and lifecycle
practices and techniques emerged as top themes that featured in many heavily
attended sessions—including one with nearly 100 core community members.

Infrastructure testing is a hugely topical subject now, with many excellent
contributors furthering the state of the art. The tools and approaches that make
up the infrastructure testing ecosystem have evolved significantly. It’s an area
with a high rate of change and few established best practices, and it is easy to be
overwhelmed at the amount to learn and bewildered at the range of tools
available. This book is intended to be the companion for those new to the whole
idea of infrastructure as code, as well as those who have been working within
that paradigm and are now looking fully to embrace the need to prioritize testing.

This update is much expanded and provides a thorough introduction to the
philosophy and basics of test-driven development and behavior-driven
development in general, as well as the application of these techniques to the
writing of infrastructure code using Chef. It includes an up-to-date introduction
to the Chef framework and discusses the most widely used and popular tooling
in use with Chef, before providing a recommended toolkit and workflow to
guide adoption of test-driven infrastructure in practice.

Underpinning Philosophy

There are two fundamental philosophical points upon which this book is
predicated:

1. Infrastructure can and should be treated as code.

2. Infrastructure developers should adhere to the same principles of
professionalism as other software developers.

While there are a number of implications that follow from these assumptions, the
primary one with which this book is concerned is that all infrastructure code
must be thoroughly tested, and that the most effective way to develop
infrastructure code is test-first, allowing the writing of the tests to drive and
inform the development of the infrastructure code. However, before we get
ahead of ourselves, let us consider our two axiomatic statements.

Infrastructure as Code

“When deploying and administering large infrastructures, it is still common to think in terms of
individual machines rather than view an entire infrastructure as a combined whole. This standard
practice creates many problems, including labor-intensive administration, high cost of ownership,
and limited generally available knowledge or code usable for administering large infrastructures.”

— Steve Traugott and Joel Huddleston

“In today’s computer industry, we still typically install and maintain computers the way the
automotive industry built cars in the early 1900s. An individual craftsman manually manipulates a
machine into being, and manually maintains it afterwards.

The automotive industry discovered first mass production, then mass customization using standard
tooling. The systems administration industry has a long way to go, but is getting there.”

— Steve Traugott and Joel Huddleston

These two statements came from the prophetic www.infrastructures.org at the
very start of the last decade. More than 10 years later, a whole world of exciting
developments have taken place: developments that have sparked a revolution,
and given birth to a radical new approach to the process of designing, building,
and maintaining the underlying IT systems that make web operations possible.
At the heart of that revolution is a mentality and toolset that treats infrastructure
as code.

We believe in this approach to the designing, building, and running of Internet
infrastructures. Consequently, we’ll spend a little time exploring its origin,
rationale, and principles before outlining the risks of the approach—risks that

http://www.infrastructures.org/

this book sets out to mitigate.

The Origins of Infrastructure as Code

Infrastructure as code is an interesting phenomenon, particularly for anyone
wanting to understand the evolution of ideas. It emerged over the last six or
seven years in response to the juxtaposition of two pieces of disruptive
technology—utility computing and second-generation web frameworks.

The ready availability of effectively infinite compute power at the touch of a
button, combined with the emergence of a new generation of hugely productive
web frameworks, brought into existence a new world of scaling problems that
had previously only been witnessed by the largest systems integrators. The key
year was 2006, which saw the launch of Amazon Web Services’ Elastic Compute
Cloud (EC2), just a few months after the release of version 1.0 of Ruby on Rails
the previous Christmas. This convergence meant that anyone with an idea for a
dynamic website—an idea that delivered functionality or simply amusement to a
rapidly growing Internet community—could go from a scribble on the back of a
beermat to a household name within weeks.

Suddenly, very small developer-led companies found themselves facing issues
that were previously tackled almost exclusively by large organizations with huge
budgets, big teams, enterprise-class configuration management tools, and lots of
time. The people responsible for these websites that had become huge almost
overnight now had to answer questions such as how to scale databases, how to
add many identical machines of a given type, and how to monitor and back up
critical systems. Radically small teams needed to be able to manage
infrastructures at scale and to compete in the same space as big enterprises, but
with none of the big enterprise systems.

It was out of this environment that a new breed of configuration management
tools emerged. Building on the shoulders of existing open source tools like
CFEngine, Puppet was created in part to facilitate tackling these new problems.

Given the significance of 2006 in terms of the disruptive technologies we
describe, it’s no coincidence that in early 2006 Luke Kanies published an article
on “Next-Generation Configuration Management” in ;login: (the USENIX
magazine), describing his Ruby-based system management tool, Puppet. Puppet
provided a high level domain specific language (DSL) with primitive

programmability, but the development of Chef (a tool influenced by Puppet, and
released in January 2009) brought the power of a third-generation programming
language to system administration. Such tools equipped tiny teams and
developers with the kind of automation and control that until then had only been
available to the big players and expensive in-house or proprietary software.
Furthermore, being built on open source tools and released early to developer
communities, allowed these tools to rapidly evolve according to demand, and
they swiftly became more powerful and less cuambersome than their commercial
counterparts.

Thus a new paradigm was introduced—infrastructure as code. In it, we model
our infrastructure with code, and then design, implement, and deploy our web
application infrastructure with software best practices. We work with this code
using the same tools as we would with any other modern software project. The
code that models, builds, and manages the infrastructure is committed into
source code management alongside the application code. We can then start to
think about our infrastructure as redeployable from a code base, in which we are
using the same kinds of software development methodologies that have
developed over the last 20 years as the business of writing and delivering
software has matured.

This approach brings with it a series of benefits that help the small, developer-
led company solve some of the scalability and management problems that
accompany rapid and overwhelming commercial success:

Repeatability
Because we’re building systems in a high-level programming language and
committing our code, we start to become more confident that our systems are
ordered and repeatable. With the same input, the same code should produce
the same output. This means we can now be confident (and ensure on a
regular basis) that what we believe will recreate our environment really will
do that.

Automation
By utilizing mature tools for deploying applications, which are written in
modern programming languages, the very act of abstracting out
infrastructures brings us the benefits of automation.

Agility
The discipline of source code management and version control means we
have the ability to roll forward or backward to a known state. Because we
can redeploy entire systems, we are able to drastically reconfigure or change
topology with ease, responding to defects and business-driven changes. In
the event of a problem, we can go to the commit logs and identify what
changed and who changed it. This is made all the easier because our
infrastructure code is just text, and as such can be examined and compared
using standard file comparison tools, such as diff.

Scalability
Repeatability and automation make it possible to grow our server fleet easily,
especially when combined with the kind of rapid hardware provisioning that
the cloud provides. Modular code design and reuse manages complexity as
our applications grow in features, type, and quantity.

Reassurance
While all the benefits bring reassurance in their way, in particular, the fact
that the architecture and design of our infrastructure is modeled—and not
merely implemented—in code means that we may reasonably use the source
code as documentation and see at a glance how the systems work. This
knowledge repository mitigates the risk of only a single sysadmin or
architect having the full understanding of how the system hangs together.
That is risky—this person is now able to hold the organization ransom, and
should they leave or become ill, the company is endangered.

Disaster recovery
In the event of a catastrophic event that wipes out the production systems, if
our entire infrastructure has been broken down into modular components and
described as code, recovery is as simple as provisioning new compute power,
restoring from backup, and redeploying the infrastructure and application
code. What may have been a business-ending event in the old paradigm of
custom-built, partially automated infrastructure becomes a manageable
outage with procedures we can test in advance.

Infrastructure as code is a powerful concept and approach that promises to help
repair the split-brain phenomenon witnessed so frequently in organizations

where developers and system administrators view each other as enemies, to the
detriment of the common good. Through co-design of the infrastructure code
that runs an application, we give operational responsibilities to developers. By
focusing on design and the software lifecycle, we liberate system administrators
to think at higher levels of abstraction. These new aspects of our professions
help us succeed in building robust, scaled architectures. We open up a new way
of working—a new way of cooperating—that is fundamental to the emerging
DevOps movement.

The Principles of Infrastructure as Code

Having explored the origins and rationale for managing infrastructure as code,
we now turn to the core principles we should put into practice to make it happen.

Adam Jacob, co-founder of Opscode and creator of Chef, says that there are two
high-level steps:

1. Break the infrastructure down into independent, reusable, network-
accessible services.

2. Integrate these services in such a way as to produce the functionality our
infrastructure requires.

Adam further identifies 10 principles that describe what the characteristics of the
reusable primitive components look like. His essay—Chapter 5 of Web
Operations, ed. John Allspaw & Jesse Robbins (O’Reilly)—is essential reading,
but I will summarize his principles here:

Modularity
Our services should be small and simple—think at the level of the simplest
freestanding, useful component.

Cooperation
Our design should discourage overlap of services and should encourage other
people and services to use our service in a way that fosters continuous
improvement of our design and implementation.

Composability
Our services should be like building blocks—we should be able to build

http://shop.oreilly.com/product/0636920000136.do

complete, complex systems by integrating them.

Extensibility
Our services should be easy to modify, enhance, and improve in response to
new demands.

Flexibility
We should build our services using tools that provide unlimited power to
ensure we have the (theoretical) ability to solve even the most complicated
problems.

Repeatability
With the same inputs, our services should produce the same results in the
same way every time.

Declaration
We should specify our services in terms of what we want to do, not how we
want to do it.

Abstraction
We should not worry about the details of the implementation, and think at the
level of the component and its function.

Idempotence
Our services should be configured only when required; action should be
taken only once.

Convergence
Our services should take responsibility for their own state being in line with
policy; over time, the overall system will tend to correctness.

In practice, these principles should apply to every stage of the infrastructure
development process—from low-level operations such as provisioning (cloud-
based providers with a published API are a good example), backups, and DNS,
up through high-level functions such as the process of writing the code that
abstracts and implements the services we require.

This book concentrates on the task of writing infrastructure code that meets these
principles in a predictable and reliable fashion. The key enabler in this context is
a powerful, declarative configuration management system that enables engineers
(I like the term infrastructure developer) to write executable code that both
describes the shape, behavior, and characteristics of the infrastructure that they
are designing, and when actually executed, results in that infrastructure coming
to life.

The Risks of Infrastructure as Code

Although the potential benefits of infrastructure as code are hard to overstate, it
must be pointed out that this approach is not without its dangers. Production
infrastructures that handle high-traffic websites are hugely complicated.
Consider, for example, the mix of technologies involved in a large content
management system installation. We might easily have multiple caching
strategies, a full-text indexer, a sharded database, and a load-balanced set of web
servers. That is a significant number of moving parts for the infrastructure
developer to manage and understand.

It should come as no surprise that the attempt to codify complex infrastructures
is a challenging task. As I visit clients embracing the approaches outlined in this
chapter, I see similar problems emerging as they start to put these ideas into
practice:

m Sprawling masses of infrastructure code

m Duplication, contradiction, and a lack of clear understanding of what it all
does

» Fear of change; a sense that we dare not meddle with the manifests or recipes
because we’re not entirely certain how the system will behave

m Bespoke software that started off well-engineered and thoroughly tested, but
is now littered with TODOs, FIXMEs, and quick hacks

m Despite the lofty goal of capturing the expertise required to understand an
infrastructure in the code itself, a sense that the organization would be in
trouble if one or two key people leave

m War stories of times when a seemingly trivial change in one corner of the
system had catastrophic side effects elsewhere

These issues have their roots in the failure to acknowledge and respond to a
simple but powerful side effect of treating our infrastructure as code: if our
environments are effectively software projects, then they should be subject to the
same meticulousness as our application code. It is incumbent upon us to make
sure we apply the lessons learned by the software development world in the last
10 years as they have strived to produce high quality, maintainable, and reliable
software. It’s also incumbent upon us to think critically about some of the
practices and principles that have been effective in that world and to begin
introducing our own practices that embrace the same interests and objectives.
Unfortunately, many who embrace infrastructure as code have had insufficient
exposure to or experience with these ideas.

There are six areas where we need to focus our attention to ensure that our
infrastructure code is developed with the same degree of thoroughness and
professionalism as our application code:

Design
Our infrastructure code should seek to be simple and iterative, and we should
avoid feature creep.

Collective ownership
All members of the team should be involved in the design and writing of
infrastructure code and, wherever possible, code should be written in pairs.

Code review
The team should be set up to pair frequently and to see regular notifications
when changes are made.

Code standards
Infrastructure code should follow the same community standards as the Ruby
world; when standards and patterns have grown up around the configuration
management framework, the standards and patterns should be adhered to.

Refactoring
This should happen at the point of need as part of the iterative and

collaborative process of developing infrastructure code; however, it’s
difficult to do this without a safety net in the form of thorough test coverage
of one’s code.

Testing
Systems should be in place to ensure that one’s code produces the
environment needed and that any changes have not caused side effects that
alter other aspects of the infrastructure.

I would argue that good practice in all six of these areas is a natural by-product
of bringing development best practices to infrastructure code—in particular by
embracing the idea of test-first programming. Good leadership can lead to rapid
progress in the first five areas with very little investment in new technology.
However, it is indisputable that the final area—that of testing infrastructure
automation—is a difficult endeavor. As such, it is the subject of this book: a
manifesto for bravely rethinking how we develop infrastructure code.

Professionalism

The discipline of software development is a young one. It was not until the early
1990s that the Institute of Electrical and Electronics Engineers and the
Association for Computing Machinery began to recognize software engineering
as a profession. The last 15 years alone have seen significant advances in
tooling, methodology, and philosophy. The discipline of infrastructure
development is younger still. It is imperative that those embarking upon or
moving into a career involving infrastructure development absorb the hard
lessons learned by the rest of the software industry over the previous few
decades, avoid repeating these mistakes, and hold themselves accountable to the
same level of professionalism.

Robert C. Martin in, Clean Code: A Handbook of Agile Software Craftsmanship
(Prentice Hall), draws upon the Hippocratic oath as a metaphor for the standards
of professionalism demanded within the software development industry: Primum
non nocere—first do no harm. This is the foundational ethical principal that all
medical students learn. The essence is that the cost of action must be considered.
It may be wiser to take no action or not to take a specified action in the interests
of not harming the patient. The analogy holds as a software developer. Before

intervening to add a feature or to fix a bug, be confident that you aren’t making
things worse. Robert C. Martin suggests that the kinds of harm a software
developer can inflict can be classified as functional and structural.

By functional harm, we mean the introduction of bugs into the system. A
software professional should strive to release bug-free software. This is a
difficult goal for developer and medical practitioner alike; granted that software
(and humans) are highly complicated systems, as professionals we must make it
our mantra to “do no harm.” We won’t ever be able to eradicate mistakes, but we
can accept responsibility for them, and we can ensure we learn from them and
put mechanisms in place to avoid repeating them.

By structural harm we mean introducing inflexibility into our systems, making
software harder to change. To put the concept positively, it must be possible to
make changes without the cost of change being exorbitantly high.

I like this analogy. I think it can also be taken a little further. Of all medical
professionals, the one I would most want to be certain was observing the
Hippocratic oath would be a brain surgeon. The cost of error is almost infinitely
higher when operating upon the brain than when, for example, operating on a
minor organ, or performing orthopedic surgery. I think this applies to the subject
of this book, too.

As infrastructure developers, the software we have written builds and runs the
entire infrastructure on which our production systems, the applications, and
ultimately the business, operate. The cost of a bug, or of introducing structural
inflexibility to the underpinning infrastructure on which our business runs, is
potentially even greater than that of a bug in the application code itself. An error
in the infrastructure could lead to the entire system becoming compromised or
could result in an outage rendering all dependent systems unavailable.

How, then, can we take responsibility for, and excel in, our oath-keeping? How
can we introduce no bugs and maintain system flexibility? The answer lies in
testing.

The only way we can be confident that our code works is to test it. Thoroughly.
Test it under various conditions. Test the happy path, the sad path, and the bad
path. The happy path represents the default scenario, in which there are no
exceptional or error conditions. The sad path shows that things fail when they
should. The bad path shows the system when fed absolute rubbish. In the case of

infrastructure code, we want to verify that changes made for one platform don’t
cause unexpected side effects on other platforms. The more we test, the more
confident we are.

When it comes to protecting and guaranteeing the flexibility of our code, there’s
one easy way to be confident of code flexibility. Flex it. We want our code to be
easy to change. To be confident that it is easy to change, we need to make easy
changes. If those easy changes prove to be difficult, we need to change the way
the code works. We must be committed to regular refactoring and regular small
improvements across the team. This might seem to be at odds with the principle
of doing no harm. Surely the more changes we make, the more risk we are
taking on. Paradoxically, this isn’t actually the case. It is far, far riskier to leave
the code to stagnate with little or no attention.

As infrastructure developers, if we’re afraid to make changes to our code, that’s
a big red flag. The biggest reason people are afraid to make changes is that they
aren’t confident that the code won’t break. That’s because they don’t have a test
harness to protect them and catch the breaks. I like to think of refactoring as a
little like walking along a curbstone. When you have six inches to fall, you
won’t have any fear at all. If you had to walk along a beam, four inches in width,
stretching between two thirty story buildings, I bet you’d be scared. You might
be so scared that you wouldn’t even set out. The same is so with refactoring.
When you have a fully tested code base, making changes is done with
confidence and zeal. When you have no tests at all, making changes is avoided
or undertaken with fear and dread.

The trouble is, testing takes time. Lots of testing takes lots of time. In the world
of infrastructure code, testing takes even more time because sometimes the
feedback loops are significantly longer than traditional test scenarios. This
makes it imperative that we automate our testing. Testing, especially for
complicated, disparate systems, is also difficult. Writing good tests for code is
hard to do. That makes it imperative for us to write code that is easy to test. The
best way to do that is to write the tests first. We’ll discuss this in more depth
later, but the essential and applicable takeaway is that consistent, automated, and
quality testing of infrastructure code is mandatory for the DevOps professional.

At this stage it’s important to acknowledge and address an obvious objection. As
infrastructure developers we are asked to make a call with respect to a risk/time

ratio. If it delays a release by three weeks, but delivers 100% test coverage, is
this the right approach, given our maxim “do no harm”?

As is the case in many such trade-offs, there is an asymptotic curve describing a
diminishing return after a certain amount of time and test coverage. It is a big
step in the right direction to be making the decision consciously. Consider what
part of the “brain” we are about to cut in to, what functions it performs for the
body corporeal or corporate, as it were, and where we draw our line will become
clear.

I’ll summarize by making a bold philosophical statement that underpins the rest
of this book:

Testing our infrastructure code, thoroughly and repeatably, is non-negotiable,
and is an essential component of the infrastructure developer’s work.

This book sets out to provide encouragement for those learning to test their
infrastructure code, and guidance for those already on the path. It is a call to
arms for infrastructure developers, DevOps professionals, if you like, to
maximize the quality, reliability, repeatability, and production-readiness of their
work.

Chapter 2. An Introduction to
Ruby

Before we go any further, I’'m going to spend a little time giving you a quick
overview of the basics of the Ruby programming language. If you’re an expert,
or even a novice Ruby developer, do feel free to skip this section. However, if
you’ve never used Ruby, or rarely programmed at all, this should be a helpful
introduction. The objective of this section is to make you feel comfortable
looking at infrastructure code. The framework we’re focusing our attention on in
this book—Chef—is both written in Ruby, and fundamentally is Ruby. Don’t let
that scare you—you really only need to know a few things to get started. I'll also
point you to some good resources to take your learning further. Later in the
book, we’ll be doing more Ruby, but I will explain pretty much anything that
isn’t explicitly covered in this section. Also, remember we were all once in the
beginners’ seat. One of the great things about the Chef community is the extent
to which it’s supporting and helpful. If you get stuck, hop onto IRC and ask for
help.

What Is Ruby?

Let’s start right at the very beginning. What is Ruby? To quote from the very
first Ruby book I ever read, the delightfully eccentric Why The Lucky Stiff’s
(poignant) Guide to Ruby:

My conscience won't let me call Ruby a computer language. That would imply that the language
works primarily on the computer’s terms. That the language is designed to accommodate the
computer, first and foremost. That therefore, we, the coders, are foreigners, seeking citizenship in the
computer’s locale. It’s the computer’s language and we are translators for the world.

But what do you call the language when your brain begins to think in that language? When you start
to use the language’s own words and colloquialisms to express yourself. Say, the computer can’t do
that. How can it be the computer’s language? It is ours, we speak it natively!

We can no longer truthfully call it a computer language. It is coderspeak. It is the language of our
thoughts.

http://mislav.uniqpath.com/poignant-guide/book/

— http://bit.ly/1fieouZ

So, Ruby is a very powerful, very friendly language. If you like comparisons, I
like to think of Ruby as being a kind of hybrid between LISP, Smalltalk, and
Perl. I’ll explain why a bit later. You might already be familiar with a
programming language—Perl, or Python, or perhaps C or Java. Maybe even
BASIC or Pascal. As an important aside, if you consider yourself to be a system
administrator, and don’t know any programming languages, let me reassure you
—you already know heaps of languages. Chances are you’ll recognize this:

divert(-1)

divert(0)

VERSIONID("@(#)sendmail.mc 8.7 (Linux) 3/5/96")
OSTYPE(" linux"')

#

Include support for the local and smtp mail transport protocols.
MAILER(local')

MAILER(‘smtp')

#

FEATURE(rbl)

FEATURE(access_db)

end

Or possibly this:

Listen 80

<VirtualHost :80>
DocumentRoot wwwexamplel
ServerName www.example.com

Other directives here
</VirtualHost>

<VirtualHost :80>
DocumentRoot wwwexample2

ServerName www.example.org

Other directives here
</VirtualHost>

What about this?

LOGGER=/usr/bin/logger

DUMP=/sbin/dump

FSL="devaacd0@sla devaacd@sig"
FSL="usr var"

NOW=$(date +"%a")
LOGFILE="varlog/dumps/SNOW.dump.log"
TAPE="devsa0"

mk_auto_dump(){
local fs=$1

local level=$2
local tape="$TAPE"
local opts=""

opts="-${level}luanL -f ${tape}"

run backup

$DUMP ${opts} $fs

if ["$2" != "0"];then

SLOGGER "S$DUMP $fs FAILED!"

echo "*** DUMP COMMAND FAILED - S$DUMP ${opts} S$fs. #**=*"
else

SLOGGER "$DUMP $fs DONE!"

fi

}

Or finally, this:

CC=g++

CFLAGS=-c -Wall

LDFLAGS=

SOURCES=main.cpp hello.cpp factorial.cpp
OBJECTS=$(SOURCES: .cpp=.0)
EXECUTABLE=hello

all: $(SOURCES) $(EXECUTABLE)

$(EXECUTABLE): $(OBJECTS)
$(CC) S(LDFLAGS) $(OBJECTS) -o $@

.Cpp.o:
$(CC) $(CFLAGS) $< -o %@

If you’re anything like me, you’ll know what all four of these are right away.
You might know exactly what they do. They almost certainly don’t scare you;
you will recognize some of it, and you’d know where to go to find out more. My

aim is to get you to the same point with Ruby. The thing is, a sysadmin knows a
ton of languages; they just mostly suck quite badly. Thankfully, Ruby doesn’t
suck at all—Ruby is awesome—it’s easy to use and highly capable.

Grammar and Vocabulary

All languages have grammar and vocabulary. Let’s cover the basic vocabulary
and grammar of Ruby. One of the best ways to learn a language is to have a play
about in a REPL. REPL stands for “Read, Evaluate, Print, Loop.” A REPL is an
interactive environment in which the user writes code, and the shell interprets
that code and returns the results immediately. They’re ideal for rapid prototyping
and language learning, because the feedback loop is so quick.

The idea of a REPL originated in the world of LISP. Its implementation simply
required that three functions be created and enclosed in an infinite loop function.
Permit me some hand-waving, as this hides much deep complexity, but at the
simplest level the three functions are:

read
Accept an expression from the user, parse it, and store it as a data structure in
memory.

eval
Ingest the data structure and evaluate it. This translates to calling the
function from the initial expression on each of the arguments provided.

print
Display the result of the evaluation.

We can actually write a Ruby REPL in one line of code:

$ ruby -e 'loop { p eval gets }'

1+1

2

puts "Hello"

Hello

nil

5.times { print 'Simple REPL' }

Simple REPLSimple REPLSimple REPLSimple REPLSimple REPL5

The first thing to note is every expression has a return value, without exception.
The result of the expression 1+1 is 2. The result of the expression "puts
"Hello"" is not "hello". The result of the expression is nil, which is Ruby’s
way of expressing nothingness. I’'m going to dive in right now, and set your
expectations. Unlike languages such as Java or C, nil is not a special value or
even a keyword. It’s just the same as everything else. In Ruby terms, it’s an
object—more on this in a moment. For now, every expression has a return value,
and in a REPL, we will always see this.

The functions in our basic REPL should be familiar—we have a loop, we have
an eval, the p function prints the output of the eva, and gets reads from the
keyboard. Obviously this is a ridiculously primitive REPL, and very brittle and
unforgiving:

$ ruby -e 'loop { p eval gets }'
forgive me!
-e:1:1n ‘eval': undefined method "me!' for main:0bject (NoMethodError)

from -e:1:in “eval'

from -e:1:in "block in <main>'
from -e:1:in "Lloop'

from -e:1:in “<main>'

Thankfully Ruby ships with a REPL—Interactive Ruby, or irb. The Ruby REPL
is launched by typing irb in a command shell. It also takes the handy command
switch - -simple-prompt, which declutters the display for our simple use cases.

$ irb
irb(main):001:0> exit
$ irb --simple-prompt

Go ahead and try talking to irb:

>> hello

NameError: undefined local variable or method “hello' for main:0Object
from (irb):1
from optrubies/1.9.3-p429/bin/irb:12:1n ‘<main>'

Methods and Objects

irb isn’t very communicative. I’d like to draw your attention to two words in the
preceding output—method and Object. This introduces one of the most
important things to understand about Ruby. Ruby is a pure object-oriented
language. Object-oriented languages encourage the idea of modeling the world
by designing programs around classes, such as Strings or Files, together with
classes we define ourselves. These classes and class hierarchies reflect important
general properties of individual nails, horseshoes, horses, kingdoms, or whatever
else comes up naturally in the application we’re designing. We create instances
of these classes, which we call objects, and work with them.

In object-oriented programming we think in terms of sending and receiving
messages between objects. When these instances receive the messages, they
need to know what to do with them. The definition of what to do with a message
is called a method. I mentioned that Ruby is like Smalltalk; Smalltalk epitomizes

this model. Smalltalk allows the programmer to send a message sqrt to an

object 2 (called a receiver in Smalltalk), which is a member of the Integer
class. To handle the message, Smalltalk finds the appropriate method to compute

the required answer for receivers belonging to the Integer class. It produces the

answer 1.41421, which is an instance of the Float class. Smalltalk is a 100%
pure object-oriented language—absolutely everything in Smalltalk is an object,
and every object can send and receive messages. Ruby is almost identical.

We can call methods in Ruby using “dot” syntax—e.g.,
some_object.my_method. In Ruby everything (pretty much everything) is an
object. As such everything (literally everything) has methods, even nil. In Java

or C, NULL holds a value to which no valid pointer will ever refer. That means
that if you want to check if an object is nil, you compare it with NULL. Not so in
Ruby! Let’s check in irb:

>> nil.nil?
=> true

So if everything is an object, what is nil an instance of?

>> nil.class
>> nil.class
=> NilClass

OK, and what about N11Class?

>> NilClass.class
=> (Class

Go ahead and try a few others—a number or a string (strings are encased in
single or double quotes):

>> 37.class

=> Fixnum

>> "Thirty Seven".class
=> String

In our case, hello isn’t anything—we haven’t assigned it to anything, and it
isn’t a keyword in the language, so Ruby doesn’t know what to do. Let’s start,
then, with something that Ruby does know about—numbers. Have a go at using
Ruby to establish the following:

1. What is 42 multiplied by 4127
2. How many hours are there in a week?

3. If I have 7 students, and they wrote 17,891 lines of code, how many did
they write each, on average?

>> 42 412
=> 17304
>> 24 7
=> 168

>> 17891/7
=> 2555

Hang on, that last number doesn’t look right! What’s going on here? Let’s
look at the classes of our numbers:

>> 17891.class
=> Fixnum
>> 7.class
=> Fixnum

Ruby only does integer division with Fixnum objects:

>> 2/3
= 0

Thankfully Fixnum objects have methods to convert them to Floats,
which means we can do floating point maths:

>> 2.to_f/3
=> 0.6666666666666666

Let’s try some algebra:

>> hours_per_day = 24
=> 24

>> days_per_week
= 7

>> hours_per_week = hours_per_day * days_per_week
=> 168

1
~

This introduces assignment and variables. Assignment is an operation that
binds a local variable (on the left) to an object (on the right). We can see
that now hours_per_day is an instance of class Fixnum:

>> hours_per_week.class
=> Fixnum

A variable is a placeholder. And it varies, hence the name:

>> puts "Stephen likes " + drink
Stephen likes Rooibos

=> nil

>> drink = "Beetroot Juice"

=> "Beetroot Juice"

>> puts "Stephen likes " + drink

Stephen likes Beetroot Juice
=> nil

Identifiers

A variable is an example of a Ruby identifier. Wikipedia describes an identifier
as follows:

An identifier is a name that identifies (that is, labels the identity of) either a unique object or a
unique class of objects, where the “object” or class may be an idea, physical [countable] object (or
class thereof), or physical [noncountable] substance (or class thereof).

There are four main kinds of identifiers in Ruby:
1. Variables

2. Constants
3. Keywords
4. Method names

Variables

Looking first at variables, there are actually four types of variables that you’ll
encounter in Ruby:

1. Local variables
2. Instance variables
3. Class variables

4. Global variables

You’ll mostly interact with the first two. Local variables begin with a lowercase
letter, or an underscore. They may contain only letters, underscores, and/or
digits:

>> valid_variable = 9

= 9

>> bogus-variable - 8

NameError: undefined local variable or method “bogus' for main:0Object
from (irb):34
from optrubies/1.9.3-p429/bin/irb:12:1n ‘<main>'

>> number9 = "ok"
= Ilokll
>> 9numbers = "not ok"

SyntaxError: (irb):36: syntax error, unexpected tIDENTIFIER, expecting $end
9numbers = "not ok"

A

from optrubies/1.9.3-p429/bin/irb:12:1n ‘<main>'

Instance variables store information for an individual instance. They always
begin with the “@” sign, and then follow the same rules as local variables.

Class variables are more rarely seen—they store information at the level of the
class—i.e., further up the hierarchy than an instance of an object. They begin
with “@@”.

Global variables begin with a “$”—these don’t follow the same rules as local

variables. You won’t need to use these very often. These can have cryptic
looking names such as:

$! # The exception object passed to #raise.

$@ # The stack backtrace generated by the last exception raised.

$& # Depends on $~. The string matched by the last successful match.

$° # Depends on $~. The string to the left of the last successful match.

$' # Depends on $~. The string to the right of the last successful match.

$+ # Depends on $~. The highest group matched by the last successful match.
$1 # Depends on $~. The Nth group of the last successful match. May be > 1.
$~ # The MatchData instance of the last match. Thread and scope local. MAGIC

The preceding global variables are taken from the excellent Ruby quick
reference by Ryan Davis (creator and maintainer of Minitest)—I recommend you
bookmark it, or print it out.

On the subject of cryptic symbols, I mentioned that Ruby is akin to Perl. Ruby’s
creator, Yukihiro Matsumoto (Matz), describes the history of Ruby in an
interview with Bruce Stewart:

Back in 1993, I was talking with a colleague about scripting languages. I was pretty impressed by

their power and their possibilities. I felt scripting was the way to go.

As a long time object-oriented programming fan, it seemed to me that OO programming was very
suitable for scripting, too. Then I looked around the Net. I found that Perl 5, which had not released
yet, was going to implement OO features, but it was not really what I wanted. I gave up on Perl as an
object-oriented scripting language.

Then I came across Python. It was an interpretive, object-oriented language. But I didn'’t feel like it
was a “scripting” language. In addition, it was a hybrid language of procedural programming and
object-oriented programming.

I wanted a scripting language that was more powerful than Perl, and more object-oriented than
Python. That’s why I decided to design my own language.

— http://bit.ly/18FHd3p

http://bit.ly/1gHBmtD
http://bit.ly/18FHd3p

He adds:

Ruby’s class library is an object-oriented reorganization of Perl functionality—plus some Smalltalk
and Lisp stuff. I used too much I guess. I shouldn’t have inherited $_, $&, and the other, ugly style
variables.

If you’re familiar with Perl, I commend to you: comparing Ruby and Perl.

Constants

Constants are like variables, only their value is supposed to remain unchanged.
In actual fact, this isn’t enforced by Ruby—it just complains if you waver in
your constancy:

>> MY_LOVE = "infinite"

=> "infinite"

>> MY_LOVE = "actually, rather unreliable"

(irb):38: warning: already initialized constant MY_LOVE
=> "actually, rather unreliable"

Constants begin with an uppercase letter—conventionally they may simply be
capitalized (Washington), be in all caps (SHOUTING), camelcase
(StephenNelsonSmith), or capitalized snakecase (BOA_CONSTRICTOR).

Keywords

Keywords are built-in terms hardcoded into the language. You can find them
listed at http://ruby-doc.org/docs/keywords/1.9/. Examples include end, false,
unless, super, break. Trying to use these as variables will result in errors:

>> super = "dooper"
SyntaxError: (irb):1: syntax error, unexpected '='
super = "dooper"
N
from optrubies/1.9.3-p429/bin/irb:12:1n ‘<main>'
>> false = "hope"
SyntaxError: (irb):2: Can't assign to false
false = "hope"
N
from optrubies/1.9.3-p429/bin/irb:12:1n ‘<main>'
>> unless = 63
SyntaxError: (irb):3: syntax error, unexpected '='

unless = 63
N

http://bit.ly/1fh3ZzJ
http://ruby-doc.org/docs/keywords/1.9/

from optrubies/1.9.3-p429/bin/irb:12:1n “<main>'

Method names

Method names are the fourth and final kind of identifier. We’ve already seen one
of these at play:

>> 7.to_f
= 7.0

Method names adhere to the same naming constraints as local variables, with a
few exceptions. They can end in “?”, “!”, or “=", and it’s possible to define
methods such as “[]” or “<=>”. This might sound like a recipe for confusion, but
it’s very much by design. Methods are just part of the furniture; Ruby without

methods would be like ice cream...without ice. Or cream.

More About Methods

We discussed the idea of objects and methods at the very start of this section.
However, it bears repeating, as the object is the most fundamentally important
concept in Ruby. When we send a message to an object, using the dot operator,
we’re calling some code that the object has access to. Strings have some nice
methods to illustrate this:

>> "STOP SHOUTING".downcase
=> "stop shouting"

>> "speak louder".upcase

=> "SPEAK LOUDER"

The pattern is: OBJECT dot METHOD. To the left of the dot we have the
receiver and to the right, the method we’re calling, or the message we’re
sending.

Methods can take arguments:

>> "Tennis,Elbow,Foot".split

=> ["Tennis,Elbow,Foot"]

>> "Tennis,Elbow,Foot".split(',")
=> ["Tennis", "Elbow", "Foot"]

The first attempted to split the string on white space but didn’t find any. The
second split the string on the comma. The result of each method is an Array—
more on arrays shortly.

«Ky1»
!

I mentioned that methods may end in signs such as “?” or “!”. Here’s an

example:

>> [1,2,3,4].include? 3
=> true

Here we’re asking Ruby if the array [1,2,3,4] includes the number 3. The answer
—the result of evaluating the expression—was true. A method with “!” on the
end means “Do this, and make the change permanent!” We looked at downcase.
Here it is again:

>> curse = "BOTHERATION!"
=> "BOTHERATION!"

>> curse.downcase

=> "botheration!"

>> curse

=> "BOTHERATION!"

>> curse.downcase!

=> "botheration!"

>> curse

=> "botheration!"

One final important idea connected with methods is the idea of
method_missing. It is possible for an object to have the special method
method_missing. In this case, if the object receives a message for which there is
no corresponding method, rather than just throwing away the message and
raising an error, Ruby can take the message and redirect it or use it in many
powerful ways. Chef uses this functionality extensively to implement the
language used to build infrastructure. This is an advanced topic, and I refer you
to some of the classic texts—particularly Metaprogramming Ruby (The
Pragmatic Programmers) if you wish to learn more.

We create methods using the def keyword:

>> def shout(something)
>> puts something.upcase

http://pragprog.com/book/ppmetr/metaprogramming-ruby

>> end

=> nil

>> shout('1l really like ruby')
I REALLY LIKE RUBY

=> nil

We created a method and specified that it take an argument called “something”.

We then called the upcase method on the something. This worked fine, because
the argument we passed was a string. Look what happens if we give bogus input:

>> shout(42)
NoMethodError: undefined method ‘upcase' for 42:Fixnum
from (irb):7:in “shout'
from (irb):10
from optrubies/1.9.3-p429/bin/irb:12:1n ‘<main>'
>> shout('more', 'than', 'one', 'thing')
ArgumentError: wrong number of arguments (4 for 1)
from (irb):6:in “shout'
from (irb):11
from optrubies/1.9.3-p429/bin/irb:12:1n ‘<main>'

You might be wondering on what object the shout method is being called! The

answer is that it’s being called on the self object. The self object provides
access to the current object—the object that is receiving the current message. If
the receiver is explicitly stated, it’s obvious which object is the receiver. If the
receiver is not specified, it is implicitly the self object. The self object, when we
run in irb, is:

>> self

=> main

>> self.class
=> Object

What’s all this about? We’re basically looking at the top level of Ruby. If we
type methods, we see there are some methods available at the top level:

>> methods

=> [:to_s, :public, :private, :include, :context, :conf, :irb_quit, :exit, :quit,
:irb_print_working_workspace, :irb_cwws, :irb_pwws, :cwws, :pwws,
:irb_current_working_binding, :irb_print_working_binding, :irb_cwb, :irb_pwb,
:irb_chws, :irb_cws, :chws, :cws, :irb_change_binding, :irb_cb, :cb, :workspaces,

:irb_bindings, :bindings, :irb_pushws, :pushws, :irb_push_binding, :irb_pushb,
:pushb, :irb_popws, :popws, :irb_pop_binding, :irb_popb, :popb, :source, :jobs, :fg,
:kill, :help, :irb_exit, :irb_context, :install_alias_method,
:irb_current_working_workspace, :irb_change_workspace, :irb_workspaces,
:irb_push_workspace, :irb_pop_workspace, :irb_load, :irb_require, :irb_source, :irb,
:irb_jobs, :irb_fg, :irb_kill, :irb_help, :nil?, :===, :=~, :!~, :eql?, :hash, :<=>,
:class, :singleton_class, :clone, :dup, :initialize_dup, :initialize_clone, :taint,
:tainted?, :untaint, :untrust, :untrusted?, :trust, :freeze, :frozen?, :inspect,
:methods, :singleton_methods, :protected_methods, :private_methods,
:public_methods, :instance_variables, :instance_variable_get,
:instance_variable_set, :instance_variable_defined?, :instance_of?, :kind_of?,
:1s_a?, :tap, :send, :public_send, :respond_to?, :respond_to_missing?, :extend,
:display, :method, :public_method, :define_singleton_method, :object_id, :to_enum,
:enum_for, :==, :equal?, :!, :!=, :instance_eval, :instance_exec, : send ,
:id_]

These methods must be being called on something. We know that something is
self. What is self? When we inspect it, we see:

>> self.inspect
=> "main"

>> self.class
=> Object

So self is an instance of Object that evaluates to the string main. By default it
has no instance variables:

>> instance_variables

=> []

But we can add them:

>> @loathing = true
=> true

>> instance_variables
=> [:@loathing]

So self is just an instance of Object. But what’s going on when we define a

method?

>> def say_hello
>> puts "hello"

>> end
=> nil

We can see that the method is now available to self.

>> self.methods.grep hello
=> [:say_hello]

Here we called the methods method, which we know returns an array, and then
called the grep method on the array. The grep method takes a pattern to match
—we specified hello, which matched only one method, so Ruby returned it.

What we’ve effectively done is defined a top-level method on Object. We can
see this by inspecting the method:

>> method(:say_hello).owner
=> Object

Normally we would define methods in the context of a class, so let’s look at
classes.

Classes

Classes describe the characteristics and behavior of objects—simply put, a class
is just a collection of properties with methods attached. We’re familiar with the
idea of biological classification—a mechanism of grouping and categorizing
organisms into genus or species. For example the walnut tree and the pecan tree
are both instances of the family Juglandaceae. In Ruby every object is an
instance of precisely one class. We tend not to deal with classes as much as
instances of classes. One particularly powerful feature of Ruby is its ability to
give instances of a class some attributes or methods belonging to a different type
of object. This idea—the Mixin—is seen fairly frequently, and we’ll cover it
later.

Let’s see an example of creating a class:
>> class Pet

>> end
=> nil

The class doesn’t do anything interesting yet, but we can create an instance of it:

>> rupert = Pet.new

=> #<Pet:0x00000001d97b68>
>> rupert.class

=> Pet

Let’s extend our class a little. It might be nice to be able to know the name of the
pet. This allows us to introduce the idea of the constructor. The constructor is
the method that is called when a new instance of a class is initialized. We can use
it to set up state for the object. Let’s switch to using a text editor for this
example:

$ emacs pet.rb
class Pet

def initialize(name)
@name = name
end

def name
@name
end

end

corins_pet = Pet.new("Rupert")
puts "The pet is called " + corins_pet.name

$ ruby pet.rb
The pet is called Rupert

So the constructor has the method initialize. We’ve said that it takes an
argument, and we’re setting an instance variable to hold the state of the pet’s
name. Later we have a method, name, which returns the value of the instance
variable. Simple.

The trouble is, children are fickle. What they thought was a great name turns out
to be a dreadful name a few days later. Unless we were going to be draconian,
and insist that pet names be immutable, it might be nice to allow the child to
rename the pet. Let’s add an instance method that will change the name:

$ emacs pet.rb
class Pet

def initialize(name)
@name = name
end

def name=(name)
@name=name
end

def name
@name
end

end

pet = Pet.new("Rupert")

puts "The pet is called " + pet.name
puts "ALL CHANGE!"

pet.name = "Harry"

puts "The pet is now called " + pet.name

$ ruby pet.rb

The pet is called Rupert
ALL CHANGE!

The pet is now called Harry

Here’s another example of a method name with some odd-looking punctuation at
the end. But this is how we implement a method that allows assignment. This
class is looking a bit lengthy (and frankly, ugly) for such a featureless class.
Thankfully Ruby provides some syntactic sugar, which provides the ability to get
and set instance variables. Here’s how it works:

class Pet
attr_accessor :name
def initialize(name)
@name = name
end

end

pet = Pet.new("Rupert")

puts "The pet is called " + pet.name
puts "ALL CHANGE!"

pet.name = "Harry"

puts "The pet is now called " + pet.name

What’s actually going on here is that when the Class block is evaluated, the
attr_accessor method is run, which generates the methods we need. Ruby is
particularly good at this—metaprogramming—code that writes code. In more
advanced programming, it’s possible to overwrite the default attr_accessor
method and make it do what we want—great is the power of Ruby. But why all
the fuss? Why can’t we just peek into the class and see the instance variable?
Remember, Ruby operates by sending and receiving messages, and methods are
the way classes deal with the messages. The same is so for instance variables.
We can’t access them without calling a method—it’s a design feature of Ruby.

Right, that’s enough of messages and classes for the time being. Let’s move on
to look at some data structures.

Arrays

Arrays are indexed collections of objects, which keep this in a specific order:

>> children = ["Melisande", "Atalanta", "Wilfrid", "Corin"]
=> ["Melisande", "Atalanta", "Wilfrid", "Corin"]

>> children[0]

=> "Melisande"

>> children[2]

=> "Wilfrid"

The index starts at zero, and we can request the nth item by calling the “[]”
method. This is very important to grasp. We’re sending messages again! We’re
sending the [] message to the children array, with the argument “2”. The array
knows how to handle the message and replies with the child at position 2 in the
array. Arrays have convenient aliases:

>> children.first
=> "Melisande"

>> children.last
=> "Corin"

We can append to an array using the “<<” method. Suppose we adopted orphan
Annie:

>> children << "Annie"

=> ["Melisande", "Atalanta", "Wilfrid", "Corin", "Annie"]
>> children.count

=> 5

Collections of objects can be iterated over. For example:

>> children.each { |child| puts "This child is #{child}" }
This child is Melisande

This child is Atalanta

This child is Wilfrid

This child is Corin

This child is Annie

=> ["Melisande", "Atalanta", "Wilfrid", "Corin", "Annie"]

This introduces two new pieces of Ruby syntax—the block and string
interpolation. String interpolation is an alternative to the rather clumsy looking
use of the “+” operator. Ruby evaluates the expression between #{ } and prints
the result.

>> dinner = "curry"

=> "curry"

>> puts "Stephen is going to eat #{dinner} for dinner"
Stephen is going to eat curry for dinner

=> nil

Of course the expression could be much more complex:

>> foods = ["chips", "curry", "soup", "cat sick"]
=> ["chips", "curry", "soup", "cat sick"]

>> 10.times { puts "Stephen will eat #{foods.sample} for dinner this evening." }
Stephen will eat chips for dinner this evening.
Stephen will eat soup for dinner this evening.
Stephen will eat soup for dinner this evening.
Stephen will eat cat sick for dinner this evening.
Stephen will eat chips for dinner this evening.
Stephen will eat curry for dinner this evening.
Stephen will eat chips for dinner this evening.
Stephen will eat soup for dinner this evening.

Stephen will eat soup for dinner this evening.
Stephen will eat curry for dinner this evening.
=> 10

Here we see another example of a block! The integer “10” has a method times,
which takes a block as an argument.

Blocks allow a set of instructions to be grouped together and associated with a
method. In essence, they’re a block of code that can be passed as an argument to
a method. They’re a particular speciality of Ruby and are incredibly powerful.
However, they’re also a bit tricky to understand at first.

For programmers new to Ruby, code blocks are generally the first sign that they have definitely
departed Kansas. Part syntax, part method, and part object, the code block is one of the key features
that gives the Ruby programming language its unique feel.

— Russ Olser Eloquent Ruby

Blocks are created by appending them to the end of a method. Ruby takes the
content of the block and passes it to the method. Depending on the length of the
block, Ruby convention is either:

m [f one line, then place in curly braces {} (unless the code has a side effect,
such as writing to a file, in which case the do .. end form applies)

» [f more than one line, then replace curly braces with do .. end

The method definition itself has code to handle the contents of the block. For
now it’s sufficient to understand that blocks are a kind of anonymous function—
that is a function that we defined and call, without ever binding it to an identifier.
Ruby uses them a great deal to implement iterators.

Although present in Smalltalk, I think that it’s when looking at blocks that we
see most evidence of Lisp in Ruby. Lisp provides the lambda expression as a
mechanism for creating a nameless or anonymous function, and passing it to
another function. Lisp also has the concept of a closure—that is an anonymous
function that can refer to variables visible at the time it was defined. Referring
again to a Matz interview, the creator of Ruby says:

...we can create a closure out of a block. A closure is a nameless function the way it is done in Lisp.

You can pass around a nameless function object, the closure, to another method to customize the

behavior of the method. As another example, if you have a sort method to sort an array or list, you

can pass a block to define how to compare the elements. This is not iteration. This is not a loop. But
it is using blocks ... the first reason [for this implementation] is to respect the history of Lisp. Lisp

provided real closures, and I wanted to follow that.

— Bill Venners http://www.artima.com/intv/closuresP.html

Ruby features a wide range of iterators for various purposes. One commonly
used one is map. The map method takes a block, and produces a new array with
the results of the block being applied, without changing the initial array:

>>
?>
>>
>>
?>
>>
>>

=>

children.map do |child]|

if child == "Annie"
child + " the Orphan"
else

child + " NelsonSmith"
end

end

["Melisande NelsonSmith", "Atalanta NelsonSmith", "Wilfrid NelsonSmith", "Corin

NelsonSmith", "Annie the Orphan"]

>>

=>

children
["Melisande", "Atalanta", "Wilfrid", "Corin", "Annie"]

The block arguments lie between the two pipe symbols. I find Why The Lucky

Stiff’

s description particularly apt:

The curly braces give the appearance of crab pincers that have snatched the code and are holding it
together. When you see these two pincers, remember that the code inside has been pressed into a
single unit.... I like to think of the pipe characters representing a tunnel. They give the appearance of
a chute that the variables are sliding down. Variables are passed through this chute (or tunnel) into
the block.

— WTLSPGTR

Conditional logic

Ruby supports various control structures to manage the flow of data through a
program. The most commonly used are those that fork based on decisions:

>>
?>
>>
>>
>>
?>
>>

>>

10.times do
grub = foods.sample
if grub == "cat sick"
puts "Stephen is not very hungry, for some reason."
else
puts "Stephen will eat #{grub} for dinner this evening."
end
end

Stephen will eat chips for dinner this evening.
Stephen will eat curry for dinner this evening.

Stephen will eat soup for dinner this evening.
Stephen is not very hungry, for some reason.
Stephen is not very hungry, for some reason.
Stephen will eat chips for dinner this evening.
Stephen will eat chips for dinner this evening.
Stephen will eat soup for dinner this evening.
Stephen will eat curry for dinner this evening.
Stephen will eat soup for dinner this evening.

=>

10

In addition to if and else, we also have elsif:

>>
>>
>>
>>
>>
>>
?>
>>
>>
=

>>

def editor_troll(editor)
if editor == "emacs"
puts "Best editor in the world!"
elsif editor =~ vi
puts "Be gone with you, you bearded weirdo!"

else

puts "yawn - sorry - were you talking to me?"
end
end
nil
editor_troll("emacs")

Best editor in the world!

=>
>>
Be
=>

>>

nil

editor_troll("elvis")

gone with you, you bearded weirdo!
nil

editor_troll("nano")

yawn - sorry - were you talking to me?

=>
>>
Be
=>

>>

nil

editor_troll("vim")

gone with you, you bearded weirdo!
nil

editor_troll("textmate")

yawn - sorry - were you talking to me?

=>

nil

A handy option is the unless keyword:

>>

>>

>>

>>

>>

def mellow_opinion(editor)

unless editor.length ==

puts "Cool, dude. I hear #{editor} is really nice."
end

end

=> nil

>> mellow_opinion("emacs")

Cool, dude. I hear emacs is really nice.
=> nil

>> mellow_opinion("notepad")

Cool, dude. I hear notepad is really nice.
=> nil

>> mellow_opinion("")

=> nil

The final control structure you’ll come across is the case statement:

>> def seasonal_garment(season)
>> Case season

>> when "winter"

>> puts "Wooly jumper and hat!"
>> when "spring"

>> puts "Shirt and jacket!"

>> when "summer"

>> puts "Shorts and t-shirt!"
>> when "autumn"

>> puts "Hmm... English? Raincoat!"
>> when "fall"

>> puts "Bit like spring, really.'
>> end

>> end

>> seasonal_garment("winter")
Wooly jumper and hat!

=> nil

>> seasonal_garment("fall")
Bit like spring, really.

=> nil

>> seasonal_garment("autumn")
Hmm... English? Raincoat!

=> nil

Typically, the case statement is used if there are more than three options, as
multiple elsif statements look a bit ugly, but it’s really just a matter of style.

Hashes

A hash is another sort of collection in Ruby. Variously called a dictionary or
associative array in other languages, its defining feature is that the index can be
something other than a static value. Hashes are commonly used in Chef for

key/value pairs:

>> wines = {}

= {}

>> wines['red'] = ["Rioja", "Barolo", "Zinfandel"]

=> ["Rioja", "Barolo", "Zinfandel"]

>> wines['white'] = ["Chablis", "Riesling", "Sauvignon Blanc"]

=> ["Chablis", "Riesling", "Sauvignon Blanc"]

>> wines

=> {"red"=>["Rioja", "Barolo", "Zinfandel"], "white"=>["Chablis", "Riesling",
"Sauvignon Blanc"]}

The great thing about hashes is they can be deeply nested. We can add, for
example:

>> wines['sparkling'] = {"Cheap" => ["Asti Spumante", "Cava"], "Moderate" => ["Veuve
Cliquot", "Bollinger NV"], "Expensive" => ["Krug", "Cristal"]}

=> {"Cheap"=>["Astil Spumante", "Cava"], "Moderate"=>["Veuve Cliquot", "Bollinger
NV"], "Expensive"=>["Krug", "Cristal"]}

>> wines['sparkling']["Cheap"]

=> ["Asti Spumante", "Cava"]

>> wines['sparkling']["Expensive"]

=> ["Krug", "Cristal"]

Again, of great significance for a Chef developer is to understand the message
sending aspects. We’re calling the [] method on the wines hash, which gives us
another hash, on which we’re calling the [] method, to get the expensive
sparkling wines array. This is a common pattern in Chef and leads to perhaps the
most common error message you’ll see:

>> wines['sparklin']['Cheap']

NoMethodError: undefined method '[]' for nil:NilClass
from (irb):88
from optrubies/1.9.3-p429/bin/irb:12:1n ‘<main>'

What happened? Well, I’ve drilled you so hard, I am sure you can say right
away. Everything in Ruby is an object. Everything is an instance of a class. Even
nothing at all:

>> nil.class
=> NilClass

>> nil.class.methods

=> [:allocate, :superclass, :freeze, :===, :==, :<=>, :<, :<=, :>, :>=,:t0_s,
:included_modules, :include?, :name, :ancestors, :instance_methods,
:public_instance_methods, :protected_instance_methods, :private_instance methods,
:constants, :const_get, :const_set, :const_defined?, :const_missing,
:class_variables, :remove_class_variable, :class_variable_get, :class_variable_set,
:class_variable_defined?, :public_constant, :private_constant, :module_exec,
:class_exec, :module_eval, :class_eval, :method_defined?, :public_method defined?,
:private_method_defined?, :protected method defined?, :public_class_method,
:private_class_method, :autoload, :autoload?, :instance_method,
:public_1instance_method, :editor_troll, :mellow_opinion, :seasonal_garment, :nil?,
i=~, :!~, :eql?, :hash, :class, :singleton_class, :clone, :dup, :initialize_dup,
:initialize_clone, :taint, :tainted?, :untaint, :untrust, :untrusted?, :trust,
:frozen?, :inspect, :methods, :singleton_methods, :protected_methods,
:private_methods, :public_methods, :instance_variables, :instance_variable_get,
:instance_variable_set, :instance_variable_defined?, :instance_of?, :kind_of?,
:1s_a?, :tap, :send, :public_send, :respond_to?, :respond_to_missing?, :extend,
:display, :method, :public_method, :define_singleton_method, :object_id, :to_enum,
:enum_for, :equal?, :!, :!=, :instance_eval, :instance_exec, : send , : id_]

So an instance of N11Class has some methods, but it doesn’t have a [] method!
Where did we get nil from? Well, because of our typo, we requested the value of
a non-existent key. Let’s be more explicit:

>> wines['bogus']

=> nil

>> wines['bogus'].class

=> NilClass

>> wines['bogus']['reasonable']

NoMethodError: undefined method ‘[]' for nil:NilClass
from (irb):93
from optrubies/1.9.3-p429/bin/irb:12:1n ‘<main>'

Hashes have a number of convenient methods that you’ll see used:

>> wines.keys

=> ["red", "white", "sparkling"]

>> wines.values

=> [["Rioja", "Barolo", "Zinfandel"], ["Chablis", "Riesling", "Sauvignon Blanc"],
{"Cheap"=>["Asti Spumante", "Cava"], "Moderate"=>["Veuve Cliquot", "Bollinger NV"],
"Expensive"=>["Krug", "Cristal"]}]

And, by definition, hashes are enumerable—they take a block and can be iterated

over. When iterating over a block, we typically pass two arguments into the
block, representing the key and value:

>> wines.each do |color, types|

?> if types.respond_to?(:keys)

>> puts "For #{color} wine, you have more options: #{types.keys}"

>> end

>> end

For sparkling wine, you have more options: ["Cheap", "Moderate", "Expensive"]

Truthiness

Let’s quickly talk about the abstract notion of truth. Truth, for Hegel, and many
who followed in his footsteps is not merely semantic. It is a much richer
metaphysical concept. Oh, sorry, wrong book. In Ruby, everything except nil and
false is considered true. This includes 0. Let me say that again. In Ruby,
absolutely everything is considered true. If in doubt, assume true. Obviously,
false is false.

>> 1f 0

>> puts "0 is true"
>> else

?> puts "0 is false"
>> end

0 is true

=> nil

Note that nil is also not explicitly evaluated to false. A value can be coerced to
true or false with “!!”. 1 is just ! (the boolean negation operator) written twice. It
will negate the argument, then negate the negation:

>> Inil
=> true
>> 1Inil
=> false
>> 10

=> false
>> 110

=> true

The first ! will convert the argument to a boolean (e.g., true if it’s nil or false,

and false otherwise). The second will negate that again so that you get the
boolean value of the argument, false for nil or false, true for just about
everything else. This is mostly useful in the REPL, but occasionally you will see
it in idiomatic usage.

Here’s a little table of truthiness for reference:

Ruby Truthiness
Expression Value
true true
false false
nil nil
== true
1==true false
Itrue false
Ifalse true
Inil true
11=2 true
11=1 false
ltrue true
I1false false
nil false
110 true
1 true

Operators

This leads nicely into a quick tour of Ruby operators. An operator is a token that
represents an operation—for example, a comparison or a subtraction. It takes
action on an operand and combines to form an expression. Ruby has lots of
operators, covering boolean logic, assignment, and arithmetic. The best
condensed summary is to be found in David Flanagan and Yukihiro Matsumoto’s
The Ruby Programming Language (O’Reilly), specifically section 4.6. We’ll
cover only those most pertinent to Chef.

First, arithmetic. Ruby provides the \+, -, *, /, and % operators to perform
addition, subtraction, and integer division. The module operator can be used to

calculate the remainder. This can also be used on String and Array. In the case
of a string, \+ will concatenate and * will repeat. In the case of an array, + will
concatenate and - will subtract:

>> 6%6

=> 36

>> 24/12

= 2

>> 37-8

=> 29

>> 17+17

=> 34

>> 20/3

= 6

>> 20 % 3

= 2

>> "Classical" + "Dutch"

=> "ClassicalDutch"

>> "Ruby" * 4

=> "RubyRubyRubyRuby"

>> ["Gatting", "Gower"] + ["Embury", "Edmunds"]
=> ["Gatting", "Gower", "Embury", "Edmunds"]
>> ["Lineker", "Platt", "Waddle"] - ["Waddle"]
=> ["Lineker", "Platt"]

Secondly, comparison. The <, <=, >,and >= operators make comparisons between
objects that have a natural order—such as numbers or strings:

>> "llama" > "frog"
=> true

http://shop.oreilly.com/product/9780596516178.do

>> "apple" > "elephant
=> false

>> "zelda" < "ganon"
=> false

>> "art" < "life"

=> true

> 7 > 4

=> true

>> 6 >= 6

=> true

Particularly useful is the so-called “spaceship” operator <=>—another import
from Perl. This makes a relative comparison between two operands. If the one
on the left is less than the one on the right, it returns +1. If they are equal, it
returns nil or 0, and if the one on the right is greater than the one on the left, it
returns - 1. This is hugely useful in sorting!

>> "Individuals and interactions" <=> "Processes and tools"
= -1

>> "Working software" <=> "Comprehensive documentation"

== 1

>> "Customer collaboration" <=> "Contract negotiation"

== 1

>> "Responding to change" <=> "Following a plan"

== 1

>> "SunBlade" <=> "SunBlade"

=> 0

Thirdly, equality. == is the equality operator—it tests whether the left hand
operand is equal to the right hand operand. Its opposite is !=. Take care not to
use the assignment operator = in place of the equality operator!

>> melisande = 4
= 4

>> adam = 4

= 4

>> melisande == adam
=> true

>> helena = 42

=> 42

>> stephen = 37

=> 37

>> helena = stephen
=> 37

>> helena

=> 37

>> stephen

=> 37

Also very handy is the pattern-matching operator, =~. I think the characters in
this resemble someone saying “kinda like” while rocking their hand in a
circumspect manner, which gives a useful aide memoire. This operator is most
commonly used when comparing strings:

>> "The Nimzo-Larsen attack" =~ ck$
= 21

>> "The Nimzo-Larsen attack" =~ xy$
=> nil

The operator takes a regular expression as its rightmost operand. If the match is
found, the index position where the match began is returned. Otherwise, nil is
returned. Even a basic discussion of regular expressions is likely to be beyond
the scope of this chapter, but with a little practice they’re very easy to pick up.
One of the best recent introductions to Ruby regular expressions can be found at
Bluebox. This is the first of a three-part article and is highly recommended. The
standard textbooks referenced in the bibliography also give ample coverage. For
a more general discussion on the subject, and its fascination and beauty, see
Mastering Regular Expressions by Jeffrey Friedl (O’Reilly).

Bundler

The final subject is Bundler, which should be covered before moving beyond the
fundamentals of the Ruby language. Bundler is so fundamental to how Ruby
development is carried out, and how tools are created and shared, that a thorough
understanding of it is required.

Bundler exists to solve two problems:

= How to ensure that the appropriate dependencies are installed for a given
problem without encountering unpleasant ordering issues or cyclical
dependencies.

http://bit.ly/16kHkus
http://shop.oreilly.com/product/9780596528126.do

= How to share a software project between other developers, or other machines
or environments, and be confident the application and its dependencies will
behave in the same way.

The first problem can be illustrated by three imaginary Rubygems:
1. Oxygen

2. Whale
3. Human

Let’s imagine that we have Oxygen 3.1.1 and Oxygen 1.8.5 installed on our
system. Now, imagine that we want to install Whale 1.0.0. Whale depends on
Oxygen, and the dependency is specified as “>= 1.5.0”. When we run gem
install whale, Rubygems will solve the dependency for Whale, and identify
that Oxygen 3.1.1 will satisfy the dependency, and so will start using this version
of Oxygen. Suppose we then decide to install Human 2.1.0. Human is a bit more
picky about the Oxygen upon which it depends than Whale, and the dependency
has been specified as “= 1.8.5”. If we type gem install whale, Rubygems will
identify that to solve the dependency, it will need to install version 1.8.5. The
trouble is, 3.1.1 is already in use. This will result in an error. The problem is that
Whale had a broader acceptance range for Oxygen than Human. Rubygems lacks
a holistic view, and simply tries to solve dependencies on a case-by-case basis,
resulting in nasty traps like this. The problem is magnified greatly the more
Gems there are on the system. When you consider that these Gems themselves
also have dependencies, it becomes apparent that trying to solve the
dependencies one at a time isn’t going to work.

The second problem may be illustrated by imagining two scenarios where a
Ruby developer wishes to move software that was being developed on her
workstation and share it with another team member, or perhaps run the code on a
staging machine somewhere. If our developer is running the latest patch level of
Ruby 1.9.3 on a Macbook, and her colleague is running Ruby 2.0.0 on Windows,
ensuring she has the same versions of the Rubygems that are needed to run the
application is going to be a bit of a challenge. This is a classic recipe for “it
works on my machine.” How can we somehow freeze known-good versions of
Rubygems and ensure that when we move to the staging server, or share with

another developer, that the versions are the same?

Bundler solves this problem in two ways. First, it provides an algorithm that
solves all the dependencies for a given application at once. This is a more
holistic and reliable approach. Second, it provides a kind of manifest file called a
Gemfile, in which the top level dependencies for an application are specified,
together with constraints, and optionally sources for the code. Between these two
mechanisms, both problems are resolved.

The Gemfile has a straightforward syntax:

source 'https://rubygems.org'
gem 'some_dependency'
gem 'some_other_dependency'

Bundler will use the information in this file recursively to solve dependencies for
the dependencies specified in the Gemfile, and to build a graph that satisfies the
dependencies of each dependency in the Gemfile. The Gemfile allows for a high
degree of sophistication in specifying source and version constraints. We can
specify from where to retrieve the Gems. We can specify a particular version.
We can specify that for a certain Gem, we should obtain the software directly
from a Git repository, down to the commit, branch, or tag. We can also specify to
use files on the local machine.

Once these dependencies have been resolved, developers can guarantee that only
specific versions of the dependencies are used when the application is running
on another user’s computer or when deployed to a server.

Bundler is itself a Rubygem. We actually ensured it was installed in our
developer role, but if we were doing things manually, we’d simply run:

$ gem install bundler

Once bundler has been installed, we create a Gemfile for the project and start to
specify dependencies. Bundler provides a convenient method for generating a
Gemfile:

$ bundler init
$ bundle init
Writing new Gemfile to hometdi/example/Gemfile

Once we’ve specified the dependencies in the Gemfile, we run:
$ bundle install

Bundler solves the dependencies and installs the Gems required. If those Gems
are already on the system, it uses them, otherwise it fetches them. Once the
dependencies have been solved and the Gems installed, Bundler creates a file
called Gemfile.lock, which represents a snapshot of the dependency graph it
built, and the versions it installed. By checking this and the Gemfile into version
control, we can create a sandboxed environment for other users and be confident
that they have exactly the same versions as we have on our system.

By way of exploring the functionality of Bundler, we’re going to write a silly
task to say “hello” three times in color. There’s a very handy gem that is ideal for
helping craft tasks, and ultimately provide them as command-line applications—
it’s called Thor. To print output in color, there is another handy Gem called
Colorize. The process of setting up this project with Bundler looks like this:

$ mkdir tmpcolorsay

$ cd tmpcolorsay

$ bundle init

Writing new Gemfile to /privatetmpcolorsay/Gemfile
$ emacs Gemfile

$ cat Gemfile

source "https://rubygems.org"

gem "thor"
gem "colorize"

$ bundle install

Fetching gem metadata from https://rubygems.org/.........

Resolving dependencies...

Using colorize (0.5.8)

Using thor (0.18.1)

Using bundler (1.3.5)

Your bundle is complete!

Use “bundle show [gemname]" to see where a bundled gem is installed.

$ cat Gemfile.lock

GEM
remote: https://rubygems.org/
specs:

http://whatisthor.com/
https://github.com/fazibear/colorize

colorize (0.5.8)
thor (0.18.1)

PLATFORMS
ruby

DEPENDENCIES
colorize
thor

Now we write our simple task:

$ cat colorsay.thor
require 'colorize'

class ColorSay < Thor
desc "hello", "Say hello in color"
def hello
puts "Hello".colorize(:red)
puts "Hello".colorize(:green)
puts "Hello".colorize(:yellow)
end
end

This is our first case of requiring an external library or extension. In this case,
we’re bringing in colorize to provide strings with a .colorize method, which
takes a symbol as its argument.

Symbols get a bit of bad press in the Ruby world. Well, at least to newcomers.
What’s that colon thing for? Why do we need it? Why bother? You’ll see
symbols cropping up in Chef recipes from time to time, so it’s worth
understanding what they are and what they’re for.

Symbols are really just strings, dressed up. That’s not quite fair, but they really
don’t deserve their exotic and sinister reputation. It helps if we think a little
about the purpose of strings. The common use of strings is to carry some
meaning or data. This might change over time, and is generally designed to carry
or convey information. For example, we might set the value of the variable soup
to be the string value "Leek and Potato". However, we also use strings as
references or tags. We do this especially in Chef, when we’re locating attributes
on the Node. In this case, the string isn’t going to change, and the extent to

which it carries meaning is restricted to its role as a placeholder, or indicator—a
pointer to somewhere where we’ll find information that probably will change.
Within the constructs of a programming language, these two roles exhibit
significantly different profiles in terms of the resources, algorithms, and
functions necessary to handle them. Strings as highly mutable, information
carrying devices may need much manipulation and examination. Strings as
placeholders just hold a place. That’s it. In Ruby, the String class is optimized
for the former use case, and the Symbol class is optimized for holding a place—
for symbolizing something. Bringing this directly into the context of Chef, within
a recipe, we may access the attributes of a Node in three ways:

m node.attribute
m node['attribute\']
m node[:attribute]

These can be used interchangeably (a side effect of the Node object actually
being an instance of Mash). There’s been strong debate in the community around
which should be used as standard. As a Rubyist, I would advise you to use
symbols. As a pragmatist, strings are perhaps a little less intimidating. For more
information on the difference, and why it matters, see this post by Robert
Sosinski.

The other characteristic of our little Thor task is that we see the class ColorSay
is a subclass of class Thor. This is the meaning of the < symbol. This makes
Thor the parent, the superclass of ColorSay. This is the idea of inheritance at
work. Inheritance, like the word would suggest, is all about passing traits down
from parent to child. Instances of the subclass pick up the methods of the
superclass.

Now let’s run our task:

$ thor list
color_say

thor color_say:hello # Say hello in color

$ thor color_say:hello

http://bit.ly/16kJKcL

Hello
Hello
Hello

There’s not really much more to it than that. For more comprehensive
documentation and discussion, see the Bundler website.

The only consideration to bear in mind is that when using command-line tools
provided by Rubygems, such as Thor, Rake, Cucumber, RSpec, Chef—in fact,
pretty much all the tools we discuss in this chapter—there’s the potential for
confusion and bugs if you don’t explicitly use the version installed in your
bundle. Let me give you a trivial example. Suppose you had a need to use an
earlier version of Thor because some functionality in your tasks relied upon
some features that had been removed in the latest release. That’s easy to achieve
—we simply specify the version we need in the Gemfile:

$ cat Gemfile
source "https://rubygems.org"

gem "thor", "= 0.15.4"

gem "colorize"

$ bundle install

Fetching gem metadata from https://rubygems.org/.........

Resolving dependencies...

Using colorize (0.5.8)

Installing thor (0.15.4)

Using bundler (1.3.5)

Your bundle is complete!

Use “bundle show [gemname]" to see where a bundled gem is installed.

If we run Thor now, we’ll get version 0.15.4, right?

$ thor version
Thor 0.18.1

What? What’s going on? The answer is, our shell gave us the path to the newest
Thor. This could well have undesired effects. Bundler has a couple of ways

around this. The first is bundle exec. This will run the version installed in your
bundle:

$ bundle exec thor version

http://gembundler.com/

Thor 0.15.4

There are three problems with this approach. First, it’s easy to forget and
accidentally just run Thor. This can lead to annoying wastes of time as you try to
figure out why your beeping code isn’t working anymore. Second, it’s a pain to
have to type bundle exec every time. Third, there’s a significant performance
penalty:

$ time thor version
Thor 0.18.1

real Om0.263s
user OmO.185s
sys Om0.054s

$ time bundle exec thor version
Thor 0.15.4

real Om0.565s
user OmO.453s
sys Om0.082s

Running under bundle exec was nearly twice as slow. I can offer you three
solutions to this problem. Pick one and work with it, for the sake of your sanity
and your productivity. The first, and easiest, is just to create a shell alias:

$ alias b='bundle exec'
$ b thor version
Thor 0.15.4

Put this in your shell config and deal with the hassle of having to type two extra
characters. Try not to forget, and deal with the performance.

The second is to use Bundler’s own solution—binstubs. Bundle install supports
the - -binstubs option, which will create a local bin directory in your
application root and a little wrapper script that calls the bundled command. Now
you can just type . /bin/thor. It’s fewer keystrokes than bundle exec, and it’s
as fast as thor because bundler doesn’t have to search for the binary. You can
add the local bin directory to your shell path, and now you don’t even need to
remember . /bin:

$ export PATH="./bin:$PATH"
$ thor --version
Thor 0.15.4

The disadvantage of this is that it’s widely accepted as a security risk to have a
local bin directory on your path, especially on, for example, a shared host. For
more background, see the Unix FAQ. My preferred solution is one created by a
friend and former colleague, Graham Ashton—bundler-exec. Using the power of
shell aliases, it replaces a given list of commands with a shell function that
checks for a Gemfile in your current directory, or one of its parents, and then
prefixes the command with a bundle exec if needed. I think this is the best of
all worlds. You’ll never forget, it’s no more typing, there’s no security risk, and
while there is a performance penalty, we’re talking in the region of milliseconds.
If you're a fan of zsh, take a look at Robby Russell’s oh my zsh GitHub page,
which provides this functionality as a plug-in. To install it on a bash shell,
simply run the following:

$ curl -L https://github.com/Atalanta/bundler-exec/raw/master/bundler-exec.sh >
/ .bundler-exec.sh
$ echo "[-f /.bundler-exec.sh] && source /.bundler-exec.sh" >> /.bashrc

Now everything works beautifully:

$ cd tmpcolorsay/
$ thor version
Thor 0.15.4

$acd ..

$ thor version

$ thor version
Thor 0.18.1

Once you’ve implemented a mitigating strategy for the bundle exec annoyance,
there aren’t really any obvious disadvantages to using Bundler. It’s the standard
tool in the Ruby community for managing and solving inter-gem dependencies,
and for maintaining shareable sets of known-good Gems.

Bundler is an underpinning tool to pretty much everything we do in this book.
Spend some time getting familiar with it, read the documentation, and take the
time to set up your shell to take the pain out of the need to bundle exec.

http://bit.ly/16e4mKw
https://github.com/robbyrussell/oh-my-zsh

Chapter 3. An Introduction to
Chef

The best way to learn is to do. A lot of technical books, even ones aimed at
beginners, take the form of a lengthy discursive preamble, followed by some
abstract example for the reader to digest and understand. The trouble with this is
it doesn’t map well onto how we learn technical skills. Learning a technical skill
is like teaching a child to ride a bicycle. You can’t really teach someone the
theory, and then show them a video of someone else cycling, and then expect
them to just pick it up by themselves at some point in the future. A much better
way is to go out there and then, with a bicycle, plonk them on, give them a push,
and help them when they wobble.

Learning a technical skill or a programming language is very much about
immersion. The learning process is reinforced by mistakes, by looking up
documentation, by asking other more experienced people, and building up
competence ourselves. So, to introduce the fundamental ideas of Chef, we’ll
build some real infrastructure, which we’ll actually use later in the book. This
chapter and the next are unashamedly influenced by the excellent series of books
and courses by Zed Shaw found at Learn Code the Hard Way. An approach that
focuses on diving in and using real examples, this has been proven to be an
excellent method for building confidence and expertise in a technical subject.

The approach, as explained on the website:

“...emphasizes precision, attention to detail, and persistence by requiring you to type each exercise
(no copy-paste!) and make it run, as well as to read up on outside topics and to return to exercises
and ideas that you don't understand, and understand them.”
At the end of this chapter and the next, you’ll understand the basics of Chef,
have hands-on experience writing cookbooks and recipes, and use community
resources to frame your infrastructure as code. Once we’ve covered these
fundamentals, we’ll go on to look at some of the tools we can use to start
thinking about test-driven infrastructure development, and then look at a full

http://learncodethehardway.org

example of using these tools in practice.

I’m making some broad assumptions about your ability and set-up. They are as
follows:

® You can type instructions into a command prompt.
= You can edit text.
® You have a computer and have administrative power over it.

® Your computer was made some time in the last four or five years, and has
about 2G of memory or more.

= You have a connection to the Internet.
= You are not behind a proxy server, or can easily disable it."!

Anything beyond this is a bonus. For example, if you have access to dedicated
test hardware and several machines, that’s excellent. However, that’s not needed
at all. If you don’t have administrative control over your computer, or have a
very old computer with not much memory, you probably want to fix that before
we continue. In the first edition, I made the assumption that people would have
access to a public-cloud infrastructure, or would be prepared to pay for their own
(minimal) use. In this edition I’ve moved toward the view that people are more
likely to have adequate hardware, and want to work with local virtual machines
rather than machines hosted with a public cloud provider. Most Chef users these
days make heavy use of local virtualization in addition to the cloud, and so I’ve
decided to include setting up such a capability as a fundamental task. If this is
truly impossible for you, simply skim the sections in Chapter 4 where we install
VirtualBox, and once we get to installing Vagrant, set it up to use the Rackspace
cloud or EC2.

The basic format is that I will set an objective, or set of objectives, that you will
be asked to achieve. The objectives will be the equivalent of acceptance criteria;
you’ll know you’re done when those objectives have been met. I’ll then give you
high-level directions on how to meet the objectives. They categorically are not
instructions for you to follow, but rather an outline of the high-level steps you
need to follow. My expectation is that you will be able to work out how to

follow those directions by a combination of referring to other sections in the
book, using your own knowledge and common sense, and using the main online
resources for Chef:

m http://docs.opscode.com

m http://wiki.opscode.com

m #chef and #learnchef on irc.freenode.net
m The chef-users mailing list

I will follow the instructions with a worked example. I ask explicitly that, if
you’re reading this digitally, you don’t simply copy and paste this into your own
system—this contravenes the spirit of “the hard way.” Additionally, your system
may be subtly different from mine. I suggest you use my worked example as
guidance for you as you achieve the objectives yourself. If you want to use the
material in the worked example, I ask that you type it out yourself. Try to solve
the exercises yourself, and only once you’ve tried, move on to look at the
worked example.

Finally, we’ll discuss the way we achieved the objectives, covering any
interesting points that arose, and ensuring the way we achieved them is fully
understood. Again, I would firmly ask that if you don’t understand the
discussion, don’t carry on with the next set of objectives. Go back over the
instructions and discussion, and if you’re still stuck, seek help via the online
resources previously mentioned. This is for your sake—master the fundamentals
and build on them.

The infrastructure we’re going to build over the next two chapters is a cookbook
development and testing environment, including some useful tools, and setting
up VirtualBox, Vagrant, and Test Kitchen. We’re going to imagine we’re in a
position where we want to share this infrastructure with a few other users, and
that we’re going to host it on a physical machine somewhere on the public
Internet, so we can collaborate with our friends and colleagues in different
locations and timezones.

Exercise 1: Install Chef

http://docs.opscode.com
http://wiki.opscode.com
http://lists.opscode.com/sympa

Objectives
After completing this exercise, you will have done the following:

m Installed the latest version of the Chef client tools on your machine
m [dentified how to find help on your machine

m Understood the purpose of each of the tools that ship with Chef

Directions

1. Search for the term “omnibus” on http://docs.opscode.com and read and
understand how this helps us install Chef on our systems.

2. Install Chef on your computer using the Omnibus package for your
platform.

3. Access the documentation installed on the computer for chef-apply,
chef-solo, chef-client, chef-shell, and knife.

4. Search http://docs.opscode.com for each tool and read about what they do.

Worked Example

I set up two machines—one running Ubuntu 12.04, one running CentOS 6.4,
both 64-bit. I then browsed to http://docs.opscode.com/search.html, and searched
for the word “Omnibus”. The top link provided an overview of how to install
Chef on a workstation. It contained more information than I needed, but I
identified that I should visit the http://www.opscode.com/chef/install page, and
that for Linux and Unix machines, the installation process was broadly to run an
install script, piped through a shell, with super-user privileges.

I browsed to the install page, filled out the form, and followed the instructions,
which on each machine amounted to me running the following command:

curl -L https://www.opscode.com/chef/install.sh | sudo bash

On my CentOS machine, sudo was not configured, so I changed to the root user,
and ran the command without sudo.

http://docs.opscode.com
http://docs.opscode.com
http://docs.opscode.com/search.html
http://www.opscode.com/chef/install

During the writing process, I also had 32-bit Ubuntu 13.04 machines. I mention
this because the installation process was a bit trickier, as there weren’t any 32-bit
packages for 13.04. Instead, I selected 12.10, which did offer a 32-bit package,
downloaded the package manually, and installed it with the following command:

$ sudo dpkg --install chef-11.4-4.2.ubuntu*.deb
I verified the installation on each machine by opening a terminal and running:
$ chef-client --version

To obtain help for each of the listed commands, I ran the command with the - -
help switch. I identified that chef-apply didn’t require a configuration file, but
the others did. chef-solo and chef-shell seemed simpler than chef-client,
which had considerably more option flags. Knife seemed to have much more
information available, including a knife help subcommand. I ran knife help
knife and knife help list, and skimmed the pages.

I then browsed to http://docs.opscode.com and searched for each command. I
found that I needed to quote the commands in order to get appropriate results. I
read the documentation on chef-solo and chef-client. chef-apply only had
a single line, and chef-shell yielded only a result telling me that this was once
called “Shef”. A search for “Shef” didn’t bring results either, so I tried
http://wiki.opscode.com, where I found a page about Shef,
http://wiki.opscode.com/display/chef/Shef, which I skimmed.

Discussion

As you can see, installing Chef is a breeze! Opscode provides a fully supported
package install for most platforms, including Windows and commercial Unix
operating systems. These packages vendor everything needed to run Chef into an
isolated location (typically /opt)}—this includes Ruby, OpenSSL, and other
supporting tools and libraries.

When we ran the following code, it downloaded and executed a simple shell
script that calculated the exact version of the native OS package required,
downloaded the package, installed it, and added the vendored location of the

http://docs.opscode.com
http://wiki.opscode.com
http://wiki.opscode.com/display/chef/Shef

Chef commands to your user’s path:
curl -L https://www.opscode.com/chef/install.sh | bash

If you are worried about running arbitrary shell scripts on your machine, with
root privileges you can always download the script, inspect it, and run it
yourself. However, realistically, if you trust Opscode to develop an automation
framework upon which you’re going to base the running of your entire
infrastructure, I think you can probably risk running the shell script that installs
it.

Having installed Chef, we saw that we had five new commands available on our
system:

m chef-apply
m chef-shell
m chef-solo

m chef-client
m knife

I asked you to make yourself familiar with the help available, both on your
computer and on the Opscode documentation site. Naturally I don’t expect much
of this to make sense right now, but it’s vital that you develop the impulse of
using - -help, help, and the Opscode documentation sites throughout the book.
While I am “virtually” with you on this journey, in the real world, things won’t
work as expected, and knowing where to look for help from the start is a great
foundation. I’ll go on to explain what each of these tools is for, but first let’s
cover, at a high level, what Chef actually is.

Chef is an open source tool and framework that provides system administrators
and developers with a foundation of APIs and libraries, which makes this kind of
workflow possible.

Chef allows us to effectively write programs that generate configuration directly
on the machines we need to manage. We then keep these programs in version

control, and use them to gain control of the complex systems we need to
manage.

Navigating the labyrinth of resources that we need to provide an application
infrastructure becomes achievable because, through its libraries and APIs, Chef
presents a declarative interface to these resources. This allows us to define a
policy and express the infrastructure requirements at a higher level—specifying
what resources are required, but without specifying how.

Architecturally, machines managed by Chef pull configuration information
rather than being passive receivers, which means that the infrastructure remains
convergent—over time it will move into line with defined policy. A machine that
was down for maintenance will pull its config as soon as it rejoins the network,
rather than receiving a push, if the administrator remembers that that machine
didn’t get the last update.

Therefore, Chef furnishes us with the power to build tools to help us manage
infrastructure at scale. At the heart of the Chef approach is the recognition that
the person who knows best how to run their own infrastructure is the person who
lives with it on a day-to-day basis. Encapsulated in that daily experience is a
wealth of domain experience, which leads to a clear understanding of the
business and technology problems that are most pressing. Chef aims to furnish
such a person with the ability to solve these problems in a creative, scalable,
repeatable, maintainable, and shareable manner.

Let’s explore this a little further—Chef is a framework, a tool, and an API.

The Chef framework

As the discipline of software development has matured, frameworks have
emerged with the aim of reducing development time by minimizing the overhead
of having to implement or manage low-level details that support the
development effort. This allows developers to concentrate on rapid delivery of
software that meets customer requirements.

The common use of the word framework is to describe a supporting structure
composed of parts fitted and joined together. The same is true in the software
world. Frameworks tie together discrete components into a useful organic whole
to provide structural support to the building of a software project. Frameworks
also provide consistent and simple access to complex technologies by making

wrappers available that simplify the interface between the programmer and
underlying libraries.

Frameworks bring with them numerous benefits. In addition to increasing the
speed of development, they can improve the quality of the software that is
produced. Software frameworks provide conventions and design approaches
that, if adhered to, encourage consistency across a team. Their modular design
encourages code re-use and they frequently provide utilities to facilitate testing
and debugging. By providing an extensive library of useful tools, frameworks
reduce or eliminate the need for repetitive tasks and accord the developer a high
degree of flexibility via abstraction.

Chef is a framework for infrastructure development—a supporting structure and
package of associated benefits of direct relevance to framing one’s infrastructure
as code. Chef provides an extensive library of primitives for managing just about
every conceivable resource that is used in the process of building up an
infrastructure within which we might deploy a software project. It also provides
a powerful Ruby-based language for modeling infrastructure, and a consistent
abstraction layer that allows developers and system administrators to design and
build scalable environments without getting dragged into operating system and
low-level implementation details. It also provides some design patterns and
approaches for producing consistent, shareable, and reusable components.

The Chef tool

The use of tools is viewed by anthropologists as a hugely significant
evolutionary milestone in the development of humans. Primitive tools enabled us
to climb to the top of the food chain by allowing us to accomplish tasks that
could not be carried out with our bodies alone. While tools have been available
to system administrators and developers since the birth of computers, recent
years have witnessed a further evolutionary leap, with the availability of
network-enabled tools that can drive multiple services via a published API.
These tools are frequently extensible, written in a modular fashion in powerful,
flexible, high-level programming languages such as Python or Ruby.

Chef provides a number of such tools, built upon the framework:

Ohat
A system profiling tool that gathers large quantities of data about the system,

from network and user data to software and kernel versions. Ohat is
extendable—plug-ins can be written (usually in Ruby) that will furnish data
in addition to the defaults. The collected data is emitted in a machine-
parseable and readable format (JSON), and is used to build up a database of
facts about each system that is managed by Chef.

chef-shell
An interactive debugging console that provides command-line access to the
framework’s libraries, the API, and the local system’s data. This is an
excellent tool for testing and exploring how Chef will behave under a variety
of conditions. It allows the developer to run Chef within the Ruby interactive

interpreter, IRB, and gives a read-eval-print loop ideal for debugging and
exploring the data held on the Chef server.

chef-solo
A fully featured standalone configuration management tool that allows
access to a subset of Chef’s features without using a Chef server; suitable for
simple deployments.

chef-client
An agent that runs on systems being managed by Chef, and the primary
mechanism by which such systems communicate with the Chef server. chef -
client uses the framework’s library of primitives to configure resources on
a system by talking to a central server API to retrieve data.

chef-apply
A lightweight tool for configuring a machine to perform a function with a
single command, needing no configuration or Chef server.

knife
A multipurpose command-line tool that facilitates system automation,
deployment, and integration. Knife provides command and control
capabilities for managing physical, virtual, and cloud environments across a
range of Linux, Unix, and Windows platforms. It is also the primary means
by which the underlying model that makes up the Chef framework is

managed. Knife is extensible and has a pluggable architecture, meaning that

it is straightforward to create new functionality simply by writing custom
Ruby scripts that include some of the Chef and Knife libraries. Used most

frequently in conjunction with the client/server model, Knife assumes less
significance if one’s primary Chef implementation is Chef-solo.

The Chef API
In its most popular incarnation, Chef functions as a client/server web service.

The server component is written in Erlang and uses a JSON-oriented document
datastore. The whole Chef framework is driven via a RESTful API, of which the
Knife command-line tool is a client. We’ll drill into this API shortly, but the
critical thing to understand is that in most cases, day-to-day use of the Chef
framework translates directly to interfacing with the Chef server via its RESTful
API.

The server is open sourced, under the Apache 2.0 license, and is considered a
reference implementation of the Chef Server API. The API is also implemented
as a hosted software-as-a-service offering. The hosted version, called Hosted
Chef, offers a fully resilient, highly available, multitenant environment. The
platform is free to use for fewer than five nodes, so it’s the ideal way to
experiment with and gain experience with the framework, tool, and API. The
pricing for the hosted platform is intended to be less than the cost of just the
hardware resources to run a standalone server. For deployment in the enterprise,
Opscode also provides a supported install on customer hardware, called Private
Chef. This provides all the functionality of Hosted Chef, but behind the firewall
with no multitenancy compromises.

The Chef server also provides an indexing service. All information gathered
about the resources managed by Chef is indexed and searchable, meaning that
Chef becomes a coordination point for dynamic, data-driven infrastructures. It is
possible to issue queries for any combination of attributes—for example,
VMware servers on VLAN 102 or MySQL slaves running CentOS 5. This opens
up tremendously powerful capabilities—a simple example would be a dynamic
load balancer configuration that automatically includes the web servers that
match a given query to its pool of backend nodes.

The most important thing to understand is that the Chef server is fundamentally
nothing more than a publishing platform with an API, an index, and a

dependency solver. It does no heavy lifting. All interactions, without exception,
are via the REST API.

The Chef community

Chef has a large and active community of users, with over 14,000 registered
community members, over 700 individuals and companies as signed-up
contributors, of which over 200 have committed code to the project. Opscode is
a community-focused company. In the 55 releases that have been cut in the last
four plus years, there have been 61 awards of most valuable person status (and
another 24 for Ohai releases), for contributions to both the code and the
community as a whole.

For a comparatively young product, uptake is very strong. Over a million known
downloads of Chef have been recorded, with the real number being significantly
larger. Adoption is on an exponential scale, from startups and small or medium
enterprises (SMEs) through web operation poster-people such as Facebook, Etsy,
37signals, Rightscale, and Wikia to household names like Sony, Walt Disney,
Turner, HP, and Adobe.

These companies all use Chef to automate the deployment of thousands of
servers with a wide variety of applications and environments. Chef users can
share their “recipes” for installing and configuring software with “cookbooks”
on Opscode’s community website. Cookbooks exist for a large number of
packages, with over 800 cookbooks available on the Opscode community site
alone.

The cookbooks aspect of the community site can be thought of as akin to
RubyGems—although the source of most of the cookbooks can be obtained at
any time from GitHub, stable releases are made in the form of versioned
cookbooks. Both the Chef project itself and many of the cookbooks from the
opscode-cookbooks Git organization are consistently in GitHub’s list of the
most popular watched repositories. In practice, these cookbooks are probably the
most reusable IT artifacts I’ve encountered, partly due to the separation of data
and behavior that the Chef framework encourages, and also due to the inherent
power and flexibility accorded by the ability to configure and control complex
systems with a mature 3GL programming language.

The community tends to gather around the mailing lists (one for users and one

http://community.opscode.com

for developers), and the IRC channels on Freenode (again one for users, and one
for developers). Chef users and developers tend to be highly experienced system
administrators, developers, and architects, and are an outstanding source of
advice and inspiration in general, as well as being friendly and approachable on
the subject of Chef itself.

As the field of web operations has grown, the need to have a community of
people who are solving hard problems, building tools, and sharing ideas has also
expanded. Chef, as an expression of the concept of infrastructure as code is
precisely that—a sharing of minds, ideas, awesome-sauce, and expertise, in
reusable, testable, auditable, and versionable code.

Exercise 2: Install a User

Objectives
After completing this exercise, you will have achieved the following:

m Used Chef to create a user on your machine

» Understood the principles behind Chef’s recipe DSL

» Understood how to use chef-apply, and what its limitations are
Directions
1. Create a file called tdi.rb using your text editor.

2. Read the documentation for the “user” resource at
http://docs.opscode.com/chef/resources.html#user.

3. Declare a resource in tdi.rb to create a user called “tdi”.
4. Create the user by running chef-apply.
5. Verify that the user has been created.

6. Add another resource of type dotfile to drop off a configuration file
called .tdi with content parameter of “bogus”.

http://docs.opscode.com/chef/resources.html#user

7. Run chef-apply again.

8. Observe the failure characteristics.

9. Replace the resource type “dotfile” with “file” and run chef-apply again.

10. Replace the “file” resource with a “template” resource, and change the
“content” parameter to “source”.

11. Run chef-apply once more.

Worked Example
In my tdi.rb file I wrote the following:

user 'tdi' do
action :create
comment "Test Driven Infrastructure"
home "hometdi"
supports :manage_home => true
end

I saved the file and ran chef-apply. On my CentOS machine I was still using
the root user, so I didn’t need to use sudo. On my Ubuntu machine I was logged
in as my sns user, so I used sudo:

$ sudo chef-apply tdi.rb
Recipe: (chef-apply cookbook)::(chef-apply recipe)
* yser[tdi] action create
- create user user[tdi]

I then verified the user existed:

sns@ubuntu:~$ getent passwd | grep tdi
tdi:x:1001:1001:Test Driven Infrastructure:hometdi:binsh
[root@centos ~]# getent passwd | grep tdi
tdi:x:500:500:Test Driven Infrastructure:hometdi:binbash

I noticed that on the Ubuntu machine, the user didn’t set the default shell to
Bash. Although this could be easily done by updating the recipe, I decided to fix

it the quick and dirty way, with:
$ sudo chsh -s binbash tdi
I added a bogus resource to tdi.rb as follows:

dotfile 'hometdi/.tdi' do
action :create
content 'bogus'

end

When I ran Chef, I saw:

sns@ubuntu:~$ sudo chef-apply tdi.rb

[2013-06-26T20:09:10+01:00] FATAL: Stacktrace dumped to varchef/cache/chef-
stacktrace.out

[2013-06-26T20:09:10+01:00] FATAL: NameError: Cannot find a resource for dotfile on
ubuntu version 12.04

[root@centos ~]# chef-apply tdi.rb

[2013-06-26T19:28:11+01:00] FATAL: Stacktrace dumped to varchef/cache/chef-
stacktrace.out

[2013-06-26T19:28:11+01:00] FATAL: NameError: Cannot find a resource for dotfile on
centos version 6.4

Changing the resource to a “file” yielded the following:

Recipe: (chef-apply cookbook)::(chef-apply recipe)
user[tdi] action create (up to date)
file[hometdi/.tdi] action create
- create new file hometdi/.tdi with content checksum 81f7e3

--- tmpchef-tempfile20130528-13007-1cgpij8 2013-05-28 11:20:11.932272825
+0100

+++ tmpchef-diff20130528-13007-ipe5ju 2013-05-28 11:20:11.932272825 +0100

@@ -0,0 +1 @@

+bogus

I altered my file resource as follows:

template 'hometdi/.tdi' do
action :create
source 'tdi-bashfile'
end

When I ran chef -apply, this time I saw:

chef-apply tdi.rb

Recipe: (chef-apply cookbook)::(chef-apply recipe)
user[tdi] action create (up to date)
template[hometdi/.tdi] action create

Error executing action ‘create’ on resource 'template[hometdi/.tdi]'

NoMethodError

undefined method ‘“preferred_filename_on_disk_location' for nil:NilClass
Resource Declaration:

In tdi.rb

6: template 'hometdi/.tdi' do

7: action :create
8: source 'bogus'
9: end

Compiled Resource:

Declared in tdi.rb:6:in ‘run_chef_recipe'

template("hometdi/.tdi") do
provider Chef::Provider::Template
action [:create]
retries 0
retry_delay 2
path "hometdi/.tdi"
backup 5
source "bogus"
cookbook_name "(chef-apply cookbook)"
recipe_name "(chef-apply recipe)"
end

[2013-05-28T11:24:48+01:00] FATAL: Stacktrace dumped to varchef/cache/chef-
stacktrace.out

[2013-05-28T11:24:48+01:00] FATAL: NoMethodError: template[hometdi/.tdi] ((chef-
apply cookbook)::(chef-apply recipe) line 6) had an error: NoMethodError: undefined
method “preferred_filename_on_disk _location' for nil:NilClass

Discussion

To use Chef to manage infrastructure is to insert a very powerful and flexible
abstraction layer between the engineer and the system. Instead of the developer
logging onto three different types of machines and typing commands into a
terminal, or navigating a sequence of menus, he types in a text editor, commits to
a version control system, and effectively deploys what was written to a series of
machines. We are practicing the discipline of infrastructure as code.

In practical terms, the way we do this is by thinking about the abstract system
components that we need to configure our systems as we want. For example, if |
want to ensure the clock on my Linux computer is regularly synchronized with
an NTP server, I might need to install the package that provides NTP client
functionality, alter the configuration file according to my requirements, and
ensure the NTP daemon is running, or that the client is run as a scheduled task.
In Chef we call these low-level components that we can reason about and
discuss “resources.”

Resources are the very essence of Chef—the atoms, if you like. When we talk
about a complicated or even a simple infrastructure, that conversation takes
place at a level of resources. For example, we might discuss a web server—what
are the components of a web server? Well, we need to install Apache, we need to
specify its configuration and perhaps some virtual hosts, and we need to ensure
the Apache service is running. Immediately, we’ve identified some resources—a
package, a file, and a service.

Managing infrastructure using Chef is a case of specifying what resources are
needed and how they interact with one another. We call this setting the policy.

If resources are the fundamental configuration objects, nodes are the
fundamental things that are configured. It’s possible to get a bit confused when
the word “node” is used. For most engineers, a “node” is synonymous with a
physical (or virtual) machine on a network. To an extent this meaning is carried
forward in Chef, as I just did: nodes are the things we’re configuring. However,
most of the time, in Chef, the term “node” refers to the Chef node, which is
ultimately a Ruby object representing the machine we’re configuring. This
object behaves like a Hash: it has keys and values, getter and setter methods, and
can be viewed, queried, and interacted with as JSON. With that caveat, a concise
definition of what Chef does is this:

Chef manages resources on the node so they comply with policy.

It’s important to understand that when we talk about resources in Chef, we’re not
talking about the actual resource that ends up on the box. Resources in Chef are
an abstraction layer. If we were to write Chef code to install the korn shell
package on a CentOS box, that would mean:

$ yum install ksh
This would be represented in Chef by:
package "ksh"

A resource in Chef can take action. Here again, note the difference—the user
resource in Chef can create a user on a machine. It isn’t the user on the machine.
Resources take action through providers. A provider is some library code that
understands two things: first, how to determine the state of a resource; and
second, how to translate the abstract requirement (install Apache) into the
concrete action (run yum install httpd). Additionally it understands that,
depending upon the underlying operating system or distribution, the utilities or
commands used to install a package will be different—for example, on a Debian
system, the provider would use dpkg or apt rather than yum or rpm. Determining
the state of the resource is important in configuration management; we only want
to take action if it is necessary. If the user has already been created or the
package has already been installed, we don’t need to take action. This is the
principle of idempotence. (See http://bit.ly/15M3qwJ for more on idempotency
and its meaning in this context.) A provider knows how to check whether the
user has already been created, and won’t take action if it has. The
mathematicians amongst you may complain about this appropriation of the term.
Within the configuration management world, we understand that idempotence
literally means that an operation will produce the same results if executed once
or multiple times (i.e., multiple application of the same operation has no side
effect). We take this principle, specifically the idea that all functions should be
idempotent with the same data, and use this as a metaphor. Not taking action
unless it’s necessary is an implementation detail designed to ensure
idempotence.

http://bit.ly/15M3qwJ

Resources have data. If we were to write code to create a user, in addition to a
default action, which all resources have (in the case of a package it’s to install
the package; in the case of a user, it’s to create the user), we’d also probably
want to specify some additional configuration for a user. For example, we might
want to set a shell, or a comment:

user "melisande" do
comment "International Master Criminal"
shell "binksh"
home "/exporthomemelisande"
supports :manage_home => true
action :create
end

Resources, then, have a name (in this case, melisande), a type (in this case, a
user), data in the form of parameter attributes (in this case, comment, shell,
home directory, and supports), and an action (in this case, we’re going to
create the user).

In our exercise we used the user resource to create a user called “tdi”. I asked
you to review the documentation on the user resource on the docs site. Again,
there is far more information there than you need now, but as you go on to build
more complex infrastructure, you will refer to the resource documentation time
and again. The most confusing aspect of the documentation (at the time of
writing) is the idea of “supported features.” The resource has the attribute
supports, with key/value pairs representing whether a given feature is
supported by the underlying provider (for example, useradd on Solaris versus
Linux). One such feature is manage_home. This flag is used to make explicit
whether a home directory will be created at the same time as the user is created.
The supports syntax is a bit cumbersome, so there’s a handy convenience
method manage_home that can be set to true or false. It has the same effect, but
looks a bit cleaner. I’ll draw your attention to one particular wart that could catch
you if you’re a RHEL/CentOS user. The default behavior of the user resource is
not to create the home directory. This is pretty much standard across Linux and
Unix. However, an implementation detail of RHEL-family systems is that
'useradd does create a homeuser directory by default. The result is that you
could get away with never declaring home or manage_home in your user

resources on RHEL systems, but then get tripped up if you expected your code to
work on other Linux systems. For this purpose, I recommend explicitly
specifying both the home directory and manage_home: true in your user
resource declarations.

You’ll notice that we called the file we wrote tdi.rb. It’s actually Ruby code (and
if this is not familiar to you, don’t worry—you’ll learn all the Ruby you need to
know in Chapter 2). We can prove this by adding some Ruby into the file, and
running it again:

$ cat tdi.rb
10.times { puts "This is actually just Ruby" }

user 'tdi' do
action :create
comment "Test Driven Infrastructure"
home "hometdi"
supports :manage_home => true
end

template 'hometdi/.tdi' do
action :create
source 'bogus'

end

chef-apply tdi.rb

This is actually just Ruby

This is actually just Ruby

This is actually just Ruby

This is actually just Ruby

This is actually just Ruby

This is actually just Ruby

This is actually just Ruby

This is actually just Ruby

This is actually just Ruby

This is actually just Ruby

Recipe: (chef-apply cookbook)::(chef-apply recipe)
user[tdi] action create (up to date)
template[hometdi/.tdi] action create

Error executing action ‘create’ on resource 'template[hometdi/.tdi]'

In Chef terms, the file that we wrote is called a recipe. It’s a set of instructions, a
set of resources that we need to configure the machine in the way we want it.
When we say that an infrastructure developer is writing Chef code, we are

typically talking about using Chef’s “recipe” DSL. Let’s quickly explore the idea
of a DSL.

DSL, or domain specific language, in practice means a way of encapsulating
shared knowledge relating to a specific task or series of tasks, in a small, clearly
defined set of words, with a small and clearly defined set of rules.

The example I like to give when I’'m training people to use Chef is the game of
Blackjack. I used to take a ferry from the south of England to the north of France
or Spain, every so often. Especially on the longer journeys, I used to sit in the
ship’s casino and play cards. A popular game was blackjack. The passengers
were frequently French, Spanish, English, Dutch, or German. However,
everyone was able to play blackjack because there was an established DSL in
place. Everyone knew that “card” means “give me a card.” Everyone knew that
“stick” means “I don’t want another card.” Everyone knew that “split” means
“separate my two cards into two piles of one, and deal one card to each pile.”
There were rules around the usage of the terms; you can’t use the language when
it’s someone else’s turn. You can’t split if the cards aren’t of the same value. This
is the same of all DSLs—they have a few meaningful keywords, and a few
grammatical and syntactical rules.

Whenever we speak about a DSL, it naturally follows that we explain the
purpose of the DSL. Thus if we were to say, “Gherkin is a DSL,” that doesn’t
really tell us much. If, however, we were to say, “Gherkin is a DSL for
translating stakeholder requirements to executable Ruby acceptance tests,” it
makes much more sense. Similarly, as the old joke goes, Java is a DSL for
producing stack traces.!?! It turns out that Chef has a DSL for several things:
recipes, roles, environments, and the creation of custom resources and providers.
We’ll cover most of the Chef DSLs in this book, but at a high level Chef
provides DSLs for programmatically declaring which resources should be
configured on a machine, for grouping related resources together and applying
them to machines of the same sort, for isolating systems of a certain class,
ensuring they remain in a defined state, and several other powerful concepts.
This allows us to bring into being services using code.

http://en.wikipedia.org/wiki/Blackjack

You’ll notice that when we tried to use a bogus resource in our recipe, Chef
complained that it couldn’t find a resource of the type we declared:

[2013-05-28T11:11:59+01:00] FATAL: NameError: Cannot find a resource for dotfile on
centos version 6.4

Why then did we have a problem when we tried to use a template resource? Here
we hit upon the limitations of chef-apply. chef-apply is really only useful for
a quick job, or (as we’ve seen) for instructional purposes. It doesn’t have any
context outside the single Ruby file it is passed. Templates, by their very
definition, have a source template that is populated with data. We don’t have any
way of providing a source template to Chef when using chef-apply, and so we

get an error. In our next exercise, we’ll graduate to using chef-solo, and
explore some more resource types.

Exercise 3: Install an IRC Client

Objectives
After completing this exercise, you will:

m Be familiar with the package, directory, and cookbook_file resources

» Understand chef-solo, and how it is configured
m Understand the ideas of a recipe, a cookbook, and a run list

Directions

1. Ensure you don’t still have the “This is actually just Ruby” code in your
recipe.

2. Run chef-solo without any configuration options, and read the output.

3. Look at the knife help output for the cookbook subcommand, paying

particular attention to cookbook path, and then create a cookbook called
irc.

10.

11.

12.

13.

14.

15.

Verify that a skeleton cookbook has been created.

Read the package resource documentation at
http://docs.opscode.com/resource_package.html

Read the cookbook_file resource documentation at
http://docs.opscode.com/resource_cookbook_file.html

Read the directory resource documentation at
http://docs.opscode.com/resource_directory.html

Open the default.rb recipe in your text editor, and copy the user resource
into the file.

Add a resource to install the irssi package.

Add a resource to create a .irssi directory in the “tdi” user’s home
directory, owned by the “tdi” user.

Add a resource to drop off an irssi config file at ~/.irssi/config, also owned
by the “tdi” user. Use the irssi config at
https://gist.github.com/Atalanta/5676662.

Create a solo.rb config file, and specify your cookbook path.

Search the docs site for “run list” to understand the high level concept.

Run chef-solo, telling it to converge the node with the default recipe
from the irc cookbook.

Become the “tdi” user, and launch your IRC client, by typing irssti at the
command prompt, and say “ohai!” in the ##tdi chat room!

Worked Example

I ran chef-solo on one of the machines, and read the output, noting that it was
unable to find a configuration file, but would take its configuration from the
command line, and that it failed to compile any cookbooks, having looked in two
locations. It suggested I make sure my cookbook_path was set correctly:

http://docs.opscode.com/resource_package.html
http://docs.opscode.com/resource_cookbook_file.html
http://docs.opscode.com/resource_directory.html
https://gist.github.com/Atalanta/5676662

$ sudo chef-solo

[sudo] password for stephen:

[2013_05_28"’18:05:01+01:00] WARN: khkhkkkhhhhkkhkhkhkhkhkhkkkhkhkhkhkhkhkkhkhkkkhkkkhkk*k
[2013-05-28T18:05:01+01:00] WARN: Did not find config file: etcchef/solo.rb, using
command line options.

[2013_05_28"’18:05:01+01:00] WARN: khkhkkkhhhhkkdhkhkhkhkhkhkkhkhkhkhkhkhkkhkhkkkhkkkhkk*k
Starting Chef Client, version 11.4.4

Compiling Cookbooks...

[2013-05-28T18:05:03+01:00] FATAL: No cookbook found in ["varchef/cookbooks",
"varchef/site-cookbooks"], make sure cookbook_path is set correctly.
[2013-05-28T18:05:03+01:00] FATAL: No cookbook found in ["varchef/cookbooks",
"varchef/site-cookbooks"], make sure cookbook_path is set correctly.
[2013-05-28T18:05:03+01:00] ERROR: Running exception handlers
[2013-05-28T18:05:03+01:00] ERROR: Exception handlers complete

Chef Client failed. 0 resources updated

[2013-05-28T18:05:03+01:00] FATAL: Stacktrace dumped to varchef/cache/chef-
stacktrace.out

[2013-05-28T18:05:03+01:00] FATAL: Chef::Exceptions::CookbookNotFound: No cookbook
found in ["varchef/cookbooks", "varchef/site-cookbooks"], make sure cookbook path is
set correctly.

I looked at knife help cookbook and was given a choice of two pages to read:

$ knife help cookbook

WARNING: No knife configuration file found
Multiple help topics match your query. Pick one:
1. knife-cookbook-site

2. knife-cookbook

I selected the second, and read the documentation, discovering that I could set
the cookbook path with the -0 - -cookbook-path switch. I then created an irc
cookbook as follows:

$ knife cookbook create irc -o .

WARNING: No knife configuration file found
** Creating cookbook irc

** Creating README for cookbook: irc

** Creating CHANGELOG for cookbook: irc

** Creating metadata for cookbook: irc

I verified the skeleton with the following:

$ 1s -1F irc/

attributes/
CHANGELOG.md
definitions/
files/
libraries/
metadata.rb
providers/
README .md
recipes/
resources/
templates/

I read the documentation page for the package resource on the docs site, and
concluded that I didn’t need to specify any particular attributes, and that Chef
would work out the right thing to do on my platform.

I edited the recipe at irc/recipes/default.rb and added the user resource (with the

neater manage_home syntax) and the following to ensure the user was created,
and to install the irssi package:

user 'tdi' do
action :create
comment "Test Driven Infrastructure"
home "hometdi"
manage_home true
end

package 'irssi' do
action :install
end

I read the documentation for the directory resource, and added the following:

directory 'hometdi/.irssi' do
owner 'tdi'
group 'tdi'

end

I read the documentation for the cookbook_file resource, and added the
following resource:

cookbook_file 'hometdi/.irssi/config' do

source 'irssi-config'
owner 'tdi'
group 'tdi'

end

I then created a file at files/default/irssi-config with the following content:

servers = (
{
address = "irc.freenode.net";
chatnet = "Freenode";
port = "6667";
autoconnect = "Yes";
}
)

chatnets = { Freenode = { type = "IRC"; }; };

settings = {
core = {
real_name = "Sir Edward Elgar";
nick = "elgar";
user_name = "elgar";
b
"fe-text" = { actlist_sort = "refnum"; };
b
channels = (
{ name = "#learnchef"; chatnet = "Freenode"; autojoin = "Yes"; },
{ name = "#chef"; chatnet = "Freenode"; autojoin = "Yes"; },
{ name = "##tdi"; chatnet = "Freenode"; autojoin = "Yes"; }
)

I searched the docs page for “run list” and read the first two hits
(http://docs.opscode.com/essentials_node_object_run_lists.html and
http://docs.opscode.com/essentials_cookbook_recipes_run_lists.html), which
helped me to understand the idea of a run list. Having run chef-solo --help,I
determined that I could pass the configuration file as an option using the -c, --
config option, and that I could specify a run list using -0, --override-
runlist. Armed with this knowledge I created a solo.rb config file within a
.chef directory, and then ran Chef (again as root on Centos, and with sudo, and as
sns on Ubuntu):

http://docs.opscode.com/essentials_node_object_run_lists.html
http://docs.opscode.com/essentials_cookbook_recipes_run_lists.html

$ mkdir /.chef
$ cat /.chef/solo.rb
cookbook_path ENV['HOME']
$ sudo chef-solo --config ~/.chef/solo.rb --override-runlist 'recipe[irc]'
Starting Chef Client, version 11.4.4
[2013-05-30T10:46:23+01:00] WARN: Run List override has been provided.
[2013-05-30T10:46:23+01:00] WARN: Original Run List: []
[2013-05-30T10:46:23+01:00] WARN: Overridden Run List: [recipe[irc]]
Compiling Cookbooks...
Converging 4 resources
Recipe: irc::default

user[tdi] action create (up to date)

package[irssi] action install

- install version 0.8.15-5.el6 of package irssi

directory[hometdi/.irssi] action create
- create new directory hometdi/.irssi
- change owner from '' to 'tdi'
- change group from '' to 'tdi'

cookbook_file[hometdi/.irssi/config] action create
- create a new cookbook_file hometdi/.irssi/config
--- tmpchef-tempfile20130530-15376-1m5nhvp 2013-05-30 10:46:28.698288821
+0100
+++ rootirc/files/default/irssi-config 2013-05-30 10:40:50.313288775
+0100
@@ -0,0 +1,25 @@
+servers = (

{
+ address = "irc.freenode.net";
+ chatnet = "Freenode";
+ port = "6667";
+ autoconnect = "Yes";
+ }
+);
+
+chatnets = { Freenode = { type = "IRC"; }; };
+
+settings = {
+ core = {
+ real_name = "Sir Edward Elgar";
+ nick = "elgar";
+ user_name = "elgar";
+ b
+ "fe-text" = { actlist_sort = "refnum"; };
+};

+

+channels = (

+ { name = "#learnchef"; chatnet = "Freenode"; autojoin = "Yes"; },
+ { name = "#chef"; chatnet = "Freenode"; autojoin = "Yes"; },

+ { name = "##tdl"; chatnet = "Freenode"; autojoin = "Yes"; }

+);

Chef Client finished, 3 resources updated

I su‘d to tdi, ran irss1i, and found the ##tdi room, and said “Ohai”.

Discussion

When we ran chef-solo we learned three important things:

chef-solo

[2013_03_12T16:41:53+00:00] WARN: khkhkkkhhhhkkhkhkhkhkhkhkkkhkhkhkhkhkhkkhkhkkkhkkkhkk*k
[2013-03-12T16:41:53+00:00] WARN: Did not find config file: etcchef/solo.rb, using
command line options.

[2013_03_12T16:41:53+00:00] WARN: khkhkkkhhhhkkhkhkhkhkhkhkkhkhkhkhkhkhkkhkhkkkhkkhkk*k
Starting Chef Client, version 11.4.0

Compiling Cookbooks...

[2013-03-12T16:41:54+00:00] FATAL: No cookbook found in ["varchef/cookbooks",
"varchef/site-cookbooks"], make sure cookbook_path is set correctly.
[2013-03-12T16:41:54+00:00] FATAL: No cookbook found in ["varchef/cookbooks",
"varchef/site-cookbooks"], make sure cookbook_path is set correctly.
[2013-03-12T16:41:54+00:00] ERROR: Running exception handlers
[2013-03-12T16:41:54+00:00] ERROR: Exception handlers complete

Chef Client failed. 0 resources updated

[2013-03-12T16:41:54+00:00] FATAL: Stacktrace dumped to varchef/cache/chef-
stacktrace.out

[2013-03-12T16:41:54+00:00] FATAL: Chef::Exceptions::CookbookNotFound: No cookbook
found in ["varchef/cookbooks", "varchef/site-cookbooks"], make sure cookbook path is
set correctly.

1. Chef expects a configuration file, but will accept options on the command
line, in lieu of a configuration file.

2. It expects the configuration file to reside in etcchef.

3. It looked for cookbooks in the varchef/cookbooks directories and the
varchef/site-cookbooks directory, but failed to find any.

What are these cookbooks of which Chef speaks? My Chambers English

Dictionary (highly recommended for budding cruciverbalists) defines a
cookbook as:

A book of recipes for cooking dishes.

Well obviously we’re not cooking dishes, but the rest of the metaphor makes
sense—cookbooks contain recipes. So what’s a recipe? Turning again to my
trusty dictionary, I’m told that one definition of a recipe is:

A method laid down for achieving a desired end.

This is perfect! That’s exactly what a recipe is. It’s a method of achieving a
desired outcome—the desired state of our infrastructure. That method might be
fairly complex because realistically speaking, our infrastructures are much more
complicated than can be expressed in a single or even a collection of
independent resources. As infrastructure developers, the bulk of the code we
write will be in the form of these recipes.

Recipes in Chef are written in a domain-specific language (DSL), which allows
us to declare the state in which a node should be. Remember, a domain-specific
language is a computer language designed to address a very specific problem
space. It has grammar and syntax in the same way as any other language but is
generally much simpler than a general purpose programming language. Ruby is
a programming language particularly suited to the creation of DSLs. It’s very
powerful, flexible, and expressive. As we already mentioned, DSLs are used in a
number of places throughout the framework. However, a particularly important
thing to understand about Chef is that not only do we have DSLs to address
particular problem spaces, we also always have direct access to the entire Ruby
programming language. This means that if at any stage you need to extend the
DSL—or perform some calculation, transformation, or other task—you are
never restricted by the DSL. This is one of the great advantages of Chef.

In Chef, order is highly significant. Recipes are processed in the exact order in
which they are written, every time. Recipes are processed in two stages—a
compile stage and an execute stage. The compile stage consists of gathering all
the resources that, when configured, will result in conformity with policy, and
placing them in a kind of list called the resource collection. At the second stage,
Chef processes this list in order, taking actions as specified. As you become
more advanced in Chef recipe development, you will learn that there are ways to
subvert this process, and when it is appropriate to do so. However, for the

purposes of this book, it is sufficient to understand that recipes are processed in
order, and actions taken.

Recipes by themselves are frequently not much use. Many resources require
additional data as part of their action—for example, the template resource will
require, in addition to the resource block in the recipe, an Erubis template file.
As you advance in your understanding and expertise, you may find that you need
to extend Chef and provide your own custom resources and providers. For
example, you might decide you want to write a resource to provide configuration
file snippets for a certain service. Chef provides another DSL for specifically this
purpose.

If recipes require supporting files and code, we need a way to package this up
into a usable component. This is the purpose of a cookbook. Cookbooks can be
thought of as package management for Chef recipes and code. They may contain
a large number of different recipes and other components. Cookbooks have
metadata associated with them, including version numbers, dependencies,
license information, and attributes.

Cookbooks can be published and shared. This is another of Chef’s great
strengths. Via the Opscode Chef community website, you can browse and
download over 800 different cookbooks. The cookbooks are generally of very
high quality, and a significant proportion of them are written by Opscode
developers. Cookbooks can be rated and categorized on the community site, and
users can elect to “follow” cookbooks to receive updates when new versions
become available.

Knife provides a subcommand that will create a skeleton cookbook, ready to be
used for modeling infrastructure. By default, Knife will attempt to create and
populate a directory at varchef/cookbooks; this is the cookbook path, the place
Knife looks for cookbooks:

$ knife cookbook create silly

WARNING: No knife configuration file found

** Creating cookbook silly

ERROR: Errno::EACCES: Permission denied - varchef/cookbooks

$ 1s -1d varchef/*
drwxr-xr-x 2 root root 4096 May 28 18:05 varchef/cache

http://www.kuwata-lab.com/erubis/
http://community.opscode.com

$ sudo knife cookbook create silly

[sudo] password for stephen:

WARNING: No knife configuration file found

** Creating cookbook silly

** Creating README for cookbook: silly

** Creating CHANGELOG for cookbook: silly

** Creating metadata for cookbook: silly

$ 1s -1d varchef/*

drwxr-xr-x 2 root root 4096 May 28 18:05 varchef/cache

drwxr-xr-x 3 root root 4096 May 30 08:59 varchef/cookbooks

$ 1s -1d varchef/cookbooks/*/*

drwxr-xr-x 2 root root 4096 May 30 08:59 varchef/cookbooks/silly/attributes
root root 409 May 30 08:59 varchef/cookbooks/silly/CHANGELOG.md
root root 4096 May 30 08:59 varchef/cookbooks/silly/definitions
root root 4096 May 30 08:59 varchef/cookbooks/silly/files

root root 4096 May 30 08:59 varchef/cookbooks/silly/libraries
root root 274 May 30 08:59 varchef/cookbooks/silly/metadata.rb
root root 4096 May 30 08:59 varchef/cookbooks/silly/providers
root root 1439 May 30 08:59 varchef/cookbooks/silly/README.md
root root 4096 May 30 08:59 varchef/cookbooks/silly/recipes
root root 4096 May 30 08:59 varchef/cookbooks/silly/resources
root root 4096 May 30 08:59 varchef/cookbooks/silly/templates

“rW-r--r--
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
-rW-r--T--
drwxr-xr-x
-rW-r--r--
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x

W NNENENWNR

This configuration can be set in Knife’s own configuration file, which we’ll
come to later. However, it can also be set on the command line with the -o, --
cookbook-path option.

The cookbook generator will create a default recipe in the recipes directory of
the cookbook. It was this file we opened in our text editor, to declare the package
resource to install the IRC client. You’ll notice that at the top of the file, some
boilerplate was generated:

Cookbook Name:: irc
Recipe:: default

Copyright 2013, YOUR_COMPANY_NAME

All rights reserved - Do Not Redistribute

H O OH O OH OH R ®

The contents of this can be modified by making further changes in your Knife
configuration file, which we’ll come to in the next exercise.

A WORD ABOUT TEXT EDITORS

The art of modeling infrastructure as code is a discipline that fits firmly within the software
development world. We’re writing software that generates configuration dynamically on machines, in
order to allow us to deploy and run applications that deliver business value. Software developers use
full-featured text editors that remain open on the desktop at all times. They support syntax
highlighting, may have the concept of a project drawer, may provide powerful search features, may be
programmable, allow for multiple files to be edited at once and viewed side-by-side, and offer
integration with source code management systems. Professional software developers use professional
tools.

As an infrastructure developer, you’re now a professional software developer, and you should use the
same quality of tools. If you already use an editor that provides these kinds of features, then this
exhortation is not for you. However, if you use vanilla vi, nano, or Notepad: please stop. Different
editors have their own fierce advocates. Personally, I’m a huge fan of Emacs. However, TextMate,
Sublime Text, Vim, Emacs, or maybe even Eclipse would make a fine choice. If you’ve never used
such a tool, I’d suggest starting with Sublime Text 2—it’s an excellent, modern editor with plug-in
support for Chef development, and it works on Linux, OSX, and Windows. If you’re prepared to put in
a few days on a somewhat steeper learning curve, I would wholeheartedly recommend Emacs.
Whatever you do, pick an editor, make it part of your professional development to learn its features,
and master it thoroughly.

So now that we have a recipe and a cookbook, how can we apply these to the
machine we want to configure? We already know we can use chef-apply, but
now that we have a config file in our recipe, we need something a bit more
powerful. We placed the config file we wanted to drop off into the cookbook.
Now we need to tell chef-solo where to find the cookbook. chef-solo takes a
number of command-line options, but not one that tells it where to find the
cookbooks. This gives us two options: either we put the cookbooks where chef -
solo expects to find them, or we create a configuration file that tells chef-solo
to find them where we want them to be. We already know that Chef looks for
cookbooks in varchef/cookbooks, so that’s an option, but for my local machine, I
prefer to keep them in my home directory and tell Chef how to find it. Hence, we
set it in the solo.rb file.

cookbook_path ENV['HOME']

This introduces a common pattern in Chef: configuration files are Ruby files so
we can use whatever Ruby constructs we need.

Now we can tell Chef where to find its configuration file and consequently the
cookbooks, but Chef doesn’t know which recipe to run. When we used chef -

apply it was simple: we just told Chef exactly which recipe to run. Obviously
this doesn’t scale beyond exceptionally simple cases. Chef, therefore, has the
concept of a Run List—a list of recipes to run on the node. The simplest way to

do this is to pass it as a command line to chef-solo. Recipes on the run list take
the following form: recipe[cookbook_name: :recipe_name]. The convention
is that if the “default” recipe is run, there’s no need to specify it, and so the run

list item will be recipe[cookbook name].

When Chef runs, the resources in the recipes on the run list are evaluated and
action is taken to bring the system into desired state.

Exercise 4: Install Git

Objectives
Upon completing this exercise, you should have:

m Used community cookbooks to build infrastructure

» Understood how Chef differentiates between platforms, taking appropriate
action

m A Git repository containing Chef code and supporting files, and be able to
interact with it

m Understood the basics of Chef node attributes
m Understood the concept of dependencies in cookbooks

» Understood the mechanism for including recipes from other cookbooks inside
another recipe

Directions

1. Read the documentation for knife cookbook site.

2. Download the git recipe from the Opscode community site, and extract it
within your cookbook path.

10.

11.

12.

13.

Examine the metadata.rb file for the Git cookbook, and download the
cookbooks upon which the Git cookbook depends.

Recurse through each downloaded cookbook, downloading each cook
dependency.

Ensure all the cookbooks are on the cookbook path.

Search the documentation site for dna.json, and create a dna.json file
containing a run list containing the default recipe from both the irc and the
git cookbooks.

Run chef-solo with the appropriate arguments.

As the TDI user, find or locate a convenient position in your filesystem, and
clone the https://github.com/opscode/chef-repo.git repository.

Configure Git with your name and email address.
Sign up for a GitHub account (if you don’t have one already).
Create an ssh key pair, and upload the public portion to GitHub.

Create a repository called chef-repo, and set the remote origin of the cloned
repository to this new repository.

Copy your cookbooks into the cookbooks directory of the chef-repo, add
them, and push to GitHub.

Worked Example

I ran knife help cookbook site, and read the manual page. I noted an
install option, which seemed to do some magic with Git. Being skeptical of
magic, I read on, and found the section on downloading a cookbook. Having
digested this, I ran the following:

$ cd

$ knife cookbook site download git

WARNING: No knife configuration file found

Downloading git from the cookbooks site at version 2.5.2 to homestephen/git-

2.5.2.tar.gz
Cookbook saved: homestephen/git-2.5.2.tar.gz

I decided that if I were going to have multiple cookbooks, I might as well have a
cookbooks directory, so I made one, and updated my solo.rb:

$ mkdir ~/cookbooks
$ cat ~/.chef/solo.rb
cookbook_path "#{ENV['HOME']}/cookbooks"

I moved my irc cookbook into the cookbooks directory, and then extracted the
git cookbook:

$ mv ~/irc ~/cookbooks

$ tar xzvf git-2.5.2.tar.gz -C cookbooks/
git/

git/.gitignore

git/.kitchen.yml

git/attributes/

git/Berksfile

git/CHANGELOG.md

git/CONTRIBUTING

git/Gemfile

git/LICENSE

git/metadata.json

git/metadata.rb

git/README.md

git/recipes/

git/templates/

git/TESTING.md

git/templates/default/
git/templates/default/git-xinetd.d.erb
git/templates/default/sv-git-daemon-log-run.erb
git/templates/default/sv-git-daemon-run.erb
git/recipes/default.rb
git/recipes/server.rb
git/recipes/source.rb
git/recipes/windows.rb
git/attributes/default.rb

I looked at the metadata.rb of the cookbook and discovered this:

%w{ dmg build-essential yum windows }.each do |cookbook|

depends cookbook
end

depends "runit", ">= 1.0"
I downloaded these dependencies with the following:

$ for dep in dmg build-essential yum windows runit; do knife cookbook site download
$dep; tar xzvf $dep*gz -C cookbooks; done

I then recursed into these cookbooks as follows:

$ cd cookbooks

$ grep depends */metadata.rb

git/metadata.rb: depends cookbook
git/metadata.rb:depends "runit", ">= 1.0"
runit/metadata.rb:depends "build-essential"
runit/metadata.rb:depends "yum"
windows/metadata.rb:depends "chef_handler"

And downloaded the missing dependency:
$ knife cookbook site download chef_handler && tar xzvf chef_handler*gz -C cookbooks

I verified that this in turn didn’t have a dependency, by checking its metadata.rb
file.

Having read about dna.json (http://bit.ly/1fQWLQE), I created a dna.json file in
my .chef directory, with the following content:

{
"run_list": ["recipe[irc]", "recipe[git]"]

}
Upon running Chef, the Git package was successfully installed:

$ sudo chef-solo --config ~/.chef/solo.rb --json-attributes ~/.chef/dna.json
Starting Chef Client, version 11.4.4
Compiling Cookbooks...
Converging 5 resources
Recipe: irc::default
user[tdi] action create (up to date)

http://bit.ly/1fQWLQE

package[irssi] action install (up to date)
directory[hometdi/.irssi] action create (up to date)
cookbook_file[hometdi/.irssi/config] action create (up to date)
Recipe: git::default
* package[git] action install
- install version 1:1.8.1.2-1 of package git

Chef Client finished, 1 resources updated

I switched to the tdi user (with sudo in the case of Ubuntu), and felt that the

root of the tdi home directory would be an admirable place to clone the
Opscode Git repository.

$ sudo su - tdi

$ git clone git://github.com/opscode/chef-repo.git

Cloning into 'chef-repo'...

remote: Counting objects: 209, done.

remote: Compressing objects: 100% (128/128), done.

remote: Total 209 (delta 74), reused 170 (delta 47)
Recelving objects: 100% (209/209), 36.40 KiB, done.
Resolving deltas: 100% (74/74), done.

I set up Git to use my name and address, as shown:

$ git config --global color.ui "auto"
$ git config --global user.email "stephen@atalanta-systems.com"
$ git config --global user.name "Stephen Nelson-Smith"

I already have a GitHub account, so I simply created a key pair:

$ ssh-keygen -t dsa -f tdi-example

Generating public/private dsa key pair.

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in tdi-example.
Your public key has been saved in tdi-example.pub.
The key fingerprint is:
98:fb:2d:c6:ff:66:76:ac:b0:da:1d:37:1e:92:ae:64 stephen@Stephens-MacBook-Air.local
The key's randomart image is:

+--[DSA 1024]----+

I I

I I

I I

To add my key, I simply logged into GitHub, and navigated to
https://github.com/settings/ssh. There I clicked “Add SSH Key,” gave a title,
pasted the public key—which was created in my working directory—and clicked
“Add Key”.

I then clicked the “Create a new repo” button, just to the right of my username,
and created a repo called tdi-example. I gave it a description, and clicked the
button to create the repository.

I then changed the remote URL for the repository I cloned to match the one I
created:

$ cd ~/chef-repo
$ git remote set-url origin git@github.com:atalanta-cookbooks/tdi-example

I changed back to a user with appropriate privileges (root or sns with sudo) and
returned to the original directory where I had created my cookbooks directory
and rsync’d them into the chef-repo/cookbooks directory:

$ cd
$ sudo rsync -Pvar cookbooks/ hometdi/chef-repo/cookbooks/
$ sudo chown -R tdi: ~tdi/chef-repo

To push the repo, I changed back to the tdi user, cached my ssh key, and then
ran git add and git push:

$ whoami

tdi

$ ssh-agent bash

$ ssh-add tdi-example

Identity added: tdi-example (tdi-example)
$ cd chef-repo/

$ git add cookbooks

$ git commit -m "Adding TDI cookbooks"

https://github.com/settings/ssh

$ git push -u origin master
The authenticity of host 'github.com (204.232.175.90)' can't be established.
RSA key fingerprint is 16:27:ac:a5:76:28:2d:36:63:1b:56:4d:eb:df:a6:48.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'github.com,204.232.175.90' (RSA) to the list of known
hosts.
Counting objects: 209, done.
Compressing objects: 100% (101/101), done.
Writing objects: 100% (209/209), 36.40 KiB, done.
Total 209 (delta 74), reused 209 (delta 74)
To git@github.com:atalanta-cookbooks/tdi-example
* [new branch] master -> master
Branch master set up to track remote branch master from origin.
(((range="endofrange", startref="ix_2-Introduction-to-Chef-asciidoc14")))
(((range="endofrange", startref="ix_2-Introduction-to-Chef-asciidoc13")))

Discussion

Within the Chef world, pretty much everything is addressable via an API. This
extends to the community cookbook site. There are hundreds of cookbooks—
perhaps now even more than a thousand—available on the community cookbook
site. Knife provides an interface to the site, allowing the searching,
downloading, and sharing of cookbooks. Although for the purpose of this series
of exercises, our concern is to learn the fundamentals of Chef so we’re writing
recipes ourselves, a fairly standard workflow would be to query the cookbooks
site for a key word, and then inspect or use an open source cookbook. To pick a
random example, suppose I’d been discussing setting up some form of LDAP
service. With one command, I immediately have a set of candidate cookbooks
written using a framework I understand, in version control, rated and used by
other infrastructure developers. Even if I decide, having reviewed the candidates,
to write (and maybe share) my own cookbook, I have the work of other people to
inspire, guide, and inform me.

$ knife cookbook site search ldap

ca_openldap:
cookbook: http://cookbooks.opscode.com/api/v1l/cookbooks/ca_openldap
cookbook_description: Configures a node to be an OpenLDAP server or client.
cookbook_maintainer: carguel

cookbook_name: ca_openldap
ldap:
cookbook: http://cookbooks.opscode.com/api/v1/cookbooks/1ldap

cookbook_description: Installs/Configures ldap

cookbook_maintainer:
cookbook_name:
ldapknife:
cookbook:
cookbook_description:
cookbook_maintainer:
cookbook_name:
opendj:
cookbook:
cookbook_description:
cookbook_maintainer:
cookbook_name:
opendj-openam:
cookbook:
cookbook_description:
cookbook_maintainer:
cookbook_name:
openldap:
cookbook:
cookbook_description:

slave or client for auth

cookbook_maintainer:
cookbook_name:
sssd_ldap:
cookbook:
cookbook_description:
cookbook_maintainer:
cookbook_name:
zone2ldif:
cookbook:
cookbook_description:
cookbook_maintainer:
cookbook_name:

someara
ldap

http://cookbooks.opscode.com/api/v1l/cookbooks/ldapknife
Installs ldapknife.pl to usrlocal/bin

jacklOphty

ldapknife

http://cookbooks.opscode.com/api/v1l/cookbooks/opendj
Installs OpenDJ] LDAP server

elliotkendall

opend]j

http://cookbooks.opscode.com/api/v1l/cookbooks/opendj-openam
Installs/Configures opendj

thomasalrin

opendj-openam

http://cookbooks.opscode.com/api/v1l/cookbooks/openldap
Configures a server to be an OpenLDAP master, replication

opscode
openldap

http://cookbooks.opscode.com/api/vl/cookbooks/sssd_ldap
Installs/Configures LDAP on RHEL using SSSD

tas50

sssd_ldap

http://cookbooks.opscode.com/api/v1l/cookbooks/zone2ldif
Installs/Configures zone2ldif

jacklOphty

zone2ldif

Once a cookbook has been identified as worthy of further investigation, it can be
downloaded. As I alluded to in the worked example, Chef does provide a
somewhat magical install subcommand, which will install upstream
community cookbooks to a local Git repository. The steps it takes are as follows:

1. Create a fresh pristine copy branch for tracking upstream.

2. Remove any existing cookbook versions from the branch.

3. Download the cookbook tarball.

4. Extract the tarball and commits the contents to Git.
5. Merge pristine copy into master.

The idea is that upstream changes can be maintained as a patch and merged with
local changes when needed. This pattern was pretty common in CVS and is
called “vendor branching” (see http://bit.ly/19AU90s). I tend not to recommend
this approach. First, I don’t much like magic. Git is complex. Blindly allowing
branching and merging to happen without clearly understanding what is going on
is a recipe for future pain. I also don’t tend to recommend keeping all your
cookbooks in one repository for anything beyond learning the basics, and the site
install mechanism expects you to be already within a Git repository when
running the command. We’ll discuss this in more depth later, but for now I'd
caution against using knife cookbook site install. The simplest approach
is to use the download subcommand, which simply pulls down a tarball of the
specified cookbook and version. You can then extract and work with it in your
own way. Later we’ll discuss more powerful ways of approaching this issue,
focused particularly on treating upstream cookbooks as dependencies and
artifacts, rather than a grab bag of modifiable source code. However, for now,
use knife cookbook site download.

Cookbooks are effectively the packaging system for infrastructure code. If
you’ve ever worked with a packaging system before—RPM, dpkg, SVR4, pkgsrc,
Rubygems—you will be aware that there is a known set of problems that need to
be solved. These problems include how to express dependencies upon other
cookbooks, how to handle versioning, how to handle potential conflicts, license
information, discoverability, and so forth. The common component of all
approaches to the solution is to maintain package metadata within each package.

Cookbook dependencies are a challenge you meet very quickly when you start to
build on and use community cookbooks. Unsurprisingly, with a library of 1,000+
high-quality cookbooks, cookbook writers tend to use one another’s cookbooks
to make life easy. For example, one cookbook may contain functionality for
service management (runit or daemontools), and another for managing third-
party upstream package repositories (apt or yum). A cookbook delivering a
service that needs process management across platforms, and needs to configure
upstream repositories, might well make use of the yum, apt, and runit cookbooks

http://bit.ly/19AU9os

as a result. It gets slightly more involved when Windows and OSX are included.
Additional primitives for managing Windows and OSX are provided in
cookbooks, and not yet in core Chef. The Windows cookbook itself depends on
functionality provided by the Chef Handler cookbook. All these dependencies
must be expressed in the cookbook metadata. The metadata doesn’t support
conditional logic so we can’t say, “If this machine is running on Linux, we don’t
need the Windows or OSX-specific dependencies.” This means that in the case
of a cross-platform community cookbook, you’ll find yourself depending on
cookbooks for a platform you’ll never use. It’s a bit of a bore, but it’s not a
solved problem; these challenges exist in all packaging solutions.

The cookbook metadata file is another Chef DSL. It’s a DSL for generating
JSON that Chef uses for dependency solving and package management. An
example metadata file would be:

name "windows"

maintainer "Opscode, Inc."

maintainer_email "cookbooks@opscode.com"

license "Apache 2.0"

description "Provides a set of useful Windows-specific primitives."

long_description IO.read(File.join(File.dirname(__FILE__), 'README.md'))
version "1.8.10"

supports "windows"

depends "chef_handler"

As a cookbook author, if your cookbook makes use of any recipes or library
code from another cookbook, you must include this as a dependency in your
metadata.

Obviously, this manual dependency solving is a bit of a pain. We’ll introduce
tooling that removes this pain later, but this example serves to demonstrate how
the dependencies work and makes their existence and importance explicit.

The dna.json file introduces an important new concept—node attributes. An
attribute is that which inherently belongs to and can be predicated of anything.
The sky has the attribute color: blue. A web server has an attribute:
listen_port: 80. A server has the attribute disks: 8. Attributes, therefore, are
data associated with the node.

You’ll remember I defined a node as a Ruby object representing the machine

we’re configuring. This object behaves like a Hash: it has keys and values, getter
and setter methods, and can be viewed, queried, and interacted with as JSON.
The keys and values are referred to as node attribute data.

Some of this data is collected automatically by Ohai, such as the hostname, IP
address, and a large amount of other pieces of information. However, arbitrary
data can be associated with the node as well. Here we see a significant
implication of using chef-solo. With chef-solo, there is no server; there is no
persistent state that records the attributes of the node. That state must be handed
to Chef, in the form of a JSON file. In our simple case, the only attribute that

we’re setting is the run_List attribute. However, we could provide any number
of keys and values.

Attributes allow sane defaults to be set for a cookbook. Rather than hardcoding
implementation detail in a recipe, we can use an attribute like a variable. If you
look at the Git cookbook we download, you’ll see that a number of attributes are
set in the attributes/default.rb file:

case node['platform_family']
when 'windows'
default['git']['version'] = "1.8.1.2-preview20130201"
default['git']['url'] = "https://msysgit.googlecode.com/files/Git-#{node['git']
['version']}.exe"
default['git']['checksum'] =
"796ac91f0c7456b53f2717a81f475075cc581af2f447573131013cac5b63bb2a"
default['git']['display_name'] = "Git version #{ node['git']['version'] }"
when "mac_os_x"

default['git']['osx_dmg']['app_name'] = "glt-1.8.2-intel-universal-snow-
leopard"

default['git']['osx_dmg']['volumes_dir'] = "Git 1.8.2 Snow Leopard Intel
Universal"

default['git']['osx_dmg']['package_id'] = "GitOSX.Installer.git182.git.pkg"

default['git']['osx_dmg']['url'] = "https://git-osx-

installer.googlecode.com/files/git-1.8.2-intel-universal-snow-leopard.dmg"

default['git']['osx_dmg']['checksum'] =
"e1d0ec7a9d9d03b9e61f93652b63505137131217908635cdf2f350d07cb33e15"
else

default['git']['prefix'] = "usrlocal"

default['git']['version'] = "1.8.2.1"

default['git']['url'] = "https://nodeload.github.com/git/git/tar.gz/v#
{node['git']['version']}"

default['git']['checksum'] =
"bdc1768f70ce3d8f3ed4edcdcd99b2f85a7f8733fb684398aebe58dde3e6bccaz”

end

default['git']['server']['base_path'] = "srvgit"
default['git']['server']['export_all'] = "true"

We’ll cover how these attributes function in more detail shortly, but for now, I’d
draw your attention to the conditional logic. The node has an attribute
platform_family. This comes from Ohai. Ohai is able to determine if a
machine is, for example, of Debian flavor or Windows flavor. Based on that, we
can make decisions in our cookbooks and recipes. In this case, we’re specifying
which versions of Git to obtain from an upstream provider, and which
checksums should be used to verify that we obtained the correct file. Returning
briefly to the metadata, you’ll also note that the metadata specifies which
platforms the cookbook supports:

$ grep -C1 supports chef-repo/cookbooks/git/metadata.rb
%w{ amazon arch centos debian fedora redhat scientific oracle amazon ubuntu windows
}.each do |os|
supports os
end

supports "mac_os_x", ">= 10.6.0"

Again, as a cookbook author, you should specify which platforms you support. If
you don’t, you’re implicitly stating your cookbook supports all platforms, which
is almost certainly not true.

So we set the run list to be an array of recipes in order. First we said that the
default irc recipe should be applied, and then the default git recipe. The result
was that Git was installed on our machine.

The example Opscode chef-repo contains all the directories you will need and
work with as part of your regular workflow as an infrastructure developer. It also
contains a Rakefile, which provides some useful tasks, such as creating self-
signed SSL certificates. In practice, you’re unlikely to use rake, as knife will
do more than 99% of the tasks you’ll find yourself needing to do. The chef-repo
pattern is somewhat out of favor, and might even be considered an anti-pattern.
The reason for this is that by putting absolutely everything in a single repository,
we’re mixing temporal data—things that might change—with versioned

artifacts. It also runs counter to the Git philosophy: have a repository for each
software project and keep them light and mobile. Cookbooks are very much
software projects, with independent versions, tags, development teams, and
purposes. It just doesn’t make much sense to stick them all in one place. The
emerging recommendation is to put temporal data in a chef-data repository and
maintain a repository per cookbook. This makes it easy to track upstream by
adding a remote, and pulling and merging when required. Note that this is
without the magic of the knife cookbook site install command, and is a
much more explicit procedure.

However, as a starting point, the monolithic Chef repository has its place. It
gathers everything we need in one place. For users new to the idea of using
version control at all, let alone something with the Byzantine reputation of Git,
the learning curve of a single repository is pretty low. We can then refactor at the
point of need—as soon as we start to feel the limitations of our approach, we
should refactor—and move to the next level.

Of course we could have used the GitHub fork mechanism within the web
interface to simplify the process of having our own Chef repository, but I wanted
to show the manual process and support the ability to use other sources of Git
server—such as an internally hosted Git server or an alternative public Git serve,
such as Bitbucket.

In the next chapter, we’ll build on the work done here by installing some
essential tools using Chef.

(1] Proxy support is provided in Chef, and most auxiliary utilities, but it can be a bit fiddly. Improvements
are ongoing, and there are frequent discussions on the Chef mailing lists, and IRC and GitHub issues that
will be relevant. Basically, you will be able to get up and running if you do have a proxy server in your
environment, but it would be better for me to direct you to the latest discussion and details rather than
attempt to provide a guide here, which will almost certainly date, rapidly.

(2] The original line is from Scott Bellware.

http://harmful.cat-v.org/software/java

Chapter 4. Using Chef with Tools

In the last chapter we installed Chef itself, a user, an IRC client, and Git. Now
we move on to develop our infrastructure and our understanding further by
installing and using Ruby, VirtualBox, and Vagrant.

Exercise 1: Ruby

Objectives
After completing this exercise, you will:

m Understand the differences between chef -solo and a server-based Chef
setup

= Understand the node object in more detail
m Be set up to use Opscode’s Hosted Chef service
m Understand the authentication mechanism used by Hosted Chef
= Have installed a modern Ruby on your system using Chef
» Understand the roles primitive in Chef
m Understand the idea of attribute precedence
m Have examined the components of a Chef run
Directions
1. Create an Opscode community login (if you don’t have one already).

2. Download your user’s private key.

https://community.opscode.com/users/new

10.

11.

12.

13.

14.

15.

16.

17.

Navigate to the Hosted Chef Operations Console.

Create an organization, if you don’t already have one, selecting the free
tier.

Download your organization’s validation key.
Download the knife.rb configuration file for your organization.

Create a .chef directory under your chef-repo directory, and place your two
keys and knife.rb inside this directory.

Read the knife configure documentation, and use it to create a client.rb
file and validation certificate in etcchef.

Validate your setup by running knife client list.

Look at the chef-client help page, and identify how to pass JSON to a
chef-client run.

Run chef-client with the dna.json file created in the previous exercise.

Upload the cookbooks required to satisfy the run list to the Chef server.

Run chef-client again with the dna.json file created in the previous
exercise.

Download the chruby, ark, and ruby_build cookbooks and place them in
your chef-repo.

Upload the cookbooks to the Chef server.

Read the documentation shipped with the chruby cookbook to understand
which attributes can be set.

Create a role that, in addition to the git and irc recipes, applies the

system recipe from the chruby cookbook, and set the attributes to install
the latest Ruby 1.9.3, and set it as default.

https://manage.opscode.com

18. Upload the role and cookbooks to Hosted Chef.

19. Update the node’s run list, replacing the irc and git recipes with the role
you created.

20. Run chef-client.

21. Verify that your user has the version of Ruby you desired.

Worked Example

I already have an Opscode user and I use Hosted Chef, so I decided I’d create
another user for the purpose of demonstration. I browsed to the community
website, and clicked the sign up link.

On the sign up page, I filled out the form with a username, password, name,
company name, country, and state, and agreed to the terms and conditions.

This took me to a welcome page that read:

Your new Opscode account has been created, but some features of your account will not work until
you verify your email address. To complete your verification, please check your email. Open the
email from Opscode and click the enclosed link.

It also read:

Your User Key

Opscode uses two private keys: an organization-wide key and a user account-specific key (or “user
key”). Opscode does not keep a copy of any private keys, so please store it somewhere safe. Learn
more about private keys used by Chef.
A private key was displayed on the screen. However, I’d had experiences where
copying and pasting the key gave unexpected results, so I elected to download
the key as a file. I did this by clicking on my username at the top-right of the
screen, and then clicking “Get a new private key.”

This page read:

Get a new private key

If you’ve lost your private key, or would like to replace it, click the button below. When you get a new
key, your old key will stop working. This private key replaces your old key. We do not keep a copy so
please store it somewhere sdfe.

I clicked “Get a new key,” and the key was downloaded to my local machine.

http://community.opscode.com

Next I checked my email, and found one that read:
Hello TDI Example,

Thank you for signing up with us!
Please click this link to verify that you’ve signed up for this account:

https://community.opscode.com/users/tdiexample/email_addresses/30358/verification_requests/f8d32c8f-
2519-ee08-37ef-e3a21ed28e14

Your Account has been created with the following information: User Name : tdiexample Email
Address : cookbooks@atalanta-systems.com

Thanks, The Opscode Team

I clicked the link and found myself on a landing page with options for what to do
next:

m Read the Getting Started Guide
= Manage your org with the Operations Console

m Need Help?

I selected the middle option, which took me to the Opscode Hosted Chef
Operations Console. This page invited me to create an organization. I filled out
the form and selected the free tier.

On the resulting page, there was a link to download the validation key and to
generate a knife.rb. I clicked both links and saved the resulting files. At the end,
I had three files:

m tdiexample.pem
» hunterhayes-validation.pem

m knife.rb

I created a .chef directory under my chef - repo and moved these three files
under it:

$ ls -1F chef-repo/.chef/
hunterhayes-validator.pem
knife.rb

tdiexample.pem

https://community.opscode.com/users/tdiexample/email_addresses/30358/verification_requests/f8d32c8f-2519-ee08-37ef-e3a21ed28e14
mailto:cookbooks@atalanta-systems.com

I read the manual page for knife configure and determined that knife

configure client would read my knife.rb and create a client.rb file and a
validation certificate. I ran the following to create the files:

$ knife configure client /tmp
Creating client configuration
Writing client.rb

Writing validation.pem

I then assumed administrator privileges, ensured the etcchef directory existed,
and copied the client.rb and validation.pem files into the etcchef directory, with
the following result:

find etcchef/
etcchef/
etcchef/validation.pem
etcchef/client.rb

I returned to my tdi user, changed into my chef-repo directory, and validated my
setup as follows:

$ cd ~/chef-repo
$ knife client list
hunterhayes-validator

I ran chef-client --help and noted that with the -j, --json-attributes
flag, I could pass JSON to the client. Armed with this knowledge, I returned to
my empowered user (sudo sns or root), and ran the following:

$ sudo chef-client -j .chef/dna.json

Starting Chef Client, version 11.4.4

[2013-06-27T09:25:51+01:00] INFO: *** Chef 11.4.4 ***
[2013-06-27T09:25:51+01:00] INFO: [inet6] no default interface, picking the first
ipaddress

Creating a new client identity for ubuntu using the validator key.
[2013-06-27T09:25:52+01:00] INFO: Client key etcchef/client.pem is not present -
registering

[2013-06-27T09:25:54+01:00] INFO: Setting the run_list to ["recipe[irc]",
"recipe[git]"] from JSON

[2013-06-27T09:25:54+01:00] INFO: Run List is [recipe[irc], recipe[git]]
[2013-06-27T09:25:54+01:00] INFO: Run List expands to [irc, git]

[2013-06-27T09:25:54+01:00] INFO: Starting Chef Run for ubuntu
[2013-06-27T09:25:54+01:00] INFO: Running start handlers
[2013-06-27T09:25:54+01:00] INFO: Start handlers complete.

resolving cookbooks for run list: ["irc", "git"]

[2013-06-27T09:25:55+01:00] INFO: HTTP Request Returned 412 Precondition Failed:
{"message"=>"Run list contains invalid items: no such cookbooks irc, git.",
"non_existent_cookbooks"=>["1irc", "git"], "cookbooks_with_no_versions"=>[]}

Error Resolving Cookbooks for Run List:

Missing Cookbooks:

The following cookbooks are required by the client but don't exist on the server:
irc

git

Expanded Run List:
irc
git

[2013-06-27T09:25:55+01:00] ERROR: Running exception handlers
[2013-06-27T09:25:55+01:00] FATAL: Saving node information to varchef/cache/failed-
run-data.json

[2013-06-27T09:25:55+01:00] ERROR: Exception handlers complete

Chef Client failed. 0 resources updated

[2013-06-27T09:25:55+01:00] FATAL: Stacktrace dumped to varchef/cache/chef-
stacktrace.out

[2013-06-27T09:25:55+01:00] FATAL: Net::HTTPServerException: 412 "Precondition
Failed"

I checked the cookbooks I had in my cookbooks directory:

$ 1ls -1F cookbooks
build-essential/
chef_handler/

dmg/

git/

irc/

README .md
runit/
windows/
yum/

And uploaded them all using;:

$ knife cookbook upload

-d

Uploading build-essential [1.4.0]

Uploading chef_handler
Uploading dmg
Uploading git
Uploading irc
Uploading runit
Uploading windows
Uploading yum

Uploaded all cookbooks.

[1.
[1.
[2.
[O.
[1.
[1.
[2.

1.4]
1.0]
5.2]
1.0]
1.6]
10.0]
3.0]

I returned to my power user and ran chef-client again, this time noting that
the node converged, but without taking any action, as the system was already
configured from the previous chef-solo exercise:

$ sudo chef-client -j .chef/dna.json

Starting Chef Client, version 11
[2013-06-27T09:41:40+01:
[2013-06-27T09:41:40+01:

ipaddress

[2013-06-27T09:41:41+01:
"recipe[git]"] from JSON
[2013-06-27T09:41:41+01:
[2013-06-27T09:41:41+01:
[2013-06-27T09:41:42+01:
[2013-06-27T09:41:42+01:
[2013-06-27T09:41:42+01:

resolving cookbooks for

[2013-06-27T09:41:43+01:

00]
00]

00]

00]
00]
00]
00]
00]
run
00]

INFO:
INFO:

INFO:

INFO:
INFO:
INFO:
INFO:
INFO:
list:
INFO:

4.4

#x% Chef 11.4.4 **x
[inet6] no default interface, picking the first

Setting the run_list to ["recipe[irc]",

Run List is [recipe[irc], recipe[git]]

Run List expands to [irc, git]

Starting Chef Run for ubuntu

Running start handlers

Start handlers complete.

["irc", "git"]

Loading cookbooks [build-essential, chef_handler,

dmg, git, irc, runit, windows, yum]

Synchronizing Cookbooks:

- yum
- build-essential
- runit

- chef_handler

- windows

- dmg

- git
- irc
Compiling Cookbooks...
Converging 5 resources
Recipe: irc::default
user[tdi] action create[2013-06-27T09:41:43+01:00] INFO: Processing user[tdi]
action create (irc::default line 1)
(up to date)
package[irssi] action install[2013-06-27T09:41:43+01:00] INFO: Processing
package[irssi] action install (irc::default line 8)
(up to date)
directory[/home/tdi/.1irssi] action create[2013-06-27T09:41:43+01:00] INFO:
Processing directory[/home/tdi/.irssi] action create (irc::default line 12)
(up to date)
cookbook_file[/home/tdi/.1irssi/config] action create[2013-06-27T09:41:43+01:00]
INFO: Processing cookbook_file[/home/tdi/.irssi/config] action create (irc::default
line 17)
(up to date)
Recipe: git::default
* package[git] action install[2013-06-27T09:41:43+01:00] INFO: Processing
package[git] action install (git::default line 24)
(up to date)
[2013-06-27T09:41:44+01:00] INFO: Chef Run complete in 1.996144727 seconds

I finally returned to the tdi user, and downloaded the chruby, ark, and
ruby_build cookbooks in the usual way:

$ for cb in ark chruby ruby_build; do knife cookbook site download $cb && tar xvf
$cb*gz -C ~/chef-repo/cookbooks/; done

I attempted to upload the cookbooks, beginning with the chruby cookbook, but
discovered that I needed to upload them in order:

$ knife cookbook upload chruby

Uploading chruby [0.1.5]

ERROR: Cookbook chruby depends on cookbook 'ark' version '>= 0.0.0',

ERROR: which is not currently being uploaded and cannot be found on the server.

I checked the dependencies in the metadata file, and first uploaded the cookbook
on which chruby depended:

$ cd ~/chef-repo
$ knife cookbook upload {ark,ruby_build,chruby}

Uploading ark [0.2.2]
Uploading ruby_build [0.8.0]
Uploading chruby [0.1.5]
Uploaded 3 cookbooks.

I read the documentation of the chruby cookbook, and identified that I needed to
specify the Rubies I wanted to install and the version I wanted to use by default.
Armed with this information, I created a role as follows:

$ cat developer.rb
name "developer"
description "For Developer machines"
run_Llist(
"recipe[irc]",
"recipe[git]",
"recipe[chruby::system]"

)

default_attributes(
"chruby" => {
"rubiles" => {
"1.9.3-p392" => false,
"1.9.3-p429" => true

3
"default" => "1.9.3-p429"

}
)

I uploaded the role to the Chef server using Knife:

$ knife role from file developer.rb

To alter the run list, I used knife node edit. This required me to set an EDITOR
environment variable:

$ export EDITOR=vi
$ knife node edit ubuntu
$ knife node edit centos

I updated the JSON to set the run list to role[developer], and saved the file.
After checking the run list, I ran chef-client:

$ knife node show centos -r
romanesco:
run_list: role[developer]
$ sudo chef-client
Starting Chef Client, version 11.4.4
resolving cookbooks for run list: ["irc", "git", "chruby::system"]
Synchronizing Cookbooks:
- runit
- ruby_build
- windows
- irc
- ark
- yum
- git
- build-essential
- chef_handler
- dmg
- chruby
Compiling Cookbooks...
Converging 22 resources
Recipe: irc::default
user[tdi] action create (up to date)
package[irssi] action install (up to date)
directory[/home/tdi/.1irssi] action create (up to date)
cookbook_file[/home/tdi/.1irssi/config] action create (up to date)
Recipe: git::default
package[git] action install (up to date)
Recipe: ruby_build::default
package[tar] action install (up to date)
package[bash] action install (up to date)
package[curl] action install (up to date)
package[git-core] action install (skipped due to not_if)
execute[Install ruby-build] action nothing (skipped due to not_if)
directory[varchef/cache] action create (up to date)
git[varchef/cache/ruby-build] action checkout (up to date)
Recipe: chruby::system
ruby_build_ruby[1.9.3-p429] action installRecipe: <Dynamically Defined Resource>
package[build-essential] action install
- install version 11.6ubuntu4 of package build-essential

package[bison] action install
- install version 2:2.5.dfsg-3ubuntul of package bison

package[openssl] action install (up to date)
package[libreadline6] action install (up to date)
package[libreadline6-dev] action install

- install version 6.2-9ubuntul of package libreadline6-dev

package[zlib1g] action install (up to date)
package[zlibilg-dev] action install
- install version 1:1.2.7.dfsg-13ubuntu2 of package zlibig-dev

package[libssl-dev] action install
- install version 1.0.1c-4ubuntu8 of package libssl-dev

package[libyaml-dev] action install
- install version 0.1.4-2buildl of package libyaml-dev

package[libsqlite3-0] action install (up to date)
package[libsqlite3-dev] action install
- install version 3.7.15.2-1ubuntul of package libsqlite3-dev

package[sqlite3] action install
- install version 3.7.15.2-1ubuntul of package sqlite3

package[libxml2-dev] action install
- install version 2.9.0+dfsgl1-4ubuntu4 of package libxml2-dev

package[libxslt1-dev] action install
- install version 1.1.27-1ubuntu2 of package libxsltl-dev

[2013-06-02T20:47:16+00:00] WARN: Cloning resource attributes for package[autoconf]
from prior resource (CHEF-3694)
[2013-06-02T20:47:16+00:00] WARN: Previous package[autoconf]:
varchef/cache/cookbooks/ark/recipes/default.rb:25:1in “from_file'
[2013-06-02T20:47:16+00:00] WARN: Current package[autoconf]:
varchef/cache/cookbooks/ruby_build/providers/ruby.rb:84:in ‘block in
install_ruby_dependencies'

package[autoconf] action install

- install version 2.69-1ubuntul of package autoconf

package[libc6-dev] action install (up to date)
package[ssl-cert] action install
- install version 1.0.32 of package ssl-cert

package[subversion] action install
- install version 1.7.5-1ubuntu3 of package subversion

execute[ruby-build[1.9.3-p429]] action run
- execute usrlocalbinruby-build "1.9.3-p429" "optrubies/1.9.3-p429"

package[build-essential] action nothing (up to date)
package[bison] action nothing (up to date)
package[openssl] action nothing (up to date)

package[libreadline6] action nothing (up to date)
package[libreadline6-dev] action nothing (up to date)
package[zlib1g] action nothing (up to date)
package[zlibilg-dev] action nothing (up to date)
package[libssl-dev] action nothing (up to date)
package[libyaml-dev] action nothing (up to date)
package[libsqlite3-0] action nothing (up to date)
package[libsqlite3-dev] action nothing (up to date)
package[sqlite3] action nothing (up to date)
package[libxml2-dev] action nothing (up to date)
package[libxslt1-dev] action nothing (up to date)
package[autoconf] action nothing (up to date)
package[libc6-dev] action nothing (up to date)
package[ssl-cert] action nothing (up to date)
package[subversion] action nothing (up to date)
execute[ruby-build[1.9.3-p429]] action nothing (up to date)
Recipe: ark::default

package[unzip] action install

- install version 6.0-8ubuntul of package unzip

package[libtool] action install
- install version 2.4.2-1.2ubuntul of package libtool

package[rsync] action install (up to date)
package[autoconf] action install (up to date)
package[make] action install (up to date)
package[autogen] action install

- install version 1:5.17.1-1ubuntu2 of package autogen

Recipe: chruby::default
ark[chruby] action install_with_makeRecipe: <Dynamically Defined Resource>
directory[usrlocal/chruby-1] action create
- create new directory usrlocal/chruby-1

remote_file[varchef/cache/chruby.tar.gz] action create
- copy file downloaded from [] into varchef/cache/chruby.tar.gz
(new content is binary, diff output suppressed)

execute[unpack varchef/cache/chruby.tar.gz] action nothing (up to date)
execute[autogen usrlocal/chruby-1] action nothing (skipped due to only_if)
execute[configure usrlocal/chruby-1] action nothing (skipped due to only_if)
execute[make usrlocal/chruby-1] action nothing (up to date)
execute[make install usrlocal/chruby-1] action nothing (up to date)
execute[unpack varchef/cache/chruby.tar.gz] action run

- execute bintar xzf varchef/cache/chruby.tar.gz --strip-components=1

execute[autogen usrlocal/chruby-1] action run (skipped due to only_if)

execute[configure usrlocal/chruby-1] action run (skipped due to only_if)
execute[make usrlocal/chruby-1] action run
- execute make

execute[make install usrlocal/chruby-1] action run
- execute make install

Recipe: chruby::default
link[usrlocal/chruby] action create
- create symlink at usrlocal/chruby to usrlocal/chruby-1

template[etcprofile.d/chruby.sh] action create
- create template[etcprofile.d/chruby.sh]

--- tmpchef-tempfile20130602-3703-1u9rms9 2013-06-02 20:53:55.387078184
+0000

+++ tmpchef-rendered-template20130602-3703-1jtacvw 2013-06-02
20:53:55.387078184 +0000

@@ -0,0 +1,7 @@

+source usrlocal/chruby/share/chruby/chruby.sh

+source usrlocal/chruby/share/chruby/auto.sh

+RUBIES+=(optchef/embedded)

+

+

+

+chruby 1.9.3-p429

Chef Client finished, 26 resources updated

Chef ran, installed dependent software, and compiled and made Ruby available.
I verified as follows:

$ ruby --version
ruby 1.9.3p429 (2013-05-15 revision 40747) [x86_64-1inux]

Discussion

At its simplest, the process of developing infrastructure with Chef looks like
this:

m Declare policy using resources.
m Collect resources into recipes.

m Package recipes and supporting code into cookbooks.

» Apply recipes from cookbook to nodes.
m Run Chef to configure nodes.

A useful abstraction in this process is the idea of a role. A role is a way of
characterizing a class of node. If you could hold a conversation with someone
and refer to a node as being a certain type of machine, you’re probably talking
about a node. If you were to say “zircon is a mysql slave” you’d be talking about
a role called “mysql_slave™.

Of all the primitives available in Chef, roles are at the top of the evolutionary
tree.l3! Everything points to roles, and roles can encompass everything. In this
respect, what they achieve is arguably the most important concept to understand.
A role can be very simple. A common pattern is to have a base role, which every
machine might share. This could be responsible for configuring an NTP server,
ensuring Git is installed, and could include sudo and users.

Roles are composed of two sections: a run list and a set of attributes. In this
respect, they mirror nodes. Nodes are objects that represent the machine that is
being configured, and also contain a set of attributes and a run list.

We’ve already encountered the run list—it’s simply a list of recipes and/or roles
that should be present on the node. If a node has an empty run list, it will remain
unconfigured. If a node has a run list containing the memcached recipe, the
resources and actions specified in that recipe will be applied to that node. This
process is known as node convergence. Importantly, the run list can contain
recipes or roles, resulting in the ability to nest roles for certain types of
infrastructure modeling.

We’ve also touched on the idea of attributes—attributes are data associated with
the node. Some of this data is collected automatically, such as the hostname, IP
address, and a large amount of other pieces of information. However, arbitrary
data can be associated with the node as well. This is particularly useful for
specifying configuration defaults, while enabling the user to override them with
values that suit themselves. Cookbooks are typically shipped with some sane
default values. Roles provide an opportunity to change that sane default. Any
machines that then have the role on their run list will get the value of the
attribute set in the role rather than the one set by default in the cookbook. In our
case, the chruby cookbook set the version of Ruby to be installed to a patch

version older than the one we wanted, and also elected to set the default Ruby to
the one embedded with the Chef package:

$ cat cookbooks/chruby/attributes/default.rb
default['chruby']['version'] = '0.3.4'
default['chruby']['gpg_check'] = false
default['chruby']['use_rvm_rubies'] = false
default['chruby']['use_rbenv_rubies'] = false
default['chruby']['auto_switch'] = true
default['chruby']['rubies'] = {'1.9.3-p392"' => true}
default['chruby']['default'] = 'embedded'
default['chruby']['user_rubies'] = {}

We didn’t want those defaults, so we changed them in the role:

default_attributes(
"chruby" => {
"rubies" => {
"1.9.3-p392" => false,
"1.9.3-p429" => true

3
"default" => "1.9.3-p429"

}
)

So far in our examples, we’ve only used either chef-solo or chef-apply. This
is fine, in that it allows recipes to be executed on an individual node and gives
access to the core recipe DSL, together with all the configuration primitives it
provides. It’s easy to get started with these tools, and it’s fast. It also provides
great power for little investment. However there are a number of constraints that
are quickly felt.

First, chef-solo doesn’t have a trivial implementation of persistent node data.
During node convergence, the data produced by ohat is available, but any other
data needs to be provided in the form of JSON files. This is simple enough for a
few attributes for a few nodes, but it quickly becomes a pain and requires the
creation of a solution to store, distribute, and update these JSON files. chef -

solo can take the JSON from an HTTP URL, but this requires the construction
and maintenance of that service.

Second, chef-solo requires that the cookbooks be provided to it prior to node

convergence. This means that all changes to cookbooks need to be distributed to
all nodes. Additionally, chef-solo does not have a dependency solver, so either
a dependency solver needs to be written or located that can check each
cookbook’s metadata and ensure that the required cookbooks are delivered to the
node, or every cookbook is delivered for good measure. Notwithstanding the
realization that it isn’t very elegant or efficient to do this—sometimes there can
be large binary files in cookbooks. This is certainly an anti-pattern, but it’s not
uncommon, and the inability to select which cookbooks are or are not needed on
a node rapidly gets painful. There are also questions around the security
implications of having the infrastructure code that builds your entire
environment on every server, visible in the event of a compromise. In addition to
this, not only do the cookbooks need to be distributed to each node, a careful
decision needs to be made about which exact versions of which cookbooks are
distributed to each node. It’s not unusual to run different versions of cookbooks
on different nodes—either for development reasons, or simply because some
nodes serve a subtly different purpose. Accommodating this requirement makes
the cookbook distribution problem exponentially harder. Again, chef-solo can
take an HTTP URL, and the cookbooks can be cleared away afterwards, but now
there’s another service that needs to be built, and for which access control,
security, and hosting need to be considered.

Third, one of the core ideas of Chef is that there should be a canonical,
searchable source of information about the infrastructure that can be used
dynamically to build infrastructure accordingly. In simple terms, we want to find
things out about our infrastructure. We want to be able to ask questions such as,
“Which machines have the web server role?” or “Tell me nodes in Rackspace
that use the postgresql::client recipe”. We also want to be able to look at a
record of convergence: how many machines haven’t had Chef run on them in the
last 24 hours? How many machines are running a certain version of OpenSSL?
Using a server-based implementation immediately provides this functionality—
every node attribute, plus arbitrary, system-wide data, is stored and indexed, and
available for querying at any stage.

The result of these constraints is that people determined to use Chef Solo end up
trying to build the basic primitives of a Chef Server—node storage, search, and
cookbook distribution.

In my view, it boils down to this: a significant amount of thought went into
deciding how to build an outstanding automation framework. This thought was
informed by deep experience of using other configuration management
approaches and of having to solve infrastructure automation, at scale and
complexity, across a large number of different technical environments and
commercial applications. A significant amount of thought went into working out
how to separate data and configuration to allow maximum power and flexibility
in modeling infrastructure. A significant amount of thought went into how to
model the storage of canonical infrastructure data. The result of that thought
wasn’t “let’s write a DSL and ship JSON around via random websites or Rsync
or Git.” The solution was to build a REST API with a dependency solver, an
index, and a publishing service. This is the function of the Chef Server.

The Chef Server is available in three forms:

The open source Chef Server
Opscode ships a free version of the Chef Server in the same easy-to-use
format as the Chef Client package.'#! This represents the reference API for
Chef and provides all the core functionality that is required to build and
maintain infrastructure with Chef. Certain enterprise features around security
and access control are not available, and while Opscode remains committed
to trickling down advanced features as they are developed, there is a time
delay, and under certain circumstances, the decision may be made that a
feature will not be released into the open source product at all. When running
the open source Chef Server (OSC), it is incumbent upon the infrastructure
developer or sysadmin to configure and manage each instance of the server
locally. If any data migrations are needed, or updates or patches required,
these must be carried out. Additionally, ensuring the system scales in line
with the infrastructure it supports is also the responsibility of the engineer(s)
who elected to use OSC. Support is available from within the Chef
community; Opscode does not directly support users of OSC.

Hosted Chef
Hosted Chef (OHC) is a fully managed, multitenant, highly available version
of a Chef Server that is hosted by Opscode. OHC is cloud-based, very
scalable, supported 24/7/365. It includes enterprise features such as resource-
based access control and, on account of its design, allows for multiple
sandboxed servers to be run in one location. Functionally identical to OSC,

Hosted Chef has the advantage of not needing any local setup or
management.

Private Chef
Private Chef (OPC) is effectively the same code base as OHC, delivered on-
premise, to be run behind your firewall. Managed by the purchasing
organization with support from Opscode, OPC is identical to OHC. Hosted
Chef is the largest Private Chef deployment in the world.

Space does not permit a detailed discussion of setting up and running a local
Chef server, however, Opscode provides Omnibus packages and a fully featured
configuration toolkit. The documentation is excellent, and support from the
community is equally good. For our examples, we’re going to use Hosted Chef.

I’ve emphasized a number of times already—the Chef framework, at its core, is
simply a REST API. Every single interaction with the Chef server is over HTTP
using the API. This means that every time you interact with the Chef server you
are using an API client. This includes the web interface, which is itself an API
client. A Chef client running on a node we are managing is also an API client, as
is the Knife command-line utility. The Chef Shell can also function as an API
client. However, the need to secure API traffic is paramount, especially in a
hosted, multitenant environment. For this reason, each API transaction is
digitally signed, and each API client needs a valid identity in order to interact
with the Chef server, and to authenticate using RSA public/private key pairs.

The authentication process is designed to ensure the API request has not been
tampered with, is from the client claiming to make the request, and has arrived in
reasonable time, not having been subjected to a replay attack. To achieve this, a
string is compiled by combining four pieces of data to form a unique signature,
and then encrypted with a private RSA key. This is decrypted on the server side
and validated. The data used to form the signature includes the HTTP method,
the timestamp, the API client ID, and the request body itself. This requires every
API client to have its own public/private key pair.

Because Hosted Chef is multitenant, there needs to be a way to divide up API
requests into meaningful groups. Hosted Chef uses the idea of organizations to
achieve this. An organization is like a sandboxed Chef server and represents a
way of grouping bits of infrastructure that you wish to manage using Chef. You

http://docs.opscode.com/install_server.html

can think of it as your own dedicated Chef server in the cloud. In Hosted Chef,
when you read “organization,” you can think “dedicated Chef server.”

Each organization has its own private key. This key can be considered the master
key; it is the key that enables other API clients to be granted keys. Sometimes
called the validation key, it must be kept safe—without it, your ability to interact
with Hosted Chef will be restricted. Although it can be regenerated from the web
console, it still needs to be kept very secure, as it allows unlimited use of the
platform, which could be very dangerous in the wrong hands.

Users of Hosted Chef also need an Opscode user account. An Opscode user
account is shared across the Opscode Platform, the Hosted Chef Management
Console, the community site, and Opscode’s support page. This user also has a
public/private key pair that is used to authenticate with the Chef server. Usually
this interaction will use the Knife command-line tool; however, using that key,
you can make direct API calls if you so desire. As an API client, Knife needs a
configuration file: knife.rb. Amongst other settings, this specifies the URL of the
API, and where to find the private key for the API requests.

As an infrastructure developer, you want to be able to build new machines using
Chef. This means you need to be able to create new API clients for nodes you
wish to configure, and key pairs for authentication. To do this, there is a special
sort of API client called a validation client. This is used in the situation where an
API client cannot yet make authenticated requests to the server because it lacks
an identity and a key pair. This key is highly powerful and allows the creation of
API clients.

Your Opscode user is associated with one or more organizations, allowing you to
interact with the API either directly or via Knife. Similarly, the validation client
is also tied directly to an organization.

To summarize, these five components are required to operate with Hosted Chef:
m An Opscode user, which grants access to the Hosted Chef Management
Console

» An organization—effectively a sandboxed, dedicated Chef Server in the
cloud

m A private key associated with your Opscode user and used by Knife to

http://www.opscode.com/support

interact with the Chef server

m A validation client (and key) with the power to create API clients for an
organization

m A Knife configuration file, ensuring you interact with the correct
organization using the correct keys

We satisfied these requirements in our example by ensuring we had:

m Our Opscode user’s private key

» Membership of an organization

m The validation key for the organization
» A knife.rb configuration file

As an infrastructure developer, the majority of your interaction with the Chef
server is via the Knife command-line tool. Let’s take a look at the knife.rb file
that was generated and downloaded from the operations console:

$ cat .chef/knife.rb
current_dir = File.dirname(__FILE_)

log_level :info

log_location STDOUT

node_name "tdiexample"

client_key "#{current_dir}/tdiexample.pen"
validation_client_name "hunterhayes-validator"

validation_key "#{current_dir}/hunterhayes-validator.pem"
chef_server_url "https://api.opscode.com/organizations/hunterhayes"
cache_type 'BasicFile'’

cache_options(:path => "#{ENV['HOME']}/.chef/checksums")

cookbook_path ["#{current_dir}/../cookbooks"]

We’ve already seen that most of Chef’s configuration files are written in Ruby.
This is no exception. Let’s pick this file apart a little.

First we set the current_dir directory to the directory in which the knife.rb file
resides. Then we set the log level and location; these can be safely left at their
defaults. The node_name is a slightly confusing term, but in your Knife

configuration this basically maps to your Opscode Username. We next set the

path of the client key to be the same location as where we have our knife.rb. We
also specify that the validation key is in the same place, and we explicitly name
the validation client. The Chef Server URL is always the same—it’s just
api.opscode.com with the organization tacked on the end. Cache type and cache
options again can be overlooked, and finally we tell Knife that our cookbooks
are found in a directory called cookbooks in the directory above the location of
our Knife config file and our keys. All this represents standard Ospcode
convention, which can be met by ensuring the following are in place:

m A directory called chef-repo

m Another directory called .chef inside the chef-repo directory
m Knife config and keys located inside the .chef directory
» Be in your chef-repo directory when using Knife

This file, then, allows the tdiexample user to interact with the Chef API for the
hunterhayes organization. Incidentally, the tdiexample user, being a global
Opscode user, is also handy for a number of other interactions. It can be used to
interact with other Chef users on the Opscode community portal, and also it is
your mechanism for logging into the Hosted Chef operations console, which
provides a useful web interface to your infrastructure.

A little more on the subject of organizations: organizations are a convenient way
of grouping together related systems that are going to be managed using Chef. In
actual fact, a system cannot be managed unless it belongs to an organization, and
an Opscode user cannot do anything meaningful without also being associated
with an organization. Users can belong to more than one organization, and can
be invited to join the organizations belonging to other users. As each
organization has a private key associated with it, knife needs to be configured
on a per organization basis. At some stage, you may find you need to work with
many organizations. In that case, something akin to the following knife.rb may
be a convenient solution:

current_dir = File.dirname(__FILE_)
user = ENV['OPSCODE_USER'] || ENV['USER']
log_level :info

http://community.opscode.com

log_location STDOUT

node_name user

client_key "#ENV['"HOME']}/ .chef/#{user}.pen"

validation_client_name "#{ENV['ORGNAME']}-validator"

validation_key "#{ENV['HOME']}/.chef /#{ENV['ORGNAME']}-validator.pem"
chef_server_url "https://api.opscode.com/organizations/#{ENV['ORGNAME']}"
cache_type 'BasicFile'’

cache_options(:path => "#{ENV['HOME']}/.chef/checksums")

cookbook_path ["#{current_dir}/../cookbooks"]

This allows you to keep all Chef-related keys in a .chef directory in the home
directory. This has the added benefit of preventing the accidental checking-in of
user keys into Git! All that is required to use knife is to export the ORGNAME and
OPSCODE_USER environment variables in your shell, and then to be the username
you used to sign up for the Opscode community pages. For example:

$ export ORGNAME=hunterhayes
$ export OPSCODE_USER=tdiexample

With the keys and Knife configuration file in place, we can now test that we can
successfully speak to the Chef server. The simplest approach is to ask the Chef
server which API clients it knows about. If chef-client has not been run on
any servers, the only client it would know about is the so-called validation
client. Since by now we’ve run chef-client on our machine, we should also
see our own machine in the client list. Consequently, running knife client
list should yield an entry, matching the organization name you set up on
Hosted Chef, and the name of your machine:

$ knife client list
hunterhayes-validator
romanesco

An important workflow difference between chef-solo and using a Chef server
is that when using a Chef server, it’s necessary to publish or upload cookbooks
to the Chef server. Then, when Chef runs, the Chef server can solve

dependencies and make available whatever cookbooks are needed. The chef -
client then downloads the required cookbooks and converges the node. The
process of uploading the cookbooks to the Chef server is achieved using knife

cookbook upload. You’ll have noticed in our example, the Chef server rejected
the chruby cookbook, when the cookbooks upon which chruby depended were
not on the Chef server. Later in the book, I’ll introduce a workflow that removes
these headaches, both in terms of downloading and uploading cookbooks, but for
now the important concept to grasp is simply that dependencies exist between
cookbooks, and all cookbooks in the dependency chain need to be on the Chef

server. While the Chef server solves dependencies for the chef-client run,

Knife does not; it is necessary for you to either solve the dependencies yourself
(or with a tool, as we’ll see later), or rely on error messages from the Chef
Sserver.

Let’s quickly run through the steps that are followed when Chef is run on a node,
and compare and contrast chef-client and chef-solo:

1. Build the node

2. Synchronize cookbooks

3. Compile the resource collection
4. Converge the node

5. Notify and handle exceptions

chef-client »| build node p| authenticate

l

load sync
converge [« cookbooks | ¢ cookbooks
Yes
»| node.save > notification
No » [exception handlers

Remember, the node is a Ruby object that represents the machine we’re
configuring. It contains attributes and a run list. This object is rebuilt every time,
merging input from the local machine (via Ohai, the system profiler that
provides basic information about the node), the Chef API (which contains the
last known state of the node), and attributes and run lists from roles. In the case
of chef-solo, since there is no API to speak to, information about the node
must be passed directly to chef-solo in the form of JSON.

Cookbooks contain a range of data—recipes, attributes, and other supporting

data and code. chef-client requests this data via an API call. The Chef server
performs some complex dependency management and serves only those

cookbooks that are required for the node in question. By contrast, chef-solo
simply ingests every cookbook, either from the local filesystem or over HTTP.

The resource collection, which we mentioned in our introductory discussion, is
simply a list of resources that will be used to configure the node. In addition to
the results of each evaluated recipe (and strictly speaking before), supporting

code and attributes are loaded. This step is the same for chef-solo and chef-
client.

Once the resource collection has been compiled, the required actions are taken

by the appropriate providers. chef-client then saves the node status back to
the server, where it is indexed for search. chef-so'lo takes no such action by

default, and although community projects exist to extend chef-solo in this
direction, my feeling is that once you start wanting to use the full power of Chef
to index nodes for search and provide an API-addressable source of information
in this manner, it’s time to bite the bullet and use the tool in the way it was
fundamentally designed to be used.

Finally, once the run has completed, action is taken dependent upon whether the
run was successful or not. Chef provides the ability to write and use custom
reporting and exception handlers, allowing sophisticated reporting, analytics,
and notification strategies to be developed. We’ll cover this in a bit more detail
later, as this capability opens up some very interesting opportunities for making
and verifying assertions about the Chef run.

We can see these steps in the output of the Chef run:

Starting Chef Client, version 11.4.4
resolving cookbooks for run list: ["irc", "git", "chruby::system"]
Synchronizing Cookbooks:

- runit

- ruby_build

- windows

- irc

- ark

- yum

- git

- build-essential

- chef_handler

- dmg

- chruby

We don’t see the node being built at this log level. Had we run with -1 debug
we’d have seen output like this:

[2013-06-03T12:11:36+01:00] INFO: *** Chef 11.4.4 ***
[2013-06-03T12:11:36+01:00] DEBUG: Loading plugin os
[2013-06-03T12:11:36+01:00] DEBUG: Loading plugin kernel
[2013-06-03T12:11:36+01:00] DEBUG: Loading plugin ruby
[2013-06-03T12:11:36+01:00] DEBUG: Loading plugin languages

This is ohati profiling the system. After all the plugins finish, we’d see, among
other things, lines like these:

[2013-06-03T12:11:36+01:00] DEBUG: Building node object for romanesco
[2013-06-03T12:11:37+01:00] DEBUG: Extracting run list from JSON attributes provided
on command line

[2013-06-03T12:11:37+01:00] DEBUG: Applying attributes from json file
[2013-06-03T12:11:37+01:00] DEBUG: Platform is ubuntu version 13.04

Returning to the output from our non-debug chef-client run, we see:

Compiling Cookbooks...
Converging 22 resources

We then see, for each recipe, the resources, and what was done. For example:

Recipe: irc::default
user[tdi] action create (up to date)
package[irssi] action install (up to date)
directory[/home/tdi/.1irssi] action create (up to date)
cookbook_file[/home/tdi/.1irssi/config] action create (up to date)

Here, Chef takes no action (idempotence); we’ve already applied the default irc
recipe to the node, using chef-solo. The providers can see that the system is in
the desired state, so chef-client does not need to do anything.

However, in the Recipe: chruby::systemrecipe, we see action being taken:

package[build-essential] action install
- install version 11.6ubuntu4 of package build-essential

package[bison] action install
- install version 2:2.5.dfsg-3ubuntul of package bison

* execute[ruby-build[1.9.3-p429]] action run
- execute usrlocalbinruby-build "1.9.3-p429" "optrubies/1.9.3-p429"

We also need to the final step—handling reporting and exceptions—under debug
mode to see the following:

[2013-06-03T12:32:07+01:00] INFO: Chef Run complete in 5.191436914 seconds

[2013-06-03T12:32:07+01:00] INFO: Running report handlers
[2013-06-03T12:32:07+01:00] INFO: Report handlers complete

The standard handlers are just to print to screen, but this is configurable to send
email, alert via IRC or Hipchat, make a Nabaztag Rabbit’s ear flap, or whatever
you feel is appropriate!

The fundamental additions that are necessary to these steps when using a Chef
server are those around authentication. New users tend to find this a little
perplexing, but it’s not actually that tricky to understand. I liken it to a scenario
in which a group of people want to have a drink in a private members bar. I’'m a
member of such an establishment in Oxford. If I want to find somewhere quiet to
sit down, have a drink, and read the newspaper, I can do so with ease. The
authentication process looks like this:

Me: Good morning!

Doorkeeper: Good morning, sir, may I see your members' card?
Me: Certainly...<fx>presents membership card</fx>
Doorkeeper: Thank you very much, sir.

Now, suppose a friend of mine wants to meet me for coffee and a chat. The
authentication process looks like this:

Friend: Good morning!

Doorkeeper: Good morning, sir, may I see your member's card?

Friend: I'm sorry, I'm not a member.

Doorkeeper: I'm sorry, sir, this is a members' only club.

Friend: Actually I'm meeting a friend here. I believe you have a guest policy?
Doorkeeper: That's correct, sir. May I take your name?

Friend: George Romney.

Doorkeeper: Very good, sir. And the member you are meeting?

Friend: Stephen Nelson-Smith.

Doorkeeper: Please wait a moment, sir.

Doorkeeper (to me): Sir, do you know a gentleman by the name of George Romney?
Me: Absolutely, I'm meeting him for coffee.

Doorkeeper (to friend): Come with me, please, sir.

Now, my friend might like the club so much, that he decides to join. In which
case, I can recommend him, he can fill out the appropriate forms, pay his
membership fee, and join the club. Thereafter if he wants to spend time in the
club, the authentication process looks like this:

George: Good morning!

Doorkeeper: Good morning, sir, may I see your member's card?
George: Certainly...<fx>presents membership card</fx>
Doorkeeper: Thank you very much, sir.

The final option, of course, looks like this:

Chancer: Hello!

Doorkeeper: Good morning, sir, may I see your member's card?

Chancer: Oh, I'm sorry, I forgot it...

Doorkeeper: I'm sorry, sir, without your membership card, I can't permit you to
enter.

Chancer: Oh...but I know...umm...John Smith!

Doorkeeper (consults records): I'm sorry, I don't have a record of John Smith, sir.
Chancer: Umm...I know...George Romney!

Doorkeeper: Please wait a moment, sir.

Doorkeeper (to George): Sir, do you know a gentleman by the name of Chancer?
George: No! Never heard of him!

Doorkeeper (to Chancer): I'm sorry, sir, we can't help you. Have a splendid day.

This process is very similar to the process that happens when chef-client
authenticates against the Chef server. For a machine that is an existing API client
and has a client key, the discussion looks like this:

Node: Hello Chef server, I'd like to use your API, please.

Server: Do you have a private key?

Node: I do! Here it 1is!

Server: Great, let me just use that to sign your request, and we'll be converging in
no time!

In the case of a brand new node, which we wish to set up to speak to a Chef
server, the discussion looks like this:

Node: Hello Chef server, I'd like to use your API, please.

Server: Do you have a private key?

Node: I'm sorry, not yet.

Server: OK...do you have an organization's validation key?

Node: I do! Here it 1is!

Server: Excellent, bear with me one moment while I create a key for you. OK, here's
your client key for future reference. Let's get converging!

The final case looks like this:

Node: Hello Chef server, I'd like to use your API, please.
Server: Do you have a private key?

Node: I'm sorry, not yet.

Server: OK...do you have an organization's validation key?
Node: I'm sorry, I don't.

Server: Then I'm afraid I can't help you.

We can see this transaction in the debug log, too. If we run Chef again, we’ll see
the client key has been created and is used to sign requests:

[2013-06-03T12:11:36+01:00] DEBUG: Client key etcchef/client.pem is present -
skipping registration

[2013-06-03T12:11:36+01:00] DEBUG: Building node object for romanesco
[2013-06-03T12:11:36+01:00] DEBUG: Signing the request as romanesco

If I install and run Chef on a completely new machine, we see:

Creating a new client identity for ip-10-35-147-80.eu-west-1.compute.internal using
the validator key.

[2013-06-03T11:46:53+00:00] INFO: Client key etcchef/client.pem is not present -
registering

Chef encountered an error attempting to create the client "ip-10-35-147-80.eu-west-
1.compute.internal”

When I make the client.rb file available, but not the validation.pem, we see:

[2013-06-03T11:49:18+00:00] INFO: Client key etcchef/client.pem is not present -
registering

[2013-06-03T11:49:18+00:00] WARN: Failed to read the private key
etcchef/validation.pem: #<Errno::ENOENT: No such file or directory -
etcchef/validation.pem>

[2013-06-03T11:49:18+00:00] FATAL: Chef::Exceptions::PrivateKeyMissing: I cannot
read etcchef/validation.pem, which you told me to use to sign requests!

And when I make both the client.rb and validation.pem files available we see:

[2013-06-03T11:51:30+00:00] INFO: Client key etcchef/client.pem is not present -
registering
[2013-06-03T11:51:30+00:00] DEBUG: Signing the request as hunterhayes-validator

[2013-06-03T11:51:32+00:00] DEBUG: Signing the request as ip-10-35-147-80.eu-west-
1.compute.internal

The one final aspect that is different with Chef server is that upon successful
completion of a Chef run, the node object is saved on the Chef server, recording
the state of the machine and its attributes, indexing them for search. We can
search for data using knife search:

$ knife search node 'platform:ubuntu'
2 items found

Node Name: carrot

Environment: default

FQDN: ip-10-228-118-28.eu-west-1.compute.internal
IP: 54.246.56.172

Run List: role[developer]

Roles: developer

Recipes: irc, git, chruby::system
Platform: ubuntu 13.04

Tags:

Node Name: romanesco

Environment: default

FQDN: romanesco

IP: 192.168.26.2

Run List: recipe[developer]

Roles:

Recipes: developer

Platform: ubuntu 13.04

Tags:

A full discussion of the search facilities of Chef is outside the scope of this book.
Refer to the Chef documentation for further examples and explanation.

The attributes system in Chef is one of the most complex facets of the Chef
framework. First, a quick recap: an attribute is that which inherently belongs to
and can be predicated of anything. They describe the detail of a machine we’re
configuring and have three underlying purposes: they can be used to indicate the
current state of a node; they can be used to store the state of the node when Chef
last ran and the node object was saved; and they can be used to specify desired
state—the state the machine should be in after Chef runs.

Digging a little deeper, attributes have a type, corresponding to the source of the

data. We can derive attributes from five places:

m The node itself (via ohat, or by knife node edit)

Attribute files in a cookbook

Recipes in a cookbook

Roles

» Environments

Additionally, in each of these five places, there are up to six types of attributes
that can be set. When Chef runs, all these sources and types are merged together,
and Chef calculates what the definitive state of the node attribute list should be.
At the end of the Chef run, this is saved and indexed for search.

The result is a rather complex matrix of precedence. The rationale for this lies in
the philosophical position of the creators of Chef. The underpinning view is that
the tool should provide power and flexibility. Chef provides the framework and
the primitives. The infrastructure developer is the expert; they are in possession
of domain knowledge, and understand deeply the various unique ways in which
the configuration of the systems they manage relate to one another. All Chef
needs to know is the desired state, how to achieve it, and what the functionality
of that intended state should be, once achieved. The cost of this flexible
philosophy is—at times—a complex implementation lurking beneath the
surface. Thankfully, the design of Chef is such that for the vast majority of cases,
you need never know about or use the hidden depths of flexibility, and can thrive
on a few simple rules.

For the gory details, please see the Opscode documentation. However, the
general rules are as follows:

= Set sane defaults in your cookbook attribute files, using the default method:
default['apache']['dir'] = 'etcapache2'

m Overwrite the sane defaults either on a per role basis, using the
default_attributes method:

http://docs.opscode.com/chef_overview_attributes.html

default_attributes({ "apache" => {"dir" => "etcapache2"}})

m Or overwrite the sane defaults within a so-called wrapper cookbook, either in

a recipe with the node.default method or in an attribute file with the
normal method:

node.default["apache"]["dir"] = "etcapache2"

normal["apache"]["dir"] = "etcapache2"

» If you need to set an attribute on the basis of a calculation or expression in a

recipe, use the node.override! method:

node.override!["something"]["calculated"] = some_ruby_expression

These rules of thumb will serve you more than 80% of the time. By the time you
realize you need something more flexible, you’ll have enough experience and
understanding to work out the right approach from the documentation.

This has been a pretty content-heavy discussion. I recommend you read over the
example again and digest the information presented in this section. Take a coffee
break—go on, you deserve it!

Exercise 2: Virtualbox

So far the infrastructure we’ve built has provided the following:

An installation of the various Chef client tools and commands
An unprivileged tdi user
The Git source code management system

A Git repository containing a mixture of community and hand-built
cookbooks

An IRC client, preconfigured to allow you to ask for help in any of the main
channels

= A modern version of Ruby

As well as providing a useful set of tools for future work, building this
infrastructure has allowed us to cover many of the fundamentals of Chef. We’re
now going to put in place the final pieces that will allow us to iterate more
quickly on cookbook development using local virtualization.

If you’ve been unable to follow the examples up to this point, as long as you
have installed Chef, you should be able to get started here, as we’re going to be
using community cookbooks for both VirtualBox and Vagrant, both of which
support Windows and OSX.

Objectives
Upon completing this exercise you will have:

m VirtualBox installed on your local machine
» Familiarity with using Lightweight Resources and Providers (LWRPs)

» An understanding of how to structure resource declarations for multiplatform
support

Directions
1. Install the Chef Rubygem.
2. Download and extract the VirtualBox cookbook from the community site.

3. Solve any dependencies recursively and ensure all cookbooks are in your
chef-repo.

4. Upload the new cookbooks to the Chef Server.
5. Open up the default recipe in the VirtualBox and look at the resources.

6. Update the developer.rb role and append the default VirtualBox recipe to
the run list, and upload the role to the Chef server.

7. If you’re on a Red Hat—derived system, ensure your kernel, kernel headers,
and kernel devel packages are in sync.

8. Run chef-client.

9. Verify VirtualBox installed correctly by running vboxmanage list vms.

Worked example
I installed the Chef Ruby gem as follows:

$ gem install chef --no-ri --no-rdoc
Fetching: mixlib-config-1.1.2.gem (100%)
Fetching: mixlib-cli-1.3.0.gem (100%)
Fetching: mixlib-log-1.6.0.gem (100%)
Fetching: mixlib-authentication-1.3.0.gem (100%)
Fetching: mixlib-shellout-1.1.0.gem (100%)
Fetching: systemu-2.5.2.gem (100%)

Fetching: yajl-ruby-1.1.0.gem (100%)
Building native extensions. This could take a while...
Fetching: ipaddress-0.8.0.gem (100%)
Fetching: ohai-6.16.0.gem (100%)

Fetching: mime-types-1.23.gem (100%)
Fetching: rest-client-1.6.7.gem (100%)
Fetching: net-ssh-2.6.7.gem (100%)

Fetching: net-ssh-gateway-1.2.0.gem (100%)
Fetching: net-ssh-multi-1.1.gem (100%)
Fetching: highline-1.6.19.gem (100%)
Fetching: erubis-2.7.0.gem (100%)

Fetching: chef-11.4.4.gem (100%)
Successfully installed mixlib-config-1.1.2
Successfully installed mixlib-cli-1.3.0
Successfully installed mixlib-log-1.6.0
Successfully installed mixlib-authentication-1.3.0
Successfully installed mixlib-shellout-1.1.0
Successfully installed systemu-2.5.2
Successfully installed yajl-ruby-1.1.0
Successfully installed ipaddress-0.8.0
Successfully installed ohai-6.16.0
Successfully installed mime-types-1.23
Successfully installed rest-client-1.6.7
Successfully installed net-ssh-2.6.7
Successfully installed net-ssh-gateway-1.2.0
Successfully installed net-ssh-multi-1.1
Successfully installed highline-1.6.19
Successfully installed erubis-2.7.0
Successfully installed chef-11.4.4

17 gems installed

Downloading and extracting the VirtualBox cookbook was a straightforward
matter of using the following:

$ cd
$ knife cookbook site download virtualbox
$ tar xzvf virtualbox*gz -C chef-repo/cookbooks

I checked the metadata, as previously, and identified that I needed the apt
cookbook, so I obtained this, and uploaded the two cookbooks to the Chef
server:

$ cd ~/chef-repo

$ knife cookbook site download apt

$ tar xzvf apt*gz -C cookbooks

$ knife cookbook upload {apt,virtualbox}

I opened the default recipe and looked at the resources, noting that this recipe
included conditional logic, and new resources that we hadn’t yet investigated.

I updated the developer role, adding the virtualbox recipe to the run list:

name "developer"
description "For Developer machines"
run_Llist(
"recipe[irc]",
"recipe[git]",
"recipe[chruby::system]",
"recipe[virtualbox]"

)

default_attributes(
"chruby" => {

"rubiles" => {
"1.9.3-p392" => false,
"1.9.3-p429" => true

s

"default" => "1.9.3-p429"

}
)

I uploaded the role:

$ knife role from file roles/developer.rb

On my CentOS machine, I ensured I was running the latest kernel, and installed
the kernel-devel package to match the kernel:

yum -y update

yum -y install kernel-devel

uname -r

2.6.32-358.el6.x86_64

rpm -q kernel-{devel, headers}
kernel-devel-2.6.32-358.11.1.e16.x86_64
kernel-headers-2.6.32-358.11.1.el6.x86_64

From previous experience, I opted to reboot the system, as I’ve found without
doing so, the VirtualBox kernel modules don’t install. When the system came

back up, I ran chef-client and observed the resources taking action, and the
repository and packages being set up accordingly. I verified that VirtualBox was

operational using the vboxmanage -version and vboxmanage list vms
command:

[root@centos]# VBoxManage -version
4.2.12r84980

[root@centos]# VBoxManage list vm
sns@ubuntu:~$ VBoxManage -version
4.,2.12r84980

sns@ubuntu:~$ VBoxManage list vms

I also checked that the vboxdrv service was running:

sns@ubuntu:~$ sudo service vboxdrv status

VirtualBox kernel modules (vboxdrv, vboxnetflt, vboxnetadp, vboxpci) are loaded.
[root@centos ~]# service vboxdrv status

VirtualBox kernel modules (vboxdrv, vboxnetflt, vboxnetadp, vboxpci) are loaded.

At the time of this writing, there’s a bug introduced in VirtualBox 4.12.14, which breaks the
import functionality. In practice, this means that Vagrant and VirtualBox 4.12.14 won’t
function together. My expectation is that by the time you read this, the bug will be fixed, and
you’ll get version 4.12.16 or some such, and everything will work. However, if it doesn’t,
you’ll need to downgrade to 4.12.12. There isn’t an easy way to do this in the current

VirtualBox cookbook, so you’ll probably need to do that manually. Hopefully this issue will be
fixed by the time you read this, but I include this note by way of warning. For more details, see
https://www.virtualbox.org/ticket/11895 and https://github.com/mitchellhvagrantissues/1850.

Discussion

VirtualBox is a freely available virtualization tool, originally created by innotek
GmbH, purchased by Sun Microsystems (before Oracle’s purchase of Sun) and
now maintained and developed by Oracle. Although not ideal for heavy
workloads, it’s very handy for testing systems. VirtualBox emulates PC-like
hardware and allows various operating systems to be installed and tested
alongside one another on one host operating system. We’re installing it, as it’s a
simple and free virtualization backend to Vagrant, which we’ll introduce in the
next exercise.

The VirtualBox cookbook is pretty straightforward. It simply sets up the relevant
Oracle package repository and then installs the VirtualBox package. The two
noteworthy items are the way multiplatform support is implemented, and the use
of lightweight resource providers in the default recipe.

If we look at the default recipe, we’ll see some basic conditional logic in place:

case node['platform_family']
when 'mac_os_x'

sha256sum = vbox_sha256sum(node['virtualbox']['url'])

dmg_package 'VirtualBox' do
source node['virtualbox']['url']
checksum sha256sum
type 'mpkg’

end

when 'windows'

sha256sum = vbox_sha256sum(node['virtualbox']['url'])
win_pkg_version = node['virtualbox']['version']
Chef::Log.debug("Inspecting windows package version: #{win_pkg_version.inspect}")

windows_package "Oracle VM VirtualBox #{win_pkg_version}" do
action :install
source node['virtualbox']['url']

https://www.virtualbox.org/ticket/11895
https://github.com/mitchellh<i>vagrant</i>issues/1850

checksum sha256sum

installer_type :custom

options "-s
end

when 'debian'

apt_repository 'oracle-virtualbox' do
uri 'http://download.virtualbox.org/virtualbox/debian'
key 'http://download.virtualbox.org/virtualbox/debian/oracle_vbox.asc'
distribution node['lsb']['codename’]
components ['contrib']
end

package "virtualbox-#{node['virtualbox']['version']}"
package 'dkms'

when 'rhel’

yum_key 'oracle-virtualbox' do
url 'http://download.virtualbox.org/virtualbox/debian/oracle_vbox.asc'
action :add

end

yum_repository 'oracle-virtualbox' do
description 'Oracle Linux RHEL Cent0S-$releasever S$basearch - VirtualBox'
url 'http:/download.virtualbox.org/virtualbox/rpm/el/$releasever/Sbasearch’
end

package "VirtualBox-#{node['virtualbox']['version']}"
end

Platform family is a convenient method that allows infrastructure developers to
test whether the node under management matches one of the listed “families”—
for example rhel or debian. This is then used to execute different resources based
on the value.

Now if we look at the default attribute file, we’ll see similar logic to set the
correct URL for the package repositories from which the packages will be
downloaded:

default['virtualbox']['url'] = "'
default['virtualbox']['version'] = "'

case node['platform_family']

http://docs.opscode.com/dsl_recipe_method_platform_family.html

when 'mac_os_x'

default['virtualbox']['url'] =
"http://download.virtualbox.org/virtualbox/4.2.8/VirtualBox-4.2.8-83876-0SX.dmg'
when 'windows'

default['virtualbox']['url'] =
'"http://download.virtualbox.org/virtualbox/4.2.8/VirtualBox-4.2.8-83876-Win.exe'

default['virtualbox']['version'] = Vbox::Helpers.vbox_version(node['virtualbox']
['url'])
when 'debian', 'rhel'’

default['virtualbox']['version'] = '4.2'
end

Within these conditional blocks, the resources make use of platform-specific
providers—apt_repository, windows_package, yum_repository, and so on.
These are examples of Lightweight Resource Providers (LWRPs).

If we think about the way Chef operates at its core, it breaks down to resources
and providers. Every yin has its yang, and every resource has its provider. Like
any great two-person team—Watson and Holmes, Cagney and Lacey, Bostridge
and Drake—one would be ineffective without the other. Behind the scenes of
every resource, there is Ruby code in the core Chef libraries, which knows how
to take the actions we specified. Not only that, it knows how to take those
actions on any platform. It knows how to create users on Windows, Solaris,
FreeBSD, and Linux. It knows how to install packages on distributions like
Debian, CentOS, Gentoo, and Suse. It also knows how to check if the action has
already been taken, how to verify whether the node is already in the desired
state. However, there are only a few dozen resources and providers built into
Chef. Not infrequently, there comes a time when we want to abstract a repeated
pattern of behavior with a declarative interface, but find that no Chef resource
exists for this. Sometimes this happens when we realize we’re making the same
set of calls to resources, and we’d like to tidy them up. Sometimes we might
need to call specialist library code to perform an action, but we’d like to address
this in the recipe DSL. There are a large number of these use cases dotted
throughout the community and Opscode cookbooks.

I remember many years ago, as a keen Puppet user, I wanted to be able to
manage some Solaris machines that used pkgsrc as the main package
management system. I understood I would need to create a provider for this, but
the process was very difficult for me at the time. I needed to understand how the

internals of Puppet functioned, and then I'd have had to monkey-patch Puppet,
or submit pull requests, and wait for my changes to be accepted and then
released. Really all I wanted to do was run pkg-add with a few arguments. I
gave up.

Chef provides a DSL for building resources and providers, with the aim of
making it easy to extend Chef with custom resources and providers, or to chain
existing resources and providers together to carry out a given task. There isn’t
scope in the present work to cover the writing of LWRPs, and the examples used
here—especially the yum or apt examples—are probably more complex than I'd
like at this stage. However, you’ll come across these in community cookbooks,
and soon enough you’ll want to write your own.

Exercise 3: Vagrant

VirtualBox is a powerful, easy-to-use, and flexible desktop virtualization
solution. However, initial setup and ongoing maintenance of virtual machines
(VMs) is rather a pain. Vagrant takes that pain away by providing a convenient
command-line wrapper around creating and managing virtual machines. The
Vagrant documentation provides a good summary of what Vagrant provides, and
how it works:

Vagrant provides easy to configure, reproducible, and portable work environments built on top of
industry-standard technology and controlled by a single consistent workflow to help maximize the
productivity and flexibility of you and your team.

To achieve its magic, Vagrant stands on the shoulders of giants. Machines are provisioned on top of
VirtualBox, VMware, AWS, or any other provider. Then, industry standard provisioning tools such as
shell scripts, Chef, or Puppet can be used to automatically install and configure software on the
machine.

— http://docs.vagrantup.com/v2/why-vagrant/

Objectives
Upon completing this section, you will have:

m Vagrant installed on your local machine
m A CentOS basebox downloaded and available

» An understanding of how to start, stop, and interact with Vagrant boxes

» An understanding of the Vagrant plug-in architecture

m Installed the vagrant-omnibus plug-in

m Used vagrant ssh to connect to a machine

m Become familiar with the Vagrantfile, which configures the behavior of
Vagrant

» Familiarity with the idea of a platform-based role

Directions

1.

2.

10.

11.

12.

Download and extract the vagrant cookbook.

Browse to http://downloads.vagrantup.com, select the latest release, and
then identify the URL to the download package.

Create a role for your platform family (e.g., windows, rhel, or debian).

Set the default[vagrant][url] to the URL of the appropriate download for
your platform in your platform role.

Append the default vagrant recipe to the run list in the developer role,
and prepend the platform role to the run list of your node.

Upload the roles and Vagrant cookbook to the Chef server.

Run chef-client on your machine.

Identify the URL of a CentOS base box for your architecture from GitHub.
Read the vagrant box add documentation.
Add a Vagrant box called opscode-centos-6.4-yourarch.

Read the vagrant init documentation.

Make a temporary directory, and initialize it for Vagrant use with the box
you added.

http://downloads.vagrantup.com
https://github.com/opscode/bento#current-baseboxes
http://docs.vagrantup.com/v2/cli/box.html
http://docs.vagrantup.com/v2/cli/init.html

13. Read the vagrant up documentation.

14. Launch the Vagrant box.

15. Read the vagrant ssh documentation.

16. Connect to the Vagrant machine, check the kernel and Chef version, then
exit again.

17. Read the vagrant plug-in documentation.

18. Install the omnibus-berkshelf plug-in, read its documentation, and
integrate it with Vagrant.

19. Read the vagrant destroy documentation.

20. Destroy and recreate the box, then connect, checking the kernel and Chef
version again.

Worked Example

As the td1i user, I downloaded and extracted the Vagrant cookbook in the usual
way:

$ cd
$ knife cookbook site download vagrant
$ tar xzvf vagrant*gz -C chef-repo/cookbooks

I checked on the Vagrant downloads page and selected version 1.2.2. I noted the
packages for both RPM and .deb packages.

I created a role for the Ubuntu machine as follows:

name "debian"
description "Attributes specific to the Debian platform family"
run_Llist(

)

default_attributes(
"vagrant" => {
Ilur'Lll =

http://docs.vagrantup.com/v2/cli/up.html
http://docs.vagrantup.com/v2/cli/ssh.html
http://docs.vagrantup.com/v2/cli/plugin.html
http://docs.vagrantup.com/v2/cli/destroy.html
http://downloads.vagrantup.com

"http://files.vagrantup.com/packages/7e400d00a3c5a0fdf2809c8b5001a035415a607b/vagran

}
)

I created a role for the CentOS machine as follows:

$ cat roles/rhel.rb

name "rhel"

description "Attributes specific to the RHEL platform family"
run_Llist(

)
default_attributes(
"vagrant" => {
llur'Lll =
"http://files.vagrantup.com/packages/7e400d00a3c5a0fdf2809c8b5001a035415a607b/vagran

}
)

I altered the developer role to be as follows:

$ knife role show developer

chef_type: role
default_attributes:
chruby:
default: 1.9.3-p429
rubies:

1.9.3-p392: false
1.9.3-p429: true
description: For Developer machines
env_run_lists:
json_class: Chef::Role
name: developer
override_attributes:
run_list:
recipe[irc]
recipe[git]
recipe[chruby::system]
recipe[virtualbox]
recipe[vagrant]

I edited the run list of the machine to appear as follows:

$ knife node show ubuntu -r
tk00.cheftraining.eu:
run_list:
role[debian]
role[developer]

$ knife node show centos -r
tko1:
run_list:
role[rhel]
role[developer

I uploaded the roles and the cookbook:

$ knife role from file roles/{debian,developer,rhel}.rb
Updated Role debian!

Updated Role developer!

Updated Role rhel!

$ knife cookbook upload vagrant
Uploading vagrant [0.2.0]
Uploaded 1 cookbook.

I ran Chef and observed the relevant recipe being applied:

Recipe: vagrant::rhel
remote_file[varchef/cache/vagrant.rpm] action create
- copy file downloaded from [] into varchef/cache/vagrant.rpm
(file sizes exceed 10000000 bytes, diff output suppressed)

rpm_package[vagrant] action install
- install version 1.2.2-1 of package vagrant

* rpm_package[vagrant] action install (up to date)
Chef Client finished, 3 resources updated

I looked on the Bento page and selected a 64-bit box, and having read the
vagrant box add, vagrant init, vagrant up, vagrant ssh, vagrant
plugin, and vagrant destroy documentation, added a box as follows:

vagrant box add opscode-centos-6.4-x86_64 https://opscode-
vm.s3.amazonaws.comvagrantopscode_centos-6.4_provisionerless.box
Downloading or copying the box...

Extracting box...te: 1537k/s, Estimated time remaining: 0:00:01)
Successfully added box 'opscode-centos-6.4-x86_64' with provider 'virtualbox'!

Next I made a temporary directory, and initialized it for use with Vagrant:

$ mkdir tmpvagrant-example

$ cd tmpvagrant-example

$ vagrant init opscode-centos-6.4-x86_64

A “Vagrantfile® has been placed in this directory. You are now
ready to ‘vagrant up® your first virtual environment! Please read
the comments in the Vagrantfile as well as documentation on
‘vagrantup.com® for more information on using Vagrant.

I launched the machine:

vagrant up

Bringing machine 'default' up with 'virtualbox' provider...
[default] Importing base box 'opscode-centos-6.4-x86_64'...
[default] Matching MAC address for NAT networking...

[default] Setting the name of the VM...

[default] Clearing any previously set forwarded ports...
[default] Creating shared folders metadata...

[default] Clearing any previously set network interfaces...
[default] Preparing network interfaces based on configuration...
[default] Forwarding ports...

[default] -- 22 => 2222 (adapter 1)

[default] Booting VM...

[default] Waiting for VM to boot. This can take a few minutes.
[default] VM booted and ready for use!

[default] Configuring and enabling network interfaces...
[default] Mounting shared folders...

[default] -- /vagrant

And connected to it:

vagrant ssh

Last login: Sat May 11 04:55:22 2013 from 10.0.2.2

[vagrant@localhost ~]$ uname -a

Linux localhost.localdomain 2.6.32-358.e16.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC
2013 x86_64 x86_64 x86_64 GNU/Linux

[vagrant@localhost]$

[vagrant@localhost]$ chef-client --version

-bash: chef-client: command not found

I installed the vagrant-omnibus plug-in:

vagrant plugin install vagrant-omnibus
Installing the 'vagrant-omnibus' plugin. This can take a few minutes...
Installed the plugin 'vagrant-omnibus (1.0.2)"!

I edited the Vagrantfile and added the configuration directive to use the
omnibus plug-in:

-*- mode: ruby -*-
vi: set ft=ruby :

Vagrant.configure("2") do |config]|
ALl Vagrant configuration is done here. The most common configuration
options are documented and commented below. For a complete reference,
please see the online documentation at vagrantup.com.

Every Vagrant virtual environment requires a box to build off of.
config.vm.box = "opscode-centos-6.4-x86_64"
config.omnibus.chef_version = :latest

I destroyed and recreated the machine, logged in, and verified that Chef had
been installed:

vagrant destroy

Are you sure you want to destroy the 'default' VM? [y/N] vy
[default] Forcing shutdown of VM...

[default] Destroying VM and associated drives...

root@tk0O: tmpexample# vagrant up

Bringing machine 'default' up with 'virtualbox' provider...
[default] Importing base box 'opscode-centos-6.4-x86_64'...
[default] Matching MAC address for NAT networking...

[default] Setting the name of the VM...

[default] Clearing any previously set forwarded ports...
[default] Creating shared folders metadata...

[default] Clearing any previously set network interfaces...
[default] Preparing network interfaces based on configuration...
[default] Forwarding ports...

[default] -- 22 => 2222 (adapter 1)

[default] Booting VM...

[default] Waiting for VM to boot. This can take a few minutes.
[default] VM booted and ready for use!

[default] Ensuring Chef is installed at requested version of 11.4.4.

[default] Chef 11.4.4 Omnibus package is not installed...installing now.
Downloading Chef 11.4.4 for el...

Installing Chef 11.4.4

warning: tmptmp.PTLPHw62/chef-11.4.4.x86_64.rpm: Header V4 DSA/SHA1 Signature, key
ID 83ef826a: NOKEY

Preparing... B R R R
chef B R R R
Thank you for installing Chef!

[default] Configuring and enabling network interfaces...

[default] Mounting shared folders...

[default] -- /vagrant

root@tkeO: tmpexample#

vagrant ssh

Last login: Sat May 11 04:55:22 2013 from 10.0.2.2

[vagrant@localhost ~]$ chef-client --version

Chef: 11.4.4

Discussion

When it was introduced in 2010, Vagrant revolutionized the infrastructure
development world. I remember recommending people take a look at it during
my keynote at the second ever devopsdays conference in Hamburg, and sitting in
on an open space session where a bunch of people started hacking on it. What
does Vagrant do that’s so awesome?

Vagrant is a tool for creating, managing, and distributing portable development
environments. It enables complete machines to be automatically created,
configures them repeatably, and allows the entire lifecycle to be managed from
the command line or via an API. These machines (called boxes) can be shared
with other team members and are portable; they can run on a wide range of
platforms and allow a unified development and testing experience. It allows a
user to go from nothing to a fully functioning local machine of pretty much any
desired flavor, in one minute. As an infrastructure developer, this is an excellent
boost to productivity and reliability. It tightens the feedback loop and allows
machines to be rapidly destroyed and created, reducing the chance that one’s
cookbooks work because of historical side effects. It reduces the familiar cry of
“It worked on my machine!” Every user, whether Linux, Windows, or Mac, can
have a machine of the same sort used in production, with the same cookbooks
that are used in production.

Vagrant is well-documented, and its author, Mitchel Hashimoto, has just released
his book, Vagrant Up and Running (O’Reilly).

Actually, we won’t be using Vagrant directly very much in this book, as my
recommended integration test harness actually wraps Vagrant (among other
provisioning strategies), but it’s a powerful and valuable tool, and I believe in
understanding things from first principles, so it’s worth understanding some of
the fundamentals of Vagrant.

The Vagrant cookbook is nothing particularly interesting. It simply performs
some platform-conditional logic, and downloads a package and installs it. It
provides an LWRP for installing plugins, but we elected to install our plug-in
manually to understand the concept.

In Chef terms, the interesting pattern we saw was that of the platform role. In a
heterogenous environment, a common strategy is to build out roles of the sort:

Base
Something that all machines get, regardless of platform or function

Platform
Attributes or recipes that are specific to the OS (for example yum, Windows
cookbooks, or URLS)

Service
Something that describes a functional component, such as web server or
database server

The Vagrant cookbook explicitly sets the URL from which to pull the package to
nil. This is because there’s no trivial way to work out what the path to the
package will be—the path is made from the Git commit hash. Rather than have
to maintain a complex attributes file, the cookbook maintainer has left setting the
URL as an exercise for the user.

In my experience, this was a case of creating a debian and a rhel role, and
setting the attribute there. Attributes in a role are at a higher precedence level
than default attributes in a cookbook attributes file, and so the version from the
role will take effect.

Vagrant, as a technology, is pretty easy to understand. The place to begin is the

http://shop.oreilly.com/product/0636920026358.do

Vagrantfile. The Vagrantfile resides at the root of the directory of your project.
Vagrant will build a virtual machine, but for what purpose? Not just because it
can, but to test or demonstrate software. In Chef terms, it makes sense to keep a
Vagrantfile within the cookbook to test the functionality of the cookbook. The
Vagrantfile is a kind of manifest that describes how the Vagrant box you will be
launching will behave. You can craft one manually, but Vagrant provides a
generator in the form of the vagrant init command, which will create one for
you in the current directory. The Vagrantfile itself is heavily commented and
pretty easy to navigate. If you need to do anything more complex or advanced,
check out the documentation.

The simplest possible Vagrantfile would simply contain the following:
Vagrant.configure("2") { |config| config.vm.box = "opscode-centos-6.4-x86_64" }

This tells Vagrant to launch a machine based on the “opscode-centos-6.4-
x86_64" box, with some default configuration. This must match a box on the
system. The available boxes can be listed with the following:

vagrant box list
opscode-centos-6.4-x86_64 (virtualbox)

Note that the provider is specified after the box name. Vagrant supports multiple
alternative providers—VMware, EC2, Rackspace, LXC—we’re currently using
the (default) VirtualBox provider.

Vagrant boxes are the templates from which Vagrant constructs a VM. The
format of a box is described in Vagrant docs, but broadly speaking, they’re just
archives of a specially prepared virtual machine for the provider required,
together with a metadata file. We need to make Vagrant boxes available to
Vagrant. Many Vagrant boxes are available on the Internet—some prepared and
published by vendors, for example, Canonical or Opscode. Adding a Vagrant
box is as simple as running the following:

vagrant box add name url

The name is how the machine will be referred to by the Vagrantfile or command
line, and the URL is a remote or local path to the box itself, which you will need

http://docs.vagrantup.com/v2/vagrantfile/index.html
http://docs.vagrantup.com/v2/boxes/format.html

to download or create. We used the Opscode Bento boxes. Bento is a tool for
automating the creation of VirtualBox—based Vagrant boxes, using defintions to
work with Patrick Debois’ Veewee utility. It tries to remain as close as possible
to upstream vendor standards. You can read more at GitHub.

Vagrant up is the command that builds the local instance of a virtual machine.”
It takes the template box and configures it using the Vagrantfile, and then
launches the machine. The output explains the steps it goes through: it imports
the machine, sorts out networking, ensures the system is clean, boots the
machine, and sets up a shared directory. The two most noteworthy features are
the networking and the shared directory. By default, Vagrant will use a
VirtualBox configuration where the network interfaces on the virtual machine
are running in NAT mode. That is, they are not externally routable. VirtualBox
provides a port-forwarding service that allows the user to connect to the virtual
machine from their local machine on a specified port; the connection will be
forwarded to the port on the local machine. By default, Vagrant sets up a
forwarder on localhost:2222, which connects to port 22 on the VM (i.e., it
allows the user to connect to the virtual machine using ssh).

The vagrant ssh command uses a pre-prepared ssh key pair, which it stores in

~/.vagrant.d/insecure_private_key. Running vagrant ssh will initiate a
passwordless connection direct to the virtual machine, using the forwarded port.

The shared folder allows the running virtual machine to have access to the
project directory in which the Vagrantfile exists. So, in the case of a cookbook,
the virtual machine would be able to see the metadata, readme, recipes,
templates, and so forth. By default, this will be available under /vagrant on the
local machine. We can demonstrate this by creating a file on the local system,
watching it appear on the Vagrant box, and then touching a different file within
the VM:

root@tkOO:tmpexample# 1s -al

total 20

drwxr-xr-x 3 root root 4096 Jun 4 20:01 .

drwxrwxrwt 6 root root 4096 Jun 4 19:17 ..

-rw-r--r-- 1 root root 0 Jun 4 20:01 this-is-a-local-file
drwxr-xr-x 3 root root 4096 Jun 4 13:08 .vagrant

-rw-r--r-- 1 root root 4421 Jun 4 13:17 Vagrantfile

http://www.github.com/opscode/bento

[vagrant@localhost ~]$ cd vagrant
[vagrant@localhost vagrant]$ 1s
this-is-a-local-file Vagrantfile

[vagrant@localhost vagrant]$ touch this-is-a-vm-file
[vagrant@localhost vagrant]$ 1s -1

total 8
-rw-r--r-- 1 vagrant vagrant O Jun 4 19:01 this-is-a-local-file
-rw-r--r-- 1 vagrant vagrant 0 Jun 4 19:01 this-is-a-vm-file

-rw-r--r-- 1 vagrant vagrant 4421 Jun 4 12:17 Vagrantfile

root@tkeO:tmpexample# 1s -1

total 8

-rw-r--r-- 1 root root 0 Jun 4 20:01 this-is-a-local-file
-rw-r--r-- 1 root root 0 Jun 4 20:01 this-is-a-vm-file
-rw-r--r-- 1 root root 4421 Jun 4 13:17 Vagrantfile

Vagrant is designed from the ground up to be extensible and pluggable. Much of
the core functionality of Vagrant is implemented using plugins, and there is a
large range of external plugins available. Rubygems lists over 100 gems
beginning with “vagrant-". All of these can be installed using Vagrant’s vagrant
plugin install command. The plug-in we installed works with Vagrant boxes
that do not have Chef installed, and adds a hook to vagrant up to install Chef
using the omnibus package, just as we did in Exercise 1: Install Chef. This helps
keep the Vagrant box slim and as close to upstream as possible, and does not
require a fleet of Vagrant boxes to be created with every Chef patch release.

The final command we used was vagrant destroy. This simply powers off the
virtual machine and deletes all traces of it. The idea is to return the host system
to a clean state.

Conclusion

The objective of this and the previous chapter was to give you a hands-on, from-
first-principles introduction to the fundamentals of Chef. We have covered:

m Installing Chef
m The idea of resources

m The recipe DSL

https://github.com/mitchellh<i>vagrant</i>tree/master/plugins

= Some common resources—package, user, file

m The idea of roles

» The node object, node attributes, and node attribute precedence
m The roles primitive

m Use of Chef Server and Chef Solo (and apply)

m The architecture of the Chef server

» The components of a Chef run

m Getting started with Opscode’s Hosted Chef Service

In the process, we have introduced the following resources for additional
documentation and support:

m The in-line documentation shipped with Chef

m http://docs.opscode.com

m http://wiki.opscode.com

m The #chef, #chef-hacking, #learnchef, and ##tdi IRC channels

Hopefully, if you’ve followed the examples as I intended, you’ve developed the
habit of reading (or at least skimming) documentation and helping yourself. Of
course we’ve been able to skim only the surface of the Chef framework, but my
hope is that the present and previous chapters have given you a solid grounding
in the fundamentals of Chef. As we work through the book, further aspects of
Chef will be introduced, including Chef environments, the use of templates and
service notifications, as well as enhanced workflow models to make your life as
an infrastructure developer more effective.

Regardless of what else we learn, the infrastructure we’ve built in this series of
exercises has laid the foundation for our future work; we have a modern Ruby,
we have VirtualBox and Vagrant set up and installed, and we have a configured
IRC client should we need online help.

http://docs.opscode.com
http://wiki.opscode.com

In the next chapter, we’ll turn to Ruby and some of the core Ruby testing ideas,
before moving on to discuss the ideas of test-driven and behavior-driven
development.

(311 recent times it has been argued that roles have some disadvantages, and alternative approaches have
become popular. We discuss this in more detail in Chapter 7.

(4] This is for Chef 11. If you need the older, Chef 10 server, you might like to take a look at
http://fnichol.github.io/knife-server, which simplifies the process of installing a Chef server and provides
some other helpful capabilities.

(5] Vagrant does support alternative providers, for example, EC2 or Rackspace. Obviously in these cases, the
machine being built will be remote.

Chapter 5. An Introduction to
Test-and Behavior-Driven
Development

The Principles of TDD and BDD

In Chapter 1, I argued that, to mitigate against the risks of adopting the
infrastructure as code paradigm, systems should be in place to ensure that our
code produces the environment needed, and to ensure that our changes have not
caused side effects that alter other aspects of the infrastructure.

What we’re describing here is automated testing. In his book Managing Software
Debt: Building for Inevitable Change (Addison-Wesley), Chris Sterling uses the
phrase “a supportable structure for imminent change” to describe what I am
calling for. Particularly as infrastructure developers, we have to expect our
systems to be in a state of flux. We may need to add components to our systems,
refine the architecture, tweak the configuration, or resolve issues with its current
implementation. When making these changes using Chef, we’re effectively
doing exactly what a traditional software developer does in response to a bug or
feature request. As complexity and size grow, it becomes increasingly important
to have safe ways to support change. The approach I’m recommending has its
roots firmly in the historic evolution of best practices in the software
development world.

A Very Brief History of Agile Software Development

By the end of the 1990s, the software industry did not enjoy a particularly good
reputation—across four critical areas, customers were feeling let down. Firstly,
the perception (and expectation, and experience) was often that software would
be delivered late and over budget. Secondly, despite a lengthy cycle of
requirement gathering, analysis, design, implementation, testing, and

deployment, it was not uncommon for the customer to discover that this late,
expensive software didn’t really do what was needed. Whether this was due to a
failure in initial requirement-gathering or a shift in needs over the lifecycle of
the software’s development wasn’t really the point—the software didn’t fully
meet the customer’s requirements. Thirdly, a frequent complaint was that, once
live and a part of the critical business processes, the software itself was unstable
or slow. Software that fails under load or crashes every few hours is of negligible
value, regardless of whether it has been delivered on budget, on time, and
meeting the functional requirements. Finally, ongoing maintenance of the
software was very costly. An analysis of this led to a recognition that the later in
the software lifecycle that problems were identified or new requirements
emerged, the more expensive they were to service.

In 2001, a small group of professionals got together to try to tackle some tough
questions about why the software industry was so frequently characterized by
failed projects and an inability to deliver quality code, on time and in budget.
Together they put gathered a set of ideas that began to revolutionize the software
development industry. Thus began the Agile movement. Its history and
implementations are outside the scope of this book, but the key point is that
more than a decade ago, professional developers started to put into practice
approaches to tackle the seemingly inherent problems of the business of writing
software.

Now, I’m not suggesting that the state of infrastructure code today is as bad as
the software industry in the late 90s. However, if we’re to deliver infrastructure
code that is of high quality, easy to maintain, reliable, and delivers business
value, I think it stands to reason that we must take care to learn from those who
have already put mechanisms in place to help solve some of the problems we’re
facing today.

Test-Driven Development

Out of the Agile movement emerged a number of core practices that were felt to
be important to guarantee not only quality software but also an enjoyable
working experience for developers. Ron Jeffries summarizes these excellently in
his article introducing Extreme Programming, one of a family of Agile
approaches that emerged in the early 2000s. Some of these practices can be

http://agilemanifesto.org/
http://bit.ly/18fH7vn

introduced as good habits, and don’t require much technology to support their
implementation. Of this family, the practice most crucial for creating a
supportable structure for imminent change, providing insurance and warning
against unwanted side effects, is that of test-driven development (TDD). For
infrastructure developers, the practice is both the most difficult to introduce and
implement, and also the one that promises the biggest return on investment.

TDD is a widely adopted way of working that facilitates the creation of highly
reliable and maintainable code. The philosophy of TDD is encapsulated in the
phrase Red, Green, Refactor. This is an iterative approach that follows these six
steps:

1. Write a test based on requirements.

2. Run the test and watch it fail.

3. Write the simplest code you can to make the test pass.
4. Run the test and watch it pass.

5. Improve the code as required to make it perform well, be readable, and
reusable, but without changing its behavior.

6. Repeat the cycle.

Kent Beck and Cynthia Andres, in Extreme Programmng Explained (Addison-
Wesley), suggest this way of working brings benefits in four clear areas:

1. It helps prevent scope from growing. We write code only to make a
failing test pass.

2. It reveals design problems. If the process of writing the test is laborious,
that’s a sign of a design issue; loosely coupled, highly cohesive code is
easy to test.

3. It builds trust. The ongoing, iterative process of demonstrating clean,
well-written code, with intent indicated by a suite of targeted, automated
tests, builds trust with team members, managers, and stakeholders.

4. It helps programmers get into a rhythm. Test, code, refactor—a rhythm
that is at once productive, sustainable, and enjoyable.

Behavior-Driven Development

However, in 2007, a group of Agile practitioners, including Dan North and Dave
Astels, started rocking the boat with presentations and tool development work.
Their key observation seemed to be that it’s perfectly possible to write high
quality, well-tested, reliable, and maintainable code, and miss the point
altogether. As software developers, we are employed not to write code, but to
help our customers to solve problems. In practice, the problems we solve pretty
much always fit into one of three categories:

1. Help the customer make more money.
2. Help the customer spend less money.
3. Help the customer protect the money they already have.

Around this recognition grew up an evolution of TDD focused specifically
around helping developers write code that matters. Just as TDD proved to be a
hugely effective tool in enhancing the technical quality of software, behavior-
driven development (BDD) set out to enhance the success with which software
fulfilled the business’ need.

The shift from TDD to BDD is subtle but significant. Instead of thinking in
terms of verification of a unit of code, we think in terms of a specification of
how that code should behave—what it should do. Our task is to write a
specification of system behavior that is precise enough for it to be executed as
code.

Importantly, BDD is about conversations. The whole point of BDD is to ensure
that the real business objectives of stakeholders get met by the software we
deliver. If stakeholders aren’t involved, if discussions aren’t taking place, BDD
isn’t happening. BDD yields benefits across many important areas.

Building the right thing

BDD helps to ensure that the right features are built and delivered the first time.
By remembering the three categories of problems that we’re typically trying to
solve, and by beginning with the stakeholders—the people who are actually
going to be using the software we write—we are able to clearly specify what the
most important features are, and arrive at a definition of done that encapsulates

the business driver for the software.

Reducing risk

BDD also reduces risk—the risk that, as developers, we’ll go off at a tangent. If
our focus is on making a test pass, and that test encapsulates the customer
requirement in terms of the behavior of the end result, the likelihood that we’ll
get distracted or write something unnecessary is greatly reduced. Interestingly, a
suite of acceptance tests developed this way, in partnership with the stakeholder,
also forms an excellent starting point for monitoring the system throughout its
lifecycle. We know how the system should behave, and if we can automate tests
that prove the system is working according to specification, and put alerts
around them (both in the development process so we capture defects, and when
live so we can resolve and respond to service degradation), we have grounded
our monitoring in the behavior of the application that the stakeholder has defined
as being of paramount importance to the business.

Evolving design

It also helps us to think about the design of the system. The benefits of writing
unit tests to increase confidence in our code are pretty obvious. Maturing to the
point that we write these tests first helps us focus on writing only the code that is
explicitly needed. The tests also serve as a map to the code and offer lightweight
documentation. By tweaking our approach towards thinking about specifying
behavior rather than testing classes and methods, we come to appreciate test-
driven development as a practice that helps us discover how the system should
work, and molds our thinking towards elegant solutions that meet the
requirements.

How does all of this relate to infrastructure as code? Well, as infrastructure
developers, we are providing the underlying systems that make it possible to
deliver software effectively. This means our customers are often application
developers or test and QA teams. Of course, our customers are also the end users
of the software that runs on our systems, so we’re responsible for ensuring our
infrastructure performs well and remains available when needed. Having
accepted that we need some kind of mechanism for testing our infrastructure to
ensure it evolves rapidly without unwanted side effects, bringing the principle of
BDD into the equation helps us to ensure that we’re delivering business value by

providing the infrastructure that is actually needed. We can avoid wasting time
pursuing the latest and greatest technology by realizing we could meet the
requirements of the business more readily with a simpler and established
solution.

TDD and BDD with Ruby

Ruby has always been a language in which testing, and particularly testing up-
front, has been popular. Also, the development community around Ruby has
historically been particularly positive about Agile software development in
general, and as such has spawned a great many creative and powerful testing
tools and frameworks. I think it’s fair to say that as a language and environment
in which to work, Ruby is probably the best served for libraries, tools, and
frameworks. Within this ecosystem, I’'m going to discuss three tools that, when
used together, provide a full coverage of testing capabilities, from the lowest to
the highest level—Cucumber, RSpec, and Minitest.

As this is a book about test-driven infrastructure development, I’'m going to
make sure we’ve got a reasonable understanding of testing in general and test-
first development, before we go on to discuss writing infrastructure code using
Chef.

For the purposes of the exercise, we’re going to write a Ruby class that assesses
whether a team member is a hipster. (I’m guessing everyone knows what a
hipster is by now, but there’s always Google if you don’t!)

Minitest: Unit Testing for the 21st Century

A unit test is pretty much the simplest and lowest level kind of test we can write.
It is designed to verify whether a precise, small, tightly defined piece of
functionality behaves as it should. Typically, a unit test will exercise a single
method. The seminal unit testing framework was JUnit. Conceived by Kent
Beck and Erich Gamma, it built on SUnit, written by Kent Beck for Smalltalk.
JUnit quickly became the standard approach to unit testing, to the extent that the
term xUnit began to appear to describe a test framework in any language that
broadly implemented the same approach to unit testing. Ruby’s xUnit
implementation was Test::Unit.

The pattern is pretty much always the same. You create a class as a subclass of
Test::Unit::TestCase, write methods beginning with the word test, set up

some state to exercise a method, and make an assertion about what the method
should do.

We’ll set the background with a little history lesson, and look at the original and
most basic unit testing capabilities of Ruby—the faithful old workhorse
Test::Unit.

First, ensure that the test-unit gem is installed:
$ gem install test-unit
Create a directory for the project and a file for a test:
$ mkdir tdd-principles $ cd tdd-principles $ touch test _hipster.rb
Now, let’s write a very simple test using the traditional test/unit approach:

require "test/unit"

class HipsterTest < Test::Unit::TestCase

def setup @developer = HipsterAssessor.new(gears_on_bike=1) end
def test_has_fixie? assert_equal true, @developer.has_fixie? end

end

We’re setting up the test by creating an instance of the HipsterAssessor, and
passing in that the developer we are assessing has a single gear on their bicycle.
We’re going to test the has_fixie? method, and we’re setting up the
expectation that the method will return true.

Let’s run the test:

$ ruby test_hipster.rb Loaded suite test_hipster Started E Finished in 0.000294
seconds.

1) Error: test_has_fixie?(HipsterTest): NameError: uninitialized constant
HipsterTest::HipsterAssessor test hipster.rb:6:in “setup'

1 tests, 0 assertions, 0 failures, 1 errors

This is the standard approach for test-first programming. We’ve written the test.
The test has failed. Now we make it pass. In this case the test wasn’t able to run
yet—it errored out because we’re trying to instantiate a HipsterAssessor, but
we’ve not written the code for that yet, nor is it available to the test. Let’s fix that
by creating a new file called hipsterassessor.rb, which contains the following:

class HipsterAssessor end

And let’s require that file in our test by adding:
require './hipsterassessor'

Let’s run the test again:

$ ruby test_hipster.rb Loaded suite test_hipster Started E Finished in 0.000345
seconds.

1) Error: test_has_fixie?(HipsterTest): ArgumentError: wrong number of arguments (1
for 0) test_hipster.rb:7:1n “initialize' test hipster.rb:7:in “new'

test_hipster.rb:7:in “setup'

1 tests, 0 assertions, 0 failures, 1 errors

Now the problem we have is that we’ve instantiated an assessor, but we’ve also
passed in an argument to it, and our class definition doesn’t accommodate this.
Let’s fix that by adding an initialize method, which takes an argument. We’re
not going to do anything with the argument yet—at this point, we’re concerned
with getting to the point where we see the test fail, not return an error.

class HipsterAssessor
def initialize(bike_gears)
end

end

Run the test again:

$ ruby test_hipster.rb Loaded suite test_hipster Started E Finished in 0.000322
seconds.

1) Error: test_has_fixie?(HipsterTest): NoMethodError: undefined method ‘"has_fixie?'
for nil:NilClass test_hipster.rb:11:in “test_has_fixie?'

1 tests, 0 assertions, 0 failures, 1 errors

Right now the error is that we haven’t written the has_fixie? method. Let’s go
ahead and write that, but without an implementation. Your hipsterassessor.rb
should look like this now:

class HipsterAssessor
def initialize(bike_gears) end
def has_fixie? end

end
And running the test should now result in a failure, not an error:

$ ruby test_hipster.rb Loaded suite test_hipster Started F Finished in 0.011201
seconds.

1) Failure: test_has_fixie?(HipsterTest) [test_hipster.rb:11]: <true> expected but
was <nil>.

1 tests, 1 assertions, 1 failures, 0 errors

Alright, we’re getting somewhere. The test expected the method to return true,
but since we’ve not written the code yet, we got nil. Now let’s write the actual
code:

class HipsterAssessor
def initialize(bike_gears) @gears = bike_gears end

def has_fixie? @gears == 1 end

end
And finally, run the test and see it pass:

$ ruby test_hipster.rb Loaded suite test_hipster Started . Finished in 0.000259
seconds.

1 tests, 1 assertions, 0 failures, 0 errors

So, that’s an example of a simple unit test. Obviously these tests can get a lot
more complicated, but other than adding methods that set up some state and
ensure that state is no longer there at the end of the test, there’s not much more to
Test::Unit. The end result is that while Test: :Unit is by far the most widely
used test tool in the wild, it’s almost never used by itself. Most Ruby projects
will pull in a large number of additional Rubygems to provide more advanced
testing capabilities—test randomization, allowing more natural test descriptions,
and adding the ability to set up ephemeral test fixtures to allow complex, time-
consuming, or third-party libraries or processes.

In Ruby 1.9, Minitest replaced Test: :Unit, built into the standard library for
Ruby 1.9. This clears out some of the old and rarely used cruft from
Test::Unit, and brings powerful, modern testing functionality right into the
standard library. An important thing to note about Minitest is that the version
built into Ruby lags considerably behind the current latest version; indeed the
version of Minitest built into my version of Ruby is 2.5.1. I would typically
recommend you install the latest version from Rubygems, but at the time of
writing, Minitest 5.0.0 has only just been released with a number of breaking
changes. For this reason, in the present work, I recommend taking advantage of
the so-called PessimisticVersionConstraint.

In the Gemfile, set your Minitest line to the following:
gem 'minitest', '~> 4.7'

This will ensure that you stay on the version below the major 5.0 breaking
release.

The newer Minitest syntax is backwards-compatible with Test: :Unit, but the
superclass has a different name. Let’s convert it:

require 'minitest/autorun' require_relative 'hipsterassessor'
class HipsterTest < MiniTest::Unit::TestCase

def setup @developer = HipsterAssessor.new(gears_on_bike=1) end
def test_has_fixie? assert_equal true, @developer.has_fixie? end
end

$ ruby test_hipster.rb Run options: --seed 37275

Running tests:

Finished tests in 0.000873s, 1145.4754 tests/s, 1145.4754 assertions/s.

1 tests, 1 assertions, 0 failures, 0 errors, 0 skips

You’ll notice right away that the test is much faster. You might also notice the - -
seed run option. This is because Minitest runs your tests in a random order to
prevent you getting into the situation where your tests pass because of so-called
state leakage—i.e., some state remained from the previous test, which allowed
the subsequent test to pass. Randomizing the order of the tests catches this. The
seed is the number used to initialize a pseudorandom number generator, which
provides the randomness upon which Minitest bases its decision about ordering.
You can reproduce the same state by passing the same seed manually.

That concludes our whirlwind tour of traditional, backwards-compatible xUnit-
style unit testing. Although you’re fairly unlikely to test your infrastructure code
using this traditional approach, it’s valuable to have some familiarity with it, and
the general approach of iterating on failing tests until they pass is the same
regardless of the testing framework being used.

RSpec: The Transition to BDD

I mentioned earlier that while there is great value in traditional unit testing, it’s
still possible to write code that passes unit tests but doesn’t deliver value to the
customer. Unit tests assert that the code behaves as it should, but what asserts
how the code should behave? In order to be sure that we’re building code that

matters, we need some kind of specification that describes what the code should
do. This is exactly the transition that is made when we start to think about
behavior-driven development against test-driven development. We first specify
what the behavior should be, in a written form. We then test that the code
behaves as specified (which will, of course, fail). We then make the tests pass,
and check against the specification. A core principle of BDD is that this
specification be code itself—that the description of how our software behaves
should itself be executable.

RSpec was developed around a recognition that looking at low-level code, with
not entirely obvious assertion syntax and class and method definitions, was not
really the ideal vehicle for expressing and communicating the intended behavior
of code. It was inspired by an early Thoughtworks tool, Agiledox, which
converted code that looked like this:

public class CustomerLookupTest extends TestCase { testFindsCustomerById() { ... }
testFailsForDuplicateCustomers() { ... } ... }

To a specification like this:
CustomerLookup - finds customer by id - fails for duplicate customers - ...

The effect is remarkable. Immediately the intention is clear, and the brain takes it
in. RSpec’s output looks similar, and its input is more palatable.

Let’s write some specifications for the behavior of the HipsterAssessor.

First, let’s install the RSpec gem and create a directory to contain our
specifications, called spec.

$ gem install rspec $ mkdir spec

Inside the spec directory, create a file called hipster_assessor_spec.rb with the
following contents:

require 'rspec' require_relative '../hipsterassessor'

describe HipsterAssessor do context "assessing whether a developer is a hipster" do
it "can establish if the developer has a fixed-wheel bicycle" do developer =
HipsterAssessor.new(gears_on_bike=1) expect(developer.has_fixie?).to be_true end end

end

The first line simply makes the RSpec gem available, and the second line makes
our HipsterAssessor class available. The describe block describes in a high
level domain-specific language (DSL) what the class should do, and in what
context it functions. If you read the code as English, it makes pretty easy
reading:

You: Describe the HipsterAssessor!

Me: In the context of assessing whether a developer is a hipster, it can establish
if the developer has a fixed-wheel bicycle.

Let’s run the test:

$ rspec -fd spec/

HipsterAssessor assessing whether a developer is a hipster can establish if the
developer has a fixed-wheel bicycle

Finished in 0.00048 seconds 1 example, 0 failures

This is much closer to describing the behavior of the code than just testing a
method.

Let’s add another feature. I think the HipsterAssessor should give the developer
a hipster score. To this end, it would be good to see the score and set the score.

I’m going to add the following;:
it "reports a hipster assessment score" do developer =

HipsterAssessor.new(gears_on_bike=1) expect(developer.score).to be_kind_of(Numeric)
end

This gives us the following spec:

require 'rspec' require_relative '../hipsterassessor'

describe HipsterAssessor do context "assessing whether a developer is a hipster" do
it "can establish if the developer has a fixed-wheel bicycle" do developer =

HipsterAssessor.new(gears_on_bike=1) developer.has_fixie?.should == true end

it "reports a hipster assessment score" do developer =

HipsterAssessor.new(gears_on_bike=1) expect(developer.score).to be_kind_of(Numeric)
end end end

Rather than running the whole spec each time, during development it’s useful to
use the -e, - -example argument, which will only run the examples that match a

given string:
$ rspec -fd -e "score" spec/ Run options: include {:full_description=>/score/}

HipsterAssessor assessing whether a developer is a hipster reports a hipster
assessment score (FAILED - 1)

Failures:

1) HipsterAssessor assessing whether a developer is a hipster reports a hipster
assessment score Failure/Error: expect(developer.score).to be kind of(Numeric)
NoMethodError: undefined method ‘score' for #<HipsterAssessor:0x000000020bb128
@gears=1> # ./spec/hipster_assessor_spec.rb:13:in “block (3 levels) in <top
(required)>'

Finished in 0.00052 seconds 1 example, 1 failure

Failed examples:

rspec ./spec/hipster_assessor_spec.rb:11 # HipsterAssessor assessing whether a
developer is a hipster reports a hipster assessment score

The process should be familiar now. We need to write the code to make the test
pass. We can make the test pass trivially simply by adding:

def score 10 end
Our test now passes:

$ rspec -fd -e "score" spec/ Run options: include {:full_description=>/(?-
mix:score)/}

HipsterAssessor assessing whether a developer is a hipster reports a hipster
assessment score

Finished in 0.00147 seconds 1 example, 0 failures

This is fine and meets our specification. This might seem a bit silly—surely the
developer won’t always get a score of 10? Well, this is the point of BDD. We
iterate quickly, and drive out the requirements. What’s wrong with score 10?
Maybe it’s that it’s meaningless? Maybe it’s that it never varies? In which case
we need to specify what the code should do. An important concept here is to ask
the question, “What’s the next most important thing that the system does not
currently do?” In our case, let’s say we want the score to vary depending on
criteria. For example, let’s say that having a fixie scores five points, and then add
another thing to test for, let’s say, empty spectacle frames. So, we add:

it "awards five points for having a fixie" do developer =
HipsterAssessor.new(gears_on_bike=1) expect(developer.score).to eq 5 end

And run the test (again, using the -e argument), which shows:

$ rspec -fd -e "points" spec/ Run options: include {:full_description=>/points/}

HipsterAssessor assessing whether a developer is a hipster awards five points for
having a fixie (FAILED - 1)

Failures:

1) HipsterAssessor assessing whether a developer is a hipster awards five points for
having a fixie Faillure/Error: expect(developer.score).to eq 5

expected: 5 got: 10

(compared using ==) # ./spec/hipster_assessor_spec.rb:18:in ‘block (3 levels) in
<top (required)>'

Finished in 0.00112 seconds 1 example, 1 failure
Failed examples:

rspec ./spec/hipster_assessor_spec.rb:16 # HipsterAssessor assessing whether a
developer is a hipster awards five points for having a fixie

Let’s change the code to make it pass. This requires a few changes, so I’ll now
show the whole class to date:

class HipsterAssessor

def initialize(bike_gears) @gears = bike_gears @score = 0 end
def has_fixie? @gears == 1 end

def score if self.has_fixie? @score = @score + 5 end @score end end

Let’s run all the tests now. Our full spec looks like this:

require 'rspec' require_relative '../hipsterassessor'

describe HipsterAssessor do context "assessing whether a developer is a hipster" do
it "can establish if the developer has a fixed-wheel bicycle" do developer =
HipsterAssessor.new(gears_on_bike=1) expect(developer.has_fixie?).to be_true end

it "reports a hipster assessment score" do developer =
HipsterAssessor.new(gears_on_bike=1) expect(developer.score).to be_kind_of(Numeric)
end

it "awards five points for having a fixie" do developer =
HipsterAssessor.new(gears_on_bike=1) expect(developer.score).to eq 5 end

end

end
And if we run RSpec, we get:

$ rspec -fd spec/

HipsterAssessor assessing whether a developer is a hipster can establish if the
developer has a fixed-wheel bicycle reports a hipster assessment score awards five
points for having a fixie

Finished in 0.00161 seconds 3 examples, 0 failures

The eagle-eyed amongst you will probably have noticed that our score
increasing method will continue to add five points every time. Adding a test for
this, and refactoring the code is just the sort of thing that would happen in real
life. Of course, additionally, specs can get much more complex than this, but you
should now appreciate the difference between behavior-driven and test-driven
development.

In the previous section, we looked at Minitest as a drop-in replacement for

Test: :Unit. In addition to the speed improvements and general leanness of the
tool, another addition is the inclusion of a spec-like DSL, which brings BDD
into the core library. Let’s look at how we’d express the preceding test using
Minitest rather than RSpec.

Rewriting the tests also gives us a chance to refactor. I don’t like that we have
repeated instantiating the HipsterAssessor three times.

Both RSpec and Minitest support hooks to set up state before tests. This allows
us to simplify the test. Here’s the equivalent code for Minitest:

require 'minitest/autorun’

class HipsterTest < MiniTest::Unit::TestCase

describe HipsterAssessor do

before do @developer = HipsterAssessor.new(gears_on_bike=1) end
describe "when assessing whether a developer is a hipster" do

it "can establish if the developer has a fixed-wheel bicycle" do
@developer.has_fixie?.must_equal true end

it "can report a hipster assessment score" do @developer.score.must_be instance_of
Fixnum end

it "can award five points for having a fixie" do @developer.score.must_equal 5 end
end
end
end
I’ve added a before block, which sets up the state before each test. This is a

pretty common pattern, and one you’ll see when we apply these principles to
infrastructure code.

The syntax of Minitest is slightly different, and the matching and expectation
grammar is not identical, but it’s clear that at this level of simplicity, Minitest
can do exactly what RSpec does. Not having to include another gem makes this

an attractive option. However, RSpec is very widely used, and in the context of
testing infrastructure, the Chef community hasn’t yet settled on which it favors,
so I've given a brief introduction to both. In terms of how this applies to testing
infrastructure code, my feeling is that the community is equally undecided, and
we’ll cover both when we look at writing tests for Chef recipes later in the book.

Let’s run the refactored test now, simply calling it with Ruby, now we’re using
Minitest:

$ ruby test_hipster.rb Loaded suite test_hipster Started ... Finished in 0.000808
seconds.

3 tests, 3 assertions, 0 failures, 0 errors, 0 skips

Test run options: --seed 57543

Now that we’ve covered the basics of both RSpec and MiniTest: : Spec, we’ll
move on to examine Cucumber.

Cucumber: Acceptance Testing for the Masses

When Dan North first started thinking about BDD back in 2003, the context was
not one of replacing TDD with a different set of practices or tools, but rather
about how to go about explaining the reasons for, and the underpinning ideas
behind TDD itself. As we’ve seen in this contrived example, it seems to make
sense to start with tests right at the level of the application. However, as thought
around BDD began to mature, and more people started to explore the perspective
it offered, so the focus of the tests started to move towards the stakeholders—
those for whom the software was being built. We can see this starting to happen
in our RSpec example, but it hasn’t fully matured. The main thing missing is
how to connect the stories—the self-contained units of work that developers
commit to in an agile project—to work that represents real value to the
stakeholder. Somehow we need to be able to demonstrate that the code we’re
writing, and indeed testing, is applicable to the stories we’ve committed to
delivering.

A useful template for capturing the story looks like this:

= In order to achieve some specific, measurable, definable goal

m As some kind of stake holder
m | want a feature

Moving to a BDD way of thinking brings many benefits. It helps to tease out
how the software we write should behave, and it serves as an executable
specification of what the software should do. This is undeniably a step in the
right direction, but BDD-influenced thinkers wanted to take it a little further
again. Using RSpec, or Minitest’s spec capabilities, might answer questions
about how it should behave, but it doesn’t explain why. We never develop
software in a vacuum. We rarely develop software just for fun. There’s always a
reason behind it—some kind of driving force behind the project. In order best to
understand that, and be sure we’re building the right features, for the right
reasons, with the right priority, it’s necessary to engage the stakeholders—the
people for whom we’re building the software.

An early attempt to connect these kinds of stories to RSpec was written by Dan
North, but greatly improved and released by Aslak Hellesoy in 2008 as
Cucumber. Cucumber takes the obvious benefits of test-first programming, and
adds to it a whole series of further benefits. In his book, The Cucumber Book,
Aslak Hellesoy and Matt Wynne (Pragmatic Bookshelf), Aslak describes
Cucumber as somewhat akin to a cheerful and friendly but rather nerdy team
member, with a terrifyingly precise recollection of what it is the team is building
and why, and who doesn’t mind the grunt work of repeatedly checking that what
the team is working on is the right thing, running tests, and reporting back.

The key concept we’re exploring here is that software—and of course
infrastructure—begins with an idea. Usually the idea is tied in some way to
making something that can be sold, used to reduce cost, improve efficiency, or
add enjoyment—whatever it is, there’s almost always an idea—a germ of an idea
at the genesis of a software or infrastructure project. The point is that unless the
person who has the idea is an incredibly gifted person, it’s unlikely that they’ll
be able to build the idea themselves, from scratch, without getting some help. As
soon as you introduce help, especially if it’s technical help, you introduce the
requirement to communicate. Even in an experienced agile team, with short
iterations and a fast feedback cycle, it’s possible to spend a two week period of
time working on the wrong thing, delivering something that the developers

thought was right, but which somehow got confused, miscommunicated, or
misunderstood. Cucumber offers a way to ease the communication and
cooperation between people and teams.

At the heart of eXtreme programming is the idea of automated acceptance tests.
An acceptance test is simply some code that we can run, which captures at its
heart some aspect of the functionality of the system. The idea is that the
developer and a stakeholder collaborate on writing this test together to capture
requirements in code, which when it passes, forms some kind of seal of
approval. These are distinct from the kind of unit tests we looked at previously.
Unit tests are largely written by the developer and for the developer. They help
emerge and validate design and protect against errors. Acceptance tests are
written by the stakeholder and the developer, for the stakeholder and the
developer. A commonly used expression is that the difference between unit tests
and acceptance tests is that unit tests help you build the thing right, whereas
acceptance tests help you build the right thing.

Despite the obvious benefits of automated acceptance tests, in practice even
among experienced XP and TDD teams, it’s rarely done, or done well. One of
the reasons is that finding a stakeholder with the technical ability, interest, and
patience to sit at a computer writing pure Ruby code, even a DSL like RSpec, is
incredibly hard. I remember working on an accounts package in PHP and pairing
with a product manager, and actually writing SimpleTest acceptance tests. It
worked really well, but I’ve never found a stakeholder since who is comfortable
with that kind of technical involvement.

Cucumber helps to make automated acceptance testing a reality. If we think
about what an acceptance test is, it’s really just an example. We’re saying we
need this feature for this purpose. Here are a few examples of how the system
would behave if we’d implemented the feature I want. If you can prove to me
that these examples do what I've asked, then I’ll be happy that the requirement is
met. The challenge in making this happen is that in most cases, the areas of
expertise of the stakeholder and the developer don’t coincide. Often radically so.
This is because each person is an expert in their own domain. I’m an expert at
Chef, and a pretty competent Ruby and Python developer. I’m not an expert in
social media advertising. The problem Cucumber sets out to solve is that of
making it easy to find a shared language—a ubiquitous language—that everyone
can use that describes what we’re trying to build and why we’re trying to build

it. This language should neither be mired in the jargon of the developer, nor the
person who had the idea in the first place.

Beyond making acceptance tests a reality, Cucumber also becomes
documentation. Not documentation that slowly decays on a wiki—
documentation that is an executable specification, that lives with and shapes the
creation of the software. Documentation that can be shared, explored, grown,
and that, ultimately, can be run from the command line, and should pass tests.
This makes Cucumber potentially a very powerful source of truth and a
barometer of health in a project. That’s a pretty awesome state of affairs.

Let’s look at how Cucumber works. At the highest level, it’s just another
command-line tool. It reads in plain text files called features, which contain
scenarios that describe examples of use cases for the feature. The features and
scenarios are written in what is very close to natural language, but with a dozen
or so grammar and syntax rules—a DSL called Gherkin. Each scenario is a
sequence of steps that need to be carried out in order, setting up state, doing
something, and then checking state again. These steps are then mapped onto
Ruby code, which takes real action. These are called step definitions. Step
definitions typically delegate to support code shipped with the test suite and call
out to automation libraries for helper functions for doing things like driving a
web browser or using a graphical interface. When Cucumber runs, it executes
each step in turn. If all the steps complete successfully, the test is said to have
passed, otherwise the user is informed that the test didn’t pass, and the exact
state of the test is reported.

I mentioned before that software begins with an idea. Cucumber helps us to
capture what the vision behind the idea is. We need to understand what the goal
is. The vision might be massive, complex, and exciting. Our task is to work with
the visionary to achieve something of value that moves them in the right
direction. In recent years, this has started to be called a Minimum Marketable
Feature or Minimum Viable Product. Whatever you call it, we’re looking for a
description of something achievable that captures and advances the vision and
purpose behind the software.

Let’s use Cucumber to write acceptance tests for the HipsterAssessor as a way to
explore how the approach works.

Enter the HipsterAssessor project directory and run Cucumber:

$ gem install cucumber $ cucumber You don't have a 'features' directory. Please
create one to get started. See http://cukes.info/ for more information.

OK, let’s create a directory for the features, and try again:
$ mkdir features $ cucumber 0 scenarios 0 steps Om@.000s

This illustrates two important concepts: Cucumber is made from scenarios and
steps. Each test that we write represents a scenario that we describe—it tests an
aspect of the broader feature that we’re going to help implement. Each scenario
contains steps that will tell Cucumber how to actually carry out the test and
verify that the intended feature works as specified.

Features are written in a file with a .feature suffix, in the Gherkin language.
Open your text editor and create a file called features/assess_hipster.feature.
This is a plain text document, written with a few constraints. The constraints are
minimal—the idea is that the feature we write should be in a natural language. In
fact, one of the benefits of Gherkin is it supports over 40 languages, so you can
write your features in Russian or Welsh if you wish. Actually, this provides a
good way to demonstrate how small the DSL is:

$ cucumber --118 cy-GB | feature | "Arwedd" | | background
| "Cefndir" | | scenario | "Scenario" | |
scenario_outline | "Scenario Amlinellol" | | examples | "Enghreifftiau"

| | given | " ", "Anrhegedig a " | | when [" ", "Pryd "

| | then | " ", "Yna " | | and [" ", "A"

| | but | "+ ", "Ond " | | given (code) | "Anrhegediga"
| | when (code) | "Pryd" | | then (code) | "Yna"

| | and (code) | "A" | | but (code) | "ond"

|

That’s the extent of the DSL. Using these keywords, we express our feature. In
terms of grammar, the rules are very simple. The file must begin with a feature,
followed by a title. This may be followed by an arbitrary number of lines of
freeform text to document the feature.

Feature: Assess hipster

In order to make sure developers are comfortable in their workplace As a manager who
has just hired a developer I want to be able to assess whether the new developer is

a hipster

Hipsters like to have Pabst Blue Ribbon in the fridge, listen to vinyl recordings of
Lily Allen, and need a place to store their fixed-wheel bicycles. As a manager I
need to be sure I can accommodate hipsters, so I want a simple web app that gives a
questionnaire which will advise me if the developer is a hipster.

Scenario: Fixed-wheel bicycle scores 5 points Given a developer with a fixed-wheel
bike When I request a hipster assessment Then the score should be 5

Scenario: Spectacles despite 20/20 vision scores 10 points Given a developer with a
pair of empty frames When I request a hipster assessment Then the score should be 10

The preceding code block is a full feature, expressed in Gherkin. The idea
behind Gherkin is to be able to provide concrete examples that illustrate the
required feature. As a language, Gherkin has been optimized for readability and
portability. As you can see, Gherkin is pretty much indistinguishable from
natural language.

A scenario describes the behavior of the system. Each scenario shares a common
pattern. First we set up some state: what is the prerequisite to test the
functionality? In this case, since we’re assessing developers, we need a
developer. Next we take an action that we anticipate will change some state. In
this case, we’re going to ask for a score. Finally, we check the new state and
compare it to what we expected. In this case, we expect that the HipsterAssessor
will award our developer some points.

The keywords ‘Scenario’, ‘Given’, “‘When’, and ‘Then’ map onto Ruby code
called step definitions. If we go ahead and run Cucumber now, we’ll see some
progress:

$ cucumber Feature: Assess hipster

In order to make sure developers are comfortable in their workplace As a manager who
has just hired a developer I want to be able to assess whether the new developer is
a hipster

Hipsters like to have Pabst Blue Ribbon in the fridge, listen to vinyl recordings of
Lily Allen, and need a place to store their fixed-wheel bicycles. As a manager I
need to be sure I can accommodate hipsters, so I want a simple web app that gives a
questionnaire which will advise me if the developer is a hipster.

Scenario: Fixed-wheel bicycle scores 5 points # features/assess_hipster.feature:13

Given a developer with a fixed-wheel bike # features/assess_hipster.feature:14
When I request a hipster assessment # features/assess_hipster.feature:15
Then the score should be 5 # features/assess_hipster.feature:16

Scenario: Spectacles despite 20/20 vision scores 10 points #
features/assess_hipster.feature:18 Given a developer with a pair of empty frames
features/assess_hipster.feature:19 When I request a hipster assessment

features/assess_hipster.feature:20 Then the score should be 10

features/assess_hipster.feature:21

2 scenarios (2 undefined) 6 steps (6 undefined) Om@.003s
You can implement step definitions for undefined steps with these snippets:

Given(/”a developer with a fixed\-wheel bike$/) do pending # express the regexp
above with the code you wish you had end

When(/~I request a hipster assessment$/) do pending # express the regexp above with
the code you wish you had end

Then(~the score should be (\d+)$) do |argl| pending # express the regexp above with
the code you wish you had end

Given(/”a developer with a pair of empty frames$/) do pending # express the regexp
above with the code you wish you had end

If you want snippets in a different programming language, just make sure a file
with the appropriate file extension exists where Cucumber looks for step
definitions.

Cucumber has generated some code snippets to get us started. Step definitions
by convention reside in a step_definitions directory, under the features directory.
Let’s create that directory, and inside there paste the suggested snippets into a
file called assess_hipster_steps.rb.

Now if we run Cucumber we get a bit further:

$ cucumber Feature: Assess hipster
In order to make sure developers are comfortable in their workplace As a manager who
has just hired a developer I want to be able to assess whether the new developer is

a hipster

Hipsters like to have Pabst Blue Ribbon in the fridge, listen to vinyl recordings of

Lily Allen, and need a place to store their fixed-wheel bicycles. As a manager I
need to be sure I can accommodate hipsters, so I want a simple web app that gives a
questionnaire which will advise me if the developer is a hipster.

Scenario: Fixed-wheel bicycle scores 5 points # features/assess_hipster.feature:13
Given a developer with a fixed-wheel bike #
features/step_definitions/assess_hipster_steps.rb:1 TODO (Cucumber::Pending)
./features/step_definitions/assess_hipster_steps.rb:2:in ‘/”?a developer with a
fixed\-wheel bike$/' features/assess hipster.feature:14:in ‘Given a developer with a
fixed-wheel bike' When I request a hipster assessment #
features/step_definitions/assess _hipster_steps.rb:5 Then the score should be 5

features/step_definitions/assess _hipster_steps.rb:9

Scenario: Spectacles despite 20/20 vision scores 10 points #
features/assess_hipster.feature:18 Given a developer with a pair of empty frames

features/step_definitions/assess_hipster_steps.rb:13 TODO (Cucumber::Pending)
./features/step_definitions/assess_hipster_steps.rb:14:in */”a developer with a pair
of empty frames$/' features/assess_hipster.feature:19:in “Given a developer with a
pair of empty frames' When I request a hipster assessment #
features/step_definitions/assess hipster_steps.rb:5 Then the score should be 10

features/step_definitions/assess hipster_steps.rb:9

2 scenarios (2 pending) 6 steps (4 skipped, 2 pending) 0m0.004s

Cucumber is now calling our step definitions. But our step definitions don’t
contain any code that does anything noteworthy, and so Cucumber stops and
tells us that the first two steps of each scenario are pending—i.e., unwritten—
and therefore it skipped the rest of the test.

Let’s look at the structure of a step within a step definition:

Given “a developer with a fixed wheel bike$ do pending # express the regexp above
with the code you wish you had end

We’re now in pure Ruby—well, we’re in a pure Ruby DSL. Given is a DSL
method that takes a regular expression and a block. The regular expression
matches the step in the Gherkin scenario, and the contents of the block specifies
what to do when this step is matched. The fact that we’re using regular
expressions to match the steps in the Gherkin scenario gives us two very
powerful capabilities—we can use capture groups and wildcards. This is just the
same as capture groups in sed—you can put parentheses around some text and
store what they match in a variable for later use. Wildcards are like a more

powerful and flexible form of shell globbing—we can match non-whitespace
characters, digits, lowercase letters, or combinations thereof. We’ll see this in
action in the score step in a moment. Let’s write the step definitions for real now.

The first is pretty straightforward. We’re going to do the same as we did in the
previous steps and instantiate a developer. Take a look at the comment that the
automatically generated snippet contains. The key idea here is that we should
write the code we wish we had. We don’t have any code at all. We’re simply
expressing the interface we’d like to see. Interestingly, when we do it this way,
we tend to think with a more design-oriented head. The code we have in the
RSpec test is actually a bit ugly:

developer = HipsterAssessor.new(gears_on_bike=1)

Wouldn’t it be nicer to have a method on the assessor that sets the number of
gears to a certain value? This would certainly be nicer if we were to think of an
interface that we could use with a webform, or some other way to populate the
object. Simply calling the constructor with an argument is rather clumsy. Let’s
write the code we wish we had:

Given(/”a developer with a fixed\-wheel bike$/) do @developer = HipsterAssessor.new
@developer.set(:gears_on_bike, 1) end

Now, let’s fulfill the when step. This is just calling a method:
When(/~I request a hipster assessment$/) do @result = @developer.score.to_s end

We need to convert the score to a string because in our feature the value appears
as a string, not an integer.

Now we come to the then step. Here we can see the power of the regular
expression. Cucumber has already suggested we might be interested in the score
and has suggested a capture group and wildcard. The value of this will be passed

into the block as argl. We should change that to something more readable.
Then ~the score should be (\d+)$ do |score| expect(@result).to eq score end

While we’re at it, let’s add the developer with empty frames given, and then we

can run the whole feature.

Given(/”a developer with a pair of empty frames$/) do @developer =
HipsterAssessor.new @developer.set(:glasses_prescription, nil) end

We should probably move this up, so it reads nicely, too. At this stage our steps
look like this:

Given(/”a developer with a fixed\-wheel bike$/) do @developer = HipsterAssessor.new
@developer.set(:gears_on_bike, 1) end

Given(/”a developer with a pair of empty frames$/) do @developer =
HipsterAssessor.new @developer.set(:glasses_prescription, nil) end

When(/~I request a hipster assessment$/) do @result = @developer.score.to_s end

Then ~the score should be (\d+)$ do |score| expect(@result).to eq score end
OK...what happens when we run Cucumber?

$ cucumber Feature: Assess hipster

In order to make sure developers are comfortable in their workplace As a manager who
has just hired a developer I want to be able to assess whether the new developer is
a hipster

Hipsters like to have Pabst Blue Ribbon in the fridge, listen to vinyl recordings of
Lily Allen, and need a place to store their fixed-wheel bicycles. As a manager I
need to be sure I can accommodate hipsters, so I want a simple web app that gives a
questionnaire which will advise me if the developer is a hipster.

Scenario: Fixed-wheel bicycle scores 5 points # features/assess_hipster.feature:13
Given a developer with a fixed-wheel bike #

features/step_definitions/assess _hipster_steps.rb:1 uninitialized constant
HipsterAssessor (NameError) ./features/step_definitions/assess_hipster steps.rb:2:in
*/”a developer with a fixed\-wheel bike$/' features/assess hipster.feature:14:1in
‘Given a developer with a fixed-wheel bike' When I request a hipster assessment

features/step_definitions/assess _hipster_steps.rb:6 Then the score should be 5

features/step_definitions/assess _hipster_steps.rb:10

Scenario: Spectacles despite 20/20 vision scores 10 points #
features/assess_hipster.feature:18 Given a developer with a pair of empty frames
features/step_definitions/assess _hipster_steps.rb:14 undefined method ‘set' for
nil:NilClass (NoMethodError)

./features/step_definitions/assess_hipster_steps.rb:15:in */”a developer with a pair
of empty frames$/' features/assess_hipster.feature:19:in “Given a developer with a
pair of empty frames' When I request a hipster assessment #
features/step_definitions/assess hipster_steps.rb:6 Then the score should be 10

features/step_definitions/assess _hipster_steps.rb:10

Failing Scenarios: cucumber features/assess_hipster.feature:13 # Scenario: Fixed-
wheel bicycle scores 5 points cucumber features/assess_hipster.feature:18 #
Scenario: Spectacles despite 20/20 vision scores 10 points

2 scenarios (2 failed) 6 steps (2 failed, 4 skipped) 0m0.004s

OK, this is familiar—we have a failing test! We haven’t connected the test to our
code. Let’s do that by adding the require_relative to the top of the steps:

require_relative '../../hipsterassessor'

Now the test runs, and the relevant part of the output is:

Scenario: Fixed-wheel bicycle scores 5 points # features/assess_hipster.feature:13
Given a developer with a fixed-wheel bike #
features/step_definitions/assess_hipster_steps.rb:3 wrong number of arguments (0 for
1) (ArgumentError) ./hipsterassessor.rb:3:in ‘initialize'
./features/step_definitions/assess_hipster_steps.rb:4:in ‘new
./features/step_definitions/assess_hipster_steps.rb:4:in ‘/”?a developer with a
fixed\-wheel bike$/' features/assess hipster.feature:14:in ‘Given a developer with a
fixed-wheel bike' When I request a hipster assessment #
features/step_definitions/assess hipster_steps.rb:12 Then the score should be 5

features/step_definitions/assess _hipster_steps.rb:16

Now, here we’re working slightly outside the standard pattern I would
recommend because I chose to introduce testing from the unit tests out. We’ve
actually already got code, which we’re calling, that we need to change. Let’s
follow through and see what happens. So at the moment, our test code is calling
the constructor with no arguments:

Given(/”a developer with a fixed\-wheel bike$/) do @developer = HipsterAssessor.new
@developer.set(:gears_on_bike, 1) end

But in the actual class, we specify that the constructor took an argument. Let’s
remove that:

def initialize @gears = bike_gears @score = 0 end

While we’re there, our constructor shouldn’t try to set gears any more either, so
let’s remove that line:

def initialize @score = 0 end
Running Cucumber now yields the following:

$ cucumber features/assess_hipster.feature:13 Feature: Assess hipster

In order to make sure developers are comfortable in their workplace As a manager who
has just hired a developer I want to be able to assess whether the new developer is
a hipster

Hipsters like to have Pabst Blue Ribbon in the fridge, listen to vinyl recordings of
Lily Allen, and need a place to store their fixed-wheel bicycles. As a manager I
need to be sure I can accommodate hipsters, so I want a simple web app that gives a
questionnaire which will advise me if the developer is a hipster.

Scenario: Fixed-wheel bicycle scores 5 points # features/assess_hipster.feature:13
Given a developer with a fixed-wheel bike #
features/step_definitions/assess_hipster_steps.rb:3 undefined method ‘set' for #
<HipsterAssessor:0x00000002aaf648 @score=0> (NoMethodError)
./features/step_definitions/assess_hipster_steps.rb:5:in ‘/”?a developer with a
fixed\-wheel bike$/' features/assess hipster.feature:14:in ‘Given a developer with a
fixed-wheel bike' When I request a hipster assessment #
features/step_definitions/assess hipster_steps.rb:12 Then the score should be 5

features/step_definitions/assess_hipster_steps.rb:16

Failing Scenarios: cucumber features/assess_hipster.feature:13 # Scenario: Fixed-
wheel bicycle scores 5 points

1 scenario (1 failed) 3 steps (1 failed, 2 skipped) Om0.002s

We need a set method. At this point, we should drop down a level to RSpec or
Minitest and write a test for the set method.

First, let’s run the test and see what breaks:

$ ruby test_hipster.rb Run options: --seed 59310

Running tests:

EEE
Finished tests in 0.000963s, 3113.7225 tests/s, 0.0000 assertions/s.

1) Error: HipsterAssessor::when assessing whether a developer is a
hipster#test_0001_can establish if the developer has a fixed-wheel bicycle:
ArgumentError: wrong number of arguments (1 for 0) hometdi/tdd-
principles/hipsterassessor.rb:3:in ‘initialize' test_hipster.rb:8:in “new
test_hipster.rb:8:in ‘block (2 levels) in <main>'

2) Error: HipsterAssessor::when assessing whether a developer is a
hipster#test_0002_can report a hipster assessment score: ArgumentError: wrong number
of arguments (1 for @) hometdi/tdd-principles/hipsterassessor.rb:3:in “initialize'
test_hipster.rb:8:1n "new' test _hipster.rb:8:in “block (2 levels) in <main>'

3) Error: HipsterAssessor::when assessing whether a developer is a
hipster#test_0003_can award five points for having a fixie: ArgumentError: wrong
number of arguments (1 for @) hometdi/tdd-principles/hipsterassessor.rb:3:in
‘initialize' test_hipster.rb:8:1n "new' test hipster.rb:8:in “block (2 levels) in

<main>'

3 tests, 0 assertions, 0 failures, 3 errors, 0 skips

Unsurprisingly, everything breaks because we’re calling the constructor
differently. Thankfully that’s trivial to fix in our Minitest test; we only instantiate
the assessor in one place. Change that to:

before do @developer = HipsterAssessor.new end
Now running the test returns failures not errors:

$ ruby test_hipster.rb Run options: --seed 21627

Running tests:

FF.

Finished tests in 0.040021s, 74.9611 tests/s, 74.9611 assertions/s.
1) Failure: HipsterAssessor::when assessing whether a developer is a

hipster#test_0001_can establish if the developer has a fixed-wheel bicycle
[test_hipster.rb:14]: Expected: true Actual: false

2) Failure: HipsterAssessor::when assessing whether a developer is a
hipster#test_0003_can award five points for having a fixie [test_hipster.rb:22]:
Expected: 5 Actual: 0

3 tests, 3 assertions, 2 failures, 0 errors, 0 skips

We need also to write a test for the set method, and then turn to fixing the

remaining tests. As we think about it, we realize we need a get method, too, and
this is needed for the test:

it "can set a hipster credential to a given value" do @developer.set(:favorite_beer,
"PBR") @developer.get(:favorite_beer).must_equal "PBR" end

Let’s run the test:

$ ruby test_hipster.rb Run options: --seed 44375

Running tests:

E.FF

Finished tests in 0.018478s, 216.4764 tests/s, 162.3573 assertions/s.

1) Error: HipsterAssessor::when assessing whether a developer is a
hipster#test_0004_can set a hipster credential to a given value: NoMethodError:
undefined method “set' for #<HipsterAssessor:0x00000000efe890 @score=0>
test_hipster.rb:26:in ‘block (3 levels) in <main>'

2) Failure: HipsterAssessor::when assessing whether a developer is a
hipster#test_0003_can award five points for having a fixie [test_hipster.rb:22]:
Expected: 5 Actual: 0

3) Failure: HipsterAssessor::when assessing whether a developer is a
hipster#test_0001_can establish if the developer has a fixed-wheel bicycle
[test_hipster.rb:14]: Expected: true Actual: false

4 tests, 3 assertions, 2 failures, 1 errors, 0 skips

Right, let’s implement the set method. Add a hipster_credentials hash to
the constructor, and then the set method:

def initialize @score = 0 @hipster_credentials = {} end

def set(key, value) @hipster_credentials[key] = value end

Running the tests now reveals that we need a get method. We already exercise
this in the test, so let’s write the method for that:

def get(key) @hipster_credentials[key] end
Now run the tests:

$ ruby test_hipster.rb Run options: --seed 32953

Running tests:

Finished tests in 0.018647s, 214.5123 tests/s, 214.5123 assertions/s.

1) Failure: HipsterAssessor::when assessing whether a developer is a
hipster#test_0003_can award five points for having a fixie [test_hipster.rb:22]:
Expected: 5 Actual: 0

2) Failure: HipsterAssessor::when assessing whether a developer is a
hipster#test_0001_can establish if the developer has a fixed-wheel bicycle
[test _hipster.rb:14]: Expected: true Actual: false

4 tests, 4 assertions, 2 failures, 0 errors, 0 skips

OK, now our get and set methods work. We still have other failing tests
though, which we need to make pass. When we set up state in the test we need to

use the HipsterAssessor#get and HipsterAssessor#set, for those cases
where a fixed-wheel bicycle is mentioned. We also need to make the

has_fixie method use the hipster_credentials hash.

In our test, we make the updates:

it "can establish if the developer has a fixed-wheel bicycle" do
@developer.set(:gears_on_bike, 1) @developer.has_fixie?.must_equal true end

it "can award five points for having a fixie" do @developer.set(:gears_on_bike, 1)
@developer.score.must_equal 5 end

And in the class:

def has_fixie? @hipster_credentials[:gears_on_bike] == 1 end
Now all the tests pass!

$ ruby test_hipster.rb Run options: --seed 44033

Running tests:

Finished tests in 0.000843s, 4744.1706 tests/s, 4744.1706 assertions/s.

4 tests, 4 assertions, 0 failures, 0 errors, 0 skips
Let’s quickly summarize the state of the test and the class. Here’s the test:

require 'minitest/autorun' require_relative 'hipsterassessor'

describe HipsterAssessor do
before do @developer = HipsterAssessor.new end
describe "when assessing whether a developer is a hipster" do

it "can establish if the developer has a fixed-wheel bicycle" do
@developer.set(:gears_on_bike, 1) @developer.has_fixie?.must_equal true end

it "can report a hipster assessment score" do @developer.score.must_be instance_of
Fixnum end

it "can award five points for having a fixie" do @developer.set(:gears_on_bike, 1)
@developer.score.must_equal 5 end

it "can set a hispter credential to a given value" do @developer.set(:favorite_beer,
"PBR") @developer.get(:favorite_beer).must_equal "PBR" end

end

end
And here’s the class:

class HipsterAssessor

def initialize @score = 0 @hipster_credentials = {} end

def set(key, value) @hipster_credentials[key] = value end
def get(key) @hipster_credentials[key] end

def has_fixie? @hipster_credentials[:gears_on_bike] == 1 end

def score if self.has_fixie? @score = @score + 5 end @score end end

Now that the tests pass, we can go back out to Cucumber.

Running Cucumber now shows the first scenario passing! The second doesn’t
pass:

$ cucumber Feature: Assess hipster

In order to make sure developers are comfortable in their workplace As a manager who
has just hired a developer I want to be able to assess whether the new developer is
a hipster

Hipsters like to have Pabst Blue Ribbon in the fridge, listen to vinyl recordings of
Lily Allen, and need a place to store their fixed-wheel bicycles. As a manager I
need to be sure I can accommodate hipsters, so I want a simple web app that gives a
questionnaire which will advise me if the developer is a hipster.

Scenario: Fixed-wheel bicycle scores 5 points # features/assess_hipster.feature:13
Given a developer with a fixed-wheel bike #

features/step_definitions/assess _hipster_steps.rb:3 When I request a hipster
assessment # features/step_definitions/assess_hipster_steps.rb:13 Then the
score should be 5 #

features/step_definitions/assess _hipster_steps.rb:17

Scenario: Spectacles despite 20/20 vision scores 10 points #
features/assess_hipster.feature:18 Given a developer with a pair of empty frames
features/step_definitions/assess hipster_steps.rb:8 When I request a hipster
assessment #

features/step_definitions/assess _hipster_steps.rb:13 Then the score should be 10
features/step_definitions/assess_hipster_steps.rb:17

expected: "10" got: "0"
(compared using ==) (RSpec::Expectations::ExpectationNotMetError)

./features/step_definitions/assess _hipster_steps.rb:18:in ‘~the score should be
(\d+)$' features/assess_hipster.feature:21:in ‘Then the score should be 10'

Failing Scenarios: cucumber features/assess_hipster.feature:18 # Scenario:
Spectacles despite 20/20 vision scores 10 points

2 scenarios (1 failed, 1 passed) 6 steps (1 failed, 5 passed) Om@.004s

This requires us to go back to the lower level, and write a test for applying a
value on the basis of phoney spectacles. Let’s add that test:

it "can award ten points for phoney spectacles" do
@developer.set(:glasses_prescription, nil) @developer.score.must_equal 10 end

Watch it fail:

$ ruby test_hipster.rb Run options: --seed 36835

Running tests:

Finished tests in 0.018249s, 273.9899 tests/s, 273.9899 assertions/s.

1) Failure: HipsterAssessor::when assessing whether a developer is a
hipster#test_0004_can award ten points for phoney spectacles [test_hipster.rb:29]:
Expected: 10 Actual: 0

5 tests, 5 assertions, 1 failures, 0 errors, 0 skips

Now we realize that we should have a test that the assessor can use to establish if
the developer has phoney specs. Let’s add that, too:

it "can establish if the developer has phoney spectacles" do
@developer.set(:glasses_prescription, nil) @developer.has_phoney_specs?.must_equal
true end

Run the tests, watch it fail:

$ ruby test_hipster.rb Run options: --seed 36835

Running tests:

Finished tests in 0.018249s, 273.9899 tests/s, 273.9899 assertions/s.

1) Failure: HipsterAssessor::when assessing whether a developer is a
hipster#test_0004_can award ten points for phoney spectacles [test_hipster.rb:29]:
Expected: 10 Actual: 0

5 tests, 5 assertions, 1 failures, 0 errors, 0 skips tdi@tk00:~/tdd-principles$ vi
test_hipster.rb tdi@tk®0:~/tdd-principles$ ruby test_hipster.rb Run options: --seed
7359

Running tests:

Finished tests in 0.018551s, 323.4269 tests/s, 269.5224 assertions/s.

1) Failure: HipsterAssessor::when assessing whether a developer is a
hipster#test_0005_can award ten points for phoney spectacles [test_hipster.rb:34]:
Expected: 10 Actual: 0

2) Error: HipsterAssessor::when assessing whether a developer is a
hipster#test_0002_can establish if the developer has phoney spectacles:
NoMethodError: undefined method “has_phoney_specs?' for #
<HipsterAssessor:0x0000000136db38> test_hipster.rb:20:in “block (3 levels) in

<main>'

6 tests, 5 assertions, 1 failures, 1 errors, 0 skips

Now add the method which checks for the specs, and then update the score
method to return 10 in the case of phoney specs:

def has_phoney_specs? @hipster_credentials[:gears_on_bike] == nil end

def score if self.has_fixie? @score = @score + 5 elsif self.has_phoney_specs? @score
= @score + 10 end @score end

Once more with feeling!

ruby test_hipster.rb Run options: --seed 15341

Running tests:

Finished tests in 0.000912s, 6581.1700 tests/s, 6581.1700 assertions/s.

6 tests, 6 assertions, 0 failures, 0 errors, 0 skips
And with Cucumber?

$ cucumber Feature: Assess hipster

In order to make sure developers are comfortable in their workplace As a manager who
has just hired a developer I want to be able to assess whether the new developer is
a hipster

Hipsters like to have Pabst Blue Ribbon in the fridge, listen to vinyl recordings of
Lily Allen, and need a place to store their fixed-wheel bicycles. As a manager I
need to be sure I can accommodate hipsters, so I want a simple web app that gives a
questionnaire which will advise me if the developer is a hipster.

Scenario: Fixed-wheel bicycle scores 5 points # features/assess_hipster.feature:13
Given a developer with a fixed-wheel bike #

features/step_definitions/assess _hipster_steps.rb:3 When I request a hipster
assessment # features/step_definitions/assess_hipster_steps.rb:13 Then the
score should be 5 #
features/step_definitions/assess_hipster_steps.rb:17

Scenario: Spectacles despite 20/20 vision scores 10 points #
features/assess_hipster.feature:18 Given a developer with a pair of empty frames
features/step_definitions/assess _hipster_steps.rb:8 When I request a hipster
assessment #

features/step_definitions/assess _hipster_steps.rb:13 Then the score should be 10
features/step_definitions/assess _hipster_steps.rb:17

2 scenarios (2 passed) 6 steps (6 passed) Om0O.004s

So, at the end of that whistlestop tour of testing in Ruby, you should now feel
confident that you understand the rationale, toolchain, and workflow of test-and
behavior-driven development. Let’s now move on to discuss how to go about
implementing some of these ideas with respect to infrastructure coding.

Chapter 6. A Test-Driven
Infrastructure Framework

At the time of the first edition of this book, there was only one tool and a handful
of people exploring the ideas of infrastructure testing. The first edition covered
that tool—a tool written by me as a proof of concept to demonstrate that the
project of testing infrastructure code was achievable. This tool, Cucumber-Chef,
was intentionally narrow in its purview, in that it attempted to explore one
particular aspect of the broader infrastructure-testing landscape, in a way that
reduced the commitment in terms of acquiring new machines to zero. Based
around Opscode’s Hosted Chef service and Amazon’s EC2 platform, it set out to
open the discussion and get the conversation moving.

The testing ecosystem has blossomed since the first edition of this book. Mature
frameworks are emerging, significant community adoption of the testing of
cookbooks and infrastructure is taking place, and helper tools and knife plug-ins
specifically targeted at infrastructure testing are released regularly.

This chapter takes a high-level philosophical overview of the business of testing
infrastructure code. It sets out a vision for what the landscape should look like.
This is a landscape that changes day by day. At the time of this writing—early
summer 2013—there is a profound level of interest in infrastructure testing.
Discussions abound on the mailing lists, IRC, Twitter, and in various podcasts.
It’s a dynamic, exciting, and fast-moving subject area.

That said, I believe it is possible both to set a conceptual framework for what
needs to be in place, and to outline a workflow based on the current best-of-
breed tooling available. Having presented a conceptual framework, we will
survey a selection of the currently available tools, providing examples of each
tool together with a discussion of their merits and demerits, and how they fit into
an overarching testing strategy.

Naturally in a fast-moving technology space such as infrastructure as code, the

state of the art is in flux; however, I think we can be confident that a philosophy,
methodology, and requirements list against which we can continue to measure
tools as they emerge can be synthesized.

Test-Driven Infrastructure: A Conceptual
Framework

I’1l start by setting out a high-level vision. I’'m not a believer in luck; although I
share the observation of legendary South African golfer, Gary Player, who
maintained, “The harder I practice, the luckier I get.” That said, I think it does no
harm, as a community, or a movement, to have a mascot. The MASCOT I
propose upholds the following six objectives:

Test-driven infrastructure should be:

m Mainstream

» Automated

m Side effect aware

» Continuously integrated
m Qutside-in

m Test-first

Test-Driven Infrastructure Should Be Mainstream

My vision is that soon it won’t even be questioned that developing infrastructure
is done in a test-driven way. Although a very strong case can be made for the
approach, it will never become mainstream until the barriers to entry are
lowered. It’s no surprise that, of modern languages, Ruby has most
comprehensively embraced test-driven engineering. The quality of tooling is
tremendously high with innovation and improvement seen on a regular basis.
The passion and enthusiasm of the community has made testing a popular topic,
and within the web development world, Ruby leads the way, and test-driven
development is mainstream. Within our world of infrastructure as code, the

tooling we have isn’t yet sufficiently powerful or easy to use to encourage mass
adoption, but we’re on the right trajectory.

In order for testing to become mainstream, it’s necessary to agree to a set of
standards around which to organize. Of particular concern is community
agreement about the general syntax and style of cookbooks. When developing
infrastructure code in a shared environment, enforcing a house style can be a
very valuable thing to implement. It encourages the team to work in a consistent
way and ensures that code is maximally shareable and portable.

Test-Driven Infrastructure Should Be Automated

In order for testing to become mainstream and effective, it’s essential that it’s
automated. This is especially the case for long-running, complex integration
tests. Without a workflow that includes automation of these high-value, but
labor-intensive tests, they simply won’t be run with sufficient frequency to
deliver consistent improvements.

Automation takes place at a number of levels. To an extent, the very act of
writing test code is a kind of automation. We’re encoding the steps that need to
be taken to verify that a given state has been achieved, or that a given behavior is
being exhibited. However, it’s not just the encoding of the steps required to carry
out the test that needs to be automated. We also need to automate the running of
the tests with a degree of frequency that is meaningful, and a degree of feedback
that is noticeable and unignorable.

To draw a parallel with the mainstream software development world, when
writing tests, some tests are harder to write than others. Specifically, writing unit
tests is pretty easy. Writing integration tests is harder. Writing end-to-end
acceptance tests is hardest. This means that sometimes the hardest tests are
simply not automated—in some cases the testing is left to the customer. The
same applies when testing infrastructure. It’s not difficult to write a test that
asserts that a resource has been brought into the correct state. It’s harder to test
connectivity between two layers of infrastructure, such as between database and
web server. It’s hardest of all to verify that the infrastructure behaves as it
should, from monitoring to backups, from top to bottom. In both worlds, the
most value is in the hardest stuff.

Martin Fowler likes the sound byte, “If it hurts, do more of it.” The logic behind

http://bit.ly/1evgo4s

this seemingly paradoxical statement is that there’s an exponential relationship
between the amount of pain experienced and the amount of time between
occurrences of the thing that causes pain. This is the case for converging nodes,
rebuilding servers, migrating databases, speaking to stakeholders, releasing
software, and of course, running tests. Thus it stands to reason that by doing it
more frequently, it will, in fact, start to hurt less.

If there’s any pain associated with the frequent running of tests—unreliable tests,
flakey interfaces, slow test machines, very long-running tests, or the like—it’s
especially important to automate them.

Our infrastructure tests should run automatically—ideally on every commit.
Even better would be to move to a continuous deployment model, where every
commit not only kicks off a test run, but deploys the code on a test environment
and then traverses a build pipeline with appropriate yes/no gates, ultimately
resulting in an update of the production infrastructure. This is the current state of
the art in the software development world. If infrastructure is code, we should
give serious thought to adopting the same mentality when writing Chef recipes
and cookbooks.

Test-Driven Infrastructure Should Be Side-Effect Aware

In his State of the Union presentation at the inaugural Chefconf event in
Burlingame, CA, Adam Jacob made the observation that configuration
management is effectively the study of side-effects. When we write
infrastructure code to capture a set of complex requirements, what we’re really
doing is commanding one system to take action in a way that affects another
system, which in turn impacts other systems in such a way as to bring the world
into a desired state. Chef takes this challenge in its stride—it aims to make
systems easy to reason about, to remain predictable, and understandable in the
event of a mistake.

The bigger challenge comes in the inherent portability of Chef cookbooks and
recipes. Especially amongst the popular community cookbooks—such as
Apache or MySQL, with dozens of contributors across a range of Linux, Unix,
and Windows systems—it’s entirely possible that a change or improvement
introduced for one platform will have an unexpected and adverse side-effect on
users on a different platform. Our test-driven infrastructure vision needs to

acknowledge and mitigate against this risk.

Fundamentally, we want to be confident that seemingly trivial changes to our
cookbooks don’t have unwanted side-effects. This becomes more of a challenge
if our cookbooks grow to support multiple platforms. The possibility that a
trivial change for a system running on Red Hat breaks compatibility for
FreeBSD is something that needs to be guarded against. Naturally this can be
achieved manually, by spinning up a virtual machine, running Chef, and looking
at the output, but automating this makes it far more likely that it will happen as a
matter of course. This is especially valuable as the number and complexity of
our cookbooks grow, and even more especially in an environment in which
many different developers are cooperating.

Test-Driven Infrastructure Should Be Continuously
Integrated

A key component of constructing a world in which our infrastructure testing is
both automated and side-effect aware is that the code we write should be
continuously integrated.

Another core practice from eXtreme programming, the idea of continuous
integration lies in the recognition that the traditional approach of periodically
integrating the code of a number of different people is invariably an error-prone,
time-consuming, and painful endeavor. Ron Jeffries quips, on the C2 wiki:

I’ve been working on my classes and think they are perfect. You’ve been working on yours and I
suppose you think they’re pretty good, too. Carl has been working on his, and you know how that
goes.

Now we have to integrate them to build a new system. Carl’s code, as usual, breaks everything. It
looks to me as if you have a few problems, too. My code is solid, I know that because I worked hard
on it.

What I can’t understand is why you think there might be something wrong with my code, and Carl,
the idiot, is after both of us.

We’re in for a few really unpleasant days. Maybe next time we shouldn’t wait so long to integrate...

— Ron Jeffries

The response is the principle that developers should be integrating and
committing code very frequently. This avoids diverging or fragmented
development efforts, especially where team members are not in direct
communication with each other. In a community development effort, such as

cookbooks, this is even more vital.

In an XP team, the process of integrating the code means gathering the latest
code, and running all the tests. If tests fail, collaborating on what caused the
failure and committing a fix becomes the priority task.

If we’re to be serious about developing quality infrastructure code, we need to
bring the same practices to bear. This means that our tests need to be run
automatically on commits, and the results shared visibly and publicly.

Test-Driven Infrastructure Should Be Outside In

One of the maxims of BDD is that we take an outside-in approach. Imagine I set
a group of people in a room to a programming task of moderate complexity. If
you were to watch each person in the room after I’d finished explaining the task,
I think you’d find that the most natural approach, and the statistically most likely
approach of each person would be to open up their editor of choice and start
hacking away. You might find some people opening up some kind of interactive
REPL and experimenting. Those with a grounding in agile programming
approaches might even start writing some basic unit tests. This kind of approach
is what I call “inside-out.” Straight away we’re starting to write the code to solve
the problem, even if we’re writing tests first.

BDD encourages thinking about the problem a different way. This is the great
thing about Cucumber—it allows and to an extent, even forces the developer to
step right away from the implementation details and think about how the
software should look, feel, behave, act. This is outside-in. We describe a feature
that delivers value as an executable specification. Only once we have this feature
described, and failing a test, do we start to think about how to make it pass.

The same approach makes a great deal of sense when we are doing infrastructure
development. If I set a task, such as setting up an issue tracker, and asked a
number of people in a room to carry this out, you’d see similar behavior. Most
would start by installing Apache and PHP, and then maybe think about a user,
and hack forward from there. A smaller number would start to write or even
reuse Chef cookbooks and recipes. The outside-in approach starts by writing the
feature that defines how the piece of infrastructure should behave.

We want to ensure that our cookbooks deliver the intended behavior—that they

solve the particular problem we have in mind when we set out.

I’ve already covered the foundational principles of behavior-driven
development, but I will re-emphasize the fact that none of our development
efforts are worth a thing if they don’t address a specific business value. Test-
driven infrastructure means committing to build the right thing, not just build the
thing right.

Test-Driven Infrastructure Should Be Test-First

The final objective of my mascot manifesto is that as we write our infrastructure,
not only should we be ensuring our code is under test, but that those tests should
be written before we write any Chef code. This discipline recognizes that the
tests we write are actually a development tool in themselves. The benefits are
clear:

m [t focuses attention on precisely what the cookbook/recipe needs to do.
m [t makes it very clear where the development should start.
m There is never any question about the definition of done—the test owns this.

m [t encourages a lean and efficient development approach: we build only as
much infrastructure as is needed to make the tests pass.

m In the spirit of Chef, it makes our code easy to reason about—the target is
reproducible, predictable results.

= Dependencies are flushed out early, and their minimization is a core activity.

m [t surfaces good design decisions by encouraging the creation of solutions
that are simple enough to make the test pass, but no simpler.

= In the event of unexpected failures, the debugging process is targeted.

m [t encourages refactoring—as we write code to make our tests pass, so we
should identify hints that refactoring is needed.

I asked my family what animal they felt would be appropriate as a mascot for a
test-driven infrastructure manifesto. They gave it careful deliberation before

suggesting that the best choice was a tortoise. Their reasoning was that tortoises
like eating cucumbers, don’t dash head first into things, but take a measured and
careful approach, and in fine Aesopian tradition, win the race anyway.

I’m not sure it’ll catch on, but I am sure that to achieve this sextuplet of
objectives, we need to overcome a number of technical hurdles.

The Pillars of Test-Driven Infrastructure

What, then, should be the conceptual framework that informs our choice of
tools? How do we go about ensuring that TDI is MASCOT? If we want TDI to
be mainstream, what needs to be in place? If we want our testing to be
automated, what do we need to accomplish that? What does it mean for our tests
to be side-effect aware? What specifically do we need to make sure this is
happening? What about continuous integration—how do we go about that? Are
there tools? Workflows? What do we require, and what do we lack? In order to
perform the whole endeavor test-first, what do we need? Or perhaps, what does
the beginning infrastructure developer lack, and if they were to be handed a
starter pack, with “TDI Essentials: A Toolkit for Success” written on the front,
what would it contain?

I think it makes sense to try to break the requirements down into four broad
areas. Obviously we need to write the tests themselves, which requires that we
have access to a testing framework, and supporting tools and documentation to
help us write those tests. Naturally we need to run our tests, and indeed have
them run in our absence, without our constant input. Given that we’re testing
infrastructure, we need to be able to set up and tear down—to build a test
infrastructure for the purposes of testing. This is effectively a provisioning
problem. And finally, we need to be told the results, in a meaningful way, in a
timely manner, and in such a way that encourages us to take action. That is to
say, the feedback we get needs to be directed, relevant, and accurate.

Let’s unpack these four supporting, conceptual pillars:

= Writing
= Running

= Provisioning

m Feedback

Writing Tests

The process of testing code consists of setting up state, introducing some input
that changes that state, and then comparing the resulting state with our
expectations. As discussed in Chapter 5, it’s apparent that this test writing needs
to take place at several different levels—from the high-level behavior of the
overall system we’re building, to the verification that distribution-specific
variables are evaluated correctly.

The main challenge here is in making this process easy. Having to write verbose,
manual expectations to assert that, for example, a package was installed, is
tiresome. Such expectations and assertions can be simplified and shared. The
more complex, end-to-end systems are more likely to require the solutions to
more involved and bespoke challenges, however as the corpus of tests in the
community grows, so will the body of experience and confidence.

It needs to be easy for infrastructure developers to assert that a resource is in the
desired state. Ideally this should be in the form of providing potted assertions
that can be reused, rather than requiring the developer to create this scaffolding
him or herself.

Running Tests

Once infrastructure developers feel confident in writing tests, they need to
establish the most effective way to run both their tests, and in cases Chef itself,
on or against a range of systems.

I don’t think it’s unfair to claim that the mechanism by which tests are run
automatically is pretty much a solved problem. There are mature job runners and
continuous integration frameworks and even online services that are designed
specifically for this task and are used every day by countless software
development organizations.

However, orchestrating the running of tests we have written is not without its
own challenges, especially if the tests are to be run on remote machines or to
span multiple systems. In line with our desire for maximum automation, we also
need to establish the most effective way to run tests in an unattended way, on

commit, or with predictable periodicity.

Of course, a prerequisite for being able to run these tests is the ability to
provision test infrastructure rapidly and painlessly. We consider this next.

Provisioning Machines

The holy grail of infrastructure testing is the ability to specify an infrastructure
feature, provision some hardware, apply Chef, and verify that the intended
behavior has been met, all quickly and automatically.

Primitive testing can be carried out on one’s own development workstation, but
pretty soon a need to provision fresh machines, run Chef against them, and then
test them, becomes a clear requirement.

As soon as the infrastructure we’re building has one or more of the following
characteristics, we need to solve this problem:

m The infrastructure runs on a different OS from that of the developer’s
workstation.

m The infrastructure runs on more than one OS or distribution.

And, in fact, there is always going to be a need for a complete end-to-end test,
which at the very least demands a brand new, fresh, unadulterated machine from
which to start, and which may involve a large number of different machines.

Advances in desktop virtualization technology, and the ready availability of
highly powered laptops and workstations does make keeping this test
environment on one’s local machine more achievable than it was a few years
ago. Indeed the ready availability of local test machines has brought about a
significant upsurge in people starting to take infrastructure testing seriously.
However, we need to think beyond our local machines to facilitate unattended
testing, shared infrastructure, and to accommodate the reality of a world in
which some developers suffer under highly restrictive IT policies, and in which
some organizations—especially charities, non-profits, and businesses in the
developing world—simply don’t have the same degree of power and freedom
with their local machines as others.

The requirement, therefore, is to be able to provision machines, install Chef,
create and apply appropriate run lists, and then run Chef to bring the machines in

line with our stated policy. This is a pretty in-depth process. Assuming the Chef
code has been written, we still need to make the latest version of the code
available, and then converge the node or nodes. We then need to be able to run
some kind of test against the converged nodes, from a machine that behaves like
an external client.

Virtualization has made this process much simpler than it was even 10 years ago,
and excellent network APIs exist for many cloud providers, which makes
automated provisioning as a part of the testing process well within our
capabilities.

Provisioning is made much simpler with the use of virtualization-based
technologies. The ability to create snapshots, roll forwards and backwards, or
clone or freshly provision machines makes the setting up of a platform on which
or against which to run tests an achievable aim. One variable to consider,
however, is the number of machines required. If your infrastructure supports
three or more different underlying platforms—such as two different Linux
distributions and a flavor of BSD, or Windows—the requirement is now to be
able to run and work with three machines. If these machines are to be reasonably
responsive and performant, resources in terms of processor power and memory
need to be appropriately allocated. Modern hardware brings this within reach,
with multi-core laptops with 8G of memory now not uncommon, but cases
where developer workstations are insufficiently powerful are still common, so
alternative approaches need to be considered.

Feedback of Results

It’s actually the speed of the tests that represents one of the biggest challenges.
We want the feedback time to be sufficiently quick as to be rewarding and not
frustrating.

The main constraining factor when testing Chef code, which impacts the speed
of tests, is the time taken to convergence of the node during a Chef run. A
complex cookbook, making use of search, and using the Opscode Hosted Chef
platform, could take a minute or more to run per node. Unit tests that take three
minutes to run have a high likelihood of being skipped or ignored, so working
out the most effective way to converge nodes is highly significant.

Related to the running of the tests is the mechanism for extracting the results.

Again, at small scale, running tests and observing the results is trivial. However,
storing these results for later analysis, or running the tests and being able to see
the results some hours later requires more thought.

In order to achieve continuous integration, we need to make the connection
between a line of text on a console indicating a failed test, and something that an
automated test runner can understand to mean that the build failed.

Finally, in line with our desire to encourage and enforce shared standards for
quality, it’s necessary to provide a means of both defining and assessing
compliance against those standards. This has both a community and
technological aspect—the standards need to be discussed and agreed, and then
an approach to validating code against those standards that is flexible, fast, and
automated is required.

Having drawn up a framework for Test-driven infrastructure, we now turn to
building a toolkit.

Chapter 7. Test-Driven
Infrastructure: A Recommended
Toolchain

This book began with two philosophical foundations:

1. Infrastructure can and should be treated as code.

2. Infrastructure developers should adhere to the same principles of
professionalism as other software developers.

It then outlined how to go about endeavoring to fulfill the second by the
mechanism of practicing the first.

We’ve provided a thorough introduction to the core principles and primitives of
Chef, and we’ve explored them through the means of a thorough set of worked
examples.

We then set the groundwork for the program of developing the highest standards
of software professionalism by presenting a directed but thorough introduction to
the Ruby programming language, and the principles and practices of test-driven
and behavior-driven development.

We set out a manifesto and framework around which to organize ourselves as we
seek to apply these TDD and BDD principles and practices to the paradigm of
infrastructure as code.

In this closing chapter, we give a clear recommendation and strategy for top-to-
bottom test-driven infrastructure by illustrating and evaluating the leading tools
and workflows available to assist us in our quest at this point in the evolution of
this young but exciting discipline.

Tool Selection

There is surely nothing quite so useless as doing with great efficiency that which should not be done
at all.

— Peter Drucker

Our selection of tools and recommended workflow and approach needs to be
informed by a holistic perspective on testing (and building) software in general.
Underpinning our every decision must be the core mantra that the purpose of our
testing endeavors is to ensure that not only do we build the thing right, but that
we build the right thing.

We need to check that our infrastructure code works—that it does what we
intended, but also that our infrastructure delivers the functionality that is
required. Beyond these considerations, our testing strategy must also account for
ongoing maintainability; we need to be confident in our ability to refactor, share,
and reuse our work. This moves the conversation beyond simplistic unit testing
to be an all-encompassing testing strategy.

When thinking about what a testing strategy should look like, I find Brian
Marick’s testing quadrant diagram to be particularly helpful.

Business-facing

s
o | Acceptance Usability Tests

(o
= Tests Exploratory Tests | =.
Gl oo
2 -y
g | =
b= ®
= S.
=4 Unit Test Load Tests a
S-| IntegrationTest | Penetration Tests
(Vg

Technology-facing

A successful infrastructure-testing strategy must encapsulate behaviors in all
four of the quadrants; that is, it must include activities directed around
supporting the engineering effort, both in terms of the people doing the work,
and the technology and implementation, but also in terms of supporting the
business it serves, in terms of the core stakeholders, but also at the highest level,
in terms of verifying that value has been delivered to the business.

There are some observations associated with activities in this matrix. Activities
towards the left—those that support the engineering effort—tend to lend
themselves to automation. Activities towards the top—those that face the

business and the stakeholder—tend to be more resource-intensive, but ultimately
deliver the most value.

Tasks such as load testing, penetration testing, usability testing, and exploratory
testing are really out of the scope of this book. With that in mind, of the plethora
of tools and approaches available within the world of infrastructure testing, I’'m
aiming to recommend a subset that will assist us in our activities in quadrants
one and three (i.e., tasks that support the delivery of infrastructure, rather than
critique it, but face both the business and the engineering sides).

Let’s quickly clarify terms before proceeding to a deeper discussion of the
tooling that supports their implementation.

Unit Testing
Within quadrant three, we have traditional unit tests and integration tests. A
simple definition of a unit test is:

The execution of a complete class, routine, or small program that has been written by a single
programmer or team of programmers, which is tested in isolation from the more complete system.

— by Steve McConnell “Code Complete” (Microsoft Press)

This simple definition suffices to describe what a unit test looks like. However, I
think it’s valuable to express explicitly what a unit test does not look like. A test
is not a unit test if:

m The test is not automated and not repeatable.

It is difficult to implement.

It isn’t kept around for future use.

Only a few informed people know how to run it.

It requires more than one step to run.

It takes more than a few seconds.

Integration Testing

Where unit tests are designed to test individual units of code (in as much
isolation as possible), integration tests explore how the code units interact. This

could be as simple as removing any mocks and stubs, but it could also involve
crafting a special test that explicitly tests relationships between components.

Both have value, and both need to be in place.

When thinking about unit and integration tests for Chef, it makes sense to think
about testing in terms of signal in, signal processing, and signal out. Signal input
asks the question, “Did we send Chef the correct command?” Signal processing
asks the question, “Did Chef carry out my instructions?” Signal output asks the
question: “Did my expressed intent, executed by Chef, deliver the intended
result?”

Signal In # O - Signal Qut

Signal Processing

Chef itself is fully tested—we don’t need to test that Chef providers will do what
we ask. But we do need to check that we asked Chef to do the right thing, and
that what Chef did was what we actually wanted.

For testing signal input, I recommend Chefspec. For testing signal output, I
recommend running tests using Test Kitchen, using a framework that allows you
to be effective. I think there’s significant value using the same expectation
syntax for signal in and signal out, so I offer as an option the use of Serverspec,
but also give an example of a different approach, using Bats. Honorable mention
goes to Minitest Handler on account of its ease and speed of use.

Acceptance Testing

Acceptance tests describe a requirement or a feature. They are a clear indicator
of success or completion—passing acceptance tests are an unambiguous
definition of “done.” They involve close collaboration with stakeholders and
clarify the expectations of the end users. In his book, Lean-Agile Acceptance
Test-Driven Development (Addison-Wesley), Ken Pugh gives as an example the

following kind of discussion:

Ken: Does anyone want a fast car?

Student: Yes please

Ken: Stand by...OK, here's a fast car! It goes 0-60 in 20 seconds!

Student: That's not fast!

Ken: Oh...I thought that was fast. Give me a test that would indicate that the car
is fast?

Student: It does 0-60 in 4.5 seconds.

Ken: Stand by...OK, here's the fast car! It does 0-60 in 4.5 seconds. By the way,
the top speed is 60 mph.

Student: That's not fast!

Ken: Oh...0K, give me a test that would indicate that the car is fast?

Student: The top speed is 150 mph.

Ken: Stand by...OK, here's the fast car! 0-60 in 4.5 seconds, top speed 150 mph,
60-150 in 2 minutes.

The point being made is that without customer-facing acceptance tests, it’s
difficult to know if we’ve built the right thing. Leaving an engineer to make that
decision is probably not a great idea. Something similar happens when building
infrastructure. We’re never building infrastructure in a vacuum, there’s always a
reason for the infrastructure, and the person who’s going to use it almost
certainly has some requirements. Leaving the requirements down to the
implementor opens up a high risk of the endeavor being wasteful. To give a
trivial example:

Me: Do you need a load balancer?

Stakeholder: Yes!

Me: <some time later> There, a load balancer! It uses a simple round-robin
algorithm.

Stakeholder: Oh...I wanted to balance based on number of sessions.

Me: Oh...<replaces load balancer> There, a load balancer!

Stakeholder: Oh...I wanted to terminate SSL.

Me: Oh...

The following diagram, from Gojko Adzic, illustrates the importance of striving
to build both the right thing and the thing right—a philosophy that is every bit as
applicable in the world of infrastructure as code as it is in the world of building
the software that runs on top of the infrastructure.

Build the thing right

Business

. Success
Failure

Useless Maintenance
Crap Nightmare

v
buiya 3ybus aya pjing

Speaking from personal experience, as a consultant specializing in building
automated infrastructures, and having worked with dozens of clients, I’ve seen a
number of expensive failures and presided over more than one myself. It’s all too
easy to spend time, and the customer’s money, building a perfect infrastructure
that doesn’t do the right thing. I’ve also seen cases where the operations team
has been forced into building a system that meets business requirements but is a
nightmare to maintain. Succeeding in infrastructure development means striking
the right balance, to land in quadrant two, and deliver success.

Striking this balance demands collaboration to drive out precise examples that
encapsulate requirements, and making these examples the single source of truth.
These examples become the documentation, the acceptance criteria, and the
implementation plan—all in one place. This delivers the following advantages:

m Stakeholders and implementors have a common understanding of the
requirements.

m Requirements are captured in a precise and unambiguous format.
» Documentation that enables change remains fresh and meaningful.
m An objective definition of “done” is universally understood.

The building of automated acceptance tests that represent these requirements and
can demonstrate repeatably that the right thing has been built, from an external
perspective, requires a different approach to test writing and a different set of
tools.

For acceptance testing, I recommend Cucumber, paired with the orchestration
capabilities of Test Kitchen. The enabling agent—which makes it easy for
Cucumber and Test Kitchen to work together—is a theoretically simple task, but
at present there isn’t an obvious stand-out exemplar, so I’ve written one, which
I’ve called Leibniz.

Testing Workflow

I think at this stage it makes sense to describe the workflow that I feel best
delivers results against our desired objectives. I am much indebted to the
excellent description of the Red/Green/Refactor workflow described by David
Chelimsky in “The RSpec Book” (Pragmatic Bookshelf). This is the standard
methodology used by BDD practitioners:

-————

» \
N\ A
RSpec) o y
| |
I
b I
I
)

\ refactor €— green,
!
A}

Repeat #1-7 1

when scenario
is passing

(start with Cucumber)

\ 4

o Focus on one scenario

o Write failing step definition

(drop down to RSpec)

——

Repeat #2-7 |
until scenario 1
is passing |

o Write failing example
o Get the example to pass

o Refactor

“
 Repeat #3-5

(when step is passing)

o.

o Refractor

\ until step is
| passing
|

As engineers we navigate a continuously iterative cycle of testing and
development, until we have met the acceptance criteria. The three phases are:

Red
We’ve written a failing test, which describes the behavior of a feature we
need to implement, but we haven’t written the code.

Green
We’ve written just enough code make the test pass.

Refactor
Having got the feature to work and the test to pass, we refactor the code to
improve its structure, maintainability, or performance, without altering its
external behavior.

It’s accepted practice to navigate this cycle from the outside-in; that is, to start
with the acceptance tests, and move in to unit tests, and then back out again. I
propose a variation on this patten for infrastructure code.

Write
Acceptance
Tests

Write
Unit Tests

Yes Run Unit
converge |« T <
Run Y
es
L Integration Pass?
Tests
No
Write Write
p| Integration Infrastructre
Tests Code

By this approach, we would structure our workflow as follows:

1. Capture examples that specify external acceptance criteria, from the
perspective of a consumer of the infrastructure we are building.

2. Write executable specifications using Cucumber.
3. Watch them fail.

4. Write integration tests that describe the intended behavior of a machine
once a run list has been applied to it, from the perspective of an engineer
looking at the machine itself.

5. Watch them fail.

6. Write unit tests that describe the messages we pass to Chef, and the state of
the resource collection, from the perspective of a recipe author.

7. Watch them fail.

8. Write the recipe to make the unit tests pass.

9. Navigate back up the hierarchy until all tests pass.
10. Refactor.

Before examining the recommended toolchain that helps us achieve this
approach, we need first to discuss some supporting tooling, which will assist us
in our quest.

Supporting Tools: Berkshelf

It is widely accepted and understood that effective use of Chef requires the
employment of a dependency management system. This is a common
requirement in the software development world. Berkshelf is the leading solution
in the Chef community at present.

Overview

At the conclusion of our introduction to Ruby, we discussed Bundler—a
dependency solver and portable sandboxing tool for Rubygems. If you
understood the principles of Bundler, the basic idea of Berkshelf should be very
easy to grasp. Berkshelf is, at its most basic level, Bundler for cookbooks. Let’s
review the twin goals of Bundler:

m Ensure that the appropriate dependencies are installed for a given problem
without encountering unpleasant ordering issues or cyclical dependencies.

» Ensure code can be shared between other developers, or other machines or
environments, and be confident the code and its dependencies will behave in
the same way.

Berkshelf solves these problems for cookbooks, only in the place of a Gemfile,
Berkshelf has a Berksfile.

You’ll remember from our introduction to Chef that as soon as we started relying

on recipes from other cookbooks and made use of the include_recipe
resource, we needed to update the metadata.rb file to specify an explicit
dependency on the cookbook that provided the recipe or LWRP that we wanted.
That’s perfectly reasonable and to be expected. However, my expectation is that
you pretty soon got tired of having to solve cookbook dependencies manually
and recursively. Similarly, having to upload cookbooks in the right order, one at
a time, was equally tiresome. Berkshelf takes these pains away by providing a
local dependency solving solution, and by functioning as a Chef API client for
uploading cookbooks.

Berkshelf provides considerably more functionality than this. It’s pivotal to an
entire Chef development workflow, dubbed “The Berkshelf Way” by the group
of developers from Riot Games, the company behind Berkshelf, who open
sourced it and its component tools. We’ll touch on many of these capabilities and
concepts as we explore the tooling in this chapter.

Getting Started

Berkshelf is distributed as a Rubygem. This gives you the opportunity simply to
install it with gem install berkshelf, or ensure it’s installed as part of your
Ruby/Developer cookbooks and/or roles. The other obvious approach is to use
Bundler.

$ gem install berkshelf

Fetching: nio4r-0.4.6.gem (100%)

Building native extensions. This could take a while...
Successfully installed nio4r-0.4.6

Fetching: celluloid-i10-0.14.1.gem (100%)
Successfully installed celluloid-i0-0.14.1
Fetching: ridley-1.0.1.gem (100%)

Successfully installed ridley-1.0.1

Fetching: safe_yaml-0.9.3.gem (100%)

Successfully installed safe_yaml-0.9.3

Fetching: test-kitchen-1.0.0.alpha.7.gem (100%)
Successfully installed test-kitchen-1.0.0.alpha.7
Fetching: berkshelf-2.0.1.gem (100%)

Successfully installed berkshelf-2.0.1

Installing ri documentation for nio4r-0.4.6
Installing ri documentation for celluloid-io-0.14.1
Installing ri documentation for ridley-1.0.1

Installing ri documentation for safe_yaml-0.9.3
Installing ri documentation for test-kitchen-1.0.0.alpha.7
Installing ri documentation for berkshelf-2.0.1

6 gems installed

Once Berkshelf is installed, access the help by running the following:

$ berks help
Commands:
berks apply ENVIRONMENT
to a Chef environment
berks configure
berks contingent COOKBO
berks cookbook NAME
berks help [COMMAND]
berks init [PATH]
berks install
berks list
the Berksfile
berks outdated [COOKBOO
berks package [COOKBOOK
berks shelf SUBCOMMAND
berks show [COOKBOOK]
information about a cookb
berks update [COOKBOOKS
the Berksfile
berks upload [COOKBOOKS
the Chef Server
berks version

Options:
-c, [--config=PATH]
-F, [--format=FORMAT]

-q, [--quiet]
-d, [--debug]

Example

#
#
0K #
#
#
#
#
#
KS] #
1 #
#
#
ook
1 #
1 #
#
Path

Apply the cookbook version locks from Berksfile.lock

Create a new Berkshelf configuration file

List all cookbooks that depend on the given cookbook
Create a skeleton for a new cookbook

Describe available commands or one specific command
Initialize Berkshelf in the given directory

Install the cookbooks specified in the Berksfile
List all cookbooks (and dependencies) specified in

Show outdated cookbooks (from the community site)
Package a cookbook (and dependencies) as a tarball
Interact with the cookbook store

Display name, author, copyright, and dependency
Update the cookbooks (and dependencies) specified in

Upload the cookbook specified in the Berksfile to

Display version and copyright information

to Berkshelf configuration to use.

Output format to use.

Default: human

Silence all informational output.
Output debug information

Find the irc cookbook we created in Chapter 3. Change into its top-level
directory, and have a look at the files:

$ 1s

CHANGELOG.md files metadata.rb README.md recipes

Now, let’s initialize the cookbook, so we can manage its dependencies with
Berkshelf:

$ berks 1init
create Berksfile
create Thorfile
create chefignore
create .gitignore

run git init from

create Gemfile
create .kitchen.yml
append Thorfile
create test/integration/default
append .gitignore
append .gitignore
append Gemfile
append Gemfile

You must run ‘bundle install' to fetch any new gems.
create Vagrantfile

Successfully initialized

Wow, that did a lot! Some of these files will look familiar; we know about
Vagrantfiles and Gemfiles, and I’ve already indicated that Berkshelf uses a
Berksfile. We’ve had a look at Thor—it, too, has a file of its own. The .gitignore
and chefignore files are simply there to blacklist files and directories from being
uploaded to the Chef server or checked into version control. That leaves us with
the .kitchen.yml and test/integration/default directory. We’ll cover these later in
this chapter.

Let’s have a look at the Gemfile and the Berksfile:

$ cat Gemfile
source 'https://rubygems.org'

gem 'berkshelf'
gem 'test-kitchen', :group => :integration
gem 'kitchen-vagrant', :group => :integration

$ cat Berksfile
site :opscode

metadata

The Gemfile shows three dependencies. Berkshelf itself, plus two others. We’ll
discuss the kitchen-related files when we get to our section on Test Kitchen. The
main thing of note here is the use of the :integration group. This allows us to
install the core dependency, Berkshelf, on a continuous integration server, where
we might want to solve dependencies, and carry out lint and static analysis tests
—and perhaps fast unit tests—but where we don’t want to ever run integration
tests, which is the purpose of Test Kitchen. This uses Bundler’s - -without flag,
allowing us to specify to install the dependencies, omitting certain groups.

The Berksfile follows the same pattern as the Gemfile. We specify a source—in
this case, we’re stating that by default we want to pull in dependencies from the
Opscode community site. The metadata line delegates dependencies to the
cookbook metadata.rb file. It’s effectively saying, “I’m a cookbook. If you want
to know my dependencies, check out my metadata file.”

Unsurprisingly, Berkshelf follows Bundler in having an install command:

$ berks install
Using irc (0.1.0) at path: 'hometdi/chef-repo/cookbooks/irc'
Using yum (2.2.2)

Again, like Bundler, Berkshelf recognizes that it already has local cookbooks
that satisfy the dependency, so it “uses” them. Note that these cookbooks, and all
other versions of the cookbook ever used by Berkshelf, are all stored in a
conventional directory (.berkshelf, in this case). If there were not local copies
available, it would download them from the community site.

At this stage, the similarities with Bundler evaporate, and we start to see some of
the individual power and characteristics of Berkshelf. Reviewing the commands
in the help text, I would draw your attention to three in particular:

m berks configure # Create a new Berkshelf configuration file

m berks upload [COOKBOOKS] # Upload the cookbook specified in
the Berksfile to the Chef Server

m berks apply ENVIRONMENT # Apply the cookbook version locks
from Berksfile.lock to a Chef environment

Berkshelf and Vagrant

Berkshelf provides some of the functionality we found in Knife to interact with
a Chef server. Now, remember, everything in Chef is an API client; this means
we need to configure Berkshelf as an API client. Berkshelf provides and uses its
own API client library, Ridley. We could create a new key pair, but it’s simpler
just to use the key pair we used ourselves, when we used Knife.

The berks configure command will make educated guesses based on the
content of your knife.rb file. This will be fine in our case. Let’s run the
command, and accept all the defaults:

$ berks configure

Enter value for chef.chef_server_url (default:
"https://api.opscode.com/organizations/hunterhayes'):

Enter value for chef.node_name (default: 'tdiexample'):

Enter value for chef.client_key (default: 'hometdi/chef-repo/.chef/tdiexample.pem'):
Enter value for chef.validation_client_name (default: 'hunterhayes-validator'):
Enter value for chef.validation_key_path (default: 'hometdi/chef-
repo/.chef/hunterhayes-validator.pem'):

Enter value for vagrant.vm.box (default: 'Berkshelf-Cent0S-6.3-x86_64-minimal'):
Enter value for vagrant.vm.box_url (default:
"https://dl.dropbox.com/u/31081437/Berkshelf-Cent0S-6.3-x86_64-minimal.box"'):
Config written to: 'hometdi/.berkshelf/config.json'

This all looks plausible. The only values I would draw your attention to are those
for vagrant.vm. These values exist because Berkshelf is designed to interact
with Vagrant, such that when running vagrant up, any cookbook dependencies
are solved and made available on the machine under test, and the default recipe
is converged. Now, we already downloaded a Vagrant box from the Opscode
Bento project. We should use that in preference to the default. We can find out
its name by running vagrant box list, and then we can edit the config file:

$ vagrant box list
opscode-ubuntu-10.04 (virtualbox)
opscode-ubuntu-12.04 (virtualbox)
opscode-centos-6.4 (virtualbox)
opscode-centos-5.9 (virtualbox)

On this particular machine, I have four machines, provided by the
Vagrant/VirtualBox combination. Let’s stick with the CentOS 6.4 machine.

https://github.com/RiotGames/ridley

Unfortunately, the output of the berks configure command seems to be a bit
hard to read:

{"chef":
{"chef_server_url":"https://api.opscode.com/organizations/hunterhayes","validation_c

validator","validation_key_path":"hometdi/chef-repo/.chef/hunterhayes-

validator.pem","client_key":"hometdi/chef-

repo/.chef/tdiexample.pem","node name":"tdiexample"}, "cookbook":
{"copyright":"YOUR_NAME","email":"YOUR_EMAIL","license":"reserved"},"allowed_license
[],"raise_license_exception":false,"vagrant":{"vm":{"box":"Berkshelf-Cent0S-6.3-
x86_64-minimal", "box_url":"https://dl.dropbox.com/u/31081437/Berkshelf-Cent0S-6.3-
x86_64-minimal.box","forward_port":{}, "network":
{"bridged":false,"hostonly":"33.33.33.10"},"provision":"chef_solo"}},"ssl":

{"verify":true}}
But we can fix this easily enough:'®

$ python -mjson.tool < hometdi/.berkshelf/config.json >
hometdi/.berkshelf/config.json.readable
$ grep box hometdi/.berkshelf/config.json.readable

"box": "Berkshelf-Cent0S-6.3-x86_64-minimal",

"box_url": "https://dl.dropbox.com/u/31081437/Berkshelf-Cent0S-6.3-
x86_64-minimal.box",

Open the file in an editor, remove the box_url line, and update the box entry.
This will ensure that the next time berks init is run, it will set the Vagrantfile
to use our favored box. We’re going to need to make the same edit to the
Vagrantfile within the irc cookbook: remove the box_url entry and change the
box entry. While we’re there, we should add the config entry, which tells the
Vagrant machine to install the latest Chef client from the omnibus package. This
leaves our Vagrantfile looking like this:

$ grep -v 'A$' Vagrantfile |grep -v '~ *#'
Vagrant.configure("2") do |config]|
config.omnibus.chef_version = :latest
config.vm.hostname = "irc-berkshelf"
config.vm.box = "opscode-centos-6.4"
config.vm.network :private_network, ip: "33.33.33.10"
config.ssh.max_tries = 40
config.ssh.timeout = 120
config.berkshelf.enabled = true
config.vm.provision :chef_solo do |chef]|

chef.json = {
:mysql => {
:server_root_password => 'rootpass',
:server_debian_password => 'debpass',
:server_repl_password => 'replpass'
}
}
chef.run_list = [
"recipe[irc::default]"”
]
end
end

All that remains to do is to ensure the vagrant-berkshelf plug-in is installed,
and then run vagrant up to watch the magic!

$ vagrant plugin install vagrant-berkshelf
$ vagrant plugin install vagrant-omnibus

$ vagrant up

Bringing machine 'default' up with 'virtualbox' provider...

[default] Importing base box 'opscode-centos-6.4'...

[default] Matching MAC address for NAT networking...

[default] Setting the name of the VM...

[default] Clearing any previously set forwarded ports...

[Berkshelf] This version of the Berkshelf plugin has not been fully tested on this
version of Vagrant.

[Berkshelf] You should check for a newer version of vagrant-berkshelf.
[Berkshelf] If you encounter any errors with this version, please report them at
https://github.com/RiotGames/vagrant-berkshelf/issues

[Berkshelf] You can also join the discussion in #berkshelf on Freenode.
[Berkshelf] Updating Vagrant's berkshelf: 'hometdi/.berkshelf/vagrant/berkshelf-
20130607-26262-mrad21'

[Berkshelf] Using irc (0.1.0) at path: 'hometdi/chef-repo/cookbooks/irc'
[Berkshelf] Using yum (2.2.2)

[default] Fixed port collision for 22 => 2222. Now on port 2202.

[default] Creating shared folders metadata...

[default] Clearing any previously set network interfaces...

[default] Preparing network interfaces based on configuration...

[default] Forwarding ports...

[default] -- 22 => 2202 (adapter 1)

[default] Booting VM...

[default] Waiting for VM to boot. This can take a few minutes.

[default] VM booted and ready for use!

[default] Ensuring Chef is installed at requested version of 11.4.4.

[default] Chef 11.4.4 Omnibus package is not installed...installing now.

Downloading Chef 11.4.4 for el...

Installing Chef 11.4.4

warning: tmptmp.0QLalPCu/chef-11.4.4.x86_64.rpm: Header V4 DSA/SHA1 Signature, key
ID 83ef826a: NOKEY

Preparing... B R R R

chef B R R

Thank you for installing Chef!

[default] Setting hostname...

[default] Configuring and enabling network interfaces...

[default] Mounting shared folders...

[default] -- /vagrant

[default] -- tmpvagrant-chef-1/chef-solo-1/cookbooks

[default] Running provisioner: chef_solo...

Generating chef JSON and uploading...

Running chef-solo...

[2013-06-07T08:38:25+00:00] INFO: *** Chef 11.4.4 ***

[2013-06-07T08:38:25+00:00] INFO: Setting the run_list to ["recipe[irc::default]"]
from JSON

[2013-06-07T08:38:25+00:00] INFO: Run List is [recipe[irc::default]]
[2013-06-07T08:38:25+00:00] INFO: Run List expands to [irc::default]
[2013-06-07T08:38:25+00:00] INFO: Starting Chef Run for irc-berkshelf
[2013-06-07T08:38:25+00:00] INFO: Running start handlers

[2013-06-07T08:38:25+00:00] INFO: Start handlers complete.
[2013-06-07T08:38:25+00:00] INFO: Processing yum_key[RPM-GPG-KEY-EPEL-6] action add
(yum::epel line 22)

[2013-06-07T08:38:25+00:00] INFO: Adding RPM-GPG-KEY-EPEL-6 GPG key to etcpki/rpm-
apg/

[2013-06-07T08:38:25+00:00] INFO: Processing package[gnupg2] action install
(tmpvagrant-chef-1/chef-solo-1/cookbooks/yum/providers/key.rb line 32)
[2013-06-07T08:38:32+00:00] INFO: Processing execute[import-rpm-gpg-key-RPM-GPG-KEY -
EPEL-6] action nothing (tmpvagrant-chef-1/chef-solo-1/cookbooks/yum/providers/key.rb
line 35)

[2013-06-07T08:38:32+00:00] INFO: Processing remote_file[etcpki/rpm-gpg/RPM-GPG-KEY -
EPEL-6] action create (tmpvagrant-chef-1/chef-solo-1/cookbooks/yum/providers/key.rb
line 61)

[2013-06-07T08:38:32+00:00] INFO: remote_file[etcpki/rpm-gpg/RPM-GPG-KEY-EPEL-6]
updated

[2013-06-07T08:38:32+00:00] INFO: remote_file[etcpki/rpm-gpg/RPM-GPG-KEY-EPEL-6]
mode changed to 644

[2013-06-07T08:38:32+00:00] INFO: remote_file[etcpki/rpm-gpg/RPM-GPG-KEY-EPEL-6]
sending run action to execute[import-rpm-gpg-key-RPM-GPG-KEY-EPEL-6] (immediate)
[2013-06-07T08:38:32+00:00] INFO: Processing execute[import-rpm-gpg-key-RPM-GPG-KEY -
EPEL-6] action run (tmpvagrant-chef-1/chef-solo-1/cookbooks/yum/providers/key.rb
1line 35)

[2013-06-07T08:38:33+00:00] INFO: execute[import-rpm-gpg-key-RPM-GPG-KEY-EPEL-6] ran

successfully

[2013-06-07T08:38:33+00:00] INFO: Processing yum_repository[epel] action create
(yum::epel line 27)

[2013-06-07T08:38:33+00:00] INFO: Adding and updating epel repository in
etcyum.repos.d/epel.repo

[2013-06-07T08:38:33+00:00] WARN: Cloning resource attributes for yum_key[RPM-GPG-
KEY-EPEL-6] from prior resource (CHEF-3694)

[2013-06-07T08:38:33+00:00] WARN: Previous yum_key[RPM-GPG-KEY-EPEL-6]: tmpvagrant-
chef-1/chef-solo-1/cookbooks/yum/recipes/epel.rb:22:in “from_file'
[2013-06-07T08:38:33+00:00] WARN: Current yum_key[RPM-GPG-KEY-EPEL-6]: tmpvagrant-
chef-1/chef-solo-1/cookbooks/yum/providers/repository.rb:85:1n "repo_config'
[2013-06-07T08:38:33+00:00] INFO: Processing yum_key[RPM-GPG-KEY-EPEL-6] action add
(tmpvagrant-chef-1/chef-solo-1/cookbooks/yum/providers/repository.rb line 85)
[2013-06-07T08:38:33+00:00] INFO: Processing execute[yum-makecache] action nothing
(tmpvagrant-chef-1/chef-solo-1/cookbooks/yum/providers/repository.rb line 88)
[2013-06-07T08:38:33+00:00] INFO: Processing ruby_block[reload-internal-yum-cache]
action nothing (tmpvagrant-chef-1/chef-solo-1/cookbooks/yum/providers/repository.rb
1ine 93)

[2013-06-07T08:38:33+00:00] INFO: Processing template[etcyum.repos.d/epel.repo]
action create (tmpvagrant-chef-1/chef-solo-1/cookbooks/yum/providers/repository.rb
line 100)

[2013-06-07T08:38:33+00:00] INFO: template[etcyum.repos.d/epel.repo] updated content
[2013-06-07T08:38:33+00:00] INFO: template[etcyum.repos.d/epel.repo] mode changed to
644

[2013-06-07T08:38:33+00:00] INFO: template[etcyum.repos.d/epel.repo] sending run
action to execute[yum-makecache] (immediate)

[2013-06-07T08:38:33+00:00] INFO: Processing execute[yum-makecache] action run
(tmpvagrant-chef-1/chef-solo-1/cookbooks/yum/providers/repository.rb line 88)
[2013-06-07T08:38:42+00:00] INFO: execute[yum-makecache] ran successfully
[2013-06-07T08:38:42+00:00] INFO: template[etcyum.repos.d/epel.repo] sending create
action to ruby_block[reload-internal-yum-cache] (immediate)
[2013-06-07T08:38:42+00:00] INFO: Processing ruby_block[reload-internal-yum-cache]
action create (tmpvagrant-chef-1/chef-solo-1/cookbooks/yum/providers/repository.rb
1ine 93)

[2013-06-07T08:38:42+00:00] INFO: ruby block[reload-internal-yum-cache] called
[2013-06-07T08:38:42+00:00] INFO: Processing user[tdi] action create (irc::default
line 11)

[2013-06-07T08:38:42+00:00] INFO: user[tdi] created

[2013-06-07T08:38:42+00:00] INFO: Processing package[irssi] action install
(irc::default line 18)

[2013-06-07T08:38:46+00:00] INFO: package[irssi] installing irssi-0.8.15-5.el6 from
base repository

[2013-06-07T08:38:50+00:00] INFO: Processing directory[hometdi/.irssi] action create
(irc::default line 26)

[2013-06-07T08:38:50+00:00] INFO: directory[hometdi/.irssi] created directory
hometdi/.irssti

[2013-06-07T08:38:50+00:00] INFO: directory[hometdi/.irssi] owner changed to 901

[2013-06-07T08:38:50+00:00] INFO: directory[hometdi/.irssi] group changed to 901
[2013-06-07T08:38:50+00:00] INFO: Processing cookbook_file[hometdi/.irssi/config]
action create (irc::default line 31)

[2013-06-07T08:38:50+00:00] INFO: cookbook_file[hometdi/.irssi/config] owner changed
to 901

[2013-06-07T08:38:50+00:00] INFO: cookbook_file[hometdi/.irssi/config] group changed
to 901

[2013-06-07T08:38:50+00:00] INFO: cookbook_file[hometdi/.irssi/config] created file
hometdi/.irssi/config

[2013-06-07T08:38:50+00:00] INFO: Chef Run complete in 25.150121171 seconds
[2013-06-07T08:38:50+00:00] INFO: Running report handlers
[2013-06-07T08:38:50+00:00] INFO: Report handlers complete

Well, that’s pretty impressive! In the time it would have taken us to read the
metadata file of a single machine—Iet alone upload all the cookbooks, connect
to the machine, run chef-client, and wait for it to finish—we’ve built a brand
new machine from scratch, installed Chef, solved dependencies, and converged a
node.

We can connect to the machine as before, using vagrant ssh, and check out the
configuration. This increase of speed in the feedback loop is vital if we’re to
make testing of infrastructure mainstream.

One caveat here: the current Vagrant machine is using chef -so'lo rather than
chef-client. Frankly, for testing functionality within a single cookbook, this is
frequently sufficient, and the speed of feedback is a tremendous bonus.
However, if a convergence against a Chef server is needed, Vagrant can be easily
configured to use chef-client. Also worthy of attention is chef-zero—an in-
memory implementation of the Chef server, designed for rapid testing against a
real API. As this is a very new project, I haven’t explored it in sufficient detail to
be able to discuss it with authority, but I recommend at least checking out the
Chef Zero project.

Berkshelf and Chef environments

The second command I wanted to draw your attention to was the berks upload
command. You’ll recall when we first began interacting with the Chef server,
using Knife, we used knife cookbook upload. This was a little frustrating if
we didn’t upload the cookbooks in the correct order. Berkshelf combines the
package set functionality of Bundler with the cookbook uploading functionality

https://github.com/jkeiser/chef-zero

of Knife. This means that once a set of cookbooks has been tested on a Vagrant
machine, that set of cookbooks can be uploaded to the Chef server, dependencies
and all, in a single command. Just like Bundler had a Gemfile.lock, if we now
take a look in the base directory of the cookbook, we’ll see a Berkshelf.lock file:

$ cat Berksfile.lock

{
"sha": "6ef716553a56267bb3eb743ece483db8aa%4cech”,

"sources": {

"irc": {
"locked _version": "0.1.0",
"constraint": "= 0.1.0",
"path": "."
s
"yum": {
"locked_version": "2.2.2"
}

}
}

This introduces a vitally important question in Chef. Once we’ve tested and
approved cookbooks, and pushed them to a Chef server, how can we be
confident that these are the cookbooks that will be used in perpetuity, or at least
until we decide to introduce a change?

At the same time, it is likely that we will be enhancing, fixing, or otherwise
refactoring perhaps the same cookbooks, following the test-first paradigm
explored in this book. In order to protect against the cookbooks under test
interfering with our production systems, Chef provides a mechanism for
specifying exactly which version of a cookbook should be used for machines in
this environment. Chef also supports the idea of freezing cookbooks, to prevent
them from being accidentally updated or altered once uploaded to a server. This
mechanism is referred to as Chef Environments.

Let’s take a quick look at the node attributes of one our machines:

$ knife node show romanesco

Node Name: romanesco
Environment: _default
FQDN: romanesco
IP: 192.168.26.2

Run List: role[debian], role[developer]

http://docs.opscode.com/essentials_environments.html

Roles:

Recipes:

Platform: ubuntu 13.04
Tags:

Unless explicitly set, a node in Chef will belong to a default environment called
default. In the default environment, nodes will simply use the most recently
uploaded cookbook on the platform, regardless of version number or quality.
There is no policy at all. Obviously this is a dangerous state of affairs, so it’s
considered best practice to manage the versioning of your cookbooks in such a
way as to make it easy for you to set a policy determining which versions of
your cookbooks are to be used in which environment.

When you feel you have cookbooks and recipes that are of production quality,
create an environment to enforce safe version constraints for machines whose
stability is vital. Once the node attribute of the servers you feel should have
these stable, reliable cookbooks has been set, they will not get any other
versions, and the versions in use can be frozen, so they aren’t accidentally
overwritten.

A small aside on the name “environments”: I feel that the term “environment” is
one of those rather overloaded terms in our industry. When I work with clients,
and they describe environments to me, they are usually referring to phases in the
application lifecycle and use names such as “development,” “staging,” “uat,
“perftest,” or “preprod.” It’s pretty clear that the comparison between these
environments is a function of the version of the application deployed on them,
and the type of people who will be using them. By contrast, the problem domain
that Chef environments addresses is related primarily to the ability to set and
enforce version constraints on the infrastructure code—the code that delivers the
core platform upon which the “development” or “staging” or “live”
environments are deployed. I think this namespace collision is both unfortunate
and confusing. We’re not really talking about the same kinds of environments at
all. While there may well be differences in the way in which the staging,
development, and production systems are configured, the core functionality and
behavior of the Chef code should actually be fundamentally identical between
“development,” “staging,” and “live.” For this reason, I prefer to think of Chef
environments more in terms of “testing” and “stable,” or perhaps, to borrow
vocabuary from Maven, “RELEASE” and “SNAPSHOT.” If you’re familiar

3

with Linux distribution development, you’ll probably recognize this model as
being that around which the Debian project package maintainers organize. This
approach to environments takes cookbooks that are known to be stable,
production-ready, and trusted and sets and freezes their known versions.
Development of new features and bug fixing can take place in the testing
environment, pending promotion to stable. Should there be a need to test
multiple combinations of multiple versions, there’s no limit to the number of
environments on a Chef server, so one could be created and mapped onto a
project or branch.

Although this approach is the one I like most, as with pretty much all aspects of
Chef, there is great flexibility and plenty of opportunity to use a different model.
For example, if you are attracted to using environments in Chef in a way that
models software development lifecycles akin to

DEV - TEST - STAGING - PROD, this can be achieved. In this instance, use
the cookbook metadata, rb as the place to lock dependencies. A straightforward
approch to generating these dependencies is to take the output of berks 1list
and simply transform the output to depends statements. This works particularly
well with the “application cookbook™ pattern, which we will discuss later in this
chapter. There are clear advantages and disadvantages to both approaches. If I’'m
honest, I’d state that I am not convinced with the current environments
implementation, and that the various approaches in place all feel a little
uncomfortable. For one more approach, I recommend you take a look at Dan
DeLeo’s knife boxer. Born out of Dan’s experience that “the default
environments workflow makes me want to punch someone in the face,” it offers
an alternative approach based on Dan’s rethinking of the whole environment’s
concept. I urge you to give thought to these alternatives, to experiment, and find
the approach that works best for you. However, for the time being, we’ll work
with my model.

Chef has a DSL for creating and managing environments. Simply change into
the environment’s directory in your Chef repository and create a file named
stable.rb. The DSL only needs a name, and zero or more cookbook constraints.
These can be entered individually, or using the cookbook_versions method,
which takes a hash of cookbook name and version:

name "stable"

http://www.debian.org/releases/
https://github.com/danielsdeleo/knife-boxer
https://gist.github.com/danielsdeleo/7c55ebe39639928134df

description "Stable Cookbooks"
cookbook_versions({

"irc"=>"= 0.1.0",

Ilyumll=>ll~> 2.2.0”
1))

This specifies that in the stable environment only version 0.1.0 of the irc
cookbook will be used; any version greater than or equal to 2.2.0 but less than
3.0.0 is acceptable for the yum cookbook. The version constraint syntax mirrors
that of Rubygem’s. To freeze a version of a cookbook, such that a developer is
prevented from attempting to upload an altered version of the cookbook with the

same version number, - -freeze is appended to knife cookbook upload. By
combining freezing and environments, you can be maximally confident that your
production environments will be secure and safe.

Maintaining this environment is a case of keeping track of versions that you
believe to be stable, maintaining their versions in a stable.rb environment file,
and periodically running knife environment from file to upload the
environment to the server. Chef does provide an alternative mechanism via the

knife environment edit command. This invocation, similar to knife node

edit, allows the JSON representation of the Chef environment to be set in real
time on the Chef server, over the API.

The berks apply command takes this complexity out of the environment
management process:

$ knife environment create berks_stable
Created berks_stable
$ berks apply berks_stable
Using irc (0.1.0) at path: 'hometdi/chef-repo/cookbooks/irc'
Using yum (2.2.2) at path
[tdi@tk61l irc]$ knife environment show berks_stable
chef_type: environment
cookbook_versions:
irc: 0.1.0
yum: 2.2.2
default_attributes:
description:
json_class: Chef::Environment
name: berks_stable
override_attributes:

http://docs.opscode.com/essentials_cookbook_versions.html

This has the effect of both setting and freezing the known stable cookbooks
tested via Berkshelf.

Nodes are associated with environments by means of the chef_environment
attribute. This must be explicitly set. The simplest way to ensure your production
nodes are associated with the production environment is to specify it explicitly
on the command line when provisioning or bootstrapping a machine. For more
information on the process of provisioning a machine, see
http://docs.opscode.com/knife_bootstrap.html.

Advantages and Disadvantages

Berkshelf was developed with the principal aim of simplifying the workflow
required to interact with a Chef server in a production-responsible fashion. Its
main advantage is that it provides slick usability with much less hassle than
interacting with the server via a series of knife commands. A further advantage
is that, within the Chef community, the Berkshelf tool, and the workflow patterns
it encourages, have gained a lot of traction. You are likely to enjoy responsive
support, and enthusiastic associates on the mailing lists and IRC channels.

If there’s a disadvantage to Berkshelf, it’s that the tool is integral to a highly
opinionated set of principles around how cookbook development should take
place, including a number of design patterns such as wrapper and library
cookbooks. This approach is at odds with the way in which Chef has been
traditionally taught and documented, and introduces a number of additional and
new tools. We’ll discuss this in more detail later in the chapter.

Summary and Conclusion

Berkshelf is fundamental to a whole philosophical approach to cookbook
development. However, at its core, it’s just a dependency solver and publishing
tool. Whether you agree with the underlying philosophy about roles and wrapper
cookbooks and libraries, it’s a tool that will make your life easier, and should be
in your toolkit. We’ll assume its use henceforth.

Supporting Tools: Test Kitchen

http://docs.opscode.com/knife_bootstrap.html

In my preliminary comments about tool selection I identified Test Kitchen as a
cornerstone. It’s a great enabler, allowing us to automate the running of tests and
the building of infrastructure. In this respect, it stands outside the workflow I
describe but as one of its dependencies.

Overview

Test Kitchen is an orchestration tool—it runs tests across multiple nodes,
converging them, verifying the resulting state across different platforms, and in
complete isolation. It is designed to ensure an entirely clean state for testing.
However, it isn’t a testing tool, it doesn’t makes sense to speak of writing tests
“in” Test Kitchen. Rather, it provides a framework that enables you to verify the
state of a node.

As cookbook developers, it’s common to want a simple way to increase our
confidence that our Chef code will work on a real platform in a real situation.
For example, we’d like to be confident that our recipes will work repeatably
against different operating systems or flavors of operating system, especially if
our cookbooks are designed to work across a large number of platforms. My
reference Linux platform is CentOS, but I try to ensure my cookbook will also
work on Debian-derived systems. However, if a community member submits a
pull request to add support for Arch Linux or Suse, I first want to be reassured
that this enhancement doesn’t introduce any regressions that the cookbook still
works on CentOS and Ubuntu, and second, if I accept the pull request, I now
have a responsibility to ensure that the cookbook continues to work on Arch
Linux or Suse. I don’t develop on or use these distributions very frequently, so
the ability to be able to verify the functionality of the cookbook on all supported
platforms is very advantageous.

Running these tests is expensive, in terms of time. Anything that can be done to
automate and speed up the feedback loop is attractive. The foundational design
goal for Test Kitchen was to provide the simplest, leanest orchestration
framework possible that would deliver the requirements for continuously
integrating cookbooks across multiple platforms. The simplest way to achieve
this would be for the continuous integration server to be preinstalled with
Rubygem, or have a Gemfile, followed by a bundle install. Then simply running
a Rake or Thor task will carry out everything required to test the cookbooks,

with no need for further configuration unless the specific behavior of Test
Kitchen needs to be altered. To support operation in continuous integration
environments, the tasks finish with a non-zero exit code only if something in the
testing process failed. Otherwise the explicit assumption is that the tests passed.

Although specifically built to facilitate continuous integration, Test Kitchen also
provides a complete cookbook development testing environment for the user
simply wishing to write cookbooks in an iterative and test-driven fashion.

The current version of Test Kitchen is effectively a complete rewrite of an earlier
project. Although an excellent utility, the earlier version didn’t meet the
requirement of doing the simplest thing that could possibly work for CI. For
example, it provided the apt cookbook and ran apt-get update, it installed
Rsync, and assumed the use of Minitest Handler. All machines were created in
serial, which meant the process of testing across many platforms was very time-
consuming. The new version tackles these weaknesses and provides a complete
framework for creating, provisioning, testing, and destroying a range of systems,
rapidly, in parallel, and in a way that is designed to plug into continuous
integration and deployment pipelines.

Getting Started

At the time of this writing, the 1.0 release of Test Kitchen is being prepared; by
the time you read this, it’ll be released. To make the tool available, simply add
test-kitchen to your Gemfile. Since Berkshelf 2.0, Test Kitchen support is
included in the Gemfile created by berks cookbook or berks init.

$ gem install test-kitchen

The primary context in which Test Kitchen operates is a single cookbook. The
expectation is that it will be used to test and maintain the functionality of a given
individual cookbook across multiple platforms, ensuring that the contract it
claims to provide to infrastructure developers using the cookbook is honored.

Test Kitchen is driven entirely by a YAML file: a simple data representation
format, which describes the configuration of systems and the tests we wish to
run. If you’ve used TravisClI, this will be very familiar as an approach. The idea
is to have an expressive way to define our testing strategy statically. It allows the

developer to define that these tests should be run on these platforms, in these
places. For example, we might wish to run all tests on EC2 with one exception,
which we want to run on Rackspace. The file that describes this—.kitchen.yml—
is, therefore, a testing manifest, and is explicitly not executable code.

Test Kitchen additionally has a command-line interface and is built upon Thor,
meaning each command is also accessible as a Thor task, executable by a job
runner or continuous delivery server.

Running kitchen without arguments gives the various options available:

kitchen
Commands:

kitchen console # Kitchen Console!

kitchen converge [(all|<REGEX>)] [opts] # Converge one or more instances

kitchen create [(all|<REGEX>)] [opts] # Create one or more instances

kitchen destroy [(all|<REGEX>)] [opts] # Destroy one or more instances

kitchen driver # Driver subcommands

kitchen driver create [NAME] # Create a new Kitchen Driver gem project

kitchen driver discover # Discover Test Kitchen drivers published
on RubyGems

kitchen driver help [COMMAND] # Describe subcommands or one specific
subcommand

kitchen help [COMMAND] # Describe available commands or one
specific command

kitchen init # Adds some configuration to your
cookbook so Kitchen can rock

kitchen list [(all|<REGEX>)] # List all instances

kitchen login (['REGEX']|[INSTANCE]) # Log in to one instance

kitchen setup [(all|<REGEX>)] [opts] # Setup one or more instances

kitchen test [all|<REGEX>)] [opts] # Test one or more instances

kitchen verify [(all|<REGEX>)] [opts] # Verify one or more instances

kitchen version # Print Kitchen's version information

The basic unit of reasoning in Test Kitchen is called an instance. An instance is
composed of a platform and a suite. A platform is a combination of operating
system, version, Chef version, architecture, and name. Conceivably it could also
include a specification as to whether the instance is a physical or virtual
machine. A suite is a run list with optional node attributes. It represents
something we wish to test, for example, a Redis cookbook using a package or
building from source.

Test Kitchen will then build a pairwise matrix of platforms and suites, resulting

in the final set of instances that will be managed.

There are five lifecycle events in the existence of an instance:

create
Brings an instance into existence and boots it, providing a system ready for
work to begin

converge
Installs Chef, creates a sandbox of what is needed for testing—roles,
databags, attribute data—and uploads it to the instance. Next, Chef is run,

either in chef-solo or chef-zero form.

setup
Sets up a gem, called Busser, on the instance, which is responsible for
preparing whatever test harness runners and plugins are needed to test the
cookbook. The mechanism has no dependencies, and uses the embedded
Ruby provided by Chef.

verify
Runs any test suites that have been written. It will take no action if no tests
are found. In the event of a test failure, the action will return with a non-zero
exit code, suitable for signalling a broken build to a continuous integration
service.

destroy
Simply destroys the instance and returns the host system to a clean state.

Additionally, there is a master action—test—designed for clean CI purposes,
which will run the destroy, create, converge, setup, and verify tasks, before
finally running destroy once more.

Test Kitchen has the concept of drivers, which determine how and where the
infrastructure required for the tests will be built. By default, the driver used is
Vagrant, but Test Kitchen also supports cloud-based systems and is easily
extensible.

Summary and Conclusion

We will cover detailed use of Test Kitchen shortly, with examples, when we look
at using Serverspec and Bats for integration testing, but in summary, let me state
that Test Kitchen is shaping up to be the one-stop-shop for cookbook testing. It is
very actively developed and has considerable community traction. Support for
Windows systems is under active development, and while improvements and
enhancements are happening on a daily basis, the core design and API has been
stable for a number of months.

Test Kitchen is the tool you should have at the very heart of your workflow.
Because of its integration with Berkshelf and Vagrant, it replaces these as your
primary interface to provisioning systems. It can easily be configured to use
alternative provisioning backends, instead of Vagrant, and with the chef-zero
driver, provides a complete client/server testing experience with a very fast
feedback loop.

The Busser architecture makes Test Kitchen an effectively unlimited framework
in terms of flexibility. The growing ecosystem of plugins can be observed by
performing a search on rubygems.org for the string “busser-".

The high-level tasks available on the command line make the iterative process of
creating, converging, verifying, and destroying simple and effective. And the
ability to develop on a preferred platform and then test across a range of
platforms all from the same interface is extremely convenient.

For further documentation and examples, I recommend looking at the project
homepage on GitHub, and at Fletcher Nichol’s cookbooks, particularly the rbenv
and razor cookbooks.

Acceptance Testing: Cucumber and Leibniz

The first edition of this book introduced the fundamental idea of applying
behavior-driven development (BDD) and the acceptance testing paradigm to
infrastructure code. As the world of test-driven infrastructure has matured, the
approach of the first infrastructure BDD tool, Cucumber-Chef, has been
superseded by a more modular approach, which can be implemented by writing
examples using Gherkin/Cucumber, and orchestrating the provisioning of
infrastructure and running of tests using a separate tool—one such example is
the newly released Leibniz project by the current author.

Overview

Testing classes and methods is trivial. Mature unit testing frameworks exist that
make it very easy to write simple code test-first. As the complexity of the system
under test increases and the requirement to test code that depends on other
services arises, the frameworks become more sophisticated, allowing for the
creation of mock services and the ability to stub out slow-responding or third-
party interfaces. As a relevant aside, see “Mocks Aren’t Stubs” by Martin
Fowler for an excellent discussion of the difference between mocking and
stubbing.

Writing integration tests that exercise the code end-to-end is an order of
magnitude more involved. A successful integration testing strategy will require
the use of specialist testing libraries for testing network services, GUI
components, or JavaScript.

Testing code that builds an entire infrastructure is a different proposition
altogether. Not only do we need sophisticated libraries of code to verify the
intended behavior of our systems, we need to be able to build and install the
systems themselves. Consider the following test:

Scenario: Bluepill restarts Unicorn
Given I have a newly installed Ubuntu machine managed by Chef
And I apply the Unicorn role
And I apply the Bluepill role
And the Unicorn service is running
When I kill the Unicorn process
Then within 2 seconds the Unicorn process should be running again

To test this manually we would need to find a machine, install Ubuntu on it,
bootstrap it with Chef, apply the role, run Chef, log onto the machine, check
Unicorn is running, kill Unicorn, then finally check that it has restarted. This
would be tremendously time-consuming and expensive—so much so that
nobody would do it. Indeed, almost no one does because despite the benefits of
being able to be sure that our recipe does as it is supposed to, the cost definitely
outweighs the benefit.

The answer is, of course, automation. The explosion of adoption of
virtualization, both on workstations and servers, and the widespread adoption of

http://bit.ly/1gamvHM

public and private cloud computing, makes it much easier to provision new
machines, and most implementations expose an API to make it easy to bring up
machines programmatically. Similarly of course, Chef is designed from the
ground up as a RESTful API. Libraries exist and can be built upon to access
remote machines and perform various tests. What is required is a way to
integrate the Chef management, the machine provisioning, and the verification
steps with a testing framework that enables us to build our infrastructure in a
behavior-driven way.

Cucumber provides the ideal framework for capturing requirements in a form in
which they can be tested. It provides a very high-level domain specific language
for achieving this. By following a few simple language rules, it’s possible to
write something that is highly readable and understandable by the business, but
which itself is an executable specification—something that functions as an
automated acceptance.

Cucumber achieves this by wiring the high-level requirements to Ruby code that
sets up state and makes assertions. In Cucumber terminology, we capture
features, which are mapped onto tests in steps. These steps have the
responsibility of setting up the state we need prior to making assertions against
the requirements, perhaps making changes to the state, in line with the
requirements, before finally tearing down whatever state was needed in order to
be able to run the tests.

The significant difference when compared to unit testing, especially in our
specific context, is that the number of steps and relative complexity is
considerably higher. We need to write steps that build machines, install Chef, set
up run lists, make cookbooks available, maybe make changes, maybe disable
services. We then need to carry out external probes: for example, using a web
page, logging onto a machine, or speaking to a service over the network. These
kinds of steps are difficult to write and time-consuming. However, they do
provide excellent value—they truly demonstrate whether the infrastructure code
we have developed has delivered the functionality that is needed.

My first foray into this space was to write an integrated tool that generated
examples tests, built infrastructure, handled all aspects of the Chef provisioning
process, and finally reported results. That tool—Cucumber-Chef—is still widely
used, but with the benefit of a few years’ more experience, I now feel a slightly

different model is called for.

With recent releases of both Vagrant and Test Kitchen, we now have mature
tooling for provisioning infrastructure and running Chef, fully customizable to
our needs, whether those are containerized app or OS deployments with Linux
Containers, local virtualization solutions with VirtualBox or VMware, private
cloud infrastructures with Openstack or Openshift, or public cloud
infrastructures with Amazon AWS, Rackspace cloud, or Microsoft Azure. In the
same way that Chef provides primitives for automating the components of an
infrastructure upon which we deploy our applications, what is needed is a set of
primitives for building stacks of machines and delivering desired state through
configuration management. In the spirit of the Unix philosophy, we should write
programs that do one thing and do it well, and write programs to work together.

Cucumber admirably fits into this philosophy—it runs executable specifications
and reports their result. Vagrant and Test Kitchen similarly. What is missing is a
tool that ties them together, which would make it easy, in the context of
Cucumber steps, to provision and test infrastructure. Leibniz provides this
capability.

Leibniz provides an integration layer between Cucumber and Test Kitchen, in
the form of steps that can be used in feature files to describe and provision
infrastructure for acceptance testing.

Getting Started

We already know how to get started with Cucumber, as we covered it in the
Hipster Assessor. Leibniz is a very simple Rubygem, which provides steps to
Cucumber to provision machines via Test Kitchen.

Therefore we need only add the following three things to a Gemfile:

gem 'cucumber'
gem 'rspec-expectations'
gem 'leibniz'

However, where should the Gemfile be? That may seem like a ridiculous
question, but think for a moment. As a cookbook author, especially a cookbook
that is widely used in the community, the task of developing, testing, and

http://www.faqs.org/docs/artu/ch01s06.html
http://leibniz.cc

releasing code is somewhat akin to that of a Rubygem, or even of working on an
aspect of a core library within Ruby. This is code that is used by people to
perform a task. It’s building-block code. The way we test a library in Ruby is
very different from the way we test a Rails application. The Rails application
provides a service to an external user. Sure it might actually just be an internal
API, but it sets up a contract with and is consumed by an external agency. That’s
not quite the same as StringlO within the Ruby standard library. Let me come at
this from a different perspective.

When we are building infrastructure with Chef, it’s essential to think from the
outside in. Why are we actually building this infrastructure? What service does it
provide? As Jamie Winsor, developer at Riot Games, creators of Berkshelf and
makers of League of Legends, says, “Nobody plays CentOS, or Nginx. They
play League of Legends!”

With this in mind, I would argue that the kind of acceptance testing that I
advocate makes most sense not so much in the context of the Nginx cookbook,
as in a cookbook that describes the top-level service that consumes the Nginx
cookbook. This pattern is known as The Application Cookbook.

The application cookbook pattern is characterized by having decided the top-
level service that we provide and creating a cookbook for that service. That
cookbook wraps all the dependent services that are needed to deliver the top-
level service. For example, an “awesome” web application might need
components such as an app server, a database server, a load balancer. Each of
these components is given a recipe that includes—and if necessary alters the
behavior of—cookbooks that provide infrastructure modeling primitives such as
Nginx, MySQL, and Redis.

This looks a lot like the kind of thing that might be accomplished using a Chef
role, but has some significant advantages.

First of all, cookbooks can be explicitly versioned and tracked in a way that roles
can’t. Roles function as a (potentially dangerous) global variable that, when
changed, will impact every node that has the role on its run list. Cookbooks can
be explicitly versioned, frozen, and pinned, depending on use case.

Second, the behavior that the role describes, and encapsulates its meaning,
should be tested. Where do we keep the tests? Where do we keep any
documentation or change log? If the need should arise (and we should avoid it)

to incorporate logic to control the behavior of the role, we have the power and
flexibility to do so, and to test that logic. None of these options look easy when
using the role DSL and a run list.

Third, we can use precisely the same toolkit for solving dependencies,
interacting with the Chef API, and performing local testing, without having to
maintain an additional primitive and its state.

If we look at the function of a role, it really does three things:

1. Contains and manipulates run lists
2. Alters recipe behavior using attributes
3. Provides simple taxonomy to label and tag nodes

The use of an application cookbook removes the need for the first and the
second, although one consideration is that with a single cookbook/recipe on the
run list, it’s not possible to find, via the Chef API, which recipes will be run on a
node. This can be found, however, using the knife audit command.

Nodes simply get either the top-level awesome recipe, if the node includes
absolutely everything in one place, or it is given the recipe that corresponds to
the logical function in the application, such as awesome: :cache_server.

If there is a need to alter the behavior of an upstream cookbook, attributes can be
set in a recipe, and if functionality needs to be added, tested, or tweaked, this can
be achieved by wrapping upstream cookbooks in a manner that looks much like
object inheritance. This has the twin advantages again of being testable, but also
of avoiding constant forking of upstream cookbooks.

Tagging can be achieved by using the explicit tagging capabilities of Chef, or
with a custom attribute set with a recipe in a cookbook. On occasions where
cookbooks search for machines having a certain role, this can be supported by
using an empty “marker” role, or by modifying the recipe to use a different way
to categorize and find nodes.

Finally, I think that keeping as much as possible in cookbooks allows us to
design our cookbooks in accordance with good object-oriented design principles.
This is because we can treat cookbooks, recipes, and resources much more like
objects than we can a mixture of data and code, which is what we have with the

https://github.com/jbz/knife-audit

combination of roles and cookbooks.

At this point I urge you to buy and read the excellent Practical Object-Oriented
Design in Ruby by Sandi Metz (Addison-Wesley). Let me summarize very
briefly some key takeaways as directly applicable to infrastructure as code:

m Change is inevitable. We can’t predict how things will change, but they will.
We should design our infrastructure code in such a way as to accommodate
the inevitability of change.

m Tying tests to the implementation makes refactoring difficult, so testing the
external interface, outside-in, is the best way to build for change.

= We should favor loose coupling and build to test, valuing highly ease of
change and embracing refactoring.

= Dependencies are inevitable. We will need to express and use dependencies in
our designs, but should think carefully about them.

» Building our cookbooks to be pluggable and reusable, with clearly defined
behavior, will help keep dependencies healthy.

m Object-orientation is all about message-sending. We should follow the
principles of encapsulation and trust; our cookbooks don’t need to know a lot
about each other.

With this in mind, I would advocate that when modeling infrastructure, the first
thing we should do is create a cookbook that presents the external service in a
way that can be reasoned about and tested.

Example

The use of Cucumber and Leibniz is actually fundamentally pretty trivial. The
value is first in the conversations, and second in the downward descent into the
lower regions of the testing workflow. It’s here that the design will emerge, and
that the nuts and bolts infrastructure code takes place.

All we’re doing at the top-most level is writing a test that will exercise the
external interface of the infrastructure we’re building.

Of course, such words cover a multitude of complications, and the actual process

http://www.poodr.info/

of writing those steps is not actually so easy. Nevertheless, I'll show an example
of testing an application cookbook, from the outside in, beginning with
Cucumber, and ending with the test passing.

Let’s start with the requirements.

We’re going to begin with a trivially simple infrastructure project. I usually find
that it makes sense to make it into a bit of a story, to get into the mood of
capturing requirements. In practice, I’m going to have you serve a simple
website. But let’s make it a bit more fun.

The scenario I am painting for you is that we, as infrastructure developers, have
been approached by a small graphic design agency. This sort of thing happens
quite often at Atalanta Systems—because we provide outsourced sysadmin and
infrastructure development services, it’s not uncommon for even very small
companies to approach us and ask us to help them with their infrastructure.

The owner of the company has sent you an email, which reads:

Hi there,

I run a small graphic design agency. It’s been running for a year or two, mostly on the basis of word-
of-mouth and referral. However, we’d like to expand our horizons a little, and so we’d like to put
together a simple website that describes what we do, with a few case studies or references. A friend
of mine suggested you might be a good person to speak to about putting together whatever is
necessary to get this running in the cloud. We can handle the design of the content, and we’ve hired a
web designer who is going to pull it together. However, we’re not really technically minded, so we’d
appreciate some help with actually getting it live in a reliable and secure fashion. Can you help?

Best,
Miles Hunt

This sounds pretty trivial to you; all that’s needed is a web server and a
mechanism of getting their content onto it. Of course we don’t yet know
anything about whether the design agency is using a CMS, and we don’t know
about the various non-functional requirements, such as how frequently it should
be backed up, how many users are expected, what a reasonable response time
might be, and so on.

The very first step, therefore, is to find the stakeholder, and book some time with
her. You arrange a meeting and bring your laptop with you to the meeting. This
is important because in the meeting you’re going to talk about the rationale for
the project and the acceptance criteria, and these need to go into the feature
specification. You could take notes on paper and then go away, but part of the

beauty of Cucumber is that you can sit down with non-technical people and start
writing the test right there and then.

I found one of my children roaming around the house looking for something to
do, so I sat him down and made him pretend to be a person wanting a website,
like our fictional depiction of Miles Hunt.

I opened up a buffer in Emacs, and I wrote:
Feature:

We talked for a bit, and we agreed that the minimum viable feature for the
project was that a prospective customer could browse to the website and read
about the services offered by the design agency. As a result, we added “Potential
customer can read about services” to the feature, and described the feature as
follows:

Feature: Potential customer can read about services

In order to generate more leads for my business
As a business owner
I want web users to be able to read about my services

We then talked about a possible example that would demonstrate that the most
fundamental requirements had been met. We agreed that the following would
make sense:

Scenario: User visits home page

Given a url http://wonderstuff-design.me

When a web user browses to the URL

Then the user should see "Wonderstuff Design is a boutique graphics design
agency."

We agreed that if this test passed, we’d feel that significant progress had been
made, so we didn’t write any more scenarios at this stage.

As we discussed earlier, Gherkin is a plain text DSL for mapping high-level
stakeholder requirements to source code that sets up state and verifies it against
those requirements. When starting an infrastructure project, I’d recommend
setting aside some time to talk through the reasons for the requirement, and to

understand what the simplest thing would be that would deliver value and move
the project forward.

I’'m not a big fan of capturing dozens of detailed stories at the start; I’d rather get
two or three down first and get started on that. You can always go back for more
later.

It doesn’t matter if the form in which you take down the initial requirement
doesn’t end up being exactly the form you use—you can go back and check
language later; the most important thing to do is have the conversation and
capture the output of that conversation. For this reason, I asked you to write the
feature before anything else.

Having captured the requirement, we need to work out how to test it.

Let’s start by creating a cookbook to encapsulate the services we need:

$ berks cookbook wonderstuff
create wonderstuff/files/default
create wonderstuff/templates/default
create wonderstuff/attributes
create wonderstuff/definitions
create wonderstuff/libraries
create wonderstuff/providers
create wonderstuff/recipes
create wonderstuff/resources
create wonderstuff/recipes/default.rb
create wonderstuff/metadata.rb
create wonderstuff/LICENSE
create wonderstuff/README.md
create wonderstuff/Berksfile
create wonderstuff/Thorfile
create wonderstuff/chefignore
create wonderstuff/.gitignore
run git init from "./wonderstuff"
create wonderstuff/Gemfile
create .kitchen.yml
append Thorfile
create test/integration/default
append .gitignore
append .gitignore
append Gemfile
append Gemfile
You must run ‘bundle install' to fetch any new gems.
create wonderstuff/Vagrantfile

Now let’s update the Gemfile and then run Bundle:

$ cat Gemfile
source 'https://rubygems.org'

gem 'berkshelf'

gem 'test-kitchen', :group => :integration

gem 'kitchen-vagrant', :group => :integration
gem 'cucumber', :group => :integration

gem 'rspec-expectations', :group => :integration
gem 'leibniz', :group => :integration

Now, we already know from our Hipster Assessor, that we need to create a
features directory and a steps directory, and then create a feature containing the
acceptance criteria:

mkdir -p wonderstuff/features/step_definitions
cat <<EOF > wonderstuff/features/readable_services.feature
Feature: Potential customer can read about services

$

$

>

>

> In order to generate more leads for my business

> As a business owner

> I want web users to be able to read about my services
>
>
>
>
>

Scenario: User visits home page
Given a url http://wonderstuff-design.me
When a web user browses to the URL
Then the user should see "Wonderstuff Design is a boutique graphics design
agency."
> EOF

Now, let’s think about this a little bit. We’ve captured the basic requirement, now
let’s think about what’s involved in testing this infrastructure. We’re going to
need a machine, an operating system, Chef, a cookbook, a run list, and then we
need to run Chef. Leibniz exists to make this easy for us. To use Leibniz, all we
need to do is add a background description, containing a table detailing the
infrastructure we want to build:

Background:

Given I have provisioned the following infrastructure:
| Server Name | Operating System | Version | Chef Version | Run List

| wonderstuff | ubuntu | 12.04 | 11.4.4 | wonderstuff::default |
And I have run Chef

What this will do is launch a machine using Test Kitchen, with the preceding
specification, and make available an object that provides instance data from Test
Kitchen.

Let’s look again at the example we took from Corin, I mean, Miles Hunt:

Scenario: User visits home page

Given a url http://wonderstuff-design.me

When a web user browses to the URL

Then the user should see "Wonderstuff Design is a boutique graphics design
agency."

This seems fine—it describes the behavior as needed. Let’s run our test, which
currently reads:

Feature: Potential customer can read about services

In order to generate more leads for my business
As a business owner
I want web users to be able to read about my services

Background:

Given I have provisioned the following infrastructure:

| Server Name | Operating System | Version | Chef Version | Run List [

| wonderstuff | ubuntu | 12.04 | 11.4.4 | wonderstuff::default |
And I have run Chef

Scenario: User visits home page
Given a url http://wonderstuff-design.me
When a web user browses to the URL

Then the user should see "Wonderstuff Design is a boutique graphics design
agency."

Now let’s run our test:

$ cucumber
Feature: Potential customer can read about services

In order to generate more leads for my business
As a business owner
I want web users to be able to read about my services

Background: #
features/readable_services.feature:7
Given I have provisioned the following infrastructure:#
features/readable_services.feature:9
| Server Name | Operating System | Version | Chef Version | Run List [
| wonderstuff | ubuntu | 12.04 | 11.4.4 | wonderstuff::default |
And I have run Chef #
features/readable_services.feature:12

Scenario: User visits home page
features/readable_services.feature:14
Given a url http://wonderstuff-design.me
features/readable_services.feature:16
When a web user browses to the URL
features/readable_services.feature:17
Then the user should see "Wonderstuff Design is a boutique graphics design

agency." # features/readable_services.feature:18

1 scenario (1 undefined)
5 steps (5 undefined)
Om0.003s

You can implement step definitions for undefined steps with these snippets:

Given(/”I have provisioned the following infrastructure:$/) do |table|
table is a Cucumber::Ast::Table
pending # express the regexp above with the code you wish you had
end

Given(/~I have run Chef$/) do
pending # express the regexp above with the code you wish you had
end

Given(/”a url http:\/\/wonderstuff\-design\.me$/) do
pending # express the regexp above with the code you wish you had
end

When(/”a web user browses to the URLS$/) do
pending # express the regexp above with the code you wish you had
end

Then(/~the user should see "(.*?)"$/) do |argl|
pending # express the regexp above with the code you wish you had

end

If you want snippets in a different programming language,
just make sure a file with the appropriate file extension
exists where Cucumber looks for step definitions.

This should look familiar. We’re now going to write the steps that map the
Gherkin code to real Ruby that will provision and exercise our infrastructure.

require 'leibniz'
require 'faraday'

Given(/7I have provisioned the following infrastructure:$/) do |specification|
@infrastructure = Leibniz.build(specification)
end

Given(/~I have run Chef$/) do
@infrastructure.destroy
@infrastructure.converge

end

Given(/?a url "(.*?)"$/) do |url|
@host_header = url.split('').last
end

When(”~a web user browses to the URL$/) do
connection = Faraday.new(:url => "http://#{@infrastructure['wonderstuff'].ip}",
:headers => {'Host' => @host_header}) do |faraday|
faraday.adapter Faraday.default_adapter
end
@page = connection.get('').body

end

Then(~the user should see "(.*?)"$/) do |content|
expect(@page).to match #{content}
end

We begin by requiring the Leibniz library to give us access to the steps that
allow us to interact with Test Kitchen. We also require the Faraday library, which
is a powerful and pleasant-to-use Ruby HTTP client library.

The first two steps come from Leibniz, and do pretty much exactly what they

say: they build infrastructure according to the specification in the table, run the
destroy task to ensure a clean environment, and then run the converge task.

The third step simply takes the URL and extracts what will be necessary to pass
as the Host header to the web server. Given that we’re not going to have a real
DNS entry, this is a tidy way to have a scenario devoid of testing and
implementation detail, which translates to a trivial Ruby method.

The fourth step instantiates an instance of the Faraday HTTP client, passing as
its arguments the IP address of the machine we provisioned, and the Host header
we calculated. We then perform an HTTP GET and capture the body.

Finally we assert that the page will match the content we specified in the
scenario.

A very simple example, but one that exercises the system from top to bottom and
demonstrates the principles at play.

Let’s run the test:

$ cucumber
Feature: Potential customer can read about services

In order to generate more leads for my business
As a business owner
I want web users to be able to read about my services

Background: #
features/readable_services.feature:7
Given I have provisioned the following infrastructure: #
features/step_definitions/visit-home-page-steps.rb:4
| Server Name | Operating System | Version | Chef Version | Run List
I
| wonderstuff | ubuntu | 12.04 | 11.4.4 |
wonderstuff::default |
And I have run Chef #
features/step_definitions/visit-home-page-steps.rb:8

Scenario: User visits home page
features/readable_services.feature:14
Given a url "http://wonderstuff-design.me"
features/step_definitions/visit-home-page-steps.rb:13
When a web user browses to the URL
features/step_definitions/visit-home-page-steps.rb:18
Connection refused - connect(2) (Faraday::Error::ConnectionFailed)

optrubies/1.
optrubies/1.
optrubies/1.
optrubies/1.
optrubies/1.
optrubies/1.
optrubies/1.
optrubies/1.
optrubies/1.
optrubies/1.

O O OV VOV OV OV OV OV ©

9

.3-p429/1ib/ruby/1.
.3-p429/1ib/ruby/1.
.3-p429/1ib/ruby/1.
.3-p429/1ib/ruby/1.
.3-p429/1ib/ruby/1.
.3-p429/1ib/ruby/1.
.3-p429/1ib/ruby/1.
.3-p429/1ib/ruby/1.
.3-p429/1ib/ruby/1.
.3-p429/1ib/ruby/1.

O O OV OV OV OV OV OV O

9

.1/net/http.rb:763:in ‘initialize'
.1/net/http.rb:763:1n ‘open'
.1/net/http.rb:763:1n "block in connect'
.1/timeout.rb:55:1n "timeout'
.1/timeout.rb:100:1n "timeout'
.1/net/http.rb:763:1n ‘connect'
.1/net/http.rb:756:1n “do_start'
.1/net/http.rb:745:in ‘start'
.1/net/http.rb:1285:1n ‘request'
.1/net/http.rb:1027:1n ‘get'

hometdi/.gem/ruby/1.9.3/gems/faraday-
0.8.7/1ib/faraday/adapter/net_http.rb:73:in ‘perform_request'

hometdi/.gem/ruby/1.9.3/gems/faraday-
0.8.7/1ib/faraday/adapter/net_http.rb:38:in ‘call'

hometdi/.gem/ruby/1.9.3/gems/faraday-0.8.7/1ib/faraday/connection.rb:247:1in

‘run_request'

hometdi/.gem/ruby/1.9.3/gems/faraday-0.8.7/1ib/faraday/connection.rb:100:1in

‘get'

./features/step_definitions/visit-home-page-steps.rb:23:1n “/*a web user
browses to the URLS/'
features/readable_services.feature:17:in ‘When a web user browses to the URL'
Then the user should see "Wonderstuff Design is a boutique graphics design
agency." # features/step_definitions/visit-home-page-steps.rb:27

Failing Scenarios:

cucumber features/readable_services.feature:14 # Scenario: User visits home page

1 scenario (1 failed)
5 steps (1 failed, 1 skipped, 3 passed)

1m5.946s

We have a failing acceptance test—unsurprisingly because we haven’t built
anything. I’m now going to race through the steps of adding integration tests and
unit tests, without comment, as we’ll discuss these in detail shortly. Once we
have the unit and integration tests passing, we’ll run the Cucumber test again,
and we should be all green!

Next we write the integration tests:

require 'spec_helper'
describe 'Wonderstuff Design' do

it 'should install the lighttpd package' do
expect(package 'lighttpd').to be_1installed

end

it 'should enable and start the lighttpd service' do
expect(service 'lighttpd').to be_enabled
expect(service 'lighttpd').to be_running

end

it 'should render the Wonderstuff Design web page' do
expect(file('varwww/index.html')).to be file
expect(file('varwww/index.html')).to contain 'Wonderstuff Design is a boutique
graphics design agency.'
end

end

And run it;

$ kitchen verify
----- > Starting Kitchen (v1.0.0.alpha.7)
----- > Verifying <default-ubuntu-1204>

Removing optbusser/suites/serverspec
Uploading optbusser/suites/serverspec/spec_helper.rb (mode=0664)
Uploading optbusser/suites/serverspec/localhost/cisco_spec.rb (mode=0664)
Uploading optbusser/suites/serverspec/localhost/cisco_spec.rb~ (mode=0664)
----- > Running serverspec test suite
optchef/embedded/bin/ruby -Ioptbusser/suites/serverspec -S
optchef/embedded/bin/rspec optbusser/suites/serverspec/localhost/cisco_spec.rb
Package “lighttpd' is not installed and no info is available.
Use dpkg --info (= dpkg-deb --info) to examine archive files,
and dpkg --contents (= dpkg-deb --contents) to list their contents.
FFF

Failures:

1) Wonderstuff Design should install the lighttpd package
Failure/Error: expect(package 'lighttpd').to be_installed
dpkg -s lighttpd && ! dpkg -s lighttpd | grep -E '~Status: .+ not-installed$'
optbusser/suites/serverspec/localhost/cisco_spec.rb:5:in ‘block (2 levels) in
<top (required)>'

2) Wonderstuff Design should enable and start the lighttpd service
Failure/Error: expect(service 'lighttpd').to be_enabled
1ls etcrc3.d/ | grep -- lighttpd || grep 'start on' etcinit/lighttpd.conf
grep: etcinit/lighttpd.conf: No such file or directory
optbusser/suites/serverspec/localhost/cisco_spec.rb:9:in ‘block (2 levels) 1in
<top (required)>'

3) Wonderstuff Design should render the Wonderstuff Design web page
Failure/Error: expect(file('varwww/index.html')).to be_file
test -f varwww/index.html
optbusser/suites/serverspec/localhost/cisco_spec.rb:14:in ‘block (2 levels)
in <top (required)>'

Finished in 0.02524 seconds
3 examples, 3 failures

Failed examples:

rspec optbusser/suites/serverspec/localhost/cisco_spec.rb:4 # Wonderstuff Design
should install the lighttpd package

rspec optbusser/suites/serverspec/localhost/cisco_spec.rb:8 # Wonderstuff Design
should enable and start the lighttpd service

rspec optbusser/suites/serverspec/localhost/cisco_spec.rb:13 # Wonderstuff Design
should render the Wonderstuff Design web page

Now we write the unit tests:

require 'spec_helper'

describe "wonderstuff::default" do
let(:chef_run) do
runner = ChefSpec::ChefRunner.new(
log_level: :error,
cookbook_path: COOKBOOK_PATH,
)
Chef::Config.force_logger true
runner.converge('recipe[wonderstuff::default]')
end

it "installs the lighttpd package" do
expect(chef_run).to install_package 'lighttpd'
end

it "creates a webpage to be served" do
expect(chef_run).to create_file with_content 'varwww/index.html', 'Wonderstuff
Design is a boutique graphics design agency.'
end

it "starts the lighttpd service" do
expect(chef_run).to start_service 'lighttpd'

end

it "enables the lighttpd service" do

expect(chef_run).to set_service_to_start_on_boot 'lighttpd'
end
end

And run them:

$ rspec -fd
Using wonderstuff (0.1.0) at path: 'hometdi/wonderstuff'

wonderstuff::default
installs the lighttpd package (FAILED - 1)
creates a webpage to be served (FAILED - 2)
starts the lighttpd service (FAILED - 3)
enables the lighttpd service (FAILED - 4)

Failures:

1) wonderstuff::default installs the lighttpd package
Failure/Error: expect(chef_run).to install_package 'lighttpd'
No package resource named 'lighttpd' with action :install found.
./spec/unit/recipes/default_spec.rb:14:in ‘block (2 levels) in <top
(required)>'

2) wonderstuff::default creates a webpage to be served
Failure/Error: expect(chef _run).to create file with_content
'varwww/index.html', 'Wonderstuff Design is a boutique graphics design agency.'
File content:
does not match expected:
Wonderstuff Design is a boutique graphics design agency.
./spec/unit/recipes/default_spec.rb:18:in ‘block (2 levels) in <top
(required)>'

3) wonderstuff::default starts the lighttpd service
Failure/Error: expect(chef_run).to start_service 'lighttpd'
No service resource named 'lighttpd' with action :start found.
./spec/unit/recipes/default_spec.rb:22:in ‘block (2 levels) in <top
(required)>'

4) wonderstuff::default enables the lighttpd service
Failure/Error: expect(chef _run).to set _service_to_start_on_boot 'food'
expected chef_run: recipe[wonderstuff::default] to set service to start on
boot "lighttpd"
./spec/unit/recipes/default_spec.rb:26:in ‘block (2 levels) in <top
(required)>'

Finished in 0.00969 seconds

4 examples, 4 failures
Failed examples:

rspec ./spec/unit/recipes/default_spec.rb:13 # wonderstuff::default installs the
lighttpd package

rspec ./spec/unit/recipes/default_spec.rb:17 # wonderstuff::default creates a
webpage to be served

rspec ./spec/unit/recipes/default_spec.rb:21 # wonderstuff::default starts the
lighttpd service

rspec ./spec/unit/recipes/default_spec.rb:25 # wonderstuff::default enables the
lighttpd service

Now we write the cookbook:

$ cat recipes/default.rb
package 'lighttpd'

service 'lighttpd' do
action [:enable, :start]
end

cookbook_file 'varwww/index.html' do
source 'wonderstuff.html'
end

$ cat files/default/wonderstuff.html

<html>

<body>

<p>Wonderstuff Design is a boutique graphics design agency.</p>
</body>

</html>

Now we run the unit tests again:

$ rspec -fd
Using wonderstuff (0.1.0) at path: 'hometdi/wonderstuff'

wonderstuff::default
installs the lighttpd package
creates a webpage to be served
starts the lighttpd service
enables the lighttpd service

Finished in 0.01352 seconds

4 examples, 0 failures
Now we run the integration tests:

$ kitchen verify 12
----- > Starting Kitchen (v1.0.0.dev)
----- > Setting up <default-ubuntu-1204>
----- > Setting up Busser
Creating BUSSER_ROOT in optbusser
Creating busser binstub
Plugin serverspec already installed
Finished setting up <default-ubuntu-1204> (Om3.21s).
----- > Verifying <default-ubuntu-1204>
Removing optbusser/suites/serverspec
Uploading optbusser/suites/serverspec/spec_helper.rb (mode=0664)
Uploading optbusser/suites/serverspec/localhost/cisco_spec.rb (mode=0664)
Uploading optbusser/suites/serverspec/localhost/cisco_spec.rb~ (mode=0664)
----- > Running serverspec test suite
optchef/embedded/bin/ruby -Ioptbusser/suites/serverspec -S
optchef/embedded/bin/rspec optbusser/suites/serverspec/localhost/cisco_spec.rb

Finished in 0.04747 seconds
3 examples, 0 failures

Finished verifying <default-ubuntu-1204> (Om2.12s).
----- > Kitchen is finished. (0Om6.40s)

And finally, we run Cucumber again:

$ cucumber
Feature: Potential customer can read about services

In order to generate more leads for my business
As a business owner
I want web users to be able to read about my services

Background: #
features/readable_services.feature:7
Given I have provisioned the following infrastructure: #
features/step_definitions/visit-home-page-steps.rb:4
| Server Name | Operating System | Version | Chef Version | Run List

| wonderstuff | ubuntu | 12.04 | 11.4.4 |
wonderstuff::default |
Using wonderstuff (0.1.0) at path: 'hometdi/wonderstuff'

And I have run Chef #
features/step_definitions/visit-home-page-steps.rb:8

Scenario: User visits home page
features/readable_services.feature:14
Given a url "http://wonderstuff-design.me"
features/step_definitions/visit-home-page-steps.rb:13
When a web user browses to the URL
features/step_definitions/visit-home-page-steps.rb:18
Then the user should see "Wonderstuff Design is a boutique graphics design
agency." # features/step_definitions/visit-home-page-steps.rb:27
expected "<?xml version=\"1.0\" encoding=\"1s0-8859-1\"?>\n<!DOCTYPE html
PUBLIC \"-//W3C//DTD XHTML 1.0 Transitional//EN\"\n
\"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd\">\n<html
xmlns=\"http://www.w3.0rg/1999/xhtml\" xml:lang=\"en\" lang=\"en\">\n <head>\n
<title>403 - Forbidden</title>\n </head>\n <body>\n <h1>403 - Forbidden</h1>\n
</body>\n</html>\n" to match Wonderstuff Design is a boutique graphics design
agency. (RSpec::Expectations::ExpectationNotMetError)
./features/step_definitions/visit-home-page-steps.rb:28:1n “/~the user should
see "(.*?)"S$/"
features/readable_services.feature:18:in ‘Then the user should see
"Wonderstuff Design is a boutique graphics design agency."'

Failing Scenarios:
cucumber features/readable_services.feature:14 # Scenario: User visits home page

1 scenario (1 failed)
5 steps (1 failed, 4 passed)
1m11.921s

Aha! What happened!

Upon investigation, we discover that we didn’t set the ownership and group of
the html page, so the user under which lighttpd runs won’t be able to read it!

Now, at this point it is very important to write a failing test that catches the
mistake:

it "creates a webpage to be served" do
expect(chef_run).to create_file with_content 'varwww/index.html', 'Wonderstuff
Design is a boutique graphics design agency.'
expect(file).to be_owned_by('www-data', 'www-data')
end

Let’s run the test:

$ rspec -fd
Using wonderstuff (0.1.0) at path: 'hometdi/wonderstuff'

wonderstuff::default
installs the lighttpd package
creates a webpage to be served (FAILED - 1)
starts the lighttpd service
enables the lighttpd service

Failures:

1) wonderstuff::default creates a webpage to be served
Failure/Error: expect(file).to be_owned_by('www-data', 'www-data')
NameError:
undefined local variable or method "file' for #
<RSpec::Core: :ExampleGroup: :Nested_1:0x00000003ddd418>
./spec/unit/recipes/default_spec.rb:19:in ‘block (2 levels) in <top
(required)>'

Finished in 0.013 seconds
4 examples, 1 failure

Failed examples:

rspec ./spec/unit/recipes/default_spec.rb:17 # wonderstuff::default creates a
webpage to be served

Now let’s make the test pass by updating the resource in the recipe:

package 'lighttpd'

service 'lighttpd' do
action [:enable, :start]
end

cookbook_file 'varwww/index.html' do
source 'wonderstuff.html'
owner 'www-data'
group 'www-data'

end

Now, let’s run Cucumber one last time:

$ cucumber
Feature: Potential customer can read about services

In order to generate more leads for my business
As a business owner
I want web users to be able to read about my services

Background: #
features/readable_services.feature:7
Given I have provisioned the following infrastructure: #
features/step_definitions/visit-home-page-steps.rb:4
| Server Name | Operating System | Version | Chef Version | Run List
I
| wonderstuff | ubuntu | 12.04 | 11.4.4 |
wonderstuff::default |
Using wonderstuff (0.1.0) at path: 'hometdi/wonderstuff'
And I have run Chef #
features/step_definitions/visit-home-page-steps.rb:8

Scenario: User visits home page

features/readable_services.feature:14

Given a url "http://wonderstuff-design.me"
features/step_definitions/visit-home-page-steps.rb:13

When a web user browses to the URL
features/step_definitions/visit-home-page-steps.rb:18

Then the user should see "Wonderstuff Design is a boutique graphics design
agency." # features/step_definitions/visit-home-page-steps.rb:27

1 scenario (1 passed)
5 steps (5 passed)
1m10.105s

Although a truly trivial example, I hope this gives a sense of the workflow and
the ideas behind writing acceptance tests for application cookbooks. Indeed,
even on this simple example we see the benefit of a true acceptance test—our
unit tests passed, our integration tests passed, but what we delivered was useless
crap. Only with the true exercising of the system we built did we discover our
mistake!

I will be documenting far more complex examples on the website or on my blog.
I would welcome your enthusiastic contributions and discussions on the Chef
users’ mailing list.

As an appetite whetter, I offer the following feature:

Feature: Highly Available Jenkins

http://leibniz.cc
http://agilesysadmin.net

Infrastructure developers should be able to enjoy uninterrupted access to their
build jobs.

Background:

Given I have provisioned the following infrastructure:

| Server Name | Operating System | Architecture | Version | Chef Version | Run
List I

| b1 | Cent0S | 64 bit | 6.4 | 11.4.4 |
tedious::ha |

| 1b2 | CentOS | 64 bit | 6.4 | 11.4.4 |
tedious::ha |

| jenkins1 | CentOS | 64 bit | 6.4 | 11.4.4 |
tedious::jenkins |

| jenkins2 | CentOS | 64 bit | 6.4 | 11.4.4 |

tedious::jenkins |
And 'http://tedio.us' resolves to the virtual IP of the loadbalancer
Scenario: Jenkins should be available
Infrastructure developers should be able to reach and use a Jenkins server.
When I try to download the Jenkins CLI tool
Then the download will succeed
And when I query the version number
Then the version number will be returned

Scenario: Jenkins should be loadbalanced

Infrastructure developers should be able to use Jenkins in the event of a
Jenkins server failure

Given I am using a Jenkins server

When that Jenkins server is switched off

Then I should be able to reach an alternative Jenkins server
Scenario: Load balancers should be in a redundant pair

Given that I am using Jenkins

When one of the load balancers is switched off
Then I should still be able to use Jenkins

Advantages and Disadvantages

The advantages of writing executable specifications, using Gherkin and
Cucumber, have been expressed throughout this book. As an approach, it is
widely regarded as offering outstanding value.

The main disadvantage is simply that it’s not easy. The tooling is immature
compared to the other resources discussed in this section. In its current
evolutionary state, the requirement to do one’s own heavy lifting is not
inconsiderable. However, the more people that engage in the process, and the
more the tooling matures, the greater the differential between effort in and value
out.

Other than this, I would like to address two particular objections to the approach.

The first is the argument that “a good monitoring system” takes care of the
requirement for externally facing acceptance tests.

While I certainly agree that a monitoring system should be measuring the extent
to which one’s system meets its acceptance criteria, I think this is missing the
point to a significant degree.

Doubtless, a monitoring system that doesn’t measure and alert on the
fundamental purpose of the business is not a very valuable monitoring system.
Indeed, it’s for this reason that I have long advocated that acceptance tests can be
used as an input to, or in certain cases, even directly as one’s monitoring system.
However, the tests that comprise that monitoring system still need to be written,
the requirements still need to be captured, and that is a collaborative effort that
belongs squarely in the same conversation and workflow as the rest of the
program of cookbook testing. Ducking the issue, or delegating it to a separate
monitoring discussion, is to introduce segregation and siloization where there
should be none.

Furthermore, certain acceptance tests, or even smoke tests, could be destructive,
expensive, or impose hostile load burdens, or probe security issues. These don’t
belong in a production monitoring system, but they are very much requirements
and specifications that need to be considered when beginning to build
infrastructure as code.

If we accept the view that acceptance tests are the same as, or function as,
monitoring checks, then these monitoring checks should be the first thing we
write. This is the purest interpretation of the mandate to develop outside-in.

On this point, it’s illuminating to think about outside-in as being fractal. Post
Chef-run convergence testing is outside-in from the perspective of the Chef run,
although it’s not truly at the level of a test from outside the node itself. Thus the
kind of approach that Cucumber and Leibniz offer can be viewed as a higher-
order testing approach.

Ultimately, I think it’s as plain as this: for most organizations building
infrastructure at scale using Chef, the business is the application. If the
application doesn’t function—if customers cannot login and perform critical
business actions—then all other monitoring is for naught.

The second objection is that when building infrastructure, the stakeholders are
frequently technical, so the domain language is shared, and the value in
capturing requirements in Gherkin is diminished.

This is a deceptively attractive sounding position. It is indeed frequently the case
that the stakeholders for infrastructure projects are technical architects,
developers, or even system administrators. In these cases the ubiquitous
language shared between stakeholders and implementers is imbued with
technical concepts to a more significant degree than when designing software to
be consumed by users.

However, this does not remove the need for acceptance tests or documentation. It
is still imperative that, as engineers, we both build the thing right and build the
right thing. To do so, we need to ensure the following are in place:

= A common and unambiguous understanding of what needs to be delivered
m Explicit and univocal specification of requirements to minimize rework

= A concrete and measurable definition of done

m Documentation to support future change and maintenance

Traditional project management approaches invested large amounts of time and
money in big upfront specifications and testing phases, which, to an extent,
assisted (although some might argue hindered) the achievement of these
prerequisites. However, in today’s fast-paced, continuously delivering universe,
such an approach simply isn’t an option anymore. Nonetheless, the necessity of
these foundational cornerstones is still apparent.

Now, more than ever, there is an urgent need for efficient specification, and lean
planning; for reliable, always-right, and easily changeable documentation; for
objective mechanisms to verify that the system meets requirements. How can
this be achieved in a world of constant improvement, rapid change, auto-scaling,
and cloud-bursting?

Gojko Adzic offers the following visualization:

Precise and
objectively testable

Easy to
maintain

The intersection of just-in-time delivery, highly maintainable documentation,
and precise and objectively testable specifications lies in the very thing this book
holds as pivotal—in requirements as executable acceptance tests. And this is
required as much for highly technical stakeholders as for any other consumer of
services.

Summary and Conclusion

Full acceptance testing of complex multi-node systems, conducted from a

perspective outside of the systems under test, is the holy grail of test-driven
infrastructure. The tooling is not yet up to scratch for solving problems of this
complexity, but it’s without a doubt an area where much experimentation and
research is being carried out.

With hindsight, my decision to begin my crusade to bring test-driven and
behavior-driven development practices into the world of infrastructure as code,
with the purest form of outside-in acceptance testing, was wildly optimistic.
However, I stand by my view that this is the correct methodology, and we should
be pushing at the boundaries of the possible.

Leibniz is a brand new project, but initial feedback on the concept has been
positive, and the problems it attempts to solve are real, topical, and tractable.
Doubtless, its implementation and approach will change rapidly, so please
consider this section very much an appetite-whetter and discussion-starter rather
than a definitive description of a mature framework.

The other area where we are sure to see important developments is in the
emergence of mature orchestration frameworks functioning at a level higher than
the node. Opscode’s "push jobs" looks to be the beginning of a process of
releasing primitives for sophisticated orchestration capability within the Opscode
product roadmap. At the same time, Riot Games has been promising to open
source Motherbrain, their orchestration system. Alongside this, the engineers at
Heavy Water have also been experimenting with proofs of concept playing in
this space. Add to this the role already played by the popular MCollective
framework in current orchestration frameworks, and it’s clear this is an area of
great potential.

Integration Testing: Test Kitchen with
Serverspec and Bats

We introduced Test Kitchen as a foundational tool for orchestration and test
running earlier in the chapter. We now turn to a detailed worked example of
building infrastructure tests using both Serverspec and Bats.

Within a cookbook, the kitchen init command will generate a core testing
structure, consisting of a YAML file, .kitchen.yml, which describes the various
run configurations to test, and a directory for tests and supporting material,

http://bit.ly/1aIwxPR
http://bit.ly/14fFZII

test/integration/default.

A default .kitchen.yml file contains the following:

driver_plugin: vagrant
driver_config:
require_chef_omnibus: true

platforms:
- name: ubuntu-12.04
driver_config:
box: opscode-ubuntu-12.04
box_url: https://opscode-vm.s3.amazonaws.com/vagrant/opscode_ubuntu-
12.04_provisionerless.box
- name: ubuntu-10.04
driver_config:
box: opscode-ubuntu-10.04
box_url: https://opscode-vm.s3.amazonaws.com/vagrant/opscode_ubuntu-
10.04_provisionerless.box
- name: centos-6.4
driver_config:
box: opscode-centos-6.4
box_url: https://opscode-vm.s3.amazonaws.com/vagrant/opscode_centos-
6.4_provisionerless.box
- name: centos-5.9
driver_config:
box: opscode-centos-5.9
box_url: https://opscode-vm.s3.amazonaws.com/vagrant/opscode_centos-
5.9 _provisionerless.box

suites:

- name: default
run_list: ["recipe[ruby-install]"]
attributes: {}

The driver plug-in is Vagrant, as mentioned. We hand off installation of Chef to
the Omnibus plug-in, enabling us to keep our base boxes as minimal as possible.
We then specify the platforms we’re interested in testing against. By default, the
assumption is that a cookbook developer wants to test against CentOS and
Ubuntu, on both CentOS 5 and 6 and Ubuntu 10.04 and 12.04. These can easily
be altered, as they are simply references to a Vagrant box name and source URL,
exactly as would go into a Vagrantfile. Finally, we list suites of tests we want to
run against each platform—in this case, by default, we want to apply the default

recipe from the ruby-install cookbook. The possibility of specifying node
attributes in the suite is also available.

It’s entirely possible that you decide you don’t want to test against all four of
these systems—in which case, simply delete the ones that aren’t relevant.

Running kitchen 1list will give a quick status review of your test kitchen:

$ bundle exec kitchen list
Instance Last Action
default-ubuntu-1204 <Not Created>
default-ubuntu-1004 <Not Created>
default-centos-64 <Not Created>
default-centos-59 <Not Created>

Let’s create a cookbook that will install the Pound load balancer. We want to be
sure it will work on CentOS 5 as well as CentOS 6. We don’t have any CentOS 5
machines, but we want to support this platform for the sake of the community,
and as responsible cookbook developers, we want to be sure that as we develop
on a Mac and deploy on CentOS 6, we don’t introduce any regressions that
would cause a problem on an earlier version of CentOS.

$ berks cookbook pound
create pound/files/default
create pound/templates/default
create pound/attributes
create pound/definitions
create pound/libraries
create pound/providers
create pound/recipes
create pound/resources
create pound/recipes/default.rb
create pound/metadata.rb
create pound/LICENSE
create pound/README.md
create pound/Berksfile
create pound/Thorfile
create pound/chefignore
create pound/.gitignore

run git init from "./pound"

create pound/Gemfile
create .kitchen.yml
append Thorfile

create test/integration/default
append .gitignore
append .gitignore
append Gemfile
append Gemfile
You must run ‘bundle install' to fetch any new gems.
create pound/Vagrantfile

Now let’s slim down the platforms:

driver_plugin: vagrant
driver_config:
require_chef_omnibus: true

platforms:
- name: centos-6.4
driver_config:
box: opscode-centos-6.4
box_url: https://opscode-vm.s3.amazonaws.com/vagrant/opscode_centos-
6.4_provisionerless.box
- name: centos-5.9
driver_config:
box: opscode-centos-5.9
box_url: https://opscode-vm.s3.amazonaws.com/vagrant/opscode_centos-
5.9 _provisionerless.box

suites:

- name: default
run_list: ["recipe[pound]"]
attributes: {}

Now we can create the base machines using the kitchen create command:

$ kitchen create all

----- > Starting Kitchen (v1.0.0.alpha.7)

----- > Creating <default-centos-64>
[kitchen: :driver::vagrant command] BEGIN (vagrant up --no-provision)
Bringing machine 'default' up with 'virtualbox' provider...
[default] Importing base box 'opscode-centos-6.4'...
[default] Matching MAC address for NAT networking...
[default] Setting the name of the VM...
[default] Clearing any previously set forwarded ports...
[Berkshelf] Skipping Berkshelf with --no-provision
[default] Fixed port collision for 22 => 2222. Now on port 2204.

[default] Creating shared folders metadata...
[default] Clearing any previously set network interfaces...
[default] Preparing network interfaces based on configuration...
[default] Forwarding ports...
[default] -- 22 => 2204 (adapter 1)
[default] Running any VM customizations...
[default] Booting VM...
[default] Waiting for VM to boot. This can take a few minutes.
[default] VM booted and ready for use!
[default] Setting hostname...
[default] Configuring and enabling network interfaces...
[default] Mounting shared folders...
[default] -- vagrant
[kitchen::driver::vagrant command] END (0m37.01s)
[kitchen::driver::vagrant command] BEGIN (vagrant ssh-config)
[kitchen::driver::vagrant command] END (0m1.27s)
Vagrant instance <default-centos-64> created.
Finished creating <default-centos-64> (Om38.95s).

----- > Creating <default-centos-59>
[kitchen: :driver::vagrant command] BEGIN (vagrant up --no-provision)
Bringing machine 'default' up with 'virtualbox' provider...
[default] Box 'opscode-centos-5.9' was not found. Fetching box from specified

URL for
the provider 'virtualbox'. Note that if the URL does not have
a box for this provider, you should interrupt Vagrant now and add
the box yourself. Otherwise Vagrant will attempt to download the
full box prior to discovering this error.
Downloading or copying the box...
Extracting box...3ks, Estimated time remaining: --:--:--)
Successfully added box 'opscode-centos-5.9' with provider 'virtualbox'!
[default] Importing base box 'opscode-centos-5.9'...
[default] Matching MAC address for NAT networking...
[default] Setting the name of the VM...
[default] Clearing any previously set forwarded ports...
[Berkshelf] Skipping Berkshelf with --no-provision
[default] Fixed port collision for 22 => 2222. Now on port 2205.
[default] Creating shared folders metadata...
[default] Clearing any previously set network interfaces...
[default] Preparing network interfaces based on configuration...
[default] Forwarding ports...
[default] -- 22 => 2205 (adapter 1)
[default] Running any VM customizations...
[default] Booting VM...
[default] Waiting for VM to boot. This can take a few minutes.
[default] VM booted and ready for use!
[default] Setting hostname...
[default] Configuring and enabling network interfaces...

[default] Mounting shared folders...
[default] -- /vagrant
[kitchen::driver::vagrant command] END (6m6.32s)
[kitchen::driver::vagrant command] BEGIN (vagrant ssh-config)
[kitchen::driver::vagrant command] END (0Om1.26s)
Vagrant instance <default-centos-59> created.
Finished creating <default-centos-59> (6m14.04s).
----- > Kitchen is finished. (6m54.05s)

This will download the boxes if needed. After the creation has finished, kitchen
1ist will show the updated status:

$ bundle exec kitchen list
Instance Last Action
default-centos-64 Created
default-centos-59 Created

Now that we have the platforms available, we can attempt to converge the nodes
with kitchen converge. Even though we haven’t written a recipe yet, this will

install Chef using the Omnibus plug-in, and prove that we have machines ready

to test:

$ bundle exec kitchen converge
----- > Starting Kitchen (v1.0.0.alpha.7)
----- > Converging <default-centos-64>
[local command] BEGIN (if ! command -v berks >/dev/null; then exit 1; fi)
[local command] END (Om0.01s)
[local command] BEGIN (berks install --path tmpdefault-centos-64-
cookbooks20130613-31209-12t45x0)
Using pound (0.1.0) at path: 'hometdi/pound'
[local command] END (Om0.99s)
Uploaded pound/chefignore (985 bytes)
Uploaded pound/Berksfile.lock (179 bytes)
Uploaded pound/Vagrantfile (3259 bytes)
Uploaded pound/recipes/default.rb (127 bytes)
Uploaded pound/metadata.rb (267 bytes)
Uploaded pound/Gemfile.lock (2830 bytes)
Uploaded pound/Berksfile (24 bytes)
Uploaded pound/README.md (112 bytes)
Uploaded pound/Gemfile (136 bytes)
Uploaded pound/Thorfile (241 bytes)
Uploaded pound/LICENSE (72 bytes)
Starting Chef Client, version 11.4.4

[2013-06-13T04:53:31+00:00] INFQ: *** Chef 11.4.4 ***
[2013-06-13T04:53:31+00:00] INFO: Setting the run_list to ["recipe[pound]"]
from JSON
[2013-06-13T04:53:31+00:00] INFO: Run List is [recipe[pound]]
[2013-06-13T04:53:31+00:00] INFO: Run List expands to [pound]
[2013-06-13T04:53:31+00:00] INFO: Starting Chef Run for default-centos-64
[2013-06-13T04:53:31+00:00] INFO: Running start handlers
[2013-06-13T04:53:31+00:00] INFO: Start handlers complete.
Compiling Cookbooks...
Converging 0 resources
[2013-06-13T04:53:31+00:00] INFO: Chef Run complete in 0.001873196 seconds
[2013-06-13T04:53:31+00:00] INFO: Running report handlers
[2013-06-13T04:53:31+00:00] INFO: Report handlers complete
Chef Client finished, 0 resources updated
Finished converging <default-centos-64> (0m3.05s).
----- > Converging <default-centos-59>
[local command] BEGIN (if ! command -v berks >/dev/null; then exit 1; fi)
[local command] END (Om0.01s)
[local command] BEGIN (berks install --path tmpdefault-centos-59-
cookbooks20130613-31209-dcec44)
Using pound (0.1.0) at path: 'hometdi/pound'
[local command] END (Om0.99s)
Uploaded pound/chefignore (985 bytes)
Uploaded pound/Berksfile.lock (179 bytes)
Uploaded pound/Vagrantfile (3259 bytes)
Uploaded pound/recipes/default.rb (127 bytes)
Uploaded pound/metadata.rb (267 bytes)
Uploaded pound/Gemfile.lock (2830 bytes)
Uploaded pound/Berksfile (24 bytes)
Uploaded pound/README.md (112 bytes)
Uploaded pound/Gemfile (136 bytes)
Uploaded pound/Thorfile (241 bytes)
Uploaded pound/LICENSE (72 bytes)
Starting Chef Client, version 11.4.4
[2013-06-13T04:53:34+00:00] INFQ: *** Chef 11.4.4 ***
[2013-06-13T04:53:34+00:00] INFO: Setting the run_list to ["recipe[pound]"]
from JSON
[2013-06-13T04:53:34+00:00] INFO: Run List is [recipe[pound]]
[2013-06-13T04:53:34+00:00] INFO: Run List expands to [pound]
[2013-06-13T04:53:34+00:00] INFO: Starting Chef Run for default-centos-59
[2013-06-13T04:53:34+00:00] INFO: Running start handlers
[2013-06-13T04:53:34+00:00] INFO: Start handlers complete.
Compiling Cookbooks...
Converging 0 resources
[2013-06-13T04:53:34+00:00] INFO: Chef Run complete in 0.002037 seconds
[2013-06-13T04:53:34+00:00] INFO: Running report handlers
[2013-06-13T04:53:34+00:00] INFO: Report handlers complete

Chef Client finished, 0 resources updated
Finished converging <default-centos-59> (0m2.99s).
----- > Kitchen is finished. (Om7.15s)

After converge, the state is reported as:

$ bundle exec kitchen list
Instance Last Action
default-centos-64 Converged
default-centos-59 Converged

Note that Test Kitchen uploaded the cookbooks, and would have solved any
dependencies if we’d needed. The next step is to get it to run some tests. It’s
critical at this stage to understand how Test Kitchen achieves this. While it’s
perfectly possible to use Test Kitchen to run Minitest Handler tests, it’s
essentially designed to run what I call “Post Chef-run” tests. That is, after the
Chef run has completely finished, inspect the state of the converged node, and
report back. Minitest Handler is a nice approach and brings post-converge
testing with minimal setup, but it does rely on being able to peek into Chef’s
internals, and the tests won’t even attempt to run if Chef doesn’t finish
converging cleanly. The Test Kitchen approach is to allow the node to converge
fully and after Chef has finished, inspect the state.

Test Kitchen achieves this testing using the concept of a Busser. Unless you’re
from North America, this term could be puzzling. The best explanation I can
give is to refer you to a classic early episode of Seinfeld, called “The Busboy.” If
you’ve never watched Seinfeld before, stop what you’re doing right now, go
watch Seinfeld, and then come back. Seriously—work can wait. Back? Great, so
in “The Busboy,” the three friends Jerry, George, and Elaine, are eating in a
restaurant, where the adjacent table catches fire. George explains to the manager
of the restaurant that the fire was caused by the busboy leaving the menu too
close to the candle. Elaine comments that she’ll never eat at the restaurant again,
and the manager, taking this seriously, fires the busboy. I won’t spoil the rest of
the episode, but you get the picture: a busboy, or busser, is a waiter’s helper in a
restaurant. It’s his responsibility to ensure that the fruits of the chef, the produce
from the kitchen, can be enjoyed by the patrons of the establishment. In Test
Kitchen, the metaphor is similar. Busser is a Rubygem that is responsible for
ensuring whatever is needed to run tests after a kitchen converge is in place.

Specifically, it installs any required testing Gems, and generally helps get the
remote node ready to receive test files and run them.

In theory, we could use anything we liked to test the system, after Chef has run.
If you were particularly keen on Perl or Python, there would be no reason not to
write tests in Perl or Python to verify the state; as long as it reports back test
results, it doesn’t matter what is used. Busser is fully pluggable, and creation of
plugins is very easy. We’ll look at two Busser plugins to demonstrate the
principle.

When thinking about these sorts of tests, I think it makes sense to consider the
steps you might take if you were asked to manually examine a machine to verify
that something had been set up or installed. In the case of Pound, what would we
do? Off the top of my head, if someone gave me a computer, told me that
another sysadmin had installed Pound, and asked me to verify it, I’d probably do
some of the following:

m Check to see if a Pound service was running.

m See if I could find a Pound config file.

m [ook at the Pound config file to see if it looked sane.

m [ook at what backends were configured.

m Make an HTTP request to a backend and note the response.

m Make an HTTP request to Pound, and compare the response to the request
from the backend.

These are the sorts of tests we want Test Kitchen to run. How, then, shall we
construct these tests? Well, as I mentioned, the possibilities are effectively
limitless, but I will draw attention to two particularly interesting options, then
mention alternatives you might like to consider.

Introducing Bats

The first is to use Bats, the Bourne-again shell (Bash) testing framework. About
as simple as a test framework can be, a Bats test is simply a shell function with a
description. Here’s an example from Fletcher Nichol’s rbenv cookbook:

@test "global Ruby can install nokogiri gem" {
export RBENV_VERSION=$global_ruby
run gem install nokogiri --no-ri --no-rdoc
[$status -eq 0]

}

Just like any test framework, we set up some state, and then make an assertion.
In this case, the assertion is simply the exit status of a shell command. An exit
status of 0 is interpreted as a test passing, while any non-zero exit status is
interpreted as a test failure. Assertions can be any valid shell command, but the
Bats framework also provides a helper method, run, which will run a command
and store the exit status and output. These are available as three variables:

$status
The exit code of the command passed as an argument to run.

Soutput
The combined contents of the shell’s standard out and standard error.

$lines
An array that stores multiple lines of output.

This makes the final assertion as simple as utilizing the bash shell’s [] testing
mechanism; examples might include:

[$status -eq 0]
[$(echo "Soutput" | grep "~$global_ruby$") = "Sglobal_ruby"]
[${lines[0]} = "$global_ruby"]

If you come from a Linux or Unix system administration background, you’ll find
this a powerful, quick, and effective way to investigate state. If this looks
somewhat arcane to you, but you can see its inherent simplicity and power, there
are a number of excellent introductory works on shell scripting, study of which
would yield reward. Alternatively, of course, you could simply ignore this
option, and move on to a testing mechanism that suits your background and
purposes.

Introducing Serverspec

The second option I want to draw your attention to is Serverspec. Serverspec is a
set of custom matchers and expectations for RSpec, designed specifically to test
configured infrastructure. Although it can be configured to use SSH and connect
to a remote machine, for our purposes, we’re simply going to run the test after
the Chef run has finished and return the result.

The project offers the following examples. I would point out that these examples
use the old RSpec expectation format, which is no longer the preferred or
recommended approach. Later, we’ll use the current approach, but I leave these
examples per the documentation, so you can see examples of each.

describe 'Apache package' do
it 'should be installed' do
end

package('httpd') do
it { should be_installed }

describe service('httpd') do
it { should be_enabled }
it { should be_running }
end

describe port(80) do
it { should be_listening }
end

describe file('etchttpd/conf/httpd.conf') do

it { should be_file }

it { should contain "ServerName www.example.jp" }
end

This approach has the advantage of being familiar for anyone who has done any
development in Ruby and has any exposure to RSpec. It also has the advantage
that we’re already using RSpec expectations in Chefspec, and RSpec
expectations are commonly used with Cucumber; this gives us the opportunity to
standardize on a single testing format. Additionally, there is a large number of
very useful, pre-defined matchers, which makes the task of creating some
immediately useful tests very easy to achieve, quickly. Finally, the project has
broad cross-config-management support, being used by Puppet and CFengine
users, so the community support and development effort is healthy.

The final two options I’ll mention are simply writing your own tests in either
Minitest or RSpec. In this case, you simply write tests using the standard library
or importing any gems you need. This has the advantage of minimum fuss and
maximum flexibility. If you’re comfortable in the world of Ruby and Ruby
testing, this will be no different from your day-to-day test-writing.

The Busser is responsible for installing any software that is required for running
tests. It does this via a plug-in mechanism and by filesystem layout convention.
Busser will load the plug-in that corresponds to the name of the directory. The
format is as follows:

pathto/my/cookbooktestintegration/<SUITE-NAME>/<BUSSER-PLUGIN>
So, to run Bats tests for the default suite, simply drop tests in:
pathto/my/cookbooktestintegration/default/bats

Let’s write some tests for the Pound cookbook using Bats. Create a file
pound.bats under testintegration/default/bats/ with the following content:

match() {
local p=$1
shift for
do [[Sv
done
return 1

}

n < <

Sp 1] && return

@test "The Pound service is running" {
run service pound status
echo "$Soutput" | grep -Eq 'pound.*is running'

}

@test "Two Pound backends are active" {
run poundctl -c varlib/pound/pound.cfg
match "Backend8000*active*" "${lines[@]}"
match "Backend8001*active*" "${lines[@]}"
}

@test "Pound has an HTTP listener" {
run poundctl -c varlib/pound/pound.cfg
match "http Listener" "${1lines[@]}"

}

@test "Pound does not have an HTTPS listener" {
run poundctl -c varlib/pound/pound.cfg
! match "HTTPS Listener" "${lines[@]}"

}

@test "Server is listening on port 80" {
run nmap -sT -p80 localhost
match "80/tcp open http" "${lines[@]}"
}

@test "Server accepts HTTP requests" {
echo "GET HTTP1.1" | nc localhost 80

}

Obviously being able to write this test assumes some degree of familiarity with
the system you’re going to configure. Naturally you could write much more
basic tests at first and evolve more complex ones as you discover functionality
you want to test.

Let’s quickly run through the test. First, we set up a function that will check for a
match in the lines of an array. In the first test, we’re just checking that we see the
Pound service running. This isn’t very cross-platform, as we’re relying on the
format of the service command, which may be different on alternative versions
or distributions, but it illustrates a simple grep. The next three tests all use the
match function, and the built-in run function. Poundctl is a command-line
utility that will dump out the running configuration of the service—we’re just
checking against its output. The final two tests use the netcat and nmap
commands to do primitive network testing. These could be much more complex
if needed. The latter of the two tests simply makes use of the return code—if
netcat cannot reach the machine on port 80, it will have a non-zero exit code.

These two tests illustrate a further important feature of Test Kitchen. Fairly often
we find that for test purposes we would like to have some handy commands—
for example netcat, lsof, or telnet. We might not normally have these in our
base build, but we want them to be available for running our post—Chef-run tests.
Test Kitchen allows these prerequisites to be installed after the Chef run by
dropping off a file called prepare_recipe.rb, containing recipe DSL code, which
is executed using a slightly modified chef-apply. In our case we would add:

$ cat test/integration/default/bats/prepare_recipe.rb
%w{ nc nmap }.each { |pkg| package pkg }

Of course, to be truly cross-platform, we’d need to take into account the different
naming conventions of various Linux distributions, but the principle is clear.

Having written the tests, we now want to run them. Based on the five lifecycle
phases, as described earlier, Test Kitchen provides a number of commands that
control the lifecycle of a test suite. In order, they are:

kitchen create
Creates the base machine

kitchen converge
Installs and runs Chef with the run list specified in the .kitchen.yml file

kitchen setup
Instructs Busser to set up whatever is needed to run tests

kitchen verify
Runs the tests to verify that the state of the machine is as desired and/or
expected

kitchen destroy
Destroys the machine entirely, leaving the host OS in a clean state

These tasks can be called individually—one at a time—>but later commands in
the lifecycle will attempt to call previous steps. So, running kitchen verify
will create, converge, and set up a machine before verifying. The tasks take an
argument of which instance to control. The commands perform a regular
expression match, which makes it convenient to run actions against a specified
subset of machines reported by kitchen 1list. With no pattern, the default is to
take action against all the instances. This can be made explicit with the all
keyword.

Let’s run them one at a time to see how they function:

$ kitchen create 6

----- > Starting Kitchen (v1.0.0.alpha.7)

----- > Creating <default-centos-64>
[kitchen::driver::vagrant command] BEGIN (vagrant up --no-provision)
Bringing machine 'default' up with 'virtualbox' provider...
[default] Importing base box 'opscode-centos-6.4'...
[default] Matching MAC address for NAT networking...
[default] Setting the name of the VM...
[default] Clearing any previously set forwarded ports...
[Berkshelf] Skipping Berkshelf with --no-provision
[default] Fixed port collision for 22 => 2222. Now on port 2204.
[default] Creating shared folders metadata...
[default] Clearing any previously set network interfaces...
[default] Preparing network interfaces based on configuration...
[default] Forwarding ports...
[default] -- 22 => 2204 (adapter 1)
[default] Running any VM customizations...
[default] Booting VM...
[default] Waiting for VM to boot. This can take a few minutes.
[default] VM booted and ready for use!
[default] Setting hostname...
[default] Configuring and enabling network interfaces...
[default] Mounting shared folders...
[default] -- /vagrant
[kitchen::driver::vagrant command] END (0m37.19s)
[kitchen::driver::vagrant command] BEGIN (vagrant ssh-config)
[kitchen::driver::vagrant command] END (0Om1.25s)
Vagrant instance <default-centos-64> created.
Finished creating <default-centos-64> (0m39.43s).

----- > Kitchen is finished. (0m40.49s)

We now have a CentOS 6.4 machine ready for action. We can connect to the
machine and look around using kitchen login:

$ kitchen login 6

Last login: Sat May 11 04:55:22 2013 from 10.0.2.2

[vagrant@default-centos-64]$ uname -a

Linux default-centos-64.vagrantup.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22
00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux

[vagrant@default-centos-64]$ exit

logout

Connection to 127.0.0.1 closed.

Now let’s converge the node:

$ kitchen converge 6

----- > Starting Kitchen (v1.0.0.alpha.7)
----- > Converging <default-centos-64>
----- > Installing Chef Omnibus (true)
--2013-06-15 02:56:11-- https://www.opscode.com/chef/install.sh
Resolving www.opscode.com... 184.106.28.83
Connecting to www.opscode.com|184.106.28.83|:443...
connected.
HTTP request sent, awaiting response... 200 OK
Length: 6510 (6.4K) [application/x-sh]
Saving to: “STDOUT”

0% [10 --.-K/s
100%[>] 6,510 --.-K/s in 0s

2013-06-15 02:56:11 (1.28 GB/s) - written to stdout [6510/6510]

Downloading Chef for el...

Installing Chef

warning: tmptmp.69MKcEOA/chef-.x86_64.rpm: Header V4 DSA/SHA1 Signature, key
ID 83ef826a: NOKEY

Preparing... i T
[100%]

1:chef HIHHH R R R R R R R
[100%]

Thank you for installing Chef!

[local command] BEGIN (if ! command -v berks >/dev/null; then exit 1; fi)

[local command] END (Om0.01s)

[local command] BEGIN (berks install --path tmpdefault-centos-64-
cookbooks20130615-18465-079vfq)

Using pound (0.1.0) at path: 'hometdi/pound'

[local command] END (Om1.63s)

Uploaded pound/chefignore (985 bytes)

Uploaded pound/Berksfile.lock (179 bytes)

Uploaded pound/Vagrantfile (3259 bytes)

Uploaded pound/recipes/default.rb (226 bytes)

Uploaded pound/metadata.rb (281 bytes)

Uploaded pound/Gemfile.lock (2830 bytes)

Uploaded pound/Berksfile (24 bytes)

Uploaded pound/README.md (112 bytes)

Uploaded pound/Gemfile (136 bytes)

Uploaded poundtestintegration/default/bats/.kitchen/logs/celluloid.log (0
bytes)

Uploaded poundtestintegration/default/bats/.kitchen/logs/kitchen.log (3033
bytes)

Uploaded poundtestintegration/default/bats/pound.bats-disabled (942 bytes)

Uploaded poundtestintegration/default/bats/prepare_recipe.rb (42 bytes)

Uploaded poundtestintegration/default/bats/pound.bats (942 bytes)

from

Uploaded poundtest.kitchen/logs/celluloid.log (0 bytes)
Uploaded poundtest.kitchen/logs/kitchen.log (3735 bytes)
Uploaded pound/Thorfile (241 bytes)

Uploaded pound/LICENSE (72 bytes)

Starting Chef Client, version 11
[2013-06-15T02:56:
[2013-06-15T02:56:

JSON

[2013-06-15T02:56:
[2013-06-15T02:56:
[2013-06-15T02:56:
[2013-06-15T02:56:
[2013-06-15T02:56:

35+00:
35+00:

35+00:
35+00:
35+00:
35+00:
35+00:

Compiling Cookbooks...
Converging 0 resources

[2013-06-15T02:56:
[2013-06-15T02:56:
[2013-06-15T02:56:35+00:

35+00:
:00] INFO:

35+00

Chef Client finished, 0
Finished converging <default-centos-64> (0m24.62s).
> Kitchen is finished. (Om25.69s)

00] INFO:
00] INFO:

00] INFO:
00] INFO:
00] INFO:
00] INFO:
00] INFO:

00] INFO:

00] INFO:
resources

4.4

#%% Chef 11.4.4 ***
Setting the run_list to ["recipe[pound]"]

Run List is [recipe[pound]]

Run List expands to [pound]

Starting Chef Run for default-centos-64
Running start handlers

Start handlers complete.

Chef Run complete in 0.001689128 seconds
Running report handlers

Report handlers complete

updated

Test Kitchen installs Chef, and then runs it. It also uses Berkshelf to solve any
dependencies. Now let’s run the setup task:

$ kitchen setup 6
> Starting Kitchen (v1.0.0.alpha.7)
> Setting up <default-centos-64>
Fetching: thor-0.18.1.gem (100%)
Fetching: busser-0.4.1.gem (100%)

Successfully installed thor-0.18.1

Successfully installed busser-0.4.1

2 gems installed
> Setting up Busser

Creating BUSSER_ROOT in optbusser
Creating busser binstub
Plugin bats installed (version 0.1.0)
> Running postinstall for bats plugin
create tmpbats20130615-2256-hylsr3/bats
create tmpbats20130615-2256-hylsr3/bats.tar.gz
Installed Bats to optbusser/vendor/bats/bin/bats
remove tmpbats20130615-2256-hylsr3
Finished setting up <default-centos-64> (0m8.30s).
> Kitchen is finished. (Om9.37s)

We’re ready to run the tests now:

$ kitchen verify 6
----- > Starting Kitchen (v1.0.0.alpha.7)
----- > Verifying <default-centos-64>

Suite path directory optbusser/suites does not exist, skipping.
Uploading optbusser/suites/bats/prepare_recipe.rb (mode=0664)
Uploading optbusser/suites/bats/pound.bats (mode=0664)
Uploading optbusser/suites/bats/pound.bats-disabled (mode=0664)
Running bats test suite
Preparing bats suite with optbusser/suites/bats/prepare_recipe.rb
[2013-06-15T02:58:27+00:00] INFO: Run List is []
[2013-06-15T02:58:27+00:00] INFO: Run List expands to []
Recipe: (chef-apply cookbook)::(chef-apply recipe)
package[nc] action install[2013-06-15T02:58:27+00:00] INFO: Processing

package[nc] action install ((chef-apply cookbook)::(chef-apply recipe) line 1)

[2013-06-15T02:58:37+00:00] INFO: package[nc] installing nc-1.84-22.el6 from

base repository

- install version 1.84-22.el6 of package nc

package[nmap] action install[2013-06-15T02:58:40+00:00] INFO: Processing

package[nmap] action install ((chef-apply cookbook)::(chef-apply recipe) line 1)

[2013-06-15T02:58:40+00:00] INFO: package[nmap] installing nmap-5.51-2.el6

from base repository

1

S>>5>5>>
S>>>5>>
S>>>5>>
S>>5>5>>

S>>>5>>

- install version 5.51-2.el6 of package nmap
1..6
not ok 1 The Pound service is running
optbusser/suites/bats/pound.bats:12
not ok 2 Two Pound backends are active
optbusser/suites/bats/pound.bats:17
not ok 3 Pound has an HTTP listener
optbusser/suites/bats/pound.bats:7
ok 4 Pound does not have an HTTPS listener
not ok 5 Server is listening on port 80
optbusser/suites/bats/pound.bats:7
not ok 6 Server accepts HTTP requests
optbusser/suites/bats/pound.bats:38
Command [optbusser/vendor/bats/bin/bats optbusser/suites/bats] exit code was

Verify failed on instance <default-centos-64>.

Please see .kitchen/logs/default-centos-64.log for more details

------ Exception-------

Class: Kitchen::ActionFailed

Message: SSH exited (1) for command: [sudo -E optbusser/bin/busser test]

P e T

Alright! Failing tests! We see the extra tools being installed, and then the tests
running and failing. Note that we could have done this in one go, by calling the
kitchen verify step, rather than each individual step.

We can make these tests pass very easily. Open up the default recipe and add the
following:

include_recipe 'yum::epel'
package 'Pound'

service 'pound' do
action [:enable, :start]
end

Add the dependency on the yum cookbook to the metadata and run kitchen
converge. Take a deep breath, there’s a lot of output to read:

$ kitchen converge 6
----- > Starting Kitchen (v1.0.0.alpha.7)
----- > Converging <default-centos-64>
[local command] BEGIN (if ! command -v berks >/dev/null; then exit 1; fi)
[local command] END (Om0.01s)
[local command] BEGIN (berks install --path tmpdefault-centos-64-
cookbooks20130615-31535-12jfpi7)
Using pound (0.1.0) at path: 'hometdi/pound'
Using yum (2.2.2)
[local command] END (Om1.75s)
Uploaded yum/metadata.json (11004 bytes)
Uploaded yum/CONTRIBUTING.md (10811 bytes)
Uploaded yum/resources/key.rb (831 bytes)
Uploaded yum/resources/repository.rb (1585 bytes)
Uploaded yum/files/default/tests/minitest/support/helpers.rb (1280 bytes)
Uploaded yum/files/default/tests/minitest/test_test.rb (1709 bytes)
Uploaded yum/files/default/tests/minitest/default_test.rb (828 bytes)
Uploaded yum/recipes/ius.rb (1537 bytes)
Uploaded yum/recipes/remi.rb (1140 bytes)
Uploaded yum/recipes/test.rb (1150 bytes)
Uploaded yum/recipes/repoforge.rb (1716 bytes)
Uploaded yum/recipes/yum.rb (748 bytes)
Uploaded yum/recipes/elrepo.rb (1028 bytes)
Uploaded yum/recipes/default.rb (625 bytes)

Uploaded
Uploaded

yum/recipes/epel.rb (1181 bytes)
yum/metadata.rb (1492 bytes)

Uploaded yum/Berksfile (81 bytes)

Uploaded
Uploaded
Uploaded
Uploaded
Uploaded
Uploaded
Uploaded
Uploaded
Uploaded
Uploaded
Uploaded
Uploaded
Uploaded
Uploaded
Uploaded
Uploaded
Uploaded
Uploaded
Uploaded
Uploaded
Uploaded
Uploaded
bytes)
Uploaded
bytes)
Uploaded
Uploaded
Uploaded
Uploaded
Uploaded
Uploaded
Uploaded
Starting

[2013-06-
[2013-06-

from JSON

[2013-06-
[2013-06-
[2013-06-
[2013-06-
[2013-06-

yum/providers/key.rb (2242 bytes)
yum/providers/repository.rb (4235 bytes)
yum/templates/default/yum-rhelé.conf.erb (1367 bytes)
yum/templates/default/yum-rhel5.conf.erb (900 bytes)
yum/templates/default/repo.erb (803 bytes)
yum/README .md (8405 bytes)
yum/CHANGELOG.md (2797 bytes)
yum/attributes/remi.rb (1146 bytes)
yum/attributes/elrepo.rb (970 bytes)
yum/attributes/default.rb (1076 bytes)
yum/attributes/epel.rb (1448 bytes)
yum/LICENSE (10850 bytes)

pound/chefignore (985 bytes)
pound/Berksfile.lock (179 bytes)
pound/Vagrantfile (3259 bytes)
pound/recipes/default.rb (223 bytes)
pound/metadata.rb (280 bytes)
pound/Gemfile.lock (2830 bytes)
pound/Berksfile (24 bytes)

pound/README.md (112 bytes)

pound/Gemfile (136 bytes)

poundtestintegration/default/bats/.kitchen/logs/celluloid.log (0
poundtestintegration/default/bats/.kitchen/logs/kitchen.log (3033
poundtestintegration/default/bats/pound.bats-disabled (942 bytes)

poundtestintegration/default/bats/prepare_recipe.rb (42 bytes)
poundtestintegration/default/bats/pound.bats (942 bytes)

poundtest.kitchen/logs/celluloid.log (0 bytes)
poundtest.kitchen/logs/kitchen.log (3735 bytes)
pound/Thorfile (241 bytes)

pound/LICENSE (72 bytes)

Chef Client, version 11.4.4

15T05:43:35+00:00] INFO: *** Chef 11.4.4 ***

15T05:43:36+00:00] INFO: Setting the run_list to ["recipe[pound]"]

15T05:43:36+00:00] INFO: Run List is [recipe[pound]]
15T05:43:36+00:00] INFO: Run List expands to [pound]

15T05:43:36+00:00] INFO: Starting Chef Run for default-centos-64

15T05:43:36+00:00] INFO: Running start handlers
15T05:43:36+00:00] INFO: Start handlers complete.

Compiling Cookbooks...
Converging 4 resources
Recipe: yum::epel

yum_key[RPM-GPG-KEY-EPEL-6] action add[2013-06-15T05:43:36+00:00] INFO:
Processing yum_key[RPM-GPG-KEY-EPEL-6] action add (yum::epel line 22)
[2013-06-15T05:43:36+00:00] INFO: Adding RPM-GPG-KEY-EPEL-6 GPG key to
etcpki/rpm-gpg/
(up to date)
Recipe: <Dynamically Defined Resource>
package[gnupg2] action install[2013-06-15T05:43:36+00:00] INFO: Processing
package[gnupg2] action install (tmpkitchen-chef-solo/cookbooks/yum/providers/key.rb
line 32)
(up to date)
execute[import-rpm-gpg-key-RPM-GPG-KEY-EPEL-6] action nothing[2013-06-
15T05:43:37+00:00] INFO: Processing execute[import-rpm-gpg-key-RPM-GPG-KEY-EPEL-6]
action nothing (tmpkitchen-chef-solo/cookbooks/yum/providers/key.rb line 35)
(skipped due to not_if)
remote_file[etcpki/rpm-gpg/RPM-GPG-KEY-EPEL-6] action create
[2013-06-15T05:43:37+00:00] INFO: Processing remote_file[etcpki/rpm-gpg/RPM-
GPG-KEY-EPEL-6] action create (tmpkitchen-chef-solo/cookbooks/yum/providers/key.rb
line 61)
[2013-06-15T05:43:38+00:00] INFO: remote_file[etcpki/rpm-gpg/RPM-GPG-KEY -
EPEL-6] updated

- copy file downloaded from [] into etcpki/rpm-gpg/RPM-GPG-KEY-EPEL-6
--- tmpchef-tempfile20130615-578-gjrfug 2013-06-15 05:43:38.676574342
+0000
+++ tmpchef-rest20130615-578-1bv08zs 2013-06-15 05:43:38.676574339 +0000
@@ -0,0 +1,29 @@

+Version: GnuPG v1.4.5 (GNU/Linux)

"

+mQINBEVSKUIBEADLGNUj24ZVKW711iFN/JA5Cgtz INnKs7sBg7fVbNWryiE3URbN1
+IXvrdwHtkKyY96/1fZ1Ld31E2g0F61bGZ2CWwINee76Sp9Z+1sPS8RQXbG5jwj /4B
+M9HK7phktqFVI8VbY2jfTjcfxRvGM8YBWXF8hxOCDZURAjvf1xRSQJI71A058qcHn
+Xtx0AvQmAbR9z6Q/h/D+Y/PhoIJp10V4VNHCbCs9M7HUVBpgC53PDcTUQuUwCcgeY6
+pQgo9eT1elLNSZVr]5Bctiv11UcD6P6CIGkkeT2gNhqindRPNgUXGXW7Qzoefe+fV
+QqJISm7Tq2q90qVZ463964waCRItRySpul5dxZ034WMewsw2BP2M1ACbH413lugtp

+X03Bvfnk+HAFH3HcMuwdaulxv7zYKXCFNoSfgrpEfo2Ex4Im/I3WdtwME/Gbnwdq

+3VJzgAxLVFhczDHwWNk jmIdPATINI9/ixRjip4dgZ tW8VcBCrNoL+LhDrIfjvnLdRu
+VBHy9P3sCF7FZycaHIMWP6R1LtHNEMGcbZ8QpQH12dReU1wyr9QgguGU+jqSXYar
+1yEcsdRGasppNIZ8+Qawbm/a4doT10TELPArhSoHlwbvqTDYjtfVv921C/21wg06g
+YgGIXr04v8dvV39Ffm7oLFfvTbg5mv4Q/E6AW0/gk jmtxkculbyAviFtYAQARAQAB
+tCFFUEVMICg2KSA8ZXB1bEBMZWRvCMFwWcm9qZWNOLMIyZz6JAJYEEWECACAFAKVS
+KUICGw8GCwkIBWMCBBUCCAMEFgIDAQIeAQIXgAAKCRA7Sd8qBgi41R/GD/wLGPV9
+q039eyb9NTrwfKdUEo1tHxKdrhNz+XYr04yVDTBZRPSuvL2yaoeSIhQOKhNPfEQT
+9mdsbsgcfmoHxmGVcn+1bheWsSvcgrXuzOgLt8TGGKGGROAoLXpuUsb1HNtKEOWP
+Q4z1uQ2n0z5hLRYDOVOI2LwYV8BjGI jBKUMFEUXFTSL7X0ZkrAg/WbTH2PW3hrfS
+WtcRA7EYonI3B80d39ffws7SmyKbS5PmZ jqOPuTvV2FOtMhKIhncBwoojWZPExft
+HpKhzKVh8fdD0/3P1y1Fk3Cin8UbCOIMWMFNR27fVzCANLTEP1jsHA+3Ez4F7uboF

+p0O00Eov4Yyi14BEbgqZnthTG4ub9nyiupIZ3ckPHr3nVcDUGCL61QD/nkmNVIelLYP

+x1uHPOSWfuojAYgzRH6LL7Idg4FHHBAOto7FW8dQXFIOYNi1JFAQT2j8P5+tVdq8

+wBOPDSH8yRpn4HdJ9RYquau40k jluxOWfOuRaS/ /SUcCZh+1/KBEOmcVBHYRZAS]

+1/nakCgxGb2paQ0zqqpOcHKv1lyLuz05uybMXaipLEXTGIXB1XrbbASfXa/yGYSAG

+1VrGz9CE6676dM1Im8F+s3XXE13QZrXmjloc6jwOljnfAkjTGXjiB70ULESed96MR

+XtfLkOW5Ab9pd7tKDR6QHI7 rgHXfCopRNZ2VVQ==

+=V/61

+----- END PGP PUBLIC KEY BLOCK----- [2013-06-15T05:43:38+00:00] INFO:
remote_file[etcpki/rpm-gpg/RPM-GPG-KEY-EPEL-6] mode changed to 644

- change mode from '' to '0644'

[2013-06-15T05:43:38+00:00] INFO: remote_file[etcpki/rpm-gpg/RPM-GPG-KEY -
EPEL-6] sending run action to execute[import-rpm-gpg-key-RPM-GPG-KEY-EPEL-6]
(immediate)

execute[import-rpm-gpg-key-RPM-GPG-KEY-EPEL-6] action run[2013-06-
15T05:43:38+00:00] INFO: Processing execute[import-rpm-gpg-key-RPM-GPG-KEY-EPEL-6]
action run (tmpkitchen-chef-solo/cookbooks/yum/providers/key.rb line 35)

[2013-06-15T05:43:38+00:00] INFO: execute[import-rpm-gpg-key-RPM-GPG-KEY -

EPEL-6] ran successfully

- execute rpm --import etcpki/rpm-gpg/RPM-GPG-KEY-EPEL-6

Recipe: yum::epel
yum_repository[epel] action create[2013-06-15T05:43:38+00:00] INFO:
Processing yum_repository[epel] action create (yum::epel line 27)
[2013-06-15T05:43:38+00:00] INFO: Adding and updating epel repository in
etcyum.repos.d/epel.repo
[2013-06-15T05:43:38+00:00] WARN: Cloning resource attributes for
yum_key[RPM-GPG-KEY-EPEL-6] from prior resource (CHEF-3694)
[2013-06-15T05:43:38+00:00] WARN: Previous yum_key[RPM-GPG-KEY-EPEL-6]:
tmpkitchen-chef-solo/cookbooks/yum/recipes/epel.rb:22:in “from_file'
[2013-06-15T05:43:38+00:00] WARN: Current yum_key[RPM-GPG-KEY-EPEL-6]:
tmpkitchen-chef-solo/cookbooks/yum/providers/repository.rb:85:1n ‘repo_config'
(up to date)
Recipe: <Dynamically Defined Resource>
yum_key[RPM-GPG-KEY-EPEL-6] action add[2013-06-15T05:43:38+00:00] INFO:
Processing yum_key[RPM-GPG-KEY-EPEL-6] action add (tmpkitchen-chef-
solo/cookbooks/yum/providers/repository.rb line 85)
(up to date)
execute[yum-makecache] action nothing[2013-06-15T05:43:38+00:00] INFO:
Processing execute[yum-makecache] action nothing (tmpkitchen-chef-
solo/cookbooks/yum/providers/repository.rb line 88)
(up to date)
ruby_block[reload-internal-yum-cache] action nothing[2013-06-
15T05:43:38+00:00] INFO: Processing ruby_block[reload-internal-yum-cache] action
nothing (tmpkitchen-chef-solo/cookbooks/yum/providers/repository.rb line 93)

(up to date)
template[etcyum.repos.d/epel.repo] action create

[2013-06-15T05:43:38+00:00] INFO: Processing
template[etcyum.repos.d/epel.repo] action create (tmpkitchen-chef-
solo/cookbooks/yum/providers/repository.rb line 100)

[2013-06-15T05:43:38+00:00] INFO: template[etcyum.repos.d/epel.repo] updated
content

[2013-06-15T05:43:38+00:00] INFO: template[etcyum.repos.d/epel.repo] mode
changed to 644

- create template[etcyum.repos.d/epel.repo]

--- tmpchef-tempfile20130615-578-1rq8217 2013-06-15 05:43:38.819576393
+0000

+++ tmpchef-rendered-template20130615-578-z3junu 2013-06-15
05:43:38.819576393 +0000

@@ -0,0 +1,8 @@

+# Generated by Chef for default-centos-64.vagrantup.com

+# Local modifications will be overwritten.

+[epel]

+name=Extra Packages for Enterprise Linux

+mirrorlist=http://mirrors.fedoraproject.org/mirrorlist?repo=epel-
6&arch=$basearch

+gpgcheck=1

+gpgkey=file://etcpki/rpm-gpg/RPM-GPG-KEY-EPEL-6

+enabled=1

[2013-06-15T05:43:38+00:00] INFO: template[etcyum.repos.d/epel.repo] sending
run action to execute[yum-makecache] (immediate)
execute[yum-makecache] action run[2013-06-15T05:43:38+00:00] INFO:
Processing execute[yum-makecache] action run (tmpkitchen-chef-
solo/cookbooks/yum/providers/repository.rb line 88)
[2013-06-15T05:43:57+00:00] INFO: execute[yum-makecache] ran successfully

- execute yum -q makecache

[2013-06-15T05:43:57+00:00] INFO: template[etcyum.repos.d/epel.repo] sending

create action to ruby_block[reload-internal-yum-cache] (immediate)
ruby_block[reload-internal-yum-cache] action create[2013-06-

15T05:43:57+00:00] INFO: Processing ruby_block[reload-internal-yum-cache] action
create (tmpkitchen-chef-solo/cookbooks/yum/providers/repository.rb line 93)

[2013-06-15T05:43:57+00:00] INFO: ruby_block[reload-internal-yum-cache]
called

- execute the ruby block reload-internal-yum-cache
Recipe: pound::default

package[Pound] action install[2013-06-15T05:43:57+00:00] INFO: Processing
package[Pound] action install (pound::default line 11)

[2013-06-15T05:44:00+00:00] INFO: package[Pound] installing Pound-2.6-2.el6
from epel repository

- install version 2.6-2.el6 of package Pound

service[pound] action enable[2013-06-15T05:44:03+00:00] INFO: Processing
service[pound] action enable (pound::default line 13)
[2013-06-15T05:44:03+00:00] INFO: service[pound] enabled

- enable service service[pound]

* service[pound] action start[2013-06-15T05:44:03+00:00] INFO: Processing
service[pound] action start (pound::default line 13)
[2013-06-15T05:44:03+00:00] INFO: service[pound] started

- start service service[pound]

[2013-06-15T05:44:03+00:00] INFO: Chef Run complete in 27.503439435 seconds
[2013-06-15T05:44:03+00:00] INFO: Running report handlers
[2013-06-15T05:44:03+00:00] INFO: Report handlers complete
Chef Client finished, 8 resources updated
Finished converging <default-centos-64> (0m32.78s).

----- > Kitchen is finished. (Om33.85s)

Test Kitchen passed off the dependency to Berkshelf, the node was converged,
the EPEL repo was installed, then Pound was installed, and the service was
started. In 30 seconds. Now let’s look at the tests:

$ kitchen verify 6
----- > Starting Kitchen (v1.0.0.alpha.7)
----- > Verifying <default-centos-64>
Removing optbusser/suites/bats
Uploading optbusser/suites/bats/prepare_recipe.rb (mode=0664)
Uploading optbusser/suites/bats/pound.bats (mode=0664)
Uploading optbusser/suites/bats/pound.bats-disabled (mode=0664)
----- > Running bats test suite
----- > Preparing bats suite with optbusser/suites/bats/prepare_recipe.rb
[2013-06-15T05:48:23+00:00] INFO: Run List is []
[2013-06-15T05:48:23+00:00] INFO: Run List expands to []
Recipe: (chef-apply cookbook)::(chef-apply recipe)
* package[nc] action install[2013-06-15T05:48:23+00:00] INFO: Processing
package[nc] action install ((chef-apply cookbook)::(chef-apply recipe) line 1)
(up to date)
* package[nmap] action install[2013-06-15T05:48:26+00:00] INFO: Processing
package[nmap] action install ((chef-apply cookbook)::(chef-apply recipe) line 1)

1

S>>5>5>>
S>>>5>>
S>>>5>>
S>>5>5>>
S>>5>5>>

S>>>5>>

(up to date)
1..6
ok 1 The Pound service is running
ok 2 Two Pound backends are active
ok 3 Pound has an HTTP listener
not ok 4 Pound does not have an HTTPS listener
optbusser/suites/bats/pound.bats:5
ok 5 Server is listening on port 80
ok 6 Server accepts HTTP requests
Command [optbusser/vendor/bats/bin/bats optbusser/suites/bats] exit code was

Verify failed on instance <default-centos-64>.

Please see .kitchen/logs/default-centos-64.log for more details

------ Exception-------

Class: Kitchen::ActionFailed

Message: SSH exited (1) for command: [sudo -E optbusser/bin/busser test]

Five out of six tests pass. However, we do have an HTTPS listener. We’ll need to
disable that in the configuration. This allows us to introduce another feature of
the Chef DSL: templates.

Templates

Templates are much like the parlor game “Consequences,” one version of which
has the following rules: The object is to construct an amusingly random narrative
based around a chance encounter between two people. Three or more players get
together. Each player takes a sheet of blank paper and writes one section of the
narrative. The paper is then folded and passed on. Here are the sections:

1. A description beginning with the word the (e.g., The beautiful, The very
talkative)

2. A man’s name

3. A second description, as above

4. A woman’s name

5. Where they met

6. What he gave her

7. What she said

8. What he did

9. What the consequence was
10. What the world said about it

After all the sections have been completed, each part of the narrative is read
aloud, inserting the words “met,” “at,” and so on, where appropriate. Much
hilarity ensues.

We all understand these instructions; we interpret the sections and replace each
one with appropriate words. What we’re doing is following a template. Ruby
(and indeed Chef) has this concept. Let’s illustrate this with the same game. A
template that matches these instructions might look like the following:

The <%= @description_one.downcase %> <%= @man %> met the <%=
@description_two.downcase %> <%= @woman %> at <%= @location %>.

He gave her <%= @gift.downcase %>, and she said "<%= @woman_saying %>". He did <%=
@man_action.downcase %>.

The consequence was <%= @consequence %>, and the world said "<%= @world_saying %>"

This is an Embedded Ruby, or ERB, template. This allows Ruby code to be
embedded within a pair of <% and %> delimiters. These embedded code blocks
are then evaluated in place (they are replaced by the result of their evaluation).
In this example, we’re using expression result substitution, which is denoted by
<%= %> delimiters. The result of the Ruby expression is printed. The
@something variables are instance variables, which you’ll remember are
variables that describe the attributes of an instance of a class, in object-oriented
programming. They’re always preceded with the @ sign—you can remember
them by the connection between the @ symbol, and the attributes they describe.
In this case we’re seeing the attributes of an ERB template. These variables are
said to be passed into the template—in this case as strings, which is why in
places we can call the String#downcase method.

I wrote this silly example to introduce ERB templates:

require 'ztk'

male_descriptions = [
"dashingly handsome",
"tanned, muscular",
"shockingly rude",
"diffident, bespectacled"”

]

men = [
"Karl Barth",
"Nelson Mandela",
"Tigran Petrosian",
"Ian Botham"

]

female_descriptions = [
"doughty, tweedy",
"ravishing",
"brilliantly intelligent",
"austere, high-minded"

]

women = [
"Zola Budd",
"Margaret Thatcher",
"Audrey Hepburn",
"Marie Antoinette"

]

locations = [
"the pub",
"freshers' fair",
"Chefconf",
"the opera"

]

gifts = [
"jam trousers",
"chocolate cake",
"fish knives",
"a blank cheque"

]

woman_sayings = [
"I have a dream!",
"The future is much like the present, only longer",
"The wisest men follow their own direction",

"I despise the pleasure of pleasing people that I despise"

man_actions = [
"Danced a jig",
"joined a Buddhist monastery",
"fell dead on the spot",
"sold all his possessions"

consequences = [
"world peace",
"global warming",
"a sharp rise in interest rates",
"entirely unremarkable"

world_sayings = [
"I don't suffer from insanity. I enjoy every minute of it.",
"I'll be the in to your sane.",
"Use it or lose it is a cliche because it's true.",
"That which does not kill us makes us stronger."

output = ZTK::Template.render("consequences.erb",
{

:description_one => male_descriptions.sample,
:man => men.sample,
:description_two => female_descriptions.sample,
:woman => women.sample,
:location => locations.sample,
:gift => gifts.sample,
:woman_saying => woman_sayings.sample,
:man_action => actions.sample,
:consequence => consequences.sample,
:world_saying => world_sayings.sample

puts output

All this does is feed random strings into the template and print the output. It uses
the handy ZTK template class from Zachary Patten, co-author of Cucumber-
Chef. Let’s give it a few spins:

> ruby consequences.rb

The dashingly handsome Karl Barth met the austere, high-minded Audrey Hepburn at
Chefconf.

He gave her jam trousers, and she said "The wisest men follow their own direction".
He fell dead on the spot.

The consequence was entirely unremarkable, and the world said "Use it or lose it 1is
a cliche because it's true."

> ruby consequences.rb

The diffident, bespectacled Nelson Mandela met the brilliantly intelligent Margaret
Thatcher at the pub.

He gave her fish knives, and she said "The wisest men follow their own direction".
He joined a Buddhist monastery.

The consequence was entirely unremarkable, and the world said "I don't suffer from
insanity. I enjoy every minute of it."

> ruby consequences.rb

The shockingly rude Tigran Petrosian met the doughty, tweedy Audrey Hepburn at
freshers' fair.

He gave her a blank cheque, and she said "The future is much like the present, only
longer". He sold all his possessions.

The consequence was global warming, and the world said "That which does not kill us
makes us stronger."

The Chef template resource behaves very similarly. We can pass in variables that
are rendered as instance variables in the template, or we can use attributes on the
node, directly within <%= %> tags.

Copy the config file from the machine under test into
templates/default/pound.cfg.erb/.

User "pound"
Group "pound"
Control "varlib/pound/pound.cfg"

ListenHTTP
Address 0.0.0.0
Port 80
End
ListenHTTPS
Address 0.0.0.0
Port 443
Cert "etcpki/tls/certs/pound.pem"

End

Service

BackEnd
Address 127.0.0.1
Port 8000

End

BackEnd
Address 127.0.0.1
Port 8001

End

End

We need to disable the HTTPS functionality. We could simply delete it and serve
the configuration file as a static asset. However, as a cookbook maintainer, it’s
usually wise to provide attributes to make the cookbook flexible and easy to
configure. Looking at this file, I can see a number of candidates for abstraction
into attributes—the user and group, the ports, whether or not to even run SSL,
where the SSL certificate is found, the control file, and even the address of the
backends. All these are data that we would like to be able to control. Let’s leave
the backend config for now, but configure the rest. Create a default attributes file
in the cookbook:

default['pound']['user'] = 'pound'

default['pound']['group'] = 'pound'

default['pound']['port'] = '80'

default['pound']['control'] = 'varlib/pound/pound.cfg'
default['pound']['ssl']['enabled'] = false
default['pound']J['ssl']['cert'] = 'etcpki/tls/certs/pound.pem’
default['pound']['ssl']['port'] = '443'

Now we need to get these values into the template:

User "<%= node['pound']['user'] %>"
Group "<%= node['pound']['group'] %>"
Control "<%= node['pound']['control'] %>"

ListenHTTP

Address 0.0.0.0

Port <%= node['pound']['port'] %>
End

<% if node['pound']['ssl']['enabled'] -%>
ListenHTTPS
Address 0.0.0.0
Port <%= node['pound']['ssl']['port'] %>
Cert "<%= node['pound']['ssl']['cert'] %>"
End
<% end -%>

Service
BackEnd
Address 127.0.0.1
Port 8000
End
BackEnd
Address 127.0.0.1
Port 8001
End
End

Finally we need to render the config file in the recipe by adding the following
resource:

template 'etcpound.cfg' do
source 'pound.cfg.erb'
end

Now let’s converge the node and run the tests again. If you look carefully at the
output you should see:

[2013-06-15T06:18:54+00:00] INFO: template[etcpound.cfg] backed up to
varchef/backupetcpound.cfg.chef-20130615061854
[2013-06-15T06:18:54+00:00] INFO: template[etcpound.cfg] updated content

- update template[etcpound.cfg] from bc2726 to d81205
--- etcpound.cfg 2013-06-15 06:17:31.154571676 +0000
+++ tmpchef-rendered-template20130615-3712-1nfupzj 2013-06-15
06:18:54.694571487 +0000
@@ -16,11 +16,6 @@
Port 80
End

-ListenHTTPS
- Address 0.0.0.0

- Port 443
- Cert "etcpki/tls/certs/pound.pem"
-End

Service
BackEnd

So Chef has removed the HTTPS block. Now the tests should pass:

ok 1 The Pound service is running

ok 2 Two Pound backends are active

ok 3 Pound has an HTTP listener

not ok 4 Pound does not have an HTTPS listener
optbusser/suites/bats/pound.bats:5

ok 5 Server is listening on port 80

ok 6 Server accepts HTTP requests

What? What happened? We just saw the file change! Why didn’t the test pass?
Well, what would you do as a sysadmin, after making a change to the
configuration? You’d restart the service! We didn’t ask Chef to do that, so it
didn’t. This allows us to introduce the idea of notifications. We want to restart
the service if the config file changes. All resources can send and receive

messages using the notifies metaparameter. Update the template resource as
follows:

template 'etcpound.cfg' do

source 'pound.cfg.erb'

notifies :restart, 'service[pound]'
end

Converge the node again, and see what happens:

* template[etcpound.cfg] action create[2013-06-15T06:24:17+00:00] INFO: Processing
template[etcpound.cfg] action create (pound::default line 17)
(up to date)
[2013-06-15T06:24:17+00:00] INFO: Chef Run complete in 5.792886113 seconds
[2013-06-15T06:24:17+00:00] INFO: Running report handlers
[2013-06-15T06:24:17+00:00] INFO: Report handlers complete
Chef Client finished, 0 resources updated
Finished converging <default-centos-64> (0m11.22s).

Curiouser and curiouser. Why didn’t the service get restarted? This is a common
gotcha in Chef and requires careful attention. The config file didn’t change so
we didn’t trigger a restart. Conceivably our system could now be in a broken
state and not recoverable without either manually logging onto the machine and
removing the file, so Chef can replace it, or by making a change in the template.
The lesson to learn is to make sure you pay careful attention to your resources
and messages.

I logged on with kitchen login and deleted the file, before finally converging
the node again. This time we see the following message:

[2013-06-15T06:29:56+00:00] INFO: template[etcpound.cfg] sending restart action to
service[pound] (delayed)
* service[pound] action restart[2013-06-15T06:29:56+00:00] INFO: Processing
service[pound] action restart (pound::default line 13)
[2013-06-15T06:29:57+00:00] INFO: service[pound] restarted

- restart service service[pound]

And now all our tests pass!

ok 1 The Pound service is running

ok 2 Two Pound backends are active

ok 3 Pound has an HTTP listener

ok 4 Pound does not have an HTTPS listener
ok 5 Server is listening on port 80

ok 6 Server accepts HTTP requests

A brief discussion on services and templates is needed at this stage. This basic
pattern—install a package, render a dynamic config file using a template, and
manage a service—is what I call the holy trinity of configuration management.
About 80% of the configuration management you’ll need to do will be a
variation on this theme.

Installing the package is the obvious part of the trinity—we want to provide
some kind of functionality and that requires us to install some software.
Software is frequently distributed in packages, and Chef knows how to install
them. Nothing much to say here.

Templates represent the most obviously flexible way to manage files on a node.

Because we can pass in data either from an external place or insert values from
the node attributes, it’s the perfect way to separate configuration from data.
When combined with Chef’s ability to search for data, it opens up effectively
limitless opportunity for dynamic configuration. The most obvious example
would be the case where the backends for a load balancer could be determined in
real time by searching for all machines with an application server recipe or role,
and returning the IP address.

When a template changes, we want to be able to restart the service it configures.
In order to do that we need to explicitly declare the service, but then having
declared it, we can send it a message in the event of a change to the template.
This is what’s going on in the preceding template resource:

notifies :restart, 'service[pound]'

We do that using the notifies metaparameter. It’s called a “metaparameter”
because all services can send (and receive) notifications. The syntax is as
follows:

resource "name" do

notifies :restart, "resource[something]"
end

In our case we used:

template 'etcpound.cfg' do

source 'pound.cfg.erb'

notifies :restart, 'service[pound]'
end

The ordering sounds a bit funny—you don’t notify a restart. I find it helps to
think of the resource doing the notifying as a rather keen but desperately
unreliable child to whom you have entrusted a message:

"Wilfrid, please will you tell Atty to feed her Guinea Pigs?"
"OK! <scurries off>"

"Wait a second Wilfrid... tell me the message..."

"Feed the Guinea Pigs!"

"And who are you going to tell?"
”Atty) "
"Jolly good."

Similarly, we say, “What’s the message? And what resource is getting the
message?”

Before we move on, I want to demonstrate the same procedure using Serverspec

instead of Bats. First, destroy your instance using kitchen destroy, and then
comment out the default recipe so no action is taken.

Now, rename the Bats file to pound.bats-disabled. We do this because the tests
run in alphabetical order, and will stop as soon as a failure is reached. This
means we’d never see our Serverspec tests!

Create a directory for the Serverspec tests, and add the following file:

$ cat test/integration/default/serverspec/spec_helper.rb
require 'serverspec'

require 'pathname'

include Serverspec: :Helper: :Exec

include Serverspec: :Helper: :Detect0S

RSpec.configure do |c|
c.before :all do
c.os = backend(Serverspec::Commands: :Base).check_os
end
end

This file is needed to ensure the helpers and operating system detection is in
place. Now create a subdirectory inside Serverspec, called localhost, and add the
following test:

$ cat test/integration/default/serverspec/localhost/pound_spec.rb
require 'spec_helper'

describe 'Pound Loadbalancer' do
it 'should be listening on port 80' do
expect(port 80).to be_listening

end

it 'should be running the pound service' do

expect(service 'pound').to be_running
end

it 'should have two active backends' do

expect(command 'poundctl -c varlib/pound/pound.cfg').to return_stdout
/.*Backend.*800[01].*active/
end

it 'should have an HTTP listener' do
expect(command 'poundctl -c varlib/pound/pound.cfg').to return_stdout /.*http
Listener.*/
end

it 'should not have an HTTPS listener' do
expect(command 'poundctl -c varlib/pound/pound.cfg').not_to return_stdout
/. *HTTPS Listener.*/
end

it 'should accept HTTP connections on port 80' do
expect(command "echo 'GET HTTP1.1' | nc localhost 80").to return_stdout
/Content-Length:.*/
end
end

We’re testing more or less the same thing, but with a different testing
framework. This time we can run kitchen verify in one go, which will create
the machine, install Chef, run Chef, and run the tests:

----- > Running serverspec test suite

optchef/embedded/bin/ruby -Ioptbusser/suites/serverspec -S
optchef/embedded/bin/rspec optbusser/suites/serverspec/localhost/pound_spec.rb
FFFF. F

Failures:

1) Pound Loadbalancer should be listening on port 80
Failure/Error: expect(port 80).to be_listening
netstat -tunl | grep -- :80\
optbusser/suites/serverspec/localhost/pound spec.rb:6:in “block (2
levels) in <top (required)s'

2) Pound Loadbalancer should be running the pound service
Failure/Error: expect(service 'pound').to be_running
service pound status
pound: unrecognized service

optbusser/suites/serverspec/localhost/pound spec.rb:10:in ‘block (2
levels) in <top (required)s'

3) Pound Loadbalancer should have two active backends
Failure/Error: expect(command 'poundctl -c varlib/pound/pound.cfg').to
return_stdout /.*Backend.*800[01].*active/
poundctl -c varlib/pound/pound.cfg
sh: poundctl: command not found
optbusser/suites/serverspec/localhost/pound spec.rb:14:in ‘block (2
levels) in <top (required)s'

4) Pound Loadbalancer should have an HTTP listener
Failure/Error: expect(command 'poundctl -c varlib/pound/pound.cfg').to
return_stdout /.*http Listener.*/
poundctl -c varlib/pound/pound.cfg
sh: poundctl: command not found
optbusser/suites/serverspec/localhost/pound spec.rb:18:in ‘block (2
levels) in <top (required)s'

5) Pound Loadbalancer should accept HTTP connections on port 80
Failure/Error: expect(command "echo 'GET HTTP1.1' | nc localhost
80").to return_stdout /Content-Length:.*/
echo 'GET HTTP1.1' | nc localhost 80
optbusser/suites/serverspec/localhost/pound spec.rb:26:in ‘block (2
levels) in <top (required)s'

Finished in 0.05315 seconds
6 examples, 5 failures

The output of the failures is much more verbose, but very much as expected.
Now uncomment the recipe, converge the node, and run the tests again:

----- > Running serverspec test suite
optchef/embedded/bin/ruby -Ioptbusser/suites/serverspec -S
optchef/embedded/bin/rspec optbusser/suites/serverspec/localhost/pound_spec.rb

Finished in 0.11034 seconds
6 examples, 0 failures
Finished verifying <default-centos-64> (0m12.07s).

We already covered the basics of RSpec in Chapter 5. All Serverspec adds is a
set of matchers that check the state of various common resources across a range
of operating systems. The resources are documented at Serverspec’s website,

http://serverspec.org/resource_types.html

although the example code given uses the deprecated expectation syntax. My
examples use the recommended and current approach, and I recommend you
follow this format.

Integration Testing: Minitest Handler

One of the early approaches to integration testing with Chef is Minitest Handler.
Considered by some to be no longer as relevant, given the advent of the latest
breed of tools, it is nevertheless a popular and useful tool.

Overview

We can view unit tests as being simple, discrete, isolated tests, exercising one
piece of functionality, and integration tests as tests that exercise examples of
those units of functionality talking to one another. We described this in Chef
terms, as signal in and signal out.

Minitest Handler allows Minitest suites to be run after recipes have been applied
to a node to verify the status of the system. In this respect, it’s a good approach
to testing signal out.

Unlike most of the other tools we discuss in this chapter, the process of writing
and running tests via Minitest Handler is managed through a combination of a
cookbook and a Chef run itself.

chef-client »| build node p| authenticate

l

load sync
converge [« cookbooks | ¢ cookbooks
Yes
»| node.save > notification
No » [exception handlers

When Chef runs, and configures a node, the last stage of the process is to run so-
called report and exception handlers. In simple terms, these provide an interface
through which we can collect and display information about the result of a Chef
run. The report handler displays information about what happened; the exception
handler displays information about what went wrong. The design of the system
is such that anyone can write a custom handler that takes data from the Chef run
and formats it, sends it, processes it, or displays it in whichever way suits the
user.

While these are frequently used to provide notification, for example via IRC or
Campfire, they can, of course, be used to do anything at all. Minitest Handler
uses this feature to run Minitest suites at the end of the Chef run. This is
achieved by adding an entry to the run list to ensure the tests run.

The Minitest Handler cookbook sets up everything needed to use it for the
running of tests. The naming is slightly confusing, so I’ll clarify quickly:

m Minitest Handler is a cookbook that sets up your system to enable you to
write Minitest examples to verify the state of your system after your Chef
node has converged.

m Minitest Chef Handler is a Rubygem that provides the handler itself, and

library code for assertions, matchers, and helpers to make the writing and
running of these tests possible.

The cookbook carries out the following tasks:

m Installs the latest Minitest gem
m [nstalls the Chef Minitest gem
m Places test files from cookbooks on the target node as part of a Chef run

For each recipe we wish to test, we must create a corresponding test under the
files/default/tests/minitest directory. The naming of the test is significant and
follows the name of the recipe. So, if we had a recipe called server.rb, the test
file would be located at files/default/tests/minitest/server_test.rb.

These tests are just the same as the Minitest spec examples we wrote when we
were developing the Hipster assessor. The only difference is that instead of
testing an instance of a Ruby class we wrote, we’re testing the results of a Chef
run.

Running the tests is simply a matter of running Chef and looking at the output
printed to the screen. In this respect, Minitest Handler is one of the simplest tools
to start using.

Getting Started

Berkshelf has a command-line option that will add Minitest Handler support to a
cookbook it creates. This is the best way to get started. Let’s create a cookbook
to install GNU Screen—a common screen multiplexer:

$ berks cookbook --chef-minitest screen
create screen/files/default
create screen/templates/default
create screen/attributes
create screen/definitions
create screen/libraries
create screen/providers
create screen/recipes
create screen/resources
create screen/recipes/default.rb
create screen/metadata.rb

create
create
create
create
create
create
run
create
create
create
create
create
append
create
append
append
append
append
You must run
create

screen/LICENSE

screen/README.md

screen/Berksfile

screen/Thorfile

screen/chefignore

screen/.gitignore

git init from "./screen"
screen/files/default/tests/minitest/support
screen/files/default/tests/minitest/default_test.rb
screen/files/default/tests/minitest/support/helpers.rb
screen/Gemfile

.kitchen.yml

Thorfile

test/integration/default

.gitignore

.gitignore

Gemfile

Gemfile

‘bundle install' to fetch any new gems.

screen/Vagrantfile

The key sections here are as follows:

create screen/files/default/tests/minitest/support
create screen/files/default/tests/minitest/default_test.rb
create screen/files/default/tests/minitest/support/helpers.rb

This sets up an example test and a helper file, which includes the Chef-Minitest
code, and provides a convenient place for us to put any of our own functions to
support our tests. The helper file created for us by Berkshelf looks like this:

module Helpers

module Screen
include MiniTest::Chef::Assertions
include MiniTest::Chef::Context
include MiniTest::Chef::Resources

end
end

And the example test looks like this:

$ cat default_test.rb
require File.expand_path('../support/helpers', _ FILE_)

describe 'screen::default' do
include Helpers::Screen
Example spec tests can be found at http://git.io/Fahwsw
it 'runs no tests by default' do

end

end

This introduces the important ideas of Modules and Mixins, which we
mentioned earlier. Modules are a particularly excellent feature of Ruby. They
serve two purposes; they implement namespaces, so that as program complexity
and size grows, we don’t get into a situation where multiple methods with the
same name, but serving very different purposes, clash with each other. Instead,
we use modules to make it clear which we mean:

module Trig

def sin(degrees)
end

def tan(degrees)
end

def cos(degrees)
end

end
module Catholic

def sin(naughty_thing)
end

def confess(naughty_thing)
end

def pray(saint)

end
end

If there was a situation in which the programmer wanted to use both Trig and

Catholic modules, all that would be required would be to specify the dependency
on the module, and then use the namespace:

require 'trig'
require 'catholic'

dice_roll = rand(5)+1
def do_maths_homework

def find_opposite(theta, hypotenuse)
Trig::sin(theta) * hypotenuse
end

def submit_homework

end

result = find_opposite(30, 100)
if dice_roll > 3

Catholic::sin("Lie about using a computer")

submit_homework

Catholic::confess("I claimed I didn't use a computer, but I did!")
else

submit_homework
end

end

The second, and more immediately relevant benefit of modules, is the concept of
“mixing in.” We’ve already seen in my silly example earlier that modules can
have methods. If you include a module in a class, all the methods from that
class automatically become available to the class. This is known as the mixin
facility. We see this facility in use throughout Ruby’s core.

>= ri Array
= Array <= Object

= Includes:
Enumerable (from ruby core)

(from ruby core)

Arrays are ordered, integer-indexed collections of any object. Array indexing
starts at 0, as in C or Java. A negative index is assumed to be relative to
the end of the array---that is, an index of -1 indicates the last element of
the array, -2 is the next to last element in the array, and so on.

The Array class mixes in the Enumerable module:

>= ri Enumerable
= Enumerable

(from ruby core)

The Enumerable mixin provides collection classes with several traversal and
searching methods, and with the ability to sort. The class must provide a
method each, which yields successive members of the collection. If
Enumerable#max, #min, or #sort is used, the objects in the collection must
also implement a meaningful <=> operator, as these methods rely on an ordering
between members of the collection.

Here we see the Enumerable mixin and our class can interact. As long as we
define an “each” method, and include Enumerable, we’ll get a whole bunch of
extra stuff.

Normally to include a mixin, we explicitly call include mymixin, and that’s

exactly what we see in the example test. By including Helpers: :Screen, we get
access to the functionality within that module.

The last relevant step that the Berkshelf generator took was to add a line to our
Berksfile, ensuring that we have access to the cookbook and its content:

$ cat Berksfile

site :opscode

group :integration do
cookbook 'minitest-handler'

end

metadata

Berkshelf has provided everything we need: the cookbook itself, an example
test, and helper code. To run the tests, all we need to do is run vagrant up:

$ vagrant up

Bringing machine 'default' up with 'virtualbox' provider...

[default] Setting the name of the VM...

[default] Clearing any previously set forwarded ports...

[Berkshelf] This version of the Berkshelf plugin has not been fully tested on this
version of Vagrant.

[Berkshelf] You should check for a newer version of vagrant-berkshelf.
[Berkshelf] If you encounter any errors with this version, please report them at
https://github.com/RiotGames/vagrant-berkshelf/issues

[Berkshelf] You can also join the discussion in #berkshelf on Freenode.
[Berkshelf] Updating Vagrant's berkshelf: 'hometdi/.berkshelf/vagrant/berkshelf-
20130618-27272-1cv4qos’

[Berkshelf] Using minitest-handler (0.2.1)

[Berkshelf] Using screen (0.1.0) at path: 'hometdi/screen'

[Berkshelf] Using chef_handler (1.1.4)

[default] Creating shared folders metadata...

[default] Clearing any previously set network interfaces...

[default] Preparing network interfaces based on configuration...

[default] Forwarding ports...

[default] -- 22 => 2222 (adapter 1)

[default] Booting VM...

[default] Waiting for VM to boot. This can take a few minutes.

[default] VM booted and ready for use!

[default] Setting hostname...

[default] Configuring and enabling network interfaces...

[default] Mounting shared folders...

[default] -- /vagrant

[default] -- tmpvagrant-chef-1/chef-solo-1/cookbooks

[default] Running provisioner: chef_solo...

Generating chef JSON and uploading...

Running chef-solo...

[2013-06-18T06:06:02+00:00] INFO: *** Chef 10.14.2 ***
[2013-06-18T06:06:03+00:00] INFO: Setting the run_list to ["recipe[minitest-
handler::default]", "recipe[screen::default]"] from JSON
[2013-06-18T06:06:03+00:00] INFO: Run List is [recipe[minitest-handler::default],
recipe[screen::default]]

[2013-06-18T06:06:03+00:00] INFO: Run List expands to [minitest-handler::default,
screen: :default]

[2013-06-18T06:06:03+00:00] INFO: Starting Chef Run for screen-berkshelf
[2013-06-18T06:06:03+00:00] INFO: Running start handlers
[2013-06-18T06:06:03+00:00] INFO: Start handlers complete.
[2013-06-18T06:06:03+00:00] INFO: Processing chef_gem[minitest] action nothing
(minitest-handler::default line 2)

[2013-06-18T06:06:03+00:00] INFO: Processing chef_gem[minitest] action install
(minitest-handler::default line 2)

[2013-06-18T06:06:03+00:00] INFO: Processing chef_gem[minitest-chef-handler] action
nothing (minitest-handler::default line 9)

[2013-06-18T06:06:03+00:00] INFO: Processing chef_gem[minitest-chef-handler] action
install (minitest-handler::default line 9)

[2013-06-18T06:06:34+00:00] INFO: Processing chef_gem[minitest] action nothing
(minitest-handler::default line 2)

[2013-06-18T06:06:34+00:00] INFO: Processing chef_gem[minitest-chef-handler] action
nothing (minitest-handler::default line 9)

[2013-06-18T06:06:34+00:00] INFO: Processing directory[minitest test location]
action delete (minitest-handler::default line 18)

[2013-06-18T06:06:34+00:00] INFO: Processing directory[minitest test location]
action create (minitest-handler::default line 18)

[2013-06-18T06:06:34+00:00] INFO: directory[minitest test location] created
directory varchef/minitest

[2013-06-18T06:06:34+00:00] INFO: directory[minitest test location] owner changed to
0

[2013-06-18T06:06:34+00:00] INFO: directory[minitest test location] group changed to
0

[2013-06-18T06:06:34+00:00] INFO: directory[minitest test location] mode changed to
775

[2013-06-18T06:06:34+00:00] INFO: Processing ruby_block[load tests] action create
(minitest-handler::default line 29)

[2013-06-18T06:06:34+00:00] INFO: Processing directory[varchef/minitest/minitest-
handler] action create (dynamically defined)

[2013-06-18T06:06:34+00:00] INFO: directory[varchef/minitest/minitest-handler]
created directory varchef/minitest/minitest-handler

[2013-06-18T06:06:34+00:00] INFO: Processing directory[varchef/minitest/screen]
action create (dynamically defined)

[2013-06-18T06:06:34+00:00] INFO: directory[varchef/minitest/screen] created
directory varchef/minitest/screen

[2013-06-18T06:06:34+00:00] INFO: Enabling minitest-chef-handler as a report handler
[2013-06-18T06:06:34+00:00] INFO: ruby block[load tests] called
[2013-06-18T06:06:34+00:00] INFO: Chef Run complete in 31.002947638 seconds
[2013-06-18T06:06:34+00:00] INFO: Running report handlers

Run options: -v --seed 30025

Running tests:

screen::default#test_0001_runs no tests by default =
0.00 s =

Finished tests in 0.001883s, 531.0494 tests/s, 0.0000 assertions/s.

1 tests, 0 assertions, 0 failures, 0 errors, 0 skips

[2013-06-18T06:06:34+00:00] INFO: Report handlers complete

Naturally, this used the default Vagrantfile created by Berkshelf, which might not
use the Vagrant box you want, and at the time of this writing, installs Chef 10
rather than Chef 11. But this is mere detail—we already know how to swap out
Vagrant boxes.

Berkshelf made the Minitest Handler cookbook available, and the existence of
the tests under the files/default/tests/minitest location meant that the tests were
picked up and run, with the test results visible at the conclusion of the Chef run.

Example

Let’s write a couple of trivial tests for our screen cookbook before looking at
some more involved examples.

I think the two obvious things we’d want to test when installing Screen would be
that the package was installed and that a standard, customized screen config was
made available to users. We can make assertions about this as follows. Edit the
files/default/tests/minitest/default.rb file:

require File.expand_path('../support/helpers', _ FILE_)
describe 'screen::default' do
include Helpers::Screen

it "installs Screen" do
package("screen").must_be_installed
end

it "provides a global, customized default configuration" do
file("usrlocaletcscreenrc").must_exist
file('usrlocaletcscreenrc').must_match /~caption string .*%\?%F%{= Bk}%\?.*$/
file('usrlocaletcscreenrc').must_match /~hardstatus string '%{= kG}.*$/

end

end

We can run these tests with vagrant provision:

[2013-06-18T08:32:52+00:00] INFO: Running report handlers
Run options: -v --seed 16917

Running tests:

screen::default#test_0001_installs Screen =

5.73 s =F

screen: :default#test_0002_provide a global, customized default configuration =
0.00 s = F

Finished tests in 5.735119s, 0.3487 tests/s, 0.3487 assertions/s.

1) Failure:
screen::default#test_0001_installs Screen
[varchef/minitest/screen/default_test.rb:8]:
Expected package 'screen' to be installed

2) Failure:
screen: :default#test_0002_provide a global, customized default configuration
[varchef/minitest/screen/default_test.rb:12]:
Expected path 'usrlocaletcscreenrc' to exist

2 tests, 2 assertions, 2 failures, 0 errors, 0 skips

[2013-06-18T08:32:58+00:00] INFO: Report handlers complete
[2013-06-18T08:32:58+00:00] ERROR: Running exception handlers
[2013-06-18T08:32:58+00:00] ERROR: Exception handlers complete
[2013-06-18T08:32:58+00:00] FATAL: Stacktrace dumped to tmpvagrant-chef-1/chef-
stacktrace.out

[2013-06-18T08:32:58+00:00] FATAL: RuntimeError: MiniTest failed with 2 failure(s)
and 0 error(s).

Failure:

screen::default#test_0001_1installs Screen
[varchef/minitest/screen/default_test.rb:8]:

Expected package 'screen' to be installed

Failure:

screen: :default#test_0002_provide a global, customized default configuration
[varchef/minitest/screen/default_test.rb:12]:

Expected path 'usrlocaletcscreenrc' to exist

Now let’s write the code to make the test pass:

$ cat recipes/default.rb
package "screen"

cookbook_file "etcscreenrc" do
source "screenrc"
end

$ cat files/default/screenrc

caption string "%?%F%{= Bk}%? %C%A %D %d-%m-%Y %{= kB} %t%= %?%F%{= Bk}%:%{= wk}%?
%n "

hardstatus alwayslastline

hardstatus string '%{= kG}[%{G}%H %{g}1[%= %{= kw}%?%-Lw%2%{r}(%{W}%n*%f%t%? (%u)%?%
{r))%{w}%2%+Lw%?%?%= %{g}1[%{B} %d/%m %{W}%c %{g}]'

defscrollback 30000

escape "7z

Now if we run vagrant provision, Chef should apply our recipe and then run
the tests, and they should pass:

[default] Running provisioner: chef_solo...

Generating chef JSON and uploading...

Running chef-solo...

[2013-06-18T08:55:34+00:00] INFO: *** Chef 10.14.2 ***

[2013-06-18T08:55:34+00:00] INFO: Setting the run_list to ["recipe[minitest-
handler::default]", "recipe[screen::default]"] from JSON
[2013-06-18T08:55:34+00:00] INFO: Run List is [recipe[minitest-handler::default],
recipe[screen::default]]

[2013-06-18T08:55:34+00:00] INFO: Run List expands to [minitest-handler::default,
screen: :default]

[2013-06-18T08:55:34+00:00] INFO: Starting Chef Run for screen-berkshelf
[2013-06-18T08:55:34+00:00] INFO: Running start handlers
[2013-06-18T08:55:34+00:00] INFO: Start handlers complete.
[2013-06-18T08:55:34+00:00] INFO: Processing chef_gem[minitest] action nothing
(minitest-handler::default line 2)

[2013-06-18T08:55:34+00:00] INFO: Processing chef_gem[minitest] action install
(minitest-handler::default line 2)

[2013-06-18T08:55:34+00:00] INFO: Processing chef_gem[minitest-chef-handler] action
nothing (minitest-handler::default line 9)

[2013-06-18T08:55:34+00:00] INFO: Processing chef_gem[minitest-chef-handler] action
install (minitest-handler::default line 9)

[2013-06-18T08:56:02+00:00] INFO: Processing chef_gem[minitest] action nothing
(minitest-handler::default line 2)

[2013-06-18T08:56:02+00:00] INFO: Processing chef_gem[minitest-chef-handler] action

nothing (minitest-handler::default line 9)

[2013-06-18T08:56:02+00:00] INFO: Processing directory[minitest test location]
action delete (minitest-handler::default line 18)

[2013-06-18T08:56:02+00:00] INFO: Processing directory[minitest test location]
action create (minitest-handler::default line 18)

[2013-06-18T08:56:02+00:00] INFO: directory[minitest test location] created
directory varchef/minitest

[2013-06-18T08:56:02+00:00] INFO: directory[minitest test location] owner changed to
0

[2013-06-18T08:56:02+00:00] INFO: directory[minitest test location] group changed to
0

[2013-06-18T08:56:02+00:00] INFO: directory[minitest test location] mode changed to
775

[2013-06-18T08:56:02+00:00] INFO: Processing ruby_block[load tests] action create
(minitest-handler::default line 29)

[2013-06-18T08:56:02+00:00] INFO: Processing directory[varchef/minitest/minitest-
handler] action create (dynamically defined)

[2013-06-18T08:56:02+00:00] INFO: directory[varchef/minitest/minitest-handler]
created directory varchef/minitest/minitest-handler

[2013-06-18T08:56:02+00:00] INFO: Processing directory[varchef/minitest/screen]
action create (dynamically defined)

[2013-06-18T08:56:02+00:00] INFO: directory[varchef/minitest/screen] created
directory varchef/minitest/screen

[2013-06-18T08:56:02+00:00] INFO: Enabling minitest-chef-handler as a report handler
[2013-06-18T08:56:02+00:00] INFO: ruby block[load tests] called
[2013-06-18T08:56:02+00:00] INFO: Processing package[screen] action install
(screen::default line 10)

[2013-06-18T08:56:09+00:00] INFO: package[screen] installing screen-4.0.3-16.el6
from base repository

[2013-06-18T08:56:13+00:00] INFO: Processing cookbook_file[usrlocaletcscreenrc]
action create (screen::default line 12)

[2013-06-18T08:56:13+00:00] INFO: cookbook file[usrlocaletcscreenrc] created file
usrlocaletcscreenrc

[2013-06-18T08:56:13+00:00] INFO: Chef Run complete in 38.732347486 seconds
[2013-06-18T08:56:13+00:00] INFO: Running report handlers

Run options: -v --seed 23177

Running tests:
screen::default#test_0001_installs Screen =
0.16 s = .

screen: :default#test_0002_provides a global, customized default configuration =
0.00 s = .

Finished tests in 0.168615s, 11.8613 tests/s, 23.7227 assertions/s.

2 tests, 4 assertions, 0 failures, 0 errors, 0 skips
[2013-06-18T08:56:13+00:00] INFO: Report handlers complete

Although very simple, this should give a good sense of how easy it is to use the
Minitest Handler process to carry out integration tests with nothing more than
Vagrant and Berkshelf.

Moving on to a more complex example, consider the following tests from the
Opscode apache cookbook:

it 'installs apache' do
package(node['apache']['package']).must_be_1installed
end
it 'starts apache' do
apache_service.must_be_running
end
it 'enables apache' do
apache_service.must_be _enabled
end
it 'creates the conf.d directory' do
directory("#{node['apache']['dir']}/conf.d").must_exist.with(:mode, "755")
end
it 'creates the logs directory' do
directory(node['apache']['log_dir']).must_exist
end
it 'enables the default site' do
file("#{node['apache']['dir']}/sites-enabled/000-default").must_exist
file("#{node['apache']['dir']}/sites-available/default").must_exist
end
it 'ensures the debian-style apache module scripts are present' do
%w{a2ensite a2dissite a2enmod a2dismod}.each do |mod_script|
file("usrsbin/#{mod_script}").must_exist
end
end
it 'reports server name only, not detailed version info' do
assert_match(/~ServerTokens Prod *$/, File.read("#{node['apache']
['dir']}/conf.d/security"))
end

These tests demonstrate one very important feature of Minitest Handler—the
tests are all executed in the context of a Chef run. This has profound
implications for testing. At any point we have access to three important objects

from Chef: the run_status, the node itself, and the run_context. This is

potentially very useful to us; in these examples, we’re using node attributes in
our test. However, it’s also important to understand that the tests we’re carrying
out are often based on knowledge Chef has rather than external validation of
desired state. Now, of course, we implicitly trust Chef, but it’s worth stating
explicitly that, in certain cases, what these tests are doing is inspecting Chef’s
knowledge rather than carrying out probes on a configured server.

The final example I’ll cover is one where we use a helper method:

it 'listens on port 80' do
apache_configured_ports.must_include(80)
end

it 'only listens on port 443 when SSL is enabled' do
unless ran_recipe?('apache2::mod_ssl')
apache_configured_ports.wont_include(443)
end
end

Here we have an example of helper code. This could go in the helper module we
already discussed:

def apache_configured_ports
port_config = File.read("#{node['apache']['dir']}/ports.conf")
port_config.scan(/~Listen ([0-9]+)/).flatten.map{|p| p.to_i}
end

def ran_recipe?(recipe)
node.run_state[:seen_recipes].keys.include?(recipe)
end

Herein we see examples of the kind of heavy lifting that is necessary to make the
writing of tests more accessible to infrastructure developers. A line must
carefully be walked between providing reusable helper methods that make the
writing of tests fast and easy, and creating chunks of code that encourage lazy
and brittle test writing. The right balance will emerge as the discipline and
community matures, but for now, the infrastructure developer is well-served by
matchers and expectations built into minitest-chef-handler, and creative
programming will furnish helper methods that over time may emerge as reusable
patterns.

Minitest Handler with Test Kitchen

Before looking at the advantages and disadvantages and drawing a conclusion, I
want to demonstrate how to run Minitest Handler tests using Test Kitchen.

Here’s an example .kitchen.yml file:

$ cat .kitchen.yml

driver_plugin: vagrant

driver_config:
require_chef_omnibus: true

platforms:
- name: ubuntu-10.04
driver_config:
box: opscode-ubuntu-10.04
box_url: https://opscode-vm.s3.amazonaws.com/vagrant/opscode_ubuntu-
10.04_provisionerless.box
- name: centos-5.9
driver_config:
box: opscode-centos-5.9
box_url: https://opscode-vm.s3.amazonaws.com/vagrant/opscode_centos-
5.9 _provisionerless.box

suites:

- name: default
run_list: ["recipe[minitest-handler]", "recipe[screen]"]
attributes: {}

All we need to do is ensure that the minitest-handler recipe is included on the
run list for whichever suite we care about. As long as we have minitest-handler
in the Berksfile (or in the cookbook metadata), the cookbook will be made

available and applied, and the tests will be run on a kitchen converge action:

[2013-06-18T09:33:35+00:00] INFO: Chef Run complete in 26.619225 seconds
[2013-06-18T09:33:35+00:00] INFO: Running report handlers
Run options: -v --seed 2739

Running tests:
screen::default#test_0001_1installs Screen = 0.00 s = .

screen: :default#test_0002_provides a global, customized default configuration = 0.00
s = .

Finished tests in 0.003959s, 505.1781 tests/s, 1010.3562 assertions/s.

2 tests, 4 assertions, 0 failures, 0 errors, 0 skips
[2013-06-18T09:33:35+00:00] INFO: Report handlers complete
Chef Client finished, 5 resources updated
Finished converging <default-centos-59> (0m30.77s).
----- > Kitchen is finished. (1m0.12s)

Advantages and Disadvantages

The immediate advantage of Minitest Handler is that the barrier to entry is very
low. If you’re using Berkshelf, and you should be, the generator will create all
you need to start writing and running tests. There’s good coverage in terms of
assertions and matchers, and the feedback cycle is quick.

I have two main concerns with this approach, though. First, I’'m not entirely
comfortable with expecting new users to learn and use two different expectation
syntaxes. On the assumption that unit testing will be done using Chefspec, it’s
rather irksome that the integration tests use a different approach. The second area
where I feel a certain skepticism is in the reliance upon, or use of, Chef’s
internal knowledge. I feel that we’re not really doing true integration testing
here. In places, we’re relying on magical knowledge from within the framework
that had responsibility for bringing our infrastructure in line with policy. For
these reasons, I feel much more comfortable recommending an integration
framework that is entirely ignorant of Chef, as this provides the opportunity to
standardize on RSpec expectation syntax and to run tests that have absolutely no
knowledge of, or dependence upon, the configuration management framework.

A final potential gotcha should be noted. The most recent release of the Minitest
Handler cookbook altered the mechanism that makes the test files available to
the host upon which the tests are being run. This means that tests will not be run
on machines using a client/server model rather than chef-solo. At the time of
this writing, there is work ongoing to resolve this issue, but for now this should
be noted as a consideration for this testing approach.

Summary and Conclusion

Minitest Handler is easy to use, capable, and fast. It needs minimal setup and
offers immediate value. However, I feel that the central tool in the infrastructure

developer’s kit is going to be Test Kitchen, and having invested in making the
Test Kitchen framework available, I see little use for Minitest Handler, and
prefer to use tests run by the kitchen Busser.

Unit Testing: Chefspec

The purest, fastest, and most lightweight unit-testing approach belongs to
Chefspec—a popular and powerful tool enabling the infrastructure developer to
create RSpec examples for cookbook code.

Overview

Well-written unit tests have the following characteristics:

m Exercise every aspect of the code under test

m Run in isolation, shielded from external forces, with any external functions

(including the operating system) mocked out, to give complete control over
the environment

Written in such a way as to be easy for any developer to run

Run very quickly, giving fast feedback

Checked into the same version control system as the code they test

Chefspec allows the infrastructure developer to write RSpec examples for
cookbooks that meet these characteristics. The Chef run itself is mocked,
allowing us to assert that the Chef providers are called with the correct
parameters. Any input data, including attribute data from Ohai, roles,
cookbooks, or recipes can be set on whatever platform is required, giving
comprehensive coverage. Because the node is never actually converged, and
because there is never any genuine API traffic, the tests are very fast and give
extremely rapid feedback.

It’s important to emphasize that, as I argued in the first edition, there is little
point in writing tests that verify the Chef resources and providers behave as they
should. We trust that behavior implicitly. Chef is tested, and Chef is production
quality code, widely deployed across hundreds of thousands of machines all over

the world. We don’t need to test that when we ask Chef to install Apache that
Chef does indeed install Apache. If the Chef run completes without error, and
you asked it to install Apache, Apache will be installed. That’s the whole point
of Chef as a declarative interface to infrastructure resources.

However, what we do need to test is that we asked Chef to do the right thing.
Chefspec provides this capability—it allows us to check what is in the resource
collection and what actions would be taken. We can compare that against what
we expected. This is useful on a couple of levels. First, as we grow our test
coverage, so we will catch regressions and foolish errors. Especially when
developing for multiple operating systems or distributions, the task of ensuring
that no unwanted side effects have been introduced is very valuable. Second, the
discipline of writing the tests (especially writing the tests first) helps the
infrastructure developer think through the feature being added. By thinking
about the intended outcome, and by writing a test to capture that, the features are
emerged incrementally, and in accordance with demand.

When writing Chefspec tests it makes sense to think of the cookbooks as a black
box. We’re interested in how the code handles various inputs. Just as when
writing unit tests for traditional software, where we would write tests to verify
the behavior of the code when given different arguments, so we do the same with
Chef. In Chef we can provide input to our cookbooks from attributes (whether
from Ohai, or cookbooks, roles or environments), search results, and databag
look-ups. We could also, of course, provide input from arbitrary helper methods
calling external services, or making calculations during the Chef run.

Given that one of the great advantages of the Chef framework is the ease with
which we can write data-driven cookbooks, it’s very helpful to be able to
exercise our code by feeding it data, allowing us to test edge cases and verify our
reasoning and understanding about how Chef will behave, but without having to
provision a large number of different machines to run Chef a large number of
times.

Getting Started

Chefspec is, again, distributed as a Rubygem. Simply add it to the Gemfile, and
run bundle update.

Once installed, Chefspec provides an extension to the knife cookbook
command, which will create a basic RSpec boilerplate. Let’s create a cookbook
that installs the handy network utility netcat.

For the purposes of illustration, we’ll create this cookbook using Knife rather
than Berkshelf.

$ knife cookbook create netcat -o .
WARNING: No knife configuration file found
** Creating cookbook netcat

** Creating README for cookbook: netcat

** Creating CHANGELOG for cookbook: netcat
** Creating metadata for cookbook: netcat
$ knife cookbook create_specs netcat -o .
WARNING: No knife configuration file found
** Creating specs for cookbook: netcat

This creates a spec directory and populates it with an example test:

$ cat netcat/spec/default_spec.rb
require 'chefspec'

describe 'netcat::default' do
let (:chef_run) { ChefSpec::ChefRunner.new.converge 'netcat::default' }
it 'should do something' do
pending 'Your recipe examples go here.'
end
end

Again, note the naming convention. We’re initially testing the default cookbook;
create a file named default_spec.rb. Running the test is a simple matter of
running the rspec command in the top-level directory of the cookbook:

$ rspec

Pending:
netcat::default should do something
Your recipe examples go here.
./spec/default_spec.rb:5

Finished in 0.00028 seconds
1 example, 0 failures, 1 pending

Example

Let’s look again at the boilerplate example that we created with knife
cookbook create_specs:

require 'chefspec'

describe 'netcat::default' do
let (:chef_run) { ChefSpec::ChefRunner.new.converge 'netcat::default' }
it 'should do something' do
pending 'Your recipe examples go here.'
end
end

The first line simply pulls in Chefspec, much like our Thor example, when we
pulled in library code from elsewhere. Next we do exactly as we did in the
Hipster test—set up a describe block. I always like to imagine having a
conversation here:

Me: "Describe the default recipe in the netcat cookbook."
You: "It installs netcat!"

It’s helpful to remember when we’re writing these tests that we’re describing the
behavior of the system, in terms of examples that demonstrate the intended
functionality of the thing we’re building.

The next thing we need to do is create an instance of a Chef Runner. A Chef
Runner is the object responsible for running Chef in the context of our tests.
Incidentally, here’s a cutely recursive way to learn what a Chef Runner is:

$ cd ~/src/chefspec
$ rspec -fd spec/chefspec/chef runner_spec.rb
ChefSpec: :ChefRunner
#initialize
should create a node for use within the examples
should set the chef cookbook path to a default if not provided
should set the chef cookbook path to any provided value
should support the chef cookbook path being passed as a string for backwards
compatibility
should default the log_level to warn
should set the log_level to any provided value
should alias the real resource actions

should capture the resources created

should execute the real action if resource is in the step_into list
should accept a block to set node attributes

should allow evaluate_guards to be falsey

should allow evaluate_guards to be truthy

I throw that in as an example of how tests can function as documentation, and
shed light on our understanding of how software functions.

So we need an instance of a Chef Runner. There are a couple of ways to do this,
but the approach adopted here is the most commonly used:

let (:chef_run) { ChefSpec::ChefRunner.new.converge 'netcat::default' }

This line of code introduces a couple of useful Ruby ideas, so I'll cover them
briefly.

The let method defines a memoized helper method. What does this mean? Well,
memoization is a simple pattern, which simply means “cache the result of the
method.” This is a handy technique for storing values of a function instead of
recomputing them each time the function is called.

Suppose we had a method to run, which we know is always going to return the
same result. Suppose we also knew that running this method was rather slow, or
resource intensive. Wouldn’t it make sense to cache the result the first time we
ran it? That’s the basic idea behind memoization. Here’s a dumb example:

def album_and_song
"#{album} - #{song}"
end

Although not hugely expensive, this method does require the string to be
reconstructed every time. The classic way to memoize in Ruby is to use the
conditional assignment operator, | |=.

def album_and_song
@album_and_song ||= "#{album} - #{song}"
end

This means, if @album_and_song is not initialized, or if it is set to nil or false, it
will be assigned to the value of the expression to the right—the result of the
string interpolation creating the album/song combination. However, if it’s
already set to a truthy value (anything other than nil or false), it will remain
unchanged.

This is a handy technique when writing tests that instantiate something we want
to use. We can define a method that describes the thing we want to instantiate,
use memoization behind the scenes, and henceforth just use the method without
ever having to worry about instantiating it.

The let method does exactly this—it gives us an instance of something we need

to use but with some handy advantages. Specifically, using let() over instance
variables is safer because it creates a method rather than a variable, and so if we
ever mistype the name we’ll get a clear NameError rather than nil, which you’ll
quickly learn is hard to track down. let is also lazy-evaluated—that is, it is not
evaluated until the first time the method it defines is invoked, so the code runs
only if the example calls it; by contrast, the obvious alternative, which is to use

an instance variable in a before(:each), will run before every example, which
is wasteful.

Now we have the Chef Runner available to use, and we set it up to converge the

default recipe in our netcat cookbook. All we need to do is use the chef_run
object to make assertions.

The simplest thing we could assert would be that the Chef Runner will install the
netcat package:

it 'installs the netcat package' do
expect(chef_run).to install_package('netcat')
end

Let’s try running the test:

$ rspec
F

Failures:

1) netcat::default installs the netcat package

Failure/Error: expect(chef_run).to install_package('netcat')
No package resource named 'netcat' with action :install found.
./spec/default_spec.rb:6:in ‘block (2 levels) in <top (required)>'

Finished in 0.05371 seconds
1 example, 1 failure

Failed examples:

rspec ./spec/default_spec.rb:5 # netcat::default installs the netcat package

As we expected, we have a failure. We’ve asserted that when we converge the
default recipe, the Chef runner will be asked to install the netcat package. But we
haven’t written the default recipe yet, so the test fails. Let’s fix that:

$ cat recipes/default.rb
package 'netcat'

Now when we run RSpec, the test passes:

$ rspec

Finished in 0.01144 seconds
1 example, 0 failures

This is great, but remember, we’ve tested only signal in. We need to test signal
out. Also, we might want to support installing netcat on multiple platforms, so it
would be sensible to test it on multiple platforms. Let’s fire up Test Kitchen
again, and see what happens when we converge the recipe for real on both
CentOS and Ubuntu:

$ kitchen converge

[tdi@tkO1 netcat]$ kitchen converge
----- > Starting Kitchen (v1.0.0.dev)
----- > Creating <default-ubuntu-1204>

----- > Converging <default-ubuntu-1204>

Converging 1 resources
Recipe: netcat::default

package[netcat] action install[2013-06-18T11:47:02+00:00] INFO: Processing
package[netcat] action install (netcat::default line 1)

- install version 1.10-39 of package netcat
[2013-06-18T11:47:06+00:00] INFO: Chef Run complete in 4.114389784 seconds

Finished converging <default-ubuntu-1204> (Om17.76s).
----- > Creating <default-centos-64>

----- > Converging <default-centos-64>
Converging 1 resources
Recipe: netcat::default
package[netcat] action install[2013-06-18T11:48:41+00:00] INFO: Processing

package[netcat] action install (netcat::default line 1)

* No version specified, and no candidate version available for netcat

Error executing action ‘install’ on resource 'package[netcat]'

Chef: :Exceptions: :Package

No version specified, and no candidate version available for netcat

Chef: :Exceptions::Package: No version specified, and no candidate version available
for netcat

>>>>>> Converge failed on instance <default-centos-64>.

>>>>>> Please see .kitchen/logs/default-centos-64.1log for more details

S>>>>> ------ Exception-------

>>>>>> (Class: Kitchen::ActionFailed

>>>>>> Message: SSH exited (1) for command: [sudo -E chef-solo --config tmpkitchen-
chef-solo/solo.rb --json-attributes tmpkitchen-chef-solo/dna.json --log_level info]

P R e R

Here we see the value of having Test Kitchen to hand. We didn’t even write any
tests, but we were able to see, with a single command, whether our recipe would
even converge on both platforms. And we learned it wouldn’t. The reason for
this is that, although Chef providers know how to take appropriate action on all
supported platforms, Chef isn’t clever enough to know that Debian calls netcat

“netcat,” whereas CentOS calls it “nc.” We need to put that logic in the recipe.

You’ll remember that when we run Chef on a node, one of the first things that
happens is Ohai runs, profiling the system, and providing useful information to
the recipe DSL, such as the platform version or the family of operating system.
Chefspec has the ability to mock this data, using a little library called Fauxhai.
Fauxhai is effectively an open source store of Ohai data for multiple platforms,
which Chefspec can use in order to pretend to be a machine running on, for
example, Solaris 10.

We make use of this capability by providing a platform and version to the

constructor when we instantiate a Chef runner. Our current Chef runner looks
like this:

let (:chef_run) { ChefSpec::ChefRunner.new.converge 'netcat::default' }
If we want the runner to look like a CentOS machine, we instead call it like this:

let(:chef_run) do
runner = ChefSpec::ChefRunner.new(
platform: 'centos',
version: '6.3'

)

runner.converge 'netcat::default’
end

However, we want to do this for more than one platform. This is where RSpec
contexts come in handy.

A context is an important concept in RSpec. In RSpec, we are generally
concerned with an Example Group. This is a set of tests that describe the
behavior of the item under test. The two keywords used to build and test

example groups are describe() and it(). For example:

describe "MusicPlayer" do
it "lists available tracks" do
end

end

Describe blocks can be nested to provide a richer description of behavior. For

https://github.com/customink/fauxhai

example:

describe "MusicPlayer" do
describe "when in select music mode" do
it "lists available tracks" do
end
end
end

RSpec provides the context() method as an alias for describe(). This allows
us to word our examples to set the context in which the item under test is used.
For example, we could express the previous example as:

describe "MusicPlayer" do
context "when in select music mode" do
it "lists available tracks" do
end
end
end

We can use the same pattern in our Chefspec examples, by using a context for
each platform:

require 'chefspec'

describe 'netcat::default' do
context 'centos' do
let(:chef_run) do
runner = ChefSpec::ChefRunner.new(
platform: 'centos',
version: '6.3'
)
runner.converge 'netcat::default’
end
it 'installs the nc package' do
expect(chef_run).to install_package('nc')
end
end

context 'ubuntu' do
let(:chef_run) do
runner = ChefSpec::ChefRunner.new(
platform: 'ubuntu',

version: '12.04'
)
runner.converge 'netcat::default’
end
it 'installs the netcat package' do
expect(chef_run).to install_package('netcat')
end
end
end

Now let’s run the test:

$ rspec

Failures:

1) netcat::default centos installs the nc package
Failure/Error: expect(chef_run).to install_package('nc')
No package resource named 'nc' with action :install found.
./spec/default_spec.rb:13:in ‘block (3 levels) in <top (required)>'

Finished in 0.04224 seconds
2 examples, 1 failure

Failed examples:

rspec ./spec/default_spec.rb:12 # netcat::default centos installs the nc package

So, as we already know, the recipe doesn’t try to install “nc” when the machine
is a CentOS machine. We need to fix this in the recipe:

package 'nc' do
package_name case node['platform_family']
when 'debian'
'netcat’
else
lncl

end
end

Now the test passes:

$ rspec

Finished in 0.04242 seconds
2 examples, 0 failures

And when we converge the node:

$ kitchen converge
----- > Starting Kitchen (v1.0.0.dev)
----- > Converging <default-ubuntu-1204>

Resolving cookbook dependencies with Berkshelf
Using netcat (0.1.0)

Removing non-cookbook files in sandbox

Uploaded tmpdefault-ubuntu-1204-sandbox-20130618-30672-y0aigp/solo.rb (168
bytes)

Uploaded tmpdefault-ubuntu-1204-sandbox-20130618-30672-
yOaigp/cookbooks/netcat/recipes/default.rb (180 bytes)

Uploaded tmpdefault-ubuntu-1204-sandbox-20130618-30672-
yOaigp/cookbooks/netcat/metadata.rb (276 bytes)

Uploaded tmpdefault-ubuntu-1204-sandbox-20130618-30672-
yOaigp/cookbooks/netcat/README.md (1447 bytes)

Uploaded tmpdefault-ubuntu-1204-sandbox-20130618-30672-yPaigp/dna.json (31
bytes)
Starting Chef Client, version 11.4.4
[2013-06-18T12:42:55+00:00] INFO: *** Chef 11.4.4 ***
[2013-06-18T12:42:55+00:00] INFO: Setting the run_list to ["recipe[netcat]"] from
JSON
[2013-06-18T12:42:55+00:00] INFO: Run List is [recipe[netcat]]
[2013-06-18T12:42:55+00:00] INFO: Run List expands to [netcat]
[2013-06-18T12:42:55+00:00] INFO: Starting Chef Run for default-ubuntu-1204
[2013-06-18T12:42:55+00:00] INFO: Running start handlers
[2013-06-18T12:42:55+00:00] INFO: Start handlers complete.
Compiling Cookbooks...
Converging 1 resources
Recipe: netcat::default

package[nc] action install[2013-06-18T12:42:55+00:00] INFO: Processing
package[nc] action install (netcat::default line 1)
(up to date)

[2013-06-18T12:42:55+00:00] INFO: Chef Run complete in 0.027679985 seconds
[2013-06-18T12:42:55+00:00] INFO: Running report handlers
[2013-06-18T12:42:55+00:00] INFO: Report handlers complete
Chef Client finished, 0 resources updated

Finished converging <default-ubuntu-1204> (Om2.29s).
----- > Converging <default-centos-64>

Resolving cookbook dependencies with Berkshelf
Using netcat (0.1.0)

Removing non-cookbook files in sandbox

Uploaded tmpdefault-centos-64-sandbox-20130618-30672-131b8ou/solo.rb (166
bytes)

Uploaded tmpdefault-centos-64-sandbox-20130618-30672-
131b8ou/cookbooks/netcat/recipes/default.rb (180 bytes)

Uploaded tmpdefault-centos-64-sandbox-20130618-30672-
131b8ou/cookbooks/netcat/metadata.rb (276 bytes)

Uploaded tmpdefault-centos-64-sandbox-20130618-30672-
131b8ou/cookbooks/netcat/README.md (1447 bytes)

Uploaded tmpdefault-centos-64-sandbox-20130618-30672-131b8ou/dna.json (31
bytes)

Starting Chef Client, version 11.4.4

[2013-06-18T12:43:18+00:00] INFO: ** Chef 11.4.4 ***

[2013-06-18T12:43:18+00:00] INFO: Setting the run_list to ["recipe[netcat]"]
from JSON

[2013-06-18T12:43:18+00:00] INFO: Run List is [recipe[netcat]]

[2013-06-18T12:43:18+00:00] INFO: Run List expands to [netcat]

[2013-06-18T12:43:18+00:00] INFO: Starting Chef Run for default-centos-64

[2013-06-18T12:43:18+00:00] INFO: Running start handlers

[2013-06-18T12:43:18+00:00] INFO: Start handlers complete.

Compiling Cookbooks...

Converging 1 resources

Recipe: netcat::default

* package[nc] action install[2013-06-18T12:43:18+00:00] INFO: Processing

package[nc] action install (netcat::default line 1)

[2013-06-18T12:43:20+00:00] INFO: package[nc] installing nc-1.84-22.el6 from
base repository

- install version 1.84-22.el6 of package nc

[2013-06-18T12:43:22+00:00] INFO: Chef Run complete in 4.099788551 seconds
[2013-06-18T12:43:22+00:00] INFO: Running report handlers
[2013-06-18T12:43:22+00:00] INFO: Report handlers complete
Chef Client finished, 1 resources updated
Finished converging <default-centos-64> (0m5.62s).

----- > Kitchen is finished. (0m8.97s)

[tdi@tkO1 netcat]$ kitchen list

Instance Driver Provisioner Last Action

default-ubuntu-1204 Vagrant Chef Solo Converged

default-centos-64 Vagrant Chef Solo Converged

Now everything works fine!

Advantages and Disadvantages

I started out as a skeptic, when it came to Chefspec. The system doesn’t do a real

converge and is really only decoration atop Chef’s own recipe DSL. Chef, by
virtue of being a declarative system, is inherently providing the most basic test
of all. If I declare the state I want, and I run Chef, Chef will take action to make
my wishes take effect. The Chef run will either succeed, in which case my
desired state will take effect, or it will fail, with an error message and a stack
trace.

However, the fact is that this is a clumsy and ineffective way of catching
mistakes. Chefspec allows us to get feedback almost instantly, without having to
take action on a real node, and very rapidly pays for itself in terms of time saved.
Because the Chef run takes place in memory, and the provider actions are always
set to not truly take effect, the speed of the test is remarkable. To give a sense of
the speed, it’s possible to run 10,000 tests in 30 seconds. Realistically you might
have as many as 50 tests in a single cookbook, and they should all run in about a
second. This is a much more effective and efficient way to catch mistakes. When
Chefspec is partnered with Guard, for immediate feedback whenever the
filesystem changes, the feedback is even quicker.

One common mistake I see people make is to forget to create a cookbook file or
template, or to give it a subtly incorrect name, or perhaps to fail to put it in the
default directory. Chefspec catches such errors without us having to go through
the cycle of cookbook edit, cookbook upload, run Chef, and then wait for a
bunch of resources to be applied, only to discover a simple error.

The ability to test multiplatform logic without ever needing to fire up machines
of different types is also hugely advantageous. Fauxhai allows us to mock any
platform and test the logic of our recipes even if we only ever develop on a Mac
or Windows machine.

Perhaps the biggest business benefit that Chefspec delivers is in supporting the
effort of refactoring a recipe. A common example would be perhaps reaching a
decision to split up a large and complex cookbook into smaller, more logical
components. This could deliver results in terms of faster Chef runs, and
enhanced readability and maintainability. However, when refactoring, it’s
surprisingly easy to miss a resource out—perhaps a seemingly insignificant file,
or package resource. I’ve certainly experienced exactly this scenario: the recipe
computes, the Chef run completes, with no indication of a problem. On a
machine that has already been configured with Chef, the error may not ever be

discovered because the effect of running Chef previously was to configure the
resource, and simply removing the resource from the recipe won’t undo the state
of the machine where Chef previously took action. This means that only when
Chef is run against a new machine does the missing resource cause an issue,
often to the bafflement of the developer. Chefspec catches these regressions. If
we write a test for the resource, and then accidentally change or delete the
resource in the recipe, Chefspec will fail, immediately, never leaving a real
machine in an incorrect or unknown state.

Sometimes the errors that Chefspec could catch or prevent are surprisingly
inconvenient or damaging. Imagine the case of a cookbook responsible for
configuring ssh access, or firewall or network settings. It’s very easy to make a
silly mistake—forget to write out a config, or set an incorrect permission—and
when working with a remote machine, access to the whole system could be lost,
with costly consequences.

Yet another example is the use of search to write out hosts entries, or perhaps
load balancer configuration. A simple typing mistake—specifying the wrong
index, or a subtly incorrect query—could result in a badly misconfigured system.
With Chefspec, we stub out the search but make explicit the expectation that
search should be called against a specific node with a specific query. If by some
means, this query is incorrect in the recipe, our tests will fail, and we’ll avoid
misconfiguring the system. I’ve certainly had the experience where I’ve
accidentally pressed a key in an open buffer, saved the buffer, and uploaded a
recipe with a syntax error. Running Chefspec, under Guard, alerts in this
situation immediately, resulting in far fewer silly mistakes.

However, it’s not just catching silly mistakes or regressions that delivers value.
There’s something deeply satisfying, something addictively enjoyable about
watching a recipe’s journey from red to green. It introduces a sense of
achievement, a yardstick for progress, and delivers a delicious experience of
knowing when you’re done, an experience that is painfully absent in most forms
of knowledge work.

The simple fact is that writing your cookbooks test-first and using Chefspec as
part of your development workflow will result in you writing better cookbooks.

Summary and Conclusion

Chefspec has deservedly earned a strong following within the Chef community
already. It provides excellent return on investment, delivers rapid feedback, and
enhances code quality and maintainability. The project is actively developed and
well-documented. Unit testing at the level of resources and recipes is an essential
part of the infrastructure developer’s workflow, and Chefspec is the tool to use
for this purpose.

Chefspec is a very powerful tool and can be used to perform very complex tests
involving sophisticated mocking and stubbing, stepping into LWRPs to test their
internal actions, and working with Berkshelf. It’s also highly extensible—third-
party additions exist, and if you write cookbooks including library or LWRP
resources, you can create and ship custom matchers for other people to use.
Although already providing rapid feedback, this can be improved and made
near-instantaneous by using Guard—a command-line tool that watches for
filesystem events and runs tests as soon as a file is changed. Sadly these subjects
are beyond the scope of this book, but examples and documentation can be
found online, or guidance can be found via the usual channels.

Static Analysis and Linting Tools

As a wrapper around the testing workflow I recommended earlier, there is
tremendous value in having mechanisms in place to help maintain code quality
and standards, and reduce waste and rework owing to trivial mistakes. This brief
section discusses tools that support this effort.

Overview

I’m often asked “How can I get started with testing? What’s the simplest thing I
can do that adds value?” The lowest level of syntax, style, and lint testing is
probably the answer.

Writing Chef recipes is, in some respects, similar to the slower pace of the early
computer programmers. Running Chef on a node could take a few minutes to
complete, only to yield an error that was the result of a foolish mistake. If this
happens two or three times, we could easily have wasted 10 minutes or more. It’s
not uncommon to introduce peculiar little bugs such as a misnamed action
argument or a typo on an attribute. This all builds up. When added to the already

https://github.com/guard/guard

stated desire to start to define and check against community-agreed coding
standards, it seems that what would be ideal would be some kind of static
analysis of our Chef code before we run it.

There are a number of related tools that provide elements of this functionality.
We’ll look at:

m Foodcritic

m Knife Cookbook Test
m Tailor

m Strainer

Foodcritic is a linting tool for cookbooks. It sets out its two primary objectives
as follows:

To make it easier to flag problems in your Chef cookbooks that will cause Chef to blow up when you
attempt to converge. This is about faster feedback. If you automate checks for common problems you
can save a lot of time.

To encourage discussion within the Chef community on the more subjective stuff—what does a good
cookbook look like? Opscode has avoided being overly prescriptive, which by and large I think is a
good thing. Having a set of rules to base discussion on helps drive out what we as a community think
is good style.
Foodcritic ships with more than 30 default rules and can be easily extended.
Both Etsy and CustomInk have contributed extensive and valuable rules, which
extend the coverage, and the Foodcritic documentation gives clear instructions
on how to add your own, either to be considered as default rules or pertinent to
your own organization’s standards.

Foodcritic is an excellent tool, but it doesn’t actually test the syntax of your
Ruby. Thankfully, Knife already has built-in functionality for this. It’s simple
but effective, using Ruby syntax checking to verify every file in a cookbook
ending in .rb and erb.

The final obvious area to test is the style of your cookbooks against community
Ruby standards. An ideal tool for this is Tailor. The project describes itself as
follows:

Tailor parses Ruby files and measures them with some style and static analysis “rulers.” Default

values for the Rulers are based on a number of style guides in the Ruby community as well as what
seems to be common. More on this here.

https://github.com/turboladen/tailor
http://wiki.github.com/turboladen/tailor

Tailor’s goal is to help you be consistent with your style throughout your project, whatever style that

may be.
Strainer grew out of the realization that with the combination of a linter, syntax
checker, and style guide, one potentially has three separate commands to run to
test one’s code. That’s not very convenient or efficient. Strainer allows a
collection of testing tools to be grouped together under one file and run with one
command. This makes it very easy to plumb the whole collection of tools
together, and run as a single job on a continuous integration server.

Getting Started

Knife cookbook test is already included for you if you installed Chef. To
check syntax, simply run:

$ knife cookbook test mycookbook

You may need to specify your cookbook path with the -0, --cookbook-path
option.

Assuming you have already run berks 1init in your cookbook directory, you
will already have a Gemfile. Foodcritic, Tailor, and Strainer are all shipped as
Rubygems, so add a line in your Gemfile for each gem, and then run bundle
install. For now we’ll remove the kitchen paraphernalia, and concentrate

purely on the linting and static analysis aspects. Our Gemfile, therefore, looks
like this:

$ cat Gemfile
source 'https://rubygems.org'

gem 'berkshelf'
gem 'foodcritic'
gem 'tailor'

gem 'strainer'

Running bundle install yields:

$ bundle install
Fetching gem metadata from https://rubygems.org/........
Fetching gem metadata from https://rubygems.org/..

Resolving dependencies...

Using
Using
Using
Using
Using
Using
Using
Using
Using
Using
Using
Using
Using
Using
Using
Using
Using
Using
Using
Using
Using
Using
Using
Using
Using
Using
Using
Using
Using
Using
Using
Using
Using
Using
Using
Using
Using
Using
Using
Using
Using
Using
Using
Using
Using
Using

118n (0.6.1)
multi_json (1.7.6)
activesupport (3.2.13)
addressable (2.3.4)
builder (3.2.2)

gyoku (1.0.0)

nokogiri (1.5.9)

akami (1.2.0)

timers (1.1.0)
celluloid (0.14.1)
hashie (2.0.5)

chozo (0.6.1)
multipart-post (1.2.0)
faraday (0.8.7)

json (1.8.0)

minitar (0.5.4)
mixlib-config (1.1.2)
mixlib-shellout (1.1.0)
retryable (1.3.3)
erubis (2.7.0)
mixlib-log (1.6.0)
mix1lib-authentication (1.3.0)
net-http-persistent (2.8)
net-ssh (2.6.7)

solve (0.4.4)

ffi (1.8.1)

gssapi (1.0.3)
httpclient (2.2.0.2)
little-plugger (1.1.3)
logging (1.6.2)
rubyntlm (0.1.1)

rack (1.5.2)

httpi (0.9.7)

nori (1.1.5)

wasabi (1.0.0)

savon (0.9.5)
uuidtools (2.1.4)
winrm (1.1.2)

ridley (0.12.4)

thor (0.18.1)
yajl-ruby (1.1.0)
berkshelf (1.4.5)
gherkin (2.11.8)

rak (1.4)

polyglot (0.3.3)
treetop (1.4.14)

Using foodcritic (2.1.0)

Using log_switch (0.4.0)

Using strainer (2.1.0)

Using tins (0.8.0)

Using term-ansicolor (1.2.2)

Using text-table (1.2.3)

Using tailor (1.2.1)

Using bundler (1.3.5)

Your bundle is complete!

Gems in the group integration were not installed.
Use “bundle show [gemname]" to see where a bundled gem is installed.

Once installed, running foodcritic without options will yield the following (or
similar) options:

> foodcritic
foodcritic [cookbook paths]

-r, --[no-Jrepl Drop into a REPL for interactive rule editing.

-t, --tags TAGS Only check against rules with the specified
tags.

-f, --epic-fail TAGS Fail the build if any of the specified tags are
matched.

-c, --chef-version VERSION Only check against rules valid for this version
of Chef.

-C, --[no-]Jcontext Show lines matched against rather than the
default summary.

-I, --include PATH Additional rule file path(s) to load.

-S, --search-grammar PATH Specify grammar to use when validating search
syntax.

-V, --version Display the foodcritic version.

Foodcritic has the idea of rules, against which your cookbook code is tested.
Examples range from stylistic—FC019: Access node attributes in a
consistent manner—to syntactical—FC010: Invalid search syntax—to
portable: FC024: Consider adding platform equivalents.

To get started, simply navigate to a directory or folder containing a cookbook
and run:

> foodcritic .

If you wish to include extra rules, clone the CustomInk and Etsy repositories into

https://github.com/customink-webops/foodcritic-rules
https://github.com/etsy/foodcritic-rules

a convenient location, and include the location with the -I --include
argument.

The tailor command line will, by default, look in a lib directory for Ruby files,
and check style against a standard set of guidelines. These guidelines are
configurable, either on the command line or in a configuration file. For testing
cookbooks, the following command line will provide a sensible testing regime:

$ tailor */**/* rb

Note that this will not check ERB templates, and it won’t find any files more
than one directory deep. You can compare what Tailor tested against what you
have in your cookbook by running the following (on a Linux/Unix system):

$ find . -name *.rb

Example

To explore Foodcritic, let’s pick a cookbook from the community site at random,
and see how it measures up:

PS C:\Users\stephen\src> knife cookbook site download monit
Downloading monit from the cookbooks site at version 0.7.0 to
C:/Users/stephen/src/monit-0.7.0.tar.gz

Cookbook saved: C:/Users/stephen/src/monit-0.7.0.tar.gz

PS C:\Users\stephen\src> tar xzvf .\monit-0.7.0.tar.gz

PS C:\Users\stephen\src> cd .\monit

PS C:\Users\stephen\src\monit> foodcritic .

FC012: Use Markdown for README rather than RDoc: ./README.rdoc:1
FC023: Prefer conditional attributes: ./recipes/default.rb:5
FCO27: Resource sets internal attribute: ./recipes/default.rb:14
FC043: Prefer new notification syntax: ./libraries/monitrc.rb:8
FC043: Prefer new notification syntax: ./recipes/default.rb:20
FCO45: Consider setting cookbook name in metadata: ./metadata.rb:1
PS C:\Users\stephen\src\monit>

In this case, the Monit cookbook is using an out-of-date README format.
Additionally, when dropping off the default Monit config, it wraps the resource
in an if condition rather than using the cookbook_file only_if

metaparameter. The Monit service explicitly sets the enabled attribute to true,
when this would be better set by using the action parameter. On two occasions,
deprecated notification syntax is used and finally, the name of the cookbook is
not explicitly set in the metadata.

Let’s fix each of these in turn. First, on closer inspection, there’s already a
README.md, but it isn’t written in Markdown. Fixing that is pretty simple in
this case. Now let’s remove the old rdoc version.

Looking at the conditional logic in the default recipe:

if platform?("ubuntu")
cookbook_file "etcdefault/monit" do
source "monit.default"”
owner "root"
group "root"
mode 0644
end
end

The cookbook metadata doesn’t specify which platforms it supports, but it seems
to assume based on which Monit is available in the default package repositories.
Rather than leave it to guesswork, it would be better to remove the platform
check altogether and explicitly state that the cookbook supports only Ubuntu. As
other platforms are tested, they can and should be added to both the README
and the metadata. While we’re at it, we can add a name parameter to the
metadata, so if the name of the directory containing the cookbook changes,

knife cookbook commands still function. The metadata now reads:

name "monit"

maintainer "Alex Soto"

maintainer_email "apsoto@gmail.com"

license "MIT"

description "Configures monit. Originally based off the 37 Signals Cookbook."

long_description IO.read(File.join(File.dirname(__FILE__), 'README.md'))
version "9.7"
supports "ubuntu"

The notification syntax is next. It currently reads:

notifies :restart, resources(:service => "monit"), :immediately

This should be:

notifies :restart, "service[monit]", :immediately
Finally, let’s change the service resource to start and enable Monit:

service "monit" do

action [:enable, :start]

supports [:start, :restart, :stop]
end

Having made these changes, let’s run Foodcritic again:

PS C:\Users\stephen\src\monit> foodcritic .

PS C:\Users\stephen\src\monit>

We now have a clean cookbook, which meets all the default Foodcritic rules.

So what about knife cookbook test? You get this for free, it’s just available
within Chef. We can test our irc cookbook:

$ knife cookbook test irc
checking irc

Running syntax check on irc
Validating ruby files
Validating templates

Running Tailor against our irc cookbook gives promising results:

$ tailor **/*.rb

e #
Tailor Summary |
e #
File | Probs |
e #
recipes/default.rb [0 |
e #
TOTAL I 0|
e #

However, running against another randomly selected cookbook from the

community site yields complaints about line length:

$ tailor **/*.rb

R e e e R #
File:

attributes/default.rb

#

File Set:

default

#

Problems:

1.

position: 20:114

property: max_line_length

message: Line is 114 chars long, but should be 80.

2.

position: 21:99

property: max_line_length

message: Line is 99 chars long, but should be 80.

#

R e e e R #
R e e e R #
File:

recipes/default.rb

#

File Set:

default

#

Problems:

1.

* position: 22:99

property: max_line_length

message: Line is 99 chars long, but should be 80.

#

R e e e R #
R e e e R #
Tailor Summary |
R e e e R #
File | Probs |
R e e e R #
attributes/default.rb | 2 |
recipes/default.rb | 1|
R e e e R #
Error | 3|
R e e e R #
TOTAL | 3|

Strainer is designed to funnel a range of disparate tests into one place. With a
single configuration file, we can encapsulate all the tests we want to run, into a
single command that is trivial for a continuous integration server to run. All that
is required is the creation of a Strainerfile in the root of the cookbook:

$ cat Strainerfile

Strainerfile

knife test: bundle exec knife cookbook test $COOKBOOK
foodcritic: bundle exec foodcritic -f any $SANDBOX/$COOKBOOK
tailor: bundle exec tailor $SANDBOX/$COOKBOOK/**/*.rb

Now in a single command we can see the health of our cookbook:

$ bundle exec strainer test

Straining 'irc (v0.1.0)'

knife test | bundle exec knife cookbook test irc

knife test | hometdi/.gem/ruby/1.9.3/gems/bundler-
1.3.5/1lib/bundler/rubygems_integration.rb:214:in ‘block in replace_gem': chef is not
part of the bundle. Add it to Gemfile. (Gem::LoadError)

knife test | from hometdi/.gem/ruby/1.9.3/bin/knife:22:1n “<main>'

knife test | Terminated with a non-zero exit status. Strainer assumes this
is a failure.

knife test | FAILURE!

foodcritic | bundle exec foodcritic -f any hometdi/chef-repo/cookbooks/irc
foodcritic | FCOO8: Generated cookbook metadata needs updating:
hometdi/chef-repo/cookbooks/irc/metadata.rb:2

foodcritic | FCOO8: Generated cookbook metadata needs updating:
hometdi/chef-repo/cookbooks/irc/metadata.rb:3

foodcritic | Terminated with a non-zero exit status. Strainer assumes this
is a failure.

foodcritic | FAILURE!

tailor | bundle exec tailor hometdi/chef-repo/cookbooks/irc/**/*.rb
tailor [R T
__________________ #

tailor | # Tailor Summary

I

tailor [R T
__________________ #

tailor | # File

| Probs |

tailor [R T

tailor
I 0|
tailor
tailor
I 0|
tailor

tailor

irc/recipes/default.rb

S
TOTAL
S
SUCCESS!

Aha, we just need to ensure that Chef is in the Gemfile. I know from experience
that if we don’t set a version constraint, Bundler installs a prehistoric version of
Chef, which breaks everything. I don’t fully understand why, but in the spirit of
full disclosure, I tell you. This sort of thing will happen—you’ll bash your head
on the desk for a few hours wondering why things aren’t working as they should,
but at times like this, I think it’s valuable to reflect on quite how pioneering this
discipline is. Many of the ideas we’re putting into practice, and the tools we’re
using, are very new. The community is responsive, supportive, and fun. The cost
of this is that sometimes things don’t always go as smoothly as we’d like.

Update the Gemfile, include Chef, and run bundle install. Once the bundle
has installed, we can run Strainer one more time:

$ bundle exec strainer

Straining 'irc (v0.1.

knife test
knife test
knife test
knife test
knife test
knife test
foodcritic
foodcritic

test

0)'

bundle exec knife cookbook test irc

checking irc

Running syntax check on irc

Validating ruby files

Validating templates

SUCCESS!

bundle exec foodcritic -f any hometdi/chef-repo/cookbooks/irc
FC008: Generated cookbook metadata needs updating:

hometdi/chef-repo/cookbooks/irc/metadata.rb:2

foodcritic

FCO008: Generated cookbook metadata needs updating:

hometdi/chef-repo/cookbooks/irc/metadata.rb:3

foodcritic
is a failure.
foodcritic
tailor
tailor

tailor

Terminated with a non-zero exit status. Strainer assumes this

FAILURE!
bundle exec tailor hometdi/chef-repo/cookbooks/irc/**/*.rb

Tailor Summary

|
tailor I e PP TP

__________________ #
tailor | # File

| Probs |

tailor [R T
__________________ #

tailor | # irc/recipes/default.rb

| 0 |

tailor B R e e R e P T R P TR
__________________ #

tailor | # TOTAL

| 0 |

tailor [R T
__________________ #

tailor | SUCCESS!

Our irc cookbook has failed on FC008. Fixing this is left as an exercise for the
reader!

Advantages and Disadvantages

The advantage of this set of tools is that they are absolutely the lowest barrier to
entry possible. They can be built right into a simple continuous integration or
continuous delivery pipeline. For an example of how simple this is to achieve
with a public service such as TravisCI, see Nathen Harvey’s blog posts on
Foodcritic and TravisCI and Knife Test and TravisCI.

Once you’ve got the discipline of running regular tests, checking your style and
syntax against community standards, you can start to layer in more complex
testing.

The only disadvantage is that there can be some tension in finding a community
style that suits all the members of your team, and then enforcing it. Thankfully,
Tailor is pretty much infinitely configurable, so as long as you can find a style
that you all agree on, and isn’t massively at odds with the rest of the Ruby or
Chef community, you’re probably going to derive benefit from monitoring,
measuring, and enforcing adherence to that style.

Summary and Conclusion

http://bit.ly/16fLLXy
http://bit.ly/19fRcYp

If you do nothing else, do this. The cost of implementation is low, and the return
on investment is high. Get yourself set up with the basics of a continuous
integration pipeline, where your static analysis and linting tests are run on every
commit, and then start to layer on more advanced testing.

To Conclude

The workflow and tooling recommended in this chapter represent a snapshot in
time. It is very much my hope that by emphasizing the philosophical aspects of
test-driven infrastructure and the rationale behind the current selection of tools,
there is value in this book that extends way beyond a specific set of
recommendations.

However, to summarize, my current recommended toolchain and workflows are,
in brief, as follows:

1. Build upon a solid foundation by using a combination of Berkshelf and
Test Kitchen to orchestrate and manage the infrastructure and cookbooks
that build it.

2. Write acceptance tests first, using Gherkin as the requirements capturing
language, Cucumber as the test runner, and Leibniz as the interface to the
provisioning engine of Test Kitchen and Berkshelf.

3. Write integration tests next, using Test Kitchen as the test runner, and using
whichever test framework most suits your experience and skillset.

4. Write unit tests last, using Chefspec, and think seriously about the art and
science of unit testing, and making appropriate use of RSpec’s mocking
and stubbing capabilities to keep tests isolated and fast.

5. Wrap all your cookbook development endeavors in a process that
reinforces agreed standards of code quality and style, using Strainer as the
collecting and running mechanism, and using Knife Cookbook Test,
Foodcritic, and Tailor.

6. Automate the running of your static, linting, and unit tests, using Guard,
and also a form of continuous integration such as Travis CI or Jenkins.

7. Automate the running of cookbook integration tests by driving Test
Kitchen from within a continuous integration system such as Jenkins, or if
using an appropriate driver, Travis.

8. Treat your acceptance tests as a foundation for monitoring the day-to-day
behavior of your built systems, plugging relative components into your
monitoring and alerting systems.

(6] We can do this with Ruby easily enough, too: ruby -e "require 'json';
JSON.pretty_generate(IO.read('hometdi/.berkshelf/config.json'\))"

Chapter 8. Epilogue

This is a substantial book, covering a large and rapidly expanding subject area.
Constraints have been imposed at various stages for purely practical reasons. In
this final section, I want to enumerate very briefly what some of these
constraints are, what has been specifically left out of scope, what I hope to be
able to include in further incarnations, and where additional guidance,
documentation, and support may be found.

An immediate constraint is that while I had every intention of making this book
100% compatible with Microsoft Windows, doing so would have expanded the
examples and setup by a significant factor. It’s not that Windows is in any way a
less supported citizen, it’s just that there are nuances involved, both in terms of
its automation as a server platform and its use as a development platform, which
led me to focus my attentions on Linux as the primary use case in this text. As a
technologist, I am very enthusiastic about the Microsoft technology stack, and as
a consultant and trainer, I have worked extensively with Windows infrastructure
automation. As an area of interest, it is something I intend to devote more
dedicated time and material to in the near future.

An explicit and hopefully obvious constraint is that this is a practical and
philosophical book about the process by which we develop infrastructure code.
It’s not a complete introduction or tutorial for Chef, nor is it an advanced or
comprehensive discussion of the framework. That said, I have explicitly
assumed absolutely no familiarity with the framework, and the reader who works
her way through the book will find herself rapidly able to be effective in Chef. In
that respect, the present volume serves admirably well as an introduction to Chef
when used alongside the existing documentation and materials provided by both
Opscode and the community.

There are areas to which, owing to the constraints of time and space, I was
unable to devote attention. The whole process by which we automate the running
of tests and their feedback—the building of a continuous integration system, and
the path towards a build pipeline for infrastructure code—is a highly relevant

and most fascinating subject. Opscode is increasingly positioning itself as a
specialist in the field of continuous delivery, and its consultants have valuable
and unique insights to share. This is certainly an area where I intend to focus
time in both research and writing, and I would not be surprised to see
contributions to the discussions and literature on the subject coming from
Opscode—either formally or informally.

Similarly, I feel some of the social aspects of agile and lean development are
very highly relevant to the discipline of infrastructure as code. I would love to
have been able to discuss and demonstrate code review processes using, for
example, Gerrit or Reviewboard, and to explore some of the principles around
which I feel effective teams organize, such as pair programming and flow-based
workflow management.

The publishing industry has changed beyond all recognition in the last 20 years.
The emergence of digital delivery and multimedia-enriched content has made the
task of an author somewhat different. In my heart, I believe that writing (and
publishing) exists because there are problems to be solved, and people who want
to help solve them. The fact that we can’t solve all these problems in a single
book, and the fact that the present problem domain is so volatile, should not
discourage us. As an author, I am committed to continue to educate, entertain,
and synthesize, so where I’ve been unable to cover all that I would have liked to,
I am confident that content on these subjects will, nevertheless, be forthcoming.

This book includes a comprehensive bibliography and has referenced and
encouraged the user to make use of the excellent community in which the Chef
framework is developed. I would urge the reader to engage with the community,
via the mailing lists, IRC, the frequent conferences and user groups, and by
creating and consuming online content. It’s my sincere hope that this book has
whet your appetite, and that you will add your voice to the conversation.

Appendix A. Bibliography

There are many excellent books on test-driven and behavior-driven
development, plus several on the tools that underpin the approaches discussed in
this book. Here’s a selection of books that have informed my own views, and
books that will reward further study.

Books on TDD and ATDD

Test-Driven Development: By Example by Kent Beck (Addison-Wesley
Professional, 2002)

Test-Driven Development: A Practical Guide by David Astels (Prentice Hall,
2003)

Agile Testing: A Practical Guide for Testers and Agile Teams by Lisa Crispin;
Janet Gregory (Addison-Wesley Professional, 2008)

Lean-Agile Acceptance Test-Driven Development: Better Software Through
Collaboration by Ken Pugh, Aslak Hellesoy, et al.(Addison-Wesley
Professional, 2010)

ATDD by Example: A Practical Guide to Acceptance Test-Driven
Development by Markus Gartner (Addison-Wesley Professional, 2012)

Specification by example: How successful teams deliver the right software by
Adzi¢, Gojko (Manning, 2011)

Bridging the communication gap: Specification by Example and Agile
Acceptance Testing, by AdZi¢, Gojko (Neuri Ltd., 2009)

Books and Articles on BDD

Instant Cucumber BDD How-to by Wayne Ye (Packt Publishing, 2013)

» Introducing BDD by Dan North

m What’s in a story? by Dan North

Books on Agile Testing in General
m Beautiful Testing, ed. by Adam Goucher and Tim Riley (O’Reilly, 2009)

m Impact Mapping: Making a Big Impact with Software Products and Projects
by Gojko Adzic, Marjory Bisset, and Nikola Korac (Provoking Thoughts,
2012)

Chef Articles and Presentations
» Guide on Authoring Cookbooks

m Slideshare: The Berkshelf Way

Books on Tools
m The RSpec Book by David Chelimsky et al. (Pragmatic Bookshelf, 2010)

m [earning GNU Emacs, Third Edition by Debra Cameron, James Elliott, Marc
Loy, Eric S. Raymond, and Bill Rosenblatt (O’Reilly, 2004)

m Version Control with Git, Second Edition by Jon Loeliger and Matthew
McCullough (O’Reilly, 2012)

m Jenkins: The Definitive Guide by John Ferguson Smart (O’Reilly, 2011)

m Jenkins Continuous Integration Cookbook by Alan Berg (Packt Publishing,
2012)

Books on Ruby

m The Ruby Way: Solutions and Techniques in Ruby Programming, Second
Edition by Hal Fulton and Russ Olsen (Addison-Wesley Professional, 2006)

http://dannorth.net/introducing-bdd/
http://dannorth.net/whats-in-a-story/
http://vialstudios.com/guide-authoring-cookbooks.html
http://www.slideshare.net/resetexistence/the-berkshelf-way-21787019
http://shop.oreilly.com/product/9780596006488.do
http://shop.oreilly.com/product/0636920022862.do
http://shop.oreilly.com/product/0636920010326.do

(A third edition is scheduled for publication in December 2013.)
Why the Lucky Stiff s (Poignant) Guide to Ruby

Programming Ruby, Second Edition by Dave Thomas, with Chad Fowler and
Andy Hunt (Pragmatic Programmers, 2005)

The Ruby Programming Language by David Flanagan and Yukihiro
Matsumoto (O’Reilly, 2008)

Eloquent Ruby by Russ Olsen (Addison-Wesley Professional, 2011)

The Well-Grounded Rubyist by David A. Black (Manning Publications, 2009)
Metaprogramming Ruby by Paolo Perrotta (Pragmatic Bookshelf, 2010)
Design Patterns in Ruby by Russ Olsen (Addison-Wesley Professional, 2007)

Practical Object-Oriented Design in Ruby by Sandi Metz (Addison-Wesley
Professional, 2012)

Books on Bash and Shell Scripting

Classic Shell Scripting by Arnold Robbins and Nelson H. F. Beebe (O’Reilly,
2005)

Shell Scripting by Steve Parker (Wrox, 2011)

Learning the bash Shell (A Nutshell Handbook) by Cameron Newham and
Bill Rosenblatt (O’Reilly, 1998)

bash Cookbook by Carl Albing, JP Vossen, and Cameron Newham (O’Reilly,
2007)

See also Bash Guide (excellent for beginners) and BashFAQ (for
FAQ/cookbooks)

General Programming Books

http://mislav.uniqpath.com/poignant-guide/book/
http://shop.oreilly.com/product/9780596516178.do
http://shop.oreilly.com/product/9780596005955.do
http://shop.oreilly.com/product/9780596009656.do
http://shop.oreilly.com/product/9780596526788.do
http://mywiki.wooledge.org/BashGuide
http://mywiki.wooledge.org/BashFAQ

Extreme Programming Explained by Kent Beck and Cynthia Andres
(Addison Wesley, First edition, 1999, and Second edition, 2004)

Mastering Regular Expressions by Jeffrey E.F. Friedl (O’Reilly, 1997)

Clean Code: A Handbook of Agile Software Craftsmanship by Robert C.
Martin (Prentice Hall, 2008)

Other Great Books

Web Operations, ed. John Allspaw and Jesse Robbins (O’Reilly, 2010)

Continuous Delivery by Jez Humble and David Farley (Addison Wesley,
2010)

The Art of Capacity Planning: Scaling Web Resources by John Allspaw
(O’Reilly, 2008)

The Art of Agile Development by James Shore (O’Reilly, 2007)

Domain-Driven Design: Tackling Complexity in the Heart of Software by Eric
Evans (Addison-Wesley, 2003)

Kanban: Successful Evolutionary Change for Your Technology Business by
David Anderson (Blue Hole Press, 2010)

Growing Object-Oriented Software, Guided by Tests by Steve Freeman and
Nat Pryce (Addison-Wesley, 2009)

Exploring Requirements: Quality Before Design by Donald C. Gause and
Gerald M. Weinberg (Dorset House Publishing, 2011)

Lean Software Development: An Agile Toolkit by Mary Poppendieck and Tom
Poppendieck (Addison-Wesley Professional, 2003)

User Stories Applied: For Agile Software Development by Mike Cohn
(Addison-Wesley, 2004)

Refactoring: Improving the Design of Existing Code by Martin Fowler, Kent
Beck,et al.(Addison-Wesley, 1999)

http://shop.oreilly.com/product/9780596528126.do
http://shop.oreilly.com/product/0636920000136.do
http://shop.oreilly.com/product/9780596518585.do
http://shop.oreilly.com/product/9780596527679.do

Agile Software Development, Principles, Patterns, and Practices by Robert
C. Martin (Pearson, 2011)

The Visible Ops Handbook by Kevin Behr, Gene Kim and George Spafford
(IT Process Institute, 2005)

Introduction to Real ITSM by Rob England (CreateSpace, 2008)
Devops for Developers by Michael Hiittermann (Apress, 2012)

High Performance Web Sites: Essential Knowledge for Front-End Engineers
by Steve Souders (O’Reilly, 2007)

Even Faster Web Sites: Performance Best Practices for Web Developers by
Steve Souders (O’Reilly, 2009)

Scalable Internet Architectures by Theo Schlossnagle (Developer’s Library,
2007)

Release It!: Design and Deploy Production-Ready Software by Michael T.
Nygard (Pragmatic Programmers, 2007)

Building Scalable Web Sites: Building, Scaling, and Optimizing the Next
Generation of Web Applications by Cal Henderson (O’Reilly, 2006)

Cloud Application Architectures: Building Applications and Infrastructure in
the Cloud by George Reese (Theory in Practice) (O’Reilly, 2009)

High Performance MySQL: Optimization, Backups, Replication, and More by
Baron Schwartz, Peter Zaitsev et al. (O’Reilly, 2008)

Continuous Delivery: Reliable Software Releases through Build, Test, and
Deployment Automation by Jez Humble David Farley (Addison-Wesley
Signature Series, 2010)

MySQL High Availability: Tools for Building Robust Data Centres by Charles
Bell, Mats Kindahl and Lars Thalmann (O’Reilly, 2010)

Continuous Integration by Paul M Duvall, Steve Matyas and Andrew Glover
(Addison-Wesley, 2007)

http://shop.oreilly.com/product/9780596529307.do
http://shop.oreilly.com/product/9780596522315.do
http://shop.oreilly.com/product/9780596102357.do
http://shop.oreilly.com/product/9780596156374.do
http://shop.oreilly.com/product/0636920022343.do
http://shop.oreilly.com/product/0636920026907.do

m Lean IT by Stephen C Bell and Michael A Orzen (Productivity Press, 2010)

m Management Challenges for the 21st Century by Peter F. Drucker
(Butterworth-Heinemann, 2007)

Index

A NOTE ON THE DIGITAL INDEX

Alink in an index entry is displayed as the section title in which that entry appears.
Because some sections have multiple index markers, it is not unusual for an entry to have
several links to the same section. Clicking on any link will take you directly to the place in
the text in which the marker appears.

Symbols

$lines variable, Introducing Bats
$output variable, Introducing Bats
$status variable, Introducing Bats
@something variables, Templates

[] method, Arrays

A

abstraction, The Principles of Infrastructure as Code

acceptance testing, Acceptance Testing

advantages/disadvantages of, Advantages and
Disadvantages—Advantages and Disadvantages

application cookbooks and, Getting Started

building automated, Acceptance Testing

Cucumber and, Acceptance Testing

customer-facing, Acceptance Testing

with Cucumber/Leibniz, Overview—Summary and Conclusion

actions, Discussion

Agile software development process, A Very Brief History of Agile Software
Development—Evolving design

behavior-driven development, Behavior-Driven Development

Cucumber and, Cucumber: Acceptance Testing for the
Masses—Cucumber: Acceptance Testing for the Masses

test-driven development and, Test-Driven Development

Agiledox, RSpec: The Transition to BDD

agility, The Origins of Infrastructure as Code

Amazon, The Origins of Infrastructure as Code

application cookbooks, Getting Started

arrays, More About Methods, Arrays—-Arrays

attributes, Discussion, Discussion, Templates

attr_accessor method, Classes

automated acceptance tests, Acceptance Testing

automation, The Origins of Infrastructure as Code

B

base roles, Discussion, Discussion

Bats, Introducing Bats
integration testing with, Integration Testing: Test Kitchen with

Serverspec and Bats—Templates

variables, Introducing Bats

BDD (Behavior Driven Development), The Principles of TDD and
BDD—-Cucumber: Acceptance Testing for the Masses

Agile software development process, A Very Brief History of Agile
Software Development—Evolving design

Cucumber, Cucumber: Acceptance Testing for the Masses—Cucumber:
Acceptance Testing for the Masses

risk, reducing with, Reducing risk

with RSpec, RSpec: The Transition to BDD-RSpec: The Transition to
BDD

before block, RSpec: The Transition to BDD

berks apply command, Berkshelf and Chef environments

Berksfile, Overview

Berkshelf, Overview—Summary and Conclusion, Overview

advantages/disadvantages of, Advantages and Disadvantages

and Chef environments, Berkshelf and Chef environments—Berkshelf
and Chef environments

installing, Getting Started—Example

Minitest Handler and, Getting Started—Getting Started

usage, Example

Vagrant and, Berkshelf and Vagrant-Berkshelf and Vagrant

binstubs, Bundler

Bitbucket, Discussion

blocks, Arrays, RSpec: The Transition to BDD

bundler (Ruby), Bundler-Bundler

Busser architecture, Summary and Conclusion

bussers, Integration Testing: Test Kitchen with Serverspec and Bats

C

capture groups, Cucumber: Acceptance Testing for the Masses

case statements, Conditional logic

CentOS, Overview

CFengine, Introducing Serverspec

challenges, The Risks of Infrastructure as Code

Chef, An Introduction to Chef-Discussion

API, The Chef API

as tool, The Chef tool

attributes system, Discussion

commands, Discussion

community, The Chef community

community cookbook site, Discussion—-Discussion

configuration files, Discussion—Discussion

configuration information, Discussion

cookbooks, Discussion—Discussion

developing infrastructure, automation of, Discussion—Discussion

environments, Berkshelf and, Berkshelf and Chef

environments—Berkshelf and Chef environments

framework, The Chef framework

git, installing, Objectives

Hosted, The Chef API

HostedChef, Discussion—-Discussion

installing, Objectives—Discussion

IRC client, installing, Objectives—Worked Example

Private, The Chef API

recipes, Discussion—Discussion

resources in, Discussion—Discussion

Ruby, installing, Objectives—Worked Example

Server, Discussion—Discussion

Solo, Discussion—Discussion

user resource, Discussion

users, installing, Objectives—Discussion

Vagrant, installing, Exercise 3: Vagrant—Discussion

VirtualBox, installing, Exercise 2: Virtualbox—Discussion

Chef Handler Cookbook, Discussion

Chef Runners, Example

Chef Server, Discussion—Discussion

forms, Discussion

Hosted Chef, Discussion

open source, Discussion

Private Chef, Discussion

Chef Shell, as REST API, Discussion

chef users mailing list, An Introduction to Chef

chef-apply, Discussion, Discussion, Discussion

chef-client, The Chef tool

chef-data repository, Discussion

chef-shell debugging console, The Chef tool

chef-solo, The Chef tool, Discussion, Discussion—Discussion

Chefspec, Integration Testing, Overview—Summary and Conclusion

advantages/disadvantages of, Advantages and
Disadvantages—Advantages and Disadvantages

installing, Getting Started

usage, Example—Example

Class block, Classes

class variables, Variables

classes, Classes—Classes

closures, Arrays

code review, The Risks of Infrastructure as Code, Professionalism

code standards, The Risks of Infrastructure as Code

collective ownership, The Risks of Infrastructure as Code

Colorize, Bundler

commands, Discussion

Test Kitchen, Introducing Serverspec

components, reusable, The Principles of Infrastructure as Code

composability, The Principles of Infrastructure as Code

conditional logic, Conditional logic—Conditional logic

truthiness in Ruby, Truthiness

configuration

information, Discussion

management tools, The Origins of Infrastructure as Code

configuration files, Discussion—Discussion

constants, Identifiers, Constants

constraints, Feedback of Results, Epilogue

constructors, Classes

continuous integration, Feedback of Results, Summary and Conclusion

converge command, Getting Started

convergence, The Principles of Infrastructure as Code

conversations, Behavior-Driven Development

cookbooks, The Chef community, Discussion—-Discussion

community cookbook site, Discussion—-Discussion

finding/installing, Discussion—Discussion

Nginx, Getting Started

Opscode, Discussion

uploading, Discussion

VirtualBox, Discussion

cookbook_versions method, Berkshelf and Chef environments

cooperation, The Principles of Infrastructure as Code

create command, Getting Started

Cucumber, Cucumber: Acceptance Testing for the Masses—Cucumber:
Acceptance Testing for the Masses, Acceptance Testing

advantages/disadvantages of, Advantages and
Disadvantages—Advantages and Disadvantages

Leibniz and, Overview—Summary and Conclusion

usage, Example—Advantages and Disadvantages

Cucumber-Chef, A Test-Driven Infrastructure Framework, Overview

customer-facing acceptance tests, Acceptance Testing

CustomlInk, Overview

D

Debian-derived systems, Overview

declaration, The Principles of Infrastructure as Code

default directories, Advantages and Disadvantages

default environments, Berkshelf and Chef environments

design, The Risks of Infrastructure as Code

destory command, Getting Started

developing infrastructure, The Chef framework

disaster recovery, The Origins of Infrastructure as Code

download subcommand, Discussion

DSL, Discussion

methods, Cucumber: Acceptance Testing for the Masses

E

each methods, Getting Started

efficient specification, Advantages and Disadvantages

Elastic Compute Cloud (EC2), The Origins of Infrastructure as Code

elsif statements, Conditional logic

Emacs, Discussion

Embedded Ruby, Templates

enforcing quality, Feedback of Results

environments, Berkshelf and Chef environments

equality operator, Operators

Erlang, The Chef API

Etsy, Overview

eval function, Grammar and Vocabulary

exercises, format of, An Introduction to Chef

expression result substitution, Templates

extensibility, The Principles of Infrastructure as Code

extracting results, Feedback of Results

eXtreme programming, Cucumber: Acceptance Testing for the Masses

F

families, Discussion

features, Overview

supported, Discussion

flexibility, The Principles of Infrastructure as Code

guaranteeing, Professionalism

protecting, Professionalism

flow control (Ruby), Conditional logic—Conditional logic

truthiness and, Truthiness

Foodcritic, Overview

installing, Getting Started—Getting Started

format of exercises, An Introduction to Chef

Fowler, Martin, Test-Driven Infrastructure Should Be Automated

Freenode, The Chef community

functional harm, Professionalism

G

Gemfile, Bundler

git, installing, Objectives

GitHub, The Chef community

givens, Cucumber: Acceptance Testing for the Masses, Cucumber:
Acceptance Testing for the Masses

global variables, Variables

green phase, Testing Workflow

grep method, More About Methods

guaranteeing flexibility, Professionalism

H

harm

functional, Professionalism

structural, Professionalism

hashes, Hashes—Hashes

helper methods, memoized, Example

hooks, RSpec: The Transition to BDD

Hosted Chef, The Chef API, Worked Example, Discussion—Discussion

using, Discussion

idempotence, The Principles of Infrastructure as Code

identifiers, Identifiers

constants, Identifiers

keywords, Identifiers

method names, Identifiers

variables, Identifiers

include_recipe resource, Overview

indexing, The Chef API

infrastructure as code, Underpinning Philosophy—Professionalism

challenges of, The Risks of Infrastructure as Code

code review, The Risks of Infrastructure as Code

code standards, The Risks of Infrastructure as Code

collective ownership, The Risks of Infrastructure as Code

design, The Risks of Infrastructure as Code

development, The Chef framework

focusing attention on, The Risks of Infrastructure as Code

history of, The Origins of Infrastructure as Code—The Origins of
Infrastructure as Code

principles of, The Principles of Infrastructure as Code-The Principles of
Infrastructure as Code

professionalism and, Professionalism—Professionalism

refractoring, The Risks of Infrastructure as Code

risks of, The Risks of Infrastructure as Code

side effects of, The Risks of Infrastructure as Code

testing, The Risks of Infrastructure as Code

tools for, Infrastructure as Code

infrastructure development, automation of, Discussion—Discussion

infrastructure tests, Test-Driven Infrastructure Should Be Automated

inheritances, Bundler

initialize method, Classes, Minitest: Unit Testing for the 21st Century

install subcommand, Discussion

instance variables, Variables

instances, Getting Started

integration testing, Integration Testing

continuous, Feedback of Results

templates, Templates—Templates

with Bats, Integration Testing: Test Kitchen with Serverspec and
Bats-Templates

with Minitest Handler, Overview—Summary and Conclusion

with Serverspec, Integration Testing: Test Kitchen with Serverspec and
Bats—Templates

Interactive Ruby, Grammar and Vocabulary

irb, Grammar and Vocabulary

IRC channels, The Chef community

J

Jacob, Adam, The Principles of Infrastructure as Code, Test-Driven
Infrastructure Should Be Side-Effect Aware

Jeffries, Ron, Test-Driven Infrastructure Should Be Continuously
Integrated

JSON-oriented document datastores, The Chef API

JUnit, Minitest: Unit Testing for the 21st Century

K

keys, Discussion

keywords, Identifiers, Keywords

kitchen converge command, Integration Testing: Test Kitchen with
Serverspec and Bats, Introducing Serverspec

kitchen create command, Introducing Serverspec

kitchen destroy command, Introducing Serverspec

kitchen list command, Introducing Serverspec

kitchen setup command, Introducing Serverspec

kitchen verify command, Introducing Serverspec

knife, The Chef tool, Discussion

client list, Discussion

knife audit command, Getting Started

knife cookbook site download, Discussion

knife cookbook site install command, Discussion

knife cookbook test, Getting Started

knife environment edit command, Berkshelf and Chef environments

knife node edit command, Berkshelf and Chef environments

L

Leibniz, Overview—Summary and Conclusion

advantages/disadvantages of, Advantages and
Disadvantages—Advantages and Disadvantages

usage, Example—Advantages and Disadvantages

let method, Example

lighttpd, Example

Lightweight Resource Providers (LWRPs), Discussion

linting tools, Static Analysis and Linting Tools—Summary and Conclusion

advantages/disadvantages of, Advantages and Disadvantages

usage, Example—Example

LISP, What Is Ruby?

local variables, Variables

localhosts, Discussion, Templates

LWRP, Overview

M

mailing lists, An Introduction to Chef, The Chef community

mainstream TDI, The Pillars of Test-Driven Infrastructure

maintenance, Exercise 3: Vagrant

manage_home method, Discussion

maps, Arrays

marker roles, Getting Started

Martin, Robert C., Professionalism

MASCOT, for test-driven infrastructure, Test-Driven Infrastructure: A
Conceptual Framework

match function, Introducing Serverspec

memoized help method, Example

metadata, Example

metaparameters, Templates

methods, Discussion

names for, Identifiers, Method names

Minimum Marketable Features, Cucumber: Acceptance Testing for the
Masses

Minimum Viable Products, Cucumber: Acceptance Testing for the Masses

Minitest, Minitest: Unit Testing for the 21st Century—Minitest: Unit Testing
for the 21st Century, RSpec: The Transition to BDD

Handler, Integration Testing

Minitest Chef Handler, Overview

Minitest Handler, Overview, Integration Testing: Test Kitchen with

Serverspec and Bats, Overview—Summary and Conclusion

advantages/disadvantages of, Advantages and Disadvantages

Berkshelf and, Getting Started—Getting Started

Test Kitchen and, Minitest Handler with Test Kitchen

usage, Example—Advantages and Disadvantages

mistakes, Advantages and Disadvantages

mixin facility, Getting Started

mixins, Classes, Getting Started

modifying recipes, Getting Started

modularity, The Principles of Infrastructure as Code

modules, Getting Started

Monit, Example

Motherbrain, Summary and Conclusion

N

names, Classes, Discussion

netcat, Getting Started

netcat command, Introducing Serverspec

network-enabled tools, The Chef tool

chef-apply, The Chef tool

chef-client, The Chef tool

chef-shell, The Chef tool

chef-solo, The Chef tool

knife, The Chef tool

Ohai, The Chef tool

Nginx cookbook, Getting Started

nmap commands, Introducing Serverspec

node attributes, Discussion

data, Discussion

node convergence, Discussion

nodes, Discussion

North, Dan, Cucumber: Acceptance Testing for the Masses

Notepad, Discussion

notifies metaparameter, Templates

o

object-oriented language, Methods and Objects

objections, Advantages and Disadvantages

Ohai, The Chef tool, Discussion

open source Chef Server, Discussion

operands, Operators

operators (Ruby), Operators—Operators

Opscode, The Principles of Infrastructure as Code, Discussion, Worked
Example, Discussion

Bento boxes, Discussion

cookbooks, Discussion

OPSCODE_USER environment variable, Discussion

organization, Discussion

ORGNAME variable, Discussion

P

packaging systems, Discussion

parameter attributes, Discussion

passing variables, Templates

pattern matching operator, Operators

Perl, What Is Ruby?

philosophical points, Underpinning Philosophy

pkgsrc, Discussion

platform roles, Discussion

platforms, Getting Started

Player, Gary, Test-Driven Infrastructure: A Conceptual Framework

policy setting, Discussion

print function, Grammar and Vocabulary

Private Chef, The Chef API, Discussion

protecting flexibility, Professionalism

providers, Discussion, Discussion, Discussion

publishing industry, Epilogue
Puppet, Introducing Serverspec

push jobs, Summary and Conclusion

Q

quality, Feedback of Results

R

Rails application, Getting Started

read function, Grammar and Vocabulary

reassurance, The Origins of Infrastructure as Code

receivers, Methods and Objects, More About Methods

recipes, The Chef community, Discussion—Discussion

modifying, Getting Started

red phase, Testing Workflow

refactor phase, Testing Workflow

refractoring, The Risks of Infrastructure as Code

repeatability, The Origins of Infrastructure as Code, The Principles of
Infrastructure as Code

REPLs, Grammar and Vocabulary
basic functions in, Grammar and Vocabulary

functions in, Grammar and Vocabulary

resource collection, Discussion

resources, Discussion—Discussion

actions, Discussion

names, Discussion

parameter attributes, Discussion

type, Discussion

user, Discussion

RESTful API, The Chef API, Overview

reusable components, The Principles of Infrastructure as Code

abstraction, The Principles of Infrastructure as Code

composability, The Principles of Infrastructure as Code

convergence, The Principles of Infrastructure as Code

cooperation, The Principles of Infrastructure as Code

declaration, The Principles of Infrastructure as Code

extensibility, The Principles of Infrastructure as Code

flexibility, The Principles of Infrastructure as Code

idempotence, The Principles of Infrastructure as Code

modularity, The Principles of Infrastructure as Code

repeatability, The Principles of Infrastructure as Code

reviewing code, The Risks of Infrastructure as Code

roles, Discussion

base, Discussion, Discussion

platform, Discussion

sections of, Discussion

service, Discussion

RSA keys, Discussion

RSpec, RSpec: The Transition to BDD, RSpec: The Transition to BDD,
Introducing Serverspec

Rsync, Overview

Ruby, An Introduction to Ruby-Bundler

and RSpec, RSpec: The Transition to BDD-RSpec: The Transition to
BDD

arrays, Arrays—Arrays

BDD and, TDD and BDD with Ruby-Cucumber: Acceptance Testing for
the Masses

bundler, Bundler—Bundler

classes, Classes—Classes

conditional logic, Conditional logic—Conditional logic

constants, Constants

Cucumber and, Cucumber: Acceptance Testing for the
Masses—Cucumber: Acceptance Testing for the Masses

flow control, Conditional logic—Conditional legic

grammar, Grammar and Vocabulary—-Grammar and Vocabulary

hashes, Hashes—Hashes

identifiers, Identifiers—Method names

installing with Chef, Objectives—Worked Example

interactive, Grammar and Vocabulary

keywords, Keywords

method names, Method names

methods, Methods and Objects—Methods and Objects, More About
Methods—More About Methods

Minitest and, Minitest: Unit Testing for the 21st Century—Minitest: Unit
Testing for the 21st Century

objects, Methods and Objects—Methods and Objects

operators, Operators—Operators

TDD and, TDD and BDD with Ruby—Cucumber: Acceptance Testing for
the Masses

truthiness of, Truthiness

variables, Variables—Variables

vocabulary, Grammar and Vocabulary—-Grammar and Vocabulary

RubyGems, The Chef community, Overview

run lists, Discussion, Discussion

S

scalability, The Origins of Infrastructure as Code

scenarios, Cucumber: Acceptance Testing for the Masses

serve roles, Discussion

Serverspec, Integration Testing, Introducing Serverspec—Introducing
Serverspec

integration testing with, Integration Testing: Test Kitchen with

Serverspec and Bats—Templates

setting policy, Discussion

setup command, Getting Started

Shaw, Zed, An Introduction to Chef

SimpleTest, Cucumber: Acceptance Testing for the Masses

Smalltalk, What Is Ruby?, Arrays

spaceship operator, Operators

standards, The Risks of Infrastructure as Code

state leakage, Minitest: Unit Testing for the 21st Century

static analysis, Static Analysis and Linting Tools—-Summary and Conclusion

steps, Overview

Strainer, Example

string interpolation, Arrays

Stringl O, Getting Started

structural harm, Professionalism

structuring workflow, Testing Workflow

subclasses, Bundler

subcommands, Discussion

successful TDI, Tool Selection

suites, Getting Started

Sun Microsystems, Discussion

SUnit, Minitest: Unit Testing for the 21st Century

superclasses, Bundler

supported features, Discussion

symbolizing, Bundler

symbols, Bundler

syntactic sugar, Classes

T

tagging, Getting Started

tailor command, Getting Started

TDD (Test Driven Development), The Principles of TDD and
BDD-Cucumber: Acceptance Testing for the Masses

Agile software development process, A Very Brief History of Agile
Software Development—Evolving design

templates, Templates—Templates

Test Kitchen, Integration Testing, Supporting Tools: Test
Kitchen—-Summary and Conclusion
commands, Getting Started, Introducing Serverspec

integration testing with, Integration Testing: Test Kitchen with

Serverspec and Bats—Templates

Minitest Handler and, Minitest Handler with Test Kitchen

templates, Templates—Templates

usage, Getting Started—Getting Started

test-driven infrastructure framework, A Test-Driven Infrastructure
Framework-Feedback of Results

automation of, Test-Driven Infrastructure Should Be Automated

benefits of, Test-Driven Infrastructure Should Be Test-First

constraints of, Feedback of Results

continuous integration of, Test-Driven Infrastructure Should Be
Continuously Integrated

feedback, Feedback of Results

mainstreaming, The Pillars of Test-Driven Infrastructure

outside-in approach to, Test-Driven Infrastructure Should Be Outside In

pillars of, The Pillars of Test-Driven Infrastructure

provisioning machines for, Provisioning Machines

results of, Feedback of Results

side-effects, awareness of, Test-Driven Infrastructure Should Be Side-
Effect Aware

standardization of, Test-Driven Infrastructure Should Be Mainstream

successful, Tool Selection

test-first protocol for, Test-Driven Infrastructure Should Be Test-First

tests, writing/running, Writing Tests

toolchain for, Tool Selection—Testing Workflow

top-to-bottom, Test-Driven Infrastructure: A Recommended Toolchain

testing

code, Professionalism

unit, Minitest: Unit Testing for the 21st Century—Minitest: Unit Testing
for the 21st Century

with RSpec, RSpec: The Transition to BDD-RSpec: The Transition to
BDD

testing phases, Testing Workflow

green, Testing Workflow

red, Testing Workflow

refactor, Testing Workflow

tests, Minitest: Unit Testing for the 21st Century

feedback from, Feedback of Results

infrastructure, Test-Driven Infrastructure Should Be Automated

running, Running Tests

writing, Writing Tests

text editors, Discussion

tools, Test-Driven Infrastructure: A Recommended Toolchain—Summary
and Conclusion

Bats, Introducing Bats

Berkshelf, Overview—Summary and Conclusion
Chefspec, Overview—Summary and Conclusion
Cucumber, Overview—Summary and Conclusion

for acceptance testing, Acceptance Testing, Overview—Summary and
Conclusion

for functionality, Overview

for integration testing, Integration Testing, Integration Testing: Test
Kitchen with Serverspec and Bats—Summary and Conclusion

for linting, Static Analysis and Linting Tools—Summary and Conclusion

for static analysis, Static Analysis and Linting Tools—Summary and
Conclusion

for testing workflow, Testing Workflow—Testing Workflow

for unit testing, Unit Testing, Overview—Summary and Conclusion

Leibniz, Overview—Summary and Conclusion

Minitest Handler, Overview—Summary and Conclusion

network-enables, The Chef tool

selecting, Tool Selection—Testing Workflow

Serverspec, Introducing Serverspec—Introducing Serverspec

Test Kitchen, Supporting Tools: Test Kitchen—-Summary and Conclusion

top-to-bottom TDI, Test-Driven Infrastructure: A Recommended Toolchain

TravisCI, Getting Started

types, Discussion

U

Ubuntu, Overview

unit testing, Minitest: Unit Testing for the 21st Century—Minitest: Unit
Testing for the 21st Century, Unit Testing

with Chefspec, Overview—Summary and Conclusion

uploading cookbooks, Discussion

user resources, Discussion

useradd, Discussion

users, installing, Objectives—Discussion

\'

Vagrant, Discussion, Discussion—Discussion

Berkshelf and, Berkshelf and Vagrant-Berkshelf and Vagrant

installing, Exercise 3: Vagrant—Discussion

vagrant plug-in install command, Discussion

Vagrant up command, Discussion

Vagrantfile, Discussion

Validation Clients, Discussion, Discussion

validation keys, Discussion

variables, Variables—Variables

Bats, Introducing Bats

class, Variables

global, Variables

instance, Variables

local, Variables

passing, Templates

verify command, Getting Started

VirtualBox, Discussion

cookbook, Discussion

installing, Exercise 2: Virtualbox—Discussion

virtualization, Provisioning Machines

W

wildcards, Cucumber: Acceptance Testing for the Masses

workflow

structuring, Testing Workflow

testing, Testing Workflow—Testing Workflow

About the Author

Stephen Nelson-Smith (@LordCope) is principal consultant at Atalanta Systems,
a fast-growing agile infrastructure consultancy, and Opscode training and
solutions partner in Europe. One of the foundational members of the emerging
Devops movement, he has been implementing configuration management and
automation systems for five years for clients ranging from Sony, the UK
government and Mercado Libre to startups amongst the burgeoning London
'Silicon Roundabout' community. A UNIX sysadmin, Ruby and Python
programmer, and lean and agile practitioner, his professional passion is ensuring
operations teams deliver value to the business. He is the author of the popular
blog http://agilesysadmin.net, and lives in Hampshire, UK, where he enjoys
outdoor pursuits, his family, reading, and opera.

http://agilesysadmin.net

Colophon

The animal on the cover of Test-Driven Infrastructure with Chef, Second Edition
is an edible-nest swiftlet (Aerodramus fuciphagus). This small bird, of the swift
family, is found in southeast Asia.

The bird itself is 11-12 cm long and weighs around 15-18 grams. The top
plumage is a blackish-brown with paler underparts; its bill and feet are black. It
has a slightly forked tail and long, narrow wings. When in caves—usually for
breeding—these birds are known to use loud, rattling calls for echolocation.

This swiftlet’s diet consists of flying insects that get caught in its wings. It feeds
in large flocks, often with other species of swift and swallow. The swiftlet’s nest,
shaped like brackets, is made from solidified saliva and is among the most
expensive animal products consumed by humans, going for an average of $2,500
per kg in Asia. It is used primarily as an ingredient in bird’s nest soup, where the
nest is soaked and steamed in water. The nests are said to be an aphrodisiac with
medicinal qualities. Because of extensive commercial harvesting, the IUCN has
labeled several populations—in the Andaman and Nicobar Islands—as critically
threatened. To combat the effects of harvesting, the use of artificial bird houses
is growing.

The cover image is from Cassells Natural History. The cover font is URW
Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading

font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu
Mono.

Special Upgrade Offer

If you purchased this ebook from a retailer other than O’Reilly, you can upgrade
it for $4.99 at oreilly.com by clicking here.

http://opds.oreilly.com/buy/9781449372194.EBOOK?source=ibooks

Test-Driven Infrastructure with Chef
Stephen Nelson-Smith

Editor
Mike Loukides

Editor
Meghan Blanchette

Revision History

2013-10-10 First release

Copyright © 2013 Atalanta Systems LTD.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Test-Driven Infrastructure with Chef, the cover image of an edible-nest swiftlet, and
related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472

2013-10-10T13:52:42-07:00

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

	Special Upgrade Offer
	Preface
	Conventions Used in This Book
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	1. The Philosophy of Test-Driven Infrastructure
	Underpinning Philosophy
	Infrastructure as Code
	The Origins of Infrastructure as Code
	The Principles of Infrastructure as Code
	The Risks of Infrastructure as Code

	Professionalism

	2. An Introduction to Ruby
	What Is Ruby?
	Grammar and Vocabulary
	Methods and Objects
	Identifiers
	Variables
	Constants
	Keywords
	Method names

	More About Methods
	Classes
	Arrays
	Conditional logic
	Hashes
	Truthiness
	Operators
	Bundler

	3. An Introduction to Chef
	Exercise 1: Install Chef
	Objectives
	Directions
	Worked Example
	Discussion
	The Chef framework
	The Chef tool
	The Chef API
	The Chef community

	Exercise 2: Install a User
	Objectives
	Directions
	Worked Example
	Discussion

	Exercise 3: Install an IRC Client
	Objectives
	Directions
	Worked Example
	Discussion

	Exercise 4: Install Git
	Objectives
	Directions
	Worked Example
	Discussion

	4. Using Chef with Tools
	Exercise 1: Ruby
	Objectives
	Directions
	Worked Example
	Discussion

	Exercise 2: Virtualbox
	Objectives
	Directions
	Worked example
	Discussion

	Exercise 3: Vagrant
	Objectives
	Directions
	Worked Example
	Discussion

	Conclusion

	5. An Introduction to Test- and Behavior-Driven Development
	The Principles of TDD and BDD
	A Very Brief History of Agile Software Development
	Test-Driven Development
	Behavior-Driven Development
	Building the right thing
	Reducing risk
	Evolving design

	TDD and BDD with Ruby
	Minitest: Unit Testing for the 21st Century
	RSpec: The Transition to BDD
	Cucumber: Acceptance Testing for the Masses

	6. A Test-Driven Infrastructure Framework
	Test-Driven Infrastructure: A Conceptual Framework
	Test-Driven Infrastructure Should Be Mainstream
	Test-Driven Infrastructure Should Be Automated
	Test-Driven Infrastructure Should Be Side-Effect Aware
	Test-Driven Infrastructure Should Be Continuously Integrated
	Test-Driven Infrastructure Should Be Outside In
	Test-Driven Infrastructure Should Be Test-First

	The Pillars of Test-Driven Infrastructure
	Writing Tests
	Running Tests
	Provisioning Machines
	Feedback of Results

	7. Test-Driven Infrastructure: A Recommended Toolchain
	Tool Selection
	Unit Testing
	Integration Testing
	Acceptance Testing
	Testing Workflow

	Supporting Tools: Berkshelf
	Overview
	Getting Started
	Example
	Berkshelf and Vagrant
	Berkshelf and Chef environments

	Advantages and Disadvantages
	Summary and Conclusion

	Supporting Tools: Test Kitchen
	Overview
	Getting Started
	Summary and Conclusion

	Acceptance Testing: Cucumber and Leibniz
	Overview
	Getting Started
	Example
	Advantages and Disadvantages
	Summary and Conclusion

	Integration Testing: Test Kitchen with Serverspec and Bats
	Introducing Bats
	Introducing Serverspec
	Templates

	Integration Testing: Minitest Handler
	Overview
	Getting Started
	Example
	Minitest Handler with Test Kitchen

	Advantages and Disadvantages
	Summary and Conclusion

	Unit Testing: Chefspec
	Overview
	Getting Started
	Example
	Advantages and Disadvantages
	Summary and Conclusion

	Static Analysis and Linting Tools
	Overview
	Getting Started
	Example
	Advantages and Disadvantages
	Summary and Conclusion

	To Conclude

	8. Epilogue
	A. Bibliography
	Books on TDD and ATDD
	Books and Articles on BDD
	Books on Agile Testing in General
	Chef Articles and Presentations
	Books on Tools
	Books on Ruby
	Books on Bash and Shell Scripting
	General Programming Books
	Other Great Books

	Index
	About the Author
	Colophon
	Special Upgrade Offer
	Copyright

