Join the discussion @ p2p.wrox.com e Wrox Programmer to Programmer™

Building
PHP Applications

with Symfony? CakePHP, and Zend” Framework

Bartosz Porebski, Karol Przystalski, Leszek Nowak

http://www.allitebooks.org

Table of Contents

Title Page

Copyright

Dedication

Credits

About the Authors
Acknowledgments
Introduction

Who Should Read This Book?
Comparative Approach
Structure of This Book
Source Code
Conventions

Contact Us

Errata

p2p.wrox.com

http://www.allitebooks.org

Chapter 1: Introducing Symfony, CakePHP, and Zend
Framework

What are Web Application Frameworks and How are They
Used?

Open Source PHP Web Frameworks
Design Patterns in Web Frameworks
Chapter 2: Getting Started
Requirements

Installation

Configuration

Hello World!

Structure

IDE Support

Chapter 3: Working with Databases
Object-Relational Mapping
Database Configuration
Communication with a Database

Chapter 4: Your First Application in the Three
Frameworks

http://www.allitebooks.org

Design

Symfony

CakePHP

Zend Framework

Chapter 5: Forms

Field Validation

Customizing Forms

Using Captcha as Spam Protection
Chapter 6: Mailing

Creating Mailing Applications
SwiftMailer

CakePHP's Mailing Component
Zend Mailer

PHPMailer

Chapter 7: Searching

Problem

Solutions

http://www.allitebooks.org

Chapter 8: Security
Setting Secure Connections

Securing a Profile Form Against XSS and Injection
Attacks

CSRF
Chapter 9: Templates

Creating a Simple Image Gallery by Using Helpers and
Lightbox

Using Template Engines within Web Frameworks
Overview of Other Add-on Template Engines
Chapter 10: AJAX

Introducing AJAX

Autocomplete

Dynamic Popup Windows

AJAX User Chat

Chapter 11: Making Plug-ins

Symfony

CakePHP

http://www.allitebooks.org

Zend Framework
Chapter 12: Web Services
Restful News Reading

Providing Soap Web Services in
Applications

Chapter 13: Back End
Symfony

CakePHP

Zend Framework

Feature Summary

Chapter 14: Internationalization
Internationalization Defined
Symfony

CakePHP

Zend Framework

Chapter 15: Testing

Introducing Testing

E-Commerce

http://www.allitebooks.org

Black-Box Registration Form Testing Using Functional
Tests

CMS Tests Automation Using Selenium
Mailing Unit Testing

Chapter 16: User Management

Basic User Management

Identifying Users Using LDAP Implementation
Chapter 17: Performance

Using JMeter for Stress, Load, and Performance Tests
Benchmarking

Development Speed

Chapter 18: Summary

Features

And the Winner Is...

Appendix A: Web Resources

General

Symfony

CakePHP

http://www.allitebooks.org

Zend Framework
Design Patterns
ORM
Databases
LDAP
Searching
Testing
Security

PDF

Web Services
Mailing
Templates

IDE

Javascript
AJAX

CMS

Codelgniter

http://www.allitebooks.org

Lithium
Agavi

Appendix B: Codelgniter, Lithium, and Agavi with Code
Examples

Codelgniter

Lithium

Agavi

Glossary of Acronyms and Technical Terms

Index

http://www.allitebooks.org

Building PHP Applications with Symfony",
CakePHP, and Zend® Framework

Barrosz Porebski
Karol Przystalski

Leszek Nowak

—

WILEY
Wiley Publishing, Inc.

10

http://www.allitebooks.org

Building PHP Applications with Symfony™, CakePHP,
and Zend® Framework

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright ©2011 by Bartosz Porebski, Karol Przystalski, and
Leszek Nowak

Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-0-470-88734-9

ISBN: 978-1-118-06792-5 (ebk)

ISBN: 978-1-118-06791-8 (ebk)

ISBN: 978-1-118-06790-1 (ebk)

No part of this publication may be reproduced, stored in a
retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording,

scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act,

11

without either the prior written permission of the
Publisher, or authorization through payment of the
appropriate per-copy fee to the Copyright Clearance
Center, 222 Rosewood Drive, Danvers, MA 01923, (978)
750-8400, fax (978) 646-8600. Requests to the Publisher
for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008,
or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The
publisher and the author make no representations or
warranties with respect to the accuracy or completeness of
the contents of this work and specifically disclaim all
warranties, including without limitation warranties of
fitness for a particular purpose. No warranty may be
created or extended by sales or promotional materials. The
advice and strategies contained herein may not be suitable
for every situation. This work is sold with the
understanding that the publisher is not engaged in
rendering legal, accounting, or other professional services.
If professional assistance is required, the services of a
competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages
arising herefrom. The fact that an organization or Web site
is referred to in this work as a citation and/or a potential
source of further information does not mean that the author
or the publisher endorses the information the organization
or Web site may provide or recommendations it may
make. Further, readers should be aware that Internet Web
sites listed in this work may have changed or disappeared
between when this work was written and when it is read.

12

For general information on our other products and services
please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States
at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic
formats. Some content that appears in print may not be
available in electronic books.

Library of Congress Control Number: 2010942182

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox
logo, Wrox Programmer to Programmer, and related trade
dress are trademarks or registered trademarks of John
Wiley & Sons, Inc. and/or its affiliates, in the United
States and other countries, and may not be used without
written permission. Symfony is a trademark of Fabien
Potencier. Zend is a registered trademark of Zend
Technologies, Ltd. All other trademarks are the property of
their respective owners. Wiley Publishing, Inc., is not

associated with any product or vendor mentioned in this
book.

13

For my beloved Olcia, who keeps inspiring me to achieve
goals I could have never dreamed of. The way you are able
to solve with your pure wisdom all the analyti-cally
unsolvable problems, your dedication, and your sense of
humor still amaze me every day. And the sweet cakes (no
PHP added) you baked for me while I was writ-ing this
book were simply delicious. I would also like to thank my
parents for their continuing faith and support.

—Bartosz Porebski

For Agata.

—Karol Przystalski

I dedicate this book to my parents, for their constant love
and support. They made this book possible. I also warn
any readers of this book not to try and run the code
examples backward! It may cause hellspawns to appear out

of thin air.

—Leszek Nowak

14

Credits

Executive Editor
Carol Long

Project Editor

Tom Dinse

Technical Editor
Wim Mostrey
Production Editor
Daniel Scribner
Copy Editor

Nancy Sixsmith
Editorial Director
Robyn B. Siesky
Editorial Manager
Mary Beth Wakefield
Freelancer Editorial Manager

Rosemarie Graham

Associate Director of Marketing
Ashley Zurcher

Production Manager

Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Barry Pruett

Associate Publisher

Jim Minatel

Project Coordinator, Cover

Katherine Crocker

Proofreader

Word One

Indexer

Robert Swanson

Cover Designer

16

Michael E. Trent
Cover Image

© Xiaoke Ma/istockphoto.com

17

About the Authors

BARTOSZ POREBSKI is a video games, web applications, and
C++ software developer. He works as Brain-Computer
Interface researcher and lecturer at Jagiellonian University
in Krakow.

KAROL PRZYSTALSKI is a Software Quality Engineer
at Sabre Holdings and a PhD student at Jagiellonian
University in Krakéw. He has worked with Symfony since
its earliest versions and wrote a book on the Symfony
framework.

LESZEK NOWAK has years of experience in web
development and graphics design with such frameworks as
Django, CakePHP and Codelgniter. He also works with
3D modelling, animation, image recognition, and artificial
intelligence development. He says, “Science is fun, if used
in games.”

18

Acknowledgments

NO BOOK IS THE SOLE effort of its authors, especially
such a long book. It took long months and countless cups
of coffee to keep us awake and writing and programming
the code examples. We could not have made it through this
if not for the help and patience of many kind souls.

First of all, we want to say a big THANK YOU! to the
Wiley/Wrox team we had the pleasure of working with.
Carol Long showed great patience and motivated us when
we were down. Tom Dinse and Nancy Sixsmith worked
hard to get our English right. Wim Mostrey made sure that
all technical matters are 100% correct. Ashley Zurcher
helped to successfully deliver the book to the market, and
Helen Russo took care of our legal matters. It was really
fun to work with you folks!

We also want to thank our superiors on the faculty of
Physics, Astronomy, and Applied Computer Science of
Jagiellonian University in Krakow: dr hab. Ewa Grabska,
prof. dr hab. Maciej Ogorzalek, prof. dr hab. Maciej A.
Nowak, and dr hab. Pawet Wegrzyn, who were really
supportive and did their best not to swamp us with
additional jobs while we were busy writing.

Finally, our thanks go also to all the developers who

dedicated their precious time to write good documentation
and share their knowledge.

19

Introduction
Honest differences are often a healthy sign of progress.
—Mahatma Gandhi

For a long time, PHP was disregarded as a language not
serious enough for rich web applications. Everyone knew
it was popular and perhaps good for small one-shot
projects, but all the praise was reserved for the aristocratic
elite of frameworks such as Spring, Ruby on Rails, or
Django. Only recently has the situation changed, and it
changed dramatically. In 2007, it became clear that PHP
has not just one, but three major web application
frameworks extending capabilities of this language:
Symfony, CakePHP, and Zend Framework. The pace of
development was fast and steady. Object-oriented source
code written in PHPS was elegant and maintainable. More
and more new projects began using them, and their
successful completion made the PHP frameworks even
more popular.

Nowadays, the popularity of PHP web development
frameworks surpasses all others (the evidence is inside this
book), and they have become a leading force in the
industry. The aim of this book is to gather as much
knowledge about this dynamic force as possible and
portray all the features these frameworks provide to our
fellow programmers.

Who Should Read This Book?

20

http://www.allitebooks.org

If you are actually looking for a vampire novel, put this
book back on the shelf. Immediately. If you are a
hard-core Assembler programmer who needs no web
interfaces at all, you might not be interested, either.
However, if you are involved in some kind of web
development, you will probably find this book useful. It is
thick and heavy enough to cover a wide range of topics
and provide various perspectives for all kinds of readers:

* Professional PHP web application developers were the
first people we thought of when we started writing this book,
perhaps because we are PHP programmers, too. Frameworks
offer multiple advanced features that can make our lives
easier and more exciting. That's why we wanted to dig
deeper and try out whole potentials of different frameworks
and thoroughly compare them for your pleasure and
convenience.

« Experts in Ruby on Rails, Django, TurboGears, Struts,
ASP.NET, or other non-PHP frameworks who want to
take a closer look at PHP. Instead of buying separate books
for each framework or choosing one more or less at random,
they can benefit from comparing examples hands-on. They
can experience the differences between the frameworks,
which sometimes are really subtle, and perhaps switch to
PHP one day.

* Students and PHP beginners should not be afraid of the
complexity of some more advanced topics. This book is a
tutorial, but it is also much more! We have put a lot of effort
into making it accessible. The first part of this book, “The
Basics,” covers everything to get the whole thing (or even
three things) running. The second part, “Common Tasks,” is
more than adequate to serve the needs of most academic
courses or a plan of individual education. The rest of the
book will be very useful if you decide to continue your
romance with any one of the frameworks.

* Project managers, analysts or system administrators who
often decide on which technology to choose or who need a

21

deeper understanding of existing computer systems and
applications. We have prepared a whole part (Part 4,
“Comparison”) that is focused on comparing the three
frameworks and discussing their capabilities.

+ Advanced non-web programmers, such as C++ application
engineers or database experts who want to explore the vast
world of web development, will find that this book is also a
good starting point for them. They might be delighted with
the object-oriented approach of PHPS5, the rapid building
process made possible with the frameworks, and all the
advanced features provided by them. Meanwhile, the
comparative approach provides a broad view of web-specific
problems, and the tutorial side of the book prevents being
stuck simply with more trivial tasks.

Comparative Approach

There are many great tutorials and books on each of the
frameworks covered in this book. What makes this book
unique is the comparative approach we've adopted. We
wanted to do more than just present three advanced
technologies—we wanted to point out their advantages and
disadvantages by comparing how each solves certain
problems. This gives you a very practical tutorial-like
experience and a solid base for more advanced discussion.
It allows you to formulate your own views on PHP web
frameworks and their suitability for your needs.

Flame wars are a hallmark of all discussions about web
frameworks. Everyone has a favorite and tries to promote
it against all others. The problem is that all web
frameworks are used for the same purpose, but have
different internal structures. Knowing one of them is
generally enough to produce web applications, so there are
few people interested in mastering multiple tools of this

22

kind. This makes comparisons difficult. No wonder many
discussions are based on stereotypes, personal opinions,
and unverified data.

In this situation, many unanswered questions arise: Which
framework is best suited for my particular purpose? Which
one is the quickest to learn? Which one produces
applications the fastest? Which one has the richest
features? Which one will I like best? Is there one that
surpasses all the others? We have asked these questions
ourselves and found no reliable answers. However,
because these questions are often asked by other
developers, we decided to do our best to find the solution
and then share it in this book. The results were often really
surprising.

Structure of This Book

The main principle of this book is to show how to do some
tasks in each framework (in parallel wherever possible).
To accomplish this, each example is repeated for each
framework. Sometimes the solutions are really similar in
order to make all subtle differences easily visible, but
sometimes one framework provides a unique solution, in
which case we are not afraid to use it. The book is divided
into four parts that will gradually introduce you to the
complexities of PHP frameworks. More experienced
developers can freely skip the first part or read only the
chapters they need.

Basics

23

Chapter 1: Introducing Symfony, CakePHP, and
Zend Framework—One of the biggest hardships with
most frameworks is how to get started. This chapter
addresses that problem with a comprehensive tutorial
starting with a general discussion of web application
frameworks, their structure, and the underlying
Model-View-Controller (MVC) pattern. We also briefly
present all available frameworks and explain why we
chose Symfony, CakePHP, and Zend Framework for
detailed comparison.

Chapter 2: Getting Started—Next we move to
installation and configuration. We provide instructions
for Windows, Linux, and MacOS operating systems for
every framework as well as the chosen database and
web server. This is a stage in which many things can go
wrong and discourage an inexperienced developer, so
we are extra meticulous.

Chapter 3: Working with Databases—All frameworks
are installed over a database engine, so Chapter 3 is
dedicated to mitigating differences between relational
databases and the world of object-oriented
programming. Then you learn how to communicate with
a database from the level of the frameworks, which
encompasses constructing an object model with schema
files and direct communication with databases through a
command-line interface.

Chapter 4: My First Application in the Three
Frameworks—Finally some programming. With all
frameworks properly configured and running in your
favorite environment, it is time you wrote your first

24

application. The address book example presented in this
chapter explains how to use tools to develop web
applications quickly and efficiently.

Common Tasks

Chapter 5: Forms—This part of the book focuses on
the standard elements used by every web developer in
his everyday work. The first of these elements are user
input forms. You'll start with a simple problem of
validating fields and then move on to customizing forms
for various application needs. Finally, we'll discuss
protection against automated forms submission, namely
Captcha.

Chapter 6: Mailing—Mailing is another common task
required in nearly all web applications. We need it for
user registration, sending announcements, and
commercial advertising. In this chapter, several mailing
engines will be presented and implemented:
SwiftMailer, CakeMailer, ZendMailer, and PHPMailer.

Chapter 7: Searching—This chapter starts with
in-depth theoretical descriptions of full-text searching,
commonly used algorithms, and approaches. Then we
move to practical solutions using the popular search
engines Sphinx, Lucene, and Google Custom Search.

Chapter 8: Security—Security issues are always
important for a professional web developer. After
reading this chapter, you will know how to provide
secure connections and defend against the two most
dangerous kinds of attacks: server-side XSS injections

25

and client-side cross-side request forgeries (CSRF). We
discuss the various types of dangers and introduce
security measures.

Chapter 9: Templates—The last thing covered in this
part of the book is something everyone should know:
how to make a web app visually appealing. In this
chapter, we first show you how to create a simple image
gallery and then we compare native template engines of
the frameworks with add-ons such as the very popular
Smarty engine.

Advanced Features

Chapter 10: AJAX—The first of more advanced topics
discussed in this part is Asynchronous JavaScript and
XML, or AJAX. It allows various features that are both
useful and impressive. The first that we discuss is
autocompletion of text fields with strings from a given
database. The second example is dynamic popup
windows for fun and profit, and the third is a simple
chat room for multiple users.

Chapter 11: Making Plug-ins—Plug-ins provide
advanced functionalities that you need. This chapter
discusses creating your own plug-ins. For Symfony and
CakePHP, you will write a PDF creation tool, but Zend
Framework plug-ins work in a somewhat different
manner, so they will be discussed with an appropriate
example.

Chapter 12: Integrating Web Services—Web
applications cannot live alone. They need integration

26

with other web services and we discuss how to do it
here. This chapter discusses the two most common
standards, REST and SOAP, as well as providing
examples of their use.

Chapter 13: Back end—Most web applications have a
content management system (CMS). This chapter shows
how to implement simple CMSs and how to use more
advanced plug-ins. We also introduce the topic of
content management frameworks.

Chapter 14:
Internationalization—Internationalization doesn't end
with the use of UTF8 character encoding. This chapter
covers everything you need to know in order to make a
website truly multilingual, including right-to-left
languages, user input, collation for sorting algorithms,
date formats, and other localization techniques.

Chapter 15: Testing—Quality is the word that best
describes the emphasis of this chapter. Testing is a very
important part of web application development. This
chapter introduces basic testing, including manual and
automatic functional tests using the Selenium testing
suite; and also black box, grey box, and unit tests.

Chapter 16: User Management—Web 2.0 applications
revolve around users, who log-in, socialize, and create
content. This chapter discusses efficient and secure
ways to authenticate users and grant them access to
certain features, starting with Role-Based Access
Control (RBAC) and access control lists (ACLs)
provided by the frameworks, and then moving on to

27

Lightweight Directory Access Protocol (LDAP), an
enterprise-grade solution.

Comparison

Chapter 17: Performance—This last part has fewer
chapters than the previous parts, but it starts with an
important one. We show here how to use JMeter to run
your own customized performance and load tests. We
also present two benchmarks made by us: throughput of
a simple CRUD application and something even more
important: comparison of lines of code written to create
this application.

Chapter 18: Summary—The last chapter summarizes
everything we have learned in this book. It lists all the
pros and cons of each framework, both from a
programmer's point of view and the quality of
applications that can be developed with their help. And
we'll tell you which PHP framework is the best one.

Appendices

We feel really sorry for less-popular frameworks because
some of them are really delicious, and we had to focus on
three mainstream ones only. However, we added basic info
on Codelgniter, Lithium, and Agavi with some code
examples. They are young but very promising, and have
good chances to gain great popularity.

There are also a list of interesting web resources for

download and further reading, and a glossary of acronyms
and technical terms used in the book.

28

Source Code

The source code presented in this book is designed to
illustrate technologies described in the chapters in which it
appears. Consistent with the idea that you should be able to
freely read the code, not figure it out, the snippets are as
simple and informative as possible. We didn't aim to print
full listings of all files in the book.

However, we wouldn't leave you without full working
applications. They can be downloaded from the Wrox
website at www.wrox.com or from a dedicated website
maintained by us at www.phpframeworks.org. The
advantages of this approach are that we can put all needed
files in one convenient downloadable packet. What is even
more important is that you can adapt the examples to
newer versions of the rapidly evolving frameworks.

To find the source code at the Wrox website, simply locate
the book's title (use the Search box or one of the title lists)
and click the Download Code link on the book details page
to obtain all the source code for the book. Code that is
included on the website is highlighted in this book by the
following icon:

You'll find the filename in a code note such as this:

Code snippet filename

29

Because many books have similar titles,
you might find it easiest to search by ISBN;
this book's ISBN is 978-0-470-88734-9.

Once you download the code, just decompress it with your
favorite compression tool. Alternately, you can go to the
main Wrox code download page at www.wrox.com/
dynamic/books/download.aspx to see the code available
for this book and all other Wrox books.

Conventions

Conventions used in this book are pretty intuitive and
straightforward. In order to distinguish inline source code
from normal text, we are using a monospace font. The
same applies to filenames and directories. Names of
variables are additionally italicized (unless they appear
in code snippets or listings, where they are not italicized).
Names of all methods and functions have parentheses at
the end in order to make more visible that they are
methods; however, their arguments are usually omitted and
the parentheses are empty, as in this ExampleMethod ().
URLSs are monospace and underlined.

Snippets of code look like this:
$ zf create model AddressBook

Italic font is used in multiple contexts:

30

http://www.allitebooks.org

* When introducing new terms and important words.
* When joking and generally not being completely serious.

In the whole book, “Symfony” is always capitalized, like
any other specific name, even when referring to 1.x
versions, which were called “symfony.” It not only appeals
to our aesthetic sense but it is also much easier to find in
dense text this way.

Contact Us

We have worked hard to make this book approachable,
informative, and bug-free. If you have any comments or
suggestions, please let us know. Also, if you find an error,
you would do us a favor by telling us about it. More
general info about this book, the authors, and an up-to-date
list of errata can be found on our website at
www.phpframeworks.org.

Also, if you ever wish to buy us a drink for job well done
or insult us for massive incompetence, feel free to write us

at web-frameworks-book@googlegroups.com.

Contact info for individual authors for more intimate
proposals:

Bartosz Porgbski: bartosz.porebski@gmail.com
Karol Przystalski: kprzystalski@gmail.com
Leszek Nowak: dr.leszek.nowak@gmail.com

The authors (from left): Bartosz Porgbski, Karol Przystalski and
Leszek Nowak.

31

Errata

We make every effort to ensure that there are no errors in
the text or in the code. However, no one is perfect, and
mistakes do occur. If you find an error in one of our books,
like a spelling mistake or faulty piece of code, we would
be very grateful for your feedback. By sending in errata,
you might save another reader hours of frustration, and at
the same time, you will be helping us provide even
higher-quality information.

To find the errata page for this book, go to
http://www.wrox.com and locate the title using the Search
box or one of the title lists. Then, on the book details page,
click the Book Errata link. On this page, you can view all
errata that have been submitted for this book and posted by
Wrox editors. A complete book list, including links to each
book's errata, is also available at www.wrox.com/
misc-pages/booklist.shtml.

If you don't spot “your” error on the Book Errata page, go
to www.wrox.com/contact/techsupport.shtml and complete

32

the form there to send us the error you have found. We'll
check the information and, if appropriate, post a message
to the book's errata page and fix the problem in subsequent
editions of the book.

p2p.wrox.com

For author and peer discussion, join the P2P forums at
p2p.wrox.com. The forums are a web-based system for
you to post messages relating to Wrox books and related
technologies and interact with other readers and
technology users. The forums offer a subscription feature
to e-mail you topics of interest of your choosing when new
posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on
these forums.

At http://p2p.wrox.com, you will find a number of
different forums that will help you, not only as you read
this book, but also as you develop your own applications.
To join the forums, just follow these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join, as well as
any optional information you wish to provide, and click
Submit.

4. You will receive an e-mail with information

describing how to verify your account and complete the
joining process.

33

You can read messages in the forums
without joining P2P, but in order to post
your own messages, you must join.

Once you join, you can post new messages and respond to
messages other users post. You can read messages at any
time on the Web. If you would like to have new messages
from a particular forum e-mailed to you, click the
Subscribe to this Forum icon by the forum name in the
forum listing.

For more information about how to use the Wrox P2P, be
sure to read the P2P FAQs for answers to questions about
how the forum software works, as well as many common
questions specific to P2P and Wrox books. To read the
FAQs, click the FAQ link on any P2P page.

34

Chapter 1
Introducing Symfony, CakePHP, and Zend Framework

An invasion of armies can be resisted, but not an idea
whose time has come.

—Victor Hugo

What's In This Chapter?

¢ General discussion on frameworks.
* Introducing popular PHP frameworks.

* Design patterns.

Everyone knows that all web applications have some
things in common. They have users who can register, log
in, and interact. Interaction is carried out mostly through
validated and secured forms, and results are stored in
various databases. The databases are then searched, data is
processed, and data is presented back to the user, often
according to his locale. If only you could extract these
patterns as some kind of abstractions and transport them
into further applications, the development process would
be much faster.

This task obviously can be done. Moreover, it can be done
in many different ways and in almost any programming
language. That's why there are so many brilliant solutions
that make web development faster and easier. In this book,
we present three of them: Symfony, CakePHP, and Zend
Framework. They do not only push the development
process to the extremes in terms of rapidity but also

35

provide massive amounts of advanced features that have
become a must in the world of Web 2.0 applications.

What are Web Application Frameworks and How are They
Used?

A web application framework is a bunch of source code
organized into a certain architecture that can be used for
rapid development of web applications. You can think of
frameworks as half-produced applications that you can
extend and form to make them take shape according to
your needs. Well, that means half your work has already
been done, but for some it is as much a blessing as a curse
because this work was done in a particular way, without
your supervision.

Thus all frameworks are either stained with a coding
methodology and naming and structural conventions, or if
they try to avoid these restrictions, they need to be heavily
configured by you. This either reduces their flexibility or
makes their learning curve significantly steeper. And if
you really want to escape from these problems toward a
more library-like approach, you have to sacrifice some
development speed. You can see that frameworks are all
about tradeoffs.

That's why it is really good to take a look at many
frameworks and compare their differences. Perhaps one of
them offers conventions that you would use as good
practices, anyway? Perhaps you have nothing against some
initial configuration that allows you to be rapid and
flexible at the same time? And maybe you want just a
library of powerful components to link together by

36

yourself? The choice is yours, and if you find a way to
mitigate their disadvantages, you can fully enjoy the
greatest benefit of all frameworks: truly rapid
development.

Further advantages of frameworks are elegance of code
and minimizing the risk of programming errors.
Frameworks conform to the Don't Repeat Yourself (DRY)
principle, which means that they have all the pieces of
logic coded only once in one place. This rule forbids
duplication of code, especially copypasting. This facilitates
maintenance of code and prevents nasty errors. Generally,
frameworks promote code reusability and other good
programming practices wherever they can, which is great
for programmers who do not have enough knowledge or
discipline to care for quality of code by themselves.

Another great feature is the clean organized look of links
that can be done with URL rewriting, which is supported
by most frameworks. Instead of
/animals.php?species=cats&breed=mainecoon, type just
/animals/cats/mainecoon. This is not only appealing to the
eye but also very search engine optimization
(SEO)—Atriendly.

Framework versus Library

The main difference between a library and a framework is
that:

* [ibraries are called from your code
 frameworks call your code

37

In other words, a framework in your application is a
skeleton that you fill with features or serves as a platform
on which you build your modules. Whereas a library
instead provides attachable modules on top of a platform
made by yourself. Some people perceive a framework as
something better or more complete than a library, so
“framework” became a buzzword that is often overused.
That's why people call some libraries frameworks, even
though they do not invoke developers' code. There is
nothing wrong with a piece of code being a library, as it is
just a different entity. And there are also some bad
frameworks that damage the reputation of the good
ones—basically you can take any half-done application,
release it, and call it a framework. These two software
groups just behave differently and should not be confused.

The application architecture utilized by frameworks is
called inversion of control, because the data flow is
inverted compared to ordinary procedural programming. It
is also referred to as The Hollywood Principle: “Don't call
us, we'll call you.” This corresponds to third-party code
calling developer's code. The main reason behind it is to
make the high-level components less dependent on their
subsystems. High-level components pass the control to
low-level components, who themselves decide how they
should work and when to respond. A good example is the
difference between a command-line program, which stops
and then asks the user for input, and a program with a
windowed user interface, in which the user can click any
button and then the window manager calls the program
instead.

38

Some frameworks, such as Zend Framework or
Codelgniter, follow loosely coupled architecture, which
means that their components are less dependent on each
other and may be used separately, more library-style.
Loosely coupled frameworks do not provide development
as rapidly as those following a tighter framework
architecture and Model-View-Controller (MVC) pattern;
however, such an approach allows more flexibility and
control over code.

When You Should Use a Framework and When You
Should Not

Frameworks are not the cure for all programming
problems. Putting aside today's awesome state of
development, you should always remember how
frameworks were created a few years ago. Most of them
were more or less unoptimized junk created by one guy to
help him speed up his development process, without much
care for documentation, elegance, ease of use, or even
readability of his code. Then another group of guys took
this code and bloated it with a patchwork of extra
functionalities barely consistent with the original code.
Then it became apparent that this whole lot needs a solid
cleanup in order to be usable, but this would mean either
rewriting it from scratch or packaging code in additional
wrapper classes, further increasing its unnecessary
complexity.

Of course, today the disorganized origin of frameworks is
not as evident as before because the quality of code has
risen considerably. But still, that's why most beefed-up
frameworks have performance issues. That's why they are

39

not always easy to learn. And that's why new ones emerge
to cover up weaknesses of older ones. And finally that's
why major frameworks provide completely rewritten 2.0
versions, which address all previously mentioned
problems.

Advantages

When web application frameworks are useful:

* For more or less standard projects with dynamic content, like
social networking, online stores, news portals, and so on

+ For easily scalable applications that can grow from start-up
to worldwide popular services without need for big changes
in code

» For producing consecutive apps, in which modularity and
reusability of pieces of code like controllers and views may
be helpful

* For real-world development with deadlines, rotating staff,
and fitful customers

« If you are, or want to be, a professional web developer, so
learning how to work with frameworks is not an excessive
effort

As you can see, this applies to most commercial web
applications that connect to a database and allow its users
to create and modify its content. Therefore, programming
with web app frameworks becomes a standard and
common practice in the web development world.

Disadvantages

When you should consider development without any
frameworks at all:

40

http://www.allitebooks.org

* Purely informative web pages without user-created content,
for example an artist's portfolio with fancy graphics

e Small projects with limited database connection that
wouldn't benefit much from frameworks' code generation

e Really big projects that additionally need extreme
performance, like the Google suite (you would be using a
compiled programming language for that rather than PHP,
anyway)

* With limited hardware resources that call for top
performance as well (not really a likely scenario because
programming costs are now always higher than hardware
costs)

» Specialist or experimental applications that may evolve in
completely unknown direction or work with some custom
solutions, like interfaces for scientific experiments with an
object-oriented database

* When you really need (and can afford) total control over the
code and evolution of the application

* When you want to create a web app, but you or your
co-workers don't want or, even worse, cannot learn how to
use a framework

These conditions are generally fulfilled by three types of
projects: small static websites, extremely specialist
websites, and failed websites. Frameworks are created for
development of common web applications with
well-known standard architecture. Of course, they may be
greatly extended thanks to plug-ins and modules, but
complete alteration of their structure may require much
painful hacking, so you should always check their
capabilities with the design requirements of your project.

PHP versus Other Programming Languages

PHP for many years has been a very popular programming
language; however, it was commonly judged as

41

unprofessional. A stereotypical PHP developer was an
undereducated freelancer producing cheap, low-quality
code. Professionals were supposed to use Zope, ASP, or
various Java technologies. Then in 2005 there was a boom
of Ruby. Everyone was amazed with the elegance of this
programming language; and Ruby on Rails, the central
piece of software ever written in Ruby, was claimed to be
the ultimate web applications framework. Soon clones of
Ruby on Rails began popping out. That's how Python's
Django and Turbogears, as well as all PHP frameworks
were born.

In 2004 PHP5 was released. It was neat and
object-oriented. If somebody still wrote old-styled HTML
mixed with pieces of PHP script, it was only his choice,
and the programming language no longer was to blame. It
took some time, but people gradually considered PHP as a
disciplined and professional tool. Together with the
modern MVC paradigm and features styled after other
frameworks, PHP begun its amazing way to the top of web
development applications.

After a few years, it became evident that Ruby on Rails
had various limitations. One important limitation was the
low availability and high price of Ruby hostings while
there was a lot of cheap hosting for PHP everywhere in the
world. There was also a great community that eagerly
developed early PHP frameworks. This resulted in an IT
revolution that dethroned Ruby on Rails as the most
popular framework and placed a council of PHP
frameworks in its place.

42

Figure 1.1 illustrates the change in interest in various
frameworks over time expressed as search volume in the
Google search engine in the Computers & Electronics
category. The figure was created with Google Insights for
Search, which is a more advanced form of the well known
Google Trends tool. You can check these search terms
yourself to obtain results beyond mid-2010 (that's when
this book was written), at the website www.google.com/
insights/search/.

Figure 1.1 Search volumes of frameworks in various
programming languages

Compare by Search terms Filter
® Searchtemn e Web Search -l
o ® cakePHP + symfony + zend framework + codeigniter Worldwide = |
Time Ranges ® twbogears +pylons +grok +web2py +django reinhardt =
2004 - present B
® fuby on rails =
spring framework + apache struts + wavemaker Computers & Electronics | »
® ASP NET MVG + monorail + dotnetnuke + operrasta Search

Web Search Interest: cakephp+symfony+zend framewo...,
turbogears+pylons+grok+web2p..., ruby on rails, spring framework+apache stru...,
asp.net mvc+monorail+dotnem...

A 2004 - present

s > Computers & Electronics

Totals
cakephpssymiony+ze.. —— 0

Subcategories: Programming. Software, Enterprise Technology, Hardware, Networking , more.
Interest over time Forecast ("
Interest level | Growth relative to the Computers & Electronics category
o
PHP i
AT
Ruby P N Lol
lnig S e T e - Python
i Python - /7/ S S W = 20
= i I Al DA ASPNET |
2008 ‘ 5 2008 . & 2006 . b 2007) 2008 A 2005 i
 The last value on the araph is based on partial dats and may change. L earm more

Open Source PHP Web Frameworks

Another question we want to answer is why we have
chosen these three particular frameworks. Are they really
better in any way, or are we biased or perhaps have some
financial interest in promoting them? Well, starting with

43

that last question, we are completely independent open
source enthusiasts and we wanted to compare free (“free”
as free speech) software only, so there is certainly no Evi/
Corporation behind us, and nobody told us which
frameworks to choose. We answer the question of whether
they're better than other frameworks in the following
sections.

There were once closed source PHP
frameworks as well, but due to widespread
success of the free frameworks, nowadays
closed source frameworks are a thing of the
past.

Comparison of Popular Interest

We have chosen Symfony, CakePHP, and Zend
Framework due to their popularity in the web developers'
community, including our own experience in PHP. We
believe that open source programming tools show at least
some correlation between their popularity and quality
because they are used only if they are really useful. In that
way they are different from things like proprietary
software or pop music, in which quality can be easily
replaced by aggressive marketing as the popularity gaining
factor.

44

It turns out that the public interest in web frameworks can
be measured quite objectively. Figure 1.2 shows search
volumes for various PHP frameworks in Google Insights
for Search. You can easily see that there are four leading
competitors. All the others combined are less popular than
any one of these four. The Lithium and Prado frameworks
have been deliberately omitted because their names are
nonunique, which generates false positives in trends. We
have checked these names in specific categories and found
that they are not significant as search terms, either.

Figure 1.2 Comparison of search volumes of different
PHP frameworks

Compare by Search terms Filter

Web Search

K

& cakePHP
® symfony

Worldwide B
Femp— Jan [+](2006]7] - [Jun =] (2010 7] rese

® codeigniter All Categonies -

® kohana +agavi +qcodo +akelos +php on rax Search

. Totals

Web Search Interest: cakephp, symfony, zend framework, codeigniter, p
kohana+agavi+qcodotakelos+ph...
Worldwide, Jan 2006 - Jun 2010
Categories: Computers & Electronics, Internet, Travel, Local, Home & Garden, Food & Drink

Interest over time @ News headiines

When users search for information on a framework, the
search results usually reflect talk about it on various blogs
and forums, items about learning this technology, and
finally developing applications using it. So public interest
in a web framework results in real, long-term use of it.

45

Codelgniter was really problematic for us. We had a long
debate whether it should be included as one of the main
frameworks. Perhaps now it is as frequently searched for
as Symfony or CakePHP, but what matters more is the
area under the graph because it reflects how many people
have found the answers they sought and have probably
used this knowledge for their projects.

Of course this graph shows nothing more than search
volume, and when you see such fast growth it is hard to
distinguish a long-lasting trend from temporary hype. We
know that Codelgniter is really good, so it is definitely
more than a fad, and perhaps in a year or two it will have
its place among the leading web tools.

We finally agreed that three men against four frameworks
is not an equal fight. We have not completely forsaken
Codelgniter, though; its features are described, along with
Lithium and Agavi, in Appendix b02, where a simple
application is developed using each one of them.

The First Look

The first look at the frameworks really gives us little
information on their individual features. Their websites
just try to impress you with marketing descriptions and a
list of features that vary little from one framework to
another:

“Symfony is a full-stack framework, a library of cohesive
classes written in PHP. It provides an architecture,
components and tools for developers to build complex web
applications faster. Choosing symfony allows you to

46

release your applications earlier, host and scale them
without problem, and maintain them over time with no
surprise. Symfony is based on experience. It does not
reinvent the wheel: it uses most of the best practices of
web development and integrates some great third-party
libraries.”

“CakePHP is a rapid development framework for PHP
that provides an extensible architecture for developing,
maintaining, and deploying applications. Using commonly
known design patterns like MVC and ORM within the
convention over configuration paradigm, CakePHP
reduces development costs and helps developers write less
code.”

“Extending the art & spirit of PHP, Zend Framework is
based on simplicity, object-oriented best practices,
corporate friendly licensing, and a rigorously tested agile
codebase. Zend Framework is focused on building more
secure, reliable, and modern Web 2.0 applications & web
services.”

Now see whether you can spot three differences. Well, the
websites are not really informative about unique features
of their frameworks. You can find more in various blogs
and forums, but still there is little verified data, and general
discussions tend to exchange purely personal opinions.

That is why we have written this book. In fact, the
differences between frameworks are not really obvious,
and it takes some time and practical examples to see them
and then harness them in business solutions. Let's begin
with some most basic facts.

47

Symfony
Started: 2005
License: MIT

PHP versions:

* Symfony 1.4: PHP 5.2.4+
* Symfony 2.0: PHP 5.3+

Its logo is shown in Figure 1.3. Website:
www.symfony-project.org

Figure 1.3 Symfony logo

symfony

Symfony was produced in a French web development
company, Sensio Labs, by Fabien Potencier. First it was
used for the development of its own applications and then
in 2005 it was released as an open source project. Its name
was “symfony,” but it is sometimes capitalized (as we do
in this book) in order to make it more distinct.

Symfony was based on an ancient Mojavi MVC
framework, with some inevitable influences from Ruby on
Rails. It also integrated Propel Object-Relational Mapper
and took advantage of the YAML Ain't Markup Language
(YAML) serialization standard for configuration and data

48

modeling. The default object-relational mapping (ORM)
solution has been later changed to Doctrine.

Today Symfony is one of the leading web frameworks. It
has a large active community and a lot of
documentation—mainly free e-books. Symfony 2.0 is
being released in late 2010. It offers various new features
and greatly enhanced performance.

CakePHP

Started: 2005

License: MIT

PHP versions: 4.3.2+

Its logo is shown in Figure 14. Website:
http://cakephp.org

Figure 1.4 CakePHP logo

CakePHP was started in 2005 by the effort of Polish web
developer Michat Tatarynowicz. Heavily inspired by Ruby
on Rails, CakePHP is an entirely community-driven open
source project with lead developer Larry Masters (aka

49

PhpNut). The next major release of CakePHP has also
been announced, but its release date is still unknown.

The most important goals of CakePHP are its friendliness,
development speed, and ease of use. And it really excels in
that. Works out of the box (or oven), with no
configuration. It has perfect documentation with working
examples for most of its features. And it has really a lot of
features to use. That allows the most rapid development
with a smaller amount of code.

One of the most controversial features of CakePHP is its
compatibility with PHP4. While once it allowed
deployment on old cheap hosts that did not support PHPS,
now it is more a drawback hindering CakePHP's
development. Fortunately, version 2.0 will use PHP 5.3+
There are also reports of CakePHP's really bad
performance, but they were mainly due to disabled caching
by default.

Zend Framework

Started: 2005

License: new BSD

PHP versions: 5.2.4 since ZF 1.7.0

Its logo is shown in Figure 1.5. Website: http://
framework.zend.com

Figure 1.5 Zend Framework logo

50

http://www.allitebooks.org

Zend Framework is sponsored by the U.S.-Israeli
company, Zend Technologies Ltd., which was cofounded
by Andi Gutmans and Zeev Suraski, the core developers of
PHP. Strategic partners of Zend Technologies Ltd. include
Adobe, IBM, Google, and Microsoft. The company offers
various commercial products; however, Zend Framework
is an open source project released under the “corporate
friendly” new BSD license.

ZF is meant to be simple, component-based, and loosely
coupled. This means that it is a library of components,
which you can use as you wish, and usage of MVC
architecture is optional. This lowers the learning curve and
increases its flexibility. The documentation is great, and
the source code is of very high quality, both because it's
fully object oriented and thoroughly unit-tested. Zend
announced an upcoming 2.0 version as well, but its release
date is still unknown.

Other Frameworks

There are hundreds of PHP frameworks. This is not an
exaggeration if you count all of them, including ancient
and already abandoned projects, as well as brilliant
younger startups and some useless short-lived junk. The
web app market is a big one, but the amount of PHP tools
is disproportionally huge and perhaps somewhat excessive.

51

Here is an overview of a few more notable ones that we
have found to be used successfully to develop web
applications.

Codelgniter

Started: 2006

License: modified BSD

PHP versions: 4.3.2+

Its logo is shown in Figure 1.6. Website:
http://codeigniter.com

Figure 1.6 Codelgniter logo

Codelgniter is developed and maintained by a
privately-owned software development company, Ellis
Labs. It is focused on having a very small footprint, while
allowing a big increase in performance. It follows the
MVC pattern only partially, for the models are optional. It
is loosely coupled and in the words of Rasmus Lerdorf, it's
“the least like a framework.” Its lightweight approach has

52

earned a wide recognition in the developers' community,
but it is sometimes criticized for conformance with PHP 4.

Codelgniter is a good choice for less complex web
applications that would benefit from using a framework,
but the heavier ones would either hinder the applications'
performance with excessive features, or their configuration
would take too much time. The structural simplicity of
Codelgniter makes it also a frequent pick by beginners
who choose it as learning platform before moving to a full
MVC framework.

Lithium

Started: 2009

License: BSD

PHP versions: 5.3+

Its logo is shown in Figure 1.7. Website: http://lithify.me

Figure 1.7 Lithium logo

A Lithium

Lithium took all the best that CakePHP had to offer and
moved it to PHP 5.3. First it was a branch of CakePHP
called Cake3, now it is a separate project run by some
former CakePHP developers. It is lightweight, fast, and
extremely flexible with extensive plug-in support. It has

53

many truly experimental and innovative functions like a
filter system and an integrated test suite.

The second search result Google showed us for “Lithium

framework™ is a page titled “CakePHP is dead...Lithium

was born.” This claim is still far from true, however, with

the advantages provided by Lithium's support for PHP 5.3,

Lithium may really endanger CakePHP in the future unless

the latter takes immediate action.

Agavi

Started: 2005

License: LGPL

PHP versions: 5.2.0+ (recommended 5.2.8+)

Its logo is shown in Figure 1.8. Website: www.agavi.org

Figure 1.8 Agavi logo

o

)

Like Symfony, Agavi is based on the Mojavi framework. It
was started in 2005, but the 1.0.0 version was worked upon
until early 2009. The source code is very polished and

54

sometimes called the best-written MVC OOP framework.
However, it has not gained much popularity, perhaps due
to scarce documentation.

It was never meant to be popular. The authors stress that
Agavi is not a website construction kit, but a serious
framework built with power and extensibility in mind. Its
target applications are long-term specialist projects that
need full control of their developers.

Kohana

Started: 2007
License: BSD

PHP versions: 5.2.3+

Its logo is shown in Figure 1.9. Website:
http://kohanaphp.com

Figure 1.9 Kohana logo

Kohana is a community-supported offshoot of Codelgniter.
In contrast with Codelgniter, Kohana is designed for PHPS
and is fully object oriented. While boasting higher
elegance of code, it still has all the qualities of
Codelgniter: It is extremely lightweight, flexible, and easy
to learn. The community behind Kohana is large and
active, so despite its young age it should be considered a
stable and reliable framework.

55

Prado

Started: 2004
License: revised BSD
PHP versions: 5.1.0+

Its logo i1s shown in Figure 1.10. Website:
www.pradosoft.com

Figure 1.10 Prado logo

Prado stands for PHP Rapid Application Development
Object-oriented. It enjoyed moderate popularity some time
ago, but now its development seems a bit sluggish.
However, it is still a mature framework well-suited for
most business applications. One of its interesting features
is that it nicely supports event-driven programming. It has
some similarities with ASP.NET.

Yii

Started: 2008

License: BSD

PHP versions: 5.1.0+

56

Its logo i1s shown in Figure 1.11. Website:
www.yiiframework.com

Figure 1.11 Yii logo

4 Yliframework

Yii was founded by a developer of Prado and it continues
many of its conventions. Yii is very fast (leading in most
benchmarks) and extensible, modular, and strictly object
oriented. It has a rich set of features and decent
documentation. It uses no special configuration or
templating language, so you don't have to learn anything
apart from object-oriented PHP to use it. Also, unlike
many other frameworks, it follows pure MVC architecture
with data being sent directly from Model to View.

Akelos

Started: 2006
License: LGPL
PHP versions: 4 or 5

Its logo is shown in Figure 1.12. Website: http://
www.akelos.org, http://github.com/bermi/akelos

Figure 1.12 Akelos 2 logo

57

) Akelos

While all PHP frameworks are more or less inspired by
Ruby on Rails, Akelos aims to be its direct port. It is
focused on internationalization (provides multilingual
models and views as well as Unicode support without
extensions) and can run on low-cost shared hostings (that's
why it has support for PHP4).

The author of Akelos announced the completely rewritten
Akelos 2. It drops support for PHP4 and uses autoloading
and lazier strategies for loading functionality. Its hallmarks
will be advanced routing methods and strong REST
orientation (REST is described in Chapter 12). It is to be
released in late 2010 and it looks very promising.

Seagull

Started: 2001

License: BSD

PHP versions: 4.3.11+

Its logo is shown in Figure 1.13. Website:
http://seagullproject.org

Figure 1.13 Seagull logo

Seagull

APPLICATION FRAMEWORK

58

Seagull is a true veteran among PHP frameworks—it was
founded in 2001. Years of development made it solid,
stable, and tested. It is no longer actively developed, so
perhaps it is not the best choice when starting a new
project, but there are still numerous successful applications
that were built with it. It has contributed greatly to the
development of all other PHP frameworks.

Qcodo

Started: 2005
License: MIT
PHP versions: 5.x

Its logo i1s shown in Figure 1.14. Website:
www.qcodo.com

Figure 1.14 Qcodo logo

@ Ccodlo

PHP DEVELOPMENT FRAMEWORK

Qcodo is an MVC framework that excels in code
generation from database design. It has a very powerful
code generator that analyzes the structure of the data
model, and creates PHP object code and also HTML pages
for database manipulation. Perhaps this is not one of the
more popular frameworks you are likely to hear about
during a casual conversation, but several top institutions
(including NASA) have applied it for their projects. Qcodo
was created by Mike Ho of Quasldea Development and is

59

now developed by an active community. It also has a
completely community-driven fork called Qcube.

Solar

Started: 2005
License: New BSD
PHP versions: 5.2+

Its logo i1s shown in Figure 1.15. Website:
http://solarphp.com

Figure 1.15 Solar Framework logo

SOLAR stands for Simple Object Library and Application
Repository. Its structure and naming conventions are
similar to those of Zend Framework. One of the biggest
differences is how you construct objects—all are created
with a unified constructor and configured with an array in
a config file. It has many helpful built-in example
applications.

PHP On Trax

Started: 2007

60

http://www.allitebooks.org

License: GPL
PHP versions: 5.x

Its logo i1s shown in Figure 1.16. Website:
www.phpontrax.com

Figure 1.16 PHP on Trax logo

As the name cleverly suggests, this framework was
designed as an exact PHP copy of Ruby on Rails. At least
it was meant to be because it still lacks many features and
it is highly unlikely that it will finally realize this goal. It is
just one of many good-looking frameworks that have
eventually failed.

Design Patterns in Web Frameworks

There are certain abstractions that can be transported
between applications in order to make the development
process faster. This section takes a closer look at these
abstractions and the way they shape the web application
frameworks.

It is not absolutely necessary to understand design patterns
in order to start working with frameworks, so if you are

61

bored, you can skip to the next chapter and come back here
later. However, design patterns are fairly fundamental to
these frameworks and application development as a whole,
so we insist that you really come back here if you decide to
skip this section now.

What Is a Design Pattern?

The definition of design pattern states that it is a general
solution to a commonly occurring problem in software
design. There is really not much more formal foundation
because design patterns are a generally practical means
that make up for a lack in formal mechanisms. Most often
they are created when programming languages do not
provide abstract mechanisms that become undeniably
useful during the development of real-world applications.

A good analogy for design patterns is the game of chess. A
novice player needs just to know the rules. It's like learning
the basic syntax of a programming language. Still,
knowing how a bishop moves doesn't make you a
successful chess player, just like knowing how to open
braces doesn't make you a PHP programmer. Skilled
players are able to predict a few moves forward and
respond with a winning scheme. That's like an experienced
programmer who can, in fact, produce working software.

As you begin to master the game of chess, you begin to see
patterns emerging. You can barely glance at the
chessboard to classify the situation into one of these
patterns and provide a proven response, both for present
and future risks. You can perceive these patterns just
intuitively, or you may try to name them. It's the same with

62

software design patterns: when you are truly proficient,
you use them all the time. There is a good chance that you
have used some of them without even knowing it.

Naming design patterns is not necessary, but is indeed
good for two things. First is an aid for thinking with
patterns, because when you name something abstract, it is
much easier to implement it in practice. Then you may
further analyze this pattern, draw diagrams of it, and take
full advantage of it. And the other thing is that you can
share your experience. Chess players love to talk about
various openings and gambits, and programmers can learn
a lot by exchanging knowledge of design patterns as well.

And even more important, if you want another
programmer to add some functionality to a fixed class and
then tell him to use the Decorator pattern, you can expect
that it will be done the way you want it rather than with a
random makeshift solution. Thus design patterns have a
great potential for preventing future problems.

Model-View-Controller as the Main Structural Design
Pattern

Web frameworks take advantage of most, if not all, design
patterns. However, MVC is the absolute structural
backbone of all frameworks. The main idea of MVC is
dividing the application into three layers:

* Model—Represents the business logic of the application. It
is more than just the raw data; the Model has to represent the
structure of data with all relationships and dependencies. It
may comprise one or more classes that correspond to logic
objects of the application and provide an interface for

63

manipulating them. The Model is the only layer that uses
persistent storage. It should completely encapsulate all
database connections. The model should also notify the
View when its internal state changes, so the View can be
refreshed.

View—The output displayed to the user. The most important
thing is that the View never modifies the application data; it
only presents it. There may be multiple Views for the same
data, such as traditional HTML, PDF, Flash, or WML for
mobile devices. They should be interchangeable without
modifying the other layers.

Controller—The part of an application responsible for
handling user interaction and taking all other actions. The
Controller should be created with simplicity in mind—it
should be the controlling part that uses methods provided by
the Model and the View; it shouldn't do everything by itself.

Figure 1.17 illustrates the relations between the three

layers.

Figure 1.17 Model-View-Controller pattern

Data Manipulation

@

(—W

MVC versus MVP

MVC is an old design pattern, dating back to the 1979
work “Applications Programming in Smalltalk-80: How to
use Model-View—Controller.” by Trygve Reenskaug.
Since that time, it was often used in non-web applications,
mostly graphical user interfaces in compiled languages like
C++ or Java. There it was easy and natural to implement
an exact MVC pattern, but for web applications, it was
somewhat modified.

Model-View-Presenter (MVP), shown in Figure 1.18, is a
derivative of MVC. It is a three-tier application structure,
where the Presenter acts as a middle layer between the
View and the Model. The Presenter differs from the
Controller in that it loads data from the Model and delivers
it to the View.

Figure 1.18 Model-View-Presenter pattern

[Data Manipulation and Delivery]

Presenter

-y

m

Y

View

Most so-called MVC frameworks follow the MVP pattern.
While it is not bad itself because MVP seems even better
suited to the task, this naming convention may be

65

somewhat confusing. As long as MVP is derived directly
from MVC, it is not a big problem, so in this book we will
follow the names conferred by the authors of the
frameworks. So we will call all frameworks
Model-View-Controller, even if the Controller does the
majority of data-transferring work.

Overview of Other Design Patterns

Design patterns can be divided into creational, behavioral,
and structural patterns. Full description of all design
patterns is well beyond the scope of this book, but you can
find it in the most influential book on this subject: Design
Patterns: Elements of Reusable Object-Oriented Software,
by Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides (the Gang Of Four). However, we want to
provide you with just a short overview of design patterns
that are commonly used in web frameworks.

Singleton

This design pattern, which is so trivial it is often called an
antipattern, is very useful. The purpose of the Singleton
pattern is to ensure that a class has only one instance and
to make this instance globally accessible. Whenever
another object needs access to the Singleton, it calls a
static, globally accessible function that returns reference to
the single instance. You can see the structure of the
Singleton in Figure 1.19.

Figure 1.19 Singleton pattern structure

66

Singleton

| Client |——

+static instance()

The trick behind Singleton is to make the instance and all
its constructors private. So there is no way to demand
creation of a singleton class instance. How is the first
and only instance created? The instance() method
checks whether this object already exists; if not, it creates
the single instance before returning it. Let's look at how
this works with the PHP code.

<?php

class CarSingleton {
private $make = ‘Dodge’;
private $model = ‘Magnum’;
private static $car = NULL;
private static $isRented = FALSE;
private function __ construct() {
}
static function rentCar() {

if (FALSE == self::$isRented) {

67

if (NULL == self::$car) {
self::$car= new CarSingleton();
}
self::$isRented = TRUE;
return self::$car;
} else {

return NULL;

}

function returnCar(CarSingleton $carReturned) {
self::$isRented = FALSE;

}

function getMake() {return $this->make;}

function getModel() {return $this->model;}

function getMakeAndModel() {return $this->getMake().” .$this->getModel();}
H
7>

code snippet /singleton/CarSingleton.class.php

The class in the preceding code is a Singleton representing
one concrete specimen of a Dodge Magnum car in a car
rental business. The construct () function is the
constructor of this class. Note that it is set to private to
prevent usage from outside of the class. The double
underscore indicates that construct () is one of the

68

magic functions in PHP (special functions provided by the
language), and declaring the constructor in a class will
override the default one.

CarSingleton does provide an interface for renting and
returning the car as well as pretty obvious getters. The
rentCar () function checks first whether the car is already
rented. This is not part of the Singleton pattern, but is
important for the logic of our example. If the car wasn't
rented, the function checks if the scar variable is NULL
before returning it. If it equals NULL, it is constructed
before the first use. Thus, rentCar () corresponds to the
instance () method of the design pattern.

The customer class in the following example represents a
person who uses the services of the car rental business. He
can rent the car (there is only one), return it, and tell the
make and model of the car, provided that he drives it at the
moment.

<?php
include_once(‘CarSingleton.class.php’);
class Customer {

private $rentedCar;

private $drivesCar = FALSE;

69

function __ construct() {
}
function rentCar() {
$this->rentedCar = CarSingleton::rentCar();
if ($this->rentedCar == NULL) {
$this->drivesCar = FALSE;
} else {

$this->drivesCar = TRUE;

}
function returnCar() {
$this->rentedCar->returnCar($this->rentedCar);
}
function getMakeAndModel() {
if (TRUE == $this->drivesCar) {
return ‘I drive ‘.$this->rentedCar->getMakeAndModel().” really fast!’;
} else {

return “I can't rent this car.”;

7>

code snippet /singleton/Customer.class.php

70

http://www.allitebooks.org

We can test these classes with the following code. It
creates two customers, who both want to rent the car at the
same time. But the second one will have to wait until the
car is returned.

<?php

include once(‘Customer.class.php’);

$Customer 1 = new Customer();

$Customer 2 = new Customer();

echo ‘Customer 1 wants to rent the car.
’;

$Customer_1->rentCar();

echo ‘Customer_1 says: ‘. $Customer_1->getMakeAndModel() . ‘
’;
echo ‘
’;

echo ‘Customer 2 wants to rent the car.
’;

$Customer 2->rentCar();

echo ‘Customer 2 says: ‘. $Customer_2->getMakeAndModel() . ‘
’;
echo ‘
’;

$Customer_1->returnCar();

echo ‘Customer 1 returned the car.
’;

echo ‘
’;

71

echo ‘Customer_2 wants to rent the car. Again.” . ‘
’;
$Customer_2->rentCar();

echo ‘Customer_2 says: ‘. $Customer 2->getMakeAndModel() . ‘
’;
echo ‘
’;

7>

code snippet /singleton/Test.php

The output of this code will look like this:

Customer_1 wants to rent the car.

Customer _1 says: I drive Dodge Magnum really fast!

Customer_2 wants to rent the car.

Customer 2 says: I can't rent this car.

Customer 1 returned the car.

Customer 2 wants to rent the car. Again.

Customer_2 says: I drive Dodge Magnum really fast!

The Singleton pattern is used often in other design patterns
such as Prototype, State, Abstract Factory, or Facade.
Apart from that, it can be used in all classes where you
need a single instance with global access, but there is no
way to assign it to another object, and perhaps you can
also benefit from initialization on the first use. Be wary,
though, because it is easy to overuse Singletons, and they

72

may be dangerous, just like global variables. Another
problem with Singletons is that they carry their state
throughout the execution of the program, which seriously
harms unit testing. Some experts even argue that Singleton
is a bad idea and it generally should be avoided.

Frameworks use Singletons for various reasons. One of
them is storing user data for security purposes. You want
to have a single instance of a user that holds authentication
data and make sure that no second instance can be created.
This approach is represented, for example, by the sfGuard
class of Symfony.

Prototype

The Prototype pattern is useful when you need the
flexibility of parameterized object creation and when you
want to avoid using the new operator. Object creation is
done here by creating a parent class with an abstract
clone () method and a few subclasses implementing
clone (). Each of these subclasses comes with one
instantiated Prototype object, which clones itself when you
call for a new instance. This results in easiness and
flexibility of object creation—you don't have to hard-wire
the concrete subclass name in your code. Instead you can
pass the name of the class as a string or reference to the
appropriate Prototype.

This pattern also greatly supports deep copying of objects.
Instead of cloning the Prototype, you can clone an existing
object, receiving an exact copy as the result. You can even
copy objects from a container with mixed objects of
various subclasses. The only requirement is that they

73

implement the clone () interface. Copying objects this
way is much faster than creating objects with new and
assigning values. A general diagram of this pattern is
shown in Figure 1.20.

Figure 1.20 Prototype pattern structure

CarDealer CarPrototype
+CarPrototype order(String model) +clone()
DodgePrototype SubaruPrototype
+clone() +clone(}

PHP has another magic function: clone () does most of
the work for you. All you have to do in the following
example is to create an abstract CarPrototype class and
subclasses for different producers. The clone()
function is declared abstract, so subclass methods are
used by default when this method is called.

<?php
abstract class CarPrototype {

protected $model;

74

protected $color;
abstract function __clone();
function getModel() {
return $this->model;
}
function getColor() {
return $this->color;
}
function setColor($colorIn) {

$this->color= $colorln;

}

class DodgeCarPrototype extends CarPrototype {
function __ construct() {
$this->model = ‘Dodge Magnum’;
}
function __ clone() {
}
H

class SubaruCarPrototype extends CarPrototype {
function __ construct() {

$this->model = ‘Subaru Outback’;

75

function __clone() {

}
b
2>

code snippet /prototype/CarPrototype.class.php

Cars are quite an accurate example here, because in real
life a prototype is created by a manufacturer and then
different models are based on this prototype and filled with
unique features. The following code tests the preceding
classes. First, it creates two Prototype objects as showcase
cars and then clones one of them to serve the customer.
Then the color can be picked by the uniform interface.

<?php

include once(‘CarPrototype.class.php’);
$dodgeProto= new DodgeCarPrototype();
$subaruProto = new SubaruCarPrototype();
echo “Which car do you want?
’;
$customerDecision = ‘Subaru’;

if($customerDecision == ‘Subaru’){

$customersCar = clone $subaruProto;

76

} else {
$customersCar = clone $dodgeProto;
H
echo $customersCar->getModel(). ‘
’;
echo “What color do you want?
’;
$customersCar->setColor(‘red’);
echo ‘Fine, we will paint your ‘.$customersCar->getModel().
¢ “.$customersCar->getColor(). .
’;
7>

code snippet /prototype/Test.php

The previous code will result in the following messages:

Which car do you want?
Subaru Outback.
What color do you want?

Fine, we will paint your Subaru Outback red.

The Prototype pattern is used commonly in different
modules of frameworks. An example can be nesting of
forms within forms in Symfony or the AppController
class of CakePHP.

Decorator
Subclassing is a great mechanism, but it has some serious

limitations. Suppose that you want to produce a car. You
put all your effort into designing a good yet affordable

77

standard model of the car. It is a complete design that
defines the look and feel of this model and it is a reference
for any possible modifications. Then you seek to provide
some optional equipment that improves the quality of the
car and adds some new functionalities. For example, it
may be all-wheel drive instead of front-wheel drive. It may
be automatic transmission instead of manual. The car may
also come in different trim levels with electric leather
seats, sunroof, better audio, or GPS satellite navigation.
However the basic interface remains the same—you can
drive this car and feel good doing it.

When you face such alternatives, the number of possible
combinations rises really fast. Figure 1.21 shows some
combinations for just three improvements, described as
inheritance hierarchy.

Figure 1.21 Nasty inheritance hierarchy

Car

+drive()

e

| 1
Car_with_AutoTransmission | | Car_with_GPS |

JAN

Car_with_Sunroof I

Car_with_AutoTrasmission_and_Sunroof |
|

| Car_with_AutoTransmission_and_Sunroof_and_GPS |

The answer to this problem is the Decorator pattern. The
Decorator 1s a class that shares the interface with the

78

decorated class (in our example, it is the basic car). It
encapsulates an instance of the decorated object and
extends its responsibilities dynamically. It is like putting a
gift into a solid box and then wrapping it with colorful
paper—it is still a gift, but durable and decorated. The
inheritance structure of the Decorator pattern is presented
in Figure 1.22.

Figure 1.22 More reasonable inheritance hierarchy with
Decorator

«interfaces
Driveable
+drive()
[|
Car CarDecorator
+drive() +drive()

2

| AutoTransmissionDecorator | |GPSDecorator| | SunroofDecorator |

You can put the decorated object into other Decorators
without limitations. This way you can add as many
optional modules as you wish. Decorators can have their
own inheritance hierarchy, and within this hierarchy they
encapsulate the core object recursively.

The code below creates a standard car class without
optional equipment.

79

<?php
class Car{
public $gearMessage = ‘Remember to shift up.’;
public $comfortMessage = ‘standard.’;
function drive() {
return ‘Accelerating © . $this->gearMessage .

¢ Driving comfort is “ . $this->comfortMessage;

}

7>
code snippet /decorator/Car.class.php

The following classes are responsible for extending the
functionality of the car. The first one, CarDecorator, is
the first level of wrapping. It stores the $car variable and
a copy of $comfortMessage. This variable will be
changed by a Decorator, so we create a copy to avoid
changing the original $car object. On the other hand,
SgearMessage 1S changed internally. The drive ()
function is also subclassed to use the proper variables
$car->model and Sthis->gearMessage because we
want to access the core object here, but

80

S$this->comfortMessage because we want to use the
amended value.

Second-level Decorators wrapping the CarbDecorator are
used to install optional components, as shown below.
AutomaticTransmissionDecorator installs the
SgearMessage directly into the core $car, but
GPSDecorator 1s installed into the carDecorator
instead. Note that all decorators share the common
interface and additionally provide specific installers.

<?php
class CarDecorator {
protected $car;
protected $gearMessage;
protected $comfortMessage ;
public function _ construct(Car $car_in) {
$this->car = $car_in;
$this->comfortMessage = $car_in->comfortMessage;
}
function drive() {

return ‘Accelerating. © . $this->car->gearMessage .

81

¢ Driving comfort is ‘ . $this->comfortMessage;

class AutomaticTransmissionDecorator extends CarDecorator {
protected $decorator;
public function __ construct(CarDecorator $decorator_in) {
$this->decorator= $decorator_in;
}
public function installAutomaticTransmission() {

$this->decorator->car->gearMessage = ‘Auto transmission shifts up.’;

}
class GPSDecorator extends CarDecorator {
protected $decorator;
public function __construct(CarDecorator $decorator_in) {

$this->decorator= $decorator_in;

}
public function installGPS(){

$this->decorator->comfortMessage= ‘very high.’;

7>

82

code snippet /decorator/CarDecorator.class.php

We can test these classes with the following code.

<?php
include once(‘Car.class.php’);
include once(‘CarDecorator.class.php’);
$car = new Car();
$decorator = new CarDecorator($car);
$transmission = new AutomaticTransmissionDecorator($decorator);
$gps = new GPSDecorator($decorator);
echo ‘Driving standard car:
’;
echo $car->drive().
’;
$transmission->installAutomatic Transmission();
$gps->installGPS();
echo ‘Driving fully decorated car:
’;
echo $decorator->drive() . ‘
’;
echo ‘Driving the car without decoration:
’;
echo $car->drive() . ‘
’;

77>

&3

code snippet /decorator/Test.php
And the result will be the following:

Driving standard car:

Accelerating. Remember to shift up. Driving comfort is standard.
Driving fully decorated car:

Accelerating. Auto transmission shifts up. Driving comfort is very high.
Driving the car without decoration:

Accelerating. Auto transmission shifts up. Driving comfort is standard.

First we call the basic car model. Next we install the
optional equipment and call the drive () function of the
CarDecorator. Finally we choose to drive the car not
using the Decorator wrapping. Note that after calling the
$Scar then, its transmission is still automatic. That's
because the Decorator changed it permanently.

Going back to frameworks, the Decorator pattern is used
among others for layouts and templates. It is very useful
for adding optional visual components or extending the
user interface when new widgets are needed. An example
may be adding scrollbars when user input exceeds the field
area.

Chain of Responsibility
The three preceding design patterns concerned object
creation and inheritance structure. Chain of Responsibility

is a pattern of another kind, because it applies to the
behavior of objects. Its main intent is to decouple the

84

sender of a request from its receiver. Let's see how it
works with an automotive example.

Imagine that there is an emergency on the road and you
need to quickly stop the car. In other words, stop is the
emitted request. In most cases, hitting the brake pedal is a
sufficient solution, but there are rare cases when you find
the brakes broken; that's when Chain of Responsibility
comes in handy. If brakes cannot handle the request, they
pass it to the handbrake. If for any reason the handbrake is
broken, too, and you are going to hit the obstacle, at least
airbags should open potentially saving your life. Airbags
are the most generic solution to most road emergencies.
They are less preferred than more specialized solutions
(braking, evading), but still better than nothing if those
maneuvers fail. It's the same with your applications—it is
better to give the request a chain of potential handlers, as
shown in Figure 1.23, instead of letting it fail without even
an error message.

Figure 1.23 Chain of Responsibility as a response to a
request

85

Request

Processing
element |

Processing E
element 1

|

Processing !
element

Processing
element

So, how do you create such Chain of Responsibility? The
main idea of this pattern is to process a request by a list of
consecutive handlers to avoid any hard-wired mappings.
The initial client holds a reference only to the first element
in the chain of handlers. Then each handler holds a
reference to the handler afterward. The last handler must
always accept the request to avoid passing it to a NULL
value.

A good class structure supporting this behavioral pattern is
shown in Figure 1.24. It consists of a parent Handler class
that calls the handie () method to delegate the request to
the next concrete handler nextHandler. This Handler
class is subclassed by concrete handlers that try to do
something with the request; if they fail, they call the
handle () method of their superclass.

Figure 1.24 Chain of Responsibility pattern structure

86

- nextHandler - Handler

| |
+handle) f----- nextHandler.handle();

HandlerOne HandlerTwo

+handle()

Chain of Responsibility is commonly used for filters. One
example of filtering is when a user request is being
processed. First it checks whether the given controller
exists or not. If it doesn't exist, a 404 error is displayed. If
it does exist, the request is passed to the controller, which
handles it further. It checks whether a user tries to access
an unsecured page; if it's true, it redirects the request to an
SSL-secured page. Then it is checked for authentication,
and so forth.

State

Sometimes you want a component to behave differently
for various possible states of the application. First, define
an abstract state class, which is a common interface for
various ConcreteStates. All states provide a handle ()
method that provides various behaviors of your
component. The context class is the core class that wraps
a ConcreteState state object. This design pattern
makes sense when context is a complete class that also
provides state-independent functionalities. Otherwise,
simple subclassing of context would be more efficient.

Context calls the state->handle() method when
processing its own requests. Context also has methods for

87

switching between States. Depending on which
ConcreteState the state variable holds, the
state->handle () method provides different behaviors.
This can be regarded as emulation of a partial type change
at runtime. You can see a diagram of this pattern in Figure
1.25.

Figure 1.25 State pattern structure

Context State
+request() +handle()
/ o
state.handl : :
E ConcreteStateA ConcreteStateB
+handle() +handle()

The State pattern, although rather simple, is very useful for
application development. One example is database
connection—the database abstraction layer may change its
behavior depending on the current connection state.
Another example can be the state of a transaction in an
online store—the application may display different pages
depending on which steps are needed to complete the
transaction.

Iterator

There are many kinds of aggregate objects and many ways
to traverse them. One simple example is an array traversed
by consecutive integers supplied to the array operator. To
print out a five-element myarray, you could use the
following:

88

for ($i=0;$i<=4;$i++) {
echo $myArray[$i];

}

However, this solution is not at all elegant. First of all, you
have to take care of i variable values. PHP is not C/C++,
so it is not catastrophic to call for myArray[100] here—it
will not return random trash from memory. However, it is
still easy to skip some values with hard-wired ranges.
Another problem is that such an approach exposes the
underlying representation of this aggregation. It makes the
traversal procedure dependent on this specific
representation and thus is not reusable. Object-oriented
programming aims to encapsulate the internal structure of
aggregate objects and provide a uniform, safe, and useful
interface like this one provided by PHP:

interface Iterator{

function current(); / Returns the value of element under current key
function key(); // Returns the current key

function next(); / Moves the internal pointer to the next element
function rewind(); // Moves the internal pointer to the first element
function valid(); // Returns true if the element under current key is valid

}

Now every class implementing this interface can use the
foreach structure. The following snippet of code
produces the same output as the previous for loop:

foreach ($myArray as $value) {

&9

echo $value;

}
The abstraction behind this mechanism is the Iterator
design pattern, pictured in Figure 1.26. The client
application has access to two abstract classes:
Collection, which is the aggregate object interface, and
TraversalAbstraction, which 1is created by a
corresponding Collection. The underlying concrete
collections can be as different as a List and a Map, yet
corresponding methods of traversal can be produced for
both of them. When client calls the next () method,
different ordering algorithms are executed for List and for
Map, but in both cases a subsequent element is found.

Figure 1.26 Iterator pattern structure

Collection

Client

+createTraversalObject() : TraversalAbstraction

\ ListCollection MapCollection

TraversalAbstraction

+createTraversalObject() |-

st +createTraversalObject()
+next()) ;
+isDone()]

v :

ListTraversal
i

In web frameworks the Iterator pattern is used mainly for
pagination. You need a uniform interface to divide web

90

content into adequate pieces, turn them into separate web
pages, and then traverse through them.

91

Chapter 2

Getting Started

If you think your users are idiots, only idiots will use it.
—Linus Torvalds

What's In This Chapter?

* Setting up the hosting environment.
* Installing and configuring frameworks.
* Creating a Hello World application.

+ Using integrated development environments (IDEs).

Before you start developing applications with the
frameworks, you need to follow a few simple steps. Web
applications cannot operate alone; they need to be placed
in a special hosting environment. This chapter will show
you how to install and configure all software required to
get your frameworks going and let you produce working
web apps.

Web applications and web frameworks are
system-independent, but must be configured properly for
the hosting environment they're in. We will show you how
to set up workspaces for Windows 7 64-bit, Ubuntu
Desktop 10.04.1 64-bit and Mac OS 10.6 Snow Leopard.
Of course, these instructions should work for most related
operating systems such as Windows Vista or other flavors
of Linux.

Requirements

92

In order to successfully build web applications with web
frameworks you need the following server software:

* An HTTP server that accepts incoming connections and
returns displayed websites

* A relational database based on SQL for persistent storage of
all kinds of data

* A PHP interpreter to turn your PHP code into system calls,
database queries, and dynamic web page content

To run the application on the client side, you just need a
web browser. Examples presented in this book were tested
on Mozilla Firefox 3.6.10 and Google Chrome 6.0.472.63
browsers, although they should work well on any modern
browser.

XAMPP

The server software requirements presented in the
preceding list are common for most web applications.
Therefore, the open source community has begun to create
packages of the best solutions to satisfy these needs.
Combining the Linux operating system, Apache web
server, MySQL database, and PHP interpreter, the popular
LAMP bundle emerged in the same way WAMP did for
Apache, MySQL and PHP for Windows, and MAMP for
Mac OS.

XAMPP stands for X = cross platform, Apache, MySQL,
PHP, and Perl. It is a wonderful server package that saves
hours (okay, maybe just minutes, but minutes are precious,
too) of work needed to install all these components
independently and make them work together. It is available
for all major operating systems. In addition to its main

93

components it also provides some other useful free
software, including the following:

* PEAR package manager—Discussed later in this chapter.

* phpMyAdmin—An immensely clever PHP application that
allows MySQL database administration from the level of
your browser. It allows modifying whole databases, tables,
and individual fields, executing raw SQL statements, and
importing and exporting data into various formats, among
other tasks. You can see the main page in Figure 2.1.

* OpenSSL—A cryptographic library implementing SSL and
TLS protocols, used for secure connections.

* SQLite—Embedded database system (also discussed later in
this chapter).

Figure 2.1 Main page of the phpMyAdmin database
management tool

phpilL) m g8 Sewer localliost

(@iDutabsses SSOL @ Suwtus (¥ Varisbles [ACharsets @iEngines g5Privileges GpProcesses fEwport Fhlmpon

Actions

MySaL localnost

After installing XAMPP, you may notice a security
warning on the phpMyAdmin main page: http://localhost/
phpmyadmin (see Figure 2.1). That's because
phpMyAdmin notices that your database's root user has
no password, which is indeed an open door for intrusion.
XAMPP is configured this way for your convenience—in

94

a development environment it's much easier to have
privileged access to the database without needing to type
in any passwords.

However, before moving to any production environment
you must make XAMPP secure. You can use the
http://localhost/security/ page to monitor your security
settings and also fix most basic security issues. Making a
web server fully secure is enough material for another
thick book, so we will not even begin to discuss it here.

XAMPP for Windows

Just go to the XAMPP website (www.apachefriends.org/
en/xampp.html), download the Windows version, and run
the installer. After the files are extracted, a command
window will open and ask you a few questions. The
default installation is advised. After the successful
installation, you should be able to run the XAMPP Control
Panel Application, as shown in Figure 2.2. Try to run
Apache and MySQL.

Figure 2.2 XAMPP Control Panel with Apache and
MySQL running

95

-
D XAMPP Control Pane| Application (=] -ﬂ-—l

D XAMPP Control Panel [Shell |
(Apache Frniends Edition)
Setup
Modules Port-Check

Svc Apache Running Stop Admin | Explore |
Svc MySgl Running | Stop Admin | SCHM

Svec FileZilla [start :w
Sve Mercury [start Help
Tomcat 3 Exit

MySQL started

If any of these modules doesn't start, first check your
firewall settings. Apache uses ports: 8o (HTTP), 81
(WebDAV), and 443 (HTTPS). MySQL uses port 3306.
For Apache and MySQL to start properly, these ports must
not be blocked by a firewall nor used by any other
program. You can use the Port-Check button in the
XAMPP Control Panel to find out if any other program
uses these ports. A common conflict-maker here is Skype.
You need to close such conflicting programs first or
change their settings not to block these ports.

On Windows Vista, a problem was reported with the User
Account Control (UAC). To deactivate it, type msconfig
in the start menu; then go to Tools and disable User Access
Control.

Another thing you need to do is set the PATH environment

variable. Right-click Computer and select Properties from
the context menu. In the window that opens, click

96

Advanced system settings to open the System Properties
dialog. Select the Advanced tab and click the Environment
Variables button. In the Environment Variables dialog you
will see a list of all environment variables. In the System
variables pane in the lower part of the dialog, find path
and edit it to add the following path:

;C: "'-.xampp "*.php;C: "*.xampp "*.mysql \bin

Note that all entries must be separated by a semicolon and

no spaces. All steps of this process are shown in Figure
2.3.

Figure 2.3 Setting the PATH environment variable

System Properties = =
() ® » Control Panel » All Control Panel ltems » System o B
i | | Computer Name | Hardware | Advanced | System Protection | Remote
Canted! Fanet Hime View basic information alf | Youmust be logged on 3¢ an Adminirator to make mast of thase changes
Pesdmant
' Device Manager Wind = =)
Environment Variables % | |usage, and vitual memary
&
W S User variables for Bartek Settings
- Edit System Variable
i\Temp
Variable name: Path \Temp
= Sattings
variabie ysue: 1 1.0C: ixampp php;C: ixampp mysaltbin;
[oo Cancel | Delets
- § information
System varisbles
Settngs
Pré Variahle Value
In NUMEER _OF P.. 4
5y os \Windows _NT Emviranment Varisbiss.
% Path C:\Windowslsystem32;C: Windo
4 PATHEXT -COM;.EXE; .BAT;.CMD;. VBS; . VB
= | cancel
omp New. Edt... Delete | —
c ¥ Change seftings
Action Center .
u -
s Update P oK Cancel
Performance Information and
Yook Workgroup: WORKGROUP

You will know that your XAMPP is working fine when
you type http://localhost in your browser and you see a
welcome screen.

97

XAMPP for Linux

Although there are also downloadable installation files of
XAMPP for Linux, most Linux users prefer to install all
components separately using package managers because it
is even faster and simpler than downloading a compressed
folder from the Internet. This will be covered in the next
few pages. It is also consistent with Linux methodology
that recommends using package managers for installation
whenever possible because it allows easy management and
automated updating of your software. As one somewhat
radical friend commented, “No true Tuxhead would ever
use that!”

XAMPP for Mac OS

Download the Mac OS package from the XAMPP website
(www.apachefriends.org/en/xampp.html). A window will
open (see Figure 2.4).

Figure 2.4 Mac OS XAMPP package

@00 | XAMPP for Mac 0S X 1.7.3 =
T=ciestes - — e
| EIE (@][] a

DEVICES

Ll MacOsX

El iDisk

B Firefox - @ o

XAMPP Mac 05 XAMPP Applications

It is a .dmg installer, so just drag and drop it into the
/Bpplications folder. You will see a progress bar like
the one shown in Figure 2.5.

Figure 2.5 Mac OS XAMPP installer progress bar

98

| T Copy ,

Preparing copy to “Applications

Preparing to copy 2,452 items.

Finally, go to /applications/xaMpp and run the
XAMPP controls. You will see a nice little Control Panel
(see Figure 2.6).

Figure 2.6 Mac OS XAMPP Control Panel

en Controls
7 Apache |T|
O MysaL
orr

Now add /aApplications/XAMPP/xamppfile/bin to
your environment variables. You can do it in a few ways,
including using the following command:

$ export PATH=${PATH}:/Applications/ XAMPP/xamppfile/bin/

Apache

Apache, the most popular HTTP web server, is used to
host the majority of websites around the world. It is an
open source project, maintained and developed by the
Apache Software Foundation.

Windows Installation

Apache is installed as a part of XAMPP, so you don't have
to install it separately.

Linux Installation

99

You can get Apache for all flavors of Linux. The following
command installs it for Ubuntu:

sudo aptitude install apache2

When you go to http://localhost/ in your browser, you
should see a welcome message from the server (see Figure
2.7).

Figure 2.7 Apache welcome message

e

It works!

This Is the default web page for this server.

The web server software Is running but no content has been added, yet.

Your installation is not done yet. You need to install the
PHPS5 engine and PHPS module for the server:

sudo aptitude install php5 libapache2-mod-php5
Then restart Apache with following command:

sudo /etc/init.d/apache?2 restart

MacOS Installation

Just as with Windows, Apache is installed with XAMPP
on Mac OS.

Database

All web applications need persistent data storage. The
most widely used mechanisms are relational database

100

management systems (RDBMSs). They are not really
perfectly matched for object-oriented web applications
(this is further discussed in Chapter 3), but they are
standard technologies used by most companies and by the
frameworks.

Now let's focus on installing a database solution.
MySQL

MySQL is one of the leading open source databases. First
it was developed by a Swedish company, MySQL AB;
then the company was bought by Sun Microsystems,
which in turn was bought by Oracle Corporation in 2010.
MySQL is equipped with innovative features such as
triggers, views, replication, and stored procedures. It is
written in C/C++, is multithreaded, and is among the
fastest RDBMSs with client-server architecture.

XAMPP includes MySQL, so you don't have to install it
anymore on Windows and Mac OS. To install MySQL and
PHPS5 support under Ubuntu, type the following into the
console:

sudo aptitude install mysql-server mysql-client php5-mysql

The package manager will ask you if you want to set up a
root password. Although such a password is strongly
recommended for production environments, it is easier to
develop our applications without this password. If you
need to set it (for example, if phpMyAdmin wants it), you
can do it any time with following command:

sudo mysqladmin -u root password NEW_PASSWORD

101

SQLite

Most databases are built on client-server architecture, in
which the database is a standalone process of the operating
system, and all applications need to establish connections
with it. SQLite is completely different. It works as a
statically or dynamically linked programming library that
is embedded into applications, allowing communication
with the database by function calls (which is much more
efficient). This approach also removes the necessities of
installation and administration. The whole database is
stored in a single file with a mechanism of locking it for
read and write operations. SQLite is light, but fast and
capable. It is generally ACID-compliant (atomicity,
consistency, isolation, durability), but the programmer
must manually impose integrity constraints on data types;
otherwise, it is possible to insert incorrect data types.
SQLite lacks some features of heavier databases, such as
views or triggers.

XAMPP also includes SQLite. To install both SQLite and
PHPS support under Ubuntu, just type the following:

sudo aptitude install sqlite php5-sqlite

phpMyAdmin—Linux

If you envy XAMPP users the phpMyAdmin application,
you can install it now with following command:

sudo aptitude install phpmyadmin

102

It will automatically configure your Apache and MySQL
database. You only need to include into /etc/apache2/
apache2.conf the following line:

Include /etc/phpmyadmin/apache.conf

You can access phpMyAdmin at http://localhost/
phpMyAdmin.

PEAR

PEAR stands for PHP Extension and Application
Repository. It is a distribution system, sometimes also
called a framework, and can be very helpful in PHP
development. PEAR provides modules of PHP code, called
packages, and a package manager for easy installation of
these. The full list of packages can be found at
http://pear.php.net/packages.php.

To install some packages, go to the command line. To call
a Windows command line with PEAR support, go to the
XAMPP Control Panel and click the Shell button. Find on
the package list at the PEAR website the name of the
package you want to install; for example, let it be a tool for
Fibonacci series computation: Math Fibonacci-0.8.
You can install it using following command:

pear install Math Fibonacci-0.8

As you can see in Figure 2.8, this package is dependent on
another package: Math Integer. You can install it
automatically with following switch:

pear install --alldeps Math_Fibonacci-0.8

103

Figure 2.8 Installing PEAR packages with XAMPP shell
for Windows

- ~\

BN Administrator: XAMPP for Windows | o oS S

-
etting environment For using XAMPP for Windows.
Harte kBPBART EK-EEE C:“\xanpp
pear install Math_Fibonacci—8.8
MARNING: channel J'pear -php.net' has updated its protocols. use “pear channel-upd
ate pear.php.net” to update
Did not download dependencies: pear/Math_Integer, use —alldeps or —onlyregdeps
to download uutumul.u.ully
pear Hath_Fibonacci requires package “pear-Hath_Integer"
Mo valid packages fnung
install Failed

H.u-t.u.kl!MHU:]t -EEE C:\xanpp
ear install —alldeps Math_Fihonacei-B.8
JRHNIN(: channel “"pear.php.net" has updated its protocols. use “pear channel-upd
ate pear.php.net” to update
downloading Hath_Fibonacci-8.8._.tg=
Btarting to download Math_Fibonacci-@.B.tga 22,101 hytes)
........ done: 22,181 bytes
dounloading Hath_ [nteger—l 8.tgz
Starting to downToad Math _Integep: B B.tgz (3.952 bytes)>
-done: 3.952 bytes
1nu:ail ok: channel://pear.php.net/Math_Integer-8.8
install ok: channel:/“pear.php.net-Math_Fibhonacci-@8.8

BartekBBARTEK-EEE C:\xampp

Now you have the package installed and you can include
its classes into your applications.

PEAR also provides an upgrade tool for easy updating of
packages. A special example is upgrading the PEAR itself
with following command, (which is a recommended
action, by the way):

pear upgrade pear

Windows
PEAR is included within the XAMPP package.
Linux

PEAR is included into some Linux distributions. If it's not,
you can easily install it with package managers:

104

apt-get install php-pear

Mac OS
PEAR is already installed within XAMPP.
Subversion (SVN)

Subversion is a revision control system founded in 2000 by
CollabNet Inc. Its popular name, SVN, is derived from its
shell command svn. It is not required for installation of
web frameworks, nor for further development with them,
so this installation is optional.

This tool is essential in most community projects, so even
if you do not use it to install the frameworks, you will
surely run across it one way or another. If you have never
used this tool, you should become familiar with it.

The features of Subversion include the following:

+ Full tracking of the past versions of the project

* Allows branching and merging of code

 Interrupted commit operations do not break the files (they
are atomic)

» Efficient storage using differences between versions
* Program messages are translated into many languages.

You can learn more about SVN and get download
instructions at http://subversion.apache.org/.

Installation Overview

At this point you have all your required software
downloaded and set up. Generally there is more than one

105

way to install the frameworks. Installation with PEAR is
generally the easiest way. You can also download sandbox
applications that need just extraction to a chosen folder.
Package managers provide a Linux way of fast managed
installation, but some distributions use very obsolete
versions (see the following table for consideration of
Ubuntu packages). Finally, there is the possibility of SVN
checkout for advanced users to get fresh, updated code.

The following table compares availability of the
installation methods.

P 1
PEAR SANDEOX ACKAGE VERSION
MANAGER CONTROL SYSTEM
SYMFONY Works Yes Obsolete SVN
CAKEPHP Mot available Yes Cbsolete SVNGIt
ZEND . . .
Works Just archive Waorks SWVN

FRAMEWORK

Ounly unotticial channel available

Installation

This section covers the installation of Symfony, CakePHP,
and Zend Framework for Windows 7 64-bit, Ubuntu
10.04.1 Desktop Edition 64-bit, and Mac OS 10.6 Snow
Leopard. Of course, this should work with little or no
modifications for other versions of these operating
systems. We assume that you have all your required
software installed and properly configured. Installation of
frameworks varies little between different operating
systems. Generally we will provide one installation guide,
and minor differences will be put into square braces: [].

Symfony

106

Although there are many ways to install Symfony, we will
show only the simplest approaches in this section. The
sandbox is a fast preview—you don't have to follow this
installation, but we believe it might be useful if you have
never installed any frameworks before. PEAR is our
default installation for Windows and for Linux as well.
Advanced developers will probably want to check out
from SVN (and they will need no guidance), but this
involves setting up an SVN environment, which is not
necessary and might be an effort for beginners. Package
managers provide (for Ubuntu) the obsolete 1.0 version, so
they will be disregarded here.

Installation instructions are for Symfony 1.4.8. By the time
you read this book, Symfony 2.0 should be available to
download with PEAR. At the time of writing, the 2.0 beta
is available for preview as a sandbox application and that's
how we installed it to describe Symfony 2.0 features.

Sandbox

Sandbox is the absolutely fastest way to start playing with
Symfony because all you need to do is download a
package from http://www.symfony-project.org/installation
and unzip the /sf sandbox folder into the web root
directory:

¢ Windows—<cC: I"-.xamppl"-.htdocs
e Linux—/var/www
e Mac OS—/Applications/XAMPP/htdocs/

Then you can type http://localhost/sf sandbox/web/ into
your browser to see your sample project.

107

Well, even if the sample project is working, it probably
lacks CSS and images. If that's the case, you will see this
message:

This project uses the symfony libraries. If you see no image
in this page, you may need to configure your web server so
that it gains access to the symfony data/web/sf] directory.

This page with no CSS is shown later in this chapter in
Figure 2.11, where it is the output of the default project
generator. When you look at the web page source, you see
that the image links point to nonexistent folders. This may
lead to lots of confusion because you might expect that a
sandbox application would really run out of the box, just
like the Symfony developers promised!

You do not really need these images because you will
shortly transform this example into your first application,
but it's educative to do it anyway. The simplest way to
enjoy these images is to add an alias to your Apache
server, redirecting the nonexistent directory to the proper
path. To do that, go to c: \xampp'apache'conf in
Windows, /etc/apache2/ in Linux, or
/Applications/XAMPP/etc/ in Mac OS and then add
the following line at the end of the httpd.conf file:

* Windows:

Alias /sf sandbox/web/sf ‘C: '*xampp"-htdocs"-sf sandbox"-llb"-vendor"-
symfony 'ﬁdata 'ﬁweb hsf?

e Linux:

Alias /sf sandbox/web/sf var/www/sf sandbox/lib/vendor/symfony/data/web/
sf

108

¢ Mac OS:

Alias /sf_sandbox/web/sf /Applications/ X AMPP/xamppfiles/lib/php/pear/data

/symfony/web/st/

Restart the Apache server. The resulting webpage will look
like Figure 2.9.

Figure 2.9 Sample Symfony project

Q / Symfony Project Created

Congratulations! You have successfully created your symfony project.

Project setup successful

you see no image in th

so that it gains access to thi

This page is part of the symfony defauls module. It will disappear as soon

as you define 3 homepage route in your routing.yml
What's next
2 Create your data model

@ Customize the layout of the generated templates

T | earn more from the online documentation

It is perfectly okay to use the sandbox version of Symfony
stored in the web root folder for learning and development
because it is a complete installation of Symfony. However,
for production environments you have to separate the
configuration files from the web presentation files for
security reasons. Otherwise, vulnerable files such as
/config/databases.yml will be accessible to the
public.

109

To uninstall the sandbox, simply delete the /sf sandbox
folder and undo the modification in httpd.conft.

PEAR

This method is also fast and simple. Just open your
command line and type (sudo for Linux) the following:

pear channel-discover pear.symfony-project.com

pear install symfony/symfony

The most up-to-date version of Symfony will be installed.
This book was written using Symfony 1.4.8, so if you want
to install this specific version, type this instead:

pear channel-discover pear.symfony-project.com

pear install symfony/symfony-1.4.8

A great advantage of this approach is that the symfony
command has been integrated with the console. You can
check it with this:

symfony

You will get a list of available tasks.
CakePHP

CakePHP installation is extremely straightforward because
in contrast with Symfony, everything works out of the box.
You just need to go to the CakePHP website
(http://cakephp.org) and download the package. Then
create in your web root directory a /cakephp folder and
unpack the package contents into it. At the time of writing

110

this book, the most recent CakePHP version was 1.3.4, and
we have used it for most code samples. If you experience
problems with a newer version, you can download 1.3.4
from the CakePHP website. When the package is
unpacked, you should see a welcome screen like that
shown in Figure 2.10 after typing http://localhost/cakephp
in your browser.

Figure 2.10 CakePHP welcome page

Release No
Read the changelog

Hotice [1024): Pleass changs the value of 'Secuzsty.salt' in spp/sonfig/cors.php ta a salt value spesific to your spplicaticn [ConE\cake\libs\debugges.sbp

Newe CakePHP 1,3 Docs
The 15 min Blog Tutorial

Linux users probably will not see a page like this because
of default Linux settings. If images are missing and you
get warnings that some files are not writeable, you need to
do a few things more. First, recursively change the web
root directory to be writeable:

$ sudo chmod -R 777 /var/'www

The second thing is to make sure that mod rewrite is
activated. To do it, invoke the following command:

$ sudo a2enmod rewrite

111

And finally edit /etc/apache2/sites-enabled/
000-default. Locate the following block:

<Directory /var/www/>
Options Indexes FollowSymLinks MultiViews
AllowOverride None
Order allow,deny
allow from all

</Directory>

Change AllowOverride None tO0 AllowOverride All.
Restart your Apache. It should now work as shown in
Figure 2.10.

Apart from this sandbox application, you can also install
development versions of CakePHP using the Git online
revision control tool, but stable versions are highly
recommended.

Zend Framework

Zend Framework has a wide choice of install options. Our
recommended approach is to use the PEAR channel. This
is an unofficial PEAR channel, yet it is regularly updated
and works just fine. However, just in case it is ever broken
or discontinued, we also present the installation from
archive. The version that was used to write this book is
1.10.8, so you may look for it if you experience
compatibility issues with the latest version.

112

You can also install Zend Framework bundled with Zend
Server Community Edition (CE), which is a nice and easy
way to start development with Zend Server. However, in
this book we will not follow this approach in favor of
approaches that are easier to compare between
frameworks.

There are also almost up to date Ubuntu packages of Zend
Framework. Perhaps there is not a regular update schedule,
but if you feel adventurous, you can try installing ZF with
package managers. Of course, SVN checkout is possible as
well.

PEAR

The PEAR channel provides the fastest and simplest
installation method. Just go to your console and type the
following:

pear channel-discover pear.zfcampus.org

pear install zfcampus/zf

Zend Framework libraries will be installed and the
command-line tool will be integrated with your shell.

Archive

First download a Full package of Zend Framework from
its website, http://framework.zend.com/download/latest.
There is also a Minimal package, but it lacks several
modules you will need later. ZF doesn't provide any
sandbox application, so installing from archive means just
extracting its contents to a directory of your choice.

113

Configuration

There are some minor tasks that need to be done before
you can create your sample projects. The solutions
presented here are absolutely the simplest methods to
make things work and sometimes are not elegant. If you
are experienced in operating systems and web
development, you can add several upgrades such as
separating your development environment from the web
root and creating a personalized /public html folder,
but it's not needed for a quick start. Also we will not
configure frameworks to connect to the databases. The
next chapter is focused on everything associated with
databases and data models, and they will be explained in
detail there.

Symfony

There is not much configuration for Symfony here. Some
configuration will be done during the Hello World
example, but there is nothing to prepare before getting to
that point. However, don't be lulled into a sense of
complacency by this fact, as you will configure many
things in Symfony later on.

CakePHP

Remember the welcome page of CakePHP (Figure 2.10) at
http://localhost/cakephp? It displayed some notices to
attract your attention, and now we will deal with them.
First, change the Security.salt and

Security.cipherSeed values in /app/config/

114

core.php, as shown in the following code. They are
needed for security purposes—you need to provide random
values generated by yourself. Security issues are further
described in Chapter 8.

/**

* A random string used in security hashing methods.

*/

Configure::write(‘Security.salt’, ‘nthG93b0qyJfIxfs3guVoUubWwvniR2G0dgaC9mi’);
/**

* A random numeric string (digits only) used to encrypt/decrypt strings.

*/

Configure::write(‘Security.cipherSeed’, ‘46859309657453543496741683645);

The two top yellow (light grey in Figure 2.10) blocks
should be gone now. While you are in the /app/config
directory, make a copy of the database.php.default
file and change the name of the copy to database.php.

When all other configuration steps are done, the last thing
is to add the cake command to the command-line
interface:

* Windows—Add to the PATH environment variable (the
process was shown during XAMPP installation) following
path:

:C:\xampp "htdocs cakephp ‘cake console

* Linux—The following command is a smart way to add the
path to the environment of the current user. The /home/
username/.profile file is modified as the result:

115

echo ‘export PATH=/var/www/cakephp/cake/console:3PATH’ >> ~_/.profile

* Mac OS—You can export the path with the following
command:

$ export PATH=${PATH}:/Applications/XAMPP/htdocs/cakephp/cake/
console

Zend Framework

Once you have your framework installed, you need to do
two things. The first one is to make sure that the ZF's
command-line tool is added into the PATH environment
variable. This tool is found here:

* Windows—/path to zf/bin/zf.bat
° Linux—/path_to_zf/bin/zf.sh
e Mac OS—/RApplications/XAMPP/xamppfiles/bin/zf

The good thing about PEAR is that this will be already
done during the installation.

The second thing is to add the Zend /1ibrary to the PHP
include path. To do it, you need to find a corresponding
line in php.ini and add the path to /path to zf/
library. This file can be found here:

¢ Windows—<cC: "-.xampp "-.php
e Linux—/etc/php5/apache2
e Mac OS—/applications/XAMPP/xamppfiles/etc

Also check register globals and magic_quotes gpc
and make sure they are both of £.

Hello World!

116

It is finally the time to create and run your first framework
application. If you have used a sandbox, most of the work
has been already done. That's why we recommend the
PEAR installs wherever possible—they are the easiest to
configure and you can still learn how to wuse the
command-line interface to create your projects.

Symfony

Go to your web root and create a new directory there, for
example /symfony. Then open the console, navigate to
this new folder, and turn it into a Symfony project:

$ symfony generate:project symfony

Inside this project, create an application. Let it be named
frontend because it will produce the output for the user:

$ symfony generate:app frontend

Still inside the main project folder, execute the following
statement to create a hello module of the frontend
application:

$ symfony generate:module frontend hello

You can now go with your browser to http://localhost/
symfony/hello and admire the web page of your default
generated project, shown in Figure 2.11. If you played
with the sandbox installation, notice that it's the same
image-less page.

Figure 2.11 Web page of the default Symfony project

117

& - C O locanost B A

Symfony Project Created
[———

Project setup successtul
This project uses the symfony Bbraries. I you sce no image i s page, you may need to coafigure your seb server so

This s 2 temporary page

This page is part of the symfony dafauls moduie. Ttwill disappear as soon as you define a hemesage fouts i your

s next

Whar

el

d templates
ation

We want to change this default view to a view of our new
module. Locate the file /symfony/apps/frontend/
config/routing.yml and change the homepage
parameter from the default module to the hel1lo module.
After editing, these lines should look as follows:

homepage:
url: /

param: { module: hello, action: index }

code snippet /symfony/apps/frontend/config/routing.yml

This code redirected the main page of this application to
our module. You can check this in your browser, but you
need to clear the cache from the command line:

symfony cc

Now when you go to http://localhost/symfony/hello, you
should see Figure 2.12.

118

Figure 2.12 Web page of the generated hello module

« c Iocalhost/cymf B B WA
I
[

Module "hello" created

Congratulations! You have successfully created a symfony module.

This is a temporary page
This page is part of the symfony d=fau1= module. It will disappear as soon as you override the 1ndex action in the new module
What's next

It is just a bit better, but you are still in the default
module. To be able to display your own module, go to
/symfony/apps/frontend/modules/hello/
actions/actions.class.php and comment out the
forwarding function, just like this:

<?php
class helloActions extends sfActions {
public function executeIndex(sfWebRequest $request) {

//$this->forward(‘default’, ‘module’);

}

code snippet /symfony/apps/frontend/modules/hello/
actions/actions.class.php

119

Now the browser will display a blank page because the
index view for the hello module is empty. To change
that, go to /symfony/apps/frontend/modules/
hello/templates/indexSuccess.php and put the
following there:

<h1>Hello World!</h1>

code snippet /symfony/apps/frontend/modules/hello/
templates/indexSuccess.php

Now check http://localhost/symfony/hello again. You
should see a big black Hello World! message, as shown in
Figure 2.13. Well done!

Figure 2.13 Hello World example in Symfony

4= C @ localhost % -Q

Hello World!

CakePHP

It's time to create the first application in CakePHP. You
will need a controller, a model, and a view. First, let's
make the controller. Create a new file in /app/
controllers and name it hello controller.php.
Names are important in CakePHP because they indicate

120

the default file for the hello controller. You need to add
into this controller the following code:

<?php
class HelloController extends AppController{
function index(){

$this->set(‘test’, “Hello World!”);

}

7>

code snippet /cakephp/app/controllers/
hello_controller.php

It is possible to create a controller that uses no model, but
we want to include a dummy model instead into our
example. When you set the suseTable property to false,
it makes a model that does not use a database. Your
database is not connected yet, so that's exactly what you
need now.

121

<?php
class Hello extends AppModel{

var $useTable = false;

}

7>

code snippet /cakephp/app/models/hello.php

Create the view that will present the data to the user. In the
controller, you have set a test variable that can be
displayed in the associated view. You need to create an
additional /hello folder inside /app/views. Note also
that this view needs a peculiar CakePHP template file
. ctp extension.

<html>

<body><h1><?php echo $test ?></h1>

<p>Congratulations! You have created your first CakePHP project.
</body>

</html>

code snippet /cakephp/app/views/hello/index.ctp

Go to the file /app/config/routes.php and comment
out the two default routing schemes. Write a rule that

122

redirects connections from the web root to the nhello
controller and sets index () as the default action.

// Router::connect(‘/’, array(‘controller’ => ‘pages’, ‘action’ =>
‘display’, ‘home”));
// Router::connect(‘/pages/*’, array(‘controller’ => ‘pages’, ‘action’ =>

‘display”));

Router::connect(‘/’, array(‘controller’ => ‘hello’, ‘action’ => ‘index’));

The result is presented in Figure 2.14. Notice that the
CakePHP default stylesheet was used.

Figure 2.14 Hello World example in CakePHP

& CakePHP: the rapid development php framework

Zend Framework

Navigate with your command line to the place where you
want to set up your Hello World application. In this case, it
will be the web root folder. Then use ZF's command-line
tool to create a project template:

$ zf create project zfhello

Now you can go to your browser and type in this link:
http://localhost/zfhello/public. You will hopefully see a

123

blue image (its grayscale version is presented in Figure
2.15).

Figure 2.15 The default web page of a new Zend
Framework project

Welcome to the Zend Framework!

This is your project's main page

The default controller and view were already created by
the zf create project command, so there is not much
work to be done. But take a look at them anyway. First the
controller:

<?php
class IndexController extends Zend Controller Action

{

public function init()

124

/* Initialize action controller here */

}

public function indexAction()

{

// action body

}

code snippet /zfhello/application/controllers/
IndexController.php

As you can see, it has only stubs of actions. You will fill
them later and write new ones as well.

Second, take a look at the view. It is located at /zfhello/
application/views/scripts/index/index.phtml.
Notice the .phtml extension. It is a pre-HTML template
that is preprocessed before being served as an HTML
page. It may also have PHP scripts embedded. You can
type a paragraph or two into it. For example, in the
following code you add a Hello World message under the
<h3> title:

<style>

125

// various style definitions
</style>
<div id="welcome”>
<h1>Welcome to the Zend Framework!</h1>
<h3>This is your project's main page</h3>
<div id="more-information”>
<p><img src="http://framework.zend.com/images
/PoweredBy ZF 4LightBG.png” /></p>
<p>
Helpful Links:

<a href="http://framework.zend.com/
”>Zend Framework Website |

<a href="http://framework.zend.com/manual/en
/”>Zend Framework Manual
</p>
</div>

</div>

code snippet /zfhello/application/views/scripts/index/
index.phtml

We couldn't leave without showing a Hello World
example, so we have edited this file a little and you can see

the effect in Figure 2.16.

Figure 2.16 Hello World example in Zend Framework

126

Welcome to the Zend Framework!

This is your project's main page

And you have just added a Hello World message into it!

That's it! You've managed to install all frameworks,
configure them, and create your sample Hello World
applications.

Structure

This section will take a look at the structure of folders and
the most important files after the default installation and
creation of a project. The default installation method is
PEAR for Symfony and Zend Framework, and the sandbox
application for CakePHP.

Symfony

Symfony framework core installation—that is, all files
installed by PEAR will be called the global files, while the
place where your application is developed with all files
generated by Symfony will be referred to as local files. In
the sandbox installation, global and local files are placed
together, so if you decided to use it, you will have to make

127

the appropriate adjustments to follow the information in
this section.

The global files are divided into two folders. The first
folder, /data/symfony, is located in the user space of
your operatmg system. Under L1nux it is in the standard
directory, C: 1xampp\php1PEAR'¥data\Symfony, but under
WlIldOWS You must look for it at c:\Users'Usernamet
pearhdata \s ymfony"-.web. This folder contains Symfony's
command-line tool and media files for web
templates—check /data/symfony/web/sf/
sf default if you want styles for your default Symfony
website. The hierarchy for this folder is the following:

/data/symfony
bin
web

The second global folder contains Symfony libraries, as
shown in the following list. If you have installed XAMPP,
it will be located at /xampp/php/PEAR/symfony. Under
Linux it will be /usr/share/php5/symfony/.

/symfony
action
addon
autoload
cache
command

config

128

controller
database
debug
escaper
event_dispatcher
exception
filter
form
generator
helper
i18n

log
mailer
plugin
plugins
request
response
routing
storage
task

test

user

util

129

validator
vendor
view
widget
yaml

The local folder is created by you in the web root or in any
other location you prefer. It consists of the following
folders:

/symfony
apps
cache
config
data
lib
log
plugins
test

web

The important thing about Symfony is that it generates
three levels of applications. The root local symfony folder
is the project folder. In /apps there may be multiple
applications. And each of these applications has a
/modules folder where you create individual modules
folders, resulting in organized, yet needlessly long, paths
to individual files.

130

CakePHP

After installation, CakePHP has the following folder
structure:

/cakephp
app
cake
vendors

plugins

.gitignore

.htaccess

index.php

README

app—The folder of your application. It contains a template
folder structure and some default files.

cake—Contains core components of CakePHP. You should
never edit it.

vendors—Placeholder for third-party libraries.
plugins—Here you can install CakePHP plug-ins.
.htaccess—Server access rule that redirects you to /app/
webroot, where the welcome message and a script verifying
your installation are located.

index.php—PHP redirection in case mod rewrite was
not enabled.

The /app folder is especially interesting and you will use

it often:

/app

131

config
controllers
libs

locale
models
plugins
tests

tmp
vendors
views
webroot
.htaccess
index.php

The names are mostly self-explanatory, but please note the
following folders:

* config—CakePHP follows a convention over configuration
approach. There are only a few necessary configuration files
and they are stored there.

* controllers, models and views—The MVC pattern in
action.

¢ plugins & vendors—There are also folders with these
names in the main /cakephp folder. These additional
folders allow better customization of multiple applications.

* tmp—Stores temporary data-like logs or session
information. It must be writeable.

132

* webroot—The document root of your application for
production environments. Contains CSS, images,
JavaScripts, and other deployable files.

Zend Framework

The full downloadable package after installation includes
these directories:

/ZendFramework-1.10.8
bin
demos
externals
extras
incubator
library
resources
src
tests
INSTALL.txt
LICENSE.txt

README.txt

Of these, the most important is the /1ibrary folder that
holds the majority of the framework itself. That's why ZF
is sometimes called “more a library than a framework.”
You can unpack this whole structure to any directory, as
long as it is a fixed place. If installed with PEAR, only
libraries and binaries are installed. The command-line

133

binaries are exported into the shell then. You will find the
libraries in the following folders:

Under Windows:

C: I"-.xamppl"-.php "PEAR"Zend
Under Linux (usually):

/ust/share/php/Zend/

And under Mac OS:
/Applications/X AMPP/xamppfiles/lib/php/pear/Zend/

When you create a project using command-line tools, it
looks like this:

/zthello
application
Bootstrap.php
configs
application.ini
controllers
ErrorController.php
IndexController.php
models
views
helpers

scripts

134

error
error.phtml
index
index.phtml
library
public
htaccess
index.php
tests
application
bootstrap.php
library
bootstrap.php

phpunit.xml

An important file here is /zfhello/application/
Bootstrap.php. It allows mapping URLs to controller
actions. It also defines which components and resources
should be initialized.

IDE Support

In this book, we will show you how to build web
applications using pure frameworks and their plug-ins with
as little third-party support software as possible. That's the
best way to understand the nature of each framework and
grasp its unique qualities. However, once you get familiar

135

with them, you might want to use an integrated
development environment (IDE) to further speed up and
organize your development process. There are a few IDE
solutions that you can integrate with your frameworks; the
most notable are NetBeans, Eclipse, and Zend Studio.

These IDE integrations are purely optional and not
required for further chapters of this book. Moreover, you
can integrate an IDE while in any part of this book, so you
can skip it now. As a rule of thumb, you should use an IDE
only if you exactly know #ow you will benefit from it.

NetBeans

NetBeans is written entirely in Java, so it is commonly
called “a Java tool.” Many developers do not know that it
is also a great IDE for PHP development. It provides
built-in support for Symfony and Zend Framework. It
offers a few development enhancements like:

* Autocompletion for both application and framework classes

* Running framework commands by keyboard shortcuts or
convenient menus with searching and documentation

» Automated creation of frontend and backend apps
* Support for YAML syntax
* Error messages printed with red font—simple yet useful

You can download NetBeans from http://netbeans.org/
downloads/index.html. Then you need to include the
framework's library in NetBeans preferences and set some
framework-specific options. If you did it well, you should
be able to create a new Framework project with the New
PHP Project wizard, as shown in Figure 2.17.

136

Figure 2.17 NetBeans New PHP Project wizard's
framework selection

Steps PHP Frameworks

v Symfony PHP Web Framework
Zend PHP Ve Framesors

Despite efforts of the community, NetBeans still doesn't
have built-in support for CakePHP. That situation is about
to change in the upcoming 7.0 version, but for now you
can, with some effort, use only some of the most basic IDE
functions. Fortunately, you can also integrate CakePHP
with Eclipse, which seems the best IDE solution for
CakePHP now.

Eclipse

Eclipse is a generic IDE, but it provides several tools for
PHP development, for instance the intuitively named PHP
Development Tools (PDT) project. You can download it
from http://www.eclipse.org/pdt/. While Eclipse has no
direct support for any of the frameworks, it can be
configured with little effort for each one to provide several
basic enhancements such as autocompletion. The preferred
solution for both Symfony and Zend Framework is

137

NetBeans, so we will show you how to integrate Eclipse
with CakePHP.

First, download both CakePHP and Eclipse with the PDT
pack. There are no installers, so just unpack them to
separate folders on your hard drive. Run eclipse.exe
from the Eclipse main folder. Set a convenient
workspace—a good 1dea is a web server's applications
folder such as c:‘xampp'htdocs. Then copy CakePHP's

/app folder into this workspace and rename it as you wish
(in this example, it is named cake example). In Eclipse's
File menu create a new PHP project and name it just like
the folder you have previously renamed. You should see
the folder name in the source list, and when you click
Finish, there will be a tree of all subfolders that were once
inside the original /app folder.

Once you have your application imported, you can make
several development upgrades; the two most important are
linking the project with the CakePHP core and the
integration of Cake's bake script with Eclipse's Run
External Tool command. The first thing can be done by
creating a separate PHP project for CakePHP and pointing
to the core files as existing sources. Then right-click the
cake example project in the source list and select
Configure Include Path. Then include the CakePHP project
as shown in Figure 2.18. Then you should have
autocompletion for all core CakePHP classes.

Figure 2.18 Including CakePHP core files into an example
application

138

2 PHP - cake_exampiefindex.php - Eclips I v i . - 0 - 3 = = }

1l
| =
3~ BrO-Qr S o] vl v o & (§PHP]

fPHREe i Tg Type B3 |[8] indexphp 22 = OlfgEo gt A

= Properties for cake example | (50
PHP Include Path o

& source| 1 Projects i Libraries | O Order
Required projects on the include path:

I CakePHP Add...

php
=, PHP Include Peth
) PHP Language Library
= CakePHP

¥ dispatcher.php
LICENSE Lt
VERSION.xt

=) PHP Include Path

=) PHP Langusge Library L'

cake_eample

The integration of Symfony and Zend Framework is
almost the same. You can also use Eclipse to provide an
IDE for other less-known frameworks.

Zend Studio

Zend Studio offers great functionalities for extending the
Zend Framework, including code generation, an integrated
debugger, and integration with Zend Server. However it is
proprietary software. In this book we focus on open source
solutions for individual developers and small companies,
so we will not use this IDE in further chapters. However,
you are encouraged to download a 30-day trial version at
http://www.zend.com/en/products/studio/. Figure 2.19
shows creating a new ZF project with Zend Studio.

Figure 2.19 Zend Studio project creation wizard

139

New Zend Framework Project

Creats 3 7ard Framework F

m

Toecl name:

Contants

.

Create new project in workspace

Create projct at existing location (from existing

Framawork Varsion

Zend Framework \

Project Layout
Zend Framework empty projgct

« Zand Framework default project structure

Full fastured Zand Framawork and Dojo pro:

Remate Sarver

Ensble Remote Synchronzation

Next >

Carcel

140

Chapter 3
Working with Databases

To forget one's purpose is the commonest form of
stupidity.

—Friedrich Nietzsche

What's In This Chapter?

e Understanding various approaches to object-relational
mapping (ORM).

+ Configuring different database engines.
* Writing schemas of object models.

* Using the command-line interface.

In order to produce your first application, you need to
know how to communicate with your database. To
communicate with it, the database must be configured
properly for use with your framework. And before the
configuration can be made, you should know how the
frameworks join with database systems and perhaps
choose your preferred object-relational mapping (ORM)
solution.

To help you with that before you move to coding the
sample app, this chapter takes a close look at the ORM
concept, which is essential for almost every PHP
framework available. The rest of the chapter covers
configuring various databases for chosen ORM solutions
and how to communicate with them efficiently. In the next
chapter, you will write an address book example in each

141

framework. The good thing is that with ORM support,
communicating with databases is really straightforward.
You no longer need to write lengthy SQL queries manually
nor join tables each time you need to call another object by
reference. So this little bit of overhead is certainly worth
the effort.

Object-Relational Mapping

ORM is one of the core concepts of PHP frameworks. It
creates an abstraction layer between relational database
management systems (RDBMSs) and object-oriented
business logic. There are specialized ORM-only
frameworks that can be used alone in any PHP code or
combined with Model-View-Controller (MVC)
frameworks. The three frameworks provide the following
ORM solutions:

* Symfony—Versions 1.x offer Propel and Doctrine as
plug-ins. Since Symfony 1.3, Doctrine has been the default
ORM plug-in. Since Symfony 2.0, support for Doctrine 2.0
only is provided. Other ORMs can also be used.

* CakePHP—Uses its own integrated ORM solution. Other
ORMs can also be used.

¢ Zend Framework (ZF)—Provides only some database
access tools, but a full ORM third-party framework can be
ecasily installed. Future versions will integrate Doctrine by
default.

Figure 3.1 shows the structure of applications built atop an
ORM tool. The application has a data model, which is used
by the ORM mapper to create corresponding tables. ORM
tools commonly use PHP Data Objects (PDOs) to execute
particular queries.

142

Figure 3.1 Structure of applications using ORM and
relational databases

Application

Model

MySQL Oracle MS SQL Server

PostgreSQL

Object-Relational Impedance Mismatch

Object-relational impedance mismatch is a term coined to
encompass several difficulties related to persistence of
object-oriented data in relational databases. These
problems are not only technical but also conceptual and
even cultural (if database administrators and software
developers are seen as two different cultures). Among the
most common problems are the following:

143

Inheritance—Relational databases do not support
inheritance. There are ways to simulate inheritance in
databases by using some special tricks in object-oriented
programming (OOP) language classes (for example, a
separate table for each subclass), but at the cost of increasing
complexity of code, adding new tables, leaving large
amounts of NULL cells or repeating source code, and greatly
raising maintenance costs.

Encapsulation—OOP emphasizes hiding objects' private
data behind interfaces provided by the objects themselves.
This notion is not known to RDBMSs, in which data is
accessible globally, protected only by mechanisms of user
roles and permissions.

References—Relational databases never use attributing by
reference (nor pointers), although it is one of the most basic
properties of OOP.

Data types—There are various differences between data
types used in RDBMSs and OOP. For example, String types
in RDBMSs have fixed maximum length, have specified
collation, and ignore trailing spaces. On the other hand, OOP
string types usually have variable, unlimited length, and do
not trim white spaces unless commanded otherwise. Also,
they are collation-free and must be provided separately for
any sorting algorithms.

Data structures—OOP uses heavily nested data structures
with object lists of previously unspecified length. RDBMSs
use a “flat” data model with relations characterized by
primary and foreign keys. The number of fields in each row
is predefined. Although some RDBMSs can dynamically add
a column when needed, it is not a trivial operation.
Constrains—RDBMSs extensively use declarative
constrains imposed on variables and tables. OOP languages
do not provide such mechanisms; the closest things are
assertions and exceptions, but they affect the application's
state after certain operations instead of being an internal part
of the data model.

Transactions—The closest counterpart of RDBMS
transactions is data access in concurrent programming. It

144

does not include all the subtleties of atomicity, consistency,
isolation and durability (ACID), and even when it does,
transaction-like behavior is ensured by the application, not
by the language. OOP languages use small, low-level
operations and do not need transactions. RDBMSs do need
them, however, to ensure transactional persistence of
objects, for example.

* Conceptual differences—Relational thinking is based on
sets, OO thinking is based on graphs, databases see data as
interface, OOPs favor interface via actions, databases are
oriented on fixed structure, OOPs are directed toward
dynamic behavior, and so on. These different approaches can
lead to fundamental misunderstandings between database
administrators and programmers.

* Responsibilities—According to the old school of computer
systems design, the database schema is carefully constructed
to reflect reality, and software is built on top of the database
to access and modify data. ORM tools allow you to create
databases that reflect only the schema of objects. This
reversal often leads to poorly designed databases.

* Maintenance—Introducing new classes of objects often
requires changes in database schema. Database
administrators who are not willing to make unnecessary
changes may block development of software attempting such
changes. And unreasonable requests by software developers
can damage the database. Even if such extremes do not
occur, the mismatch greatly increases maintenance costs.

One way to solve this impedance mismatch is to abandon
OOP completely. We bet that no developer considers this
solution when it comes to any serious web application,
unless he has really important reasons to do so.

Object-oriented database management systems
(OODBMSs) are another way to solve the problems
mentioned in the preceding list. Although OODBMSs are
still limited (mainly to some scientific projects), some of

145

the world's biggest databases are object-oriented ones.
However, the relational approach is still the prevailing
approach in commercial web applications. Its
establishment in the market is so strong that it will take
years before databases fully adapt to OOP, so we will not
concentrate on the OODBMS approach.

Object-relational databases are RDBMS bases that
support the object-oriented data model. Although they
support inheritance and by-reference behavior, they are
still inferior in terms of performance. However, they may
help to bridge the gap from the database side, whereas
ORMs bridge it from the software side.

Propel

Introduced in 2005, Propel was the first open-source ORM
solution for PHP. First it was built on top of Creole, but
since version 1.2 it has used PDOs instead. Both Creole
and PDO are database access application programming
interfaces (APIs) that provide uniform communication
with various database engines. Creole was a Propel
subproject, whereas PDO 1is an official extension of the
PHP language. That's why when PDO was introduced, it
was adopted by Propel, and Creole was no longer
developed.

Propel gained great popularity when it became part of
Symfony—first as a core component and then as default
plug-in competing with Doctrine. However, Propel's
development is less active today (its abandonment is even
being unofficially talked about).

146

Propel was inspired by and based on a Java ORM
implementation: Torque. Solutions used in both Propel and
Torque are simple and effective, resulting in great
performance, but also have some drawbacks. One
drawback is one-to-one mapping (each class is mapped to
one database table). With this approach, it is necessary to
create additional join tables and write some code to reflect
many-to-many relations in the database.

One of the requirements for ORM in Propel is to create an
XML file that describes both database schema and object
model of application as well as their connections. This file
can also be generated by Propel from an existing database.
With the XML schema, Propel can generate PHP model
classes. Propel can also generate nice visual schema
diagrams.

The wusage of Propel in source code 1is really
straightforward. All you need to do is create an object and
then use its save () method, as in the following code. The
object is now written into a database. For more complex
operations, Propel uses Criteria objects to formulate SQL
statements.

<?php
Suser = new User();

$user->setForename(‘Karol’);

147

$user->setSurname(‘Przystalski’);

Suser->save();

7>

code snippet /examples/propel.php
Doctrine

The Doctrine project was started in 2006, so it had to face
the competition of already-popular Propel. Doctrine is
based on one of the leading ORM solutions: Java
Hibernate. Doctrine's popularity is increasing rapidly and
since mid-2009 it is more frequently searched than Propel
(based on the Google Insights Web Development
category).

The programmer does not have to create and update the
database schema in an XML file because Doctrine can
generate a PHP model or a YAML Ain't Markup Language
(YAML) schema, reflecting an existing database. It is also
possible to create a YAML schema to specify the mapping
manually.

From the perspective of PHP code, the basic syntax of
Doctrine is very similar to Propel's. The configuration of a
YAML schema is preferred over XML, and it can be
written manually or generated by an ORM engine. The
basic example of Doctrine usage in PHP code, shown in
the following snippet, is the same as for Propel; however,
there are differences for more advanced features, mainly
searching.

148

<?php
$user = new User();
Suser->setForename(‘Leszek’);
$user->setSurname(‘Nowak’);
$user->save();

7>

code snippet /examples/doctrine.php

Doctrine is now a top ORM solution mainly because it
supports many-to-many relationships. Doctrine's other
exclusive features include data fixtures, migration,
behaviors, full text searching, and Doctrine Query
Language (DQL) (based on Hibernate's HQL) for a
generation of advanced SQL operations through the
Doctrine Query class. Doctrine's documentation is also
a big plus.

Even though Doctrine's performance is sometimes lower
than Propel's, it is now a superior ORM from the
programmer's perspective, because of its advanced features
like DQL language. Its development also seems faster and
better organized than Propel's, which is why we use
Doctrine as our default ORM.

CakePHP's ORM

149

CakePHP comes with a bundled ORM. Unfortunately, it
does not support inheritance, which is a big drawback
compared with other ORMs. Another weakness of this
ORM is its lack of a PDO database extension layer. This is
because of Cake's compatibility with PHP 4, which forbids
use of extensions specific to PHP 5.

Object persistence is organized by saving arrays of data.
Arrays contain pairs of field names and values. This
approach is different because it resembles preparing data
for individual tables rather than simple persistency of
objects. It may look less object-oriented, but it is useful for
web apps that get data from organized forms. The
following example demonstrates this use of arrays for data
persistence:

<?php
$this->data(array(‘forename’=>‘Bartosz’,
‘surname’=>‘Porebski’));
$this->User->save($this->data);

7>

code snippet /examples/cakeORM.php

Zend Db

150

ZF provides database access tools from the zend Db
family:

* The zend Db Adapter class is used to connect RDBMSs
with the application. There are separate adapters for different
databases both using PDO drivers and using PHP extensions
only. Note that you must have these PHP extensions enabled
in your PHP environment to use a corresponding adapter.

* MySQL: pdo mysqgl, mysqli

* Oracle: pdo oci, oci8

* IBM DB2: pdo _ibm, ibm db2

* Microsoft SQL Server: pdo_dblib
* PostgreSQL: pdo_sql

* SQLite: pdo_sql

» Firebird/Interbase: php interbase

Adapter classes are created by appending one of the
preceding names (uppercase first letter) to
zend Db Adapter. The following code is a simple
example of a MySQL database adapter using PDO:

$db = new Zend_Db_Adapter Pdo Mysql(array(
‘host” => 127.0.0.1°,
‘username’ => ‘user’,
‘password’ => ‘pass’,
‘dbname’ => ‘dbtest’

));

151

code snippet /examples/zendDB.php

* The zend Db Profiler class provides tools for profiling
SQL queries. This is useful for inspecting recent queries and
their execution time. Advanced filtering by query type and
elapsed time is also provided. Specialized profilers can be
made through inheriting zend Db Profiler by custom
classes.

e The zend Db_statement class, based on PpDOStatement
from the PDO extension, provides a convenient way to
execute SQL statements and fetch results. It allows the use
of parameterized statements, fetching single rows and
columns from a result set, and fetching a row as an object by
passing the row's values to a constructor of a specified class.

* The zend Db select class enables object-oriented
methods for creation of SQL SELECT queries. Here's an
example:

$select = $db->select()
->from(‘tablel’)
->joinUsing(‘table2’, ‘column1’)

->where(‘column2 = ?°, ‘f00’);
code snippet /examples/zendDB.php

* The zend Db Table is a family of classes for creating and
managing tables and relations. When you want to operate a
database table, all you need to do is to simply instantiate
zend Db Table (available since ZF 1.9) or extend the
Zend Db Table Abstract class. Relations may be set
between table objects based on the database schema. Other

152

classes from this family include Zend Db Row,
Zend Db Rowset, and Zend Db _Table Definition.

Generally, zend Db is more of a lightweight wrapper for
unified PDO layers rather than a full ORM solution. Even
if this set of tools can be useful and sufficient for a small to
middle-sized project, you will probably need a more
comprehensive approach for anything more serious. There
are some experimental classes aiming for true ORM, but
their development stage is still far from maturity. That's
why many developers integrate Zend with a proven
solution such as Propel or Doctrine. Doctrine is a
prevailing choice, not only because of its recent popularity
in the development community but also because of its
chances of being officially integrated into Zend. The lead
developer of a data mapper for ZF called zend Entity
announced that it will be discontinued in favor of
integrating Doctrine into future versions of ZF.

Other ORM Solutions

There are various other ORM solutions, both closed- and
open-source. Among the most advanced technologies are
Hibernate for Java, ActiveRecord (part of Ruby on Rails),
Python framework, Django, and Microsoft's .NET. ORMs
for PHP are generally younger and usually borrow the best
solutions from other languages. Propel and Doctrine are
the best and most successful examples to date. They are
now well established and popular in the PHP community,
so new ORMs must be experimental and innovative to gain
some market share. Among the most interesting are the
following:

153

* RedBean—A very experimental project with high
aspirations. It needs absolutely no configuration; it creates a
database schema by analyzing classes in PHP code instead.
It can be easily integrated into ZF and Codelgniter.

* Qcodo—A whole web application framework with an
integrated ORM, inspired by .NET. Qcodo features
object-relational model code generation as well as
generation of web pages for object management, called
Qforms. Its structure is completely object-oriented and
therefore contributes to rapid development of elegant code.

+ php-activerecord—Inspired by Ruby on Rails Active
Record architecture, it creates an object-oriented database
representation that can be used by programmers.

Database Configuration

As mentioned previously, all ORMs use PDO as a
database abstraction layer. Another solution is Creole,
which was used by Propel some time ago. An abstraction
layer is a very useful solution that makes it possible to
change a database that an application is using. Let's use a
simple example to make it clear. Let's say that you need to
develop a small application that will use MySQL. In pure
PHP, the code should look like this:

<?php

$con =

99 99 99 99

mysql_connect(“localhost”,”wroxuser”,”wroxpassword”) or die(“cannot connect”);

mysql_select_db(“wroxdb”) or die(“database doesn't exist”);

154

$query = “SELECT * FROM users; “;
while($row=mysql_fetch_array($response)) {
// do a lot of things

!
mysql_close($con);

7>

code snippet /examples/mysql.php

Suppose that you use fragments of this code in many
places in your application. This code may be very
important, providing some crucial features of your
application. Because you are almost done with your
application, the product owner says that your previously
approved requirements and specifications have changed.
You need to switch to PostgreSQL because of a very
important reason that is known only to the product owner.
So you are considering how it will be done.

A trivial solution would be to change your PHP functions
such as mysgl connect () to equivalents for PostgreSQL.
This is a very time-consuming process and is only a theory
in web application development; nobody follows this
approach. From an architect's perspective, if you know that
there is even the smallest chance that a database would be
changed, you should think about a solution that
implements a database abstraction layer idea. The idea is
that you need only to change the configuration of your
application, not its functions, because the functions are
chosen in the lower layer of your application. As an

155

example, let's look at the database-specific configuration
of your frameworks.

Open Database Connectivity (ODBC)

Open Database Connectivity (ODBC) is an API standard
that provides database management and configuration,
independent of the database engine, operating system, or
programming language. Let's think about ODBC as
another layer between an application and the database.
ODBC configuration is needed to make it possible to
connect to the MS SQL Server, but can optionally be used
for other databases as well. PHP uses the pdo odbc
extension to work with ODBC. Be sure that it is present in
the PHP /ext directory.

ODBC is a standard created by the SQL Access Group and
was developed by Microsoft for Windows, but its
implementations are available for other operating systems
such as Linux, MacOS, and OS/2. There are many
different ODBC implementations, and among the most
important open-source ones are Independent ODBC
(10DBC), which is platform independent; and unixODBC,
which is designed for all flavors of UNIX and Linux.
There is also Java Database Connectivity (JDBC), which
bridges Java-based applications to native ODBC drivers.

An important notion is a data source name (DSN)—not to
be confused with a domain name system (DNS). It is a
data structure that contains information on a data source
(in this case, a database) in order to provide the ODBC
driver all the information it needs to establish a connection

156

to this data source. It is similar in structure to a URL
address and contains the following information:

* Name of driver connecting to the database
+ Data source address

* Name of the data source

+ Username accessing the database

» Password for user validation

An example of a valid DSN for MySQL connection is the
following:

mysql://username:password@host/db_name

SQLite

SQLite is supported by all major ORMs. Thanks to
SQLite's lightweight embedded structure, generally all you
need to do is to specify the path to the file containing the
whole database. You connect to the database without a
username or login, but obviously SQLite can support all
modern security mechanisms.

Propel

Configuring Propel for use with SQLite is pretty much the
same as with Doctrine. The only difference is another
parameter in the param: section, in which you need to
specify the class that Propel will use to connect with the
database. Because Creole is universally replaced by PDO,
we assume that it is going to be used, and set the
classname: aS PropelPDO.

157

all:
propel:
class: sfPropelDatabase
param:
classname: PropelPDO

dsn: sqlite:///<?php echo dirname(_ FILE); ?>/sample.db

code snippet /sqlite/symfony/config/database.yml
Doctrine

Doctrine uses PDO as the abstraction layer to connect with
databases. All you need to do is edit the config/
databases.yml file. In the doctrine: section, you set
class: aS sfDoctrineDatabase; and in the param:
section, you should define the DSN for the database. The
dsn: should define the path to the file containing the
SQLite database, starting with sqglite:// as the resource
descriptor. We assume that it is located in the same folder
as the configuration file, the path to which is returned by
the PHP expression <?php echo dirname(FILE);
2>. If the database is in another location, the path must be
changed accordingly. The extension of the database file
can also be .sqglite. A short example is shown here:

158

all:

doctrine:

class: sfDoctrineDatabase
param:

dsn: sqlite:///<?php echo dirname(__ FILE); ?>/sample.db

code snippet /sqlite/symfony/config/database.yml
CakePHP

In CakePHP, you configure the database with the
DATABASE CONFIG class. It has a $default variable,
which is an array containing all necessary information
about the default environment. There can be several
different environments for testing, developing, or
releasing, but for now you should focus on the default one.

First, set the driver as sqlite. Note that CakePHP does
not support PDO because of its backward compatibility
with PHP 4. It is a big drawback, although you can try to
avoid all problems that may be generated by it. The line
‘persistent’ => false determines whether the
connection should be permanent or initialized in lazy
mode, which affects performance. In the following
example, you should replace <path to cakephp> with a

159

full path to your CakePHP folder (or wherever SQLite is
installed):

<?php
class DATABASE CONFIG {
var $default = array(
‘driver’ => ‘sqlite’,
‘persistent’ => false,
‘database’ => ‘<path to_cakephp>/sample.db’
)i
7>
code snippet /sqlite/cakephp/app/config/database.php
Zend Db

In ZF, you have to choose the specific driver that zend Db
will use. SQLite has only a PDO-dependent driver, but for
other databases there may also be non-PDO variants.
APPLICATION PATH is the path to the application folder.
This example is for the production environment, which we
consider to be the default:

160

[production]

resources.db.adapter = “PDO_SQLITE”

resources.db.params.dbname = APPLICATION PATH “/data/db/sample.db”

code snippet /sqlite/zf/application/configs/application.ini
PostgreSQL

PostgreSQL is also wuniversally supported by ORM
software. Like most client-server databases, PostgreSQL
requires user authentication.

Propel

The configuration file config/databases.yml is the

same as for Doctrine, but again you need to specify the
classname: parameter as PropelPDO:

all:

161

propel:
class: sfPropelDatabase
param:
classname: PropelPDO
dsn: pgsql:dbname=sample;host=localhost
username: login

password: secret

code snippet /postgres/symfony/config/database.yml
Doctrine

The DSN for a standard server database is quite different
from the database in a file. Here in the param: section,
you must specify the type of DSN resource along with the
database name and host (1ocalhost in this example). In
the following lines, username and password are used for
authentication in PostgreSQL:

all:
propel:
class: sfDoctrineDatabase
param:

dsn: pgsql:dbname=sample;host=localhost

162

username: login

password: secret

code snippet /postgres/symfony/config/database.yml
CakePHP

CakePHP's object-oriented approach boils down to an
array of values determining the database connection in the
default environment: the driver type, connection mode,
database name, host name, username, and password:

<?php
class DATABASE CONFIG {
var $default = array(

‘driver’ => ‘pgsql’,
‘persistent” => false,
‘database’ => ‘sample’,
‘host’ => ‘localhost’,
‘login’ => ‘login’,

)

‘password’ => ‘secret

7>

163

code snippet /postgres/cakephp/app/config/database.php

Zend Db

The PostgreSQL adapter with PDO support is used as a
database abstraction layer. Then you must set four fields of
connection parameters:

[production]

resources.db.adapter = “PDO_PGSQL”
resources.db.params.host = “localhost”
resources.db.params.username = “login”
resources.db.params.password = “secret”

resources.db.params.dbname = “dbname”

code snippet /postgres/zf/application/configs/
application.ini

MySQL

MySQL has two different drivers that allow connections.
The first one is mysgl, which is used by ORMs and
provides a standard API mapped by PDO. The other driver
is mysqli (“1” for “improved”), an extension that allows
several improvements for communication with newer

164

versions of MySQL (4.1.3+) from PHP 5 source code.
These improvements include object-oriented interface,
transaction support, prepared statements, or debugging
with PHP 5 exceptions.

Propel

For Propel, there is only one single difference from
PostgreSQL:

all:
propel:
class: sfPropelDatabase
param:
classname: PropelPDO
dsn: mysql:dbname=sample;host=localhost
username: login

password: secret

code snippet /mysql/symfony/config/database.yml
Doctrine

The following example is the same as for PostgreSQL,
except the DSN driver is changed from pgsql to mysql:

165

all:

propel:

class: sfDoctrineDatabase
param:
dsn: mysql:dbname=sample;host=localhost

username: login

password: ~secret
code snippet /mysql/symfony/config/database.yml
CakePHP

The same is true for CakePHP as for Propel and

Doctrine—the code is the same as for PostgreSQL, with
the driver as the only difference:

<?php

class DATABASE CONFIG {

166

var $default = array(
‘driver’ => ‘mysql’,
‘persistent” => false,
‘database’ => ‘sample’,
‘host’ => ‘localhost’,
‘login’ => ‘login’,
‘password’ => ‘secret’

)i

7>

code snippet /mysql/cakephp/app/config/database.php
Zend Db

The driver used for Zend Db is PDO_MYSQL:

[production]

resources.db.adapter = “PDO_MYSQL”
resources.db.params.host = “localhost”
resources.db.params.username = “login”

resources.db.params.password = “secret”

167

resources.db.params.dbname = “dbname”

code snippet /mysql/zf/application/configs/application.ini
Microsoft SQL Server

Microsoft SQL Server runs only on the Windows platform.
So in order to connect to this database, the best solution is
to configure it using ODBC. The following steps walk you
through the various windows that will collect the same
data as were previously written into configuration files.

1. To access the ODBC Data Source Administrator
under Windows, simply open Data Sources (ODBC) in
Control Panel. You should see the ODBC Data Source
Administrator window shown in Figure 3.2.

This screenshots in this section were
created using Windows XP SP2. This
process will work on Windows 7 and
Windows Vista as well, although the
windows will look slightly different.

Figure 3.2 The ODBC Data Source Administrator
window

168

&' 0DBC Data Source Administrator [_‘_?_J

User DSH | System DSN | File DSN | Drivess | Tracing | Connection Pooling | About |

Uszer Data Sources:

MName I Diriver I
WROXSAL SOL Serves

| Add I
il

the ndicated data provider. A User data source = only wisible to pow.

@ An ODBC User data source stores information about how to connect lo
and can only be uged on the cusrent machine,

ok | cancel | U

The User DSN and Drivers tabs are the most important
for you. The User DSN tab shows defined DSNs for
your databases, and the Drivers tab shows available
drivers. Click Add to create a new data source.

The window shown in Figure 3.3 will display with a list
of drivers for different database engines. Select SQL

Server and click Finish.

Figure 3.3 Choosing an ODBC driver

169

P

Create New Data Source

Select & drives for which you want to zet up & data source.
Name | W
Microzoft Test Driver [* tat; * cav] 4
icrozoft Test-Treiber [tat; * cov] 4
Microsoft Visual FoxPro Driver 1
Microzoft Visual FoxPro-Treiber 1
Oracle in<E 1
PostgreSOL ODBEC Drver(ANSI) g
PostgreSQL ODBC Diver(UNICODE] 8
SOL Mative Clent 21
SOL Server i
) TR 2

Bt Finish Cancel |
J J J

2. The Create a New Data Source to

SQL Server
window will appear (see Figure 3.4). Type a name and a
brief description for the data source.
drop-down list, select the server you want to connect to.

From the

Figure 3.4 Defining properties of database connection

Create a Mew Data Source to SOL Server

o

conhect to SQL Server,
‘What name do pou want to use to refer to the data sowce?

This wizard will help you create an ODBC data source that you can use to

Name: [WROXSAL

Haw do you want to describe the data source?

Description: [\wROXSOL

‘Which SOL Server do you want to connect to?

Server 1W’F|DXUSEH\SQLE><PFIESS

Finish | Neut > Cancel

Help

170

To access a SQL Server (refer to Figure 3.4), two
services must be running. The first, SQL Server
(SQLEXPRESS), is working by default, but the second,
SQL Server Browser, may be set to be activated
manually from the SQL Server Configuration Manager
(see Figure 3.5).

Figure 3.5 Configuring ODBC using Server
Configuration Manager

1% SOL Server Configuration Manager
File &ction Yiew Help

BRR ®#
7'§WSQL75ériver Ccnﬂguranl:l\aanagerf\.c-o;l)r 7I‘G-yne o o - ; Shate =
SOL Server 2005 Services -) MSQL Server (SQLEXPRESS) Runring
& 8 50L Server 2005 Mebwork Configuration ﬂaSQL Carvas Eroveser Runring
&2, 50L Nate Client Configuration

3. Next is user authentication, shown in Figure 3.6. Type
your login ID and password for the server.

Figure 3.6 User authentication with Create a New Data
Source to SQL Server

171

Create a New Data Source o SQL Server %]

How should SOL Server verily the authenticity of the login ID'?

" with Windows NT authentication using the netesark login 1D,

= Wilh SOL Server authentication using a login 1D and password
entered by the user

" pP#e Tochange the netwark library used to communicate with SOL Server,
11 ef click Client Configusation,

A
: Client Canfigurafion. .

jo Cornect to SOL Serves to obtain default settings for the
addiional configuration options.

Login ID: [kpraystalski
Passwond: I

< Back Neut > Cancel | Hep |

4. Click Next two times. Figure 3.7 lists all properties of
the created data source.

Figure 3.7 Testing ODBC Microsoft SQL Server Setup

'0DBC Microsoft SOL Server Setup 1<
& new ODBC data source will be created with the following
configuration
Microsoft SOL Server ODBC Dnver Version 03.85.1132

Data Source Name: WROXSOL

Diata Sowce Descrplion: WROXSOL
Server WROXUSERNSOLEXPRESS
Database: WROX

Languaoe: (Dafault)

Translate Charactes Data: Yes

Log Lang Running Queries: No

Log Driver Statistics: No

Usze Integrated Secunty: Yes

Uze Regonal Settings: Mo

Prepared Staterents Option: Diop temporany procedures on
disconhnect

Lise Failover Server No

Use ANSI Quoted Identifiers: Yes

Use ANSI Null, Paddings and W arnings: Yes
Data Enciyption:. Mo

| Test Data Source... I oK | Cancel [

If you see an entry like the one shown in Figure 3.8, the
new data source has been successfully added.

172

Figure 3.8 A successfully added entry

[‘ODBC Data Source Administrator EJE}

User DS | System DSN | Fie DSN | Drivers | Tracing | Connection Pacling | Abaut |

User Diata Sources:

Mame | Driver |

I

the indicated data provides. & User data source iz only wisible to pou,

@ An ODBC User data source stores information about how lo connect o
and can only be used on the curtenl machine.

Ok I Cancel Appl Help

Propel

As usual, the only difference between Propel and Doctrine
1S classname: PropelPDO:

all:
propel:
class: sfPropelDatabase
param:
classname: PropelPDO

dsn: odbc: WROXSQL

173

username: login

password: secret

code snippet /mssql/symfony/config/database.yml

Doctrine

When the data source is properly installed, configuring
Doctrine is even simpler than before. All properties of the
connection are stored in ODBC, so all you need to do is to
add your username and password. Note that the name you
have given to the ODBC data source is now the only
identifier for the ODBC driver.

all:
propel:
class: sfDoctrineDatabase
param:
dsn: odbc: WROXSQL
username: login

password: secret

code snippet /mssql/symfony/config/database.yml

CakePHP

174

Just point to ODBC as the driver. You don't need to
specify the host because that information is already stored
in ODBC.

<?php
class DATABASE CONFIG {
var $default = array(
‘driver’ => ‘odbc’,
‘persistent’ => false,
‘database’ => ‘WROXSQL’,
‘login’ => ‘login’,
‘password’ => ‘secret’
);
7>

code snippet /mssql/cakephp/app/config/database.php
Zend Db

Just point to the pPpo_opBC adapter and then specify the
login name, password, and database name.

175

[production]

resources.db.adapter = “PDO_ODBC”
resources.db.params.username = “login”
resources.db.params.password = “secret”

resources.db.params.dbname = “WROXSQL”

code snippet /mssql/zf/application/configs/application.ini
Oracle

Oracle has its own ODBC-like solution, called Oracle Call
Interface (OCI). It provides a PHP interface for database
communication. You can also connect to Oracle by
ODBC, but here you use this native driver instead.

Propel

Propel is the same as in Doctrine, except for the addition
of the c1assname parameter.

176

all:
propel:
class: sfPropelDatabase
param:
classname: PropelPDO
dsn: oci:host=localhost
username: login

password: secret

code snippet /oracle/symfony/config/database.yml
Doctrine

The IP address you have used is an equivalent for
localhost hostname.

all:
propel:
class: sfDoctrineDatabase
param:
dsn: ocihost=127.0.0.1
username: login

password: secret

177

code snippet /oracle/symfony/config/database.yml
CakePHP

For CakePHP, you don't need the database name, only the
host address.

<?php

class DATABASE CONFIG {

var $default = array(
‘driver’ => ‘oci’,
‘persistent” => false,
‘host” => “127.0.0.1°,
‘login’ => ‘login’,
‘password’ => ‘secret’

);

7>

code snippet /oracle/cakephp/app/config/database.php
Zend Db

The driver for OCI in zend Db is PDO_OCT.

178

[production]

resources.db.adapter = “PDO_OCI”
resources.db.params.host = “localhost”
resources.db.params.username = “login”

resources.db.params.password = “secret”

code snippet /oracle/zf/application/configs/application.ini
DB2

The IBM DB2 database is officially supported only by ZF
and CakePHP, which is a disadvantage of using Symfony.
DB2 can be accessed with ODBC, however, so you could
use it with Propel and Doctrine, as in the MS SQL
example, and it should work fine.

CakePHP
CakePHP provides support for DB2, so you can set a

native driver and general configuration as in all the other
cases:

179

<?php
class DATABASE CONFIG {
var $default = array(
‘driver’ => ‘db2’,
‘persistent” => false,
‘database’ => “WROX’,
‘host’ => ‘localhost’,
‘login’ => ‘login’,
‘password’ => ‘secret’
)i
7>
code snippet /db2/cakephp/app/config/database.php
Zend DB

In ZF, you can configure DB2 support by native PDO_IBM
and 1BM DB2 adapters or through the pPpo_opBC adapter
after configuring the data source. Here we demonstrate the
second approach. In this case, wrox is not the name of the
database; it's a DSN name created with ODBC config.

180

[production]

resources.db.adapter = “PDO_ODBC”
resources.db.params.host = “localhost”
resources.db.params.username = “login”
resources.db.params.password = “secret”

resources.db.params.dbname = “WROX”

code snippet /db2/zf/application/configs/application.ini
Communication with a Database

Every web framework should deliver enhancements that
are normally included as scaffolding tools. Some of these
enhancements are intended for databases and can be
divided into five classes:

* Schema—Represents the database structure

» Fixtures—Sample data that is used mostly in testing
* SQL—Language for communicating with databases
* CLI—Command-line interface tools

* Model—Database model representing your database in the
0O approach

The relationships between these enhancements are shown
in Figure 3.9.

181

Figure 3.9 Relationships between framework database

issues

Schema xml

Schema yml

Schema

Every ORM is, or should be, designed so that the database
structure is not dedicated for only one specific database
engine such as MySQL or PostgreSQL. That's why
schemas were invented. A schema describes a database
blueprint for ORMs that describes the database in ORM
known types.

Propel
A different approach to writing a schema is proposed in

Propel. Java developers probably appreciate this approach
because XML is used here. It looks like this:

182

<?xml version="1.0” encoding="UTF-8"?>
<database name="propel” defaultldMethod="native” noXsd="true” package="lib.model”>
<table name="users” phpName="Users”>
<column name="1d" type="integer” required="true” primaryKey="true”
autoIncrement="true” />

<column name="surname” type="varchar” size="255" />
<column name="forename” type="varchar” size="255" />
<column name=""created_at” type="timestamp” />

</table>

</database>

code snippet /communication/symfony/config/schema.xml

This code demonstrates Propel's advantage. At the
beginning, you declare an XML-specific header. The next
line provides the database name (in this example, it is
propel, but it could be named any other name). The
DefaultIdMethod tells you about currently used ID
incrementation methods that are specific for every
database. For example, MySQL uses auto_increment,
and PostgreSQL uses sequences. The native keyword
says that Propel should use database native methods. Set
noXsd to true if you don't want your schema to be
validated before generating the model. table has two

183

attributes: name is for the database name, and phpName is
the name that will be used in your PHP code. This is the
name that your class for that table will have. Declaring
columns is mostly obvious.

Propel 1.5 provides these types: boolean, numeric,
tinyint, smallint, integer, bigint, double,
decimal, float, real, double, char, wvarchar,
longvarchar, clob, binary, varbinary,
longvarbinary, blob, date, time, and timestamp.
Each field type also has some attributes such as size,
primaryKey, and autoIncrement. These attributes are
well known from database structure on MySQL 5. These
types have equivalents for other databases. We will
describe these types in later chapters as we will be using
them in practical solutions.

Doctrine

A schema represents a database structure, as described in
an XML or a YAML file. Let's look at an example:

Users:
actAs: { Timestampable: r. }
columns:

forename: string(30)

184

lastname: string(30)

code snippet /communication/symfony/config/doctrine/
schema.yml

This is a Doctrine schema. First, it describes that you want
a table named Users with 2 columns that are an array of 30
chars. By default, Doctrine adds an ID field that is a
primary key. The second line says what you also want to
have. Timestampable 1is an attribute that adds a
created at column. This feature is used often in all
kinds of applications because it is very practical.

A schema in Doctrine is described in the schema . ym1 file.
YAML is also used in Propel. This is a good language for
describing a schema, but it's very frustrating for beginners
because of tab characters. Tabs are not allowed in YAML
and should be replaced with spaces. This is important
because in case of an error, no proper message is shown.

Doctrine provides a lot of data types: boolean, integer,
decimal, float, timestamp, time, date, blob, clob,
string, array, object, enum, and gzip. Additionally,
integer 18 divided nto integer (1),
integer (2)...(5). This division corresponds to MySQL
tinyint, smallint, mediumint, int, and bigint types.
The same is true for blob (255), which corresponds to
MySQL tinyblob/tinytext, blob (65532) to
blob/text, and blob (16777215) to
mediumblob/mediumtext. The gzip type 1is very
interesting because it compresses a string in the database.
Each type and table has some behaviors that you can set in
your schema file: geographical, i18n, nestedset,

185

searchable, sluggable, softdelete, timstampable,
and versionable. We will use these types in later
chapters.

CakePHP

This solution is placed between ZF and Symfony in terms
of schema creation and utilization. It is far less complex
and useful than in Symfony, but also more advanced than
in ZF. You use PHP code to declare a schema. Here's an
example:

<?php
class AppSchema extends CakeSchema
{
var $name = ‘App’;
function before($event = array())
{

return true;

}

function after($event = array())

{
}

186

var Suser = array(

‘id” => array(‘type’ => ‘integer’, ‘null’ => false, ‘default’ => NULL,
‘key’ => ‘primary’),

‘forename’ => array(‘type’ => ‘string’, ‘null’ => false, ‘default’ => NULL,
‘length’ => 25),

‘surname’ => array(‘type’ => ‘string’, ‘null’ => true, ‘default’ => NULL,
‘length’ =>25),

‘created’ => array(‘type’ => ‘datetime’, ‘null” => false, ‘default’ =>
NULL),

‘indexes’ => array(‘PRIMARY’ => array(‘column’ => ‘id’, ‘unique’ => 1))

}

7>

code smnippet /communication/cakephp/app/config/schema/
schema.php

It is possible to declare only some basic types of data, such
as string, text, integer, datetime, date, and so on.
Developers are free to use the before() and after ()
methods to implement code before and after callback to the
schema. The variable $user is the name of the table that
you want to operate on.

Zend Framework
Both solutions described previously represent an approach

that depends on command-line tools. The next solution

187

shows a manual way of developing models. Zend and
CakePHP frameworks assume that models should be
written from scratch instead of being generated, as they
were in Symfony. Regardless, Doctrine and Propel can
also be installed on Zend and CakePHP instead of their
native solutions. The following example is a ZF model,
which is equivalent to the Doctrine schema you saw earlier
in this section:

<?php

class Application_Model_User

{
protected $_forename;
protected $_surname;
protected $_created,
protected $_email;

protected $_id;

public function __ construct(array $options = null) {

}

public function __set($name, $value) {

}

188

public function __get($name) {

}

public function setForename($text) {
$this-> forename = (string) $text;
return $this;

}

public function getForename() {

return $this->_forename;

}

ek
* here should be also methods for each column,
*/
public function getld() {
return $this->_id;
}
public function setld($text) {
$this->_id = (int) $id;

return $this'

}

code smippet /communication/zf/application/models/
User.php

189

Table columns are protected fields. They are available only
by using table model class methods. That's why you need
each field to declare a setter and getter method. This
pattern is commonly used. A class constructor should also
be defined as well as default getter and setter methods.

You should add a relationship between your model and
DbTable by creating a file in your models directory (in the
DbTable directory). This file should be called as your
database table. In this example, it will be User.php, and it
should look like this:

<?php
class Application_Model DbTable User extends Zend Db Table Abstract {

protected $§ name = ‘User’;

}

code smippet /communication/zf/application/models/
DbTable/User.php

You have just one important line that describes your
database table. This can be done quickly by using ZF's
command-line tools. We will describe these tools later in
this chapter.

The primary functionality of ORM is to map relationships
between tables and deliver them as objects that are easier

190

to use for developers. To make this mapping possible, you
need to write this mapper class manually in Zend. This can
be a boring process if you do it for a lot of tables.
Unfortunately, ZF's command-line tools provide only some
basic facilities. The following code is an example of User
table mapping.

<?php

class Application Model UserMapper {

protected $ dbTable;

public function setDbTable($dbTable) {
if (is_string($dbTable)) {
$dbTable = new $dbTable();
H
if (!$dbTable instanceof Zend Db _Table Abstract) {
throw new Exception(‘Invalid table data gateway provided’);
b
$this-> dbTable = $dbTable;

return $this;

191

public function getDbTable() {
if (null === $this->_dbTable) {
$this->setDbTable(‘Application_ Model DbTable User’);

}

return $this->_dbTable;

public function save(Application Model User $user) {
$data = array(
‘forename’ => $user->getForename(),
‘surname’ => $user->getSurname(),
‘email’ => Suser->getEmail(),

‘created’ => date(‘Y-m-d H:i:s’),

if (null === ($id = $user->getld())) {
unset($data[‘id’]);
$this->getDbTable()->insert($data);
} else {

$this->getDbTable()->update($data, array(‘id = ?” => $id));

192

public function find(8$id, Application_Model User Suser) {
$result = $this->getDbTable()->find($id);
if (0 == count($result)) {
return;

}

$row = $result->current();

$user->setld($row->id)
->setForename($row->forename)
->setSurname($row->surname)
->setEmail($row->email)

->setCreated($row->created);

public function fetchAll() {
$resultSet = $this->getDbTable()->fetchAll();
$entries = array();
foreach ($resultSet as $row) {
$entry = new Application Model User();
$entry->setld($row->id)
->setForename($row->forename)
->setSurname($row->surname)

->setEmail($row->email)

193

->setCreated($row->created);
$entries[] = $entry;

}

return $entries;

}

code smippet /communication/zf/application/models/
UserMapper.php

The setDbTable () and getDbTable () methods make
clear which model is currently being used. The next three
methods are just simple methods for manipulating with
database data. The save (), find(), and fetchAll ()
methods are using some methods that you have previously
defined in your model.

The last thing we'll discuss related to ZF's schema is how
the database is built. Unfortunately, ZF prefers a database
schema in the form of a SQL query. This pattern is not
really useful because it makes your application
database-dependent. For MySQL 5 it looks like the
following:

CREATE TABLE users (

id INTEGER NOT NULL PRIMARY KEY AUTO_INCREMENT,

194

forename VARCHAR(25) NULL,
surname VARCHAR(25) NULL,
email VARCHAR(32) NOT NULL,
created DATETIME NOT NULL

)i

code snippet /communication/zf/library/sql/User.sql
Fixtures

Fixtures in computer science are sample data pieces that
can often be used for testing purposes. They can also be
useful when you want to show some sample data in your
application (for example, to show added products in an
e-commerce website). Each framework takes a different
approach to this problem, just like ORMs.

Symfony
Symfony prefers YAML in schemas. That's why Symfony
fixtures are more legible and more independent from

currently used databases. An exemplary fixture for a user
table looks like the following:

User:

kprzystalski:

195

forename: Karol
surname: Przystalski

email: karol.przystalski@wrox.com

code snippet /communication/symfony/data/fixtures/
fixtures.yml

CakePHP

Compared with Zend and Symfony, CakePHP prefers
more coding than configuring. Looked at as an advantage,
it's a very good practice when a developer can't work with
the command line—for example, when using file transfer
protocol (FTP) and Secure Shell (SSH) is not allowed. In
other cases it results in more code than in Symfony though.
Another advantage of this approach is its friendly OO
approach.

<?php
class UserTestFixture extends CakeTestFixture {

var $name = ‘UserTest’;

var $fields = array(
‘id’ => array(‘type’ => ‘integer’, ‘key’ => ‘primary’),

‘forename’ => array(‘type’ => ‘string’, ‘length’ => 25, ‘null’ => false),

196

‘surname’ => array(‘type’ => ‘string’, ‘length’ => 25, ‘null’ => false),
‘email’ => array(‘type’ => ‘string’, ‘length’ => 25, ‘null” => false),

‘created’ => ‘datetime’);

var $records = array(
array (
‘ad’ =>1,
‘forename’ => ‘Karol’,
‘surname’ => ‘Przystalski’,
‘email’ => ‘karol.przystalski@wrox.com’,
‘created’ => ‘2010-10-01 10:39:23%));

}

7>

code smippet /communication/cakephp/app/tests/fixtures/
user_test fixture.php

Zend Framework

Zend prefers pure SQL files. This is not an approach that
we recommend for these fixtures because this solution
depends on specific database behavior (for example,
differences between the enum type in MySQL and
PostgreSQL). This simple example works fine on MySQL
and PostgreSQL:

197

INSERT INTO users (forename,surname, email, created) VALUES
(‘Karol’, ‘Przystalski’, ‘karol.przystalski@wrox.com’,

DATETIME(‘NOW"));

INSERT INTO users (forename,surname, email, created) VALUES
(‘Bartosz’, ‘Porebski’, ‘bartosz.porebski@wrox.com’,

DATETIME(,NOW?));

INSERT INTO users (forename,surname, email, created) VALUES
(‘Leszek’, ‘Nowak’,‘leszek.nowak@wrox.com’,

DATETIME(,NOW?));

code snippet /communication/zf/library/sql/User.sql

There are two ways to load fixtures in Zend: copy and
paste the SQL code or use the console.

$ mysql -u user -p < data.mysql.sql

A completely different approach is to write a script, as
shown in the following code:

198

// Initialize the application path and autoloading
defined(‘APPLICATION_PATH’)

|| define(‘APPLICATION_ PATH?’, realpath(dirname(_ FILE). ‘/../
application’));

set_include path(implode(PATH_SEPARATOR, array(
APPLICATION_PATH . */../library’,

get_include path(),

N

require_once ‘Zend/Loader/Autoloader.php’;

Zend Loader Autoloader::getInstance();

$getopt = new Zend_Console_Getopt(array(
‘withdatajw’ => ‘Load database with sample data’,
‘envije-s’ => ‘Application environment for which to create database (defaults
to development)',

‘helplh” => ‘Help -- usage message’,));

try {

$getopt->parse();

199

} catch (Zend_Console_Getopt Exception $e) {
// Bad options passed: report usage
echo $e->getUsageMessage();

return false;

if ($getopt->getOption(‘h’)) {
echo $getopt->getUsageMessage();

return true;

$withData = $getopt->getOption(‘w’);
Senv = $getopt->getOption(‘e’);
defined(‘APPLICATION_ENV’)

|| define(‘APPLICATION_ENV’, (null === $env) ? ‘development’ : $env);

$application = new Zend_Application(
APPLICATION_ENV,

APPLICATION_PATH . ‘/configs/application.ini’

// Initialize and retrieve DB resource

$bootstrap = $application->getBootstrap();

200

$bootstrap->bootstrap(‘db’);

$dbAdapter = $bootstrap->getResource(‘db’);

if (‘testing’ != APPLICATION_ENV) {
echo ‘Writing Database Guestbook in (control-c to cancel): . PHP_EOL;

for ($x = 5; $x > 0; $x--) {

echo $x . “\r”; sleep(1);

$options = $bootstrap->getOption(‘resources’);
$dbFile = $options[‘db’][‘params’][‘dbname’];
if (file_exists($dbFile)) {

unlink($dbFile);

try {

$schemaSql = file_get contents(dirname(_FILE). ¢/
schema.sqlite.sql’); //

important line
$dbAdapter->getConnection()->exec($schemaSql);

chmod(8$dbFile, 0666);

201

if (‘testing’ 1= APPLICATION_ENV) {
echo PHP_EOL;
echo ‘Database Created’;

echo PHP_EOL;

if ($withData) {
$dataSql = file_get contents(dirname(_ FILE). ‘/data.sqlite.sql’); //
important line
// use the connection directly to load sql in batches
$dbAdapter->getConnection()->exec($dataSql);
if (‘testing’ 1= APPLICATION_ENV) {
echo ‘Data Loaded.’;

echo PHP_EOL;

} catch (Exception $e) {
echo ‘AN ERROR HAS OCCURED:’ . PHP_EOL;
echo $e->getMessage() . PHP_EOL,;

return false;

202

return true;

code snippet /communication/zf/library/scripts/
load.sqlite.php

This code is described on the ZF web page. To be honest,
we don't know why this code is not included out of the
box. There are two very important lines in which you
should set your database schema and data files:

$schemaSql = file_get_contents(dirname(_ FILE). ‘/schema.sqlite.sql’);

$dataSql = file_get contents(dirname(_ FILE). ‘/data.sqlite.sql’);

To run this script to load your fixtures into a database, run
it with the --withdata parameter.

$ php scripts/load.sqlite.php --withdata

Command-line Interface

CLI tools are very useful because they generate code
automatically and save a lot of time, so an application can
be developed significantly faster. It's important when time
is money.

Symfony—Propel

Propel, just like Doctrine, provides a strong CLI. As
mentioned earlier, your schema can be written in two file
types: YAML and XML. That's why there are two special
commands available to convert both schemas
(schema-to-xml and schema-to-yml).

203

The following are the CLI commands provided by Propel:

propel
:build
:build-all
:build-all-load
:build-filters
:build-forms
:build-model
:build-schema
:build-sql
:data-dump
:data-load
:graphviz
:insert-sql
:schema-to-xml

:schema-to-yml

Another new command is build-al1l, which is equivalent
to the build --al11l command in Doctrine. This task also
has an extension that loads defined fixture data:
build-all-load. Build-schema 1S a command we did
not describe in the Doctrine discussion, but it's available
there as well. With this task, you can build a schema from
an existing database. This is very useful when you switch
from a legacy application that was written in a different
framework, language, and so on.

204

Another great feature that Propel offers is the ability to
generate graphs from a model. Just create a schema, build
a model, and then table relationships can be built. To do
this, you should use the graphviz command, which will
generate a .dot file in the /graph directory. To convert
.dot to .png, you can use the graphviz tool, which is
available for free from www.graphviz.org. Use the
following command to convert it to PNG:

$ cd graph/
$ dot -Tpng -oGraph.png propel.schema.dot

For a simple schema with two tables and a simple
relationship, you should see a picture similar to Figure
3.10.

Figure 3.10 Schema visualized with the graphviz tool

user

id (INTEGER) [PK]
surname (VARCHAR)
forname (WVARCHAR)
group_id (INTEGER) [FK]
created_at (TIMESTAMP)

group_id=id

Y
group

id (INTEGER) [PK]
name (VARCHAR)

Symfony—Doctrine

The following are the CLI commands provided by
Doctrine:

doctrine

205

:build

:build-db
:build-filters
:build-forms
:build-model
:build-schema
:build-sql
:clean-model-files
:create-model-tables
:data-dump
:data-load
:delete-model-files
:dql

:drop-db
:insert-sql

As mentioned before, Doctrine's architecture is inspired by
Hibernate. Hibernate uses Hibernate Query Language
(HQL) and so Doctrine uses very similar Doctrine Query
Language (DQL), a specific language used only by
Doctrine. It can be executed directly from the command
line:

$ symfony doctrine:dgl “FROM User”

This command returns a list of users added previously. Use
this query only if you have few users in the database,

206

otherwise you will get your console flooded. Thanks to
DQL, developers can work with databases without
knowing details. In complicated projects, it's likely that
using specific database tools and features will be
necessary.

The most important Doctrine console command is build.
This is an all-in-one command, a compilation of all other
tasks that begin with build and will probably be the
command you use most if Doctrine is the right ORM for
you.

The following command builds a model from your
schema; a database is based on that model:

$ symfony doctrine:build --all

Forms, filters, and SQL files are also generated by this
command. (We will discuss more about forms and filters
in later chapters.) Forms, filters, and models are stored in
the /1ib directory; SQL is stored in the /data directory.

While developing an application, your tables can change;
some may need to be deleted; others have to be added. If
you remove tables from your schema, to keep your code
clean you can use the clean-model-files command to
delete no-longer-used models. To delete all model files,
use delete-model-files; to delete a database, use
drop-db. The last “cleaning” command is
create-model-table, which deletes existing tables and
creates a new one for your model. Doctrine also provides a
command for executing a SQL query (insert-sql) that is
used with the build or build-sql command. You can

207

also add some specific SQL queries by editing the .sql
file in /data/sqgl/schema.sql.

The last tasks that we want to show are designed to operate
on fixtures. data-load loads your fixture YAML files
into a database. You can also do it in another way
(data-dump), exporting data from a database to a YAML
fixture.

CakePHP

Cake gives developers two main branches of basic but
necessary command-line tools: bake and schema.

cake bake
cake schema
schema view
schema generate
schema dump <filename>
schema run create <schema> <table>

schema run update <schema> <table>

The first branch, bake, provides some basic options such
as creating a model, controller, view, project, or other
database configuration-related tasks. They are asked as
questions after executing bake, so there are no specific
options for this command.

From the command line, type d for database configuration,

and Cake will ask a series of questions about database
details, as shown in the following code:

208

Name:

[default] >

Driver: (db2/firebird/mssql/mysql/mysqli/odbc/oracle/postgres/sqlite/sybase)
[mysql] >

Persistent Connection? (y/n)
[n] >

Database Host:

[localhost] >

Port?

[n] >

User:

[root] >

Password:

>

Database Name:

[cake] >

Table Prefix?

[n] >

Table encoding?

[n] >

Next you are asked to confirm all database information. If
confirmed, Cake will save it into database.php. If not
confirmed, you will be asked again or default values will

209

be assumed. You can then connect to the database. You
need to make sure that all environments (development,
testing, production) have been configured, not just the
default one. To configure other environments, just change
the proposed [default] to another one.

As mentioned earlier, Cake provides some tools for
working with a schema. The simplest one is view, which
just prints your schema.php file. You can manipulate a
schema in two ways. generate option allows you to build
a schema file from a database. It's useful if you have
designed the database manually. A different approach is
available with the run option. Both create and update
parameters can create new tables, if they are not present,
otherwise they will just update tables already existing in
the database. With the -s parameter of the run command,
you can make snapshots of schema changes. This is useful
if you want to do a dry run of a new schema (the -dry
parameter should be used). An example of using -dry to
simulate creating users table from users schema looks
as follows:

$ cake schema run create users users -dry

The last option is dump, which generates a .sql file. It
contains all queries needed to build the database structure.
Like all files related to a schema, .sql files are stored in
the /app/config/sql directory.

Zend Framework

Each framework has its CLI tools that offer some
scaffolding enhancements. Although you can work without

210

these tools, they let you save a lot of time. There are many
kinds of enhancements, but we want to show here only
those that are applicable to databases. ZF offers two simple
commands, shown in the following snippet:

$ zf configure db-adapter dsn section-name[=production]

$ zf create db-table name actual-table-name module force-overwrite

The first command adds db-adapter configuration in
application.ini. This can be done very quickly (also
manually). Here's an example of how it should be used:

$ zf configure db-adapter “adapter=PDO_MY SQL&dbname=WROX&username=wroxuser&passw
=secret&hostname=127.0.0.1” -s production

The above command will add the line below into

application.ini.

[production]

resources.db.adapter = “PDO_MYSQL”
resources.db.params.dbname = “WROX”
resources.db.params.username = “wroxuser”

resources.db.params.password = “secret”

211

resources.db.params.hostname = “127.0.0.1”

code snippet /communication/zf/application/configs/
application.ini

Database settings should be made separately for each of
the three environments: production, testing, and
development. In most cases, different databases are used
for each environment.

The following command generates db-table files, which
can be done in two different ways. The simplest method is
to generate a DbTable file for a given model and database
table:

$ zf create db-table users Users

The second method is to generate these files from database
tables (the database should be configured before running
this method):

$ zf create db-table.from-database

Both methods prepare only basic files without any
methods for manipulating data. This is a disadvantage, but
gives developers flexibility while developing applications,
especially complex ones.

212

Chapter 4

Your First Application in the Three Frameworks
—Your mother ate my dog!

—Not all of it.

—Braindead

What's In This Chapter?

+ Designing an address book application.

* Implementing in Symfony, CakePHP, and Zend Framework.

This chapter will take you through the process of designing
and developing your first application: an online address
book. This application will be built on top of a simple
database, used for storing information about your contacts.
Each entry consists of a few fields (first name, last name,
address, phone number, e-mail address), and the basic
functionality is to perform all create, read, update, and
delete (CRUD) operations for each database entry.

Because this is your first step of developing applications
using frameworks, we want it to be as simple as possible,
introducing you to benefits offered by presented
frameworks. This chapter should show how with little or
no effort, you can achieve great results, all thanks to the
frameworks' basic functionality.

Design

213

At this point we assume that you have done the all steps
from the previous chapters and you have your frameworks
up and running. Before you can continue, you need to
make sure that your server is running (Apache, for
example), a database connection is configured, and a
framework is installed and configured accordingly.

Project Requirements

When working on a project, it is good to have some
expectations defined before any coding is done. A properly
planned project greatly enhances workflow and helps you
avoid unnecessary development issues.

In this project you will be using MySQL as the default
database. So, we will specify requirements for the database
that will be needed to build the address book application.

For storing typical address data such as first name, last
name, address, e-mail address, and telephone number, one
table is required. At this point, we assume that every
contact in your address book has only one phone number
and only one e-mail address.

In addition to the fields already mentioned, the project

table will contain a few other fields that will be used for
additional functionality:

214

Later in this book we will explain how to
work with multiple tables containing
related data and handle them with one
controller.

* ID—A unique integer value that identifies every address in
your address book

¢ created/modified—Fields that introduce additional

functionality and will be used in the future to present
autocompletion functions of the frameworks

The structure we suggest for the addresses table is shown
in Figure 4.1.

Figure 4.1 Database design for the address book table

addresses |
¥ id: INTEGER{11) |
@ first_name: VARCHAR(2S) |
RCHAR (25)

@ email: VARCHAR(2S)

@ phone: INTEGER(11)

o address: TEXT

¢ created: DATETIME

¢ modified: DATETIME

@ last_nama:

You need to make sure that this table is created before you
can proceed. To do this you can use various methods. For
example, you can use phpMyAdmin to do it manually, use
the SQL query (introduced later in this chapter), or (for
Symfony and CakePHP) generate the required table using
command-line tools. Before that you should define it in
schema. ymllli.s chema.xml (Symfony) Or schema.php

(CakePHP). How to work with schemas was explained in
Chapter 3.

215

The suggested encoding for the database is UTF-8 because
it supports various localizations and special characters. To
use that encoding in Doctrine, you should invoke the
following methods to
ProjectConfiguration.class.php In the /config
directory:

<?php
public function configureDoctrine(Doctrine Manager $manager) {
$manager->setCollate(‘utf8 unicode ci’);
$manager->setCharset(‘utf8’);
}
code snippet /symfony/config/
ProjectConfiguration.class.php

Propel has two files that you need to change. They should
be modified in the same way, which is why it can
sometimes be confusing. First you should set UTF-8
encoding in database.yml:

all:
propel:
class: sfPropelDatabase

param:

216

encoding: utf8

Next, edit the propel.ini config file and set it as “ut£8”
(it should be set as the default):

propel.database.encoding = utf8

CakePHP allows you to change that option in the database
configuration:

var $default = array(‘encoding’ => ‘utf8’);

In Zend Framework (ZF), you use a pure SQL query
because you have no schema.

CREATE TABLE IF NOT EXISTS ‘addresses’ (
‘id’ int(11) unsigned NOT NULL AUTO_INCREMENT,
“first name’ varchar(25) NOT NULL,
‘last name’ varchar(25) DEFAULT NULL,
‘email’ varchar(25) DEFAULT NULL,
‘phone’ int(11) DEFAULT NULL,
‘address’ text,
‘created’ datetime NOT NULL,
‘modified’ datetime NOT NULL,
PRIMARY KEY (‘id’)

) ENGINE=MyISAM DEFAULT CHARSET=utf8 COLLATE=utf8_unicode_ci;

There is another important issue that should be handled for
each framework. You should create not only individual
tables, but also your whole database with the default

217

encoding set as UTF-8. For example, here's how to do this
in MySQL (and PostgreSQL as well):

CREATE DATABASE foo_bar_db CHARACTER SET utf8 COLLATE utf8 unicode_ci;

CREATE DATABASE foo_bar_db WITH ENCODING ‘UTF§’

There are equivalent queries for other database servers.
Symfony

So far we have briefly discussed the first application that
you are going to develop and you know what
functionalities it is going to provide. Now it is time to see
the frameworks in action.

Project

In previous chapters, you configured the Symfony
installation; now you can use console commands to
automatically generate various parts of the application.
You can now create a new project using the
generate:project command. To do so, you need to
create a new folder in your /htdocs directory, where your
project will be stored. In this case, let it be named
/htdocs/symfony. In this location, a new project called
addressBook will be installed.

$ cd htdocs/symfony
$ symfony generate:project addressBook

With the new project created, it is possible to add a new
application to it by typing the symfony generate:app
command at the command line. When you do so, the

218

application files will be created in the directory you
specify. The following command creates the /htdocs/
symfony/apps/frontend directory:

$ symfony generate:app frontend

In previous chapters we showed you how to configure
proper aliases and directories with Apache and LightPad.
If everything is set properly, you should be able to see
your project start page at http:/localhost/
frontend_dev.php.

Model

Now you can use Doctrine to generate the model, SQL,
modules, and database tables for the project. To do this,
you need to edit the schema.yml file located in
/symfony/config/doctrine/, as shown in following
code.

Addresses:
actAs:
Timestampable:
created:

name: created

219

type: timestamp
format: Y-m-d H:i:s
notnull: false
updated:
name: updated
type: timestamp
format: Y-m-d H:i:s
notnull: false
columns:
first name: { type:string(40), notnull: false }
last_name: { type:string(40), notnull: false }
email: { type:string(40), notnull: false }
phone: { type:integer(40), notnull: false }
description: { type:object, notnull: false }
options:
type: MYISAM

collate: utf8_general ci

code snippet /symfony/config/doctrine/schema.yml

While editing schema.yml it is very important not to use
any tabulation because that may prevent proper execution
of the file. The schema in Listing 4-1 was also discussed in
Chapter 3, but the last three lines are new. This is another
solution for setting proper encoding; in this case you set it
directly in the schema instead of in the database

220

configuration. All three solutions—Symfony, CakePHP,
and ZF—can be set at the same time.

The next step is to use the command line to call
doctrine:build --all command. This will create
tables in the project database according to the
schema.yml file.

$ symfony doctrine:build --all

Controller

There are two main ways to create a controller. The first
one uses project branch tasks, and the second one uses
object-relational mapping (ORM)-based tasks. The project
method generates only a template of the controller and a
simple view. The ORM method generates more functional
controllers with a lot of ready-to-use code. Here, we
present one kind of these ORM-generated controllers. The
command that you need to type 1s
doctrine:generate-module, which will generate all
the CRUD files. The parameters that need to be passed to
this command are the application name, the generated
module name, and the database table that CRUD
operations are created for.

$ symfony doctrine:generate-module frontend addressBook Addresses

The project files generated by Doctrine are located in
/symfony/apps/frontend/modules:

/modules

/addressbook

221

/actions
actions.class.php

/templates
_form.php
editSuccess.php
indexSuccess.php

newSuccess.php

First, look into one of the generated files:
actions.class.php. Doctrine generates a controller
class that contains all methods needed to provide CRUD
functionality, and also provides form validation. Forms are
generated at the same time when building models, during
the execution of these tasks: build, build-all, or

build-forms.

<?php

class addressbookActions extends sfActions {
public function executeIndex(sfWebRequest $request) { }
public function executeNew(sfWebRequest Srequest) { }
public function executeCreate(sfWebRequest $request) { }
public function executeEdit(sfWebRequest $request) { }
public function executeUpdate(sfWebRequest $request) { }
public function executeDelete(sfWebRequest $request) { }

protected function processForm(sfWebRequest $request, sfForm $form) { }

222

}
Address List

The executeIndex () method lists all available items
from a database table (in this case, only the User table). To
get all available entries from the User table, you should use
Doctrine's getTable () method. Next you need to execute
a query on the selected table. Parameter a is passed to a
query method. This is the name for the parameter that will
be used in your table, when using some of the more
complex queries; for example, to set an equal expression
such as a.firstName==‘John’.

public function executeIndex(sfWebRequest $request) {
$this->users = Doctrine::getTable(‘User’)
->createQuery(‘a’)
>execute();
H
code snippet /symfony/apps/frontend/modules/

addressbook/actions/actions.class.php

The results of the query execution are stored in the
$this->users variable. In Symfony any variable that is
created in controllers and is marked as $this->variable

223

is automatically forwarded to the view layer after the
controller method is executed properly.

Adding and Editing Entries

The ExecuteNew() method, which is responsible for
creating new users, is very simple: It contains only one
line, which creates a form for the user table and at the
same time renders the view layer. UserForm definitions
are stored in /1ib/forms/ directory.

Every method in addressbookActions class gets a
parameter of sfwebRequest type. This variable contains
all the data that the user can submit through the forms. In
the case of the executeNew() Or executeIndex ()
methods, sfiebRequest is not relevant because it is not
used in those methods, as you can see in the following
code. In all other methods, the sfWebRequest variable is
important because GET or POST parameters are used in
these methods.

public function executeNew(sfWebRequest $request) {
$this->form = new UserForm();
}

code snippet /symfony/apps/frontend/modules/
addressbook/actions/actions.class.php

224

As you can see in the following code, Symfony provides
some methods that help you secure your application
against simple attacks:

public function executeCreate(sfWebRequest $request) {
$this->forward404Unless($request->isMethod(sfRequest::POST));
$this->form = new UserForm();
$this->processForm($request, $this->form);

$this->setTemplate(‘new”);

public function executeEdit(sfWebRequest $request) {
$this->forward404Unless($user = Doctrine::getTable(‘User’)->
find(array($request->getParameter(‘id’))),
sprintf(‘Object users does not exist (%s).’,
$request->getParameter(‘id’)));

$this->form = new UserForm(Suser);

public function executeUpdate(sfWebRequest $request) {
$this->forward404Unless($request->isMethod(sfRequest::POST)
|| $request->isMethod(sfRequest::PUT));
$this->forward404Unless($user = Doctrine::getTable(‘User’)->

find(array($request->getParameter(‘id’))),

225

sprintf(‘Object users does not exist (%s).’,

$request->getParameter(‘id”)));
$this->form = new UserForm($user);
$this->processForm($request, $this->form);
$this->setTemplate(‘edit’);

}

code snippet /symfony/apps/frontend/modules/
addressbook/actions/actions.class.php

For example, in executeEdit () the
forward404Unless () method is used and it checks if a
given user exists in the database. If not, a 404 Not Found
error message is shown. In case of an error, the rest of the
code is not executed. This is a good practice because you
don't need to do anything else when you cannot retrieve
selected user data. The same is true with request type. If
you expect a posT request, you should not proceed any
further for security purposes.

The next security feature is the checkCSRFProtection ()
method, which protects you against cross-site request
forgery (CSRF) attacks. You can find more about this and
other kinds of attacks in Chapter 8. The Update method
creates a new user form—UserForm (Suser) . In this case,
you should send as a parameter user data that is to be
intercepted by the constructor. All given $request data
and also $form data is sent to the processForm()
method, which binds all the data together. You can observe
it in the following code snippet. The $request variable is
also needed because of any files that could be uploaded

226

within forms. Form method processForm() and other
forms-related topics are described in detail in Chapter 5.

protected function processForm(sfWebRequest $request, sfForm $form) {
$form->bind($request->getParameter($form->getName()),
$request->getFiles($form->getName()));
if ($form->isValid()) {
$user = $form->save();
$this->redirect(‘addressbook/edit?id=".Suser->getld());
b
}

code snippet /symfony/apps/frontend/modules/
addressbook/actions/actions.class.php

Deleting an Address
As shown in the following code, to delete a user you can
just invoke the delete () method of your object. After

deletion, you should redirect to another site that will
inform users that the delete operation was successful.

227

public function executeDelete(sfWebRequest $request) {
$request->check CSRFProtection();
$this->forward404Unless($user = Doctrine::getTable(‘User’)->
find(array($request->getParameter(‘id”))),
sprintf(‘Object users does not exist (%s).’,
$request->getParameter(‘id’)));
$users->delete();
$this->redirect(‘addressbook/index”);
H
code snippet /symfony/apps/frontend/modules/
addressbook/actions/actions.class.php

View

By default, Symfony generates some basic views for a new
module: index, new, edit, and form. As we mentioned in
Chapter 1, it is important not to repeat yourself. That's why
the form view is a separate view and it can be re-used this
way both in new and in edit templates.

Editing/Updating Addresses

For each method that begins with execute, a template is
created. The only exception in your case is the update

228

method because this template would be the same as the
edit method, so they can share one view. That's why the
setTemplate () method is used: to let Symfony know
which templates should be currently applied.

In previous Symfony releases, a form view was generated
for each template. Now you need to change the form only
once. Both new and edit templates import the form
template by invoking the include partial () helper, as
shown in the following code:

<h1>New Addresses</h1>

<?php include_partial(‘form’, array(‘form’ => $form)) 7>

code snippet /symfony/apps/frontend/modules/
addressbook/templates/newSuccess.php

The same include partial() helper is present in an
edit template. Everything that is added to the template
before and after the include partial() method is
displayed as normal HTML code while being viewed in a
web browser. The include partial () method inserts
another template into the view; in this example, it is a form
template. As you can see in the preceding code, the second
parameter in the include partial () method is an array.
In this array, you assign to the form name a sform object
that you get from the controller. The ‘form’ string
describes the name of the variable that is available in the

229

form (form.php) partial template. That's why it's
possible to have access to the sform object in _form.php.

Every partial template name should start with an
underscore (‘). The first two lines of the following code
are responsible for adding form-specific cascading style
sheets (CSSs) and JavaScript code.

The following code, which displays the form, validates it
and handles errors, may look rather complicated—that's
because it's a piece of HTML structure intertwined with
PHP code blocks.

<?php use_stylesheets_for form($form) ?>

<?php use_javascripts_for form($form) ?>

<form action=" <?php echo url_for(‘addressbook/’.
($form->getObject()->isNew() ? ‘create’ : ‘update’).
(!$form->getObject()->isNew() ? ?id=".$form->getObject()->getld() : *))
7> method="post”

<?php $form->isMultipart() and print ‘enctype="“multipart/form-data” > ?> >

230

<?php if (!$form->getObject()->isNew()): 7>
<input type="“hidden” name="sf _method” value="put” />
<?php endif; 7>

<table>

<tfoot>
<tr>
<td colspan="“2"">
<?php echo $form->renderHiddenFields(false) 7>

<a href="<?php echo url_for(‘addressbook/
index”) ?>">Back to list

<?php if (!$form->getObject()->isNew()): 7>
<?php echo link_to(‘Delete’,
‘addresbook/delete?id=".$form->getObject()->
getld(), array(‘method’ => “delete’,
‘confirm’ => ‘Are you sure?’))
7>
<?php endif; 7>
<input type="“submit” value=“Save” />
</td>
</tr>
</tfoot>
<tbody>

<?php echo $form->renderGlobalErrors() 7>

231

<tr>
<th><?php echo $form[‘forname’]->renderLabel() ?></th>
<td>
<?php echo $form[‘forname’]->renderError() 7>
<?php echo $form[‘forname’] 7>
</td>
</tr>
<tr>
<th><?php echo $form[‘lastname’]->renderLabel() ?></th>
<td>
<?php echo $form[‘lastname’]->renderError() 7>
<?php echo $form[‘lastname’] 7>
</td>
</tr>
<tr>
<th><?php echo $form[‘created_at’]->renderLabel() ?></th>
<td>
<?php echo $form[‘created at’]->renderError() 7>
<?php echo $form[‘created at’] 7>
</td>
</tr>
<tr>

<th><?php echo $form[‘updated at’]->renderLabel() ?></th>

232

<td>
<?php echo $form[“updated_at’]->renderError() ?>
<?php echo $form[‘updated at’] 7>
</td>
</tr>
</tbody>
</table>

</form>

code snippet /symfony/apps/frontend/modules/
addressbook/templates/ form.php

When you split the preceding listing into parts, you will
see that most of the code generates the action link. First
you have a logical operator:

$form->getObject()->isNew() ? ‘create’ : ‘update’

It tells you if the object that you want to create is a new
one or just an update of an existing one. Note that you
have one form for the create and update methods. If the
isNew () method returns true, you put into your link a
‘create’ string. In the other case, you would use
‘update’. This is obvious because if you want to add a
new user, you should process the form data to the
controller's create method.

The logical operator (?) used in the code below returns an
empty string in the case of new data. Otherwise, the ID of
an existing user is returned. The ID is concatenated with
the ‘2id=’ string, which in conjunction with the

233

previously returned string gives you a proper link for the
action attribute of the form.

1$form->getObject()->isNew() ? ‘?id=".$form->getObject()->getld() : *’

Additionally you should add the enctype attribute if you
plan to upload files. Without enctype=“multipart/

form-data”, your form will work, but will not upload any
files.

$form->isMultipart() and print ‘enctype=“multipart/form-data” *

But let's go back to the controller. As shown in the
following code, the puT method is also added
automatically. This is described in the “RESTful News
Reading” section in Chapter 12.

<?php if (!$form->getObject()->isNew()): ?>
<input type="“hidden” name="sf method” value="put” />

<?php endif; 7>

The puT method simulates only the puT request. In this
case, the method does nothing because a false parameter is
sent by default. Normally, this method should generate all
the needed hidden input fields. This is further explained in
Chapter 5. The following code prevents generating hidden
fields in embedded forms.

echo $form->renderHiddenFields(false)

Deleting Addresses

An edit template should provide an address deletion
option. The easiest way to do that is to add a link that

234

should allow you to invoke the controller's delete
method. There are two new elements introduced here.
First, you use another HTTP request method. This time, it
is delete. This is described in more detail in Chapter 12.
Second, Symfony allows the 1ink to() helper to add
some simple JavaScript that will confirm your choice.
Simple, isn't it?

echo link _to(‘Delete’,
‘addresbook/delete?id=".$form->getObject()->getld(),
array(‘method’ => ‘delete’,
‘confirm’ => ‘Are you sure?’))

Both the edit and new forms should look like those shown
in Figure 4.2.

Figure 4.2 The New Address and Edit Address forms in
Symfony

st 123] canfig i Jogs = EEa canfig wiew Togs 104860 KB araq
Y 38
New Address Edit Address
Firsi name First name John
Last name Last name Doe
Email Email Johni@doe. com
Phone Phone 555
Description Description
Created M Y v S S Created |01 % /01 » /2005 % | 00 % 00
Updaied vl el v w1 %] TUpdated |01 v/ 01 w2005 %[00 w00 »
Backto Lm,| Save | Back to list Delete | Save]
Address List

Timestamp fields don't look very user-friendly, but they
provide some basic functionality that serves your purpose
for now. Chapter 5 describes how to make them trendier.

235

The last issue is to list all available addresses. In the index
method you send all user data as a $users variable to the
index view. For each user, data is printed as shown in the
following code:

<h1>Address List</h1>
<table>
<thead>
<tr>
<th>Id</th>
<th>FirstName</th>
<th>Lastname</th>
<th>Email</th>
<th>Phone</th>
<th>Description</th>
<th>Created at</th>
<th>Updated at</th>
</tr>
</thead>

<tbody>

236

<?php foreach ($userss as $users): 7>
<tr>

<td><a href="<?php echo url_for(‘addresbook/
edit?id=".$users->getld()) 7>">

<?php echo Susers->getld() 7>

</td>
<td><?php echo $users->getFirstName() ?></td>
<td><?php echo $users->getLastName() ?></td>
<td><?php echo $users->getEmail() ?></td>
<td><?php echo $users->getPhone() ?7></td>
<td><?php echo $users->getDescription() ?></td>
<td><?php echo Susers->getCreatedAt() ?></td>
<td><?php echo $users->getUpdatedAt() ?></td>
</tr>
<?php endforeach; 7>
</tbody>

</table>

<a href="<?php echo url_for(‘addresbook/new’) ?>">New

code snippet /symfony/apps/frontend/modules/
addressbook/templates/indexSuccess.php

237

Figure 4.3 shows how the index view should look in the
web browser.

Figure 4.3 The Address List in Symfony

E (143 config wi i logs BSA0.0 KB 816 ms

Address List

Id First name Last name Email Phone Description Created Updated
1 John Doe Johni@doe com 555 2005-01-01 00.00.00 2005-01-01 00.00.00
Hew

CakePHP

You will now produce an address book in CakePHP, just
like you did in Symfony. With all the experience you have
gained so far, it should not be a hard task.

Project

Before you start building an application, you should make
sure that the database you are working with is properly
created for this purpose. This project will use a database
that is named Cake, and this database should contain one
table called addresses, with a structure the same as that
shown in the “Design” section of this chapter.

The following code shows the files used to build the
address book application:

/cake installation

/app

/config

routes.php

238

database.php
core.php
/controllers
addresses_controller.php
/models
address.php
/views
/addresses
add.ctp
edit.ctp
index.ctp

view.ctp

Routing

Previous chapters should have left you with a fresh
CakePHP framework installation in the /webroot
directory. With that in place, you can start writing the
functionality. At this point, you will repeat the steps used
in previous chapters and begin with connecting your
current application to a URL that you choose.

For example, you would like to access your address book
project by typing http://localhost/cake/the-book in the
browser. What you need to do now is to add an instruction
to the CakePHP routing file that will make that URL point
to the proper controller and its functions. To do this, it is

239

necessary to edit the routes.php file and add another
line:

Router::connect(‘/the-book’,
array(‘controller’ => ‘addresses’,
‘action” => ‘index’));
code snippet /cakephp/app/config/routes.php
This will map /the-book to the execute action index of

controller addresses. Now take a look at the model and
controller.

Model

So far, you have created the routing directive. Now it's
time to create the model for the project. It should be
located in the /models directory (see the file structure
listed right under “Project” above).It needs to look like
this:

<?php

240

class Address extends AppModel {
var $name = ‘Address’;
}

7>

code snippet /cakephp/app/models/address.php

For this application, leave it as it is now; that way the
framework will try to read the model information from the
structure of the addresses table.

Schema

We mentioned in Chapter 3 that you can create all needed
tables in two different ways. One way is to do it manually
(as in ZF), and the other is to use a schema. In this case,
the schema should look like this:

var $_schema = array(
‘id” => array(‘type’ => ‘string’, ‘length’ => 30),
“first name’ => array(‘type’ => ‘string’, ‘length’ => 30),
‘last name’ => array(‘type’ => ‘string’, ‘length’ => 30),
‘email” => array(‘type’” => ‘string’,‘length’ => 30),
‘phone’ => array(‘type’ => ‘string’,‘length’ => 30),

‘address’ => array(‘type’ => ‘text’),

241

‘created” => array(‘type’ => ‘date’),

‘modified’ => array(‘type’ => ‘date”)
)i
code snippet /cakephp/app/config/schema/schema.php
Don't forget to run the appropriate commands to complete
this task (see in the previous chapter—CakePHP part of
“Command-line Interface” section). However, for the

purpose of this example, you will use the manual approach
instead of using a schema.

Controller

You have created the routing for the URL of your choice,
and you have linked it with the *addresses’ controller,
as shown in the following code:

<?php
class AddressesController extends AppController {

var $name = ‘addresses’;

}

7>

code snippet /cakephp/app/controllers/
addresses_controller.php

242

Now is a good time to say a word or two about naming
conventions because they can be a little confusing.

Naming conventions in CakePHP are applied to make the
use of the Model-View-Controller (MVC) as easy as
possible. In your address book, the controller will be used
to handle actions performed on data (addresses) that your
address book will contain. Knowing this, you will need to
name your controller addresses. As you know, CakePHP
will automatically try to look for a model to connect with.
The model's name is singular, unlike the controller's file
and views' folder names. Therefore, if you want to use the
automatic functions of the CakePHP framework, you need
to use plural names for the controller, database tables, and
views folders. Singular names will be used only for the
model.

List of All Addresses

Now create some actions for the controller. As discussed
with the routing file, the index () action should be
executed while viewing http://localhost/cake/the-book
address. Now you need to create this action, so add a
function index inside the brackets of the addresses
controller:

class AddressesController extends AppController {

var $name = ‘addresses’;

243

function index($id = null) {

$this->set(‘address_list’, $this->Address->find(‘all’));

}

code snippet /cakephp/app/controllers/
addresses _controller.php

This action finds all addresses available in your database.
It is the same as this SQL query:

SELECT * FROM addresses;

That way, whenever someone types http://localhost/cake/
the-book into a web browser window, an index () action
will be called, and all data contained in addresses table will
be read and saved into the address 1list variable. The
set () method used in this example creates a variable (in
this case, it is address 1list) and assigns data to it (here
it is a list of all addresses) so later it can be read and used
in a view template to display its content.

Note that for every controller method that is supposed to
display something, a view file should be created
(index .ctp, add. ctp, and so on).

Adding a New Address

Now you know how to pass variables into view templates.
Suppose that you create an add link to add some new data.
If you click it, you will get an error about missing the
add () action, so you can create a new function that will
handle adding new addresses to the database.

244

Putting function add () into the
addresses controller.php file should get you where
you want to go. The following code will handle adding
new addresses to the database:

function add() {
if (lempty($this->data)) {
if ($this->Address->save($this->data)) {
$this->Session->setFlash(‘New address has been saved.”);

$this->redirect(array(‘action” => ‘index”));

-

}

code snippet /cakephp/app/controllers/
addresses _controller.php

Now we will explain what this function does. The first if
statement checks to see whether there is anything in
$this->data, which is data submitted by the form. In
CakePHP, sthis->data is a known variable where form
data can also be found. If any data has been sent, it is
saved using information from the address model. Then a
confirmation message is generated to be displayed in the

245

page. Finally, redirection to the index action is done, and
the confirmation message is shown.

Editing an Address

Because you now have a list of all addresses and can add
new addresses, you can move on to editing entries. To do
so, you will add another action to the addresses controller
and create a new view file. Add the edit () function as
follows:

function edit($id = null) {
$this->Address->id = $id;
if (empty($this->data)) {
$this->data = $this->Address->read();
} else {
if ($this->Address->save($this->data)) {
$this->Session->setFlash(‘New address has been saved.’);

$this->redirect(array(‘action’ => ‘index”));

246

code snippet /cakephp/app/controllers/
addresses_controller.php

This function is very similar to the add () function and is
divided into two sections. The first section is responsible
for loading selected address information into data
($this->data) that will be displayed by an edit form. The
second section is responsible for saving submitted form
data into the database. This is intuitive because you use the
edit () method to display and save entry data. The first i f
statement determines whether you want to display the data
or save it. As you can see, all GET data that you want to get
is intercepted as method parameters.

Deleting a Selected Address

Now that you have created most of the application's
functionality, the last thing to do is add the delete option.
Add the new delete () action as follows:

function delete($id) {
$this->Address->delete($id);
$this->Session->setFlash(‘Address with id: “.$id.” has been deleted.’);

$this->redirect(array(‘action’=>"index"));

247

code snippet /cakephp/app/controllers/
addresses_controller.php

As before, this file uses most of the framework's
functionality, and by running
$this->Address->delete ($id), it removes every entry
with the given ID from the database without writing any
database queries. The next line generates a message to be
displayed after redirection is done. This method should be
used very carefully because of security issues (see Chapter
8).

Viewing a Selected Address

This is the most obvious and simplest task. As before, you
need to add a new action to addresses controler.php
according to the following code:

function view($id = null) {
$this->Address->id = $id;
$this->set(‘address’, $this->Address->read());

}

code snippet /cakephp/app/controllers/
addresses _controller.php

248

You get the address's ID and assign it to
$this->Address, which is the same as saying this: Get
an address with an ID of sid (where $id is a number).
That's why in the next line you need only assign a chosen
address to a view variable. The rest of the work to find the
proper address is done by Cake.

View

Now is a good time to take care of the view part by adding
a few lines of code to the index.ctp file.

Address List

To display all data from the database, use an HTML table
as shown here:

<table>
<tr>
<th>Id</th>
<th>First name</th>
<th>Last name</th>
<th>Email</th>
<th>Phone</th>

<th>Address</th>

249

<th>Options</th>
</tr>
<?php
foreach ($address_list as $line) {
$address = $line[‘Address’];
echo
<tr>’.
‘<td>’.$address[‘id’]. ‘</td>".
‘<td>’.$address[‘first_ name’].‘</td>’.
‘<td>’.$address[‘last name’].‘</td>’.
‘<td>’.$address[‘email’]. </td>".
‘<td>’.$address[‘phone’].‘</td>’.
‘<td>’.$address[‘address’].‘</td>’.
‘<td></td>’.
<fr>’;
15
7>

</table>

code snippet /cakephp/app/views/addresses/index.ctp

You can see all addresses saved to the database through
the Add New Address form. As mentioned previously in
the “Controller” section, you get all data in the
$address list.

250

Now you have all the prerequisites to fill the add view file.
Add a link to the top of index.ctp:

<?php
echo $html->link(‘Add new address’, array(‘action’=>‘add’));

>
code snippet /cakephp/app/views/addresses/index.ctp

You can now see the results of your work. It is not much,
but typing http://localhost/cake/the-book into a web
browser window should display your index page. Here you
can see the standard CakePHP header and footer, as well
as the content created by us, which should be a single link
called Add New Address. This link, if clicked, will call the
same controller, but a different action, which in this case
will be the add action. The address list with the Add New
Address link is displayed in Figure 4.4.

Figure 4.4 The Address List with the Add new address
link

New address has been saved.
Add new address
Id Firstname Lastname Email Phone Address Options

i John Doe john.doe@mail.com 555

Forms

251

Adding forms in CakePHP is very simple. This framework
creates all needed input fields for a given model. The
necessary code is shown as follows:

<?php
echo $form->create(‘ Address’);
echo $form->inputs();
echo $form->end(‘Save address’);

7>

code snippet /cakephp/app/views/addresses/add.ctp

This code creates a form like the one shown in Figure 4.5.
Note that only three form methods were used: form
starting and ending tag methods, and an input generation
method. The last method generates all needed input files.
This is a time-saving approach because it gets the
create () parameter, which is in fact the name of the
model and automatically returns all needed input fields
based on model information. You might wonder why the
two additional methods are necessary. The answer is that
they're needed because the HTML form tag can be
customized, as can the submit button.

Figure 4.5 The New Address form in CakePHP

252

Address

Created
Al w13 w2010 3| 10 M L[54 W | pm W
Modified
| April M- 13 1= 2010 (W] 10 (8| 54 (W1 | pm W

Save address

The form displayed in Figure 4.5 will be
slightly different from the one you will see
in your web browser because the stylesheet
has been modified for the purpose of
generating smaller images for this book.

Editing an Address
To edit an entry, you need to add a proper link that will
redirect you to the edit form page. To do that, you need to

edit index.ctp and change it a little bit, as shown in the
following code:

253

<?php
foreach ($address_list as $line) {
$address = $line[*Address’];
echo
<tr>’.
‘<td>".$address[‘id’].‘</td>".
‘<td>".$address[‘first_name’].‘</td>".
‘<td>".$address[‘last name’].‘</td>’.
‘<td>".$address[‘email’].‘</td>".
‘<td>".$address[‘phone’]. </td>’.
‘<td>".$address[‘address’].‘</td>".
‘<td>’.$html->link(‘edit’,
array(‘action’=>‘edit’,
‘id’=>$address[‘id’])).‘</td>".
</r>’;
15

7>

code snippet /cakephp/app/views/addresses/index.ctp

254

We didn't explain what $htm1->1ink () does earlier while
creating the add. ctp template, but we will do so now. The
link () function added in this template has two
parameters. The first is the text that will be displayed as a
link, and the second is an array that allows you to set
various parameters, such as the action name that will be
called when the generated link is clicked and the id
parameter that will be passed by the $ GeT variable to
identify which address will be edited.

At this point, the edit action is still missing a view file, so
create one as follows:

<?php
echo $form->create(‘ Address’, array(‘action’ -> ‘edit’));
echo $form->inputs();
echo $form->end(‘Save address’);

7>

code snippet /cakephp/app/views/addresses/edit.ctp

Note that this file is nearly identical to add.ctp. The only
difference is that you have added another parameter to the
$form->create () function, which is an array defining
what action will be called after sending the form data. It is
set to add by default, which is why you need to change it

255

to edit. Check the result shown in Figure 4.6 and
compare it with the New Address form shown in Figure
4.5.

Figure 4.6 The Edit Address form in CakePHP

Edit Address

First
John

Last Mame

Mame

Do
Email
john.doe@mail.com
Phone
555
Address

Craated
April s 13wl 2010 (| 10 L[54 el [pm e
Modified
| Epril M- 13 W 2010 (W] 10 W || 54 W) | pm W

I Save address I

The Edit Address form is generated by the file that you
have just created and looks identical to the form that
handles adding new addresses, except that it contains the
data of a selected address rather than being blank.

Viewing a Selected Address
Now create a view that will allow you to see detailed
address information using a custom view. The most

intuitive approach is to click an address entry from the
address list. To do this, change the index. ctp file again:

256

<?php
foreach ($address_list as $line) {
$address = $line[*Address’];
echo
<tr>’.
‘<td>".$address[‘id’].‘</td>".
‘<td>’.$html->link($address[‘first_name’],
array(‘action’=>‘view’,
‘id’=>$address[‘id’])).*</td>".
‘<td>".$address[‘last name’].‘</td>’.
‘<td>’.$address[‘email’].‘</td>".
‘<td>".$address[‘phone’]. </td>’.
‘<td>".$address[‘address’].‘</td>".
‘<td>’.$html->link(‘edit’,
array(‘action’=>‘edit’,
‘id’=>$address[‘id’])). </td>".
<hr>’;
15

77>

257

code snippet /cakephp/app/views/addresses/index.ctp

The added line works the same way as when you added an
edit link. It makes the first name value clickable and
allows it to call the view action that will display the
following file, which you need to create in the /views
folder:

<?php

$address = $address[‘Address’];

echo $html->link(‘Back to list’, array(‘action’=>‘index’));

echo ‘<h1>’.$address[‘first name’].” ‘.$address[‘last_name’].‘</h1>’.
‘<p>Email: ‘.$address[‘email’].‘</p>’.
‘<p>Phone: ‘.$address[‘phone’].*</p>’.
‘<p>Street: ‘.$address][‘street’].‘</p>’.
‘<p>Address: ‘.$address[‘address’].‘</p>’;

7>

code snippet /cakephp/app/views/addresses/index.ctp

After creating this file, you can browse through your
address book and view selected entries. When an entry is
selected, the page shown in Figure 4.7 should be
displayed.

258

Figure 4.7 An address book entry

Back

John Doe

Email: john.doe@mail.com
Phone: 555

Addrazs:

Deleting an entry

Now that the code responsible for deleting entries has been
created, modify the index.ctp file in the /views
directory so that it allows you to select an entry for
deletion. The bold font in the following code snippet
shows how it is done:

<?php
foreach ($address_list as $line) {
$address = $line[‘Address’];
echo
<tr>’.
‘<td>’.$address[‘id’]. </td>".
‘<td>’.$html->link($address[‘first name’],
array(‘action’=>‘view’,
‘id’=>$address[‘id’])). </td>’.

‘<td>’.$address[‘last name’].‘</td>’.

259

‘<td>’.$address[‘email’]. ‘</td>".

‘<td>’.$address[‘phone’].‘</td>’.

‘<td>’.$address[‘address’].‘</td>’.

‘<td>’.$html->link(‘edit’,

array(‘action’=>‘edit’,
‘id’=>$address[‘id’])).
¢ ¢ $Shtml->link(‘delete’,
array(‘action’=>‘delete’,
‘id’=>$address[‘id’])).*</td>".
<fr>’;
15

7>

code snippet /cakephp/app/views/addresses/index.ctp

This concludes the creation of a basic CRUD functionality.
Zend Framework

ZF suffers from not having a proper ORM tool to generate
useful code without much effort. You have to write many
lines of code using Zend Db instead. (That's why this
section is more than twice as long as previous ones.)

Project

As was mentioned in Chapter 3, there are a few ways to
start a project with ZF. Let's say that you have done

260

everything properly, as described in Chapter 3, and are
ready to move on. In the command-line interface, type
<path> (use the path to the directory in which you want to
start developing your application):

§ zf create <path>

There is also another way to do that. Just type the project
name (for example, addressBook):

$ zf create project addressBook

The only difference between these two methods is that the
first one just creates all needed project files in the current
directory, whereas the second command does the same but
also creates the project directory with the name given as
the parameter.

Routing

Zend has no routing configuration like Symfony has. There
are two main controllers: index and error. The first one is
the root controller in which all applications start. The main
routing rules are defined in the .htaccess file of the
mod_rewrite module, which is a good approach to allow
for reusing code and tools. There is a default main rule that
says that the first given parameter is the controller's name
and the second is the action of this controller. All
additionally given parameters are sent as GET parameters
to the action method (for example, http://localhost/
addressBook/address/delete/id/1). Your root path is
http://localhost/addressBook in this case.

Model

261

The following SQL code creates a table that is used in your
address book application. Remember to create and use
the database first:

CREATE TABLE IF NOT EXISTS ‘AddressBook’ (
‘id” int(11) unsigned NOT NULL AUTO INCREMENT,
“first_ name’ varchar(25) NOT NULL,
‘last_name’ varchar(25) NOT NULL,
‘email’ varchar(25) NOT NULL,
‘phone”’ int(11) DEFAULT NULL,
‘address’ text,
‘created’ datetime NOT NULL,
‘modified’ datetime NOT NULL,
PRIMARY KEY (‘id*)

) ENGINE=MyISAM DEFAULT CHARSET=utf8;

code snippet /zf/library/sql/addressbook.sql

Creating data models is probably the most difficult issue
when developing with ZF. You need to create an
additional model, mapper, and Db _Table model for each
table. That's three files for each table! Although this
approach is not the best because most of this code could be
autogenerated, go with it anyway.

262

Model Class

Start with the model:
$ zf create model AddressBook

This command generates a template model of
AddressBook. Model files are placed in the
/application/models/ folder. A generated template is
an empty class definition, as shown in the following code,
which needs to be filled out:

<?php

class Application Model AddressBook {

}

This template needs to be filled out with proper code. As
mentioned in Chapter 3, you need to create two methods
for each field. Additionally, there is a constructor and two
default methods needed. The following code snippet shows
how the address book template should be filled with code:

<?php
class Application_Model AddressBook

{

263

protected $_firstName;
protected $_lastName;
protected $_email;
protected $_phone;
protected $_address;
protected $_created,;
protected $§_modified;
protected $_id;
public function _ construct(array $options = null) {
}
public function __set($name, $value) {
$method = ‘set’ . $name;
if ((‘mapper’ == $name) || !method_exists($this, $method)) {
throw new Exception(‘Invalid property’);
H
$this->$method($value);

}

public function _ get($Sname) {
$method = ‘get’ . $name;
if ((‘mapper’ == $name) || !method_exists($this, $method)) {

throw new Exception(‘Invalid property’);

264

return $this->$method();
}
public function setOptions(array $options) {
$methods = get_class_methods($this);
foreach ($options as $key => $value) {
$method = ‘set’ . ucfirst($key);
if (in_array($method, $methods)) {

$this->$method($value);

}

return $this;

public function setFirstName(S$text) {
$this->_firstName = (string) $text;
return $this;

}

public function getFirstName() {
return $this->_ firstName;

}

public function setLastName($text) {
$this-> lastName = (string) $text;

return $this;

265

}

public function getLastName() {
return $this->_lastName;
}
public function setEmail($text) {
$this->_email = (string) $text;
return $this;
}
public function getEmail() {
return $this->_email;
H
public function setPhone($text) {
$this-> phone = (string) $text;
return $this;
H
public function getPhone() {
return $this->_phone;
}
public function setAddress($text) {
$this-> address = (string) $text;
return $this;

}

public function getAddress() {

266

return $this-> address;

}

public function setCreated($text) {
$this->_created = (string) $text;
return $this;

}

public function getCreated() {
return $this->_created;

}

public function setModified($text) {
$this-> modified = (string) $text;
return $this;

}

public function getModified() {
return $this-> modified;

}

public function getld() {
return $this->_id;

H

public function setld($text) {
$this->_id = (int) $id;

return $this*

267

}
code snippet /zf/application/models/AddressBook.php

This is a long but very simple piece of code. Getter and
setter methods can be easily generated by any
Eclipse-based integrated development environment (IDE)
such as Zend Studio. If you use Zend Studio, just use the
Source option in the main menu and select Generate
Getters/Setters. Note that a proper class file needs to have
the focus. You can see now what the individual methods
shown in the preceding code are responsible for:

public function _ get($name) {
$method = ‘get’ . $name;
if ((‘mapper’ == $name) || !method_exists($this, $method)) {
throw new Exception(‘Invalid property’);
}
return $this->$method();
}
code snippet /zf/application/models/AddressBook.php
This is a common get () method, which takes the name of

the model's field (for example, firstName) as a
parameter. First, the method that is responsible for getting

268

data from this field is searched for. If the method exists,
the returned value of the invoked method is given as the
result. So for $name=‘firstName’, this method throws
‘John’, for example.

The set () method works in much the same way, but
accomplishes something quite different. The $name and
svalue fields are needed as parameters. Like previously,
the proper method is searched for. If it exists, it is invoked,
and the result is returned, as shown in the following code:

public function _set($name, $value) {

$method = ‘set’ . $name;

if ((‘mapper’ == $name) || !method_exists($this, $method)) {

throw new Exception(‘Invalid property’);

}

$this->$method($value);
}
code snippet /zf/application/models/AddressBook.php
The last method is setoOptions (), which just gets an
array that is a kind of a hashtable/dictionary. Each key

represents a field. For each key, a value is assigned, even if
it is just a null value. For each key/value pair an

269

appropriate method is searched for. If it exists, the value is
set. An object with all fields filled out is returned as the
result. This method is very useful when you get an array
that you want to assign directly to an existing instance of a
model object:

public function setOptions(array $options) {
$methods = get _class methods($this);
foreach ($options as $key => $value) {
$method = ‘set’ . ucfirst(Skey);
if (in_array($method, $methods)) {

$this->$method($value);

}

return $this;

§
code snippet /zf/application/models/AddressBook.php

Unfortunately, this is not everything you need to do to
make a working model. To develop it, you need to define
some basic methods to load and save data into a database.
This is why you need to define a mapper for the
AddressBook table.

270

Mapper

The next step is to define a mapper class. The model class
is only responsible for how the table looks. The mapper
class is designed to be responsible for manipulating data.
The relations between each of the three classes (Db_Table,
mapper, and model) are shown in Figure 4.8.

Figure 4.8 Relations between classes in ZF

Db_Table
A4

Mapper Model

A

The mapper class is shown in the following code. It should
be placed as AddressBookMapper.php in the
/application/models/ folder.

<?php

class Application Model AddressesBookMapper {

protected §_dbTable;

271

public function setDbTable($dbTable) {

}

public function getDbTable() {

}

public function deleteOne($id) {

}

public function save(Application Model AddressBook $address) {

}

public function find(8$id, Application Model AddressBook $address) {

}

public function fetchAll() {

}
}

code snippet /zf/application/models/
AddressBookMapper.php

First, you need to set the right bb Table. You can just
create a new instance of it by putting a string as the
parameter or a concrete instance to assign. This method is
responsible for assigning a proper Db_Table class instance

272

to the mapper. Note in the following code that the
Db Table class implements zend Db Table Abstract:

public function setDbTable($dbTable) {
if (is_string($dbTable)) {
$dbTable = new $dbTable();
b
if (!$dbTable instanceof Zend Db _Table Abstract) {
throw new Exception(‘Invalid table data gateway provided’);
b
$this-> dbTable = $dbTable;
return $this;
}
code snippet /zf/application/models/
AddressBookMapper.php

The same thing goes with getting a Db_Table instance,
but in this a case, a proper Db Table class instance is
returned.

273

public function getDbTable() {
if (null === $this-> dbTable) {
$this->setDbTable(‘Application_Model DbTable AddressBook’);

}

return $this->_dbTable;
}

code snippet /zflapplication/models/
AddressBookMapper.php

The preceding two methods are responsible for
establishing the relationship with the pb Table model
class shown in Figure 4.8.

Now you can focus on methods that are commonly used
when working with the model. Previously created model
methods are used here. You need to consider what should
really be done in the save () method because there is a
difference between an existing address entry that needs to
be saved after editing and a new one that is to be added.
First, the $data array is prepared to save all needed entry
information. Only the modified field is changed when the
save () method is invoked. The rest of the form is filled
out with existing information or just with empty data (from
the database's perspective). In the following code, notice

274

that the created field is filled only when a new entry is
added:

public function save(Application Model AddressBook $address) {
$data = array(
“firstName’ => $address->getFirstName(),
‘lastName’ => $address->getLastName(),
‘email” => $address->getEmail(),
‘phone’ => $address->getPhone(),
‘address” => $address->getAddress(),
‘created” => $address->getCreated(),

‘modified’ => date(‘Y-m-d H:i:s’),

if (null === ($id = $user->getld())) {
unset($data[id’]);
$data[‘created’]=date(‘Y-m-d H:i:s’);
$this->getDbTable()->insert($data);

} else {

$this->getDbTable()->update($data, array(‘id = ?° => $id));

275

}

code snippet /zf/application/models/
AddressBookMapper.php

The find () method is used only to find just one specific
entry. Because in almost all cases, id is the primary key
and also a common identifier, it is needed as a parameter
in this method so you know what to search. Additionally,
an address's model instance is needed to collect all found
information. In the first line, the find() method is
invoked on an instance of the Db _Table object. Results
are then prepared to be returned as your model object. To
set all needed data models, set methods are used, as shown
in the following code:

public function find(8$id, Application_Model_AddressBook $address) {
$result = $this->getDbTable()->find($id);
if (0 == count($result)) {
return;
¥
$row = $result->current();
$address->setld($row->id)

->setFirstName($row->firstName)

276

->setLastName($row->lastName)
->setEmail($row->email)
->setPhone($row->phone)
->setAddress($row->address)
->setCreated($row->created)

->setModified($row->modified);

}
code snippet /zf/application/models/
AddressBookMapper.php

The find () method shown in the preceding code is used
only in cases where one entry is expected to be returned.
To get all entries, the fetachall () method, shown in the
following code, is the proper choice:

public function fetchAll() {
$results = $this->getDbTable()->fetchAll();
$entries = array();
foreach ($results as $row) {
Sentry = new Application Model Addresses();
$entry->setld($row->id)

->setFirstName($row->firstName)

277

->setLastName($row->lastName)
->setEmail($row->email)
->setPhone($row->phone)
->setAddress($row->address)
->setCreated($row->created)
->setModified($row->modified);
$entries[] = $entry;
}

return $entries;

}

code snippet /zf/application/models/
AddressBookMapper.php

To see all the available methods for the
Zend Db Table class, g0 to
http://framework.zend.com/apidoc/1.10/.
From the Packages drop-down menu at the
top of the page, choose Zend Db and select
Table from the list of choices in the left
pane.

The last method is a tiny one that deletes a row. Db _Table
is also used here. The row is identified by the ‘*id=" field

278

because the table's primary key could be also named
address_id or something similar.

public function deleteOne($id) {
$this->getDbTable()->delete(‘id = *. (int)$id);
}

code snippet /zf/application/models/
AddressBookMapper.php

In your sample application, only these four methods are
needed. We could also implement more complex methods
with defined criteria, but for now this is enough.

Db_Table Model

All the methods just covered are very similar to
equivalents in Symfony and CakePHP. The last thing to do
to get them working is to define a relation between the
Db Table model and the real name of the table to which it
is dedicated, as shown in the following code:

<?php

279

class Application_Model DbTable AddressBook extends Zend Db Table Abstract {

protected $§ name = ‘AddressBook’;

}

code snippet /zf/application/models/DbTable/
AddressBook.php

A different approach to create bb_Table files is to invoke
the zf command, which does this for each table:

$ zf create db-table.from-database

Controller

Zend also provides some commands for controllers. To
easily create a controller, you can use this command:

$ zf create controller AddressBook

This command generates a basic controller with two
default methods. Controllers are placed in the
/application/controllers folder (for example,
IndexController.php, shown in the following code).
The first method is invoked when initializing, and the
second method is just an index action. Let's skip init ()
because it is not needed in this example. Note, however,
that the init () method is very often used in more
complex applications.

280

<?php

class IndexController extends Zend_Controller Action {

public function init() {

}

public function indexAction() {

}
}

code snippet /zf/application/controllers/
IndexController.php

Note, that in this code the default index controller is
shown. The only difference between Index and
AddressBook 1S the controller's name. Use the default
controller because there is less code to write.

List of All Addresses

First, show all entries in your address book. To do that,
you need to create a mapper object; then the fetchall ()
method should be invoked. The results are sent to the view
layer by the $this->view->addresses variable. Every
time you assign a value to $this->view->var, this
variable is sent to the view layer as $this->var. Then
just present all entries in the view layer.

281

public function indexAction() {
$addresses = new Application_Model_AddressBookMapper();

$this->view->addresses = $addresses->fetchAll();
}

code snippet /zf/application/controllers/
IndexController.php

Adding a New Address

Adding entries is a bit more complex than the
fetchall () method. The following steps should be done:

1. Get data if the form is filled.
2. If not, show an empty form.
3. If given data is valid, proceed to save it.
4. After adding, just redirect to index page.

And this is how the addaction () method looks in PHP:

282

public function addAction() {
$form = new Application Form_AddressAdd();
$request = $this->getRequest();
if ($this->getRequest()->isPost()) {
if ($form->isValid($request->getPost())) {
$entry = new Application Model Addresses($form->getValues());
$mapper = new Application_ Model AddressesMapper();
$mapper->save($entry);
return $this->_helper->redirector(‘index’);
H
}
$this->view->form = $form;

}

code snippet /zf/application/controllers/
IndexController.php

Forms are described later in this chapter.
Editing an Entry

The edit action is more complex because this is an
all-in-one method. It shows a form with current data and
also processes submitted data. It begins like the add ()
action. If $this->getRequest ()->isPost () 1S true,
this means that some data was submitted. Next, validation
of submitted data needs to be done. (Form validation is
described in more detail in Chapter 5.)

283

If the validation process is successful,
$form->getvValues () 18 called, which returns submitted
data. That submitted data is subsequently sent to the
AddressBook model. The sentry variable now contains
all submitted data. As described previously, to work with
data in databases, invoking mapper methods is required.
Note that it doesn't matter whether the data given as a
parameter to the save () method is completely new or just
an update because it is checked inside the mapper's
method. At the end or the process, the user is redirected to
an index page. Redirection is done by using the Zend
helper methods.

If no data is submitted, the ID should be intercepted. If the
user clicks an edit link, the ID should be sent to the edit
action (for example, http://localhost/addressbook/
edit/id/1. To get any parameter that is sent using GET,
the getParam () method should be used. As the parameter
to getParam(), the proper parameter name should be
given (for example, 1D). Then the initialization of both the
model and mapper classes needs to be done because they
are needed to get data from the database. The mapper
class's find() method selects a row from the
AddressBook table with an ID specified as $id. The
sentry variable is your model object filled with data after
invoking the £ind () method.

The next step is to create an array of previously prepared
data and set it inside the value="” HTML input/textarea
attribute by using the setbDefaults () method. Note in
the following code that an
Application Form AddressEdit object is created at

284

the beginning. If everything runs successfully without any

exceptions, the form is assigned to the $this->form view
variable:

public function editAction() {
$form = new Application Form AddressEdit();
$request = $this->getRequest();
if ($this->getRequest()->isPost()){
if ($form->isValid($request->getPost())) {
$entry = new Application Model AddressBook($form->getValues());
$mapper = new Application Model AddressBookMapper();
$mapper->save(Sentry);
return $this->_helper->redirector(‘index”);
¥
telse{
$id=$this->getRequest()->getParam(‘id’);
$entry = new Application Model AddressBook();
$mapper = new Application Model AddressBookMapper();
$result = $mapper->find($id,$entry);
$data = array(

‘id> => $id,

285

“firstName’ => $entry->getFirstName(),
‘lastName’ => $entry->getLastName(),
‘email” => Sentry->getEmail(),
‘phone’ => $entry->getPhone(),
‘address’ => $entry->getAddress(),
‘created” => $entry->getCreated(),
‘modified’ => date(‘Y-m-d’),
);

$form->setDefaults($data);

}

$this->view->form = $form;

}

code snippet /zf/application/controllers/
IndexController.php
Delete

The delete action is easy to create. In the first line of the
following code, the identifier is taken from GET (see
$ GET on http://php.net) as in the edit action. Next, a
mapper is created, and the deleteone() method is
invoked. The $id parameter is given because you need to
show which data to delete. After that, the user is redirected
to the index page:

286

public function deleteAction() {
$id = $this->getRequest()->getParam(‘id’);
$addresses = new Application_Model_AddressBookMapper();
$addresses->deleteOne($id);
return $this->_helper->redirector(‘index’);

}

code snippet /zf/application/controllers/
IndexController.php
Forms

To make sure that the forms invoked in the code snippet
above are working properly, they should be first defined.
Forms are placed in the /application/forms directory
(for example, AddressAdd.php). As shown in the
following code, a form should inherit the zend Form class
and have an init () method:

<?php

class Application_Form Addresses extends Zend Form {

287

public function init() {
$this->setMethod(‘post’);

/* form here */

$this->addElement(‘submit’, ‘submit’, array(
‘ignore’ => true,
‘label’ => ‘Save’,

));

}
code snippet /zf/application/forms/Addresses.php

There are two methods that should be invoked when
defining forms: setMethod () and
addElement ()—shown in the following code. The
setMethod () method defines the form's method attribute.
The post attribute is commonly wused with the
setMethod () method. The next method, addElement (),
is responsible for adding form elements such as inputs or
textareas. Because there are a few different types of input
in Zend, they are represented by their type: text, textarea,
submit, hidden. Each field can also have parameters such
as label and filters, or it can be defined as a required
field or not. Attributes are given as an array (a hashmap,
really). The filters parameter defines which filter for
data should be applied, (for example, string):

288

public function init() {
$this->setMethod(‘post’);
$this->addElement(‘text’, “firstName’, array(
‘label”’ => “Your first name:’,
‘required’ => false,
“filters’ => array(‘StringTrim’),
)
);
$this->addElement(‘text’, ‘lastName’, array(
‘label”’ => ‘Your last name:’,
‘required’ => false,
“filters’ => array(‘StringTrim’),
)
);
$this->addElement(‘text’, ‘email’, array(
‘label” => ‘Your e-mail address:’,
‘required’ => false,
“filters’ => array(‘StringTrim’),

)

289

);
$this->addElement(‘text’, ‘phone’, array(
‘label” => ‘Your phone:’,
‘required’ => false,
“filters’ => array(‘StringTrim’),
)
);
$this->addElement(‘textarea’, ‘address’, array(
‘label” => ‘Your Address:’,
‘required’ => false,
“filters’ => array(‘StringTrim’),
)
);
$this->addElement(‘submit’, ‘submit’, array(
‘ignore’ => true,
‘label” => ‘Save’
)
}
code snippet /zf/application/forms/Addresses.php
To complete the forms for this example, two forms need to

be defined: AddressEdit and addressadd. They should
be the same except for the name. Although each of the

290

forms can be used alone, the code is easier to understand
with two separate forms.

View

First of all, a layout needs to be created. To do this, the
enable parameter should be used. This command also
creates the following layout in the /application/
layouts/scripts directory:

$ zf enable layout

There are two main view templates: index.phtml and
error.phtml, which are placed in the /application/
views/scripts/ directory. The first one is (by default)
the ZF welcome page. The second one, shown in the
following code, is the page that shows all errors and
exceptions that happen while executing your code. As you
can probably guess, it's better not to see this page too
often.

<hl1>An error occurred</h1>

<h2><?php echo $this->message ?></h2>

<?php if (isset($this->exception)): 7>

291

<h3>Exception information:</h3>
<p>
Message: <?php echo $this->exception->getMessage() 7>

</p>

<h3>Stack trace:</h3>
<pre><?php echo $this->exception->getTraceAsString() 7>

</pre>

<h3>Request Parameters:</h3>
<pre><?php echo var_export($this->request->getParams(), true) ?>
</pre>
<?php endif 7>
code snippet /zf/application/views/scripts/error/

error.phtml

The index template is the first page that should be
changed, so change it to a list of addresses. Below the ZF
welcome page, the view code is shown:

<style>

a:link,

292

a:visited
{

color: #0398CA;

span#fzf-name

{

color: #91BE3F;

div#twelcome
{
color: #FFFFFF;

background-image: url(http://framework.zend.com/images/
bkg_header.jpg);

width: 600px;

height: 400px;

border: 2px solid #444444;
overflow: hidden;

text-align: center;

div#more-information

293

background-image:
url(http:/framework.zend.com/images/bkg_body-bottom.gif);
height: 100%;
}
</style>
<div id="welcome”>

<h1>Welcome to the Zend Framework!</h1>

<h3>This is your project's main page</h3>

<div id="more-information”>
<p>

<img src="http://framework.zend.com/images/
PoweredBy ZF 4LightBG.png” />

</p>
<p>
Helpful Links:

<a href="http://framework.zend.com/
”>Zend Framework Website |

Zend Framework Manual

</p>

294

</div>

</div>

code snippet /zf/application/views/scripts/index/
index.phtml

List of All Addresses

Because the main page can be also the address book index
page, the preceding code can be replaced by a simple loop,
shown here:

<style>
a:link, a:visited {
color: #0398CA;
H
span#zf-name {
color: #91BE3F;
H
td {
background: #cdcdced;

}

</style>

295

<div id="header-navigation” style="float: left; width: 100%;”>
Address Book
</div>
<div style="float: left; ">
<table>
<tr>
<td>ID</td>
<td>First Name</td>
<td>Last Name</td>
<td>E-mail</td>
<td>Phone Number</td>
<td>Address</td>
<td>Created</td>
<td>Modified</td>
<td>Options</td>
</tr>
<?php foreach ($this->addresses as $entry): 7>
<tr>
<td><?php echo Sentry->getld(); ?></td>
<td><?php echo Sentry->getFirstName(); ?></td>
<td><?php echo $Sentry->getLastName(); ?></td>

<td><?php echo $Sentry->getEmail(); ?></td>

296

<td><?php echo Sentry->getPhone(); ?></td>

<td><?php echo $entry->getAddress(); ?></td>

<td><?php echo $entry->getCreated(); ?></td>

<td><?php echo $entry->getModified(); ?></td>
</tr>

<?php endforeach 7>

</table>

</div>

code snippet /zf/application/views/scripts/index/
index.phtml

Note that $this->addresses was passed from the
controller. This variable is an instance of AddressBook.
That's why in order to show proper data, the AddressBook
model methods are used (for example, getaddress ()).
As a result, you should see something similar to what is

shown in Figure 4.9 (it can be a little different because all
links are added here).

Figure 4.9 The Index page of ZF's CRUD application

AddressBook Add a new entry

ID First Name Last Name E-mail Phone Number Address Created Modified Options

21 Leszek Nowak dr.leszek.nowak@gmail.com 123456789 Here 1 am 2010-06-03 2010-06-03 Delete Edit
20 Bartosz ~ Porebski bartosz.porebski@gmail.co 123456789 Foo bar 2010-06-03 2010-06-03 Delete Edit
19 Karol Przystalski kprzystalski@gmail.com 123456789 Homeless 2010-06-03 2010-06-03 Delete Edit

Adding an Entry Page

To make it possible to add any kind of data, a link to the
add page needs to be included, as shown in the following
code:

297

<div id="header-navigation” style="float: left; width: 100%;”>
Address Book
<a href=“<?php echo $this->url(

array(‘action’=>‘add’)); 7>">Add a new entry

</div>
code snippet /zf/application/views/scripts/index/
index.phtml

To do that, the sthis->url () helper method can be used.
An array should be given as the parameter. The array
should consist of information that makes it possible to
determine exactly what kind of URL should be generated.
It can be an action, as shown, but also a controller.
Because this URL is inside a template, which is a part of
the Index controller, there is no need to also add the
controller attribute, because it is set by default to the
currently used controller.

The previously described form should be included inside
the add.phtml template. Only one line of code is needed:

298

<?php echo $this->form;?>

code snippet /zf/application/views/scripts/index/add.phtml
You then see a page that includes a form (see Figure 4.10).

Figure 4.10 The Add form in ZF

Your first name: R

l

Your last name:

I

Your e-mail address:

[

Your phone:

Your Address:

Editing an Address Entry

To edit address book entries, a link to the add action is
needed, as is a link that redirects the user to the proper
place. Additionally, the ID needs to be added with the
$this->url() parameter, as shown in the following

299

code, which generates a link like http://localhost/
addressbook/ edit/id/1:

<td><?php echo Sentry->getld(); ?></td>
<td><?php echo Sentry->getFirstName(); ?></td>
<td><?php echo Sentry->getLastName(); ?></td>
<td><?php echo $entry->getEmail(); 7></td>
<td><?php echo $entry->getPhone(); ?></td>
<td><?php echo $entry->getAddress(); ?></td>
<td><?php echo Sentry->getCreated(); ?></td>
<td><?php echo $entry->getModified(); ?></td>
<td><a href="<?php echo $this->url(

array(‘action’=>‘edit’,‘id’=> Sentry->getld())); ?>">Edit</td>

code snippet /zf/application/views/scripts/index/
index.phtml

The following code displays the form template:
<?php echo S$this->form;?>

The form with proper data is shown in Figure 4.11.

Figure 4.11 The Edit form in ZF

300

Your first name:

[L_eszek |
Your last name:

[Ncwak |
Your e-mail address:

[drieszek.nowak@gmail.coi|
Your phone:

[0123456789 |
Your Address:

Here I am

Deleting an Entry

No view template code is needed to delete an entry
because redirection to an index page is done after deletion.
That's why no delete.phtml file is needed. You only
need to add a URL in index.phtml (almost the same

process as editing):

<td><?php echo $entry->getld(); ?></td>

301

<td><?php echo Sentry->getFirstName(); ?></td>
<td><?php echo $entry->getLastName(); ?></td>
<td><?php echo $entry->getEmail(); ?></td>
<td><?php echo Sentry->getPhone(); ?></td>
<td><?php echo $entry->getAddress(); ?></td>
<td><?php echo $entry->getCreated(); ?></td>
<td><?php echo $entry->getModified(); ?></td>
<td><a href=“<?php echo $this->url(
array(‘action’=>‘delete’,‘id’=> $entry->getld())); ?>">Delete
<a href="<?php echo $this->url(

array(‘action’=>‘edit’,‘id’=> $entry->getld())); ?>">Edit</td>

code snippet /zf/application/views/scripts/index/
index.phtml

302

Chapter 5
Forms

Computers are like Old Testament gods; lots of rules and
no mercy.

—Joseph Campbell

What's In This Chapter?

* Field validation.
+ Customizing forms.

* Using Captcha as spam protection.

Input forms have become so common and natural that
users probably do not even notice when they fill them in.
There is also nothing strange about a form noticing that
our e-mail address is incorrect or requesting us to write
down some barely recognizable characters. This chapter
explores forms: form creation and the various common
tasks associated with them, such as customization and
validation. Several automatic functions of frameworks
regarding building forms and their validation are presented
here as well.

Web forms can be found at various websites throughout
the Internet. They are used in all sorts of situations,
allowing users to pass data that is later processed by
server-side scripts. By including forms in your web
application, you allow visitors to register and enter their
unique content. Furthermore, forms can also be used for
ordering various products online, voting in polls, and other

303

sorts of user input. In some situations, forms can also be
used when you must implement some mechanisms to
ensure the security of transmitted data. (More about form
security and secured connections can be found in Chapter
8.) This chapter focuses on form validation and
customization. We also discuss Captcha tests as a spam
protection instrument.

Field Validation

One of the most important parts of any web application is
data validation. It is most helpful in ensuring that entered
data is consistent with a web application's assumed data
model. There are many common field validation methods,
and they are (or should be) applied to most input forms.
For example, you may want to make sure that the user
creating a new account in your application enters a unique
username, or that the password is no shorter than six
characters and no longer than twelve. Of course, there are
also more complex rules used during form validation; for
example, they allow passing of only alphanumeric
characters or even only strings that follow a certain
predefined pattern.

There is also one very important, but often overlooked
aspect of form validation. Obviously, form handling is
much easier when validation rules are defined, but at the
same time those rules are protecting the application from
web-bots that are looking for vulnerable sites that can later
be used for posting spam messages, or be targeted with
other methods of attack. Later in this chapter we discuss
Captcha, the second line of defense against these forms of
attack. Chapter 8 of this book addresses injection and

304

cross-site request forgery (CSRF) attacks, a special attack
on a web application that utilizes poorly protected forms as
an attack point.

Chapter 4 left us with a basic web application, but with no
data validation, and now we will add it. We will also show
alternative methods of creating forms in the project.

The address book that we created has a few fields that will
require validation, so we want to add these rules:

* first name—This field will be obligatory and at least 3
characters long, but no longer than 25.

* last name—This field is optional; it should be no longer
than 25 characters.

* email—Must be an e-mail format and no longer than 25
characters.

* phone—Integer value no longer than 11 digits.
* created—Date format (MDY).

Field length values here are related to database design. It is
a good practice to consider database restrictions while
including validation in the project. Because, for example,
if a name 10 characters long is put into a VARCHAR (5) type
field in a database, the input data will be truncated
accordingly. This can be avoided by adding field
validation that would prohibit sending improper data into
the database.

How Does Form Validation Work?

Form validation verifies submitted data against a set of
validation rules. When any information is about to be

305

submitted via a form, validation decides whether the
information is correct and can be processed or not.

There are two levels of validation that can be applied to an
application. The first one can be applied before any data is
sent to a server and it is done on the client side using
JavaScript. This is quite useful because in case of bigger
forms, the user can be informed whether a field is valid or
not. This validation can be easily omitted by disabling
JavaScript in a user's browser. The second stage of
validation is done by sending the form input to the
application server where it will be validated, and a proper
reply will be sent back to the user, informing him of any
errors.

Let's consider the simplest case of server-only validation,
as shown in Figure 5.1. We assume that a user is about to
post a comment to a blog post via a web form. Here we
can decide that there have to be some values submitted for
the UserName and Comment fields. The first stage of
validation will check if the UserName and the Comment
fields have any values assigned, and if they do, this data is
further validated by a set of predefined rules. Those rules
may check whether the comment contains any unwanted
scripts or contains any offensive words. Later, based on
validation results, an action is performed. In this case, it is
saving the submitted comment into a database. On the
other hand, if the user has not filled in the UserName or
the Comment fields, the form validation will generate an
appropriate error message, and the page will be reloaded
displaying it.

Figure 5.1 Diagram of the form validation process

306

Web licatiol S
eb application EReA B erver

Validation
Web page Submit dat
containing el bt > Has any data
HTML form been sent?
A Generate page
pag No Yes

A 4
Validate data

Is sent data
correct?

Generate page

MNo Yes

Y

Generate page

A

Confirmation page Process data

Now let's consider an example that employs JavaScript as
the most commonly used client-side validation method.
This example will use the scheme shown in Figure 5.2 to
illustrate how client-side form validation works.

Figure 5.2 JavaScript form-validation process

307

Web licati S
‘eb application Ganiarate page erver

l JavaScript Validation
Web page Submit data Validation
containing Has any data
HTML form Does form been sent?
x contain any data?
Bisei Yes No
isplay message
i g No Yes l
l or Validate data
Validate data
Is sent data
Is data correct?
correct?
Display message Or
oY 2 No Yes

Il

)) Generate page
Confirmation page Process data

As before, the user fills in the HTML comment form and
then clicks the submit button to send data. When the
submit button is clicked, the JavaScript validator
function is called, which checks whether the UserName
and the Comment fields have been both filled in. If any of
those fields has no values inside, the validator function
returns false, and an appropriate message is displayed to
the user. If the UserName and the Comment fields have
been filled in properly and the submit button was clicked
by the user, the validator function can verify form data
against a set of rules.

After passing all validation rules, the form data is sent to
the server, where it is validated again. Server rules can be
similar to the JavaScript rules from the previous example,
but any security filtering should necessarily be repeated on
the server side because JavaScript can be easily disabled. It
is a good practice to always validate all submitted data on
the server side, due to security reasons. JavaScript
validation may still be performed as an auxiliary for user
convenience and to reduce server workload.

308

So far, we have dealt with theory; now is the time to see
how the validation is done in practice. We will focus on
server-side validation provided by the three frameworks'
core functionality.

Symfony

In Chapter 4, the app was created using Doctrine and it
automatically created forms by using a command-line
interface (CLI) parameter: doctrine:build --all.
Forms created that way have classes represented by
validators and widgets. These classes provide a way to
manage forms in an easy manner. Every field of a form has
its own validator and widget.

While developing the first application, we used Doctrine
and basic form validation rules were created. These rules
can be found in the file /1ib/form/doctrine/base/

BaseAddressesForm.class.php.

In the following code, you can see the setup () function
that calls two important methods: setwidgets() and
setValidators ().

<?php
abstract class BaseAddressesForm extends BaseFormDoctrine {

public function setup() {

309

$this->setWidgets(array(

‘id’ => new sfWidgetFormInputHidden(),
‘“first name’ => new sfWidgetFormInputText(),
‘last_name’ =>new sfWidgetFormInputText(),
‘email’ => new sfWidgetFormInputText(),
‘phone’ => new sfWidgetFormInputText(),
‘address” => new sfWidgetFormInputText(),
‘created’

=> new sfWidgetFormDateTime(),
‘updated’ => new sfWidgetFormDateTime(),
)s
$this->setValidators(array(
‘id’ => new sfValidatorDoctrineChoice(array(
‘model” => $this->getModelName(),
‘column’ => ‘id’, ‘required’ => false)),
“first name’ => new sfValidatorString(array(
‘max_length’ => 40, ‘required’ => false)),
‘last_name’ => new sfValidatorString(array(
‘max_length’ => 40, ‘required’ => false)),
‘email” => new sfValidatorString(array(
‘max_length’ => 40, ‘required’ => false)),

‘phone’ =>new sfValidatorInteger(array(‘required’ => false)),

‘address” => new sfValidatorPass(array(‘required’ => false)),

‘created” => new sfValidatorDateTime(),

310

‘updated’ => new sfValidatorDateTime(),));
$this->widgetSchema->setNameFormat(‘address[%s]’);

$this->errorSchema =
new sfValidatorErrorSchema($this->validatorSchema);

$this->setupInheritance();
parent::setup();
}
public function getModelName(){ return ‘Addresses’; }

12>

code snippet /validation/symfony/lib/form/doctrine/base/
BaseAddressesForm.class.php

Those basic validation rules were generated according to
the schema.yml file that was used to generate the first
application project.

sfvalidatorSchema is an array that holds the validators
of the form. The setvalidators () method is used to fill
sfValidatorSchema with validation rules.

Symfony offers a wide range of available validators that
can be defined in various ways. The setoption () and
setMessage () methods can be used to customize
validators.

$value = new sfValidatorString();

$value ->setOption(‘required’, true);

311

$value ->setMessage(‘required’, ‘This value is required.’);

It is possible to define more than one rule to a validator by
using the setOptions () and setMessages () methods.

$name= new sfValidatorString();
$name->setOptions(array (‘min_length’ => 4, ‘max_length’ => 12));
$name->setMessages(array (

‘min_length’ => ‘Supplied name must be at least 4 characters long’,

‘max_length’ => ‘Supplied name cannot be longer than 12 characters’));
The same validation rules can be defined like this:

$this->setValidators(array(‘name’ => new sfValidatorString(
array(‘min_length’ =>4, ‘max_length’ =>12),
array(‘min_length’ => ‘Supplied name must be at least 4 characters long’,
‘max_length’ => ‘Supplied name cannot be longer than 12 characters’))
s
Let's look at a few of the most commonly used validators:

* sfvalidatorString—Used to validate a string. It converts
the input value to a string.

$value = new sfValidatorString();
$value ->setOption(‘required’, true);
$value ->setMessage(‘required’, ‘This value is required.’);

e sfvValidatorPass—Passes the value unmodified.

$value= new sfValidatorPass();

312

* sfvalidatorInteger—Validates an integer value. It
converts the input value to an integer value.

$age => new sfValidatorInteger(array(‘min’ => 0,°max’ => 100, ‘required’ => false));

* sfvalidatorNumber—Used to validate a number (integer
or float). It converts the input value to a float value.

$percent = new sfValidatorNumber(array(‘min’ => 0, ‘max’ => 99.99,),
array(‘min’ => ‘Percentage must be grater than 0%’,
‘max’ => ‘Percentage cannot exceed 99.99%’,));

e sfvalidatorEmail—Used to validate e-mail format.

$email = new sfValidatorEmail();

* sfvalidatorChoice— Used to check if the given value is
one of the expected values.

$fruit = new sfValidatorChoice(array(‘required’ => false,
‘choices’ => array(‘banana’, ‘apple’, ‘pear’)));

* sfvalidatorTime— Used to validate time format. It
converts the input value to a valid time format.

$time = new sfValidatorTime();

e sfvalidatorDate—Used to validate a date format. It
converts the input value to a valid date format.

$value = new sfValidatorDate(array(‘with_time’ => true));

* sfvalidatorUrl—Used to verify whether a given value is
a valid URL address. It has protocol options that allow
specifying what protocols are allowed.

$url = new sfValidatorUrl(array(

‘protocols’ => array(‘http’, ‘https’, ‘ftp’, ‘ftps’)));

313

* sfvalidatorRegex—Validates a value with a user-defined
regular expression.

$ip = new sfValidatorRegex(array(

‘pattern’ = “*[0-9]{3} 1.[0-91¢3} 1.[0-97{2} 1.[0-91{3}$")):

For full list of validators, please refer to the
Symfony documentation.

Now modify your application so that the validation rules
better match the purpose of the project, as shown in the
following code. Set the required option of the
first name field to true so that it no longer will be
possible to add empty entries. Next, create some messages
to inform the user if the supplied values are incorrect.
Finally, you should add an e-mail validation rule.

<?php
abstract class BaseAddressesForm extends BaseFormDoctrine {
public function setup() {
$this->setWidgets(array(

‘id’ =>new sfWidgetFormInputHidden(),

314

“first name’ => new sfWidgetFormInputText(),
‘last_name’ => new sfWidgetFormInputText(),
‘email’ =>new sfWidgetFormInputText(),
‘phone’ => new sfWidgetFormInputText(),
‘address” => new sfWidgetFormInputText(),
‘created” =>new sfWidgetFormDateTime(),
‘updated’ =>new sfWidgetFormDateTime(),
)s
$this->setValidators(array(
‘id’ => new sfValidatorDoctrineChoice(array(
‘model’ => $this->getModelName(),‘column’ => ‘id’,‘required” => false)),
“first name’ => new sfValidatorString(
array(‘max_length’ => 25, ‘required’ => true),
array (‘max_length’ => ‘First name must be no longer than 25 characters’,
‘required’ => ‘First name is required’)),
‘last_name’ => new sfValidatorString(

array(‘max_length’ => 25, ‘required’ => false),

array (‘max_length’ => ‘Last name must be no longer than 25 characters”)),

‘email’ => new sfValidatorEmail(array(‘required’=>false),

array(‘invalid’=>‘Supplied email address email is invalid”)),
‘phone’ =>new sfValidatorInteger(array(‘required’ => false)),
‘address’

=> new sfValidatorPass(array(‘required’ => false)),

‘created” => new sfValidatorDateTime(),

315

‘updated” => new sfValidatorDateTime(),
)s
$this->widgetSchema->setNameFormat(‘address[%s]’);

$this->errorSchema =
new sfValidatorErrorSchema($this->validatorSchema);

$this->setupInheritance();
parent::setup();
}
public function getModelName(){ return ‘Addresses’; }

2>

code snippet /validation/symfony/lib/form/doctrine/base/
BaseAddressesForm.class.php

In addition to the core validation helpers offered by
Symfony, there are a few plug-ins available that offer
additional validation options.

Plug-ins

HTMLS is making its way into the web applications world
quickly, so it is natural that web frameworks incorporate
new features that are offered by it.

The sfHtml5SFormPlugin supplies your application with an
additional set of widgets and validators to be used with the

new HTMLYS5 input types.

To install the sfHtmI5SFormPlugin, you simply need to type
following command into console from your project folder:

316

$ symfony plugin:install sfHtml5SFormPlugin

To activate the newly installed plug-in, it is necessary to
modify the /config/
ProjectConfiguration.class.php file and add the
following line:

$this->enablePlugins(array(‘sfHtml5FormPlugin’));

The ProjectConfiguration.class.php file should
now contain code that looks like this:

class ProjectConfiguration extends sfProjectConfiguration {
public function setup() {
$this->enablePlugins(‘sfDoctrinePlugin’);

$this->enablePlugins(array(‘sfHtml5FormPlugin’));

}

As of this writing, the current version of the
sfHtmlSFormPlugin is version 0.49 and it provides

validators such as sfvalidator5Color,
sfVvalidatorbDate, sfValidator5DateTimeLocal,
sfValidator5DateTime, sfValidator5Email,

sfvalidatorS5Month, and sfvalidator5Time.

Another useful plug-in is sfJqueryFormValidationPlugin.
As the name implies, it is a Symfony plug-in that
introduces client-side forms validation that is performed
using the jQuery library and the jQuery Validation plug-in.
So how does it work? It creates JavaScript client-side
validation rules and messages, according to validation

317

rules and messages from the validation schema. This
solution has a few features that are worth mentioning here.
First, when an HTML page is generated, there is no need
to generate additional JavaScript code because the
validation is added wusing progressive-enhancement
techniques. The second important feature is that there is no
need to create new containers for client-side error
messages; they are written using the same HTML elements
as the server-side validation.

Installation of sflqueryFormValidationPlugin requires
modification of a few files located in the /config folder
of Symfony installation.

First, it is necessary to include the jQuery library and the
jQuery Validation plug-in into your site in view.yml1. This
can be done either by downloading them or by simply
including them from their respective content delivery
network (CDN), as shown here:

default:
javascripts:
[http://ajax.googleapis.com/ajax/libs/jquery/1.4/jquery.min.js,

http://ajax.microsoft.com/ajax/jquery.validate/1.7/jquery.validate.min.js]

code smippet /validation/symfony/app/frontend/config/
view.yml

318

To install the sfIlqueryFormValidationPlugin, you can type
the following command into the console from your project
folder:

$ symfony plugin:install sflqueryFormValidationPlugin

The filters.yml file should contain the following filter:

jquery_form_validation:

class: sflqueryFormValidationFilter

code snippet /validation/symfony/app/frontend/config/
filters.yml

The next module should be enabled in your
settings.yml by adding the following line:

all:
.settings:

enabled modules: [default, sflqueryFormVal]

code snippet /validation/symfony/app/frontend/config/
settings.yml

319

Finally, the cache should be cleared by typing the
following in the console:

$ symfony cc

There are some additional configuration options for this
plug-in. For more information, please refer to the plug-in
documentation.

CakePHP

Core validation rules that are offered by CakePHP make
model data validation an easy task. These rules can
automatically handle many often-used validation tasks that
otherwise would need to be written manually. CakePHP is
equipped with a powerful validation engine that allows a
number of built-in rules such as e-mail address, postal
number, IPv4, Social Security number, credit card
numbers, and so on. You can also add your own validation
rules that can be used the same way as built-in rules.

Previously, when the first application was created we
created a model file. Basically, it was an empty class with

no validation present at all.

In the following example, the same model file is expanded
by a $validate array:

<?php

320

class Address extends AppModel {
var $name = ‘Address’;
var $validate = array(‘first name’ => ‘notEmpty’);

y>

code snippet /validation/cakephp/app/models/address.php

The newly added $validate array tells CakePHP how
data fields will be validated when values are sent and the
save () method is called. The first rule introduced is very
simple: It requires only that the first name field should
not be empty, but this rule will not generate any error
message when that field is left empty. As well, no message
will be generated when longer data is passed than the
database can accept (VARCHAR (25)).

The key of the svalidate array is the name of the form
field, for which the validation rule is created, and it can
take a single value or (more commonly) an array.

The following example illustrates the simplest method of
defining a validation rule. The general syntax for defining
rules in a model file looks like this:

var $validate = array(‘first name’ => ‘alphaNumeric’,

‘last name’ => array(‘rule’ => array(‘maxLength’, 25)));

The ‘rule’ key defines the validation method and takes
either a single value or an array. An array is used when the
rule requires some parameters as is illustrated by the rule
created for the last name field. The rule may be the

321

name of a method added in your model file, a name of the
core validation rule, or even a regular expression.

In this model, any data sent by a first name field will be
validated against the alphaNumeric rule, which means
that the data must contain only letters and numbers. And a
second rule restricts 1ast name to be no longer than 25
characters.

Probably the most commonly used validation rule is the
email rule. It ensures that the user is providing a properly
formatted e-mail address through the email field.

var $validate = array(‘email” => ‘email’);

Creating validation rules in a model file allows us to define
error messages that will be displayed when the data
submitted does not match the defined rules. The following
example uses the isUnique rule in conjunction with an
error message to be displayed if the supplied phone
number is not unique.

var $validate = array(‘phone’ => array(‘rule’ => ‘isUnique’,
‘message’ => ‘This phone number has already been saved.’));

To verify data passed by a Checkbox field, a boolean
rule can be applied that can be used as a protection against
any code injection.

The data for the Agreecheckbox field must be a boolean
value. Values that are accepted are true or false,
integers 0 or 1, or strings ‘0’ or “1°.

var $validate = array(‘AgreeCheckbox’ => array(‘rule’ => ‘boolean’));

322

Next, rules ensure that data meets the minimum length and
maximum length requirements.

var $validate = array(‘password’ => array(‘rule’ => array(‘minLength’, 6),
‘message’ => ‘Password must be at least 6 characters long’)
‘login’ => array(‘rule’ => array(‘maxLength’, 16),
‘message’ => ‘Usernames must be no larger than 15 characters long.”));

Date format validation is done by using a date rule to
ensure that submitted data has a valid format. By setting
the value of a rule array, it is possible to specify which
date format is considered valid. This value can be one of
the following: dmy, mdy, ymd, dMy, Mdy, My, my. The
following code demonstrates date validation:

var $validate = array(‘birth_date’ => array(‘rule’ => array(‘date’, ‘ymd’),
‘message’ => ‘Enter a date in YY-MM-DD format.’,
‘allowEmpty’ => true));

In a practical application of form validation, a single field
may have multiple validation rules. Let's look at how these
rules are defined in the model file:

<?php

class User extends AppModel {

323

var $name = ‘User’;
var $validate = array(
‘login’ => array(‘login_1’ => array(‘rule’ => array(‘minLength’, 6),
‘message’ => ‘Login must be at least 6 chars long’),
‘login_2’ => array(‘rule’ => array(‘isUnique’),
‘message’ => ‘This login is already taken’, ‘last’ => true)),
‘email” => array(‘email 1’ => array (‘rule’ => ‘email’,
‘message’ => ‘Please enter valid email address’),
‘email 2’ => array (‘rule’ => array(‘isUnique’),
‘message’ => ‘This email address was already used’)));

>
code snippet /validation/cakephp/app/models/user.php

A new validation parameter has been introduced here.
Setting the last key as true will cause the validator to stop
on the rule if it fails instead of continuing with the next
rule. This can be used if you want validation to stop if a
selected rule has failed.

In addition to already built-in validation rules, it is possible
to create your own custom regular expression validation
rules, simply by creating the desired regular expression
and placing it into a validation rule according to following
example:

var $validate = array(‘login’ => array(‘rule’ => ‘/"[a-z0-9]{3,}$/i’,

‘message’ => ‘Only letters and integers, min 3 characters’

324

));

The examples shown so far are some of the
most common validation rules that can be
found in various online forms. (Of course,
there are more validation options than have
we presented here.) Other useful rule
names include between, blank, cc (credit
card), comparison, date, decimal,
equalTo, extension, file, IP, money,
multiple, inList, numeric, phone,
postal, range, ssn, and url. For more
examples, please refer to the CakePHP
documentation.

If none of the predefined rules meets our requirements,
there is one more thing we can do about form validation in
CakePHP. While using a model to apply validation rules, it
is possible to add your own validation methods simply by
creating them inside the model file. In a normal situation,
while not using any web framework, it is necessary to
write your own functions to validate form data. When
writing a validation method in a model file, this situation is
the same, but you keep all the validation in one file.

The following example indicates how this should be done:

<?php

class Item extends AppModel {

325

var $name = ‘Item’;

var $validate =
array(‘field_value’ => array(‘rule’ => array(‘myValidation’, 20),

‘message’ => ‘Supplied value must be lower than 20°,));
function myValidation($check, $limit) { return $check< $limit; }

y>

The rule array takes the method name myvalidation ()
as a key. That way, this method is called when validation
1S done. The myvalidation() function takes two
parameters: $check and s1imit. The first one is a value
posted through the form, and the second variable takes a
value that is specified in a rule array (e.g., 20).

Zend Framework

When you work with Zend Framework, you can use the
Zend Form object in order to create a web form. It is a
more than adequate tool for most cases of form building
and validation. It is possible to create single form elements
while encapsulating it with options that allow you to
configure validation, error messages, filtering (character
escaping and data normalization), and rendering. For this
section, we will focus on forms data-validation options,
and later you will see how to customize forms some more.

In the previous chapter, we created this file to be

responsible for generating an “Add a new entry” form in
the address book application:

326

<?php
class Application Form_AddressAdd extends Zend Form {
public function init() {
$this->setMethod(‘post’);
$this->addElement(‘text’, “firstName’, array(‘label’ => ‘Your first name:’,
‘required’ => false, filters” => array(‘StringTrim’),));
$this->addElement(‘text’, ‘lastName’, array(‘label’ => ‘Your last name:’,
‘required’ => false, ‘filters’ => array(‘StringTrim’),));
$this->addElement(‘text’, ‘email’, array(‘label’ => ‘Your e-mail address:’,
‘required’ => false, ‘filters’ => array(‘StringTrim’),));
$this->addElement(‘text’, ‘phone’, array(‘label’ => “Your phone:’,
‘required’ => false, filters” => array(‘StringTrim’),));
$this->addElement(‘textarea’, ‘address’, array(‘label’ => ‘Your Address:’,
‘required’ => false, ‘filters” => array(‘StringTrim’),));
$this->addElement(‘submit’, ‘submit’, array(‘ignore’ => true,

‘label’ => ‘Save’,)); }

2>
code snippet Nvalidation/zf/application/forms/
AddressAdd.php

327

The addElement () method of the Zend Form object is
responsible for creating form elements, and it can take
parameters that will create field validators. Let's see the
simplest method of defining a validation rule for the
preceding code:

$this->addElement(‘text’, ‘firstName’, array(‘validators’ => array(‘alnum’),
‘label’ => ‘Your first name:’, ‘required’ => false,

“filters’ => array(‘StringTrim’),));

By adding the ‘validators’ key, it is possible to include
various validation parameters. Here we used the ‘alnum’
option. It verifies if any data sent through the firstName
field is alphanumeric (letters and numbers) type. If any
special characters are passed, an automatic error message
will be generated and displayed. As you can see, the
addElement () method received the‘required’ and
‘filters’ keys. The first one can be used in validation to
specify whether a field can be empty or not; this actually
creates a ‘NotEmpty’ validator that will be the first one
validating a field to ensure that the verified element has a
value when required. And by setting ‘filters’ you can
filter certain form data before it will be validated. For
example, it is possible to strip all HTML and PHP tags
from form input simply by using the following:

“filters’ => array(‘StripTags’)

For more information about using filters, refer to the Zend
Framework documentation.

The zend validate module provides a set of commonly
used wvalidators. It also provides a simple validator

328

mechanism that allows chaining multiple validators to be
applied on data in a user defined order.

It is possible to specify multiple validation rules by adding
them as values in the validators array.

$this->addElement(‘text’, ‘firstName’, array(
‘validators’ => array(array(‘stringLength’, true, array(5, 15)), ‘alnum’),
s

Validators created in this example ensure that the data
provided is alphanumeric and 5 to 15 characters long. The
first validator is stringLength and in this case it is
configured by a true/false parameter and the array. The
second parameter of the validation array is set to true and it
means that the validation chain will be broken when the
rule is not met, which means no following validation rules
will be applied. The third parameter is an array that allows
us to define the range in which the firstName value must
be contained.

Now let's see how to validate the format of an e-mail
address. Of course, there is a validator for that as well.

$this->addElement(‘text’, ‘email’, array(

‘validators’ => array(array(‘EmailAddress’, false, array(‘domain’ => true)))
s
If more complex validation options are required, the
EmailAddress validator can be configured through

various parameters that can regard domain, hostname, and
local names. But for a basic and the most common

329

application, this example should be adequate. As before,
we use three parameters to create the validator. The third
one allows us to decide if we want to validate the domain
or not; by setting it to false, we tell the validator to
ignore the domain part of an e-mail address.

zend Validate is automatically equipped with a broad
range of error messages, but if there is a need to customize
any of these messages, it is possible to do so by adding
another parameter to the validation array. In the following
example, the ‘messages’ key is added, and an array is
created that defines two error messages:

$this->addElement(‘text’, ‘email’, array(
‘validators’ => array(array(‘EmailAddress’, false,
array(‘domain’ => true, ‘messages’ =>array(
Zend_Validate EmailAddress::INVALID => ‘Please enter a valid email address’,
Zend Validate EmailAddress::INVALID FORMAT => ‘Invalid email format’)))
)
To modify a desired message, it is necessary to know its

error code. These codes can be found in the Zend
Framework documentation.

Basic date format validation can be as simple as this:

$this->addElement(‘text’, ‘productionDate’, array(

‘validators’ => array(array(‘Date’, false,array(‘YYYY-MM-dd HH:mm’)))

));

330

But there is a whole zend pate API to give developers
maximum control over things that can be done with dates.
As in previous examples in this chapter, the validator array
contains a third parameter that is an array of options. In
this case, it defines an acceptable date format.

Zend Framework gives you quite a few ways to do the
same thing, and you can do things according to your liking
or habit. So let's look at how validators can be created by
calling the addvalidators () method:

$form = new Zend_Form;
$form->addElement(‘text’, ‘firstName”);
$firstName->addValidators(array(array(‘NotEmpty’, true), array(‘alnum’),

array(‘stringLength’, false, array(5, 15)),));
A more verbose version of the same code can look like
this:
$form = new Zend_Form;
$form->addElement(‘text’, ‘firstName”);
$firstName->addValidators(array(
array(‘validator’ => ‘NotEmpty’, breakChainOnFailure’ => true),
array(‘validator’ => ‘alnum’),
array(‘validator’ => ‘stringLength’, ‘options’ => array(5, 15)),));
Customizing Forms

Building validated forms manually can take quite a long
time. To build a functional form with form data validation,

331

it is necessary to enter the same values in multiple places,
like in the view, the field's error messages, and the field
itself. Most of this is done automatically by frameworks,
giving developers tools to easily build custom forms.

A common form can contain various input elements such
as text fields, checkboxes, select lists, textareas, labels, and
so on. In Chapter 4, we have created basic forms, by using
tools offered by frameworks. Excluding Zend Framework,
we didn't have much influence on how the forms were
built and how will the final result looked. It is time to
change that.

You will modify forms generated for your first application.
We will show you how to change labels, replace input
fields, and modify their functionalities. To do that, you
will use built-in core helpers and some external plug-ins.

Symfony

As discussed in the validation part of this chapter,
Symfony offers a wide range of validators and widgets that
give you all sorts of possibilities for building your forms.
There are two main classes that you will use when building
forms: sfForm and sfwidget. These classes are the root
classes, and every other form or widget inherits from one
of them. Widgets are a type of add-on that allows you to
add content to your form, such as input fields, for example.
You can define your own widget that can be a customized
input field not commonly used anywhere else. You can
add proper widgets that are delivered within a framework
by using the setup () method. Note that there are two
main types of forms. The first are defined by developers;

332

the second are generated by object-relational mapping
(ORM). In this case, it's Doctrine. When you use the
following command:

$ symfony doctrine:build --all

or
$ symfony doctrine:build-forms

forms will be generated by Doctrine for each model that
you defined earlier. This can be very useful, especially
when building the back end. These forms are stored in the
project's /1ib/form directory. The second directory is the
application's /1ib directory, in which you will store all
defined forms. Doctrine also generated BaseForm classes
that inherit from sfForm. These BaseForm classes are
stored in the /1ib/form/doctrine/base directory. An
exemplary file can contain the following lines:

abstract class BaseAddressesForm extends BaseFormDoctrine {

public function setup() {

}
}

While not using Doctrine to build your application, you
would usually have an exemplary
AddressesForm.class.php in a /lib/form directory
that should contain the following class:

class BaseAddressesForm extends BaseForm {

public function setup() { }

333

}

Let's look at the setup() function that was built by

Doctrine when first project was created in the previous
chapter.

public function setup() {
$this->setWidgets(array(
‘ad’ =>new stWidgetFormInputHidden(),
‘first name’ => new sfWidgetFormInputText(),
‘last name’ => new sfWidgetFormInputText(),
‘email’ =>new stWidgetFormInputText(),
‘phone’ =>new sfWidgetFormInputText(),
‘address’ => new sfWidgetFormInputText(),
‘created” => new sfWidgetFormDateTime(),
‘updated’ => new sfWidgetFormDateTime(),));
$this->setValidators(array(
‘id> => new sfValidatorDoctrineChoice(array(‘model’ => $this->getModelName(),
‘column’ => ‘id’,‘required’ => false)),
‘first name’ => new sfValidatorString(array(
‘max_length’ => 40, ‘required’ => false)),
‘last name’ => new sfValidatorString(array(
‘max_length’ => 40, ‘required’ => false)),
‘email’ =>new sfValidatorString(array(

‘max_length’ => 40, ‘required’ => false)),

334

‘phone’ => new sfValidatorInteger(array(‘required’ => false)),
‘description” => new sfValidatorPass(array(‘required” => false)),
‘created’ => new sfValidatorDateTime(),

‘updated” => new sfValidatorDateTime(),));

$this->widgetSchema->setNameFormat(‘address[%s]’);}

There are a few widgets in there that correspond to fields
in a database. Those widgets were created to match field
types in the database and are as simple as possible. This
solution worked earlier; we wanted to see how quickly we
could create a project, so we didn't interfere with the forms
because they were doing their task. The fragment of
HTML code responsible for displaying form fields
generated by this script looks like this:

<tr><th><label for="address_first name”>First name</label></th>
<td><input type="text”” name="address[first name]” id="address_{first name” />
<ftd></tr>

<tr><th><label for="address_last name”>Last name</label></th>
<td><input type="text” name="address[last_name]” id="address_last name” />
<ftd></tr>

<tr><th><label for="address_email”>Email</label></th>
<td><input type="text”” name="address[email]” id="address_email” />
<ftd></tr>

<tr><th><label for="address_phone”>Phone</label></th>
<td><input type="text” name="address[phone]” id="address_phone” />

</td></tr>

335

<tr><th><label for="address_description”>Description</label></th>
<td><input type="text”” name="address[description]|” id="address_description” />

</td></tr>

Figure 5.3 illustrates how input fields for the preceding
code should look in a browser.

Figure 5.3 Form fields created in first application

First name
Last name
Email

Phone

Description

Now we want to know how customize or build these forms
ourselves, so let's consider this simple example:
public function setup() {
$this->setWidgets(array(‘id’ => new sfWidgetFormInputHidden(),
“first name’ => new sfWidgetFormInputText(),
‘description” => new sfWidgetFormTextarea(),));

$this->widgetSchema->setNameFormat(‘address[%s]’);}

The setup() function calls for the setwWidgets ()
method that is used to define widgets that will be used to
create form elements. This method accepts an associative
array. Field names are accepted as the keys; as the values,
the widget objects are given. The last line invokes the
setNameFormat (‘$s’) method that sets the naming

336

convention for the name and ID attributes of HTML tags
that will be form fields. For example, the name attribute of
first name input will look like this:

<input type="text” name="address[first name]” />

Let's move on to field creation. In this example, three types
of widgets are used.

The first one 1S sfWidgetFormInputHidden () and it
corresponds to a hidden HTML field. The id field is the
unique ID of the entry and this shouldn't be viewable to the
user. When generated the field will look like this:

<input type="hidden” name="address[id]” id="address_id” />

Next there is a sfWidgetFormInputText () widget that
will generate standard a HTML field as follows:

<tr><th><label for="address_first name”>First name</label></th>
<td><input type="text” name="address[first name]” id="address_{first name” />

</td></tr>

The last widget in this example is
sfWidgetFormTextarea (). It is responsible for creating
HTML textarea form fields that look like this:

<tr><th><label for="address_description”>Description</label></th>
<td><textarea rows="4" cols="30"name="address[description]”

id="address_description”></textarea> </td></tr>

337

Of course, every widget can take a number of parameters
that will allow us to customize generated HTML code and
the behavior of created form fields.

While the automatic generation of labels is very useful, the
framework allows you to define personalized labels for
multiple fields using the setLabels () method.

$this->widgetSchema->setLabels(array(‘name’ => “Your name’,

‘email’ => “Your email address’,‘message’ => “Your message’,));

You can also only modify a single label using the
setLabel () method:

$this->widgetSchema->setLabel(‘email’, ‘Your email address’);

There is another way to customize HTML code generated
by widgets and it enables us to pass multiple parameters to
specify functionality and attributes of form fields.

$this->setWidgets(array(
“first name’ => new sfWidgetFormInputText(

array(‘label’ => ‘Different label’), array(‘class’ => ‘fname”))));

As illustrated in the previous example, the widget
sfWidgetFormInputText () is used, and three arrays are
given. These parameters affect how the HTML code will
be generated:

<tr><th><label for="first_name”>Different label</label></th>

<td><input class="fname” type="text” name="first name” id="first name” /></td></tr>

338

We can see that the class argument of the input tag is the
same as the class parameter supplied for
sfWidgetFormInputText ().

Now let's look at another example of form code that can be
used as a simple mailing form.

public function setup() {
$this->setWidgets(array(
‘name’ => new sfWidgetFormInput(array(‘label” => ‘Name”)),
‘email’ =>new sfWidgetFormInput(array(‘label’ => ‘Email’)),
‘subject’ => new sfWidgetFormSelect(array(
‘label’ => “Select subject’,
‘choices’ => array(‘Item 1°, ‘Item 2’, ‘Item 3”))),
‘message’ => new sfWidgetFormTextarea(array(‘label’ => ‘Message”)),
s
$this->widgetSchema->setNameFormat(‘contact[%s]’);
h

One new thing about this example is the
sfilidgetFormSelect () widget. It is responsible for
creating the select HTML tag.

Figure 5.4 illustrates how the mailing form should look in
a web browser.

Figure 5.4 Example mailing form

339

Name
Email

Select subject | lterm 1 »

Message

The widget sfwidgetFormSelect() is an array of
selectable items, so it requires parameter choices to be
defined. As a result of using this widget, the following
HTML code is created:

<tr><th><label for="address_created”>Select subject </label></th>
<td><select name="contact[subject]” id="contact_subject”>
<option value="A">Subject A</option>
<option value="B”’>Subject B</option>

<option value="C">Subject C</option></select></td></tr>

Widgets

Symfony has a large variety of widgets that can be used to
build complex forms for web applications. The following
list presents selected widgets with code implementation. It
illustrates the range of available options. Those that can be
found in most common web forms and are simplest to
implement are the following:

* sfWidgetFormInput—Represents a simple HTML input

tag.

* sfWidgetFormInputPassword—Represents a paSSWOI‘d
HTML input tag.

* sfWidgetFormTextarea—Represents a textarea HTML
tag.

340

sfWidgetFormInputCheckbox—Represents an HTML
checkbox input.

sfWidgetFormInputFile—Represents an upload file
HTML input tag.

The following code is an example of how to use these
widgets in your form class:

$this->setWidgets(array(

“first name’ => new sfWidgetFormInputText(array(‘label” => ‘Name’)),

‘pass’ =>new sfWidgetFormInputPassword (array(‘label’ => ‘Password’)),

‘agreement’ => new sfWidgetFormInputCheckbox(array(‘label” => I agree’)),

‘description” => new sfWidgetFormTextarea (array(‘label’ => ‘Description”)),

“file’ => new sfWidgetFormInputFile(array(‘label’ => ‘Upload file:’)),

));

code snippet /customization/symfony/apps/frontend/lib/
form/ExampleForm.class.php

And to make sure that all these widgets will display

correctly, your template should contain code similar to the
following:

341

<tr><th><?php echo $form[‘first name’]->renderLabel() ?></th>
<td><?php echo $form[‘first name’]->renderError() 7>
<?php echo $form[‘first_name’] ?></td></tr>
<tr><th><?php echo $form[‘pass’]->renderLabel() ?></th>
<td><?php echo $form[‘pass’]->renderError() 7>
<?php echo $form[‘pass’] 7> </td></tr>
<tr><th><?php echo $form[‘agreement’]->renderLabel() ?></th>
<td><?php echo $form[‘agreement’]->renderError() ?>
<?php echo $form[‘agreement’] ?></td></tr>
<tr><th><?php echo $form[‘description’]->renderLabel() ?></th>
<td><?php echo $form[‘description’]->renderError() ?>
<?php echo $form[‘description’]?> </td></tr>
<tr><th><?php echo $form[‘file’]->renderLabel() ?></th>
<td><?php echo $form[‘file’]->renderError() 7>

<?php echo $form[‘file’] ?></td></tr>

code snippet /customization/symfony/apps/frontend/
modules/exampleForm/templates/ form.php

342

The image shown in Figure 5.5 should be rendered in the
browser.

Figure 5.5 Form fields created in Chapter 4

Name
Password
Iagree [

Description

Upload file: -.I_E'__‘?_‘{“_ €

Next you can see an interesting widget because it can work
four different ways, depending on how you set the
‘expanded’ and ‘multiple’ parameters for this widget.
You will see how to implement and how to configure each
option separately. Implementation is straightforward, and
it is done in the same way as previous examples.

sfWidgetFormChoice—this widget can represent HTML
select tag, checkbox, radiobutton, and list input types. The
first configuration works like the select tag and toggled by
setting the expanded and multiple parameters to false.
The output is shown in the Figure 5.6.

Figure 5.6 Drop-down select field generated by the
sfWidgetFormChoice widget

Select item | item 1 »

item 2

sfWidgetFormChoice(array(‘label’ => ‘Select item’,

343

‘expanded’ => false, ‘multiple’ => false,

‘choices’ => array(‘1” =>‘item 1°, ‘2’=>‘item 2’)))
The second configuration shown in Figure 5.7 represents a
selection from an expanded list, and it is achieved by
setting the multiple parameter to true. This form
element allows multiple item selection by holding down

the Ctrl or Shift key while clicking the item selected. Item
2 was selected manually in this figure.

Figure 5.7 Multiselection field generated by the
sfWidgetFormChoice widget

Item 1

em 2
Select item

ltem 3

sfWidgetFormChoice(array(‘label’ => ‘Select item’,
‘expanded’ => false, ‘multiple’ => true,

‘choices’ => array(‘Item 1°, ‘Item 2°, ‘Item 3°)))

The next configuration represents a radiobutton select
input (see Figure 5.8), which is done by setting the
expanded parameter to true.

sfWidgetFormChoice(array(‘label’ => ‘Select item’,
‘expanded’ => true, ‘multiple’ => false,

‘choices’ => array(‘Item 1’, ‘Item 2’, ‘Item 3°)))

Figure 5.8 Multiradiobutton list generated by the
sfWidgetFormChoice widget

344

o O Ttem1
Selectitem o O Ttem?2

o O Ttem 3

Finally when both parameters are set to true, multiple
checkboxes are displayed, as shown in Figure 5.9. Items 1
and 3 were selected manually.

sfWidgetFormChoice(array(‘label” => ‘Select items’,
‘expanded’ => true, ‘multiple’ => true,

‘choices” => array(‘Item 1°, ‘Item 2’, ‘Item 3°)))

Figure 5.9 Multicheckbox list generated by the
sfWidgetFormChoice widget

o [V Ttem 1
Selectitems e [Ttem?2
o [V Ttem 3

Symfony offers a number of widgets that generate
date-time form inputs. Next, you will see how seven of
them can be implemented in your form. First you should
become familiar with the four most common date-time
widgets:

* sfWidgetFormTime—Represents a time selection input.

* sfWidgetFormDate—Represents a date selection input.

* sfWidgetFormDateRange—Represents a date range
selection input.

* sfWidgetFormDateTime—Represents a date-time selection
input.

The next widgets presented are those designed to help with
internationalization of the forms. They include a list of
months and days translated to multiple languages that can
be specified by setting the culture parameter.

345

* sfWidgetFormI18nTime—Represents a time selection
input that is very similar to the sfwWidgetFormTime widget
in terms of HTML generation.

* sfWidgetFormI1l8nDate—Represents a date selection
input that can be customized in terms of language.

* sfWidgetFormIl8nDateTime—Represents a date and time
selection input that can be customized in terms of language.

The following code illustrates how each of above widgets
can be configured for your form. Note that by setting the
culture parameter in the last three widgets you can
specify in which language months are written.

$this->setWidgets(array(

‘Time’ =>new sfWidgetFormTime (array(
‘label” => ‘Select Time”)),

‘Date’ =>new sfWidgetFormDate(array(
‘label” => ‘Select Date”)),

‘DateRange’ => new sfWidgetFormDateRange(array(
‘from_date’ => new sfWidgetFormDate(),
‘to_date’ =>new sfWidgetFormDate(),
‘label’ => ‘Select DateRange’)),

‘DateTime’ => new sfWidgetFormDateTime(array(

‘label” => ‘Select DateTime”)),

346

‘118nTime’ => new sfWidgetFormI18nTime (array(
‘label’ => ‘Select 118nTime’,
‘culture’ => ‘en’)),
‘I18nDate’ => new sfWidgetFormlI18nDate(array(
‘label’ => ‘Select 118nDate’,
‘culture’ => ‘f”)),
‘I18nDateTime’ => new sfWidgetFormI18nDateTime(array(
‘label’ => ‘Select 118nDateTime’,
‘culture’ => ‘de’)),
s
code snippet /customization/symfony/apps/frontend/lib/
form/[18NForm.class.php

To make sure that all widgets are rendered in your form,
you need to have in your form template a code similar to
the one shown here:

<tr><th><?php echo $form[‘Time’]->renderLabel() ?></th>
<td><?php echo $form[‘Time’]->renderError() ?>
<?php echo $form[‘Time’] ?></td></tr>

<tr><th><?php echo $form[‘Date’]->renderLabel() ?7></th>

347

<td><?php echo $form[‘Date’]->renderError() 7>
<?php echo $form[‘Date’] ?></td></tr>
<tr><th><?php echo $form[‘DateRange’]->renderLabel() ?></th>
<td><?php echo $form[‘DateRange’]->renderError() 7>
<?php echo $form[‘DateRange’] ?></td></tr>
<tr><th><?php echo $form[‘DateTime’]->renderLabel() 7></th>
<td><?php echo $form[‘DateTime’]->renderError() 7>
<?php echo $form[‘DateTime’] ?></td></tr>
<tr><th><?php echo $form[‘118nTime’]->renderLabel() ?></th>
<td><?php echo $form[‘T118nTime’]->renderError() 7>
<?php echo $form[‘T18nTime’] ?></td></tr>
<tr><th><?php echo $form[‘I18nDate’]->renderLabel() ?></th>
<td><?php echo $form[‘T18nDate’]->renderError() ?>
<?php echo $form[‘T18nDate’] ?7></td></tr>
<tr><th><?php echo $form[‘I18nDateTime’]->renderLabel() ?></th>
<td><?php echo $form[‘T18nDateTime’]->renderError() 7>

<?php echo $form[‘I18nDateTime’] ?></td></tr>

code smippet /customization/symfony/apps/frontend/
modules/il8nForm/templates/ form.php

When you run the preceding code, your browser will
render the form illustrated in Figure 5.10.

Figure 5.10 Various date-time form input fields generated
by Symfony widgets

348

Select Time 23 &0 =
Select Date [12 V.ff.3i v/ 2015 |
Select DateRange from |12 /|31 V_QI_EEDS ¥ to [12 [#ll/|31 [Mf| 2015 &
Select DateTime |12 »|/|31 ¥/ 2015 | |23 ¥:|59 ¥
Select I18nTime (23 ¥|:[59 ¥|a
Select I18nDate ;31 v;f_ décembre [wf 2015 &

Select I18nDateTime |31 ¥ | | Dezember ¥ . 2015 ¥| |23 ¥ ;|59 |v

Finally, you can use a few more widgets that help with
internationalization of your forms, three of which are listed
here:

* sfWidgetFormIl8nChoiceCountry—Represents a
country HTML select tag that can be customized in terms of
language (see Figure 5.11).

sfWidgetFormI18nChoiceCountry(array(‘label’ => ‘Select country’,‘culture’ => ‘fr’))

Figure 5.11 Country selection element generated by the
sfWidgetFormI18nChoiceCountry widget

Select country | Egypte ~
D -~
Emirats arabes unis
Equateur
Erymréa
Etat de la Cite du Vatican
Etats-Unis
Elam fédérés de Micronésie
Ethiopie

* sfWidgetFormIl 8nChoiceCurrencyfRepresentS a
currency HTML select tag that can be customized in terms
of language (see Figure 5.12).

sfWidgetFormI18nChoiceCurrency(array(‘label” => ‘Select currency’,
‘culture’ => ‘en”))

Figure 5.12 Currency selection element generated by the
sfWidgetForml18nChoiceCurrency widget

349

Select currency | Afghan Afghani v|

A
Afghan Afghani (1927-2002) |
Albanian Lek

Algetian Dinar

Andorran Peseta

Angolan Kwanza

Angolan Kwanza (1977-1990)

Angolan Kwanza Reaiustado (1995-1529)

* sfWidgetFormIl8nChoiceLanguage—Represents a
language HTML select tag that can be customized in terms
of language (see Figure 5.13).

sfWidgetFormI18nChoiceLanguage (array(‘label’ => ‘Select language’,

‘culture’ => ‘en”))

Figure 5.13 Language selection element generated by the
sfWidgetFormI18nChoiceLanguage widget

Select language Abkhazian v

Sbkhazian
Achinese
Acoli
Adangme
Adyghe
Afar

For a full list of widgets and more specific examples,
please refer to the Symfony documentation.

Plug-ins

It is possible to introduce even more customization options
in Symfony forms by using plug-ins. This section looks at
two plug-ins that extend the possibilities of automated

form building.

sfFormExtraPlugin

350

This plug-in is a collection of very specific validators,
widgets, and forms that extend the main Symfony package.
Those components have some external dependencies.

To install the sfFormExtraPlugin, you simply need to type
the following command into console from your project
directory:

$ symfony plugin:install sfFormExtraPlugin

Next you may clear cache data by typing the following
command into the console:

$ symfony cache:clear

This command will make available a new set of widgets to
be used in our project. Those components may depend on
the jQuery library to be displayed. Some of these widgets
are as follows:

* sfWidgetFormJQueryDate—Displays a date picker using
jQuery.

* sfWidgetFormJQueryAutocompleter—Displays an input
tag with auto complete support using jQuery.

e sfWidgetFormTextareaTinyMCE—A rich textarea
rendered with TinyMCE WYSIWYG editor.

e sfWidgetFormSelectUSState—Creates a select menu of
U.S. states.

To use jQuery-based widgets it is necessary to include into
the project a jQuery Ul package that will contain the

jguery-1.4.2.min.Jjs and
jquery-ui-1.8.2.custom.min.js libraries and a
graphic theme that consists of the

351

jquery-ui-1.8.2.custom.css style sheet and images.
You can get it at http://jqueryui.com/.

To make it all come together, it is necessary to put jQuery
libraries into the /symfony/web/js/ directory and the
theme folder into /symfony/web/css/.

Finally the /symfony/apps/frontend/config/
view.yml file needs to be modified, so that it includes
jQuery libraries:

javascripts: [jquery-1.4.2.min.js, jquery-ui-1.8.2.custom.min.js]

And the style sheet needs to be included as well using the
path to the theme.

stylesheets: [main.css, /theme name]/jquery-ui-1.8.2.custom.css]

After these changes are made, clearing the cache may be
required. Again it can be done by typing symfony
cache:clear into the command console.

Let's now see how to use the
sfWidgetFormJQueryDate () widget to give the user an
option to pick a date from a jQuery calendar. To see how it
is done, we can modify the earlier example simply by
changing sfWidgetFormDateTime () to
sfWidgetFormJQueryDate ().
public function setup() {
$this->setWidgets(array(
‘id’ =>new stWidgetFormInputHidden(),

‘first name’ => new sfWidgetFormInputText(),

352

‘last_name’ =>new sfWidgetFormInputText(),

‘email’ => new sfWidgetFormInputText(),

‘phone’ => new sfWidgetFormInputText(),

‘address” => new sfWidgetFormInputText(),

‘created’” =>new sfWidgetFormJQueryDate(array(‘config’ => ‘{}’)),

‘updated” => new sfWidgetFormDateTime(),));

As a result, you should see a new form in the web browser,
as shown in Figure 5.14.

Figure 5.14 Form with jQuery date picker

First name

Last name
Email
Phone

Description

Created [12 M/ 01 ¥/ 2005 &

Updated | M/ M/ |
Back to list [Save | Su Mo Tu We Th Fr Sa
2 3
4 5 6 7 8 9 10
1 124 13 14 15 16 17
18 19| 20 21 22| 23 24
25| 26§ 27 28| 29) 30) 31

CakePHP

353

For data validation, CakePHP has FormHelper, which
offers many useful automatic functions; the most common
will be described here.

While writing the add new address action in Chapter 4,
you used the following code:

<?php
echo $form->create(‘ Address’);
echo $form->inputs();
echo $form->end(‘Save address’);
7>

code snippet /customization/cakephp/views/addresses/
add.ctp

This solution is quick and good for creating backend
applications that give you full access to information stored
in a database. For example, information such as the date
when an entry was created should not be available for
modifications. As a result of those three lines, the
following HTML code is generated. Note that date
selection lists have been removed to improve code
readability.

<form id="AddressAddForm” method="post” action="/cake/addresses/add”>

354

<fieldset style="display:none;”>
<input type="hidden” name="_method” value="POST” />
</fieldset>
<fieldset>
<legend>New Address</legend>
<input type="hidden” name="data[Address][id]” value=""" id="AddressId” />
<div class="input text required”>
<label for="AddressFirstName”>First Name</label>
<input name="data[Address][first_name]”
type="text” maxlength="25"
value=""
id="AddressFirstName” />
</div>
<div class="input text”>
<label for="AddressLastName”>Last Name</label>
<input name="data[Address][last name]”
type="text”
maxlength="25"
value=""
id="AddressLastName” />
</div>
<div class="input text”>

<label for="AddressEmail”’>Email</label>

355

<input name="data[Address][email]”
type="text”
maxlength="25"
value=""
id="AddressEmail” />
</div>
<div class="input text”>
<label for="AddressPhone”>Phone</label>
<input name="data[Address][phone]”
type="text”
maxlength="11"
value=""
id="AddressPhone” />
</div>
<div class="input textarea’>
<label for="AddressAddress”>Address</label>
<textarea name="data[Address][address]”
cols="30"
rows="6"
id="AddressAddress” >
</textarea>
</div>

<select>

356

// select form goes here
</select>
</fieldset>
<div class="submit”>
<input type="submit” value="Save address” />
</div>

</form>

The form rendered by the browser will have the same input
composition as the one shown in Figure 5.15.

Figure 5.15 Form generated for the first application in
Chapter 4

New Address

First Mame
Last Name

Email

Phone
Address
Created
April M- 13 W1 2010 (V] 10 (M) | 54 (M| | pm (M2
Modified
April - 13 (WL 2010 (] 10 (M| 54 (W | pm [V

Save address J

Now you will see how to build your own custom form
input using the input () method of the FormHelper. The
following code example invokes the input () method a

357

number of times to create a web form that is identical to
the one generated by the previous solution:

<?php echo $form->create(‘Address’, array(‘type’ => ‘post’, ‘action’ => ‘add’));
echo ‘<fieldset><legend>New Address</legend>";
echo $form->input(‘first_name’).
$form->input(‘last_name’).
$form->input(‘email”).
$form->input(‘phone’).
$form->input(‘address’, array(‘rows’ => 5’, ‘cols’ => ‘5”)).
$form->input(‘created’).
$form->input(‘modified’),
echo‘</fieldset>;

echo $form->end(‘Save address’); 7>

code snippet /customization/cakephp/views/addresses/
add.ctp

In this example of using the input () method, the form
fields are generated according to specifications defined in
the corresponding model file. It is possible to override
model information and force certain input types. To do so,
you need to define some additional parameters that are
passed into this input () method. The following example

358

illustrates how: By adding the ‘type’ parameter to the
option array you can customize rendered form input. You
can force normal text input to be rendered as password
type form input. The implementation is shown here:

<?php
echo $form->input(‘first name”);
// input based on model data
echo $form->input(‘first name’, array(‘type’ => ‘password’));
// input with modified type field

7>

The following HTML code snippet illustrates how the
<input> tag is modified when the ‘type’ parameter is
set:

<div class="input text required”>
<label for="AddressFirstName”>First Name</label>
<input name="data[Address][first name]”
type="text” maxlength="25" value=""" id="AddressFirstName” /></div>
<div class="input password required”>
<label for="AddressFirstName”>First Name</label>
<input name="data[Address][first name]”

type="password” value=""" id="AddressFirstName” /></div>

Customizing Generated HTML

359

The form generated using $form->input () function has
some additional HTML code added to every form field.
This includes putting elements into a <div> tag or adding
labels to a created field. This can be modified to better
match your preferences using an options array that is
passed into the input () method.

For example, it is possible to modify label text assigned to
a field simply by setting the *1abel’ option:

<?php echo $form->input(‘last_name’,
array(‘label’ => array(‘text’ => ‘Label text’))); 7>

The same way can be used to disable label generation. It is
done by setting the ‘label’ option to false, just like
this:

<?php echo $form->input(‘last name’, array(‘label’ => false)); 7>

Similarly, we can disable the <div></div> tags that
surround a form field or set a class name to a field:

<?php echo $form->input(‘last_name’,
array(‘div’ => false, ‘class’=>‘last_name_class”)); 7>

It is possible to add a class name to a <div> containing
form field by setting an option array as shown here:

<?php echo $form->input(‘last_name’,
array(‘div’ => array(‘class’=>‘div_class’))); 7>

There are a few more options that will be shown here. First
there are options that can be used to define the number of

360

<textarea> field rows and columns, and they work like
this:

<?php echo $form->input(‘address’, array(‘rows’ => ‘5, ‘cols’ => ‘5”)); 7>

The next thing that FormHelper allows you to do is to
generate complex <select> inputs in very simple way.
Suppose you want to add a group option to your address
book in order to classify entries to groups such as Family,
Friends, Client, or Co-worker. You need to add a new field
to your database and you can use the following code to
create the <select> field:

<?php echo $form->input(‘group’, array(‘options’ => array(
‘Work’ => array(‘Value 1’=>‘Client’, ‘Value 2°’=>‘Coworker’),
‘Private’ => array(‘Value 3°’=>‘Family’, ‘Value 4’=>‘Friends’))
N>

Finally, let's look at how to customize the date field. It is
possible to set the time and date format. For time, there are
two formats: ‘12’ and ‘24’ ; for date, it is possible to set
it to ‘DMY’, ‘MDY’, ‘yMD’, and ‘NONE’. The ‘minYear’
and ‘maxyear’ options are self-explanatory.

<?php echo $form->input(‘created’,
array(‘timeFormat’=>‘24’, ‘dateFormat’ => ‘MDY’

‘minYear’ => date(‘Y’) - 20, ‘maxYear’ => date(‘Y’))); 7>
CakePHP FormHelper allows developers to create a large
variety of different form inputs that are created using the

input () method. A list of a few selected form elements is
presented here:

361

+ file—Represents file selection input.

* checkbox—Represents standard checkbox input.

* gender—Represents gender selection input.

* dateTime—Represents a date-time selection input.

The implementation code for the previous input types can
look as follows:

echo $form->create(‘ Address’, array(‘enctype’ => ‘multipart/form-data’,
‘type’ => ‘post’, ‘action’ => ‘add’));
echo ‘<fieldset>’;
echo $form->input(‘file’, array(‘type’ => ‘file’));
echo $form->input(‘Agreement’, array(‘type’=>‘checkbox’,‘label’ => ‘I agree’));
echo $form->input(‘gender’, array(‘type’ => ‘select’,
‘options’ => array(‘M’ => ‘Male’,'F’ => ‘Female’)));

echo $form->input(‘dateTime’, array(‘type’ => ‘datetime’, ‘label” => ‘Date-time’,

‘minYear’ => date(‘Y’) - 5, ‘maxYear’ => date(‘Y’),

‘dateFormat’ => ‘DMY’, ‘timeFormat’ => ‘12));
echo‘</fieldset>’;

echo $form->end(‘Save address’); 7>

You can see that the input types utilize a set of options that
are used for configuration. On form submission, most
input fields send their value, but in the case of file input,
an array is given. It contains the following:

¢ name—Name of a submitted file.

* type—File extension and type (e.g., ‘application/pdf’).
* tmp_ name—Temporary patch filename for uploaded file.

362

* error—Variable that returns 0 if upload is successful.
* size—Uploaded file size in bytes.

Note that the array is generated by PHP.

As a result of running the preceding script, the following
HTML form is generated:

<form enctype="multipart/form-data” id="AddressAddForm” method="post”
action=""/cake/addresses/add”>
<fieldset style="display:none;”>
<input type="hidden” name="_method” value="POST” />
</fieldset>
<fieldset>
<div class="input checkbox”>
<input type="hidden” name="data[Address][Agreement]” id="AddressAgreement ”
value="0" />
<input type="checkbox” name="data[Address][Agreement]” value="1"
id="AddressAgreement” />
<label for="AddressAgreement”>I agree</label>
</div>
<div class="input file”>
<label for="AddressFile”>File</label>
<input type="file” name="data[Address][file]” value=""" id="AddressFile” />
</div>

<div class="input select”>

363

<label for="AddressGender”>Gender</label>
<select name="data[Address][gender|” id="AddressGender”>
<option value="M">Male</option>
<option value="F">Female</option>
</select>
</div>
<div class="input datetime”>
<label for="AddressDateTimeMonth”’>Date-time</label>
<select name="data[Address][dateTime][day]” id="AddressDateTimeDay”>
<option value="01">1</option>

<option value="02">2</option>

</select>-<select name="data[Address][dateTime][month]”
id="AddressDateTimeMonth”>
<option value="01">January</option>

<option value="02">February</option>

</select>-<select name="data[Address][dateTime][year]” id="AddressDateTimeYear”>

<option value="2010" selected=""selected”>2010</option>

<option value="2009">2009</option>

</select><select name="data[Address][dateTime][hour]” id="AddressDateTimeHour>

364

</select>:<select name="data[Address][dateTime][min]” id="AddressDateTimeMin">

</select> <select name="data[Address][dateTime][meridian]”
id="AddressDateTimeMeridian”>
<option value="am”>am</option>
<option value="pm” selected="selected”>pm</option>
</select>
</div>
</fieldset>
<div class="submit”>
<input type="submit” value="Save address” />
</div>

</form>

This example will render the web form illustrated in Figure
5.16.

Figure 5.16 Web form with example input fields

[1 agree
File
Browse ..
Gender
ale %

D ate-time)
1 % | January WL 2010 (W10 (WL 44 W || am (W

Of course, this is not all in terms of forms customization
that CakePHP can offer. For a full list of options, please

365

refer to the FormHelper section in the CakePHP
documentation.

Zend Framework

As you saw in the preceding section, “How Does Form
Validation work?” Zend Framework allows you to easily
create form validation rules, and customization is done in a
similar manner. The Zend Form Element module
corresponds to a single HTML form input (e.g., text field,
textarea, and so on). Such elements are used to create a
web form. And to make it easier, Zend Framework is
equipped with element classes that encapsulate most of the
HTML form input types.

It is possible to further influence HTML code generated by
utilizing decorators to modify elements of a form. These
decorators have access to the elements and the methods of
the web content being generated.

Let's look at the init () function that was built while
creating the first project in the previous chapter.

class Application Form AddressAdd extends Zend Form {
public function init() {
$this->setMethod(‘post’);

$this->addElement(‘text’, “firstName’, array(

366

‘label” => “Your first name:’,
‘required’ => true,
“filters’ => array(‘StringTrim’),
)
);
$this->addElement(‘text’, ‘lastName’, array(
‘label” => “Your last name:’,
‘required’ => false,
“filters’ => array(‘StringTrim’),
)
);
$this->addElement(‘text’, ‘email’, array(
‘label” => “Your e-mail address:’,
‘required’ => false,
“filters’ => array(‘StringTrim’),
)
);
$this->addElement(‘text’, ‘phone’, array(
‘label” => “Your phone:’,
‘required’ => false,
“filters” => array(‘StringTrim’),

)

367

$this->addElement(‘textarea’, ‘address’, array(
‘label” => ‘Your address:’,
‘required’ => false,
“filters’ => array(‘StringTrim’),
)
);
$this->addElement(‘submit’, ‘submit’, array(
‘ignore’ => true,

‘label’ => ‘Save’

)
}
}
code snippet /customization/zf/application/forms/
AddressAdd.php

You can see that there are a few addElement () methods
in this file, and every addElement () method corresponds
to a field in your form. Those elements take a list of
parameters that allow you to create field types matching
those of database fields.

The following HTML code fragment is a result of
execution of the script above. It is responsible for
displaying a form in a web browser.

<form enctype="application/
x-www-form-urlencoded” method="post” action=""">

368

<dl class="zend_form”>

<dt id="firstName-label”>

<label for="firstName” class="required”’>Y our first name:</label>
</dt><dd id="firstName-element’>

<input type="text” name="firstName” id="firstName” value=""">
</dd><dt id="lastName-label”>

<label for="lastName” class="optional”>Y our last name:</label>
</dt><dd id="lastName-element”>

<input type="text” name="lastName” id="lastName” value="">
</dd><dt id="email-label”>

<label for="email” class="optional”>Y our e-mail address:</label>
</dt><dd id="email-element”>

<input type="text” name="email” id="email” value=""">
</dd><dt id="phone-label”>

<label for=""phone” class="optional”>Y our phone:</label>
</dt><dd id="phone-element”>

<input type="text” name="phone” id="phone” value="">
</dd><dt id="address-label”>

<label for="address” class="optional”>Y our address:</label>
</dt><dd id="address-element”>

<textarea name="address” id="address” rows="24" cols="80"></textarea>
</dd>

<dt id="submit-label”> </dt>

369

<dd id="submit-element”>
<input type="submit” name="submit” id="submit” value="Save”></dd>
</dI>
</form>
You can see in Figure 5.17 how input fields for the

preceding HTML code should look in a browser. Note that
the textarea field can be made larger using CSS styles.

Figure 5.17 Web form created for the first application in
Chapter 4

Your first name
Your last name
Your e-mail address:
Your phone:

Your address:

|_save |

Now you are familiar with how forms are generated step

by step, it is time to move on to customization of form
elements.

zend Form provides several accessories for adding and
removing form elements.

370

The most basic way to add an element to your form is to
use the addElement () method. This method can take
either an object of a class extending zend Form Element
or a list of arguments that specify addElement ()
behavior. These include element type, field name, and
number of configuration options.

Because there is a choice of how to add a new form
element, we will present two possibilities here. The first
one looks as follows:

$element = new Zend Form_Element Text(‘fieldName’);

$form->addElement($element);

You can see that a Zend Form Element Text object is
created with a ‘fieldName’ value. This value is the name
of the form field that will be generated in the web page.
Next, the addElement () method is invoked using the
selement parameter. This will generate a standard text
input field.

Building a form this way requires the developer to use
long names of classes that encapsulate fields' functionality
(e.g., Zend Form Element Text or
Zend Form Element Submit).

Exactly the same HTML output can be achieved using the
next presented way for creating form elements. It is shorter
and it requires passing some parameters to the
addElement () method. An example of how it is done
looks as follows:

$form->addElement(‘text’, ‘fieldName’);

371

As a result of running the preceding code, a standard text
type form input field is rendered. Parameters passed to this
method are the type of a form field (e.g., text, textarea,
submit, and so on) and a name for the field that will be
used to handle form data. And as you can see in following
example, there is a third parameter that is an array and
allows customization as well as adding functionality such
as filters or validators:

$form->addElement(‘text’, ‘fieldName’, array(‘label” => ‘Enter a value:”));

This example is different from the previous one simply by
the label that says: ‘Enter a value:’ right above the
input field.

Zend Framework has a variety of element classes that
cover most HTML form elements that are used in web
forms.

The following is an implementation of
Zend Form Elements that can be wused in your
applications:

* Zend Form Element Hidden—Generates a hidden field
that can hold data that is invisible to users.

$this->addElement(‘hidden’, ‘userld’, array(‘value’ => ‘123°));
This element will generate the following HTML code:

<dt id="userld-label”> </dt>
<dd id="userld-element”>

<input type="hidden” name="userld” value="123" id="userld”></dd>

372

Note that this will not render any visible form input.

The next example you will see is built using the following
form elements:

* Zend Form Element Text—QGenerates a standard input
field.

* Zend Form Element Password—Generates a standard
password form field.

* Zend Form Element Textarea—GQGenerates a standard
textarea HTML tag.

* Zend Form Element Button—Represents an HTML
button input.

* Zend Form Element Submit—QGenerates a standard
submit button that is used for sending form data.

* Zend Form Element Reset—Standard element that
generates a form reset button.

* Zend Form Element Image—Creates an image type
button. To render this element, it is necessary to give an
image path either by an image parameter or by an src
parameter. In this case, the path is set to the image that is
located in an /addressBook/public/images directory.

The purpose of the following code is to illustrate an
implementation of the elements introduced previously
because the resulting form may have little use in a
real-world application:

class Application Form ExampleAdd extends Zend Form {

public function init() {

373

$this->setMethod(‘post’);

$this->addElement(‘text’, ‘name’, array(‘label” => “Your name:”));
$this->addElement(‘password’, ‘pass’, array(‘label’ => ‘Enter password:”));
$this->addElement(‘textarea’, ‘comment’, array(‘label” => ‘Enter your comment:”));
$this->addElement(‘button’, ‘button’, array(‘label’ => ‘Click Me’));
$this->addElement(‘submit’, ‘submit’, array(‘ignore’ => true, ‘label’ => ‘Save”));
$this->addElement(‘reset’, ‘reset’, array(‘label” => ‘Reset form data’));
$this->addElement(‘Image’, ‘imgButton’, array(‘label’ => *’,

‘image’ => ‘../images/imageButton.png’, ‘alt’ => ‘Submit’));

3
code snippet /customization/zf/applications/forms/
ExampleAdd.php

This example will render the form illustrated in Figure
5.18.

Figure 5.18 Form generated using the addElement()
method

374

Your name;
Enter password.

Enter your comment

| Click Me

Save

wButton

The form elements presented next are responsible for
rendering various selection inputs such as checkboxes,
radiobuttons, and select lists.

* Zend Form Element Checkbox—Represents an HTML
checkbox input and allows you to return a specific value
(basically, it works as a boolean value). When the checkbox
is checked, the value is submitted; otherwise, nothing is
submitted.

$this->addElement(‘Checkbox’, ‘option’,
array(‘label’ => ‘Option’, ‘checkedValue’ => ‘1°,
‘uncheckedValue’ => “0’, ‘value’ => ‘17));
The preceding example will render a single standard
checkbox field. It is possible to define the behavior of this
element by setting a number of options. By setting the

value option to 1, the rendered checkbox is checked by
default.

375

° ZendiFormiElementiMultiCheckbox—ThiS element is
one of the nonstandard input field types. It allows you to
group a set of related checkboxes. A MultiCheckbox
ensures that on form submission, the selected options are
passed as an array. The following code illustrates
implementation of the MulticCheckbox element:

$this->addElement(‘MultiCheckbox’, ‘options’,
array(‘label” => ‘Select your options:’,
‘multiOptions’ => array(‘opt_1> => ‘Option 1°,
‘opt 2’ => ‘Option 2°,
‘opt_3>=> ‘Option 3°,)));

To set some of the options as checked by default, you need
to add another parameter to an options array, and it is a
value array. The code for this should look like this:

$this->addElement(‘MultiCheckbox’, ‘options’, array(
‘label’ => ‘Select your options:’, ‘multiOptions’ => array(
‘opt_1”=> “‘Option 1°, ‘opt_2° => ‘Option 2’,
‘opt_3*=> ‘Option 3°, ‘opt_4’ => ‘Option 4°),
‘value’ => array(‘opt_1°, ‘opt_3")));

As a result of setting the value array, two options are
checked by default. Figure 5.19 illustrates how this form
element is rendered by the browser.

Figure 5.19 Form element rendered wusing the
MultiCheckbox option

376

Select your ophons,
¥ Option 1
[Option 2
¥ Option 3
[JOption 4

* Zend Form Element Radio—Renders a radio button
element that is quite similar in terms of code implementation
to the MultiCheckbox element. The difference comes with
a value parameter that indicates a single radio button to be
checked by default. The rendered form element is illustrated
in Figure 5.20.

$this->addElement(‘Radio’, ‘radioOption’, array(
‘label” => “Select option’, ‘multiOptions’ => array(
‘opt_1°=> “Choice 1, ‘opt_2’ => ‘Choice 2’, ‘opt_3’ => ‘Choice 3°),
‘value’ => ‘opt_2));

Figure 5.20 Form element rendered using the Radio option

Select option
O Cheice 1
® Choice 2
) Choice 3

* Zend Form Element Select—An HTML select tag is
rendered by this element and is nearly identical in
functionality and implementation to the element introduced
previously, as you can see in the following code. The
difference is that the rendered form element is a drop-down
selection list, like the one illustrated in Figure 5.21.

$this->addElement(‘Select’, ‘items’, array(
‘label’ => ‘Select an item:’, ‘multiOptions’ => array(
‘1’=>"‘Ttem 1°, 2’ => ‘Item 2°, ‘3° => ‘Item 3°,),

‘value’ => 27));

377

Figure 5.21 Form element rendered using the Select
option

Select

Iterm 1

Mtem3 |

By setting the value parameter to the value of an item, it
is possible to specify which item is selected by default.

* Zend Form Element Multiselect—Allows a wuser to
select multiple items from a selection list by holding the
Shift or Control key. The value parameter allows you to
define multiple items that are selected by default. The
rendered element is presented in Figure 5.22.

$this->addElement(‘Multiselect’, ‘items’, array(
‘label’ => ‘Select multiple items:”,
‘multiOptions’ => array(
‘1’=>‘Item 1°, 2’ => ‘Item 2’, ‘3’ => ‘Item 3’,
‘4 =>‘Ttem 4°, ‘5’ => ‘Item 5°, ‘6’ => ‘Item 6°,),
‘value’ => array(‘2°,°3°,°5”)));
Figure 5.22 Form element rendered using the Multiselect
option

Select multiple tems:

ftem 1
Item 2
ltem 3
Item 4

Item B

* Zend Form Element File—Provides a mechanism that
makes file upload handling easier.

378

* Zend File Transfer—Used to handle internal file
transfers. It is possible to influence file uploads by setting
parameters such as destination that say where uploaded files
should be saved, or by adding validators. Validators can
automatically verify if an uploaded file has an acceptable file
extension or that the file size does not exceed a defined limit.
The following example illustrates how basic image
uploading can be done:

$this->addElement(‘File’, ‘file’, array(‘label’ => ‘Upload an image:’,
‘destination’ => ‘upload’, ‘validators’ => array(
‘Extension’=> array(false, ‘jpg,png,gif’),

‘Size’ => array(false, 102400)),));

The form element rendered by the preceding code is a
standard file selection input that allows users to browse
through local files. Figure 5.23 illustrates this element.

Figure 5.23 Form element rendered using the File option

Upload an image
[Browse ... |

Decorators

So far when building forms, <d1> and <dt> tags were
used every time the addElement () method was used. As
a result, a form with a single text input field could look
like this:

<form enctype="application/
x-www-form-urlencoded” method=""post” action=""">

<dl class="zend_form”>

<dt id="firstName-label”>

379

<label for="firstName” class="required”’>Y our first name:</label>
</dt><dd id="firstName-element’>

<input type="text” name="firstName” id="firstName” value=""">
</dd><dt id="submit-label”>
</dt><dd id="submit-element”>

<input type="submit” name="submit” id="submit” value="Save”> </dd>

</dI></form>

zend Form comes with decorators that can be used to
customize the way the forms are rendered. These
decorators can be applied to form elements to influence
how the HTML code is generated. It can be used for
setting the appearance of error messages or defining where
field labels are displayed in relation to their input fields.

As a default behavior, the decorator wraps forms in a
definition list <d1> tag and form elements in an item
description <dd> tag. A decorator responsible for creating
tags of a form element looks as follows:

$form->setDecorators(array(‘FormElements’, array(‘HtmlTag’,
array(‘tag’ => ‘dl’)),’Form”));

This code creates HTML output like the following:

<form action="/form/action” method="post”>

<dI></dI>

</form>

380

The following is a list of five decorators that are used by
Zend Form Element by default:

* ViewHelper—Simply specifies a view helper that is used to
render the element.

* Errors—Used to add error messages to the element. If not
specified, no message is added.

* Description—Can be used to specify the element
description. As the default, the description is rendered in a
<p> tag with a class of ‘description’. If not specified, no
description is added.

* HtmlTag—Is used to wrap the element and errors messaged
in an HTML tag. By default, it is the <dd> tag.

* Label—Defines a label to the element, and by default wraps
it in a <dt> tag. If no label is specified then only the <dt>
tag is rendered.

These decorators can be used to modify rendered form
elements. The following code is an example of a basic
login form with two fields—login name and password
generated—without setting any custom decorators. Code
required to render such a form can look like the following:

$this->addElement(‘text’, ‘login’, array(‘label’ => ‘Enter login:’,));

$this->addElement(‘password’, ‘password’, array(‘label’ => ‘Enter password:’,));
As a result the following HTML code is created:

<dt id="login-label”>

<label for="login” class="optional”>Enter login:</label>
</dt><dd id="login-element”>

<input type="text” name="login” id="login” value=""">

</dd><dt id="password-label”>

381

<label for="password” class="optional”>Enter password:</label>
</dt><dd id="password-element”>
<input type="password” name="password” id="password” value=""">

</dd>

Form fields are inside <dd> tags, and labels are in <dt>
tags. This makes the web browser render a form like that
displayed in Figure 5.24.

Figure 5.24 Basic login form rendered by a web browser

Enter login

Enter pasiwurd.

It is possible that, for some reason, you may want to have
different HTML output than this solution offers. The
following example illustrates how such modification can
be done:

$this->addElement(‘text’, ‘login’, array(‘label’ => ‘Enter login:’,
‘Decorators’ => array(‘ViewHelper’, ‘Errors’, ‘Description’,
array(‘HtmlTag’, array(‘tag” => ‘div’, ‘class’ => ‘login’)),
array(‘Label’, array(‘tag’ => ‘b’, ‘placement’ => ‘prepend’,
‘class’ => ‘loginLabel’)),),));
$this->addElement(‘password’, ‘password’, array(‘label’ => ‘Enter password:’,
‘Decorators’ => array/(
‘ViewHelper’, ‘Errors’, ‘Description’,

array(‘HtmlTag’, array(‘tag’ => ‘div’, ‘class’ => ‘password’)),

382

array(‘Label’, array(‘tag’ => ‘b’, ‘placement’ => ‘prepend’,
‘class’ => ‘passwordLabel”)),),));

You can see that code from the previous example has been
extended by adding the Decorators parameter to the
addElement () method. In both elements, decorators are
used to make labels precede input fields and to be enclosed
in a tags to display the text of the label in bold
font. Input fields are also modified to be enclosed by
<div> </div> tags. For each newly set <div> and
tag, classes are set to allow possible styling.

As a result of introducing these decorators, the HTML
code is generated as follows:

<b id="login-label”>
<label for="login” class="loginLabel optional”>Enter login:</label>

<div class="login”>
<input type="text”” name="login” id="login” value=""">
</div>
<b id="password-label”>
<label for="password” class="passwordLabel optional”’>Enter password:</label>

<div class="password”>

<input type="password” name="password” id="password” value=""></div>

And if no additional CSS styles are included, the form
illustrated by Figure 5.25 would be rendered.

383

Figure 5.25 Modified login form rendered by a web
browser

Enter login:

Enter password:

As you can see, it is possible to customize forms rendering
by setting a number of parameters while creating form
fields.

Using Captcha as Spam Protection

Spam refers not only to unwanted mail but also to any
messages that can be displayed to any group of users after
being posted by automated software through an unsecured
form. A Captcha, which stands for Completely Automated
Public Turing Test to Tell Computers and Humans Apart,
is a program designed to protect websites against
automated bots by generating tests that humans can pass
but current computer programs cannot.

Problem

We all are accustomed to regular e-mail spam. If someone
gets your e-mail address, you can anticipate your inbox
getting filled with all kinds of junk. Web form spam is a
slightly different problem.

Spam-bots are automated programs that surf the Web in
search of web forms that can be used for spamming. Once
a proper form is found, it is analyzed by a spambot to
determine whether the form is usable for spamming

384

purposes. Later, the targeted form is filled with data,
hyperlinks, and content that is supposed to be exposed.

If a website contains at least one web form (e.g.,
registration, comments, message board, and so on), it is
highly likely that spambots will infest this website soon
enough. When that happens, forums are flooded with
unwanted content and spam messages are posted on
websites and displayed to the site visitors.

Why Should I Use Captcha?

Captcha is a technology that is used as a security system
by websites, aiming to allow only data submitted by
humans. This mechanism is commonly used when we want
to allow only users to pass any data through a form, or we
want to prevent passing any values generated by
computers. One good example of automatically generated
values may be automated software that browses websites
and automatically creates accounts on popular web
applications. When Captcha is present in the registration
form on such websites, this software cannot figure out
what to enter into the Captcha field to pass the form
validation. Other popular applications of Captcha are to
protect systems vulnerable to e-mail spam or to block
automated posting to blogs or forums.

Captcha protection is most commonly applied as
automatically generated images (usually random sets of
characters or random words) that must be recognized. It is
possible for people to read the image, but computers
should find that reading it is very difficult.

385

Unfortunately, many authors that design their own Captcha
mechanisms are convinced that if an image is difficult to
read for them, it will be difficult for the machine as well.
This is not always the case.

Optical character recognition (OCR) software can be used
to attempt to defeat Captcha. This software has a wide
range of tools at its disposal that are dedicated to
recognizing various fonts or handwritten characters. You
can find online articles that describe how Captcha systems
used by Windows Live, Gmail, or Yahoo have been
broken. Examples of filtered-out Captcha tests are shown
in Figures 5.26 and 5.27.

Figure 5.26 Example of how a Captcha image can be
cleaned by software

iy

3 78

o8 71814

Figure 5.27 Another pair of examples of how a Captcha
image can be cleaned

JCU‘?""&'jr JCUQ’J&’Jlr

2 FR 2 R
& A 5 AP

Captcha's strength lies elsewhere, namely in fact that it
takes time to break a certain variation of the standard
Captcha, and these variations can be easily changed.

386

Various Implementations of Captcha

Text-based Captcha, in which the user has to type a few
letters that are displayed on the screen to complete the
form submission, is not the only type of Captcha used on
the Internet. There are other types of Captcha as well:

* Math Captcha—User has to solve a mathematical equation
(for example: What is the result of 2+2?).

* Question Captcha—Solution requires answers to questions
regarding some context (for example: What day is it today?).

* Audio Captcha—User has to type a word that is played-back
through speakers. This solution is similar to text-based
Captcha and is frequently combined with it.

However, in those solutions, automatic generation is the

usual problem.

In addition to this form-protection arsenal, there is the
following:

* ReCaptcha—a free antibot service that according to the
authors of this service: “It helps digitize books, newspapers
and old time radio shows.” (See Figure 5.28).

Figure 5.28 Dialog box of the reCaptcha plug-in

paItuing. i

]
e | =oCAPTCHA

387

We have mentioned that OCR programs are used for text
recognition. During the digitization process of the scanned
text (e.g., books), unintelligible fragments can often occur,
for which the OCR software cannot give a clear result.
Because humans are better than machines at dealing with
the recognition of such fragments, the institutions involved
in the digitization of library resources employ staff whose
task is to verify the OCR results.

The idea of reCaptcha is that it can replace the work of the
people who verify OCR results with a random group of
users who can solve everyday millions of Captcha tasks.
This solution can save thousands of work hours a day that
otherwise would have to be done by employees working
on scanned text digitization. This solution is important
because it utilizes users' online activity to aid in the
recognition of scanned text fragments that OCR software
cannot handle. It combines websites' protection
mechanisms with the beneficial work of digitization of
library resources.

Writing Your Own Captcha

There are a few things to keep in mind while designing
your own text-based Captcha system. If letters are close
together, there is a high chance that two characters will be
interpreted as one. Next, if nonlinear transformations are
applied to a generated image, this transformation is
difficult to identify on the basis of the outline of the text.
Rotating or fluctuating a text string is not hard to undo
automatically. More troublesome is the “fish-eye” effect
applied in a few random places.

388

OCR usually gives several possible answers that are then
checked in the dictionary, which makes it easier to choose
the final text. For example when OCR recognizes a text
like “thir,” it assumes that it is the most probable word,
“this,” and not “their” or “third.” That's why a completely
random set of letters is much more difficult than dictionary
words.

Solution

Let's proceed with implementing some Captcha protection
in our forms. We will go through framework-specific
solutions and those offered online. We will use a different
solution for each framework because the implementation
should be fairly similar regardless of framework chosen.

Symfony

In the “Customizing Forms” section of this chapter,
plug-ins were used to add multiple new elements that
expanded functionality of the forms. To add Captcha
elements to secure your forms from unwanted web-bots,
you need to install plug-ins as well. Symfony offers
various Captcha plug-ins that you can install easily.
Plug-ins available to install are sfFormExtraPlugin,
sfCaptchaGDPlugin, sfReCaptchaPlugin,
gyCaptchaPlugin, sfPHPCaptchaPlugin, and
sfCryptoCaptchaPlugin. Of these plug-ins, only the
first three are available for the newest Symfony version.
All unavailable plug-ins are also graphical systems similar
to those described in the following section.

sfWidgetFormReCaptcha

389

The sfwidgetFormReCaptcha widget is available when
the sfFormExtraPlugin is installed. The sfFormExtraPlugin
was used in the “Customizing Forms” section of this
chapter. If you haven't read that section, you can follow
these instructions.

To install sfFormExtraPlugin you simply need to type the
following command into the console from your project
directory:

symfony plugin:install sfFormExtraPlugin

Next it is recommended to clear cache data by typing the
following command into the console:

symfony cache:clear

If you haven't done so already, you need to
acquire public and private keys by
registering on the reCaptcha website at
www.google.com/recaptcha.

Now it is possible to use sfwidgetFormReCaptcha ()
and sfvalidatorReCaptcha ()in your project. You can
use the sfwidgetFormReCaptcha () widget to render the
reCaptcha form element. This will require you to add one
line to an array that is used in setWidgets (), and the
same thing needs to be done for the setvalidators()
array.

390

Note that sfwidgetFormReCaptcha () requires you to set
the public key value, and sfvalidatorReCaptcha ()
requires the private key value. The public and private

keys are are those values received from the reCaptcha
website.

An example of the extended form used in Chapter 4 is
shown here:

public function setup() {
$this->setWidgets(array(

‘id’ =>new stWidgetFormInputHidden(),
‘first name’ => new sfWidgetFormInputText(),
‘last name’ => new sfWidgetFormInputText(),
‘email’ =>new sfWidgetFormInputText(),
‘phone’ => new sfWidgetFormInputText(),
‘address’ => new sfWidgetFormInputText(),
‘created” =>new stWidgetFormDateTime(),
‘updated’ =>new stWidgetFormDateTime(),
‘captcha’ => new sfWidgetFormReCaptcha(

array(‘public_key’=>‘6Ldq QkAAAAAAKEyHHrEbMz9FkDJaxwVGi7hjh22’)),));

391

$this->setValidators(array(
‘id’ => new sfValidatorDoctrineChoice(array(
‘model” => $this->getModelName(), ‘column’ => ‘id’,
‘required’ => false)),
“first name’ => new sfValidatorString(array(
‘max_length’ => 40, ‘required’ => false)),
‘last_name’ => new sfValidatorString(array(
‘max_length’ => 40, ‘required’ => false)),
‘email’ => new sfValidatorString(array(
‘max_length’ => 40, ‘required’ => false)),
‘phone’ => new sfValidatorInteger(array(‘required’ => false)),
‘description” => new sfValidatorPass(array(‘required” => false)),
‘created’ =>new sfValidatorDateTime(),
‘updated” => new sfValidatorDateTime(),
‘captcha’ => new sfValidatorReCaptcha(

array(‘private_key’ => ‘6Ldq_ QkAAAAAAJ-pdmnNYWxhe7GM1apcL6YI2B1 %)),));

code snippet /captcha/symfony/apps/frontend/lib/form/
RegistrationForm.class.php

Now you need to make sure that the newly added form
element will be rendered properly. To do so, add the
following code into the form.php file:

<tr><th><?php echo $form[‘captcha’]->renderLabel() ?></th>

392

<td><?php echo $form|[‘captcha’]->renderError() 7>

<?php echo $form[‘captcha’] ?></td></tr>

As the result of the preceding code, a web form is rendered
like the one illustrated in Figure 5.29.

Figure 5.29 Form with the reCaptcha form element

First name

Last name |
Email
Phone

Description

Created MY e v v e
Updated v/ v/ v v v

Captcha

CakePHP

There are various Captcha solutions for CakePHP that you
could include in your forms, but only OpenCaptcha and
reCaptcha will be shown here because they are free
solutions.

OpenCaptcha
Installation of OpenCaptcha is quite easy, so let's

incorporate it with one of the forms you created earlier in
this chapter while upgrading your first application.

393

To begin, you need to dynamically create a filename
(www.opencaptcha.com/img/{random}.jpgx) that will be
displayed in the form page. The following code shows how
to insert Captcha into your form. Basically it needs to be
placed somewhere between the $form->create() and
$form->end () functions:

<?php
echo $form->create(‘ Address’, array(‘type’ => ‘post’, ‘action’ => ‘add’));
echo ‘<fieldset><legend>New Address</legend>’;
echo $form->input(‘first name’, array(‘type’ => ‘password’)).
$form->input(‘last name’, array(‘div’ => array(
‘class’=>‘last name_class’))).
$form->input(‘email’).
$form->input(‘phone”).
$form->input(‘address’, array(‘rows’ => ‘5°,‘cols’ => 57)).
$form->input(‘group’, array(‘options’ => array(
‘Work’ => array(‘Value 1’=>‘Client’, ‘Value 2’=>‘Coworker’),
‘Private’ => array(‘Value 3’=>‘Family’, ‘Value 4’=>Friends”)))).

$form->input(‘created’, array(‘timeFormat’=>‘24’, ‘dateFormat’ => ‘MDY",

394

‘minYear’ => date(‘Y’) - 20, ‘maxYear’ => date(‘Y”’)))
$form->input(‘modified’);
if(isset($opencaptcha) && $opencaptcha=="failed’) {
echo “ <script> alert(‘You Did Not Fill In The Security Code Correctly’);
</script>"";
H
$date = date(“Ymd”);
$rand = rand(0,9999999999999);
$img = “$date$rand.jpgx”;
$height = “807;
$width = “240";
echo “<input type=‘hidden’ name="‘img’ value=‘$img’>";
echo “<img src="http://www.opencaptcha.com/img/$img’
alt="captcha’ width=240" height="80" />
”;
echo “<input type=‘text’ name="‘code’ value=‘Enter Above Code’ size=35" />";
echo‘</fieldset>’;
echo $form->end(‘Save address’);

7>

code snippet /captcha/cakephp/views/addresses/add.ctp

To generate a random filename, we have used the current
timestamp and a random number. And to indicate a failed
verification, a JavaScript alert is generated. An example of
this plug-in is shown in Figure 5.30.

395

Figure 5.30 Dialog box of the OpenCaptcha plug-in

Enter Above Code

In the addresses controller.php file, it is necessary
to check whether www.opencaptcha.com/
validate.php?img={imageName } &ans={usersAnswer }
returns “pass” or “fail”, as shown in the following code:

<?php
class AddressesController extends AppController {
var $name = ‘addresses’;
function add() {
if (lempty($this->data)) {

if (file_get contents(“http://www.opencaptcha.com/
validate.php?ans=".§ POST

[‘code’].”&img=".$ POST[‘img’])=="pass’ && $this->Address->save
($this->data))
{ $this->Session->setFlash(‘New address has been saved.”);

Sthis->redirect(array(‘action’ => ‘index’));

396

} else { $this->set(‘opencaptcha’, ‘failed’);

$this->Session->setFlash(“You Did Not Fill In The Security Code Correctly’);

}
}
}

y>

code snippet /captcha/cakephp/controllers/
addresses_controller.php

This should be enough to get OpenCaptcha working in our
form. Alternatively, you could use the CakePHP
$this->Session->setFlash () function to generate a
message that will be displayed in case of Captcha
verification failure.

reCaptcha

Earlier you learned how to include reCaptcha into your
Symfony application using two different methods. In this
section, you learn how to use reCaptcha in CakePHP
forms.

First obtain the private and public keys as was shown in
the Symfony section. Then visit the Bakery web page for
CakePHP and get the reCaptcha component and helper.
Those files can be found at http://bakery.cakephp.org/
articles/view/recaptcha-component-helper-for-cakephp.

397

The component file should be downloaded and placed in
the /app/controllers/components/ directory and the
helper file in the /app/views/helpers/ directory.

If you have acquired both reCaptcha keys as well as the
component and helper files, you can modify your
controller file by adding the $components array and a
function beforeFilter (), as shown in the following
code:

class AddressesController extends AppController {
var $name = ‘addresses’;
var $components = array(‘Recaptcha’); //new line
function beforeFilter() {

$this->Recaptcha->publickey =
“6Ldq_QkAAAAAAKEyHHrEbMz9FkDJaxwVGi7hjh22”;

$this->Recaptcha->privatekey =
“6Ldq_ QKAAAAAAJ-pdmnNYWxhe7GM1lapcL6YI2B1 ”; }

}

Next you can modify your view so that the reCaptcha
element is rendered. Just call the display form()
method of the $recaptcha object in your code.

<?php
echo $form->create(‘ Address’, array(‘type’ => ‘post’, ‘action’ => ‘add’));

echo ‘<fieldset><legend>New Address</legend>’.

398

$form->input(‘first name’, array(‘type’ => ‘password’)).
$form->input(‘last name’, array(‘div’ => array(‘class’=>‘last name_class’))).
$form->input(‘email’).

$form->input(‘phone’).

$form->input(‘address’, array(‘rows’ => ‘5°, ‘cols’ => ‘5%)).
$recaptcha->display form(‘echo’).

C</fieldset>’.

$form->end(‘Save address’);

7>

The preceding example renders a form similar to the one
presented in Figure 5.31. Any difference should be only in
the element styles.

Figure 5.31 Form containing the reCaptcha element

New Address
First Name
Last Mame

Email

Type the two words:

me CAPTCHA

And finally, validation should be added in a controller file,
as shown in the following example:

399

function add() {
if (lempty($this->data)) {

if($this->Recaptcha->valid($this->params[‘form’])) // recaptcha validation

{
$this->Address->save($this->data)
$this->Session->setFlash(‘New address has been saved.”);
$this->redirect(array(‘action’ => ‘index”));

} else {

$this->Session->setFlash(‘Invalid reCaptcha code’);

}

Zend Framework

In this section, you will see how to implement
Zend Captcha into your Zend Form. Zend Framework
comes with four Captcha solutions to work with: Image,
Figlet, Dumb, and ReCaptcha. Three of these are available
by using Zend Form Element Captcha; the other one
relies on using zend Service ReCaptcha.

First, zend Captcha Image will be implemented because
it is probably the most common type of Captcha used
throughout the Internet. It relies on a user's ability to read
obscured and disfigured text from an image. To add this
type of Captcha in your form, you simply need to create a

400

new form element using the addElement () method the
same way it was done earlier with form building. The main
difference is a set of options that can be used to customize
the Captcha element. This solution requires a folder that
has write permission. This is where Captcha images will
be generated and saved. This folder should be located in
the /public folder. (For this example, it will be in the
./public/captcha/ folder.) The following code shows
that it is possible to specify your own font used to generate
the Captcha image.

$this->addElement(‘captcha’, ‘captchalmage’, array(
‘label’ => ‘Enter image code:’,
‘captcha’ => array(‘captcha’ => ‘Image’, ‘wordLen’ => 6, ‘timeout’ => 300,
‘imgDir’ => ‘captcha/’, ‘imgUrl” => “../captcha/’,
‘width” => 250, ‘height’ => 150,

‘font” => “font/font.ttf*, ‘fontSize’ => 34,)));

In addition to the standard parameters that are used to
customize form elements, there is a captcha parameter
that is associated to an option array you can modify:

* captcha—Specifies the type of Captcha that is used. In this
case. it is image type Captcha.

* wordLen—Specifies how long the words generated in the
image are.

* timeout—A number seconds after which image will
become invalid. Here it is set to 5 minutes (300s).

* imgDir—A directory for storing generated images.

401

* imgUrl—Patch to generated images. It is used for display
purposes.

* width—Width of the generated image.

* height—Height of the generated image.

» font—Patch to a font file.

* fontsize—Font size parameter.

The image rendered by a web browser looks like the one

shown in Figure 5.32.

Figure 532 Form element rendered by the
Zend Captcha Image adapter

Enter image code:

A form element generated that way has full functionality,
and no additional coding is required to verify whether a
user posted a valid image code.

The second implementation is zend Captcha Figlet,
and the implementation is quite similar to the previous
one. The difference is only in the number of options that
are used for customization.

$this->addElement(‘captcha’, ‘captchaFiglet’, array(

‘label’ => ‘Enter image code:’,

402

‘captcha’ => array(‘captcha’ => ‘Figlet’, ‘wordLen’ => 6, ‘timeout’ => 300,)
s

As you can see, the captcha parameter is changed from
image to figlet, and only the wordLen and timeout
parameters are set. Functionality is similar to the previous
example, and it requires a user to read the text from an
image that is generated using only ASCII characters to
form the text. Following is the HTML code that forms the
text for a user to read:

The resulting web form rendered for this example will
contain an “image” similar to the one presented in Figure
5.33.

Figure 533 Form element rendered by the
Zend Captcha Figlet adapter

Enter image code:

7 1ol LS A S T SO T B AN
/7 [B | T 2 T W T O Y | e T 8
P N T T T S Y O A TR A S N T WP A

[o MO N Nt

/ I

403

Next you will see the one of the simplest Captcha
elements: zZend Captcha Dumb. What it does is write
random sets of letters and requires a user to write it
backward into a text field. The implementation is as simple
as this:

$this->addElement(‘captcha’, ‘captchaDumb’, array(

‘captcha’ => array(‘captcha’ => ‘Dumb’, ‘wordLen’ => 6, ‘timeout’ => 300,)));

No label is set in this example because the text next to the
field is generated automatically. Figure 5.34 illustrates
rendered zend Captcha Dumb.

Figure 5.34 Form element rendered by the
Zend_Captcha Dumb adapter

Please type this word backwards: ukugog

Finally zend Captcha ReCaptcha 1is the reCaptcha
service used to secure your forms. It requires having public
and private keys that are given to registered users on the
reCaptcha website.

When you have the required keys, you need to create an

object for the reCaptcha Zend service, and the rest goes the
same as previously:

$publicKey = “6Ldq_QkAAAAAAKEyHHrEbMz9FkDJaxwVGi7hjh22”;

$privateKey = “6Ldq_QkAAAAAAJ-pdmnNYWxhe7GMlapcL6YI2B1_”;

404

$recaptcha = new Zend_Service ReCaptcha($publicKey, $privateKey);

$this->addElement(‘captcha’, ‘captchaRecaptcha’, array(

‘captcha’ => array(‘captcha’ => ‘ReCaptcha’, ‘service’ => $recaptcha)));

Again, the value of the captcha parameter has been
changed to ReCaptcha, and a new parameter defining the
service is set. As a result, you will get a reCaptcha form
element that looks like the one in Figure 5.35.

Figure 5.35 Form element rendered by the
Zend_Captcha ReCaptcha adapter

¥
rhaney Ni
Type the tvo words: =
i L =eCAPTCHA
(4] +

405

Chapter 6
Mailing

The more technologically advanced the medium, the more
primitive, trivial and useless messages are transmitted
through it.

—Stanistaw Lem

What's In This Chapter?

* Sending plain text and HTML-formatted e-mail.
* Including attachments and adding carbon copies.
* Configuring SMTP servers and setting secure connections.

* Overview of the most popular mailing engines.

E-mail predates the first web pages and even the Internet
itself, and compared to other web technologies, mailing
has not changed much over the years. However e-mail is
still the backbone of all advanced web services and the
Internet could not work without it. Apart from user-to-user
communication, mailing is indispensable for creating
accounts, reminding users about passwords they've
forgotten, sending newsletters, keeping up with
newsgroups, and so on.

You can't develop web apps without mailing, and this
chapter explains how to do it efficiently and effortlessly.
Using the mailing engines presented here is easy and
straightforward, so this chapter will be a piece of cake for

406

you—a piece of very nutritious cake, in fact, taking into
account how many beneficial uses of mailing there are.

Creating Mailing Applications

Developers need to make sure that e-mail is automated and
works as designed. Most of the commonly encountered
problems are associated with the following:

+ Establishing connections

* Sending HTML-formatted e-mail

+ Sending e-mail to multiple receivers
» Carbon copies

All these problems can be easily solved with mailers.
Mailers are ready-to-use solutions that are included within
web application frameworks or separate modules that can
be added to a web framework.

Mailing Approaches and Web Servers

One of the biggest nuisances of web development is when
you deploy your application on a hosting server and your
mailing module stops working. This often happens because
of configuration issues. One hosting server may work fine
with mailing enabled in the PHP configuration and a
properly configured mail server such as Sendmail or
Postfix, but others may have the mailing server disabled.
In most cases, you cannot force the administrators to
configure the server and enable mailing. They don't want
to do that, mostly for security reasons—which is a good
point by the way. Unfortunately it's not a good point for
you because you need to do more work on your side in this
case.

407

The more complete details of the e-mail-sending process
are beyond the scope of this chapter, but in general it looks
like Figure 6.1.

Figure 6.1 General schema of e-mail sending

e

Fill out proper forms L)
» Web application Local mail server

g

Y

Mail server

SMTP
v

e
Open o POP3, IMAP _
Web application Mail server
S

After you create the e-mail's content and click the Send
button, all data is collected from the text fields and sent
either to a remote mail server or a local mail server if you
have an e-mail server where the application is deployed.

In most cases, a remote SMTP server is
used, even when it's on the same machine
(it's not really remote, but it's treated as
such).

Connecting to a remote mail server has some advantages.
In almost all cases, this kind of connection requires a

408

username and password because of the authentication
process. While you are authenticated, your e-mail can be
sent to any other mail server without being treated as
spam. After the e-mail is sent from the remote mail server,
it moves through the SMTP protocol to the destination
mail server and can be read by the recipient through a web
application or it can be requested by the recipient through
the POP3/IMAP protocol.

PHP Configuration

The php.ini file is used to configure PHP settings. It is
placed in the /etc/php5/apache2/ directory under
UNIX systems and in the c: \xampp 'php' under Windows
if you use XAMPP. Important parts of this file are shown
in Figures 6.2 and 6.3.

Figure 6.2 PHP's php.ini configuration file represented
through the phpinfo() function

Sare_TTioueT] _a T vaos T Vvahue
sendmail_from no value no value
sendmail_path no value no value
serialize_precision 100 100
short_open_tag off Off
SMTP localhost localhost
smitp_port 25 25

Figure 6.3 PHP's php.ini configuration file represented
through the phpinfo() function

mail.add_x_header of of
mail.force_extra_paramelers no value no value
mail.log no value no value
may L tima a0 Al

409

You can set the default SMTP hostname, SMTP port, and
Sendmail's path and from values. You can also configure

some mail-specific issues such as creating headers or a log
file.

After editing php.ini, you should have something similar
to these values:

[mail function]

SMTP = localhost

smtp_port =25

;sendmail_from = me@example.com

;sendmail_path =

;mail.force_extra parameters =

mail.add x_header = On

;mail.log =

To apply an entry, you need to remove the semicolon that
comments it out.

SMTP Server Configuration

Sendmail, like almost all leading mail servers, is available
both for UNIX and Windows systems.

UNIX

To install Sendmail, you can use a package manager like
Sendmail:

apt-get install sendmail

410

Now, you should configure Sendmail by executing the
following command with root privileges:

sendmailconfig

You can now easily send an e-mail from the command
line. Create a file called mail.txt and fill it with some
text.

$ touch mail.txt

$ echo “Test mail” > mail.txt

$ mail -s “Hello world” john@wroxexample.com < mail.txt

At the end, you need to execute the mail command, as
shown previously. Replace the example e-mail with your
own text, send it, and check your mailbox. Probably it will
be delivered but filtered as spam, so search your spam
inbox as well.

Windows

This may come as a surprise, but despite the fact that
Sendmail is a UNIX application, it is delivered within
XAMPP for Windows, so if you followed XAMPP
installation in Chapter 2, you don't have to install anything
else. The file structure of Sendmail for Windows is
presented below.

¢: 'xampp “sendmail
libeay32.dll
sendmail.exe

sendmail.ini

411

ssleay32.dll

Sendmail is also used by PHP under Windows to send
e-mail.

SwiftMailer

SwiftMailer is available not only as part of Symfony, but
also as a separate application (see Figure 6.4). It is
available for every framework considered in this book.

Figure 6.4 SwiftMailer logo

Symfony

SwiftMailer is Symfony's default mailer and is included
within framework libraries, so you don't need to install any
additional libraries. The code snippets in this section can
be put wherever you like into the controllers' actions.

Sending Simple E-mail

You can employ SwiftMailer in Symfony by invoking the
getMailer () method as shown here:

$mailer = $this->getMailer();

Creating and sending simple e-mail can be easily done
using one method only: composeAndsend (), as shown in
the following code. This is very useful when you are

412

developing a big application in which the mailing code is
not really the important part, but you need to close some
functionalities that depend on sending e-mail.

$mailer->composeAndSend(
‘example@wroxexample.com’,
‘example@wroxexample.com’,
‘Hello World!!!!”,
‘John Smith’

);

After executing this code through a browser, you should be
able to see in the right corner of the debug toolbar an
envelope with the count of sent e-mail (see Figure 6.5).

Figure 6.5 Symfony debug toolbar
m (144 | config view logs 120.0 KB 1 |

When you click the envelope, you should see details of
each e-mail on the left (see Figure 6.6).

Figure 6.6 E-mail details toolbar

413

Emails

Configuration

elivery sirategy: realime

Email sent

-
(to: I+

Sending HTML E-mail

You can send not only plain text e-mail but also
HTML-formatted messages. You may specify what kind of
e-mail you want to send with the setBody () method. It
gets two parameters: message body (content) and message
type. In the following example, an HTML message is sent:

$message =
Swift Message::newlnstance(‘Hello World Subject!’, ‘foobar message’);

$message->setBody(‘foobar <p style="font-weight: bold;”>message</p>’, ‘text/
html’);

$this->getMailer()->send($message);

Additionally you can use Symfony's partial files for the
message body. To get partial content, you should use the
getPartial () method. As the second parameter, you
send an array with key variables and their assigned values.

$message =
Swift Message::newlnstance(‘Hello World Subject!’, ‘foobar message’);

414

$htmlBody = $this->getPartial(‘activation’,array(‘name’=>‘John Smith’));
$message->setBody($htmlIBody, ‘text/html’);

$this->getMailer()->send($message);

To run this example, you need to create a partial file that
should be saved as activation.php in
/modules/<example>/templates/ directory. Note that
you replace <example> with your module name. The
partial file's content can look like this:

Hello World!

<?php echo $name; 7>

Adding Attachments

The swift Attachment class is responsible for creating
attachments in SwiftMailer. Attachments can be added in
two major ways:

+ Using the path to an existing file
* Dynamically

Depending on your business strategy and application
architecture, you can store attachment files directly under a
file system path or in a database. When you store
attachments just as files, you can attach them using the
fromPath () method and the file's path. An example
e-mail code is shown following. Note that you can also set
a proper content-type value. This is not obligatory, and you
can omit this parameter, but it can be helpful for some
e-mail clients to let them know the attachment type.

$message =
Swift Message::newInstance(‘Hello World Subject!’, ‘foobar message’);

415

$message->setFrom(‘producer@wroxexample.com’);

$message->setTo(‘example@wroxexample.com’);

$attachment = SWift_Attachment::fromPath(‘C:I"-.funny.jpg’, ‘image/jpeg’);
$message->attach($attachment);

$this->getMailer()->send($Smessage);

To hide files from public, sometimes they are kept with
strange names such as frt4754fehrt954643gfwe0.jpg.
Such names are very hard to guess, so they cannot be
easily accessed from outside. This approach can't be called
real security, but proves to be good for keeping the files
out of the view of general public. In this case, you can set
another filename that will be seen by the receiver. To do
that, you should use the setFilename() method as
follows:

$message =
Swift Message::newInstance(‘Hello World Subject!’, ‘foobar message’);

$message->setFrom(‘producer@wroxexample.com’);
$message->setTo(‘example@wroxexample.com’);

Sattachment = Swift Attachment::fromPath(

‘Chx ampp "Rpublicfhtml Ycake "'-.app ‘webroot hattach
frt4754fehrt954643gfwe0.jpg’)

->setFilename(‘funny.jpg’);
$message->attach($attachment);

$this->getMailer()->send($Smessage);

However, most developers keep files in databases,
especially when attachments are dynamic and change very

416

often, or if they differ for each e-mail. You can easily
attach a file that was saved before in a database. Assume
that your Attachments table structure looks as follows:

field name type
id int(3) primary key auto_increment
fileName varchar(32)

content BLOB

You can get attachment's content using Doctrine, as shown
in the following code:

$attachData = Doctrine_Core::getTable(‘ Attachments”)->find(1);
$data=S$attachData->getContent();
$fileName=8$attachData->getFileName();

$message =
Swift Message::newlnstance(‘Hello World Subject!’, ‘foobar message’);

$message->setFrom(‘producer@wroxexample.com’);
$message->setTo(‘example@wroxexample.com’);

$attachment = Swift Attachment::newlInstance($data, $fileName);
$message->attach($attachment);

$this->getMailer()->send($Smessage);

That's really easy to implement.

Carbon Copy

417

Adding more than one recipient can be done in few ways.
The simplest way is to add more recipients in the TO field
as follows:

$message =
Swift Message::newInstance(‘Hello World Subject!’, ‘foobar message’);

$message->setFrom(‘producer@wroxexample.com’);
$message->setTo(array(‘example@wroxexample.com’,‘ john@wroxexample.com’));

$this->getMailer()->send($message);

In some cases this solution is not the proper one. That's
why carbon copies (CC) and blind carbon copies (BCC)
were invented. You can add carbon copies using the
addcce () method of the swi ft Message ObjeCt.

$message =
Swift Message::newlnstance(‘Hello World Subject!’, ‘foobar message’);

$message->setFrom(‘producer@wroxexample.com’);
$message->setTo(‘example@wroxexample.com’);
$message->addCc(‘boss@wroxexample.com’, ‘John Kowalski’);

$this->getMailer()->send($Smessage);

Adding blind carbon copies is similar to adding carbon
copies.

$message =
Swift Message::newlnstance(‘Hello World Subject!’, ‘foobar message’);

$message->setFrom(‘producer@wroxexample.com’);
$message->setTo(‘example@wroxexample.com’);

$message->setBec(array(

418

‘pm@wroxexample.com’,
‘boss@wroxexample.com’ => ‘John Kowalski’,
)
$this->getMailer()->send($Smessage);

Both in CC and BCC, you can apply more than one
recipient, as shown previously.

Remote SMTP Servers

SwiftMailer is integrated with Symfony. Therefore, you
can configure an SMTP connection in application
configuration files. By editing the factories.yml file in
an application's /config directory, you can add some
configuration entries dedicated to Symfony's default
mailer. You can enable or disable logging for SwiftMailer,
and set default charset and delivery options. But most
interesting are the SMTP configuration entries. You can
set user, password, host name and port for all sent
e-mail. So you don't need to set it anywhere else when
sending e-mail. Exemplary SwiftMailer entries for all
environments can be set as follows:

all:
routing:
class: sfPatternRouting
param:
generate_shortest url: true

extra parameters as_query_string: true

419

view_cache manager:
class: sfViewCacheManager
param:
cache key use_vary headers: true
cache key use host name: true
mailer:

class: sfMailer

param:
logging: %SF_LOGGING_ENABLED%
charset: %SF_CHARSET%

delivery_strategy: realtime
transport:
class: Swift_SmtpTransport
param:
host: localhost
port: 25
encryption: m.
username: .

password: ~

Secure Connections
Because nonsecure connections (shown in the preceding

code snippet) are very rarely used, you will most likely be
using secure connections. You can easily change the

420

configuration according to your needs. For example, for a
secure connection, the configuration entries could be as
follows:

all:
routing:
class: sfPatternRouting
param:
generate_shortest_url: true
extra_parameters_as_query_string: true
view_cache manager:
class: sfViewCacheManager
param:
cache key use_vary headers: true
cache key use host name: true
mailer:

class: sfMailer

param:
logging: %SF_LOGGING_ENABLED%
charset: %SF_CHARSET%

delivery_strategy: realtime
transport:
class: Swift SmtpTransport

param:

421

host: smtp.gmail.com

port: 465

encryption: ssl

username: wroxexample@gmail.com

password: wroxexamplel23

See Chapter 8 to read more about the
differences between secured and
nonsecured connections.

In some situations, one global configuration for all sent
e-mail is not a good solution. Let's assume that you use a
few accounts on different SMTP servers. In this case, it's
better to use swift SmtpTransport to define connection
parameters for each e-mail module, as follows:

$transport = Swift_SmtpTransport::newInstance(‘smtp.example.org’, 25)
->setUsername(“your username’)

->setPassword(‘your password’);

Next you need to send the authentication data to
Swift Mailer as a parameter:

$mailer = Swift Mailer::newInstance(S$transport);

You can also define a secure connection with the same
effect as described previously:

422

$transport =
Swift_SmtpTransport::newlnstance(‘smtp.example.org’, 465, ‘ssl’);

All in One

To summarize, the following code shows a registration
module example in which all previously described features
are presented.

<?php
class RegistrationActions extends sfActions {
public function executeRegister() {

$transport =
Swift SmtpTransport::newlnstance(‘smtp.gmail.com’, 465, ‘ssl’)

->setUsername(‘wroxexampleregistration@gmail.com’)
->setPassword(‘wroxexample123”);
$mailer = Swift Mailer::newInstance($transport);
$message = Swift Message::newInstance(‘Hello World Subject!’, ‘foobar
message’);
$message->setFrom(‘wroxexampleregistration@gmail.com’);
$message->setTo(‘example@wroxexample.com’);
$message->setCe(array(

‘admin@wroxexample.com’ => ‘John Kowalski’,

423

));

$attachment = Swift Attachment::fromPath(

‘/home/wrox/public_html/symfony/web/attachments/
subscription_pack.zip’,

‘application/zip’);
$message->attach($attachment);
$mailer->send($message);

}
H

code snippet /swiftmailer/symfony/app/frontend/modules/
registration/actions/actions.class.php

CakePHP

SwiftMailer is not integrated with CakePHP the way it is
in Symfony. That's why you need to use SwiftMailer
through CakePHP's /vendor library path. You can
download SwifMailer files from http://swiftmailer.org/
download. After extraction, your directory structure should
be as follows:

app/vendors/swift_mailer/
CHANGES
lib/
classes/
dependency maps/

mime_types.php

424

preferences.php
swift_init.php
swift_required_pear.php
swift_required.php

tests/

test-suite/

LICENSE

README

VERSION

Now you can use the SwiftMailer library by importing it
within the controller. The missing mailing code will be
shown later in this section.

<?php
App::import(‘Vendor’, ‘Swift’, array(‘file” =>
‘swift_mailer’.DS.‘lib’.DS.‘swift required.php’));
class RegistrationController extends AppController {
var $name = ‘registration’;
function send() {

/* mailing code */

7>

Sending Simple E-mail

425

After you import SwiftMailer, you can send e-mail as you
can in Symfony. The only difference is that you need to set
transport parameters through sSwift SmtpTransport
every time you use SwiftMailer. The following code shows
sending an e-mail with SwitfMailer via Gmail.

$transport = Swift SmtpTransport::newInstance(‘smtp.gmail.com’, 465, ‘ssl’)
->setUsername(‘wroxexample@gmail.com’)
->setPassword(‘wroxexample123°);

$mailer = Swift Mailer::newInstance(S$transport);

$message =
Swift Message::newlnstance(‘Cake SwiftMailer’,*Hello World!”);

$message->setFrom(‘wroxexample@gmail.com”);
$message->setTo(‘example@wroxexample.com’);

$mailer->send($message);

Sending HTML E-mail

You can easily add message content using the setBody ()
method. But what about message templates? Can they be
made as shown in Symfony using partials? Template
loading is possible with CakePHP's view class.

$viewPath="email’;
$type=‘html’;
$viewName="‘registration’;
$view = new View($this);

$view->layout=$this->layout;

426

$content=§view->element($viewPath.DS.$type.DS.$viewName, array(‘name’ => “John
Smith”), true);

$htmlBody= $view->renderLayout($content);

Note that in the preceding example you get a page with the
layout used by the current controller as the $html1Body
variable. To see any results, you need to create a
registration.phtml template element, which should be
placed in the /app/views/elements/email/html/
directory. If you print the $htm1Body content with the
echo command, you will see something similar to Figure
6.7.

Figure 6.7 CakePHP SwiftMailer—delivered mail content

CakePHP: the rapid development php framework

Hello World! John Smith
CakePHP: the rapid development php framework

Your registration.ctp should be as follows:

Hello World!

<?php echo $name; ?>

The output shown in Figure 6.7 is probably not exactly the
one you expected. This is because the default layout was
used. To replace the default layout, you need to assign the
layout's name to the $this->layout variable instead of
assigning the current layout, which is by default the default
layout. For example if you set the layout as follows:

$this->layout=‘mailing’;

427

then you should also create mailing.ctp in the /app/
views/layouts/ directory with the following content:

<?php echo Scontent_for_layout; ?>

The preceding layout has only one line, which includes the
template's content. It works in the same way as it does in a
usual application. After merging, your code should look
like the following:

$viewPath=‘email’;

$type=‘html’;

$viewName="registration’;

$view = new View($this);

$view->layout=$this->layout;

$content=§view->element($viewPath.DS.$type.DS.$viewName,

array(‘name’ => “John Smith”), true);

$htmlBody= $view->renderLayout($content);

$transport = Swift_SmtpTransport::newInstance(‘smtp.gmail.com’, 465, ‘ssl’)
->setUsername(‘wroxexample@gmail.com”)
->setPassword(‘wroxexample123°);

$mailer = Swift Mailer::newInstance(S$transport);

$message = Swift_Message::newlInstance();

$message->setSubject(‘swiftExample”’);

$message->setFrom(‘wroxexample@gmail.com’);

$message->setTo(‘example@wroxexample.com’);

428

$message->setCc(array(‘admin@wroxexample.com’ => ‘John Kowalski’,));
$message->setBody($htmlBody, ‘text/html’);

$mailer->send($message);

Note that it is a good practice to keep HTML and plain
e-mail in separate folders in the elements/email/
directory.

views/elements/email/html/

views/elements/email/text/

Adding Attachments, Carbon Copy, and SMTP
Connection

These are done exactly as described in the “Symfony”
section earlier in this chapter, so it will not be covered
again here.

All in One

When you merge all code described in this section, your
code should be similar to following code.

<?php
App::import(‘Vendor’, ‘Swift’, array(‘file’ =>

‘swift_mailer’.DS.‘lib’.DS. swift_required.php”));

429

class RegistrationController extends AppController {
var $name = ‘registration’;
function send() {

$transport =
Swift_SmtpTransport::newlnstance(‘smtp.gmail.com’, 465, ‘ssl’)

->setUsername(‘wroxexample@gmail.com’)
->setPassword(‘wroxexample123”);
$mailer = Swift Mailer::newInstance(S$transport);
$message = Swift Message::newInstance();
$message->setSubject(‘swiftExample”);
$message->setFrom(‘wroxexample@gmail.com’);
$message->setTo(‘example@wroxexample.com’);
$message->setCc(array(‘admin@wroxexample.com’ => ‘John Kowalski’,));
$viewPath=‘email’;
$type=‘html’;
$viewName="registration’;
$view = new View($this);
$view->layout=$this->layout;
$content=§view->element($viewPath.DS.$type.DS.$viewName,
array(‘name’ => “John Smith”), true);
$htmIBody= $view->renderLayout($content);
$message->setBody($htmlIBody, ‘text/html’);

$attachment = Swift Attachment::fromPath(

430

‘/home/wrox/public_html/symfony/web/attachments/
subscription_pack.zip’,

‘application/zip’);
$message->attach($attachment);

$mailer->send($message);

}

7>

code snippet /swiftmailer/cakephp/app/controllers/
registration_controller.php

Note that you also need to create proper template files and
attachments to make this example runnable.

Zend Framework

Using SwiftMailer in Zend Framework is done the same
way as in CakePHP. You need to unpack SwiftMailer into
your project's /library path. Your directory structure
should look as follows:

library/swiftmailer/
CHANGES
lib/
classes/
dependency maps/

mime_types.php

431

preferences.php
swift_init.php
swift_required pear.php
swift_required.php

tests/

test-suite/

LICENSE

README

VERSION
You can now add the SwiftMailer library:
<?php
require_once(‘swiftmailer/lib/swift required.php’);
class RegistrationController extends Zend Controller Action {
H
Sending Simple E-mail

The rest of the code within the controller is almost the
same as in Symfony and CakePHP.

$mailer = Swift Mailer::newInstance(S$transport);
$message = Swift Message::newInstance();
$message->setSubject(‘swiftExample);
$message->setFrom(‘wroxexample@gmail.com’);

$message->setTo(‘example@wroxexample.com’);

432

$message->setBody(“Hello World”,‘text/plain’);

$mailer->send($message);

The only difference, explained in the following section, is
in getting the view template because it depends on the
framework's architecture and libraries.

Sending HTML E-mail

To get a template and send it as an HTML e-mail, you
need to use zend Vview class.

$view = new Zend_View();

$view->addScriptPath(APPLICATION PATH . ‘/application/views/scripts/
email/’);

$view->assign(‘name’, John Smith’);
$htmlBody = $view ->render(registration.phtml’);

$mail->setBody($htmIBody, ‘text/html’);

Your template should be saved as /application/
views/scripts/email/registration.phtml and can
look as follows:

Hello World!

<?php echo $this->name; ?>

Note that the apprrcATION PATH variable is defined in
/application/public/index.php.

<?php

defined(‘APPLICATION PATH?)

433

|| define(‘APPLICATION_PATH?’, realpath(dirname(_ FILE). ‘/../
application’));

All in One

Your merged efforts will result in following code.

<?php

require_once(‘swiftmailer/lib/swift _required.php’);

class RegistrationController extends Zend Controller Action {
function send() {

$transport
Swift SmtpTransport::newlnstance(‘smtp.gmail.com’, 465, ‘ssl’)

->setUsername(‘wroxexample@gmail.com”)

->setPassword(‘wroxexample123”);
$mailer = Swift Mailer::newlInstance($transport);
$message = Swift_Message::newlnstance();
$message->setSubject(‘swiftExample”’);
$message->setFrom(‘wroxexample@gmail.com’);
$message->setTo(‘example@wroxexample.com’);
$message->setCc(array(

‘admin@wroxexample.com’ => ‘John Kowalski’,

));

434

$view = new Zend View();

$view->addScriptPath(APPLICATION_PATH .
‘/application/views/scripts/email/’);

$view->assign(‘name’, John Smith’);

$htmlBody = $view ->render(registration.phtml’);

$message->setBody($htmlIBody, ‘text/html’);

$attachment = Swift Attachment::fromPath(

‘/home/wrox/public_html/symfony/web/attachments/
subscription_pack.zip’,

‘application/zip’);
$message->attach($attachment);

$mailer->send($message);

}

7>

code snippet /swiftmailer/zf/application/controllers/
RegistrationController.php

CakePHP's Mailing Component

CakePHP delivers within itself a ready-for-use mailing
component. You can find it in the /cake/libs/
controller/components directory. The component
filename 1s very meaningful because it's called
email.php. You can check it for default variables like the
following:

435

var $replyTo = null;

You can change this variable if there is an address that is
usually used.

To add this component to a controller to work with, you
need to add the component name to the $components
variable. Let's create an exemplary controller
(MailController) with one method: sendEmail ().
Your code should look like the following:
<?php
class MailController extends AppController {

var Scomponents = array(‘Email’);

var $uses = ’;

function sendEmail() {

}
}

The bold line demonstrates how you can add components
in CakePHP. Assume that the sendEmail () action is
invoked every time when you want to send an e-mail with
a fixed content. You can modify it to make the content
dynamic, but to simplify the problem we will use fixed
values such as subject, message, and so on.

Sending Simple E-mail
To begin this example, we want to send a simple e-mail

with “Hello World!” as the message. You can do it by
accessing the Email component's methods and variables

436

through $this->Email. The code that sends a plain text
e-mail should look like the following:

$this->Email->to = ‘john.smith@]localhost’;
$this->Email->subject = ‘Just want to say Hi’;
$this->Email->replyTo = ‘noreply@wrox.com’;
$this->Email->from = ‘Example <noreply@wrox.com>’;

$this->Email->send(‘Hello World!”);

This piece of code sends an e-mail. The parameter given to
the send () method is the body of the message. It's useful
only when we want to send short messages, but what if we
want to do more? We can define a variable where we can
hold a bigger message. In CakePHP, there is also a
different approach available. We can use layouts to send
messages, which is an advantage of CakePHP. This feature
facilitates working with e-mail because you can work only
with code and then someone else prepares the e-mail
layouts. To make it possible, we need to create an /email
directory in the view's /layouts directory. We should
also separate plain text and HTML layout directories, so
the default text layout path will be /views/layouts/
email/text/default.ctp. To make it possible to
assign a layout as the message of an e-mail, you need to
assign it as a template. You can do it with the following
line:

$this->Email->template = ‘default’;
The content of default.ctp could be as follows:

Hello World!

437

Note that you don't add the . ctp extension to the template
name. The line adding the template needs to be placed
before the send() method is invoked. As mentioned
before, we can send an e-mail in multiple formats. To
mark a concrete format, we need to assign it to the sendas
variable like this:

$this->Email->sendAs = ‘text’;

As the default value, text is used here. So the prepared
e-mail will be sent as a text with message defined within
the detault.ctp file. Note that if you set a template to be
the message within the Email object, you don't need to set
it as a parameter of the send () method.

Sending HTML E-mail

Usually you want to produce HTML-formatted e-mail
because they look much better and almost all e-mail clients
(web or standalone applications) can interpret them. The
CakePHP mailer component supports HTML e-mail. As
with plain text e-mail, we need to create a template layout.
This time, you need to place default.ctp in the
/views/layouts/email/html/ directory. Also in this
case you need to point to the template that should be used.

$this->Email->template = ‘default’;

Note that you can create more than one template and
assign only the one that is now needed.

To have this e-mail sent as HTML, we need to assign the
proper mail format:

438

$this->Email->sendAs = ‘html’;

Because sometimes only one format can be interpreted by
an e-mail client, we can send e-mail in both formats, so in
worst case the client can read plain text. When you send
both formats, the client can skip one of them and read the
preferred one. To send both formats you need to set both
values as below:

$this->Email->sendAs = ‘both’;

You will use mailing probably more often with dynamic
data than with static data. To use information generated
with templates, you need to use the set () method to
assign some data to a variable, which is next sent to the
template. An example of this may be the following:

$this->set(‘name’, ‘John Smith’);
And now your template can look like this:
<p>Hello World!</p>

Regards,

<?php echo $name; 7>

Using e-mail templates allows you to separate the
presentation layer from the core mailing and thus maintain
an organized structure of business logic. You can create
generic messages and store all mailing code in one place,
conforming to the DRY principle.

Adding Attachments

439

Adding attachments in the CakePHP e-mail component
can be a little annoying. You first need to set the path or
paths where attachments are placed. Next, the filename of
the attachment or multiple attachments needs to be given.
Example code could look like this:

$this->Email->filePaths=array(getcwd()./’);

$this->Email->attachments = array(‘foo.doc’);

Note that this approach makes it impossible to include an
attachment directly from a database, so it must have been
saved previously and accessible by a file system path. In
the preceding code, we added the getcwd() method,
which returns the current path for the attachments. You
may need to change it to your path for the attachments.

Carbon Copy

There are two ways to add a copy of a message for
someone else: through carbon copy (CC) or blind carbon
copy (BCC). The difference between them is the visibility.
When you use CC, the copy receiver is visible to the
original recipient. Addresses from the BCC list are not
visible to the recipient nor to anyone else who is copied on
the message. In CakePHP's mailer, you can use these
copies this way:

$this->Email->cc=array(‘foo@bar.com’);
$this->Email->bcc=array(‘’foo@bar.com’);

You can add more than one e-mail in CC and/or BCC
arrays.

440

Remote SMTP Servers

As described earlier in this chapter, in many cases we need
to use a remote SMTP server to send e-mail. You need to
provide a username and password with which you sign in.
A hostname and SMTP port number are also required. An
unsecure SMTP server port number is set by default to 25.
In CakePHP, you need to set all these parameters as
smtpOptions in the following way:
$this->Email->smtpOptions = array(

‘port’=>25’,

‘timeout’=>‘30",

‘host” => ‘smtp.wroxexample.com’,

‘username’=>‘john.smith@wroxexample.com’,

‘password’=>‘secretPassword123’
);
$this->Email->delivery = ‘smtp’;
$this->Email->send();
Additionally you need to change the delivery mode to
smtp because by default it's set to mail. Note that
everything, including SMTP options, need to be set before
Email's send() method is used. If you have some
problems with this option, you can check smtpError

where all errors are stored. You can access this variable as
follows:

$this->Email->smtpError;

441

Remember that unlike previous variables, you should use it
after the send () method is invoked.

Secure Connections

In most cases, you should use secure connections. For a
secure SMTP connection through SSL/TLS, port 465 is
reserved. A secure connection in CakePHP's e-mail
component looks like this:
$this->Email->smtpOptions = array(

‘port’=>465",

‘timeout’=>‘30",

‘host” => “ssl://smtp.gmail.com’,

‘username’=>‘wroxexample@gmail.com’,

‘password’=>‘secretPassword123’,
)i

In this example, Gmail's SMTP server was used.
All in One

To summarize, a full example is presented below. Assume
that your attachment is placed in /home/wrox/
public html/cake/app/webroot/attachments/
schedule.doc. Additionally, you need to create two
e-mail templates that should be placed in /home/wrox/
public _html/cake/app/ views/layouts/email/
html/schedule.ctp and /home/wrox/public _html/
cake/app/views/layouts/email/text/
schedule.ctp. In Windows, equivalent paths to

442

attachment and e-mail templates would be c:'\xampp'
htdocsll‘-.cakell"-.appll"-.webrootll‘-.attachmentsl"-.
schedule.doc, C :Ili.xampplli.htdocsll"-.cakel'\.applli.viewslli.
layoutsll"-.emailll"-.htmll"%.s chedule.ctp and cC: I"%.xamppl"%.
htdocsll'k.cakell'k.appll'kviewsll"-.layoutsll'kemailll\.textll'%.

schedule.ctp.

<?php
class MailController extends AppController {
var $components = array(‘Email’);
var $uses = ’;
function sendEmail() {
$this->Email->to = ‘john.smith@]localhost’;
$this->Email->subject = ‘Schedule’;
$this->Email->replyTo = ‘hr@wroxexample.com’;
$this->Email->from = ‘Example <noreply@wroxexample.com>’;
$this->Email->filePaths =
array(‘/home/wrox/public_html/cake/app/webroot/attachments/’);
$this->Email->attachments = array(‘schedule.doc’);
$this->Email->cc=array(‘pm@wroxexample.com’);

$this->Email->template = ‘schedule’;

443

$this->Email->sendAs = ‘both’;
$this->Email->smtpOptions = array(
‘port’=>465’,
‘timeout’=>30’,
‘host” => “ssl://smtp.wroxexample.com’,
‘username’=>‘mailing-list@wroxexample.com’,
‘password’=>‘secretPassword123’,
)i

$this->Email->send();

}

code snippet /cakeMailer/cakephp/app/controllers/
mail_controller.php

Such a prepared mailer will work if you change SMTP
options to those that are relevant to you. If you want to
send e-mail one by one, you should use the reset ()
method.

$this->Email->send();

This method resets all variables to default values, which
can prevent mistakes.

Zend Mailer

Zend mailer is located in C:‘xampp'php'Zend'Mail.php
or /usr/share/php/Zend/Mail.php under UNIX. You

444

can view all methods and variables at
http://framework.zend.com/apidoc/1.10/Zend Mail/
Zend Mail.html. An example controller could be like this:

<?php

class MailingController extends Zend Controller_Action {
public function sendMail() {
}

H

7>

The sendMail () method in our example is invoked when
you want to send an e-mail.

Sending Simple E-mail

To send a simple e-mail, you need to fill in the
sendMail () method with the following code:

$mail = new Zend Mail();
$mail->setBodyText(‘Hello World!’);
$mail->setFrom(‘noreply@wrox.com’, ‘Example’);
$mail->addTo(john.smith@localhost*, ‘John Smith’);
$mail->setSubject(‘Just want to say Hi’);

$mail->send();

This code gives almost the same result as in CakePHP's
mailer component. The only difference between these two
solutions is that in Cake you assigned data through

445

variables, whereas in Zend you use methods to complete
all mail information.

Sending HTML E-mail

Zend's approach is not as comfortable as CakePHP's. You
cannot use e-mail templates as easily as in CakePHP.
Usually you will also need another method for sending an
HTML-formatted e-mail:

$mail = new Zend Mail();

$mail->setBodyText(‘Hello World!”);

$mail->setBodyHtml(‘<div class="text-weight: bold;”>Hello World!</div>’);
$mail->setFrom(‘noreply@wrox.com’, ‘Example’);
$mail->addTo(john.smith@localhost’, ‘John Smith’);

$mail->setSubject(‘Just want to say Hi’);

$mail->send();

But not-so-easy doesn't equal impossible. Assigning a
proper view template content to a variable can be done by
using Zend View.

$htmlTemplate = new Zend_View();

$htmlTemplate->addScriptPath(APPLICATION_ PATH./views/scripts/email/
p3

$htmlTemplate->assign(‘name’,* Administrator’);

$html_body = $htmlTemplate ->render(‘test.phtml’);

After adding the rest of the mailing code, your code should
be as follows:

446

$view = new Zend View();

$view->addScriptPath(APPLICATION_PATH . ‘/application/views/scripts/
email/’);

$view->assign(‘name’,John Smith’);

$htmlBody = $view ->render(email.phtml’);

$mail = new Zend Mail();
$mail->setBodyHtml(ShtmIBody);
$mail->setFrom(‘wroxexample@gmail.co’, ‘Example’);
$mail->addTo(‘kprzystalski@gmail.com’, ‘Karol’);
$mail->setSubject(‘Just want to say Hi’);

$mail->send();

You should also create a view template that should be
saved as email.phtml in the /application/views/
scripts/email/ directory.

<p>Hello World!</p>
Regards,

<?php echo $name; 7>

Adding Attachments

The easiest way to attach a file within a mail with
Zend Mail 1s to get the file content and send it as the
parameter to the Zend Mail createAttachment ()
method. To get the content from any file, you can use the
PHP file get contents () function.

$fileContents = file_get contents(‘schedule.doc’);

447

Because you get only the content of the file, you should
also set the filename that will be shown. You can also
provide a file type.

$mail = new Zend Mail();

$mail->setBodyText(‘Hello World!’);
$mail->setFrom(‘noreply@wrox.com’, ‘Example’);
$mail->addTo(john.smith@localhost’, ‘John Smith’);
$mail->setSubject(‘Just want to say Hi’);

$fileContents = file_get_contents(‘schedule.doc’);
$attachment = $mail->create Attachment($fileContents);
$attachment->filename="‘schedule.doc’;
$attachment->type="‘application/msword’;

$mail->send();

Carbon Copy

Adding more recipients is as easy as in CakePHP's mailing
component: Just use the addcc () or addBcc () methods.

$mail = new Zend_Mail();

$mail->setBodyText(‘Hello World!”);
$mail->setFrom(‘noreply@wrox.com’, ‘Example’);
$mail->addTo(john.smith@localhost‘, ‘John Smith’);
$mail->setSubject(‘Just want to say Hi’);
$mail->addCc(‘john@wroxexample.com’, ‘John Smith’);

$mail->addBcc(‘topsecret@wroxexample.com’, ‘Top Secret Recipient’);

448

$mail->send();

You can add more than one recipient in CC/BCC by
invoking the addcc () or addBcc () method again. This is
a good approach when getting e-mail from a database in an
iterative way.

Remote SMTP Servers

You will probably send e-mail through remote servers. In
zend Mail you need to define an array for configuration
with expected keys: auth, username, and password. This
array should be sent as the second parameter when
initializing a Zzend Mail Transport Smtp object
instance. The auth key can be set to plain, login, or
crammd5. If you want to send an e-mail through a remote
server, you should use 1ogin.

$config = array(‘auth’ => ‘login’,
‘username’ => ‘username’,
‘password’ => ‘password’);

$transport =
new Zend Mail Transport Smtp(‘mail.wroxexample.com’, $config);

$mail = new Zend Mail();

$mail->setBodyText(“Hello World!”);
$mail->setFrom(‘wroxexample@gmail.co’, ‘Example’);
$mail->addTo(‘kprzystalski@gmail.com’, ‘Karol’);
$mail->setSubject(‘Just want to say Hi’);

$mail->send($transport);

449

The zend Mail Transport Smtp configuration should
be set as the parameter for the send () method if you want
to use these configuration entries for sending an e-mail.

Secure Connection

To secure the connection between your application and an
SMTP server, you need to set two additional configuration
entries: ss1 and port. The port option is not really a
security configuration entry, but remote servers usually use
a different port number for secured SMTP connections.

<?php
$config = array(‘auth® => ‘login’,
‘username’ => ‘wroxexample@gmail.com’,
‘password’ => ‘wroxexample123’,
‘ssl” => ‘ssl’,
‘port’ => 465);
$transport = new Zend Mail Transport Smtp(‘smtp.gmail.com’, $config);
$mail = new Zend Mail();
$mail->setBodyHtml(“Hello World!”);
$mail->setFrom(‘wroxexample@gmail.co’, ‘Example’);
$mail->addTo(‘kprzystalski@gmail.com’, ‘Karol’);
$mail->setSubject(‘Just want to say Hi’);

$mail->send($transport);

All in One

450

Merging all the examples shown previously, you will get
the following piece of code. It should be saved as
MailingController.php iIn the /application/
controllers/ directory.

<?php
class MailingController extends Zend Controller Action {
public function sendAction() {
$config = array(‘auth” => ‘login’,

‘username’ => ‘wroxexample@gmail.com’,
‘password’ => ‘wroxexample123’,
‘ssl” => ‘ssl’,
‘port’ => 465);

$transport =
new Zend Mail Transport Smtp(‘smtp.gmail.com’, $config);

$htmlTemplate = new Zend_View();

$htmlTemplate->addScriptPath(ROOT DIR .
‘/application/views/scripts/templates/’);

$htmlTemplate->assign(‘name’,’ Administrator’);

$html body = $htmlTemplate ->render(htmlEmailExample.phtml’);

$mail = new Zend Mail();

451

$mail->setBodyHtml($html_body);
$mail->setFrom(‘sender@test.com’, ‘Some Sender’);
$mail->addTo(‘recipient@test.com’, ‘Some Recipient’);
$mail->addCc(‘someone@example.com’, ‘Someone Else’);
$mail->addBcc(‘topsecret@example.com’, ‘Top Secret Recipient’);
$fileContents = file_get contents(‘schedule.doc’);
$attachment = $mail->createAttachment($fileContents);
$attachment->filename=*‘schedule.doc’;
$attachment->type=‘application/msword’;
$mail->addAttachment(Sattachment);
$mail->setSubject(‘TestSubject’);

$mail->send($transport);

}

code snippet /zendMailer/zf/application/controllers/
MailingController.php

PHPMailer

PHPMailer (see Figure 6.8) is not included in any of the
frameworks presented in this chapter. However it is fairly
popular and you may wish to add it as a separate mailer
application, as in CakePHP and Zend Framework, or as a
Symfony plug-in. You can find more about PHPMailer at
http://phpmailer.worxware.com. As you can see, there are
also a few add-ons available for PHPMailer on this page

452

(PHPMailer-FE, PHPMailer-ML, PHPMailer-BMH).
Additionally, you can also get support for PHPMailer from
its founder: Worx International (not to be confused with
Wrox Press, of course).

Figure 6.8 PHPMailer logo

~»PHPMeiler

Symfony

Symfony doesn't support PHPMailer since version 1.2.
There was a plan to include PHPMailer as a part of
Symfony 2.0, but SwiftMailer won this battle and it's still a
part of Symfony. If you want to check how PHPMailer
works with Symfony, you can try earlier versions of
Symfony (1.2 and earlier) and install PHPMailer as a
plug-in using the following command:

$ symfony plugin:install sfPHPMailerPlugin

If you really need to use PHPMailer, it's also possible to
use PHPMailer in Symfony in a different way, similar to
the way it's used in CakePHP, but you will break the
strategy of adding add-ons in Symfony then. Anyway, we
don't recommend this option. You should rather consider a
different mailer to use with Symfony.

CakePHP

Unfortunately, CakePHP bases this installation on its
individual components. But as in case of SwiftMailer, you

453

can still use PHPMailer. To download PHPMailer, go to
http://sourceforge.net/projects/phpmailer/files/
phpmailer%20for%20php5 6/. Probably you have noticed
that there are more versions available, including a Lite
version, but we will describe in this chapter only the most
popular PHPMailer for PHP5/6. To integrate PHPMailer
with CakePHP, you need to unpack the proper PHPMailer
package to the CakePHP application's /vendors
directory. After unpacking, your directory structure should
look like this:

app/vendors/phpmailer/
docs/
examples/
language/
test/
LICENSE
README
aboutus.html
changelog.txt
class.phpmailer.php
class.pop3.php
class.smtp.php

All in One

The individual code snippets demonstrating PHPMailer are
discussed in the Zend Framework section. For CakePHP

454

developers, there is a merged example presented below
and the discussion in the Zend Framework section applies
to this example as well. Almost all PHPMailer code used
in CakePHP example is the same as in Zend Framework.

<?php
App::import(‘Vendor’, ‘PHPMailer’, array(‘file’ =>
‘phpmailer’.DS. class.phpmailer.php’));
class MailController extends AppController {
var Suses = ’;
function sendEmail() {
$mail = new PHPMailer();
$mail->IsSMTP();
$mail->SMTPAuth = true;
$mail->SMTPSecure = ‘ssl’;
$mail->Host = ‘smtp.gmail.com’;
$mail->Port = 465;
$mail->Username = “wroxexample@gmail.com”;
$mail->Password = “wroxexample123”;
$mail->SetFrom(*“‘wroxexample@gmail.com”, “PHPMailer Wrox Example”);

$mail->Subject = “PHPMailer example”;

455

$mail->AddAddress(“kprzystalski@gmail.com”);

$viewPath=‘email’;

$type=‘html’;

$viewName="registration’;

$view = new View($this);

$view->layout=$this->layout;

$content=$view->element($viewPath.DS.$type.DS.$viewName,
array(‘name’ => “John Smith”), true);

$htmlBody= $view->renderLayout($content);

$mail->MsgHTML($htmIBody);

$mail->Send();

}

code snippet /phpMailer/cakephp/app/controllers/
registration_controller.php

As you did with SwiftMailer, you need to include the
PHPMailer libraries using the import () method. Note
that you also need to use the view class to create e-mail
contents using templates.

Zend Framework

In Zend Framework, after unpacking PHPMailer, your
directory structure should be as follows:

library/phpmailer/

456

docs/
examples/
language/

test/
LICENSE
README
aboutus.html
changelog.txt
class.phpmailer.php
class.pop3.php
class.smtp.php

The file highlighted with bold in the preceding code is one
you need to include (as shown in the following code), as is
the case with every other add-on.

<?php

require_once(‘phpmailer/class.phpmailer.php’);

class RegistrationController extends Zend Controller Action {
function send() {
}

H

Sending Simple E-mail

457

To send an e-mail with PHPMailer, you need to create an
instance of pHPMailer and set some commonly known
attributes.

$mail = new PHPMailer();
$mail->SetFrom(“boss@wroxexample”, “Boss”);
$mail->Subject = “PHPMailer example”;
$mail->Body = “Hello World!”;
$mail->AddAddress(“john@wroxexample.com™);

$mail->Send();

Sending HTML E-mail

HTML e-mail can be sent using the MsgHTML () method.
PHPMailer has a nice attribute, A1tBody, which allows
you to set a message that is shown when recipient can't
receive HTML e-mail. Getting templates is done in the
same way as in SwiftMailer.

$mail = new PHPMailer();
$mail->SetFrom(“boss@wroxexample”, “Boss™);
$mail->Subject = “Wrox example”;
$htmlTemplate = new Zend View();

$htmlTemplate->addScriptPath(APPLICATION PATH. /views/scripts/email/
°):

$htmlTemplate->assign(‘name’,*Foo Bar’);
$htmlBody = $htmlTemplate ->render(‘registration.phtml’);

$mail->AltBody="To view the message, use an HTML compatible e-mail viewer!”;

458

$mail->MsgHTML($htmIBody);
$mail->AddAddress(“john@wroxexample.com”);

$mail->Send();

Adding Attachments

PHPMailer has options very similar to the CakePHP
mailing component. You can attach a file using its file
system path.

$mail = new PHPMailer();

$mail->SetFrom(“boss@wroxexample”, “Boss”);

$mail->Subject = “PHPMailer example”;

$mail->MsgHTML(“Hello World!”);
$mail->AddAddress(“john@wroxexample.com™);
$mail->AddAttachment(“attachments/schedule.doc”);
$mail->AddAttachment(“attachments/fnf84y534thb38h53.doc”,”’plan.doc™);

$mail->Send();

Additionally, you can set the name of the attachment that
will be shown to the recipient.

Carbon Copy

This solution delivers three methods with which we can set
the reply address, add additional recipients, and add hidden
recipients: AddReplyTo (), AddccC (), and AddBCC ().

$mail = new PHPMailer();

$mail->SetFrom(“boss@wroxexample”, “Boss”);

459

$mail->Subject = “PHPMailer example”;
$mail->MsgHTML(“Hello World!”);
$mail->AddAddress(“john@wroxexample.com™);
$mail->AddReplyTo(“pm@wroxexample.com”,”PM”);
$mail->AddCC(*“john.smith@wroxexample.com,”John Smith”);
$mail->AddBCC(“foo.bar@wroxexample.com”, “foo bar”);

$mail->Send();

Remote SMTP Servers

To connect to a remote SMTP server, you need to express
it directly by invoking the i ssmMTP () method. Additionally
you need to set all commonly needed attributes such as
host name, port number, username, and password.
PHPMailer also has additional functionalities dedicated to
specific mail servers such as Qmail, Sendmail, or Gmail.

$mail = new PHPMailer();

$mail->IsSMTP();

$mail->SMTPAuth = true;

$mail->Host = ‘smtp.wroxexample.com’;

$mail->Port = 25;

$mail->Username = “admin@wroxexample.com”;
$mail->Password = “wroxexample123”;
$mail->SetFrom(*“admin@wroxexample.com”, “Admin”);
$mail->Subject ="PHPMailer example”;

$mail->Body ="Hello World!”;

460

$mail->AddAddress(“john@wroxexample.com”);

$mail->Send();

Secure Connection

For a secure connection you need only to set the
SMTPSecure attribute to ss1 and change the port to a
secured one.

$mail = new PHPMailer();

$mail->IsSMTP();

$mail->SMTPAuth = true;

$mail->SMTPSecure = ‘ssl’;

$mail->Host = ‘smtp.gmail.com’;

$mail->Port = 465;

$mail->Username = “wroxexample@gmail.com”;
$mail->Password = “wroxexample123”;
$mail->SetFrom(“wroxexample@gmail.com”, “Admin”);
$mail->Subject = “PHPMailer example”;
$mail->Body = “Hello World!”;
$mail->AddAddress(“john@wroxexample.com™);

$mail->Send();

All in One

Your merged code should be as shown here.

461

<?php

require_once(‘phpmailer/class.phpmailer.php’);

class RegistrationController extends Zend Controller Action {

function send() {

$mail = new PHPMailer();
$mail->IsSMTP();
$mail->SMTPAuth = true;
$mail->SMTPSecure = ‘ssl’;
$mail->Host = ‘smtp.gmail.com’;
$mail->Port = 465;
$mail->Username = “wroxexample@gmail.com”;
$mail->Password = “wroxexample123”;
$mail->SetFrom(*“‘wroxexample@gmail.com”, “PHPMailer Wrox Example”);
$mail->Subject = “PHPMailer example”;
$mail->AddAddress(“kprzystalski@gmail.com”));
$htmlTemplate = new Zend_View();

$htmlTemplate->addScriptPath(APPLICATION_PATH. /views/scripts/
email/’);

$htmlTemplate->assign(‘name’,‘Foo Bar’);

$htmlBody = $htmlTemplate ->render(‘registration.phtml’);

462

$mail->MsgHTML($htmIBody);

$mail->Send();

}

code snippet /phpMailer/zf/application/controllers/
RegistrationController.php

463

Chapter 7
Searching

If you type “Google” into Google, you can break the
Internet. So please, no one try it, even for a joke. It's not a
laughing matter. You can break the Internet!

—Jen, The IT Crowd

What's In This Chapter?

* Introducing full-text searching and indexing.
* Sphinx searching engine with Symfony.
* Apache Lucene with Zend Framework.

* Google Custom Search with CakePHP.

With the advent of Web 2.0, web content was no longer
generated solely by webmasters and dedicated editors, but
by communities of end users themselves. One side effect
of this transformation was a huge increase in web content
that needs to be stored and occasionally searched.

In this chapter, we are going to show you how to integrate
search engines with the frameworks. There are many
search engines on the market, but we chose only three
because of their usefulness, efficiency, and popularity; we
also discuss important differences between them. The
engines we describe are Lucene, Sphinx, and the Google
API. Apache Lucene is a popular, Java-based, open-source
engine that has spawned several successful subprojects.
Sphinx was written in C++ by a sole dedicated software

464

engineer with top performance and scalability in mind. The
Google AJAX Search API allows you to easily embed web
search capability into your website. It is unfortunately not
open-source, but it is so cool we couldn't ignore it.

Problem

When you have a small database of a few thousand records
and you need to run a query as rarely as once a minute, the
search method doesn't really matter. You may use the SQL
WHERE clause and built-in database mechanisms then.
But when the query count increases, you simply cannot
afford to run each search separately. You need to look for
a more advanced mechanism.

Matters further complicate when you want to broaden your
results to synonyms of your search phrase. You may
expect that if somebody looks for guns he would be
interested in firearms, too. However, the situation gets
really messed up if you decide that searching should be
intelligent and filter out irrelevant hits like Guns N
Roses. Of course that's messed up unless you integrate
your application with a search engine. If you do,
everything gets much simpler.

Full Text Searching

There is a good chance that you have used Google, Yahoo,
or another web search engine. You were using full-text
searching then. The web search engines are the most
prominent examples of search engines, but there are also
other solutions, especially those called enterprise search
engines used for applications' internal resources. The only

465

difference is that they do not crawl the Internet to get the
content, but instead they search and index databases or
files filled with content written by web app users. The type
of data source is not that important as long as you have full
access to it.

The problem with full-text searching is that you want to
quickly get a large number of relevant results. It is hard to
achieve that goal, and relevance seems to decrease as the
number of results increases. To quantify these results, two
important notions were defined:

* Recall—The ratio of the quantity of returned relevant results
to the quantity of all relevant items. In other words, it is the
ratio of those items that you intended to hit and actually did
to all items that you wanted to hit.

* Precision—The ratio of the quantity of returned relevant
results to the quantity of all returned results, including
irrelevant ones. In other words, it is the ratio of those items
you wanted to hit and did to all items you hit whether you
wanted them or not.

These notions are illustrated in Figure 7.1. Recall is
increased when relevant items are returned, and precision
is increased mainly if irrelevant items are not returned (but
also by increasing recall). The density of dots roughly
represents the fact that most items are not relevant and stay
within the database.

Figure 7.1 Precision and recall

466

Precision Recall
® o (@]
Returned °
©
] 2]
(@] o|©
0® v © |,| ©
Not Returned | © ° ©
o 0% | o
eo o o ©
Irrelevant Relevant
Indexing

As you probably expect, naive scanning of all data looking
for exact matches is the worst option possible. If you look
for “how to feed cats”, this process compares this
exact phrase with the beginning of every string in the
database, moves one letter forward, compares it again, and
so on. If 100 users look for “how to feed cats”, the
process is repeated from scratch. Moreover, such an exact
phrase search cannot hit a sentence like “The favorite
food of my cat is raw fish”, which seems quite a
relevant answer.

There are many indexing algorithms, but the thing they all
have in common is that they initially analyze the database
to decrease the work that needs to be done later, possibly
increasing the recall of search. The index itself needs to be
stored, but it is usually not much bigger than a few
thousand commonly used words, so it is a little tradeoff for
its effectiveness. Some common steps done during
indexing include the following:

467

Tokenization—Continuous strings need to be segmented
into individual words, called fokens. In most Western
languages, words are clearly separated by spaces, but even
then some problems may occur. For example, in English,
“killer whale” is the same as “orca”, but when indexed
as separate words may lead to “whale killers”, meaning
“whalers”. Proper tokenization of the German language
may be even more difficult, as it tends to dynamically create
compound words such as “Tempolimit”, which is “speed
limit”. Eastern languages are even less clearly
whitespace-delineated, which makes tokenization
challenging.

Stop words—Some words are themselves meaningless,
extremely common, or otherwise unwanted, and you want
them filtered out from the index. Some common stop words
are “the”, “it”, “how”, “to”, Or “however”.
Stemming—Many words may be derived from a common
stem. For example, “painting”, “painted”, “paints”,
and “painter” have a common stem “paint” and can be
stored as one concept word under one index. This can
dramatically improve recall, but at the cost of precision. A
more sophisticated form of stemming is lemmatization. The
word is first identified as a part of speech (e.g., a noun), and
then an appropriate rule is used to find the stem. This allows
better precision as the word “painting” may be either a
noun, like “Caravaggio's painting”, or a verb, like
“Mary likes painting”.

Entity extraction—Some phrases in text can be identified
as named entities and stored under their own indexes. This
may include places like “Great Barrier Reef”,
organizations like “Free Software Foundation”,
currencies, dates recognized from multiple formats, or
others.

Experimental methods—There is still much that can be
done to improve general indexing algorithms and even more
regarding language-specific indexing algorithms. There are
some interesting methods introducing human-like fuzziness,
like those indexing the phonetic sound of words. Some other

468

systems try to match synonyms of various words to index
pure concepts that can be expressed using several different
words. Sometimes even semantic webs are constructed that
allow the calculation of conceptual distance between
particular words.

As you can see, this is quite a complex issue, perhaps more
related to linguistics than information technology or
computer science in general. Fortunately you do not have
to go deep and you can focus on application development
instead as each of the search engines discussed in this
chapter provides its own indexing methods.

Search Query

When users enter a search query, some magic can be done
by the search engine. There are some well-known
techniques for increasing the quality of returned hits:

* Boolean operators—Queries can be more precise when you
are able to specify that you want only results with all queried
words or exclude results with some unwanted words.

* Wildcards—Special characters that may substitute any other
character or an indefinite amount of other characters.

* Regular expressions—The preceding methods can be
further refined to create a full syntax that allows for
matching a word/character pattern with indexed items.

* Fuzzy search—If fuzziness was not introduced in the index
itself, you can do it during the search to improve the recall.

* Field match—If the data source is a database of known
structure, you can employ field-specific searching. For
example, you can search only Title fields or filter old
results using the bate Created field.

Solutions

469

In web application development, three search engine
solutions are most commonly used: Sphinx, Lucene, and
the Google Custom Search API. Because this book is not a
never-ending story, we decided to integrate each search
engine with only one web framework. It's an exception
from the rule we've followed generally in this book that we
show how to do exactly the same thing for each of the
frameworks. The reason was to give every framework
full-text search capabilities, rather than integrate it with a
concrete search engine. Moreover, each search engine can
be integrated with each web framework, often with few
modifications. So after reading this, you should be able to
get all combinations working (for example, Sphinx with
CakePHP), even one that wasn't explained explicitly. We
believe it's better than showing three nearly identical
integrations.

Sphinx

Sphinx is a free search engine licensed under General
Public License version 2. It was developed by a Russian
software engineer, Andrew Aksyonoff. To get more
detailed information about Sphinx, go to
http://sphinxsearch.com. This section describes how to use
Sphinx within Symfony. Sphinx is also available as a
CakePHP plug-in or you can just use Sphinx's libraries to
integrate it with Zend Framework. The Sphinx logo is
shown in Figure 7.2.

Figure 7.2 Sphinx search engine logo

470

< Sphinx

Installing Sphinx

Before you can use Sphinx inside your application, you
need to install it first. Sphinx is a stand-alone application
that is accessed rather than included by your web
applications. Therefore, before using any framework's
extension or enhancement, you need to install the engine
separately. For some systems (for example, Windows and
Ubuntu Linux), a binary version of Sphinx is available.

For Windows, the binaries are the default solution. You
can grab them from Sphinx's homepage. Under Linux
distributions, it is best to create binaries from the newest
sources to avoid version compatibility issues. To do that,
you first need to install some additional packages that are
needed for the building process:

apt-get install build-essential

When installation is complete, you can run the
configuration script to set up your Sphinx to work with a
chosen database engine, as it's done here:

/configure --with-mysql
make

make install

You need to edit the configuration file. On Linux, you can
find it at /etc/sphinxsearch/sphinx.conf Or /usr/
local/etc/sphinx.conf, depending on the Sphinx

471

version. On Windows, choose the file called
sphinx-min.conf.in located in the main Sphinx
installation directory and make a copy for editing called
sphinx.conf. The reference manual recommends that
you install Sphinx at c :\Sphinx, so we will follow this
convention.

The following code snippet shows how this configuration
file should look on Ubuntu Linux. You need to include a
named data source with an SQL query that gets data from a
database table. You also need to specify details for
connecting to this database. The second thing you need to
include is a named index. Set the data source as the source
of this index and provide a path to store it.

source WroxSrc {

type =mysql
sql_host = localhost
sql_user = foo
sql_pass = bar
sql_db = sphinx
sql_port =3306
sql_query = I"'-.

SELECT id, title, description

472

FROM news
sql_query_info = SELECT * FROM news WHERE id=8$id

}

index wroxIndex {

source = WroxSrc
path = /home/wrox/sphinx/source/wroxSrc
docinfo = extern
charset_type = sbes
H
indexer {
mem_limit =32M
H
searchd {
port =3312
log = /var/log/sphinxsearch/searchd.log
query_log = /var/log/sphinxsearch/query.log
read_timeout =5
max_children =30
pid_file = /var/run/searchd.pid
max_matches =1000
seamless_rotate =1
preopen_indexes =0
unlink old =1

473

}
code snippet /sphinx/sphinx.conf

The next thing that needs to be done is adding the
directory, where executable files are stored, to the PATH
variable of your environment. This allows you to use
available Sphinx tools: indexer, indextool, search,
searchd, spelldump. On UNIX-like operating systems,
after you execute make install, the symlinks are
automatically added into /usr/bin/ or another directory
that was already included into the system's PATH
environment variable. On Windows you need to include
the c:\sphinx'bin directory using dialog windows (refer
to Chapter 2).

Create the target folder for your index folder
(Linux—/home /wrox/sphinx/source; Windows—cC A
Sphinxll"-.data) and an empty wroxSrc.spl file inside it.
As always, make sure the paths are valid for your
operating system. In the Windows configuration file, you
will see in some places, the ecoNFDIRE variable. It is a
placeholder and you must change these paths to correct
ones like c: '%Sphlnx"-data'kwroxSrc

Using the following tool, you can create the index (the
parameter is the name of the index created in the
configuration file):

$ indexer wroxIndex

It will consume the wroxSrc.spl file and create these
files in the /data directory:

474

wroxSrc.spa
wroxSrc.spd
wroxSre.sph
wroxSrc.spi
wroxSre.spl
WroxSrc.spm

WroxSrc.spp

Now, run the Sphinx daemon so your application can
access it to conduct search queries. It is a compiled C++
application, so it runs really fast. On Linux, you can run it
just like this:

/etc/init.d/sphinxsearch start

On Windows, you need to add it to Windows Services
first. It will be more convenient than starting it from the
console every time manually. Create another folder: /1og,
in C:."'-.Sphinx. You need to run the console as
administrator. Find the cmd.exe executable (type cmd in
the Windows 7 start menu), right-click it, and choose the
shielded option. When you've got the admin console, run
the following command:

$ searchd --install --config C: 'Sphinx '
sphinx.conf --servicename SphinxSearch

The console output should look like Figure 7.3 if
everything went well.

Figure 7.3 Installing Sphinx as a Windows Service

475

Administrator: C\Windows\System32\emd.exe | o]| S
install config C:\Sphinxssphinx.conf servicename SphinxB

@18, Andrew Aksyonof
@18, Sphinx Technologies Inc Chttp:ss/sphinxsearch.con)

h’ installed succesfully.

Now, when you go to Windows Services, you can start this
SphinxSearch daemon, as shown in Figure 7.4. Automatic
startup means that this service will be started on demand,
so you don't have to do it manually.

Figure 7.4 Sphinx daemon in the list of Windows Services

Services o= [= e
File Action Wiew Help
== [2] C R
Services (Local) | (S INSENE (iocan
SphinxSearch Hame Status Stortup Type

Server .. Stanted Automatic

Start the service Shell Hardware De... Provicl Stared Automatic
Manuel

Description:
SphiniSearch-L10-bers (12420

Stanted

y for storage devices
nd improves system perfor.. Stamed

Enforces greup

Started

Tablet PC Input Se. ac
ToskSchedules Enbles s userto configure and schedul.. Sterted Automatic Locel System

Extended £, Standard /

Symfony

In Symfony, there is a plug-in for almost everything,
including Sphinx. You can read more about it at

476

http://www.symfony-project.org/plugins/sfSphinxPlugin.
To install it through the command line, you need to type
the following command:

$ symfony plugin-install sfSphinxPlugin

Installing the Symfony plug-in gives you the possibility to
access the Sphinx daemon.

As shown in the following code, generate the mysearch
project that contains the frontend application and a nice
search module:

$ symfony generate:project mysearch
$ symfony generate:app frontend

$ symfony generate:module frontend search

Controller

Fill the controller file with the index action as in the
following code:

<?php

class searchActions extends sfActions {

public function executeIndex(sfWebRequest $request) {

477

$this->query = $this->getRequestParameter(‘search’);
$this->page = $this->getRequestParameter(‘p’, 1);
$options = array(
‘limit” =>5,
‘offset” => ($this->page - 1) * 5,
‘weights” => array(100, 1),
‘sort’ => sfSphinxClient::SPH_SORT_EXTENDED,
‘sortby’ => ‘@weight DESC’,
);
if (lempty($this->query)) {
$this->sphinx = new sfSphinxClient($options);
$res = $this->sphinx->Query($this->query, ‘wroxIndex’);
$this->pager =
new sfSphinxDoctrinePager(‘News’, $options[‘limit’], $this->sphinx);
$this->pager->setPage($this->page);

$this->pager->init();

}

code snippet /sphinx/symfony/apps/frontend/modules/
search/actions/actions.class.php

This code requires some explanation. The first two
parameters are fetched from the web request: the query and

478

the page number. If no page number is present, it is set to
1. Then, an array of options is constructed, including
display count limit, offset in search result number, weights,
and sorting method. If the query is not empty, an instance
of sfsphinxClient is created and then used to execute
the query. Note that the second argument of the Query ()
function is the name of the index created before. The next
line creates a Doctrine pager. There is also a pager for
Propel called sfsphinxPager. Set the page and run the
init () method that initializes the pager and results in
pagination.

Displaying Results

The next step is to create the search form. The following
snippets are segments of one template file,

sindexSuccess.php.

As shown in the following code, you should include the
Search helper because it will be helpful for displaying
data. Create a simple GET form with an input field and a
submit button:

<?php use_helper(‘Search’) 7>
What are you looking for?
<form action="<?php echo url for(‘/index.php/search’) 7>" method="get”>

<input type="text” name="search” value="<?php echo $query; 7> />

479

<input type="submit” name="submit” value="search” />

</form>

code smippet /sphinx/symfony/apps/frontend/modules/
search/template/indexSuccess.php

If the query is empty then, well, return and that's all:

<?php if (empty($query)): 7>
<?php return 7>
<?php endif 7>

code snippet /sphinx/symfony/apps/frontend/modules/
search/template/indexSuccess.php

If the query is not empty, handle it appropriately. The bold
section in the following code is important because it
displays in a loop all the titles and descriptions of the
results of this query. Moreover, the search result in these
texts gets highlighted.

<?php $res = $pager->getResults() 7>

480

<?php if (empty(Sres)): 2>
No result matches your query
<7php else: 7>
<?php if ($sphinx->getLastWarning()): ?>
Warning: <?php echo $sphinx->getLastWarning() 7>
<?php endif 7>
<ol start=""<?php echo $pager->getFirstIndice() 7>">
<?php foreach ($res as $news): 7>

<?php echo link_to(highlight_search_result($Snews->getTitle(), $query),
‘news?id=" . $news->getld()) 7>
<?php echo highlight_search_result(Snews->getDescription(), $query) ?>

<?php endforeach 7>

<?php endif 7>
code snippet /sphinx/symfony/apps/frontend/modules/
search/template/indexSuccess.php

Pagination

Now, prepare the pagination module. If there is enough
content to be paginated, the following code will split it into
pages and provide the well-known navigation links:

481

<?php if ($pager->haveToPaginate()): 7>
<?php echo link_to(‘«’, ‘index.php/search?q=" . $query . ‘&p="".
$pager->getFirstPage()) 7>
<?php echo link_to(‘<’, ‘index.php/search?q="". $query . ‘&p="".
$pager->getPreviousPage()) 7>
<?php $pages = $pager->getLinks() 7>
<?php foreach ($pages as $page): 7>
<?php echo ($page == $pager->getPage()) ? $page : link_to(Spage,
‘index.php/search?q=" . $query . ‘&p="". $page) ?>
<?php endforeach 7>
<?php echo link_to(‘>’, ‘index.php/search?q=" . $query . ‘&p="".
$pager->getNextPage()) 7>
<?php echo link_to(‘»’, ‘index.php/search?q="". $query . ‘&p="".
$pager->getLastPage()) 7>
<?php endif 7>
code snippet /sphinx/symfony/apps/frontend/modules/

search/template/indexSuccess.php

The last thing you need to include in your template is the
number of matches found as the query result. It can be
achieved with the following line:

482

Sphinx search “<?php echo $query; 7> found

<?php echo $pager->getNbResults(); ?> matches.

code snippet /sphinx/symfony/apps/frontend/modules/
search/template/indexSuccess.php

Testing

It would be nice to test the search engine on a data set,
wouldn't it? Well, that's what fixtures are for. Create a
fixturex.yml fixture file. It may be as simple as the one
following, but you are free to generate a really big file.
You can read more about fixtures and testing in Chapter
15.

news:
first:
title: first news
description: important news
second:

title: second news

483

description: important news
third:

title: third news

description: important news
fourth:

title: fourth news

description: important news
fifth:

title: fifth news

description: important news
sixth:

title: sixth news

description: important news
seventh:

title: seventh news

description: important news

code snippet /sphinx/symfony/data/fixtures/fixtures.yml

Load the data with following command. The database must
be configured before and contain a news table with id
(autoincremented INT), title (VARCHAR), and
description (VARCHAR too, but bigger) fields.

$ symfony doctrine:data-load

484

To see the output you've been waiting for (see Figure 7.5),
go to your browser, enter http://localhost/index.php/search
in the address bar (remember to configure the routing), and
then search for a phrase that can be found in the fixtures'
titles.

Figure 7.5 Output of the Sphinx search application in
Symfony (mouse pointer irrelevant)

search

. first news important news

. second news important news
. third news important news

. fourth news important news
. fifth news important news

AL L R e

« =1 2 > » Sphinx search "news" found 7 matches

B

If you need continuous indexing, you have to set Linux
cron or Windows Scheduler to systematically run the
indexer tool.

CakePHP and Zend Framework

Integrating Sphinx is nearly as easy and straightforward in
any other framework as it is in Symfony. When working
with CakePHP, it's best to use the sphinxClient class in
the model. In ZF, use it as an adapter. However, the
Symfony plug-in makes it even easier, which is why we
chose this combination in this chapter.

Lucene

485

Lucene was written originally by Dave Cutting, but now, it
is developed and supported by the Apache Software
Foundation. At first, it was Jakarta family Java software,
but it has been ported to many other programming
languages, including PHP. You can read more about
Lucene at its website: http://lucene.apache.org/java/docs/
index.html. The Lucerne logo is shown in Figure 7.6.

Figure 7.6 Apache Lucene search engine logo

a n o

Zend Framework

Using Lucene and Zend Framework together is not a big
deal because Lucene is already integrated with Zend
Framework by default. zend Search Lucene included in
Zend Framework is one of the most successful ports of the
Apache Lucene project. You can read more about this
Zend component in the official documentation:
http://framework.zend.com/manual/en/
zend.search.lucene.html.

Creating an Index

Go to /application/controllers/IndexController.php and
create an indexing action that will be responsible for
generating the index. All indexed items in Zend Lucene
are instances of the Zend Search Lucene Document
class. The following code creates the documents, fills them
with sample data, and adds them to the index:

486

public function indexingAction() {
$index = Zend_Search_Lucene::create(‘/home/wrox/public_html/lucene/);
$doc =new Zend_Search_Lucene_Document();
$doc->addField(Zend_Search Lucene Field::Text(‘title’, ‘first news”));
$doc->addField(Zend_Search_Lucene Field::Text(‘description’, hot news”));
$index->addDocument($doc);
$doc =new Zend_Search_Lucene_Document();
$doc->addField(Zend_Search Lucene Field::Text(‘title’, ‘second news”));
$doc->addField(Zend_Search_Lucene Field::Text(‘description’, hot news”));
$index->addDocument($doc);
$doc =new Zend_Search_Lucene_Document();
$doc->addField(Zend Search Lucene Field::Text(‘title’, ‘third news’));
$doc->addField(Zend_Search_Lucene_Field:: Text(‘description’,‘hot news’));
$index->addDocument($doc);
$doc =new Zend_Search_Lucene_Document();
$doc->addField(Zend Search Lucene Field::Text(‘title’, ‘fourth news’));
$doc->addField(Zend_Search_Lucene_Field:: Text(‘description’,‘hot news’));
$index->addDocument($doc);

$doc =new Zend_Search_Lucene_Document();

487

$doc->addField(Zend Search Lucene Field::Text(‘title’, ‘fifth news’));
$doc->addField(Zend_Search Lucene Field:: Text(‘description’,‘hot news”));
$index->addDocument($doc);

$doc = new Zend_Search Lucene Document();
$doc->addField(Zend_Search Lucene Field::Text(‘title’, ‘sixth news’));
$doc->addField(Zend_Search Lucene Field:: Text(‘description’,‘hot news”));

$index->addDocument($doc);

}
code snippet /lucene/zf/application/controllers/
IndexController.php

Create the associated view. It can be as simple as this one.

indexing..

code snippet /lucene/zf/application/views/scripts/index/
indexing.phtml

When you execute this action through your browser with
the following link: http://localhost/index.php/index/
indexing, you will see the simple view, as shown in Figure
7.7, and the index will be created in the background.

Figure 7.7 Creating the search index using a controller

488

File Edit View History Bo Tools Help

n - ‘fﬁ T e Q p:clﬂS'inx.palanq

indexing..

This is a makeshift solution designed as an example
illustrating how to implement searching in Lucene. In a
production environment, you can't create a single
controller with hard-coded values to create an index.
Instead, the index should be updated when new data is
entered into or deleted from the database. We hope that it's
clear for you.

Searching

In the same IndexController.php, edit the
indexAction () as shown in the following code. The
searched query is retrieved using the
$this-> getParam() method with ‘search’ as the
argument.

if ($this->_getParam(‘search’) == ") {
$searchQuery = *;
telse {

$searchQuery =$this-> getParam(‘search’);

489

$this->view->search = $searchQuery;
$index = Zend_Search Lucene::open(‘/home/username/lucene/’);

$this->view->results = $index->find($searchQuery);

code snippet /lucene/zf/application/controllers/
IndexController.php

The phrase is searched using the index created before, and
the results are returned to the view as the
$this->results variable.

Displaying Results

Create a view that allows you to enter the queries with a
form and displays the results at the same time. The
following code realizes these goals:

<form method="get” action=""/index.php/index’’>
Something missing?
<input type="text” name="search” value="<?php echo $this->search; ?>" />
<input type="submit” name="submit” value="search” />
</form>

<?php foreach ($this->results as $res): 7>

<?php echo $res->title.” - *.$res->description; ?></1i>

490

<?php endforeach; 7>

code snippet /lucene/zf/application/views/scripts/index/
index.phtml

Pagination

Pagination is only a little bit more complicated; you need
to use the Zend Paginator library. All you have to do is
to supply the zend Paginator::factory() method
with the results. This factory method produces the $pager
paginator that is really easy to use. Just set the current page
number and items per page. The full index action grows to
look something like this:

public function indexAction() {
if ($this->_getParam(‘search’) == ") {
$searchQuery = “”;
telse {
$searchQuery =$this->_getParam(‘search’);
}

$this->view->search = $searchQuery;

$index = Zend_Search Lucene::open(‘/home/username/lucene/’);

491

$results = $index->find($searchQuery);
if ($this->_getParam(‘page’) ==) {
$page = 1;
} else {
$page = $this->_ getParam(‘page’);
}
$pager = Zend Paginator::factory($results);
$pager->setCurrentPageNumber($page);
$pager->setltemCountPerPage(3);
$this->view->results=$pager;
$this->view->page = $page;
H
code snippet /lucene/zf/application/controllers/

IndexController.php

You need also to update the view to use the pagination as
shown in the following code. Notice the $res->score
fragment; Zend allows you to access the relevance score
determined by Lucene for each queried word.

<form method="get” action="/index.php/index’’>

Something missing?

492

<input type="text” name="search” value="<?php echo $this->search; ?>” />
<input type="submit” name="submit” value="search” />
</form>
<?php // print_r($this->results); 7>
<?php if(!empty($this->results)): 7>

<?php foreach ($this->results as $res): 2>
<?php echo $res->title.” - *.$res->description.’, score: ‘.$res->score; 7>

<?php endforeach; 7>

<?php echo $this->paginationControl(
$this->results, ‘Jumping’,‘index/pager.phtml’,
array(‘search’=>$this->search));?>
<7php else: 7>
No result matches your query
<?php endif; 7>
code snippet /lucene/zf/application/views/scripts/index/

index.phtml

Zend's paginationControl () method highlighted in
bold calls another view, here named pager.phtml, to do
the pagination. There are also various scrolling styles
available. According to Zend documentation, they are as
follows:

493

* Elastic—A Google-like scrolling style that expands and
contracts as a user scrolls through the pages.

o Jumping—As users scroll through, the page number
advances to the end of a given range and then starts again at
the beginning of the new range.

» Sliding—A Yahoo!-like scrolling style that positions the
current page number in the center of the page range or as
close as possible. This is the default style.

The pagination view pager.phtml mentioned before is
presented in the following code. The first section is
responsible for checking whether the Previous link is
applicable; if so, link it with the previous page. The middle
section shows pages from the neighborhood determined by
the $this->pagesInRange variable. And the last section
is responsible for the Next button.

<?php if ($this-=>pageCount): 7>
<?php if (isset($this->previous)): 7>
<a href="
<?php echo $this->url(array(‘search’=>$this->search,
‘page’ => $this->previous)); 7>

“>Previous

<?php else: 7>

Previous

<?php endif; 7>

494

<?php foreach ($this->pagesInRange as $page): 7>
<?php if ($page != $this->current): 7> <a
href="<?php echo $this->url(array(‘search’=>$this->search,
‘page’ => $page)); 7>"> <?php echo $page; 7>
<?php else: 7>
<?php echo $page; 7>
<?php endif; 7>
<?php endforeach; 7>
<?php if (isset($this->next)): 7>
<a href="
<?php echo S$this->url(array(‘search’=>$this->search,
‘page’ => $this->next)); 7>
“> Next
<?php else: 7>
Next
<?php endif; 7>
<?php endif; 7>
code snippet /lucene/zf/application/views/scripts/index/

pager.phtml

The final output of this application is displayed in Figure
7.8.

Figure 7.8 The Zend Search Lucene application with
match scores

495

File Edit \iew History Bookmarks Tools Help

- < Q iE http:/localhost/index_php/findex/index/search/first+news/page/l

Something missing? [first news
1. first news - hot news, score: 1
2. second news - hot news, score: 0.16348456793226
3. third news - hot news, score: 0.16348456793226

Previous 1 2 Next

Please notice that this is a full-featured fuzzy search. The
search term was first news, but there were many other
results displayed with lower match scores. A big advantage
of Zend Framework is that it includes a search engine of
such capabilities out of the box.

Symfony and CakePHP

The Symfony integration is also rather simple because a
Lucene plug-in is available at www.symfony-project.org/
plugins/sfLucenePlugin. CakePHP developers are not so
lucky, and again, they would have to write a special
component to handle Lucene searching. This is not very
hard, but it is rather time-consuming.

Google Custom Search

The previous two search engines were oriented for
searching a named data source, preferably a local database.
The solution presented here is powered by the Google
Search Engine and allows you to use its vast database of

indexed websites. The Google logo is shown in Figure 7.9.

Figure 7.9 Google logo (the caption is obvious).

496

GO /8[(),

The first web-search API from Google was called the
Google SOAP search API, and it is no longer supported. A
newer solution was the Google AJAX Search API. We
were going to present it here, but it became deprecated as
we were writing this chapter. Therefore, the newest
solution from the Google search family will be used here:
the Google Custom Search.

Setting up Google Custom Search

Go to the following web page and follow the white rabbit:
http://www.google.com/cse.

Click the Create a Custom Search Engine button. You'll
need a Google account for this, so create it if you don't

have one. The first step is shown in Figure 7.10.

Figure 7.10 Step 1—Setting up the search engine

497

Google custom search | My Account | Sign out
1. Set up your search engine 2 Try it out 3. Get the code

Describe your search engine

Name: [phprramewarks ‘
Description: DhRTEmEwsrks description
—

Define your search engine

Sites to search hitp://phpframeworks org/

& Leam more about URL formatting.
Select an edition

Editions: © standard edition: Free, ads are required on results pages
@ Site Search: Staris at $100 per year, no ads on results pages.
B Leam more about each edition
© | have read and agree to the Terms of Service

Next

Provide the name and description of the search engine.
Chose the websites your search engine will focus on. In
most cases, this will be your own website, but you can
include some friends' sites as well or create a search engine
for any other combination of places. Well, that's why it's
called custom. Accept the terms of service and free or
ads-free edition. Proceed to the second step shown in
Figure 7.11.

Figure 7.11 Step 2—Picking a stylesheet

498

Google custom search My Account | Sign oul
©
1. Set up your search engine 2. Try It out he cod
Choose or customize a style
Detault Bubblegum Green Sky Espresso Shiny Minimalist
— = —_—
The Default style resembles standard Google search results.
Try your search engine
If these aren't the resuits you expected, you can go back to step 1 and make changes.
Search | x
Next @ want to do more? Extend the slement with CSS and JAYASCIp! or check our developer quids

Pick one of the ready-to-use stylesheets or customize them
to your liking. You can test the outputs with the following
form. Proceed to the last step shown in Figure 7.12.

Figure 7.12 Step 3—Getting the code

Google custom search kprzystalski@gmall.com | My Account | Sign oul

1. Set up your search engine 2.Try itout 3. Get the code

To get code for other hosting options, adjust your settings on the Look and feel page.

Custom Search element code
Paste this code In the page where you'd like the Custom Search element to appear. Note: CSS hover effects require a supported doctype such as <IDOCTYPE htwl>,

All you have to do is to copy the code and paste it into
your web page. That's all.

CakePHP
Symfony had Sphinx and Zend had Lucene, so we will

show how to integrate Google Custom Search with
CakePHP only. Well, “integration” is surely too strong a

499

word here as it boils down to inserting a bunch of Google
code into a view. It just couldn't be easier.

Take a view and insert the obtained code into it. It will
look similar to the following snippet, although not exactly
the same because the keys will vary.

<div id="cse” style="width: 100%;”>Loading</div>
<script src="http://www.google.com/jsapi” type="text/javascript”></script>
<script type="text/javascript”>
google.load(‘search’, ‘1°, {language : ‘en’});
google.setOnLoadCallback(function() {
var customSearchControl =
new google.search.CustomSearchControl(
‘008847152987572801710:baanh-mj9ly’);
customSearchControl.setResultSetSize(
google.search.Search. FILTERED CSE_RESULTSET);
customSearchControl.draw(‘cse’);
}, true);

</script>

The result is shown in Figure 7.13.

Figure 7.13 Google Custom Search in a CakePHP view

500

® cakePHP: the rapid development php framework

cakePHP Search

comming soon... cakePHP, symfony. Zend Framework
phpirameworks.org

Symfony and Zend Framework

In Symfony and Zend Framework, Google Custom Search
works exactly the same way. You just copy the Google
code as presented previously, put it into any framework's
view or static web page, and it will work. That's why
separate sections for every framework would be redundant.

501

Chapter 8

Security

Knowledge is power. Guard it well.
—Warhammer 40,000: Dawn of War

What's In This Chapter?

» Setting secure SSL connections
* Defending against XSS injection attacks

+ Securing forms against CSRF session hijacking

Security enforcement is one of the best things that
frameworks have to offer. While basic functionalities of a
web application are mostly straightforward and obvious,
proper dealing with security takes a lot of work and
knowledge. This is also very responsible work. When you
mess up something trivial like mailing, this error shows
right away, and you can fix it before the application is
launched. On the contrary, when there is a hole in security,
it remains completely unseen until somebody exploits it;
then the damage may be catastrophic.

When you are an inexperienced programmer, frameworks
do a great job of taking care of the best security practices
for you. If you are a professional, they are still valuable
because they save you from writing a lot of not really
exciting fragments of code. This chapter takes a closer
look at various security problems like setting safe HTTPS
connections that allow sending vulnerable data. Next we'll
show how to defend against a cross-site scripting (XSS)

502

attack that injects malicious code into a website, and a
cross-site request forgery (CSRF) that hijacks the security
context of an inconspicuous user.

Setting Secure Connections

In most cases, sending unsecured data is a normal
behavior, but when an application has more to do with
business (for example, e-commerce), then security matters.
There are ways to secure connections between customers
and the server where the web application is deployed.
However, you must remember that a Secure Socket Layer
(SSL) connection is just a tool and it does not guarantee
full security of data transfer. There is currently no secure
way to have mixed HTTP/HTTPS access to a site.

Problem

There are many reasons to hide sent information, so you
want to make the connection as secure as possible. For
web application frameworks, the main problem is closely
coupled with secure connection protocols such as HTTPS.
Other protocols are very rarely used, so in this section we
describe how to prevent information sniffing using
HTTPS. But why should you use a secure connection at
all? Because you usually don't want to share data
transferred to and from clients with third parties. These
strangers can use the data to do really nasty things to the
application or users, such as stealing passwords or credit
card numbers.

Here's an example of data sniffing when someone tries to
log on to a web application with HTTP and with HTTPS.

503

We used Wireshark (www.wireshark.org/) to sniff packet
transmissions.

Under Linux, you need to run Wireshark
with root privileges.

For Linux distributions, it's easier to install
Wireshark using the specific distribution's
package manager.

On Wireshark's homepage, you can
download a version for Windows and Mac
OS X as well.

So, let's try to sniff some packets. To sniff the proper data,
you need to define the capture options. There is an icon
below the main menu that shows the capture options
window, as shown in Figure 8.1.

Figure 8.1 Wireshark main menu

504

Next, a capture filter needs to be defined. On the capture
filter list (shown in Figure 8.2), there is an entry called
TCP or UDP port 80 (HTTP) that perfectly satisfies your
needs now.

Figure 8.2 Wireshark capture filter selection

Wireshark: Capture Options

HTTP TCP port (80)

No ARP and no DNS

Non-HTTP and non-SMTP to/from www.wireshark.o
HTTPS TCP port (443)

In this example, you can use a simple login form. To
capture packets, you need to click the Start button, which
is shown on the bottom right of Figure 8.2. Enter random
data in the login and password form input fields; then

505

submit this form. In Wireshark, you should be able to see
something like Figure 8.3. If the next page appears,
capturing can be switched off because you don't need any
more data.

Figure 8.3 Sniffed HTTP POST request

63 7.411834 127.6.8.1 HTTP GET /chBSsynfony/sf/sf web debug/images/error.png HTTP/1.1
64 7.411922 127.8.8.1 HTTP HTTP/1.1 384 Not Modified
7.6.8.1
7.0.0.1

65 7.444448 12 TCP 56825 > http [ACK] Seq=7875 Ack=9192 Wi Len=0

68 10.943807 12 TP http > 56825 [ACK] 5eq=9192 Ack=7738 Win=48512 Len=8 TSV=2232487 TSER=2232403
10 na urrnes 2 Al fhmat tatad

Captured requests and responses are shown in Figure 8.4.
(Note that we assume that the web application is on the
same PC where Wireshark is working.) That's why
127.0.0.1 is shown as the address (refer to Figure 8.3) and
the pseudo-interface any (refer to Figure 8.2) is set in the
capture options. Your captured data can differ a bit from
the data shown in Figures 8.3 and 8.4. The highlighted
HTTP request in Figure 8.3 shows the submit action,
which is in fact a pPosT request to a specific URL. After
clicking the highlighted entry in Figure 8.3, you will see
something similar to Figure 8.4 at the bottom of the
Wireshark's window. This is the captured information that
is sent to the server. This data is sent as plain text, so it can
be sniffed and is easily readable by humans.

Figure 8.4 Sniffed HTTP POST packets

506

0210 ©d Pa 43 6f 6 6b 69 65 3a 20 73 79 6d 66 6f 6e ..Cookie : symfon
0220 79 3d 6c 72 33 73 6e 6a 72 6b 70 70 76 6a 6f 37 y=1lr3snj rkppvjo7
0230 76 6b 31 36 73 6d 64 63 65 76 73 31 d ea 43 6f vkl6smdc evsl..Co
0240 Ge 74 65 6e 74 2d 54 79 78 65 3a 20 61 70 7@ 6C ntent-Ty pe: appl
02560 69 63 61 74 69 6f 6e 2T 78 2d 77 77 77 2d 66 6f ication/ x-www-fo
0260 72 6d 2d 75 72 6c 65 6e 63 6T 64 65 64 6d Ba 43 rm-urlen coded..C
0270 6T 6e 74 65 6e 74 2d 4c 65 6e 67 74 68 3a 20 38 ontent-L ength: 8
0280 36 6d fa 6d ea B

8290

0220

02b8

02ce

02de

In the example, the intercepted information is rather
useless because you sniffed data that was sent by you to
your own web application. But the same can be done at
any node between the client and the server. In most cases,
such a node is a switch or a server that is relaying the
packets, which is why it's so dangerous to send
confidential data with an unsecured channel such as HTTP.

Configuring the Web Server

The solution for this problem is really simple. First you
need to start with generating proper X.509 keys with
OpenSSL. Next, the web server needs to be configured
properly to make it possible to connect using HTTPS.

Before running Apache with HTTPS enabled, you need to
generate a server certificate, which is used every time
when connecting to Apache using the HTTPS protocol.
The certificate needs to be signed by someone. In this
example, you will sign the certificate yourself. The
following approach should be used for testing only. In real
business applications, each certificate should be signed by
a trusted company. Many companies offer certificates

507

signed by a certificate authority (CA), which promises that
the signed certificate is valid.

In the example, you need only a private and public key.
The first step is to install OpenSSL, which is really
straightforward.

You can get OpenSSL for Linux here:
www.openssl.org/, and for Windows here:
www.openssl.org/related/binaries.html.

For Linux, you can also install OpenSSL
using the distribution's package manager.

As the first step after installation, a private key needs to be
created, which can be done with this command:

openssl genrsa -out /etc/apache2/ssl/apache.key 1024

This gives you a private key file with . key extension that
is generated using an RSA algorithm with key strength of
1024 bytes. This strength size is now commonly used
because 512 may be too weak, and bigger ones are not
properly interpreted by some applications. This key should
not be published anywhere because it's the private key

508

needed to decrypt encrypted information. The second step
is to generate a public key for the private key. This key is
published to everyone who wants to connect to the server
and is used to encrypt any information sent from clients to
the server:

openssl req -new -x509 -days 365 -key /etc/apache2/ssl/apache.key

-out /etc/apache2/ssl/apache.crt

Notice that if the previous folder doesn't exist, you need to
create it; otherwise, both commands will print an error
message. The previous command needs to include the key
standard and expiration time, as well as the private key
path and the path for the newly created public key as the
parameters. X509 and updated standards derived from the
same idea are commonly used standards in private and
public key cryptography. The time expiration should be
given as the number of days from the present that this key
is valid. In this example, the public key is valid for one
year. Note that if you are using Windows, you should
replace the /etc/... path with the Windows equivalent;
for example, C: \xampp'apache'ssi\... . OpenSSL will
ask you some questions about key details such as city,
region, country, and e-mail address. If you don't like filling
in your details, just put in some random data. This doesn't
matter in the example, but does in a real production
environment. In that case, you should buy a certificate like
those offered by VeriSign.

Now Apache or the other web server installed by you
needs to know about the generated keys, so you need to
make some changes in one configuration file. In XAMPP
for Windows, you should edit the httpd-ssl.conf file,

509

which is placed in the C: I"'-.x amppll"-.ap ach ell"-.c on fll"-.e xtr a."'-.
directory. Ubuntu stores Apache configuration files in
/etc/apache?2/sites-enabled/000default-ssl.
Note that Ubuntu sometimes asks to enable sites with SSL.
To enable them, create a link in /sites-enabled to the
file default-ssl placed in the \sites-available
directory. In other distributions, it can be stored under
other configuration file names, but you should easily find
it because it contains the name ss1 or https.

cd /etc/apache2/sites-enabled

In -s /etc/apache2/sites-available/default-ssl 000default-ssl

Lines to be changed are those that point to the key files.
SsLCertificateFile handles the public key file, and
SSLCertificateKeyFile handles the private key file.

SSLEngine on

SSLOptions +FakeBasicAuth +ExportCertData +CompatEnvVars +StrictRequire

SSLCertificateFile /etc/apache2/ssl/apache.crt

SSLCertificateKeyFile /etc/apache2/ssl/apache.key

code snippet ssl/configuration/default-ssl

510

Don't forget to turn sSLEngine on if it's turned off. After
the configuration, it's time to start or restart Apache web
server:

/etc/init.d/apache? restart

This should not take long. For this example, you can use
(as with the case of the unsecured page) the login form
used previously in this chapter. Because the certificate is
not signed by a real CA, a security message is displayed in
Firefox, shown in Figure 8.5. This is good security from
the browser. To proceed, you need to get this certificate
and confirm it as an exception.

Figure 8.5 Firefox unknown certificate security page

-

This Connection is Untr

el
4l

Z v
| ==l you have asked Firefox to connect securely| not ask you to do this.

connection is secure.

server

Normally, when you try to connect securely -~ . .
that you are going to the right place. Howe! [L
What Should | Do? Certificate Sta

If you usually connect to this site without o L
trying to impersonate the site, and you sha Wrong Site

Technical Details
| Understand the Risks

If you understand what's going on, you can|
identification. Even if you trust the site
tampering with your connection.

Don't add an exception unless you know thy
trusted identification,

When you go to https://127.0.0.1/index.php/, you should
see that 127.0.0.1 has a blue background in the
navigation bar. For the purpose of this example, we used
Firefox as the browser, so if you use a different browser,

511

the window might look a little bit different from Figure
8.6. When you click on it, a new window appears. This
window shows more details about the certificate.

Figure 8.6 Secured connection information

(L6 BERETERY htps:/127.0.0.1/index. php/

There is also a second window with full certificate
information. In Firefox, it looks like Figure 8.7. This
window also shows your certificate details given as
answers for OpenSSL questions.

Figure 8.7 Certificate information

512

framework: Addresses:

Security information for this page

This web site does not supply ownership information.

Connection Encrypted: High-grade Encryption (AES-256 256 bit)

Let's see what the sniffed information looks like. Instead of
HTTP in the capture filter options, you should set HTTPS.
It's the last entry in the list in Figure 8.2. After repeating
the steps as in HTTP, you should see something similar to
Figure 8.8.

Figure 8.8 Sniffed HTTPS POST request and key
exchange

7 6.660309 127, S50 Tlient Aello

0.1
5 6.800335 127.8.0.1 TP hitps > 43820 [ACK] Seq=1 Ack=369 Win=33928 Len= TSV=2249834 TSER=2249834
6 0.006020 127.0.6.1 TLSvI Server Hello, Certificate, Server Key Exchange, Server Hello Done
7 9.006033 127.8.6.1 TP 43820 > https [ACK] Seq=369 Ack=1413 Win=35712 Len=8 TSV=2249835 TSER=2240835
B 6.088744 127.8.8.1 TLSvl Client Key Exchange, Change Cipher Spec, Encrypted Handshake Message
9 6.612025 127.6.6.1 TLSV1 Change Cipher Spec, Encrypted Handshake Message
18 8.912398 127.8.6.1 TLSVl Application Data
11 8.846495 127.0.6.1 TLSvl Application Data, Application Data, Application Data, Application Data
12 8.e53381 _127.8.6.1 _TLsvl _ Application Data
13 0.053518 127.0.6.1 TLSV1 Application Data
14 8.669316 127.0.6.1 TLsvl Application Data
15 8.069495 127.0.0.1 TLSvl Aoplication Data

As you can see in the figure, there is a key exchange at the
beginning, after which the data is sent. Highlight the
Application Data entry and you should see something
similar to Figure 8.9 at the bottom of the screen.

513

Figure 8.9 Encrypted HTTPS POST request packets

dl d9 90 ab 5c 33 58 b7 2d a4 c8 4d d8 50 20 64 EREY: et es | B B
a2 3e 74 df 1lc ec 43 73 90 a@ d7 6b 98 7e d1 fb - SR . R ST
12 41 b7 6d da 57 6e b9 ed d4 fe a6 70 18 d2 b8 .A...Wn.p...
da 9b 43 bb 4e 47 af cb d6 4b 15 43 dl a7 22 cf ..C.NG.. .K.C..".
06 bc 4b 6f d3 87 cf a7 4f dc da ac d4e 54 4f d1 ..Ko.... 0...NTO.
df le 4e 2d a7 ¢3 16 70 43 7a 2a 38 4d bb c4 ad ..N-...p Cz*8M...
cb 26 el 90 7b 65 2c 62 ©3 54 09 f8 €9 a5 79 f8 & .{e,b .T..i.y.
45 f3 23 f7 49 16 a9 99 ©b 87 ab b4 cd ee 31 f8 E.#.I...1.

71 85 84 61 98 d9 9b d8 dl Be B7 de 96 4f 6b 18
51 de e4 86 f0 61 79 e5 7b ce 22 c® 73 91 cl 5e
2f 69 aB 82 76 1b d1 7d «c7 6a 83 f7 e7 a8 8c f9
ae d3 6c al ff 46 80 b5 64 7f 6b f8 €0 20 21 fd
42 17 e7 df ¢6 de d6 2e 80 30 cb d9 bf b3 94 aa
fo 48 00 70 ©a 54 52 f3 fe 83 2c f3 bb ee 89 11
9c 52 8c 1b de 2f fa 36 b7 9d 5f 29 db 6b 9d 8¢
d4 91 ce 74 14 46 41 d4 16 95 ea 65 89 28 7f 57
4c 56 aa la f9 67 6d e8 5b 51 cc fa ad 5e 5 13
fa 91 f4 6d dc al 97 2c¢ ed df e7 f3 d2 ae 69 8b
20 7c d4 eB ab 26 93 eb 48 db 96 f9 37 6d 25 e8
37 25 96 dd ¢5 b6 75 f5 11 b4 e2 Bc 13 80 61 e3
4 b6 91 ae a2 ¢9 e7 cf 44 62 T4 ea e2 36 15 7c¢
53 da 84 84 27 56 62 f1 79 b6 86 1lc 15 cd 94 fe
bb 92 81 9c 3b 33 76 6a 3a c5 49 dc 6d d8 cf 91
b5 f1 f6 7a 88 22 9e 53 e3

Try to read it now. This is an encrypted text, so it's not
human-friendly. We can't promise that decrypting it is
impossible, but it's almost impossible in a short period of
time. That's why using the HTTPS protocol is very useful
when sending any confidential information.

Symfony

Symfony provides filters, which are methods executed
before sending any data to the client. Filters are
implemented as a design pattern called chain of
responsibility. (This pattern is described in Chapter 1 of
this book).

To create a filter, you need to make a class that inherits
sfFilter. This definition should be stored as

514

sslFilter.class.php in the application's /1ib
directory.

<?php
class sslFilter extends sfFilter {
public function execute($filterChain) {
$context = $this->getContext();
$request = $context->getRequest();
if (!$request->isSecure()) {
$secure url = str_replace(‘http’, ‘https’, $request->getUri());
return $context->getController()->redirect($secure_url);
} else {

$filterChain->execute();

}
}
}
code snippet /ssl/symfony/apps/frontend/lib/
sslFiler.class.php

The main method that is invoked when the filter is running
is execute (). The preceding code checks whether the
current page is secured (that this action has an is_secure

515

entry in the /config/security.yml file of modules). To
access this action, you must have privileges, so you need
to be authenticated first. In other words, if the current
action is available for the public, it should replace nttp
with https in the URL and redirect to a page prepared this
way. If the current action is not available for the public,
return the handle to the next filter. To enable a filter, add
an entry in filters.yml in the configuration directory of
the application. Call this entry SSL, as in the following
code. It is important to set the class name so it reflects the
name of the filter it refers to.

ssl:

class: sslFilter

rendering: «.

security:

cache:

execution: «.

code snippet /ssl/symfony/apps/frontend/config/filters.yml

Another important thing to note is where this filter is
placed in filters.yml. Symfony goes through

516

filters.yml from the beginning to the end, and invokes
each filter. The last invoked filter is execution. It doesn't
matter whether there is any filter after this one because it
will not be invoked. That's why SSL is the first filter in the
preceding code, but it could also be placed after
rendering or security. The list of executed filters is
available in Symfony's web debug logs (see Figure 8.10).

Figure 8.10 Web debug logs

Logs

| monel| = | "1 | ®{ | securityActions | sfFillerChain | sfPHPView | stPattemRouting | sfWebResponse

7 ich " - (/-module/-action/” securty/index wih parameters array (‘module’ => 'sec action” => mdex"
1 sPattermRouing Maich route “defaull” (/-module/action/") for /security/index with parameters armay (‘module’ ecurity’, ‘action’ dex’,)

T sirmorchan, EXeculing filer “ssiFiker

Executing fiter “sfRenderingF iter”

“1 sfFierChain
] sfFerChain Executing filter “sfExecutionFilter”
5 I ety Actions Call "securityActions->execuleindex()
B W Render ‘sf_apu_dirirr\udulesiserunty!len\omasiirmexSuc[‘:‘ﬁs php"
LA a— Decorate content with *sf_app_dirtemplates/layout php”
3 5 cpHpview Render "sf_app._dirflemplatesfayout php™
9

Send status "HTTP/1.1 200 OK™

i sfWebResponse
$ Send header "Content-Type: text/himl; charset=utf 8"

| sfWebResponse

If you want to use HTTPS in one module, you can easily
get the current module name by invoking this method:
Scontext->getModuleName (). Now you need only to
create a simple i f-else statement.

CakePHP

In CakePHP, the process is a little bit different and much
easier to implement. Because HTTPS is used only when
confidential data is sent, it is more useful to place every
confidential action into one controller. CakePHP
controllers are built so that the beforeFilter () method

517

is executed, as in Symfony, before any other action is
invoked.

function beforeFilter() {
if(!$this->RequestHandler->isSSL()) {
S$this->redirect(‘https://’ . env(‘SERVER_NAME’) . $this->here);
exit();
j
b

code snippet /ssl/cakephp/app/controller/
ssl_controller.php

This code redirects to a secured web page if the isssL ()
method doesn't return a true value. The $this->here
variable stores the module name and action, which you can
give as a fixed string. The isssL () method is a part of the
RequestHandler component that needs to be added prior
to beforeFilter ().

var $components = array(‘RequestHandler’);

518

code snippet /ssl/cakephp/app/controller/
ssl_controller.php

At the end, the exit () method should be invoked for
security purposes because nothing else should be executed
after redirecting.

Zend Framework

Zend Framework offers a solution similar to that of
CakePHP. Each controller has an init () method, which
is invoked before any other actions.

<?php
require_once ‘Zend/Controller/Action.php’;
class IndexAction extends Zend Controller Action {
function init() {
$path = /7,
if(empty($_SERVER[“HTTPS”))) {
$hostname = § SERVER[“HTTP_HOST”];
$url = ‘https://’.$hostname .$path;

$this->_redirect($url);

519

}

code snippet /ssl/zf/applications/controllers/
IndexController.php

Because you are in the default index controller, the $path
variable is set to /. In the lines that follow, the HTTPS
protocol is checked. If it is being used, nothing happens; if
it isn't being used, the $ur1 of the application is set, and
the redirection method is invoked for it. This is a good
solution when you are in the default controller. A more
generic solution is presented in the following code:

function init() {
$request = $this->getRequest();
$module = $request->getModuleName();
$controller = $request->getControllerName();
$action = $request->getActionName();
$path = $module ./’.$controller.‘/’.$action;
/* as previously */

code snippet /ssl/zflapplications/controllers/
IndexController.php

520

In this piece of the code module, the controller and action
names are retrieved. Next, a proper $path for current
module and action is built. In the case of an index action in
the index controller, the $path variable would look like
index/index, so you would be redirected to
https://127.0.0.1/index/index, for example.

Securing a Profile Form Against XSS and Injection
Attacks

Cross-site scripting (XSS) and all kinds of injection attacks
are a real threat that must always be taken into account
when developing web applications. These attacks are
commonly used by hackers because of their simplicity.
The only knowledge one needs is just some basics of SQL,
HTML, JS, CSS, and general web application structure.

Problem

XSS and injection attacks are different security problems,
but they use almost the same web application
vulnerabilities. This section explains how each attack
works and how is it used.

What Is XSS?

Unlike CSRF, XSS is not dedicated against a particular
user, but against the website. XSS utilizes the injection
mechanism. Figure 8.11 shows an example of how it

works.

Figure 8.11 XSS attack example

521

Y

C
, LOGIN
Web application

INVOKE AN ACTION
—

Malicious HTML\JS code Injection on
Vulnerable web functionality

"

USER COOKIES ETC.

This example starts with a vulnerable functionality of a
web application. This security bug can be used to add
some malicious code to the website that will be executed
every time a user invokes this functionality (for example, it
displays a profile on a social network). Because it's
invoked for every user who executes it, this code can send
user confidential information (for example, session
cookies) to the attacker. The problem is that the web
application doesn't check the data that is sent to it.

Why SQL Injections Are So Dangerous

SQL injection attacks exploit the vulnerability that occurs
when the data entered into a form on the website (or
otherwise sent to the server) is not properly validated. If
someone enters a string that contains an apostrophe or
quote into a web form, various things can happen—from
simple SQL query execution errors to erasing all data from
a database. Suppose that a web page contains the following
form:

522

<form method="post” action="login.php”>
Login: <input type="text” name="login”>
Password: <input type="password” name="pass””>
<input type="submit” value="Login”>

</form>

Now suppose that after form data is submitted, a PHP
script is executed with the following query:

SELECT user FROM users WHERE login = ‘$login’ AND password = $pass

The $1ogin and $pass variables contain the username
and password entered within the form. Of course, this is a
simplified example and in real applications, passwords are
never stored in databases as plain text, but as MDS5 or
SHA1 hashes. However, no matter what the storage
technique is, when you enter the following string as a
password:

“OR ‘I'="1
the resulting query to be executed is as follows:

SELECT user FROM users WHERE login _
‘admin’ AND password="OR ‘1’=‘1"

The form input has changed the query that checks the
password, and now it uses two logical conditions.
Although the first might be false, the other one is always
true. So it is possible to log in having only a valid login
name.

523

The next example is more aggressive. After inserting the
following code as the password, the users table and all its
contents are removed from the database. This could be
truly catastrophic because you have a table called users.

‘; DROP TABLE users;

Attacks exploiting SQL injection vulnerability can steal,
modify, or remove information from databases, as well as
grant unauthorized access, so they are very dangerous.

How Do Other Injection Attacks Work?

Besides SQL injections, there are also JavaScript, HTML,
and CSS injection attacks. JavaScript injection 1is
commonly used in XSS attacks. If there is a security
vulnerability in web applications that enables an attacker
to inject client-side code, which is then displayed in a web
page viewed by other users, it can mislead them to perform
undesirable actions. Scripts located in the affected site can
bypass some of the mechanisms that control access to user
data held by the browser. A potential attacker can find
ways of injecting malicious scripts into web pages in order
to gain greater privileges to access sensitive page content,
session cookies, and other information stored for the user
by the web browser.

One of the most common forms of JavaScript injection is
when web page content is generated directly from data
submitted to a server by parameters in an HTTP query, or
simply by an HTML form. It is possible only when no
proper sanitizing of the submitted data is present. At first
glance, submitting a JavaScript injection input to the

524

website does not seem to be a serious problem because the
user would could influence only his own security (his own
browser cookies, cache data, and so on). A potential
attacker can prepare malicious code sections to modify
web-page content by adding hidden frames or misleading
links that can cause a viewer's browser to navigate to other
URLs. This process can happen completely in the
background; in such a case, an attacker can interact with a
user without his knowledge, which can threaten his
security. For example, the following code can be put into a
browser's URL bar:

javascript:void(document.cookie="login=true”);

JavaScript will modify the content of a cookie. This
example illustrates how simple it is to interfere with
information held by the browser. The next example shows
how easy it is to view session cookie content stored by the
browser:

javascript:alert(document.cookie);

There is a more persistent variation of JavaScript injection
that can be used to attack vulnerable web applications. It
relies on the fact that the data submitted by the attacker is
later saved on the server; then this data (whenever it is
malicious script or simple text) is displayed on a web page
displayed to other users while they are browsing affected
content. Without proper HTML escaping, this can be a
serious security flaw.

Most malicious JavaScript programs act upon the
document object model (DOM) and modify the structure

525

and content of a web page by injecting them with
dynamically generated data.

For example, a persistent attack can look like this. A social
network allows posting of HTML-formatted messages on
an online message board. An attacker prepares a message
containing malicious code and posts it on that board.
While a user views that message board, his cookies and
session data are stolen and sent to the attacker. At this
point, the attacker can use the stolen cookie to use the
user's session and impersonate him.

Solution

HTML sanitization (validation, escaping, filtering) is a
method to eliminate some XSS vulnerabilities. This
solution also works against injection attacks. To sanitize is
to validate incoming data and reject undesired characters
or replace them with acceptable ones. Of course, simple
character replacement isn't the only solution to this
problem. The appropriate method may depend on the
context in which the problem occurs. These methods rely
on escaping all unwanted data and leaving only the content
that is correct for the context. In this way, it is possible to
apply a proper escaping scheme, depending on where the
sanitized input needs to be placed. For example,
sanitization can be done by JavaScript escaping, HTML
escaping, CSS escaping, and so on. By using these
methods, protection against injection attacks can be a fairly
simple task as long as the web application does not require
rich data storage.

526

Look at some examples of how to protect scripts against
injection attacks. The primary way to protect against SQL
injection is to prevent unauthorized changes of queries
executed by the database engine. In PHP, this can be done
by executing the PHP built-in function addslashes () on
the text in each parameter used for the construction of
queries. This function adds the backslash before
characters, such as °, , or "1., so that the characters are not
treated as special characters. There are also functions
specific to each database, such as that offered by the
MySQL server: mysql real escape string(). This
function works like addslashes (), with the difference
that it takes into account the character set used in the
MySQL connection. The following example shows how to
utilize the server mysqgl real escape string()
function while building an SQL query.

$user = mysql_real escape_string($ POST[‘user_name’]);

$sql = “SELECT * FROM users WHERE username = ‘$user’”;

PHP delivers functions that can be used to sanitize strings.
There are two commonly used PHP functions:
htmlentities () and htmlspecialchars().

htmlentities($str);

htmlspecialchars(“Test");

These commands are very similar. They change HTML
tags such as <a>link to <a>linke</
asgt;. A user will see strange text, but thanks to the
above commands, it will not be executed as an HTML or
JavaScript code.

527

Symfony

In Symfony, it's very easy to protect against XSS and
injection attacks. Symfony does it globally; you need only
to edit the application's settings.yml configuration file
and turn on the escaping.

all:
.settings:
escaping_strategy: on

escaping_method: ESC_SPECIALCHARS

code snippet /xss/symfony/app/frontend/config/settings.yml

There are a few escaping methods in Symfony. As
described before, PHP delivers two main functions, which
are used in Symfony as follows:

ESC _SPECIALCHARS - htmlspecialchars(),

ESC_ENTITIES - htmlentities().

Symfony also has two methods dedicated to JavaScript
escaping:

ESC _JS,

ESC JS NO ENTITIES.

528

These methods are used when you want to use dynamically
changed HTML code or just a string inside JavaScript. If
you don't want to escape any values, just set ESC_RAW as
the method or turn escaping off.

CakePHP

The sanitize class is responsible for escaping in
CakePHP. To use its methods, you need to add it at the
beginning of the controller.

App::import(‘Sanitize’);

class xssController extends AppController {

}

code snippet /xss/cakephp/app/controller/

xss_controller.php

Sanitizing allows the use of four methods: clean(),
escape (), html (), and paranoid ().

Sanitize::clean($data, $options);

The clean() method changes the $data input and
outputs as given in $options. Available options are
odd spaces, encode, dollar, carriage, unicode,
escape, and backslash. Each option cleans the input

529

string or array. To enable them, set them as true, as
shown in the following code:

Sanitize::clean($data, array(‘backslash’=>true));

code snippet /xss/cakephp/app/controller/
xss_controller.php

The escape () method escapes a SQL statement where
$database is the variable that describes the used database
(see database.php in the configuration directory); for
example, ‘default’.

Sanitize::escape(string $SQL, string $database)

code snippet /xss/cakephp/app/controller/
xss_controller.php

The htm1 () method cleans a string of HTML tags:

530

$HTMLString = ‘Test’;

echo Sanitize::html(SHTMLString);

code snippet /xss/cakephp/app/controller/
xss_controller.php

The method in the preceding code will print «1t;a
href="test" > Test< /as> :

echo Sanitize::html(SHTMLString, array(‘remove’ => true));

If you set the remove option to true, you get a string that
doesn't contain any HTML tag.

The last method is paranoid (), which removes all special
characters such as ;, :, <, >, @, #.

$HTMLString = “Test";

echo Sanitize::paranoid(SHTMLString);

code snippet /xss/cakephp/app/controller/
xss_controller.php

The preceding code prints a href=testTesta.

531

Zend Framework

Zend Framework delivers the zend Filter class, which
is responsible for sanitizing. Additionally, ZF offers a
method that is available as a helper in the view layer.

$this->escape($this->testData);

Some developers prefer a strategy to escape only the
output that is shown to the user. This is usually a good
practice because XSS and injection attacks are based on
showing malicious code. If it's escaped before it's sent to
the user, the attack fails.

A second approach in ZF is to filter the bad code within
the controller. To do this, you need to create an instance of
Zend Filter HtmlEntities and invoke filter ()

with a parameter that is the filtered data. The filter ()

method returns an escaped value, so it's clean and ready to
safely use.

SentityFilter = new Zend_Filter HtmlEntities();

$goodData = $entityFilter->filter(SHTMLString);

code snippet /xss/zf/application/controllers/
IndexController.php

532

It is possible to specify filters still while building a web
form, as shown here:

$this->addElement(‘text’, ‘firstName’, array(
‘label”’ => “Your first name:’,
‘required’ => false,
“filters => array(‘StripTags’),
)
code snippet /xss/zf/application/forms/Addresses.php
A filter created this way will return the input string, with

all HTML and PHP tags removed from it. Yet it is possible
to specify which tags are allowed and which are not.

CSRF

Cross-site request forgery (CSRF) attacks are commonly
mistaken for XSS attacks because of similarities in their
outcomes. They work completely differently, however.
While for XSS the attacker must put malicious code on a
targeted website, for CSRF all he needs is to make you
click a prepared link. That's all; there is no JavaScript
required, and you can even have scripting disabled in your
browser.

Problem

533

Developers have some problems defending against this
kind of attack because it takes much knowledge to know
how to do it properly. And there is no limit on the severity
of these attacks. Fortunately, all this knowledge is already
included in the frameworks, so this section describes how
to secure against CSRF fast and simply.

What Is CSRF?

This attack is linked with form security and exploits some
form vulnerabilities. Unlike XSS attacks, CSRF attacks are
more user-oriented, and they do more harm to users than to
web applications. Figure 8.12 illustrates a short CSRF
example. C is the unaware Customer, and H stands for the
Hacker.

Figure 8.12 CSRF attack example

ceo 1. LOGIN

)\ 3_, REQ_UEST F(:)R DATA_ Web application

Because CSRF attacks can be carried out only in some
situations, to make this attack possible, some additional
favorable circumstances need to be fulfilled. Let the web

534

application in Figure 8.12 be an e-commerce application.
H wants to get profile data. To get it, H needs to execute a
piece of code such as the following on the attacked side. C
needs to be logged in to the web application, and then H
makes him execute this script by a prepared link.

<script>

var url = ‘http://example.com/profile;
setTimeout(30000, “window.open(url)”);
</script>

</html>

So here's how it works: Customer C logs in to the web
application. Next, H sends a link to the prepared web page.
As shown in the preceding code, a fixed URL is opened in
a new window after a period of time. This window
displays the profile data. This script could be even more
malicious and save this data somewhere or buy something
expensive. C doesn't know about this attack because the
malicious web page can be opened in another tab in his
browser or even completely in the background. Therefore,
this kind of attack is very popular, but it also needs some
information about the attacked person to make it possible.

Solution

To defend against CSRF attacks, a small change needs to
be done in all forms that could be potentially used for this
attack. Hacker needs to collect some information about
Customer and also about the web application that he uses.
Suppose that H is also a customer that has his own account

535

in the example e-commerce web application. H can collect
information about form structure and fields, so he can
prepare a malicious web page on this basis.

Each form has some input fields (name, forename, email,
and so on). Values that are entered into these fields are
different for each user, but fields usually still have the
same names (<input name="">). In some applications,
the fields may differ for each user, which makes this attack
more difficult, but it's still possible. If the attacker can
figure out the form names that are expected to be sent from
C, this attack may succeed.

Symfony

Symfony delivers CSRF protection utilities out of the box,
just as all the frameworks described in this book do. By
default, these protection utilities are enabled in
settings.yml, which is placed in the application's
/config directory.

all:
.settings:

csrf secret: vxfdb8wrh34ni3th93y

code snippet /esrf/symfony/apps/frontend/config/
settings.yml

536

For security purposes, you need to change the
csrf secret value. When this value is correctly set, an
additional input field will be placed in each form, called

_csrf token.

<input type="hidden” name="_csrf token” value="58702cd53a37190250899563f3dd9928”

id="csrf token” />

code snippet /csrf/symfony/apps/frontend/modules/
csrfExample/templates/indexSuccess.php

The value of this field is different from that given in the
configuration file because csrf secret in the
settings.yml config file is a salt, or random seed, used
to generate the token. The salt is only one of the items that
produce the resulting token value. All other items can be
known to the attacker in some cases, but the salt is and
should be always kept in secret.

CakePHP

CakePHP allows for securing a web application against
CSRF attacks as well. Instead of setting a common
variable in configuration files, as in Symfony, CakePHP
gives the possibility to secure each controller separately.

To secure all forms that are generated with a controller,
add this line at the top of it:

537

public $Scomponents = array(‘Security’);

After adding it, an exemplary controller looks like the
following:

<?php
class AddressesController extends AppController {
var $name = ‘addresses’;
var $components = array(‘Security’);
function index($id = null) {
$this->set(‘address_list’, $this->Address->find(‘all’));
H
code snippet /esrf/cakephp/app/controller/

xss_controller.php

As with Symfony, a salt needs to be set. This can be done
in core.php, which is placed in the /config directory.

Configure::write(‘Security.salt’, ‘vxfdb8wrh34ni3th93y’);

code snippet /csrf/cakephp/app/config/core.php

538

Unlike Symfony, CakePHP generates not one, but two
CSREF tokens.

<form id="AddressEditForm”
method="post”
action=""/index.php/addresses/edit/addresses/edit”
accept-charset="utf-8">
<div style="display:none;”>
<input type="hidden” name="_method” value="POST” />
<input type="hidden” name="data[Token][key]”
value="7{72422a68cfce07a88966cade00118025b034a8”
id="Token1034995606” />

</div>
code snippet /csrf/cakephp/app/view/csrf/index.ctp

The first one is placed after <form> start tag, and the

second one is placed in the bottom part of the following
code:

539

<div class="submit”>
<input type="submit” value="Save address” />
</div>
<div style="display:none;”>
<input type="hidden” name="data] Token][fields]”
value="5d49a9573¢ceb05291667243fcc672d85f1
bdbd25%3An%3A1%3A%7Bv%3A0%3B{%3A10%3A%22Nqqerff.vq%22%3B%7D”
id="TokenFields1736401509” />
</div>

</form>

code snippet /csrf/cakephp/app/view/csrf/index.ctp

These keys are both checked after each submit. If they are
not the same, an error message is shown. The preceding
code prevents CSRF attacks because token values are
different for each user, and the attacker can't know the
values for each user.

Zend Framework
In contrast with the previous two frameworks, each form is
secured separately in Zend Framework. To enable CSRF

protection, you need to add an additional element of type
hash into the form definition.

540

<?php
class Application_Form_Guestbook extends Zend Form {
public function init() {
$this->addElement(

‘hash’, ‘csrf token’, array(‘salt” => ‘vxfdb8wrh34ni3th93y’));

h
code snippet /csrf/zf/application/forms/Guestbook.php

In ZF, a salt is also employed, which generates a form field
as follows:

<dt id="csrf_token-label”> </dt>
<dd id="csrf_token-element”>
<input type="hidden”
name="csrf_token”

value="5e7b35565c404102c04697ta4637t4c7”

541

id="csrf_token”>

</dd>

code snippet /csrf/zf/application/views/scripts/index/
index.phtml

This field is checked during form validation. The same
result can be achieved as well with the following code:

$token = new Zend_Form_Element_Hash(‘token’);
$token->setSalt(md5(uniqid(rand(), TRUE)));
$token->setTimeout(Globals::getConfig()->authentication->timeout);

$this->addElement($token);

code snippet /csrf/zf/application/forms/Guestbook.php

A timeout can also be set for the token to make it lose
validity after a certain amount of time.

542

Chapter 9

Templates

Beware the Jabberwock, my son!

The jaws that bite, the claws that catch!
Beware the Jubjub bird, and shun

The frumious Bandersnatch!

—Lewis Carroll

What's In This Chapter?

+ Creating an image gallery using Lightbox
* Integrating chosen template engines with frameworks
* Pros and cons of using template engines

* Overview of popular template engines

Previous chapters discussed frameworks' innards; this
chapter focuses on the presentation layer instead. So what
are these template engines, and why are they so important?
In web development, PHP code processes all data, so it's
responsible for the business logic. The view layer
represented by template engines is the presentation part of
your site. A template engine allows you to develop
websites with various different layouts or themes for the
same core functionality.

Template engines are very popular tools among PHP
projects that do not use any frameworks. Despite their

543

popularity however, they are not often used along with
web frameworks. In this chapter, we will explain why it is
so and show a few tricks to make them get along with each
other.

Creating a Simple Image Gallery by Using Helpers and
Lightbox

The following script renders an index page. It uses some
PHP functions to generate the page content intertwined
with HTML blocks. (This is a programming style from the
year 2000, when PHP was a new thing altogether.)

<?php

$head_title = ‘Title’;

$block name =‘News block’;
display content();
function_1();

function_2();

7>

<html>
<head>
<title>
<?php echo $head _title; 7>
</title>

</head>

544

<body>
<tag>
<tag>
<?php echo $block name; ?>
</tag>
</tag>
<tag>
<?php echo display_content(); 7>
</tag>
</body>

</html>

Today, more advanced template engines are used to
separate the view layer from PHP code, which is used for
the business logic. This allows developers to work on the
code of the system without interfering with the designers
who create different layouts for it. This is a good
programming practice just like the Model-View-Controller
(MVC) architecture offered by the frameworks.

A second commonly known good practice that can be used
here is Don't Repeat Yourself (DRY). You can use just one
template file for a few functionalities if the template code
is the same in all of them. This is possible because of
separating business logic from the view. The following
pseudo-code example demonstrates how PHP scripts
should be separated from an HTML template:

<?php

545

$variablel;
$variable2;

$variable3;

function_1();
function_2();
function_3();
function_4();
render_template (template.tpl);

7>

This code presents a quasi-controller that renders the
following template file:

<htmI>

<head>
<title></title>

</head>

<body>
<tag>

<tag></tag>

</tag>
<tag></tag>
<tag></tag>

</body>

546

</html>

The template fragment can still contain PHP scripts, but
usually it requires a template language to indicate
segments that are to be filled with content by a script.
These languages vary from one template engine to another,
but usually cover the same functions.

Presentation Layer Helpers

Before you move to the template engines, we will discuss a
nice and easy topic concerning the presentation layer as
well. We'll show you how to create an image gallery in
your frameworks by using the frameworks' helper classes
and the Lightbox JavaScript application.

Helpers are classes that encapsulate certain frequently used
functionalities and allow developers to use these complex
functions easily without the need for much coding. Usually
helpers are designed for the view part of the MVC pattern
because most repeated code lines are located in the view
files. You can use helpers to format and prepare output
data easily using a single function/method.

The three frameworks that you work with in this book
have a number of useful helpers. In previous chapters,
helpers were used many times in a very natural manner,
without the necessity to learn their usage or even to
explain it too much. Well, look at the following example:

<?php echo $html->text(‘UserName’) 7>

This line from a view file can create the standard HTML
text input tag with the name attribute set to UserName, but

547

it also may encapsulate this input field in <p></p> tags or
<div></div> tags just like this:

<div class="form-Input”>
<input type="text” name="UserName” />

</div>

It all depends on how this HTML helper is designed. Now,
knowing only this example and the common HTML form
tags, you can assume that when you write the following
line:

<?php echo $html->password(‘UserPass’) 7>

it should render a password input field with name attribute
set to UserPass, just like this:

<div class="form-Input”>
<input type="password” name="UserPass” />

</div>

The preceding code snippets illustrate how intuitive
helpers can be. Similar helpers are available for formatting
data, field validation, time-date operations, and so on.
Custom helpers can also be added to facilitate other
aspects of web development.

Now we will focus on the main topic of this section: for
every web developer there comes a time when he needs to
have an image gallery in the project that he is working on,
be it his own portfolio or a different random project. The
most basic image gallery can be created using only an
HTML page with multiple thumbnails or plain links

548

connected to large images that can be opened in a new
page or different frame. This solution is rather outdated
because the user can spend more time navigating the
gallery than viewing it.

Lightbox

Today, in most cases, image galleries are built using
JavaScript. JavaScript requires more work for the
developer and makes it more difficult to modify an
existing gallery, but most JavaScript libraries provide a
few additional features—for example, opening images
with some basic navigation, such as next and previous
buttons.

Now if you wonder whether you can learn how to create
your own image gallery from this book, the answer is no.
We would love to show it, but the book would grow
another 50 pages or so and it would not really be
framework-related code. Instead you will learn how to
implement one of the most common, lightweight, and
dynamic ready-to-use image galleries: the Lightbox.

Lightbox is a JavaScript application, written by Lokesh
Dhakar, used to display image galleries utilizing a popup
window. This script has gained wide popularity, mostly
due to easy implementation and great presentation style
that fits any website. You can read more about Lightbox at
its author's website: www.huddletogether.com/projects/
lightbox2. Now you will learn how to include Lightbox 2
in your application, developed for all three frameworks.

Symfony

549

There are several solutions that allow you to create web
image galleries simply by adding one of the available
Symfony plug-ins. First you will learn how to implement
one of these solutions that enables you to display image
galleries in your application using the popular Lightbox
script. Later you will find a short description of two
selected alternative solutions.

sfJQueryLightBoxPlugin

If you've read this book chapter by chapter, you probably
already know the routine and will not be surprised by
anything written in this section. sfJQueryLightBoxPlugin
allows you to use the sfJQueryLightbox helper that
transforms image links into a Lightbox image gallery. You
can find details about this plug-in at
www.symfony-project.org/plugins/
sfJQueryLightboxPlugin. First of all, the
sfJQueryLightBoxPlugin requires you to have
sfJqueryReloadedPlugin already installed. To install it,
simply execute the following command in your project
command line:

$ symfony plugin:install sfJqueryReloadedPlugin

For details on this plug-in, please refer to its website:
www.symfony-project.org/plugins/
sfJqueryReloadedPlugin. If you already have
sflqueryReloadedPlugin, = you can proceed to
sfJQueryLightboxPlugin installation.

550

To install sfJQueryLightboxPlugin, you need to simply
type the following command into the console at your
project directory:

$ symfony plugin:install sfJQueryLightBoxPlugin

Next, you can clear the cache data by typing the following
command into your console:

$ symfony cache:clear

Assuming that you created a project and a sample
frontend application, at this point you should be ready to
start editing the files of your project. Let's create a sample
module:

$ symfony generate:module frontend lightexample

You need only one method for this example. What is more,
this method should be empty because all the gallery
presentation is done in the view layer:

public function executelndex() {

}code snippet

In order to wuse features that were installed by
sfJQueryLightBoxPlugin, you need to modify the module's
view file located in /apps/frontend/modules/lightexample/
templates. It is necessary to indicate there that you want to
use the jQuery helper required by the sfJQueryLightbox
helper to make it work. To do so, just add the following
line in your indexSuccess.php file:

551

<?php use_helper(“jQuery”) 7>

code snippet /gallery/symfony/apps/frontend/modules/
lightexample/templates/indexSuccess.php

Once it is done, you can now do the same for the
JQueryLightbox helper. Just add another line:

<?php use_helper(“sfIQueryLightbox™) ?>

code snippet /gallery/symfony/apps/frontend/modules/
lightexample/templates/indexSuccess.php

Now in the same template file, you can use the

light image () function for the image that you want to
have the Lightbox effect. It is done like this:

<?php echo light image(

$thumbnail url,

552

$full_image wurl,
array(‘title’ => $image _title),
$thumb_options
)i
7>

code smippet /gallery/symfony/apps/frontend/modules/
lightexample/templates/indexSuccess.php

The example of a simple gallery can look as follows:

<?php use_helper(‘jQuery’, ‘sfJQueryLightbox”) 7>

<h1>Lightbox Logos Gallery</h1>

<?php echo light image(
‘http://www.symfony-project.org/images/symfony logo.gif’,
‘http://www.symfony-project.org/images/symfony logo.gif’,
array(‘title’ => ‘Symfony Logo’),
array(‘border’ => 0)); 7>

<?php echo light image(
‘http://cakephp.org/img/cake-logo.png’,

‘http://cakephp.org/img/cake-logo.png’,

553

array(‘title’ => ‘CakePHP Logo’),
array(‘border’ => 0)); 7>

<?php echo light image(
‘http://framework.zend.com/images/logo.gif”,
‘http://framework.zend.com/images/logo.gif”,
array(‘title’ => ‘Zend Framework Logo’),

array(‘border’ => 0)); 7>

code smippet /gallery/symfony/apps/frontend/modules/
lightexample/templates/indexSuccess.php

Note that in this example, the same image is used for the
thumbnail as well as for the normal-size image. The
preceding example should be rendered by the browser the
same way as it is illustrated by Figure 9.1.

Figure 9.1 Example of an image gallery using
sfJQueryLightBoxPlugin

554

Lightbox Logos Gallery

m—

symfony Logo
Irnsge 1 of 3

CLOSEX

.
-

™= ZEND
48 FRAMEWORK

If your image gallery misses some graphics, such as the
next or close buttons, it may be due to having a different
web root than the one assumed by the plug-in. The default
directory for Lightbox graphics is
/sfJQueryLightboxPlugin/images/.

It is possible to change paths for every image used by
Lightbox. To do this, you need to add a few code lines into
the app. ym1 file. For this example, the first slash character
had to be removed from the image paths, in order to make
Lightbox display all elements correctly. This is shown in
the following code:

all:
sf_jquery_lightbox:

css_dir: ‘/sfJQueryLightboxPlugin/css/’

555

js_dir: “/sf]QueryLightboxPlugin/js/’

imageLoading: ‘sfJQueryLightboxPlugin/images/lightbox-ico-loading.gif’
imageBtnClose: ‘sfJQueryLightboxPlugin/images/lightbox-btn-close.gif’
imageBtnPrev: ‘sfJQueryLightboxPlugin/images/lightbox-btn-prev.gif’
imageBtnNext: ‘sfJQueryLightboxPlugin/images/lightbox-btn-next.gif’
imageBlank: ‘sfJQueryLightboxPlugin/images/lightbox-blank.gif’
txtImage: ‘Image’

txtOf: ‘of’

code snippet /gallery/symfony/apps/frontend/config/
app.yml

sfLightboxPlugin

sfLightboxPlugin is an alternative to
sfJQueryLightBoxPlugin introduced earlier. After
installation, sfLightboxPlugin provides you with
LightboxHelper that allows you to create image galleries
and slideshows very easily.

It may be a little less popular among users of the Symfony
framework, but on the other hand it is compatible with
older versions of Symfony. Installation files and examples
for this plug-in can be found at www.symfony-project.org/
plugins/sfLightboxPlugin.

sfMediaBrowserPlugin

sfMediaBrowser is a plug-in that works directly on the file
structure to allow users to manage file uploads. It comes

556

with a complete user interface for managing files as well
as folders that are contained in a specific directory. What is
unusual about sftMediaBrowser is that it does not use any
database.

This plug-in comes with a widget and a validator that can
be used in any form to replace the standard HTML file
upload input field. You can get installation files from the
following website: www.symfony-project.org/plugins/
sfMediaBrowserPlugin.

CakePHP

Using Lightbox in Cake is nearly as straightforward as in
any static website. To demonstrate this example of
Lightbox 2, you need to download the package from the
author's website: ~ www.huddletogether.com/projects/
lightbox2. The example gallery will consist of three links
to framework logos, as illustrated in Figure 9.2.

Figure 9.2 Links to framework logos

Lightbox Logos Gallery

Symfony Logo
CakePHP Logo

Zend Framework Logo

When you have the Lightbox2 package, it is time to put all
the files into your CakePHP application directory.
Lightbox uses the Prototype and Scriptaculous libraries to
render some effects while displaying images. Assuming
that you follow the standard CakePHP installation, you

557

need to put the following JavaScript libraries inside the
CakePHP /app/webroot/js/ directory:

* builder.js

» effects.js

* lightbox.js

* prototype.js

* scriptaculous.js

The same thing goes for the Lightbox CSS file
(lightbox.css) that you need to place into the /app/
webroot/css/ directory.

The Lightbox styles use the ../images/ path to display
images, so you also need to make sure that any paths to
images in the CSS are correct. If you placed the
lightbox.css file as instructed, all images used by
Lightbox should be located in the /app/webroot/
images/ directory. That is all you need to do in terms of
Lightbox installation.

Next there are a few things that need to be done to use the
installed Lightbox in your application. Add the following
lines of code to your site's layout that is located in the
/app/views/layouts/ directory and you're good to go.
In this example, the default.ctp layout file is used.
CakePHP allows you to easily link CSS and JavaScript
files into your site's head section of layout. The layout used
for this example looks as follows:

558

<htmI>
<head>
<?php
echo $html->css (“lightbox”, “stylesheet”);
if (isset ($javascript)):
echo $javascript->link (‘“/app/webroot/js/prototype.js”);
echo $javascript->link(
“/app/webroot/js/scriptaculous.js?load=effects,builder”);
echo $javascript->link (‘“/app/webroot/js/lightbox.js”);
endif;
>
</head>
<body>
<?php echo Scontent_for_layout ?>
</body>

</html>

code snippet /gallery/cakephp/app/views/layouts/
default.ctp

The routing file should contain the following line:

559

Router::connect(‘/lightbox’, array(

‘controller’ => ‘lightbox’,‘action’ => ‘index’));

code snippet /gallery/cakephp/app/config/routes.php

Now you can use the http://localhost/lightbox URL to test
your project.

You need to prepare the controller for this example. To use
Lightbox in your view files, the controller needs to have
the $helpers value specified and set to use Javascript.
This will define which helper is used in this example. If
you have already specified shelpers within your
controller, you can just append another value at the end of
your helper array, and set it to “Javascript”. The
controller file used in this example looks like this:

<?php
class LightboxController extends AppController {
var $name = ‘lightbox’;

var $helpers = array (“Javascript”);

560

function index() {

}
}

7>

code snippet /gallery/cakephp/app/controllers/
lightbox_controller.php

In the model file, you need to indicate that this small
project does not use any database table by setting the
SuseTable variable to false. If you don't, a missing
table error message will be displayed.

<?php
class Lightbox extends AppModel {

var $useTable = false;

}
code snippet /gallery/cakephp/app/models/lightbox.php

The last thing to do is to create your view file that will
contain the image gallery and will use Lightbox to display
images. At this point, you only need to add the
rel="lightbox” parameter to a link in order to use
Lightbox. The rel parameter used for this example looks

561

different because it is possible to group image sets using
brackets, just like in the following view file:

<h1>Lightbox Logos Gallery</h1>

<a href="http://www.symfony-project.org/images/symfony logo.gif”’
rel="lightbox[logos]”
title="Symfony Logo”>Symfony Logo

<a href="http://cakephp.org/img/cake-logo.png”
rel="lightbox[logos]”
title="CakePHP Logo”>CakePHP Logo

<a href="http://framework.zend.com/images/logo.gif”
rel="lightbox[logos]”

title="Zend Framework Logo”>Zend Framework Logo

code snippet /gallery/cakephp/app/views/lightbox/index.ctp

Finally, you should be able to run Lightbox through the
http://localhost/lightbox page, and by clicking any of the
image links, an image like the one illustrated in Figure 9.3
will be displayed as the result. Note that text links can be

562

replaced with image thumbnails simply by adding an
 tag between the <a> and tags.

Figure 9.3 Images displayed using Lightbox

(NEXT
L

CakePHP Logo

Image 2 of 3

CLOSE X

Now you have Lightbox up and running, and if you wish
to use any other external JavaScript file, this example
should give you a general idea how to do it.

Zend Framework

Using Lightbox2 in Zend Framework is not a complicated
task; the installation is very similar to the one done in
CakePHP. To begin, you need to download the Lightbox2
package from www.huddletogether.com/projects/
lightbox2. After downloading and unpacking the libraries,
you need to copy the JavaScript files into your
application's /public/lightbox/js/ directory. Then the
stylesheet 1ightbox.css goes to: /public/css/, and
finally images used by Lightbox go to: /public/
images/. If any of these directories does not exist, create
it.

563

At this point, the /appDirectory/public/ directory
should contain the following:

js/
lightbox/
builder.js
effects.js
lightbox.js
prototype.js
scriptaculous.js
css/
lightbox.css
images/

closelabel.gif

If you have this directory structure, you can create the
controller file. To use Lightbox inside an existing project,
you probably need to add another action to your controller,
as in the following code:

<?php

class IndexController extends Zend Controller Action {

564

public function init() {

}

public function lightboxAction() {

}
}
code snippet /gallery/zf/application/controllers/
IndexController.php

The controller file does not require any additional code
lines added in order to use Lightbox because it is all done
in the layout file.

The following is the listing of the 1ayout.phtml file that
uses helpers to append Lightbox libraries into the
application:

<html>
<head>
<title>Lightbox Logos Gallery</title>
<?php
echo $this->headLink()->appendStylesheet(
$this->baseUrl(/css/lightbox.css’));

echo $this->headScript()->appendFile(

565

$this->baseUrl(*/js/lightbox/prototype.js’));
echo $this->headScript()->appendFile(
$this->baseUrl(/js/lightbox/scriptaculous.js?load=effects,builder’));
echo $this->headScript()->appendFile(
$this->baseUrl(*/js/lightbox/lightbox.js’));
7>
</head>
<body>
<?php echo $this->layout()->content; ?>
</body>

</html>

code snippet /gallery/zf/application/layouts/layout.phtml

As you can see,
Sthis->headLink () ->appendStylesheet () is used to
append the CSS file, and the

$this->headScript () ->appendFile () lines append
the JavaScript files.

Now you have all files in their places and you can use the
standard HTML syntax to turn any image link into a
Lightbox effect gallery using rel="1ightbox”. You can
also group a number of images wusing the
rel="1lightbox [groupname]” syntax.

The following code is an example view file that renders an
image like the one shown in Figure 9.4 when you type

566

http://localhost/appName/public/index/lightbox into your
browser:

<h1>Lightbox Logos Gallery</h1>

<a href="http://www.symfony-project.org/images/symfony logo.gif”’
rel="lightbox[logos]”
title="Symfony Logo”>Symfony Logo

<a href="http://cakephp.org/img/cake-logo.png”
rel="lightbox[logos]”
title="CakePHP Logo”>CakePHP Logo

<a href="http://framework.zend.com/images/logo.gif”
rel="lightbox[logos]”

title="Zend Framework Logo”>Zend Framework Logo

code snippet /gallery/zf/application/views/scripts/index/
index.phtml

Figure 9.4 Image gallery using Lightbox

567

V44 FRAMEWORK

Lightbox Logos PREV

Zend Framework Logo
Irmage 3 of 3

If your Lightbox window happens to be missing the
loading image or close button image, you can fix it by
modifying the corresponding paths in the 1ightbox.js
file at lines 49 and 50. In this example, the paths look as
follows:

LightboxOptions = Object.extend({
fileLoadingImage: ‘../images/loading.gif’,

fileBottomNavCloselmage: ‘../images/closelabel.gif”,

code snippet /gallery/zf/public/js/lightbox/lightbox.js
Using Template Engines within Web Frameworks

So far we have described only the advantages of the
framework template engines. However, to be honest with
you, opinions on their usefulness are varied. They are often
praised by teams where PHP programmers deal with
business logic only and leave the presentation layer for the
designers. However, individual developers tend to judge
template engines as nearly useless.

568

PHP is an interpreted programming language that can act
as a template engine. This means that the template engines
are not necessary, and when you use them, they must be
interpreted separately by PHP. Template engines provide
an interpreted language inside the PHP-interpreted
language, and that requires the templates to be parsed two
times. This looks like an additional overhead that degrades
performance of web apps, but in fact most of today's
templating engines have caching features that make
parsing necessary only once per template. The
performance is no longer a big issue while using templates.

The following code illustrates how plain PHP can be a
natural substitute for the Smarty template engine, which is
described more fully in the following section. Smarty code
first:

{if Suser eq ‘Martin’}
Martin has logged in.
{elseif $ user eq ‘Susie’}
Susie has logged in.
{else}
Anonymous has logged in.
{/if}

And the regular PHP equivalent:

<?php
if (Suser == ‘Martin’} {

echo © Martin has logged in.’;

569

} elseif ($user == “Susie’) {
echo ‘Susie has logged in.’;
} else {

echo ‘Anonymous has logged in.’;

}

7>

Another reason for negative opinions about template
engines is that there is a learning curve tied to any template
system because most PHP templates have their own set of
tags or even their own language. However, don't be
prejudiced against template engines before you try them
out. Many developers value them as an elegant way of
view representation, and even if you won't like them,
perhaps your fellow web designers will, so it's valuable to
get to know this technology anyway.

Smarty

Over the years, Smarty has gained lots of popularity and
became probably the best known web template system
written in PHP. Its logo is presented in Figure 9.5. Many
newly created template engines were created based on
Smarty because it has been for a long time a popular tool
for separating system logic from HTML templates.
Version 3 of Smarty is coming in big steps and will
address shortcomings of its predecessor as well as add new
features. This new version of Smarty is object-oriented,
written from scratch, and written entirely in PHP 5.0.
Moreover, tests indicate that it will offer much better
performance than the current version.

570

Figure 9.5 Smarty template engine logo

o smarty.

TEMPLATE ENGINE

You can install Smarty in various ways. The most basic is
downloading the most recent release from the Smarty
website: www.smarty.net. Then unpack it to your PHP
library folder.

There is also a PEAR channel provided by a GoogleCode
project. You can use it with the following console
commands:

pear channel-discover pear-smarty.googlecode.com/svn

pear install smarty/smarty

UNIX/Linux has packages for various package managers,
so you can install Smarty with the following command:

apt-get install smarty3

Web content generated by Smarty relies on Smarty tags
placed within documents (templates), later to be processed
and substituted with PHP code. This is done by the
template engine, allowing people working on application
development to keep their work more organized and less
reliant on the progress of others.

Smarty tags can be functions, loops, variables, or logical
statements. These directives are enclosed in template
delimiters and are used by Smarty's parser while the
template is processed later. It is possible for PHP

571

programmers to define custom functions that can be
invoked using Smarty tags. The following code is an
example implementation of Smarty. First is the PHP file
that acts as the controller:

<?php

require ‘libs/Smarty.class.php’;

$smarty = new Smarty;

$smarty->template_dir = ‘templates/’;

$smarty->compile_dir = ‘templates/compile/’;

$smarty->cache_dir = ‘templates/cache/’;

$smarty->assign(‘title’, ‘Smarty example’);

$smarty->assign(‘“frameworks”, array(‘Symfony’, ‘CakePHP’, ‘Zend Framework’));
$smarty->display(‘index.tpl’);

7>

code snippet /templates/smarty/index.php

On top of the standard inclusion of a template engine class
and the creation of its object, you usually need to set three
paths for Smarty. The template directory is where Smarty
looks for template files. Next the compile and cache files,
which need to be writable, are placed where the processed
templates will be compiled and cached. The variable

572

assignment is done through the $smarty->assign()
function that takes two parameters. The first parameter is
the name of the variable, through which it will be visible in
the template file, and the second parameter is the value to
be passed to the template.

The template file used by this PHP script may look like
this:

<IDOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.0org/TR/xhtml11/DTD/xhtml11.dtd”>
<html>
<head>
<title> {Stitle} </title>
<meta http-equiv="content-type” content="text/html; charset=utf-8” />
</head>
<body>
<h1>List of covered frameworks</h1>
{* Smarty comment *}
<div>
{section name=row loop=$frameworks}

{strip}

573

{Ssmarty.section.row.index}) {$frameworks[row]}

{/strip}
{/section}
</div>
{include file="footer.tpl”’}
</body>

</html>

code snippet /templates/smarty/templates/index.tpl

To print the passed variables into the template file the
{$variable} syntax is used. The syntax for commenting
looks like this: {* comment *}. {section}. Itis used to
encapsulate fragments of Smarty code; in this case, it is
Smarty's equivalent of the foreach loop. And at the end,
{include} 1is used to include other templates. In the
preceding code, the template file is footer.tpl. It is not
introduced here, so just create another empty template. The
resulting image for this example is shown in Figure 9.6.

Figure 9.6 Printing the passed variables in the template
file

List of covered frameworks

1) Symfony
2) CakePHP
3) Zend Framework

As you can see in the preceding example, the mechanics

offered by Smarty allow web page functionality to be
modified separately from the presentation part. This allows

574

developers to simplify and enhance workflow as well as
the software maintenance process.

You read at the beginning of this section that template
engines receive some criticism. This is no different with
Smarty because it replicates features offered natively by
PHP, causing additional processing overhead. Actually,
this general opinion could have originated from Smarty; at
the early development stage of Smarty, server resources
were not as cheap as they are today, to say the least. Today
Smarty3 offers caching that greatly mitigates this problem;
however, it was one of the first template engines and its
early versions have influenced the general opinion.
Additionally, any developers who wish to use Smarty need
to learn the Smarty new pseudo-language.

PHP frameworks' view components usually provide most
of the benefits offered by Smarty without sacrificing
performance and adding the unnecessary complexity of
learning a new language. This makes integration of such
template engines with frameworks rather questionable. To
make things worse, without well-maintained plug-ins or at
least strong documentation, the template engines can be
really hard to integrate with any framework.

Smarty for Zend Framework
The integration of Smarty with Zend Framework is a good
example of how loosely coupled framework architecture

results in its extensibility. Combined with good
documentation on both sides, the process is fairly simple.

575

First you need to build a Smarty handling library. And of
course, you must have Smarty installed prior to this. This
library just replaces Zend View calls by Smarty methods.
It extends the zend view class by an interface that has all
the zend view methods; that's why this integration is so
easy.

Create the smartyview.class.php file in the /1library
folder of ZF. At the beginning of this file, import Smarty.
(The path shown in the following code in bold is relevant
for standard Linux installations; you need to provide the
valid path for your environment.)

Create the constructor for your zend View Smarty
adapter class. It will take at least two arguments: the path
to your template files folder, the path to the compilation
results folder, and an optional array of extra parameters.
Most of this class consists of getters and setters that
translate Zend View arguments into Smarty fields. The last
method passes a rendering of the view to the Smarty
template. Now fill the smartyview.class.php file with
following code:

<?php
require_once(“/usr/share/php/smarty/Smarty.class.php”);
class Zend View_ Smarty implements Zend View Interface {

public §_smarty;

576

public function __construct($tmplPath = null, $ScmplPath = null,
$extraParams = array()) {

$this->_ smarty = new Smarty;

if (null !== $tmplPath) {
$this->setScriptPath($tmplPath);
$this->setCompilePath($cmplPath);

}

foreach ($extraParams as $key => $value) {

$this-> smarty->$key = $value;

}

public function getEngine() {
return $this-> smarty;
}
public function setScriptPath($path) {
if (is_readable($path)) {
$this-> smarty->template _dir = $path;
return;
}
throw new Exception(‘Invalid path provided’);
}
public function getScriptPaths() {

return array($this->_smarty->template_dir);

577

}
public function setCompilePath($path) {
if (is_readable($path)) {
$this-> smarty->compile dir = $path;
return;
}
throw new Exception(‘Invalid path provided’);
}
public function getCompilePaths() {
return array($this->_smarty->compile_dir);
}
public function setBasePath($path, $prefix = ‘Zend_View’) {
return $this->setScriptPath($path);
}
public function addBasePath($path, $prefix = ‘Zend View’) {
return $this->setScriptPath($path);
}
public function __set($key, $val) {
$this->_ smarty->assign($key, $val);
}
public function __isset($key) {

return (null == $this-> smarty->get template vars(Skey));

578

public function __ unset($key) {
$this->_smarty->clear assign($key);
}
public function assign($spec, $value = null) {
if (is_array($spec)) {
$this->_ smarty->assign(Sspec);
return;

}
$this->_ smarty->assign($spec, $value);
}
public function clearVars() {
$this->_ smarty->clear all_assign();
}
public function render($name) {

return $this->_smarty->fetch($name);

}
}

code snippet /templates/zf/library/SmartyView.class.php

Create the controller and load your adapter library, shown
in bold in the next snippet. Now ZF's init () method
comes in handy because you can easily replace the view of
this controller before any other methods are called. This
single line (segmented to fit the page) is shown in bold as

579

well. Again you need to supply the proper paths for your
environment.

The next few lines demonstrate the power of Zend
Framework libraries. They allow you to get the
viewRenderer helper and then configure paths and the
file suffix to work neatly with the adapter view. Create the
IndexController.php file and fill it with following
code:

<?php
require_once(“../library/SmartyView.class.php”);
class IndexController extends Zend_Controller Action {
public function init() {
$this->view =
new Zend_View_Smarty(
“/home/wrox/public_html/application/views/templates/”,
“/home/wrox/public_html/application/views/compile/”
);
$viewRenderer =
Zend Controller Action HelperBroker::getStaticHelper(‘ViewRenderer’);

$viewRenderer->setView($this->view)

580

->setViewBasePathSpec($this->view->_smarty->template_dir)
->setViewScriptPathSpec(‘:controller/:action.:suffix’)
->setViewScriptPathNoControllerSpec(‘:action.:suffix’)
->setViewSuffix(‘tpl’);

}

public function indexAction() {

$this->view->name = “Wrox”;
}
H

code snippet /templates/zf/application/controller/
IndexController.php

This controller handles all its methods, but you can go
even further and include the init () part into the
bootstrap. You will then have all the controllers use the
adapter view by default.

Finally, create a simple index view file like the following:

Smarty works! {$name}

code snippet /templates/zf/application/views/templates/
index/index.tpl

581

Note that the path of this view is created with a pattern
very similar to the Zend View = views:
/templates/ controller/action. The {$name} Smarty
tag produces the sthis->view->name variable set in the
indexAction () method of the controller. The output is
presented in Figure 9.7.

Figure 9.7 Smarty template in Zend Framework

File Edit View History Bookmarks Tools Help

ey N O Sl @ Mo] http://localhost/

Smarty works! Wrox

Smarty for Symfony and CakePHP

Integrating Smarty with Symfony and CakePHP, even
when using ready-to-use plug-ins, can be a real pain in the
neck and the profits still are marginal. The Symfony
plug-in installation doesn't work. You can install Smarty
manually instead, but you have to put in a lot of work to
get this solution working with Symfony's command-line
interface (CLI) code-generating tools.

Smarty can be integrated with CakePHP using
SmartyView; it was recently updated to work with
CakePHP 1.3 only, and it appears to have problems
working without conflict with various versions of the
Smarty engine. So you can waste a lot of time to figure out
a working set among CakePHP, SmartyView, and Smarty.
In the best-case scenario, you end up with a

582

non-upgradable application using old versions of both the
framework and the template engine.

You should not try these solutions unless you are a really
experienced developer who has some spare time.

Dwoo

The Dwoo template engine (the logo is shown in Figure
9.8) is quite similar to Smarty, but is written entirely in
PHP 5.0. In many aspects, Dwoo is compatible with
Smarty's templates and plug-ins because Dwoo's authors
based it on the general ideas that Smarty has introduced to
the world of web development. Dwoo takes advantage of
the new features offered by PHP 5.0, so it is a well-written,
object-oriented template engine that allows easier and
faster development compared with Smarty, and still it is
compatible enough to allow developers using Smarty to
make a smooth transition to Dwoo—and vice versa. What's
more, Dwoo offers adapters that help developers integrate
it into web frameworks such as CakePHP, Zend
Framework, Code Igniter, Agavi, or Yii. Utilizing this
feature, you will learn how to integrate Dwoo into
CakePHP.

Figure 9.8 Dwoo template engine logo

ph5 templtes

583

The Dwoo template engine is released under a modified
BSD license. (The Dwoo website is http://dwoo.org/.)

CakePHP

To make your application use Dwoo, first you need to get
the package from http://dwoo.org/ and extract the library to
the /vendor directory of your application (for example,
/app/vendors/dwoo). You can use a different directory
if you wish, but it requires an additional adjustment of line
3 in the dwoo.php file. By default, it looks like this:

App::import(‘vendor’, ‘dwoo’, array(“file” => ‘dwooAutoload.php’));

The second step is to place the /Dwoo/Adapters/
CakePHP/dwoo.php file from the package into the /app/
views directory of your application. In the last step, you
need to create the /app/tmp/dwoo/cache and the /app/
tmp/dwoo/compile directories. Those directories should
have write privileges.

It is possible to use a different template file extension than
the default .tp1. To do so, you need to modify the
dwoo.php file. Line 44 has the following line, which gives
you the option to change the template file extension that
Dwoo will use:

$this->ext = “.tpl’;

584

code snippet /templates/cakephp/app/views/dwoo.php

Let's move on with the example. As usual, you must set the
routing for this project by adding the following line in the
routes.php file:

Router::connect(‘/
dwoo’, array(‘controller’ => ‘dwooexample’, ‘action’ => ‘index’));

code snippet /templates/cakephp/app/config/routes.php

Next you need to create a model file and configure it not to
use the database:

<?php
class Dwooexample extends AppModel {
var $useTable = false;

}

code snippet /templates/cakephp/app/models/
dwooexample.php

585

Then there is the controller file, in which you need to
impOI't dwooAutoload.php and set the beforeFilter ()
function with autoRender set to false. It is marked with
bold in the following code. Doing so disables the standard
CakePHP template files. The rest of Dwoo-related code is
located in the index () function. Three objects are created:
one is the main Dwoo object, the second object loads the
template file, and the last one creates the object for storing
data:

<?php
App::import(‘Vendor’, ‘dwoo’, array(‘file’ => ‘dwooAutoload.php’));
class DwooexampleController extends AppController {
function beforeFilter() {
$this->autoRender = false;
}
function index() {
$dwoo = new Dwoo();
$tpl = new Dwoo_Template File(‘../views/dwooexample/index.tpl’);
$data = new Dwoo_Data();
$frameworks = array(‘sf” => ‘Symfony’,

‘ck’ => ‘CakePHP’,

586

‘zf” => ‘Zend Framework’);
$data->assign(‘frameworks’, $frameworks);
$dwoo->output($tpl, $data);

}
}

7>

code snippet /templates/cakephp/app/controller/
dwooexample _controller.php

At the end, the data is assigned to be displayed by the
template file, and finally the template file is rendered.

Now you can use Dwoo template files to display data, as
shown in the following code:

<h1>List of covered frameworks</h1>
<p>{$frameworks[sf]}</p>
<p>{$frameworks[ck]}</p>

<p>{S$frameworks[zf]} </p>

code snippet /templates/cakephp/app/views/dwooexample/
index.tpl

The resulting image is shown in Figure 9.9.

587

Figure 9.9 Dwoo template engine example in CakePHP

List of covered frameworks

Symfony
CakePHP

Zend Framework

Unfortunately, this solution is not really what you want to
get. It allows you to use only Dwoo templates, while
CakePHP templates are not rendered, including the main
layout file. This is similar to using Dwoo as a stand-alone
application with a library that provides you with CakePHP
controller functions.

This section has demonstrated just a crude example of how
to get things done. To make Dwoo global for the whole
project you would have to write a component that would
map Dwoo to the CakePHP view, but this is beyond the
scope of this book. Frankly speaking, this is a job that
should be done by Dwoo developers if they really want it
integrated with CakePHP.

Dwoo for Symfony and Zend Framework

You could try to integrate Dwoo with Symfony, but it
would be hard because Symfony's file—generation CLI
tools do not work with it, and there is no Dwoo plug-in for
Symfony. You can also try to develop a new plug-in that
would support Dwoo. For today, however, Symfony
doesn't support Dwoo.

588

You can use Dwoo in Zend Framework by integrating its
libraries with a ZF project. This is not an easy task, mainly
because of Dwoo's disastrous documentation, some
sections of which are now written in three different
languages at random, so we don't recommend using ZF
with Dwoo. In fact, it is hard to recommend using Dwoo
with any framework, even if it is a worthy template engine
for stand-alone projects.

Twig

Twig is one of the most full-featured modern PHP
template engines and also one of the fastest. Twig
compiles the templates down to plain optimized PHP code,
so the overhead is minimal. It features native template
inheritance in which templates are compiled as classes,
automatic auto-escaping is done during compilation, and it
has a secure sandbox mode. All these features give Twig
great extensibility. A flexible lexer and parser allow the
developer to define his own custom tags, filters, and much
more.

Website: http://www.twig-project.org
License: MIT

Twig (the logo is shown in Figure 9.10) was developed by
Sensio Labs and is an integral part of Symfony 2.0. We
can't show you how to integrate Twig with Symfony
because it is compatible only with old Symfony versions,
so we will show you how to use Twig with Symfony 2.0
beta. Note that many things may change between now and
the stable release of this framework.

589

Figure 9.10 Twig logo

Twig is packaged together with Symfony 2.0 by default. If
you downloaded the Symfony 2.0 sandbox app (the default
approach used in this example), you can find the Twig
libraries in following directory: /src/vendor/twig/
1ib/. You can also install Symfony 2.0 by PEAR. In both
cases, you don't have to install Twig separately. However,
if you want to install just the Twig alone, you can do it by
PEAR using following console command:

$ pear channel-discover pear.twig-project.org

$ pear install twig/Twig

Some configuration needs to be done. Find the
config.yml file and add the bold lines shown in the
following listing:

kernel.config:

590

charset: UTF-8
error_handler: null
web.config:
csrf_secret: fsnbfw7e5y593hrt4057541y01h410t80
router: { resource: “%kernel.root_dir%/config/routing.yml” }
validation: { enabled: true, annotations: true }
web.templating:
escaping: htmlspecialchars
twig.config:

auto_reload: true

code snippet /templates/symfony2/app/config/config.yml

You can set the environment-related options in the
config prod.yml and config test.yml files,

although it is optional. YAML is the default format, but
you can switch to XML or simply PHP if you like.

Create a controller like the one shown in the following
code. The only difference from a standard Symfony 2.0

controller is highlighted with bold font. It sets the Twig
template to be used by this action:

<?php

591

namespace Applicationl"-.WroxBundle I"-.Controller;

use Symfony"'-Bundle"'-.FrameworkBundle"'-.Controller"'-.Controller;
class WroxController extends Controller

{

public function indexAction($name)

{

return $this->render(‘WroxBundle:Hello:index:twig’, array(‘name’ => $name));

}
code snippet /templates/symfony2/src/Application/Bundle/
WroxBundle/Controller/WroxController.php

The final page will be rendered using two files. First
change the main layout into something like this:

{% extends “::layout” %}
{% block body %}
<h1>Wrox Example</h1>
{% block content %} {% endblock %}

{% endblock %}

592

code snippet /templates/symfony2/src/Application/Bundle/
WroxBundle/Resources/views/layout.twig

It will print the “Wrox Example” title for every view.

And finally, make a view to fill the {$ block content
%$}1{% endblock %} tags. The view uses the $name
variable from the controller. The |upper switch makes it
uppercase:

{% extends “WroxBundle::layout” %}
{% block content %}

Hello {{ namefupper }}!

{% endblock %}

code snippet /templates/symfony2/src/Application/Bundle/
WroxBundle/Resources/views/Wrox/index.twig

The output is shown in Figure 9.11.

Figure 9.11 Twig template example

593

View History Bookmarks Tools Help

N < Tﬁi » = Q http:.’flocalhosmndex_dev.phpfhellolanonymous

rox Example

ello ANONYMOUS!

Twig is dedicated for Symfony 2.0, but you can try to
include it as a library for any other framework with the
following code:

<?php

require_once ‘lib/Twig/Autoloader.php’;
Twig_Autoloader::register();

$loader = new Twig_Loader_String();

$twig = new Twig_Environment($loader);

$template = $twig->loadTemplate(‘Wrox {{ test }}!’);

$template->display(array(‘test’ => ‘example”’));

The first two lines can go to a bootstrap file or initializing
method and the next four lines allow you to use Twig
within a controller.

Overview of Other Add-on Template Engines

There is a large variety of PHP template engines available
for use. From more than 50 known PHP template engines,
implementation of only 3 was shown in the previous
section. This section presents a handful of other valuable
template engines. The code snippets presented here are just
plain PHP files and templates to make you familiar with

594

the templating languages. Integration with web
frameworks, if possible, should be similar to those shown
in the previous section.

Template Blocks

Template Blocks is a visual template engine, which means
that it uses an AJAX interface to let the developer handle
everything through online forms in the browser. There is
no need to write everything by yourself because a
significant part of site building is done simply by dragging
blocks, as you can see in Figure 9.12.

Figure 9.12 Page building using the Template Blocks
drag-and-drop interface

Your Layout:

Other Blocks:

Website: http://www.templateblocks.com

595

License: GPL
Open Power Template (OPT)

One of the few template engines written natively in PHP
5.0, the Open Power Template (OPT) is a powerful and
rapidly developing tool. Its logo is shown in Figure 9.13. It
uses a domain-specific XML template language for
creating templates. Its API is object-oriented by design,
which helps in integration with frameworks. It is well
documented as part of a bigger set of tools: the Open
Power Library. We recommend that you check this one
out!

Figure 9.13 Open Power Template logo

Website: http://www.invenzzia.org/en/projects/
open-power-libraries open-power-template

License:

* Open Power Template 2.0: BSD-new
* Open Power Template 1.1: GNU LGPL

The following code shows an example implementation.
First the controlling PHP file needs some additional
configuration. The path to OPT is set, template directories
are defined, the OPT object is created, and finally the
setup () method is called:

596

<?php
require(‘../lib/Opl/Base.php’);
Opl Loader::setDirectory(‘../lib/’);
Opl Loader::register();
$tpl = new Opt_Class;
$tpl->sourceDir = ‘templates/’;
$tpl->compileDir = ‘templates_c/’;
$tpl->setup();
$view = new Opt_View(‘index.tpl’); // Load template
$view->pageTitle = ‘List of covered frameworks’;
$view->list = array(‘Sf* => ‘Symfony’,
‘Cake’ => ‘CakePHP’,
‘ZF’ => ‘Zend Framework’);
$view->setFormat(‘list’, ‘Array’);
$output = new Opt_Output_Hittp;

$output->render($view);

code snippet /templates/opt/index.php

Compared with other template engines, setting up OPT
gives more configuration options. In OPT, templates are

597

loaded before the variables are assigned. And as you can
see in the following code, OPT gives developers some
additional tags that generate common fragments of web
pages or cover common tasks such as the foreach loop
made using the <opt: foreach> tag. Displaying variables
is exactly the same as in Smarty: by using {$variable}:

<7xml version="1.0" 7>
<opt:root>
<!-- generate an XML prolog for the browser -->
<opt:prolog version="1.0" />
<l-- generate the DTD for the browser from a template -->
<opt:dtd template="xhtml10transitional” />
<html>
<head>
<title>{$pageTitle} </title>
</head>
<body>
<h1>List of covered frameworks</h1>

<opt:foreach array="$list” index="short” value="value”>

<p>{@short} - {@value}</p>

598

</opt:foreach>
</body>
</htm1>

</opt:root>

code snippet /templates/opt/index.tpl
You can see the output of these two files in Figure 9.14.

Figure 9.14 Page content rendered using OPT

localhost/opt/framewor|

List of covered frameworks

3f - Symfony

Cake - CakePHP

ZF - Zend Framework

TinyButStrong

What can be said about this template engine is that it is
indeed tiny, which means one file and one PHP class! It
has a few distinguishing features. It can natively work with
MySQL, SQLite, and PostgreSQL. And it is not restricted
to working with HTML files: it can work with XML, RTF,
and WML files; and also with document files of
OpenOftfice and Microsoft Office.

Website: http://www.tinybutstrong.com

License: GNU LGPL

599

The following code shows an example implementation. It
begins with the controlling PHP file, which is quite
elegant. Then there is the standard class inclusion and
template engine object creation at the beginning. Loading
the template 1is done wusing the aptly named
LoadTemplate () function. Variables are assigned as in a
standard PHP file. An array variable is assigned by using
the MergeBlock () function. Finally, the template is
rendered using the show () method:

<?php

include _once(‘tbs_class php5.php’);

$TBS = new clsTinyButStrong;
$TBS->LoadTemplate(‘index.htm’);

$title = ‘List of covered list’;

$list = array(‘Symfony’, ‘CakePHP’,’Zend Framework”’);
$TBS->MergeBlock(‘list’, $list);

$TBS->Show();

code snippet /templates/tiny/index.php
Next, the following code shows the template file that uses

minimalistic syntax to display variables. If the s1ist
variable was set, the [1ist.val;block=p] block can be

600

used to render blocks of <p> </p> tags filled with the
items from the $1ist variable:

<html>
<head>
<title>[onshow.title]</title>
</head>
<body>
<h1>List of covered frameworks</h1>

<p>[list.val;block=p]</p>

</body>

</html>

code snippet /templates/tiny/index.htm
You can see the output of these two files in Figure 9.15.

Figure 9.15 Page content rendered wusing the
TinyButStrong template engine

601

2 localhost/ths inde

List of covered frameworks

Syifony

CalkePHP

Zend Framework

Rain TPL

This template engine is a part of the Rain framework, but it
can be used stand-alone as well. It is quite small (only two
files) and comes in a package with a simple example that
can help you get familiar with it.

Website: http://www.raintpl.com
License: GNU GPL

An example implementation is illustrated by the two
following files. Again the controller goes first:

<?php
//include the RainTPL class
include “inc/rain.tpl.class.php”;
//initialize a Rain TPL object

$tpl = new RainTPL(‘tpl”);

602

//assign title variable
$tpl->assign(“title”, ‘List of covered frameworks’);
// assign array variable
$frameworks = array(1 => ‘Symfony’,
2 => ‘CakePHP’,
3 => ‘Zend Framework’);
$tpl->assign(“frameworks”, $frameworks);
//draw the template
echo $tpl->draw(‘index’);

7>

code snippet /templates/rain/index.php

The PHP file, in this case called index.php, begins with
the RainTPL class, and then a new Rain TPL object is
created. Data preparation is done as in standard PHP code,
but variables that are to be passed to the template file are
assigned using the assign () method of the Rain TPL
object. Finally, index.html, shown following, is rendered
using prepared data:

<IDOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN” >

<htmI>

603

<head>
<meta http-equiv="Content-Type” content="text/html; charset=utf-8” >
<title>{S$title} </title>
</head>
<body>
<h1>List of covered frameworks</h1>
{loop name="frameworks”}
<p>
{$key }) {$value}
</p>
{/loop}
</body>

</html>

code snippet /templates/rain/index.html

The page title is printed using {$title} syntax. In the
page body, three paragraphs are generated using the
{loop}{/loop} statement. The variables $key and
Svalue are generated automatically using {1loop} on the
frameworks array. The resulting page looks like the one
illustrated in Figure 9.16.

Figure 9.16 Page content rendered using Rain template
engine

604

List of covered frameworks

1) Symfony
2) CalkePHP

3) Zend Framework

Savant

Savant (the logo is shown in Figure 9.17) is a somewhat
unique template engine because of the language it uses. In
most cases, developers need to learn a new markup
language when they start using a new template engine. In
Savant this is not the case because its templates use PHP.

Figure 9.17 Savant3 logo

SAVANTS

IHE SIMPLE, ELEGANT TEMPLATE SYSTEM FOR PHP

Website: http://phpsavant.com
License: GNU LGPL

Most of Savant's syntax is identical to PHP, so in the
following code the first savant3.php file is included into
the index.php file and then the savant3 object is
created. Variables are assigned as if they were variables of
the savant3 object called $tpl in this example. The
template to be displayed is selected by the
Stpl->display () method:

605

<?php

// Load the Savant3 class file and create an instance.
require_once ‘Savant3.php’;

$tpl = new Savant3();

// Set title

$title = “List of covered frameworks”;

// Prepare data

$frameworks = array(

array(
‘o = <1,
‘short” => “Sf”,

‘name’ => ‘Symfony’
)
array(

‘nr’ => ‘2,

‘short’ => ‘Cake’,

‘name’ => ‘CakePHP’

array(

606

——
‘short’ => ‘ZF’,

‘name’ => ‘Zend Framework’

)i

/I Assign values to the Savant instance.
$tpl->title = S$title;

$tpl->frameworks = $frameworks;

/I Display a template
$tpl->display(‘index.tpl.php’);

7>

code snippet /templates/savant/index.php

The template file uses the .tpl.php extension; in this
case, the file is the index.tpl.php file. Variables are
displayed using the $this object and the eprint ()
method:

<IDOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN” >
<htmI>
<head>

<meta http-equiv="Content-Type” content="text/html; charset=utf-8” >

607

<title><?php echo $this->eprint($this->title); ?></title>
</head>
<body>
<h1>List of covered frameworks</h1>
<table>
<tr>
<th>Nr.</th>
<th>Short</th>
<th>Framework name</th>
</tr>
<?php foreach ($this->frameworks as $key => $val): 7>
<tr>
<td><?php echo $this->eprint($val[‘nr’]); ?></td>
<td><?php echo $this->eprint($val[‘short’]); ?></td>
<td><?php echo $this->eprint($val[‘name’]); ?7></td>
</tr>
<?php endforeach; 7>
</table>
</body>

</html>

code snippet /templates/savant/index.tpl.php

Standard echo () and print () functions can be used to
display variables, but the $this->eprint() method

608

automatically escapes the output. This helps to protect
your page against XSS scripting attacks. The result of this
example is illustrated in Figure 9.18.

Figure 9.18 Page content rendered using Savant3

localhost/sava

List of covered frameworks

HNr. Short Framework name
1 5f Symfony
2 Cake CakePHP

3 ZF Zend Framework

Because the templates in Savant are regular PHP files, it
can be said that Savant is not an interpreted template
system (that means they are interpreted a second time
inside PHP). This feature makes Savant one of the fastest
template engines available. It is also very well commented
and easy to extend. Developers can use their own
interpreters inside Savant to use any template markup
system.

609

Chapter 10
AJAX

It was a joke, okay? If we thought it would actually be
used, we wouldn't have written it!

—Mark Andreessen, speaking of the HTML tag BLINK

What's In This Chapter?

+ Introducing AJAX
* Including autocomplete feature into your text fields
* Using pop-up windows

* Making an AJAX chat

In Greek mythology, Ajax was a Titan who supported the
heavens on his back. This applies to AJAX as well, but
instead of the heavens, this technology supports the whole
world of modern interactive websites. (Well, OK, the
Titan's name was Atlas, but it doesn't really matter as long
as the trope is valid, right? Just look at what AJAX is
capable of?)

In many ways, AJAX has become a hallmark of modern
web applications. Users expect autocomplete, updating
content without reloading, and other AJAX goodies. And
sometimes they get angry with a web page that doesn't
provide it.

AJAX, which stands for Asynchronous JavaScript and

XML, is a web development technique that provides web
developers with the capability to create dynamic and

610

interactive web applications. Applications developed using
AJAX perform all the operations on the client side and can
communicate with a server to retrieve data that results
from running various scripts and database queries. Data
retrieved from a server using the xMLHttpRequest object
can be used to update website content without the
necessity of reloading the entire page or influencing the
application's behavior.

There is also another similar technique:
Asynchronous HTML and HTTP (AHAH),
which uses XHTML instead of XML for
data retrieval. It allows for easier
development with less code, but is not as
popular as AJAX.

Introducing AJAX

Let's start with two clarifications concerning the AJAX
name. The first letter of AJAX stands for asynchronous
because the client communicates with the server
asynchronously, mainly because of the interactive interface
of AJAX web pages and the dynamic content sent back
from the server. This isn't always true because the server
queries do not need to be asynchronous. Also, the X in
AJAX stands for XML, but the developer does not need to
use XML anywhere to perform complex AJAX actions,
although it is good practice in this technology.

611

So, what exactly is AJAX and how does it work? AJAX is
not a software package; it is not a software library, a
programming language, a markup language, or a
communication protocol. It is actually a little of every
technology used in web development tied up together to
achieve some miraculous results. The easiest way to grasp
the concept behind AJAX is to understand how it
processes a portion of data. The following example is
meant to illustrate the basic mechanics of AJAX:

<htmI>
<head>
<script type="text/javascript”>
function loadNewContent() {
if (window. XMLHttpRequest) { //support for IE7+, Firefox, Chrome, Opera, Safari
xmlhttp = new XMLHttpRequest();
H
else { //support for IE6, IES
xmlhttp = new ActiveXObject(‘“Microsoft. XMLHTTP”);
H
xmlhttp.onreadystatechange=function() {

if (xmlhttp.readyState==4 && xmlhttp.status==200) {

612

document.getElementByld(“ajax_content”).innerHTML=xmlhttp.responseText;

}
xmlhttp.open(“GET”,”ajax_script.php”,true);
xmlhttp.send();
}
</script>
</head>
<body>
<div id="ajax_content™>
<h2>Page content</h2>
<p>This content will reload after you press the button</p>
<button type="button” onclick="loadNewContent()”>Use AJAX</button>
</div>
</body>

</html>

code snippet /introduction/index.html

As you can see, the index.html file contains a basic
HTML structure with little content and one JavaScript
function that is called when the button is pressed. This
function is called thanks to the DHTML onclick action.
The loadNewContent () function first creates a new
XMLHttpRequest object, and then there is a function
declared that is responsible for updating the content of the

613

HTML element with ajax content ID. This second
function is called automatically each time the readystate
property of the document changes. The content used for
updating is a result of running ajax script.php script.
The code presented so far will render content like that
shown at the left in Figure 10.1.

Figure 10.1 On the left—sample page content. On the
right—content reloaded using AJAX

Page content AJAX loaded page content
This content will reload after you press the button Bold title
[Use Ak Fed color text paragraph

Then, when the Use AJAX button is clicked, the following
code will be loaded through the AJAX xMLHttpRequest
object:

<?php
echo ‘<h2>AJAX loaded page content</h2>
Bold title
<p style="color: red;”>
Red color text paragraph

</p>’;

7>

614

code snippet /introduction/ajax_script.php

Loaded content will replace the current content without
reloading the whole page, and the image illustrated to the
right in Figure 10.1 will be rendered.

The xMLHttpRequest object has two status parameters:
the readystate and status. These properties allow
developers to perform certain actions corresponding to
various status changes.

The xmlhttp.readyState variable holds the current
state of the xMLHttpRequest. It is denoted as an integer
and may have the following values:

* 0—Request not initialized

« 1-Server connection established

* 2-Request received

* 3-Processing request

+ 4—Request finished and response is ready

When the readystate property changes, an event is
triggered. It results in execution of the function stored in
onreadystatechange. You can store just the name of a
function there instead.

The xmlhttp.status variable can take two values: 200
and 404. The first one means that everything went well,
and the second one means that page (or script in this case)
was not found, and results in the famous “404 error.”

This basic example should explain the concept of AJAX

technology. In short, the Document Object Model (DOM)
provides tools that allow manipulation of page content,

615

while JavaScript and xMLHt tpRequest objects are used to
update web document structure. PHP or any scripting
language used by the server can prepare web content that
later is inserted into the current document structure. These
scripts could be run as standalone scripts, without any
participation of AJAX. Finally, AJAX utilizes HTML and
CSS to present style-generated page content.

Autocomplete

Autocomplete is a great feature that was introduced for the
first time in desktop software such as command-line
interpreters and code editors. In web applications,
autocompletion arrived with the increasing popularity of
JavaScript and found its place in online search engines
such as Google, Yahoo, and Altavista. Now users expect
this improvement in every web app.

There is a large variety of ready-to-use AJAX scripts that
can easily be integrated with your applications, although
web frameworks usually have some kind of solutions for
that as well. For instance, CakePHP has an AJAX helper
that gives you the option to use autocomplete very easily.
Zend Framework has the ZendX library that includes
jQuery autocomplete, and Symfony can use
sfJqueryReloadedPlugin or sfFormExtraPlugin to achieve
the same results.

Symfony
In this example, the autocomplete feature is realized for

Symfony, thanks to sfJqueryReloadedPlugin. This plug-in
gives you access to the

616

jg_input auto complete tag() function that can be
used in forms to create autocomplete elements.
Alternatively, sfFormExtraPlugin, used in Chapter 5, gives
you access to a number of widgets that enhance the
form-building process. This plug-in includes the
sfWidgetFormJQueryAutocompleter widget as well, and it
can be used to create autocomplete form fields.

Moving to the sfJqueryReloadedPlugin installation, it is a
standard procedure, as with any Symfony plug-in. In your
command console you need to call the following command
from the project directory:

$ symfony plugin:install sfJqueryReloadedPlugin

Cache clearing is suggested, too:
$ symfony cache:clear

The database table used to provide suggested values in the
autocomplete field 1is defined by the following
schema.yml file:

Mails:
connection: doctrine
tableName: mails

columns:

617

id: {type: integer(4) fixed: false unsigned: false
primary: true autoincrement: true}
email: {type: string(32) fixed: false unsigned: false

primary: false notnull: true autoincrement: false}

code snippet /autocomplete/symfony/config/doctrine/
schema.yml

Then you need to build it using the following command in
your console:

$ symfony doctrine:build --all

If you wish to use styles for autocomplete, it is a good idea
to modify the view.yml file and add the
JqueryAutocomplete stylesheet. It should look as
follows:

default:
metas:

stylesheets: [main.css, JqueryAutocomplete]

code snippet /autocomplete/symfony/apps/frontend/config/
view.yml

The most important fragment of this implementation is the
actions file, in which the executeList () action is

618

defined. It is responsible for generating a list of suggested
values for the autocomplete input form element. The data
is taken from a database and displayed by the list view:

<?php
class addressbookActions extends sfActions {
public function executeIndex(sfWebRequest $request){
H
public function executeList(sfWebRequest $request) {
$query = $Srequest->getParameter(‘query’);
$q = Doctrine_Query::create()
->from(‘mails’)
->andWhere(‘email like ?°, ‘%’ . Squery . ‘%)
->addOrderBy(‘email”)
->limit(10)
->execute();

$this->results = $q;

}

code snippet /autocomplete/symfony/apps/frontend/
modules/addressbook/actions/actions.class.php

619

The view file responsible for displaying the form element
with the autocomplete option looks as follows:

<?php use_helper(‘jQuery’); 7>

9 ¢ ¢

<?php echo jq_input_auto _complete tag(‘query’,*’,‘addressbook/
list’ array(),array());?>

code snippet /autocomplete/symfony/apps/frontend/
modules/addressbook/templates/indexSuccess.php

The second view file is responsible for displaying the
suggestion list, prepared by the list action from the
actions.class.php file:

<?php foreach($results as $res): 7>

<?php echo $res—>getEmai1().”"'-n”; >

<?php endforeach; 7>

code snippet /autocomplete/symfony/apps/frontend/
modules/addressbook/templates/listSuccess.php

620

You can see the result of using the solution introduced
here in Figure 10.2.

Figure 10.2 Autocomplete created using the
jg_input auto complete tag () function

File Edit View History Bookmarks Tools Help

e v ™ “@ v - D hl‘tp:,H‘localhostffmntend_dev.php}auto

bartosz.porebski@gmail.con

dr.leszek.nowak@gmail.co
kprzystalski@gmail.com

CakePHP

There are a number of solutions that enable you to
implement autocomplete in most web applications. You
could use one of the many available JavaScript libraries or
simply use the CakePHP AJAX core helper. Because this
book is all about frameworks and their features, you will
see how to use the solution native to CakePHP.

The first thing necessary to implement autocomplete is to
create a database of words that will be autocompleted. In
this example, you can use the following SQL script to fill
the months table with names of months.

INSERT INTO ‘months’ (‘id’, ‘name’) VALUES
(1,°January”), (2, February’), (3,"March’), (4, April’),
(5,'May’), (6,June’), (7, July’),(8,°August’),

(9,°September’), (10,°October’), (11,°November’), (12,°December’);

621

The months table is now a part of the CakePHP database
and consists of two columns: id (autoincremented int) and
name (varchar(15)) that serves as the month name. The
following SQL query can help you generate this table:

CREATE TABLE IF NOT EXISTS ‘months’ (
‘id” int(11) NOT NULL AUTO_INCREMENT,
‘name’ varchar(15) NOT NULL,

PRIMARY KEY (‘id’)

) ENGINE=MyISAM DEFAULT CHARSET=utf8;

You can use any words or phrases in the database, but we
advise that you use those suggested for this example,
especially if you are new to CakePHP. Otherwise, the table
name and variable names might be easy to confuse. The
goal for this example is to achieve a simple one-field form
that allows users to input a month name, as shown in
Figure 10.3.

Figure 10.3 Month input form

AutoComplete example

Meonth:

Post date |

Moving on to the example, the layout file should contain
the JavaScript libraries used by the CakePHP AJAX
helper: prototype.js, scriptaculous.js,
effects.js and controls.js. Make sure that your
/app/webroot/js/ directory contains all the mentioned
libraries. You can get up-to-date versions of these scripts

622

from www.prototypejs.org and http://script.aculo.us/
downloads. The layout used in this example looks as
follows:

<htmI>
<head>
<?php
echo $html->css (“autocomplete”, “stylesheet”);
if (isset ($javascript)):
echo $javascript->link(‘prototype’);
echo $javascript->link(‘scriptaculous.js?load=effects’);
echo $javascript->link(‘controls’);
endif;
7>
</head>
<body>
<?php echo $content_for_layout ?>
</body>

</htm]>

code snippet /autocomplete/cakephp/app/views/layouts/
default.ctp

623

Note the order in which the JavaScript libraries are linked,
and that autocomplete.css is included in the <head>
section. The autocomplete.css file is used to modify
the style of the autocomplete box.

Set the routing to connect the web address http://localhost/
cake/autocomplete with the controller and one of its
actions by using the following line:

Router::connect(‘/autocomplete’,

array(‘controller’ => ‘autocomplete’, ‘action’ => ‘index’));

code snippet /autocomplete/cakephp/app/config/routes.php

Next, create the Month model file like this:

<?php
class Month extends AppModel {
var $name = ‘Month’;

var $useTable = ‘months’;

}

624

code snippet /autocomplete/cakephp/app/models/
month.php

The most important file is the
autocomplete controller.php file located in the
/app/controllers/ directory. It is responsible for
processing actions, and needs to contain the
autoComplete () function that will be responsible for
creating the list of phrases matching text entered into a
form field using autocomplete. The controller file for this
example looks as follows:

<?php
class AutocompleteController extends AppController {
var $uses = ‘Month’;
var Shelpers = array (‘Html’, ‘Javascript’, ‘Ajax’);
function index() {
}
function autoComplete() {
$months = $this->Month->find(‘all’,
array(‘conditions’ =>
array(‘Month.name LIKE’ =>

$this->data[‘Date’][‘month’].‘%’),

625

‘fields’ => array(‘name’)
)
$this->set(‘months’,$months);

$this->layout = ‘ajax’;

}

7>

code smippet /autocomplete/cakephp/app/controllers/
autocomplete _controller.php

So far, you should have the most important pieces needed
for autocompletion already in your form, but at this point
comes a twist. To use autocomplete in the form, you
actually need two view files. One is the standard view
matching the index action, and the second one is the view
that is used to display the list of words matching the input
text. Start with the view file that generates the suggestion
list. It will be called and filled with data by AJAX. This
file looks as follows:

<?php foreach($months as $month): 7>

<1i><?php echo $month[‘Month’][‘name’]; ?></1i>

626

<?php endforeach; 7>

code snippet /autocomplete/cakephp/app/views/
autocomplete/auto_complete.ctp

Now the view file is located in the same directory, contains
a small web form, and looks as follows:

<h1>AutoComplete example</h1>
<?php echo $form->create(‘Date’, array(‘url’ => ‘/autocomplete’)); ?>
<label for=""Date.month”>Month:</label>

<?php echo $ajax->autoComplete(‘Date.month’, ‘/autocomplete/
autoComplete’)?>

<?php echo $form->end(‘Post date’)?>

code snippet /autocomplete/cakephp/app/views/
autocomplete/index.ctp

As you can see in this code fragment, while calling the
Sajax->autoComplete () function, the form field is
created with the name parameter set to Date.month, and
/autocomplete/autoComplete.ctp 1S requested to
generate the suggestion list. The form shown in Figure
10.4 is rendered by the web browser.

627

Figure 10.4 Month input form with the suggestion box
visible

AutoComplete example

Meonth: J
Fost ¢ January
Tune

July

If you do not like how your suggestion box looks, you can
use styles such as those shown in this example. The
autocomplete.css stylesheet needs to be located in the
/app/webroot/css directory:

div.auto_complete {
position :absolute;
width :150px;
background-color :white;
border :1px solid #888;
margin :0px;
padding :0px;

H

li.selected {

background-color: #{fb;

628

H

div.auto_complete ul {
margin:0px;
padding:0px;

H

div.auto_complete 1i {
margin:0px;
padding:0 5px;
list-style-type: none;

H

code snippet /autocomplete/cakephp/app/webroot/css/

autocomplete.css

One more thing. If by any chance you have artifacts in
your suggestion box like those illustrated in Figure 10.5, it
is probably because of the configuration settings in the
/app/config/core.php file that contains the following
line:

Configure::write(‘debug’,2);

Figure 10.5 Artifacts displayed in the suggestion box

629

AutoComplete example

Month: |J
|_Postc January

June

Tuly ery took 5 ms
Nr {default) 2 queAfercted Mo, rows Took (ms)
1 DEd., 2 Num. Taok
Nr Query]Sn'orAﬂ'er?eu] raws: {s)
1 DESCRIBE 5 5
menths’
SELECT
Month'. 'name
FROM
5 ‘menths’ AS 3 3
onth'
WHEEE
Month'. ‘name’
LIEE %%’

It is used to set the debugging level. These artifacts are
actually a summary of database queries that are run
whenever the suggestion box is updated. To solve this
problem, you simply need to change the debugging level
by modifying the configuration line as follows:

Configure::write(‘debug’,1);

Zend Framework

ZendX is an additional library that includes jQuery—based
view and form helpers that allow developers to enhance
their applications. It contains elements such as date-picker,
color-picker, slider, dialog container, and the autocomplete
feature, which you will learn how to use in your
application. Its stub is presented in Figure 10.6.

Figure 10.6 Basic form with color input field

630

ZendX autocomplete example

Color name:

In Zend Framework 1.10.8, the ZendX library is not a part
of the standard libraries yet. To be able to use ZendX, you
need to do a few things first. In the downloaded Zend
Framework package, you can find the /extras folder
containing the ZendX library. You need to copy this folder
into your /appName/library directory.

In the next step, add autoloaderNamespaces[] into
your application.ini file and set its value to ‘zendx’.
Add this line under the [production] tag after the
database part, as shown in the following code fragment:

[production]

autoloaderNamespaces|] = “ZendX”
[staging : production]

code snippet Jautocomplete/zf/application/configs/
application.ini

By enabling autoloader, it is now possible to use jQuery
JavaScript by loading it from the Google Ajax Library

631

content distribution network (CDN). It gives you the
possibility to load both jQuery and jQuery UI libraries.
What does this mean in practice? To load JavaScript files
in your layout file, the following method was generally
used:

<htmI>
<head>
<title>Autocomplete example</title>
<?php
echo $this->headScript()->appendFile(
$this->baseUrl(‘/js/jquery-1.4.3.min.js’)
);
echo $this->headScript()->appendFile(
$this->baseUrl(‘/js/jquery-ui-1.8.5.custom.min.js’)
);
7>
</head>
<body>
<?php echo S$this->layout()->content; 7>

</body>

632

</html>

code snippet /autocomplete/zf/application/layouts/scripts/
layout.phtml

This required you to have all the included scripts stored
inside your application file structure (for example, in the
/appName/public/js/ folder). But now you can use the
following code (used also throughout this example):

<html>
<head>
<title>Autocomplete example</title>
<?php
echo $this->headLink();
echo $this->jQuery()->setVersion(‘1.4.3”)->setUiVersion(‘1.8.5%);
>
</head>
<body>
<?php echo $this->layout()->content; 7>
</body>

</html>

633

code snippet /autocomplete/zf/application/layouts/scripts/
layout.phtml

By using the $this->jQuery () method, you make sure
that whenever jQuery 1is needed, it is loaded.
setVersion () specifies what version of jQuery you want
to use, and setUiversion () specifies what version of
jQuery Ul is loaded.

Now you can proceed to create the controller file. Here in
the init () function it is necessary to define the path to
the ZendX helper using the addHelperPath () method.
The autocompleteAction() function creates a new
element to be rendered in the view file. The form element
will work because autocomplete is created using the
autocompleteElement object. The configuration for this
object consists of a field label and a list of values from
which suggestions will be generated.

<?php
class IndexController extends Zend Controller Action

{

public function init() {$this->view->addHelperPath(
“ZendX/JQuery/View/Helper”, “ZendX _JQuery View_Helper”);

}

634

public function autocompleteAction() {
$this->view->autocompleteElement = new
ZendX JQuery Form_Element Autocomplete(‘ac’);
$this->view->autocompleteElement->setLabel(‘Color name:’);
$this->view->autocompleteElement->setJQueryParam(
‘data’, array(‘Red’, ‘Green’, ‘Blue’,’Redish’, ‘Rose Red’)

);

}
code snippet /autocomplete/zf/application/controllers/
IndexController.php

Finally, the view file needs to be created. In the following
listing you can see that only the
$this->autocompleteElement object needs to be
called to make autocomplete work:

<h1>ZendX autocomplete example</h1>
<form>
<?php echo $this->autocompleteElement; 7>

</form>

635

code snippet /autocomplete/zf/application/views/scripts/
index/autocomplete.phtml

The left side of Figure 10.7 illustrates the result of running
the application in the browser by typing http://localhost/
appName/public/index/autocomplete.

Figure 10.7 On the left—autocomplete with suggested
values. On the right—autocomplete with styled suggested
values

_ ZendX autocomplete example
ZendX autocomplete example

Color name

Color name red

red Red
® Red
* Redish Redish

® Roge Red Rose Red

Looking at the effect of this example so far, you may not
be entirely happy with the results. For one thing, you put
all the autocompleting values inside the controller file, and
this is a rough solution to say the least. And, of course, the
appearance is somewhat crude. You can take care of the
latter now because the jQuery user interface (UI) is a
JavaScript library that gives you the possibility to build
interactive web applications, and it comes with a number
of different visual style variants. For this example, the
ui-lightness theme was selected. You can download
any of the available styles from http://jqueryui.com/
download. After downloading the package, you need to
copy the theme folder (/ui-1lightness) into your project
to the /addressBook/public/css/ directory. When
that's done, you need to link the downloaded stylesheet to

636

your layout file using the appendstylesheet () method.
The following code listing illustrates how this is done:

<html>
<head>
<title>Autocomplete example</title>
<?php
echo $this->headLink();
echo $this->headLink()->appendStylesheet(
Sthis->baseUrl(‘/css/ui-lightness/jquery-ui-1.8.5.custom.css’)
)i
echo $this->jQuery()->setVersion(‘1.4.3’)->setUiVersion(‘1.8.5”);
/* alternative jQuery loading
echo $this->headScript()->appendFile(
$this->baseUrl(‘/js/jquery-1.4.3.min.js”));
echo $this->headScript()->appendFile(
$this->baseUrl(‘/js/jquery-ui-1.8.5.custom.min.js’)); */
>
</head>

<body>

637

<?php echo $this->layout()->content; ?>
</body>

</html>

code snippet /autocomplete/zf/application/layouts/scripts/
layout.phtml

If all went well, and you updated your layout file, you
should get a result similar to the right side of Figure 10.7.
This should be more acceptable in terms of appearance.

Now you will see how to use a database to hold your
autocomplete data. Note that this topic is not about AJAX
itself, and it refers to the standard application to database
communication that was covered in Chapter 3 and Chapter
4. First, the database table can be created using the
following SQL query:
CREATE TABLE IF NOT EXISTS “colors’

‘id” int(11) NOT NULL AUTO_INCREMENT,

‘name’ varchar(25) NOT NULL,

PRIMARY KEY (“id")

) ENGINE=MyISAM DEFAULT CHARSET=utf8;

INSERT INTO “colors’ (‘id’, ‘name’) VALUES

(1, ‘AliceBlue’), (2, ‘AntiqueWhite’), ...

The content was filled using a list of color names that are
supported by web browsers, although any other content

638

can be entered. Next, the model file needs to be created,
and for this example it can be the following:

<?php
class Application Model Color {

}

code snippet /autocomplete/zf/application/models/
Color.php

Then create the DbTable model file that looks like this:

<?php
class Application_Model DbTable Colors extends Zend Db _Table Abstract {
protected $§ name = ‘colors’;

}

code snippet /autocomplete/zf/application/models/
DbTable/Colors.php

And the color mapper used for this example is like the
following:

639

<?php
class Application Model ColorMapper {
protected §_dbTable;
public function setDbTable($dbTable) {
if (is_string($dbTable)) {
$dbTable = new $dbTable();
}
if (!$dbTable instanceof Zend_Db_Table_Abstract) {
throw new Exception(‘Invalid table data gateway provided’);
}
$this->_dbTable = $dbTable;
return $this;
h
public function getDbTable() {
if (null === $this-> dbTable) {
$this->setDbTable(‘Application_Model_DbTable_Colors’);
}

return $this->_dbTable;

}

640

public function fetchAll() {
$resultSet = $this->getDbTable()->fetchAll();
$entries = array();
foreach ($resultSet as $row) {
$entry = new Application_Model Color();
$entries[] = $row->name;
}
return $entries;
}
}
code snippet /autocomplete/zf/application/models/
ColorMapper.php

When all model files are ready, the controller needs to be
modified slightly. Two new lines are introduced to the
controller. The first one creates the object that gives access
to database data. The second one fetches the name column
of the colors table. Finally the data is passed to the

autocompleteElement:

<?php

class IndexController extends Zend Controller Action{

641

public function init() {
$this->view->addHelperPath(
“ZendX/JQuery/View/Helper”,
“ZendX JQuery View_ Helper”
)i
}
public function autocompleteAction() {
$this->view->autocompleteElement = new
ZendX JQuery Form_Element Autocomplete(‘ac’);
$this->view->autocompleteElement->setLabel(‘Color name:’);
$colors = new Application_ Model ColorMapper();
$colorList = $colors->fetchAll();

$this->view->autocompleteElement->setJQueryParam(‘data’, $colorList);

}

code snippet /autocomplete/zf/application/controllers/
IndexController.php

As a result, you should have the suggestion list generated
from the database. Figure 10.8 illustrates the final result of
this example.

Figure 10.8 Autocomplete-styled suggested values read
from database

642

ZendX autocomplete example

Color name:
blue
&liceBlue
Blue
Bluevfiolat
CadetBlue
CormflowerBlue
DarkElus

Dynamic Popup Windows

Not long ago, popup windows were considered more of a
nuisance than something useful. A popup would usually
appear out of nowhere and cover the entire screen with
some kind of advertisement. Of course, those popup
windows had nothing to do with current AJAX technology
because they used an early browser mechanism that didn't
feature tabs. All web browsers currently protect users from
this kind of popup.

With the appearance of AJAX, new kinds of advertising
came to life, but at the same time AJAX opened a
completely new set of possibilities that could be used to
enhance web applications. Using AJAX it is easy to create
a child window that users can interact with. Such windows
are called modal windows. In Chapter 9 you read about
Lightbox, which is an excellent example of how AJAX can
generate modal windows with interactive content.

Another application of modal windows can be to display

additional information on a website (for example, warning
messages) without reloading it or modifying currently

643

visible content. Another great use of modal windows is to
block access to certain sections of a web application, by
forcing users to interact with the window (to log in, for
example).

In this section we discuss a few modal
window mechanisms that all allow the
same outcome and differ little in their
usage. We decided to show each of them
used with one framework only, but they
obviously can be used with every other
framework.

Symfony

For Symfony, this chapter shows two examples. One is
sfFlashMessagePlugin, which allows you to change the
default method of displaying messages to AJAX—based
message windows. The other one illustrates how to use
Lytebox script to create popup windows containing HTML
content.

sfFlashMessagePlugin
This plug-in relies on JqueryReloadedPlugin, which offers
easy integration of jQuery with your application. You can

read about JqueryReloadedPlugin at
www.symfony-project.org/plugins/

644

sfJqueryReloadedPlugin, and about sfFlashMessagePlugin
at www.symfony-project.org/plugins/
sfFlashMessagePlugin.

To install JqueryReloadedPlugin, from your project
directory enter the following command in your command
window (if you have JqueryReloadedPlugin already
installed, skip this step):

$ symfony plugin:install sfJqueryReloadedPlugin

sfJqueryReloadedPlugin gives you the possibility to use
the jQuery helper in your project files.

Do the same for sfFlashMessagePlugin using the following
command:

$ symfony plugin:install sfFlashMessagePlugin
Cache clearing is advised:
$ symfony cache:clear

As far as installation goes, this is all you need to do. Now
you can move to the project files. First, the layout file
needs to have the include javascripts() function
present inside the <head></head> tags. The code used in
this example is as follows:

<IDOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

645

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmIns="http://www.w3.0rg/1999/xhtml” xml:lang="en” lang="en”>

<head>

<?php include_http metas() 7>

<?php include_metas() 7>

<?php include _title() 7>

<link rel="shortcut icon” href="/favicon.ico” />

<?php include_stylesheets() 7>

<?php include_javascripts() 7>
</head>
<body>

<?php echo $sf _content 7>
</body>

</html>

code snippet /popup/flash/symfony/apps/frontend/
templates/layout.php

Next, the action file needs to set some example flash
messages. Four message types are available here: success,
notice, warning, and error. Every one of these messages
has a different color when rendered. The following are the
example messages used for this example:

646

<?php
class flashmessageActions extends sfActions {
public function executeIndex(sfWebRequest $Srequest){
$this->getUser()->setFlash(‘success’, ‘This is success message!’); //green
$this->getUser()->setFlash(‘notice’, ‘This is notice message!’); //yellow
$this->getUser()->setFlash(‘warning’, “This is warning message!’); //orange

$this->getUser()->setFlash(‘error’, “This is error message!”); //red

}

code snippet /popup/flash/symfony/apps/frontend/modules/
flashmessage/actions/actions.class.php

The view file is responsible for rendering those messages,
and it usually is done as shown in the following code:

<h1>Flash Messages</h1>
<p>

<?php echo $sf user->getFlash(‘success’) ?>

647

<?php echo $sf user->getFlash(‘warning”) ?>

<?php echo $sf user->getFlash(‘notice’) 7>

<?php echo $sf user->getFlash(‘error’) ?></p>

code snippet /popup/flash/symfony/apps/frontend/modules/
flashmessage/templates/indexSuccess.php

The resulting page content is rendered as shown in Figure
10.9.

Figure 10.9 Standard flash messages, displayed using the
getFlash() method

Flash Messages

This 15 success message!
This 1z warning message!
This 13 notice message|
Thes 15 error message!

Now, you should use sfFlashMessagePlugin and render
these messages using AJAX. To do so, you only need to
prepend this file with the use helper () function and set
it to use the jQuery and sfFlashMessage helpers. The
code of the indexSuccess.php view file can be
shortened to the following code:

<?php use_helper(‘jQuery’, ‘sfFlashMessage’) 7>

<h1>Flash Messages</h1>

648

code snippet /popup/flash/symfony/apps/frontend/modules/
flashmessage/templates/indexSuccess.php

This will make your messages look like Figure 10.10.

Figure 10.10 Flash messages rendered using
sfFlashMessagePlugin

| X
This is nolice message|

This I3 warning message!

Messages rendered using sfFlashMessagePlugin disappear
after a set amount of time, except the error message; that is
visible until it is closed manually. It is possible to modify
the style and display delay time by modifying the plug-in's
configuration in the app.yml file. Here you can select a
display method from the pop and growl options, and set a
delay time in milliseconds, as shown here:

sf flash message:
delay: 2500

method: growl

Lytebox

The script demonstrated in this example is another
variation of Lightbox, which was introduced in Chapter 9.

649

It differs from other similar scripts mainly by its
independence from other AJAX libraries such as jQuery.
Lytebox, created by Markus F. Hay, offers you options to
create slideshow image galleries or windows with the
possibility to browse HTML content in catalog-like style.
The implementation for this script is probably the easiest
of all scripts presented in this chapter.

To get moving with the integration, first visit the authors'
website www.dolem.com/lytebox and get the Lytebox
package. In this example, you need to place the unpacked
content (lytebox.js file, 1lytebox.css file, and
/images folder) inside the /appName/web/lytebox
folder. If you wish to separate package files to the
corresponding folders inside /appName/web folder, you
could do so, but this will require you to modify all file
paths accordingly, including the 1ytebox.css file.

When you have Lytebox in place, you need to include
lytebox.js and lytebox.css into your layout file. The
code for 1ayout.php used in this example looks like the
following:

<IDOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmIns="http://www.w3.0rg/1999/xhtml” xml:lang="en” lang="en”>

<head>

650

<?php include_http metas() 7>
<?php include_metas() 7>
<?php include _title() 7>
<link rel="shortcut icon” href="/favicon.ico” />
<?php use_stylesheet(‘../lytebox/lytebox.css”) 7>
<?php include_stylesheets() 7>
<?php use_javascript(‘../lytebox/lytebox.js’) 7>
<?php include_javascripts() 7>

</head>

<body>
<?php echo $sf _content 7>

</body>

</html>

code smippet /popup/lytebox/symfony/apps/frontend/
templates/layout.php

As for the actions file, only the index action is needed, as
shown in the following code:

<?php

class lyteboxActions extends sfActions{

651

public function executeIndex(sfWebRequest $request){

}
}

code smippet /popup/lytebox/symfony/apps/frontend/
modules/lytebox/actions/actions.class.php

For the HTML side of this example, the base content is
shown in Figure 10.11.

Figure 10.11 Lytebox application example

LyteBox example

1
Show new window i full screen

LyteBox gallery example:

The first two links will open a window with HTML
content, in which you can browse back and forth through
the items in this list. This window is shown in Figure
10.12. The third link will open a window of the size
specified in the following code without the possibility of
scrolling its HTML content. Note that the rev attribute can
be used for any link in this example to change the size of
the displayed window. The code of the view file in this
example looks as follows:

652

<h1>LyteBox example</h1>

<a href="http://www.wrox.com/” title="Wrox”
rel="lyteframe[catalog]”>Show list item 1

<a href="http://www.wiley.com/” title="Wiley”
rel="lyteframe[catalog]”>Show list item 2

<a href="http://www.wrox.com/” title="Wrox”
rel="lyteframe” rev="width: 400px; height: 300px; scrolling: no;”>

Show new window in full screen

code smippet /popup/lytebox/symfony/apps/frontend/
modules/lytebox/templates/indexSuccess.php

Figure 10.12 Gallery style, HTML content viewer using
Lytebox

653

@ kocahostytebox faety/

wrox Programmer to Programmer™

Home Bookstore/E-Books P2P Programmer Forums

Find Wrox Titles DRM-
W
Browse by Topic:

AliTiies Microsoft Servers Featured Wi

ASPNET Mobile

CH#IC++ Open Source

Database EHE/MyEQL

MNET SharePoint

General S0 Gerer r.)}(.:\lir,ir-ul:-lri“)lllils
visual Basie ——

Mac Wab

Microsoft Office ML

| | et s

The gallery capabilities of the Lytebox script can be used
by adding the following code into your
indexSuccess.php view file:

<h2>LyteBox gallery example: </h2>
<a href="http://www.symfony-project.org/images/symfony_logo.gif”’

rel="lyteshow[logos]”

654

title=""Symfony Logo”>Symfony Logo

<a href="http://cakephp.org/img/cake-logo.png”

rel="lyteshow[logos]”

title="CakePHP Logo”>CakePHP Logo

<a href="http://framework.zend.com/images/logo.gif”

rel="lyteshow[logos]”

title="Zend Framework Logo”>Zend Framework Logo

code snippet /popup/lytebox/symfony/apps/frontend/
modules/lytebox/templates/indexSuccess.php

Figure 10.13 illustrates the image gallery that is displayed
when any gallery link is clicked.

Figure 10.13 Lytebox image slideshow gallery

symfony Logo CLOSE ¥
Image 1 of 2

pause Il

CakePHP

655

To create popup windows in CakePHP, you will
incorporate ThickBox into your application. ThickBox is a
script written by Cody Lindley in JavaScript. It originates
from the Lightbox script designed to enhance websites
with interactive image galleries. ThickBox works in a very
similar manner, but is not restricted to images only
because it allows you to display all sorts of content. There
are many features behind ThickBox, such as simple system
integration and displaying various kinds of content
(images, iframed content, inline content, and AJAX
content).

Figure 10.14 shows an example page that consists of a
paragraph of text and two links using ThickBox to display
content.

Figure 10.14 Sample content with two links prepared for
ThickBox

Modal Window

Show modal content

Show hidden modal content

Mo dal window can be used to display addimional mformation on a website,
without reloading it or modifying currently wsible content

Now integrate ThickBox into your CakePHP application.
The first thing to do is to download ThickBox files from
the website: http://jquery.com/demo/thickbox/. You need
to download thickbox.js or
thickbox-compressed. s and place it inside the /app/
webroot/js/ directory. The <thickbox.js and
thickbox-compressed.js files require jQuery in order
to work properly. You can download jQuery from the

656

same page as ThickBox or you can download it from the
jQuery website at http://docs.jquery.com/
Downloading_jQuery. The jQuery library should be placed
in the same folder as the ThickBox script. Next you need
to download thickbox.css and copy it to the /app/
webroot/css/ directory. The last file that needs to be
downloaded nto /app/webroot/img/ i
loadingAnimation.gif. When you're done, you should
have the following file structure:

/app/webroot/

js/
thickbox-compressed.js
jquery-1.4.3.min.js

css/
thickbox.css

img/
loadingAnimation.gif

To begin integration of ThickBox into a CakePHP
application, start by creating a route in the routes.php
file. This can look as follows:

Router::connect(‘/modalbox’, array(

‘controller’ => ‘thickbox’, ‘action’ => ‘index”));

657

code snippet /popup/cakephp/app/config/routes.php

The layout file should contain corresponding helpers inside
the <head> section. The three bold lines in the following
code make sure that the supplied libraries are loaded
properly. The layout used for this example is as follows:

<htmI>
<head>
<?php
echo Shtml->css (“thickbox”, “stylesheet”);
if (isset ($javascript)):
echo Sjavascript->link (“/app/webroot/js/jquery-1.4.3.min.js”);
echo Sjavascript->link (“/app/webroot/js/thickbox-compressed.js”);
endif;
>
</head>
<body>
<?php echo $content_for layout ?>
</body>

</html>

658

code snippet /popup/cakephp/app/views/layouts/default.ctp

This is nearly enough to use ThickBox, but you still need
to define the set of helpers that your application is using.
Set the Shelpers variable in the
thickbox controller.php controller file. The code for
this file is as follows:

<?php
class ThickboxController extends AppController {
var $name = ‘thickbox’;
var $helpers = array (“Javascript”);
function index() {
}
}

7>

code snippet /popup/cakephp/app/controllers/
thickbox_controller.php

The thickbox.php model file should be created and it
might look like this one:

659

<?php
class Thickbox extends AppModel {

var $useTable = false;
}

code snippet /popup/cakephp/app/models/thickbox.php

Finally, the index.ctp view file allows you to use
ThickBox with your content. Assuming that you are using
a standard 1ink element to call popups, you will need to
set the c1lass attribute to the thickbox value, like this:

The href attribute needs to begin with the #TB inline
anchor. Next there are several options:

<a href="#TB_inline?height=100&width=200&inlineld=modalContent&modal=true”

class="thickbox>

The height and width options define the size of the
popup window. The inline1d option is the id value of the
element that will contain the ThickBox content. If the
modal option is set as true, the content displayed in the
window will have to contain an element with the
onclick="tb remove ()~ attribute. The following code

660

illustrates how to use a simple message window and a yes/
no message box:

<h1>Modal Window</h1>
<p>
<a href="#TB_inline?height=100&width=200&inlineld=modalContent”
class="thickbox”>Show modal content.

<a href="#TB_inline?height=150&width=200&inlineld=hiddenModalContent&modal=true”
class="thickbox”>Show hidden modal content.
</p>
<div id="modalContent” >
<p>Modal window can be used to display additional information on a website,
without reloading it or modifying currently visible content.</p>
</div>
<div id="hiddenModalContent” style="display:none”>
<p>Modal windows are great way to block access to certain section of web
application, by forcing user to interact with it.</p>
<p>Do you agree?</p>

<input type="button” id="Login” value=" Yes “ onclick="tb_remove()” />

661

<input type="button” id="Login” value=" No ” />

</div>

code snippet /popup/cakephp/app/views/thickbox/index.ctp

To the left in Figure 10.15 is the message window
displayed as the result of clicking the Show modal content
link.

Figure 10.15 On the left—the ThickBox window,
displayed by clicking the Show modal content link. On the
right—the ThickBox window, displayed by clicking the
Show hidden modal content link

Modal winodws are greatway to
bl t i f

To the right in Figure 10.15 you can see another message
window that requires the user to click the Yes button in
order to close it.

Zend Framework

To create a popup window able to display content of
various types, the GreyBox JavaScript library was
selected. It is an independent library, and it means that no
additional AJAX libraries are required. So no jQuery this
time.

662

Installation of GreyBox in Zend Framework is a simple
and swift task. Proceeding with the installation, first you
need to download the GreyBox package from its author
website: http://orangoo.com/labs/GreyBox/. The
downloaded package contains GreyBox, and various
examples of usage as well. You need to copy the
/greybox folder to the /appName/public/js directory
of your application. The /greybox folder contains various
files: images, scripts, and stylesheets. You could group
them into separate folders, but this is unnecessary.

When the application using GreyBox is finished, it will
look as shown in Figure 10.16. The links demonstrate

various usage examples.

Figure 10.16 GreyBox example application

Moving to the controller file, it does not contain any
additional functionality. Only the blank
greyboxaAction () is added. The following code is the
listing of the controller used in this example:

663

<?php
class IndexController extends Zend_Controller Action {
public function init() {
H
public function greyboxAction() {
H
}
code snippet /popup/zf/application/controllers/
IndexController.php

The layout file makes GreyBox available for use in your
application. Additionally, to include the GreyBox scripts
and the stylesheet, you need to set the GB ROOT DIR
variable to be used in GreyBox scripts. This variable holds
the path to the image files used by GreyBox. You can see
in the following code what value is set to make this
example work with the Zend Framework file structure:

<htmI>

664

<head>
<title>Greybox example</title>

<script type="text/javascript”>
var GB_ROOT _DIR = “../js/greybox/”;

</script>

<?php
echo $this->headLink()->appendStylesheet(

$this->baseUrl(‘/js/greybox/gb_styles.css’)
)i

echo $this->headScript()->appendFile($this->baseUrl(‘/js/greybox/
AJS.js”));

echo $this->headScript()->appendFile(
$this->baseUrl(‘/js/greybox/AJS fx.js’)
)i
echo $this->headScript()->appendFile(
$this->baseUrl(‘/js/greybox/gb_scripts.js’)
)i
>
</head>
<body>
<?php echo $this->layout()->content; ?>
</body>

</html>

665

code snippet /popup/zf/application/layouts/scripts/
layout.phtml

A CSS stylesheet in this example is linked by the
appendStylesheet () method and it points to the folder
where JavaScript is usually held. All scripts used by
GreyBox here are located in the same folder, however. The
JavaScript files are linked by the appendFile () method.

You should now have everything necessary to use the
features of GreyBox with the standard HTML syntax.
Using the rel attribute, you can now turn a hyperlink tag
into a link to a new window or an image gallery. As the
value for the rel attribute you can use a number or
variables such as gb_page, gb _page fs, gb_imageset,
and so on. Each of these values has its own uses. For the
full list of features, please refer to the GreyBox
documentation. The following code illustrates various
usages of the GreyBox library:

<h1>Greybox example</h1>
<a href="http://www.wrox.com/”
title="Wrox”
rel="gb _page[790, 200]”>Show new window

<a href="http://www.wrox.com/”

title="Wrox”

666

rel="gb_page center[200, 200]”>Show centered new window

<a href="http://www.wrox.com/”
title="Wrox”
rel="gb_page fs[]”>Show new window in full screen
<h2>Greybox gallery example: </h2>
<a href="http://www.symfony-project.org/images/symfony_logo.gif”’
rel="gb_imageset[logos]”
title=""Symfony Logo”>Symfony Logo

<a href="http://cakephp.org/img/cake-logo.png”
rel="gb_imageset[logos]”
title="CakePHP Logo”>CakePHP Logo

<a href="http://framework.zend.com/images/logo.gif”
rel="gb_imageset[logos]”

title="Zend Framework Logo”>Zend Framework Logo

code smippet /popup/zf/application/views/scripts/index/
greybox.phtml

Finally, you can see results by typing http://localhost/
appName/public/index/lightbox in your web browser.
Figure 10.17 illustrates a centered window displaying a

web page.

Figure 10.17 A new window opened using GreyBox

667

wrox Programmg
Home Bookstore/E-B

Find Wrox Titles

Browse by Topic:

Figure 10.18 demonstrates how an image gallery can be
realized using GreyBox. There is an issue with displaying
images in a gallery reported in version 5.54 of GreyBox,
where the images are not rendered the first time. If you
encounter this problem, switching to version 5.53 should
fix it.

Figure 10.18 Image gallery using GreyBox

& () localhost igreyBospublic findes fgreybaon:

Zend Framework Logo [< JEVEN >]

ZEND
FRAMEWORK

668

AJAX User Chat

Web chat is a form of conference-like communication
between multiple users, using a web application. Chats are
usually part of larger applications, such as social networks,
information services, forums, or online games. They allow
users to divide into chat rooms, where various subjects can
be discussed. Chat can take different forms. It can be a
shoutbox, user-to-user private conversation, or Internet
Relay Chat (IRC). Some of these may require special
software to use. Features of chat applications can cover
things such as image sending, sound messages, [P
blocking, forbidden word filtering, user bans, moderation,
and so on.

In this section you will learn how to implement
ready-to-use chat scripts and implement them as a part of
your web application, created in web frameworks. One of
the solutions uses a file system for storing chat messages;
the two other use a database to do this.

Symfony

To learn how a basic chat can be integrated into a Symfony
application, the chat script created by Ryan Smith was
chosen. This chat solution is easy to use in standalone
applications, but in Symfony it needs to be slightly
modified to take full advantage of the features offered by
this framework. So go on and grab the AJAX chat package
from www.dynamicajax.com/tutorials/ajax chat 1.zip.

669

This package contains the following files: chat.html,
chat.sqgl, database.php, getChat.php, and

readme.html.

The first step is to create two files for your application: the
chat.js file inside the /appName/web/js folder and the
chat.css file in the /symfony/web/css folder. Now
you need to copy all JavaScript code from between the
<script> </script> tags of the chat.html file and
paste it into the chat.js file of your project. You can do
the same thing for styles in chat.html. Simply copy the
style content from between the <style> </style> tags
and place it inside chat .css. Later you can add your own
styles inside this file to modify the visual style of the chat
window and messages.

You must now modify the chat.js file and make sure
that the AJAX sendReq.open () and
receiveReq.open () requests point to the getchat
action. This should be done in three lines, and these line
numbers are 26, 38, and 84. An example of how this
should be done is as follows:

// line 26
receiveReq.open(

“GET”,

670

‘index.php/moduleName/getchat?chat=1&last=" + lastMessage,
true
)i
// line 38
sendReq.open(
“POST”,
‘index.php/moduleName/getchat?chat=1&last=" + lastMessage,
true
)i
// line 84
sendReq.open(
“POST”,
‘index.php/moduleName/getchat?chat=1&last=" + lastMessage,
true
);
code snippet /chat/symfony/web/js/chat.js
When you have the chat.js file ready, a modification to

the view.ym1 file is necessary (highlighted in bold) as
shown here:

671

default:

http_metas:

content-type: text/html

metas:

stylesheets: [main.css, chat.css]
javascripts: [chat.js]
has_layout: true

layout: layout

code snippet /chat/symfony/apps/frontend/config/view.yml

When chat.js and chat.css are included in view.yml,
you need to make sure that those files are loaded when the
page is displayed. To do so, the <head> section of the
layout file needs to contain the following code:

<?php include_stylesheets() 7>

<?php include_javascripts() 7>

code snippet /chat/symfony/apps/frontend/templates/
layout.php

The chat application uses a database to hold all messages
posted by users. The design for the database tables can be

672

found in chat.sql of the original package. Alternatively
you can use the following schema:

Message:
connection: doctrine
tableName: message
columns:
message _id: { type: integer(4) fixed: false unsigned: false
primary: true autoincrement: true }
user_id: { type: integer(4) fixed: false unsigned: false
primary: false default: ‘0’ notnull: true autoincrement: false }
user_name:{ type: string(64) fixed: false unsigned: false
primary: false notnull: false autoincrement: false }
message: { type: string() fixed: false unsigned: false
primary: false notnull: false autoincrement: false }
post_time: { type: timestamp(25) fixed: false unsigned: false

primary: false notnull: false autoincrement: false }

code snippet /chat/symfony/apps/config/doctrine/
schema.yml

673

To generate the table described in schema.yml, use the
following command in the command console from your
project directory:

$ symfony doctrine:build --all

Now you can view the getChat.php file of the original
package. This file is responsible for performing all
database operations regarding user messages. Notice that it
includes database.php to create a database connection.
While using the Symfony framework, all this can be
replaced by creating the executeGetchat () function in
your actions.class.php file. The code in this function
is equivalent to the code of the original package, and it
looks as follows:

<?php
class chatActions extends sfActions {
public function executeIndex(sfWebRequest $request) {
}
public function executeGetchat(sfWebRequest $request) {
if(isset(S_POST[‘message’]) && $ POST[‘message’] != *) {
$msg = new Message();
$msg->setUserld(1);

$msg->setUserName(‘unknown’);

674

$msg->setMessage($_POST[‘message’]);
$msg->setPostTime(date(“Y-m-d H:i:s”));
$msg->save();
H
$xml = ‘<?xml version="1.0” encoding="UTF-8” ?><root>’;
if(lisset($_GET[‘chat’])) {
$xml .= ‘<message id="0">";
$xml .= ‘<user>Admin</user>’;
$xml .= ‘<text>Your are not currently in a chat session.</text>’;
$xml .= ‘<time>’.date(“Y-m-d H:i:s”). </time>’;
$xml .= ‘</message>’;
} else {
$last = (isset($_GET[‘last’]) && $_GET[‘last’] = ") ? $_GET][‘last’] : 0;
$messages = Doctrine_Core::getTable(‘Message’)
->createQuery(‘c’)
->where(‘c.message id > ?’, $last)
->orderBy(‘c.message _id”)
->execute();
foreach($messages as $msg) {
$xml .= ‘<message id="" . $msg->getMessageld() . <>’;
$xml .= ‘<user>" . $msg->getUserName() . ‘</user>’;
$xml .= ‘<text>".htmlspecialchars($msg->getMessage()). </text>’;

$xml .= ‘<time>’ . $msg->getPostTime(). ‘</time>’;

675

$xml .= ‘</message>’;

}

$this->text = $xml .= ‘</root>’;
$response = $this->getResponse();
$response->setContentType(‘text/xml’);

return $this->renderText($this->text);

}

code snippet /chat/symfony/apps/frontend/modules/chat/
actions/actions.class.php

Because actions.class.php contains two actions, two
view files are needed; the first one is indexSuccess.php
and must be filled with HTML code from chat.html
from the original package. At the end of this file the
startChat () JavaScript function needs to be called. The
code used in this example is as follows:

<h2><a href="http://www.dynamicAJAX.com”
style="color: #000000; text-decoration: none;”>

AJAX Driven Web Chat

676

</h2>
<div id="div_chat”
style="height: 300px; width: 500px; overflow: auto; background-color:
#CCCCCC; border: 1px solid #555555;”>
</div>
<form id="frmmain” name="frmmain” onsubmit="return blockSubmit();”>
<input type="button” name="btn_get_chat” id="btn_get_chat” value="Refresh Chat”
onclick="javascript:getChatText();” />
<input type="button” name="btn_reset_chat” id="btn_reset_chat”
value="Reset Chat” onclick="javascript:resetChat();” />

<input type="text” id="txt_message” name="txt_message” style="width: 447px;” />
<input type="button” name="btn_send chat” id="btn_send_chat” value="Send”
onclick="javascript:sendChatText();” />
</form>
<script language="JavaScript” type="text/javascript”>
startChat();

</script>

code snippet /chat/symfony/apps/frontend/modules/chat/
templates/indexSuccess.php

Finally, in the same directory as indexSuccess.php, you
should create a blank getchatSuccess.php file, and you

677

are done. The results of this example should look as
illustrated in Figure 10.19.

Figure 10.19 Chat window in Symfony application

[@ WIS http:/flocalhost/

AJAX Driven Web Chat

own 2010-11-04 23:23:36

Hello World!
— ['sera
CakePHP

The solution used in CakePHP is an AJAX chat plug-in
written by Matt Curry. It allows user communication by a
web form, illustrated in Figure 10.20. This solution was
selected because of its easy implementation and
popularity.

Figure 10.20 Chat window without any messages

Ajax Chat Example

Mo Messages

Name

Message

‘ Send

678

You can get the plug-in package from http://github.com/
mcurry/chat. Unpacked content needs to be placed in the
/app/plugins/chat directory. There you will find the
chats.sql file that contains an SQL query that is
responsible for creating the chats database table for
holding all user posts. This query is as follows:

CREATE TABLE ‘chats’ (

‘id” int(10) unsigned NOT NULL auto_increment,
‘key’ varchar(45) NOT NULL default “°,

‘name’ varchar(20) NOT NULL default *°,
‘message’ text NOT NULL,

‘ip_address’ varchar(15) NOT NULL default *°,
‘created’ datetime default NULL,

PRIMARY KEY (‘id’),

KEY ‘KEY_IDX’ (‘key’)

);

It is good to have the chats table created before
proceeding. When that is done, you can begin creating the
routing connection in the routing file. For this example, the
following code is used:

Router::connect(‘/chat’, array(‘controller’ => ‘chatbox’, ‘action’ => ‘index’));

679

code snippet /chat/cakephp/app/config/routes.php

The chat plug-in uses the jQuery library, so it needed to be
included in the default.ctp layout file. You can get
jQuery library from http://jquery.com/. Also, the plug-in's
chat.css stylesheet and chat.js need to be linked
inside the layout. In this case, the following layout is used:

<htmI>
<head>
<?php
echo $html->css(‘/chat/css/chat.css’, “stylesheet”);
if (isset ($javascript)):
echo $javascript->link(‘jquery’);
echo $javascript->link(‘/chat/js/chat.js”);
endif;
7>
</head>
<body>
<?php echo $content_for layout 7>
</body>

</html>

680

code snippet /chat/cakephp/app/views/layouts/default.ctp

We suggest not using the same name for the controller as
the name of the plug-in. In this case,
ChatboxController is used instead of
ChatController. So moving to the controller file, you
need to add the chat.ajaxChat value into the Shelpers
array, as well as the ajax value.

<?php
class ChatboxController extends AppController {
var Suses = ‘Chatpost’;
var Shelpers = array(‘Ajax’, ‘chat.ajaxChat’);
function index() {
}
H

7>

code snippet /chat/cakephp/app/controllers/
chatbox_controller.php

The model file is quite standard and goes like this:

681

<?php

class Chatpost extends AppModel {
var $name = ‘Chatpost’;
var $useTable = ‘chats’;

}

code snippet /chat/cakephp/app/models/chatpost.php

And finally the view file index.ctp needs only one line
to have your chat up and running:

<?php echo $ajaxChat->generate(‘chatWindowName’); 7>

code snippet /chat/cakephp/app/views/index.ctp

By setting different values in the generate () method, it
is possible to have multiple chat windows at the same time.
The index.ctp view file used in this example goes as
follows:

682

<hl>Ajax Chat Example</h1>

<?php echo $ajaxChat->generate(‘chat’); 7>

code snippet /chat/cakephp/app/views/index.ctp

There may be some problems with displaying messages. If
this happens, you need to modify one of the plug-in's files:
chat.js. This file is located in the /app/plugins/
chat/vendors/js directory. At the end of this file there
are lines similar to those presented here. Here you can set
the path to update the script of the plug-in, and you can
modify the interval in which the chat box is reloaded:

$.fn.chat.defaults = {
update: ‘/cake/chat/update’,

interval: 5000
b

code snippet /chat/cakephp/app/plugins/chat/vendors/js/
chat.js

683

At this point you should have a working AJAX chat that
looks like the one illustrated by Figure 10.21.

Figure 10.21 Chat window with users' messages

Ajax Chat Example

Seemore Axes (18 seconds ago): Chat window 15 updated every 5000ms
Seemore Axes (30 seconds ago): Great Chat box using ATAX

Seemore Axes (1 minute ago): T'm next.

Flash (2 minutes ago): Ie Fust!!!

MName|Seemore Axes

Message

Zend Framework

The AJAX chat script selected to be implemented into the
Zend Framework application is the Most Simple Ajax Chat
Script, available from www.linuxuser.at. It will introduce
you to the problem of implementing external scripts into
your application. So why this script and not another? Well,
it is a great piece of code for such a small package. It
contains only three files. One is a PHP file responsible for
saving and loading chat history. The other file is an HTML
page with chat window and some JavaScript embedded
inside it. The last is a text file that holds chat messages.
This example will show you how to use AJAX chat and
will set you up if you ever wish to develop the application
further.

There is a huge selection of free AJAX scripts on the
Internet, but most of them are quite large applications—too

684

big to be introduced in this book. But if you have some
spare time, we suggest the AJAX chat tutorial available at
this page:http://devzone.zend.com/article/
1581-Ajax-Chat-Tutorial.

Moving to the example, first get the Most Simple Ajax
Chat Script package from www.linuxuser.at/chat/
index.html. You can run it just after unpacking it to your
server and see how it works. A modified example rendered
in the browser is shown in Figure 10.22.

Figure 10.22 Chat window without messages

loading. ..

Flash First again | adi

The package contains three files:

* index.html—hat form, styles sheet, JavaScript code

* w.php—Responsible for reading and writing content of the
chat.txt file

* chat.txt—Contains chat history

First you should open the index.html file and prepare to
split it into three files: chat.css, chat.js, and the
chat.phtml view file. Start with cutting everything
between the <style></style> tags from index.html
and placing it inside chat.css in the /appName/
public/css folder. For this example, the content of this
file was slightly modified to achieve a white-gray theme
style. When you have the CSS file ready, you can modify

685

your layout file to include this style, as shown in the
following code:

<htmI>
<head>
<title>Chat example</title>
<?php
echo $this->headLink();

echo $this->headLink()->appendStylesheet($this->baseUrl(‘/css/
chat.css’));

7>
</head>
<body>
<?php echo $this->layout()->content; 7>
</body>

</html>

code snippet /chat/zf/application/layouts/scripts/
layout.phtml

Next you should cut JavaScript from between the
<script> </script> tags of the index.html file and
copy the extracted content into the chat.js file, placed

686

inside the /appName/public/js/ folder. The rest of the
index.html file needs to be copied into the chat.phtml
file inside the /appName/application/views/
scripts/index/ folder and modified so that it matches
to the view file introduced next:

<div id="content”>
<p id="chatwindow”> </p>
<]--
<textarea id="chatwindow” rows="19" cols="95" readonly></textarea>

>
<input id="chatnick” type="text” size="9" maxlength="9" >
<input id="chatmsg” type="text” size="60" maxlength="80"
onkeyup="keyup(event.keyCode);”>
<input type="button” value="add” onclick="submit_msg();”
style="cursor:pointer;border:1px solid gray;”>

</div>
<?php echo $this->headScript()->appendFile($this->baseUrl(‘/js/chat.js’));

7>

687

code smippet /chat/zf/application/views/scripts/index/
chat.phtml

Notice that at the end of this file, appendFile () is used
to include the chat . js file created before.

Finally the controller file contains two functions:
chataAction (), which is responsible for displaying the
initial view file; and chatwriteAction(), which
contains the whole functionality of the w.php file.

As highlighted in the following code, you need to include
$this-> helper->viewRenderer->setNoRender () ;
inside the chatwriteAction () action, because it is not
supposed to render any view files:

<?php
class IndexController extends Zend_Controller Action{
public function init() {
}
public function chatAction() {
}
public function chatwriteAction() {

Sthis->_helper->viewRenderer->setNoRender();

688

// the content of w.php file goes here.

}

code snippet /chat/zf/application/controllers/
IndexController.php

The last file is the one containing the chat history. For this
example the chat.txt file is located inside the newly
created /appName/public/chat/ directory and it has
write rights enabled.

You're nearly ready to have your chat application running,
but first you need to adjust all paths pointing to the
chat.txt file. The first code line of w.php and now the
second line of the chatwriteAction() function is a
variable containing the full path to chat.txt. For this
example this path goes as follows:

$fn = “../public/chat/chat.txt”;

Next the chat.js file needs to be modified. If you
followed this example exactly without removing any
comments, you have to modify lines 51, 100, and 109 of
the chat.7s file. Otherwise, you can look at the code and
find the corresponding lines yourself. Modifications done
for this example go as follows:

// line 51

intUpdate = setTimeout(“ajax_read(‘../chat/chat.txt?x="+ ms + ’)”, waittime)

// line 100

ajax_write(“./chatwrite?m="+ msg + “&n=" + nick);

689

// line 109

var intUpdate = setTimeout(“ajax_read(../chat/chat.txt’)”, waittime);

Now you can run your application and enjoy the results.
You should have a chat window similar to the one shown
in Figure 10.23.

Figure 10.23 Chat window with various messages

Flash | First again !

Seemore | That guy again ...

Filter | Chat have word filter.

Filter | And IP filter.

Admin | It is ultra light, and easy to implement.
Admin | It is text file based, =26 no nead for a
database.

Admin | No image icons thou

Adrrin add

Your chatwriteAction() allows you to set some
additional options, such as IP address blocking or word
filtering. The following snippet illustrates the code
responsible for these options:

/* Set this to a minimum wait time between posts (in sec) */
$waittime sec = 0;

/* spam keywords */

$spam[] = “ass”;

$spam[] = “hell”;

$spam[] = “poo”;

/* IPs to block */

690

$blockip[] = “72.60.167.89”;
/* spam, if message IS exactly that string */

$espam([] = “ajax”;

Additionally, with a little understanding of PHP and
experience in development, you can easily modify this
example to use a database instead of the text file.

691

Chapter 11

Making Plug-ins

Death seed blind man's greed

Poets' starving children bleed

Nothing he's got he really needs

Twenty first century schizoid man.

—King Crimson, In the Court of the Crimson King [1969]

What's In This Chapter?

* Making PDF plug-ins for Symfony and CakePHP
* Introducing Zend Framework plug-in philosophy

Frameworks offer great enhancements in web development
by themselves, but with plug-ins you can achieve even
more! There are various ready-to-use plug-ins that greatly
extend the core functionalities of the frameworks. In this
chapter, we show you how to build a plug-in in all three
frameworks. In Symfony and CakePHP, you will see how
to create a plug-in that prepares PDF files. Plug-ins in
Zend Framework are of a somewhat different nature and
are dedicated to purposes different from plug-ins of other
frameworks.

Plug-ins are great for two reasons. First, they help with

separating code that provides certain additional
functionalities from the framework's core. This way, the

692

framework can remain lighter and achieve better
performance, while the optional add-ons are installed on
demand. And that's the second advantage of this approach:
it is beneficial for core developers who are freed to focus
on development of the framework, for the open-source
community that can easily prepare and maintain plug-ins
dedicated for certain solutions, for companies that may
develop sophisticated commercial plug-ins, and finally for
all users who can choose from the wide range of
ready-to-use solutions.

Symfony

This section describes how to write a plug-in for
generating PDF files. Actually, making PDF files can be
done easily in Symfony by installing sfTCPDFPlugin
using the following command:

$ symfony plugin:install sSfSTCPDFPlugin

However, if you have read this book up to this part, you
should know how to install existing plug-ins, and using
this one is not the objective of this section. We've shown
this just to let you know that this ready-made plug-in
exists, but in this section you will learn how to create your
own plug-in for Symfony.

Plug-in Structure

Let's start with Symfony's plug-in structure. In general, it
consists of folders and files as follows:

sfPlugin/

693

config/
sfPluginConfiguration.class.php
routing.yml
doctrine/
schema.yml
lib/
sfPlugin.class.php
helper/
filter/
form/
model/
task/
modules/
pluginModule/
actions/
config/
templates/

web/

You can see that there is a strong similarity between this
file structure and Symfony's application file structure. You
don't need to create every directory, only those that you
will need when making this plug-in. The /config
directory contains all configuration files, such as
routing.yml, that can be used for adding a module for

694

routing. Schema and plug-in dependencies go to this
folder, too. The /1ib folder holds tasks, helpers, forms,
models, and the main plug-in class. Inside /modules, all
ready-to-use modules are kept; inside /web are all images,
stylesheets, and JavaScripts.

Developing the Plug-in

As you want to develop your own plug-in, you will avoid
the TCPDF plug-in mentioned in the introduction to this
section and use an alternative: the Free PDF PHP (FPDF)
general-purpose library.

For simple PDF creation, you don't have to code much; all
you need is one simple helper with one exemplary function
that will generate a PDF with text. You must have the
FPDF library installed before creating this helper. You can
download it from www.fpdf.org and copy it into the PHP
libraries. Under Linux, you can also install it as a package.
This helper file could look like this:

<?php

require(‘fpdf/fpdf.php’);

function generatePDF() {
$pdf=new FPDF();

$pdf->AddPage();

695

$pdf->SetFont(‘Times’,‘B*,12);
$pdf->Cell(40,10,‘Symfony FPDF Plugin’);
$pdf->Output();

H

7>

code snippet /symfony/plugins/sfFPDFPlugin-1.0.0/lib/
helper/sfFPDFHelper.php

Plug-in development requires a few basic facts about the
plug-in. This information is stored in the package.xml
file in the root folder of the plug-in. An example is
presented here:

<?xml version="1.0" encoding="UTF-8"?>
<package xmlns="http://pear.php.net/dtd/package-2.0”
xmlns:tasks="http://pear.php.net/dtd/tasks-1.0”

xmlns:xsi="http://www.w3.0rg/2001/
XMLSchema-instance” packagerversion="1.8.0"

version="2.0" xsi:schemaLocation="http://pear.php.net/dtd/tasks-1.0
http://pear.php.net/dtd/tasks-1.0.xsd http://pear.php.net/dtd/package-2.0
http://pear.php.net/dtd/package-2.0.xsd”>

<name>sfFPDFPlugin</name>

696

<channel>pear.symfony-project.com</channel>
<summary>Exemplary FPDF Plugin</summary>
<description>Very short example</description>
<lead>
<name>Wrox</name>
<user>Wrox</user>
<email>foo_bar@wrox.com</email>
<active>yes</active>
</lead>
<date>2011-02-27</date>
<time>00:00:00</time>
<version>
<release>1.0.0</release>
<api>1.0.0</api>
</version>
<stability>
<release>stable</release>
<api>stable</api>
</stability>

<license uri="http://www.symfony-project.com/
license”>MIT license</license>

<notes>

Exemplary notes

697

</notes>
<contents>
<dir name="/">
<file md5sum="2779dd4abdec0683069bc5ecb9721cde”
name="lib/helper/sfFPDFHelper.php” role="data”/>
</dir>
</contents>
<dependencies>
<required>
<php>
<min>5.3.0</min>
</php>
<pearinstaller>
<min>1.4.1</min>
</pearinstaller>
</required>
</dependencies>
<phprelease/>

</package>

code snippet /symfony/plugins/sfFPDFPlugin-1.0.0/
package.xml

Note that you can set the minimal version of PEAR and
PHP as well as the plug-in's version and its stability. You

698

need to supply the MD5 sum as well. This is a minimal
security measure to counteract unauthorized file
replacement and also helps with discovering corrupt file
download.

The file structure of your plug-in should be as follows
now:

SfFPDFPlugin-1.0.0%
lib'
helperll"