
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

Table of Contents

Title Page

Copyright

Dedication

Credits

About the Authors

Acknowledgments

Introduction

Who Should Read This Book?

Comparative Approach

Structure of This Book

Source Code

Conventions

Contact Us

Errata

p2p.wrox.com

2

http://www.allitebooks.org

www.allitebooks.com

Chapter 1: Introducing Symfony, CakePHP, and Zend
Framework

What are Web Application Frameworks and How are They
Used?

Open Source PHP Web Frameworks

Design Patterns in Web Frameworks

Chapter 2: Getting Started

Requirements

Installation

Configuration

Hello World!

Structure

IDE Support

Chapter 3: Working with Databases

Object-Relational Mapping

Database Configuration

Communication with a Database

Chapter 4: Your First Application in the Three
Frameworks

3

http://www.allitebooks.org

www.allitebooks.com

Design

Symfony

CakePHP

Zend Framework

Chapter 5: Forms

Field Validation

Customizing Forms

Using Captcha as Spam Protection

Chapter 6: Mailing

Creating Mailing Applications

SwiftMailer

CakePHP's Mailing Component

Zend Mailer

PHPMailer

Chapter 7: Searching

Problem

Solutions

4

http://www.allitebooks.org

www.allitebooks.com

Chapter 8: Security

Setting Secure Connections

Securing a Profile Form Against XSS and Injection
Attacks

CSRF

Chapter 9: Templates

Creating a Simple Image Gallery by Using Helpers and
Lightbox

Using Template Engines within Web Frameworks

Overview of Other Add-on Template Engines

Chapter 10: AJAX

Introducing AJAX

Autocomplete

Dynamic Popup Windows

AJAX User Chat

Chapter 11: Making Plug-ins

Symfony

CakePHP

5

http://www.allitebooks.org

www.allitebooks.com

Zend Framework

Chapter 12: Web Services

Restful News Reading

Providing Soap Web Services in E-Commerce
Applications

Chapter 13: Back End

Symfony

CakePHP

Zend Framework

Feature Summary

Chapter 14: Internationalization

Internationalization Defined

Symfony

CakePHP

Zend Framework

Chapter 15: Testing

Introducing Testing

6

http://www.allitebooks.org

www.allitebooks.com

Black-Box Registration Form Testing Using Functional
Tests

CMS Tests Automation Using Selenium

Mailing Unit Testing

Chapter 16: User Management

Basic User Management

Identifying Users Using LDAP Implementation

Chapter 17: Performance

Using JMeter for Stress, Load, and Performance Tests

Benchmarking

Development Speed

Chapter 18: Summary

Features

And the Winner Is…

Appendix A: Web Resources

General

Symfony

CakePHP

7

http://www.allitebooks.org

www.allitebooks.com

Zend Framework

Design Patterns

ORM

Databases

LDAP

Searching

Testing

Security

PDF

Web Services

Mailing

Templates

IDE

Javascript

AJAX

CMS

CodeIgniter

8

http://www.allitebooks.org

www.allitebooks.com

Lithium

Agavi

Appendix B: CodeIgniter, Lithium, and Agavi with Code
Examples

CodeIgniter

Lithium

Agavi

Glossary of Acronyms and Technical Terms

Index

9

http://www.allitebooks.org

www.allitebooks.com

10

http://www.allitebooks.org

Building PHP Applications with Symfony™, CakePHP,

and Zend® Framework

Published by

Wiley Publishing, Inc.

10475 Crosspoint Boulevard

Indianapolis, IN 46256

www.wiley.com

Copyright ©2011 by , Karol Przystalski, and
Leszek Nowak

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-88734-9

ISBN: 978-1-118-06792-5 (ebk)

ISBN: 978-1-118-06791-8 (ebk)

ISBN: 978-1-118-06790-1 (ebk)

No part of this publication may be reproduced, stored in a
retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording,
scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act,

11

without either the prior written permission of the
Publisher, or authorization through payment of the
appropriate per-copy fee to the Copyright Clearance
Center, 222 Rosewood Drive, Danvers, MA 01923, (978)
750-8400, fax (978) 646-8600. Requests to the Publisher
for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008,
or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The
publisher and the author make no representations or
warranties with respect to the accuracy or completeness of
the contents of this work and specifically disclaim all
warranties, including without limitation warranties of
fitness for a particular purpose. No warranty may be
created or extended by sales or promotional materials. The
advice and strategies contained herein may not be suitable
for every situation. This work is sold with the
understanding that the publisher is not engaged in
rendering legal, accounting, or other professional services.
If professional assistance is required, the services of a
competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages
arising herefrom. The fact that an organization or Web site
is referred to in this work as a citation and/or a potential
source of further information does not mean that the author
or the publisher endorses the information the organization
or Web site may provide or recommendations it may
make. Further, readers should be aware that Internet Web
sites listed in this work may have changed or disappeared
between when this work was written and when it is read.

12

For general information on our other products and services
please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States
at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic
formats. Some content that appears in print may not be
available in electronic books.

Library of Congress Control Number: 2010942182

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox
logo, Wrox Programmer to Programmer, and related trade
dress are trademarks or registered trademarks of John
Wiley & Sons, Inc. and/or its affiliates, in the United
States and other countries, and may not be used without
written permission. Symfony is a trademark of Fabien
Potencier. Zend is a registered trademark of Zend
Technologies, Ltd. All other trademarks are the property of
their respective owners. Wiley Publishing, Inc., is not
associated with any product or vendor mentioned in this
book.

13

For my beloved Olcia, who keeps inspiring me to achieve
goals I could have never dreamed of. The way you are able
to solve with your pure wisdom all the analyti-cally
unsolvable problems, your dedication, and your sense of
humor still amaze me every day. And the sweet cakes (no
PHP added) you baked for me while I was writ-ing this
book were simply delicious. I would also like to thank my
parents for their continuing faith and support.

—

For Agata.

—Karol Przystalski

I dedicate this book to my parents, for their constant love
and support. They made this book possible. I also warn
any readers of this book not to try and run the code
examples backward! It may cause hellspawns to appear out
of thin air.

—Leszek Nowak

14

Credits

Executive Editor

Carol Long

Project Editor

Tom Dinse

Technical Editor

Wim Mostrey

Production Editor

Daniel Scribner

Copy Editor

Nancy Sixsmith

Editorial Director

Robyn B. Siesky

Editorial Manager

Mary Beth Wakefield

Freelancer Editorial Manager

Rosemarie Graham

15

Associate Director of Marketing

Ashley Zurcher

Production Manager

Tim Tate

Vice President and Executive Group Publisher

Richard Swadley

Vice President and Executive Publisher

Barry Pruett

Associate Publisher

Jim Minatel

Project Coordinator, Cover

Katherine Crocker

Proofreader

Word One

Indexer

Robert Swanson

Cover Designer

16

Michael E. Trent

Cover Image

© Xiaoke Ma/istockphoto.com

17

About the Authors

is a video games, web applications, and
C++ software developer. He works as Brain-Computer
Interface researcher and lecturer at Jagiellonian University
in Kraków.

KAROL PRZYSTALSKI is a Software Quality Engineer
at Sabre Holdings and a PhD student at Jagiellonian
University in Kraków. He has worked with Symfony since
its earliest versions and wrote a book on the Symfony
framework.

LESZEK NOWAK has years of experience in web
development and graphics design with such frameworks as
Django, CakePHP and CodeIgniter. He also works with
3D modelling, animation, image recognition, and artificial
intelligence development. He says, “Science is fun, if used
in games.”

18

Acknowledgments

NO BOOK IS THE SOLE effort of its authors, especially
such a long book. It took long months and countless cups
of coffee to keep us awake and writing and programming
the code examples. We could not have made it through this
if not for the help and patience of many kind souls.

First of all, we want to say a big THANK YOU! to the
Wiley/Wrox team we had the pleasure of working with.
Carol Long showed great patience and motivated us when
we were down. Tom Dinse and Nancy Sixsmith worked
hard to get our English right. Wim Mostrey made sure that
all technical matters are 100% correct. Ashley Zurcher
helped to successfully deliver the book to the market, and
Helen Russo took care of our legal matters. It was really
fun to work with you folks!

We also want to thank our superiors on the faculty of
Physics, Astronomy, and Applied Computer Science of
Jagiellonian University in Kraków: dr hab. Ewa Grabska,
prof. dr hab. Maciej Ogorzałek, prof. dr hab. Maciej A.
Nowak, and dr hab. Paweł W grzyn, who were really
supportive and did their best not to swamp us with
additional jobs while we were busy writing.

Finally, our thanks go also to all the developers who
dedicated their precious time to write good documentation
and share their knowledge.

19

www.allitebooks.com

Introduction

Honest differences are often a healthy sign of progress.

—Mahatma Gandhi

For a long time, PHP was disregarded as a language not
serious enough for rich web applications. Everyone knew
it was popular and perhaps good for small one-shot
projects, but all the praise was reserved for the aristocratic
elite of frameworks such as Spring, Ruby on Rails, or
Django. Only recently has the situation changed, and it
changed dramatically. In 2007, it became clear that PHP
has not just one, but three major web application
frameworks extending capabilities of this language:
Symfony, CakePHP, and Zend Framework. The pace of
development was fast and steady. Object-oriented source
code written in PHP5 was elegant and maintainable. More
and more new projects began using them, and their
successful completion made the PHP frameworks even
more popular.

Nowadays, the popularity of PHP web development
frameworks surpasses all others (the evidence is inside this
book), and they have become a leading force in the
industry. The aim of this book is to gather as much
knowledge about this dynamic force as possible and
portray all the features these frameworks provide to our
fellow programmers.

Who Should Read This Book?

20

http://www.allitebooks.org

If you are actually looking for a vampire novel, put this
book back on the shelf. Immediately. If you are a
hard-core Assembler programmer who needs no web
interfaces at all, you might not be interested, either.
However, if you are involved in some kind of web
development, you will probably find this book useful. It is
thick and heavy enough to cover a wide range of topics
and provide various perspectives for all kinds of readers:

• Professional PHP web application developers were the
first people we thought of when we started writing this book,
perhaps because we are PHP programmers, too. Frameworks
offer multiple advanced features that can make our lives
easier and more exciting. That's why we wanted to dig
deeper and try out whole potentials of different frameworks
and thoroughly compare them for your pleasure and
convenience.

• Experts in Ruby on Rails, Django, TurboGears, Struts,

ASP.NET, or other non-PHP frameworks who want to
take a closer look at PHP. Instead of buying separate books
for each framework or choosing one more or less at random,
they can benefit from comparing examples hands-on. They
can experience the differences between the frameworks,
which sometimes are really subtle, and perhaps switch to
PHP one day.

• Students and PHP beginners should not be afraid of the
complexity of some more advanced topics. This book is a
tutorial, but it is also much more! We have put a lot of effort
into making it accessible. The first part of this book, “The
Basics,” covers everything to get the whole thing (or even
three things) running. The second part, “Common Tasks,” is
more than adequate to serve the needs of most academic
courses or a plan of individual education. The rest of the
book will be very useful if you decide to continue your
romance with any one of the frameworks.

• Project managers, analysts or system administrators who
often decide on which technology to choose or who need a

21

deeper understanding of existing computer systems and
applications. We have prepared a whole part (Part 4,
“Comparison”) that is focused on comparing the three
frameworks and discussing their capabilities.

• Advanced non-web programmers, such as C++ application
engineers or database experts who want to explore the vast
world of web development, will find that this book is also a
good starting point for them. They might be delighted with
the object-oriented approach of PHP5, the rapid building
process made possible with the frameworks, and all the
advanced features provided by them. Meanwhile, the
comparative approach provides a broad view of web-specific
problems, and the tutorial side of the book prevents being
stuck simply with more trivial tasks.

Comparative Approach

There are many great tutorials and books on each of the
frameworks covered in this book. What makes this book
unique is the comparative approach we've adopted. We
wanted to do more than just present three advanced
technologies—we wanted to point out their advantages and
disadvantages by comparing how each solves certain
problems. This gives you a very practical tutorial-like
experience and a solid base for more advanced discussion.
It allows you to formulate your own views on PHP web
frameworks and their suitability for your needs.

Flame wars are a hallmark of all discussions about web
frameworks. Everyone has a favorite and tries to promote
it against all others. The problem is that all web
frameworks are used for the same purpose, but have
different internal structures. Knowing one of them is
generally enough to produce web applications, so there are
few people interested in mastering multiple tools of this

22

kind. This makes comparisons difficult. No wonder many
discussions are based on stereotypes, personal opinions,
and unverified data.

In this situation, many unanswered questions arise: Which
framework is best suited for my particular purpose? Which
one is the quickest to learn? Which one produces
applications the fastest? Which one has the richest
features? Which one will I like best? Is there one that
surpasses all the others? We have asked these questions
ourselves and found no reliable answers. However,
because these questions are often asked by other
developers, we decided to do our best to find the solution
and then share it in this book. The results were often really
surprising.

Structure of This Book

The main principle of this book is to show how to do some
tasks in each framework (in parallel wherever possible).
To accomplish this, each example is repeated for each
framework. Sometimes the solutions are really similar in
order to make all subtle differences easily visible, but
sometimes one framework provides a unique solution, in
which case we are not afraid to use it. The book is divided
into four parts that will gradually introduce you to the
complexities of PHP frameworks. More experienced
developers can freely skip the first part or read only the
chapters they need.

Basics

23

Chapter 1: Introducing Symfony, CakePHP, and

Zend Framework—One of the biggest hardships with
most frameworks is how to get started. This chapter
addresses that problem with a comprehensive tutorial
starting with a general discussion of web application
frameworks, their structure, and the underlying
Model-View-Controller (MVC) pattern. We also briefly
present all available frameworks and explain why we
chose Symfony, CakePHP, and Zend Framework for
detailed comparison.

Chapter 2: Getting Started—Next we move to
installation and configuration. We provide instructions
for Windows, Linux, and MacOS operating systems for
every framework as well as the chosen database and
web server. This is a stage in which many things can go
wrong and discourage an inexperienced developer, so
we are extra meticulous.

Chapter 3: Working with Databases—All frameworks
are installed over a database engine, so Chapter 3 is
dedicated to mitigating differences between relational
databases and the world of object-oriented
programming. Then you learn how to communicate with
a database from the level of the frameworks, which
encompasses constructing an object model with schema
files and direct communication with databases through a
command-line interface.

Chapter 4: My First Application in the Three

Frameworks—Finally some programming. With all
frameworks properly configured and running in your
favorite environment, it is time you wrote your first

24

application. The address book example presented in this
chapter explains how to use tools to develop web
applications quickly and efficiently.

Common Tasks

Chapter 5: Forms—This part of the book focuses on
the standard elements used by every web developer in
his everyday work. The first of these elements are user
input forms. You'll start with a simple problem of
validating fields and then move on to customizing forms
for various application needs. Finally, we'll discuss
protection against automated forms submission, namely
Captcha.

Chapter 6: Mailing—Mailing is another common task
required in nearly all web applications. We need it for
user registration, sending announcements, and
commercial advertising. In this chapter, several mailing
engines will be presented and implemented:
SwiftMailer, CakeMailer, ZendMailer, and PHPMailer.

Chapter 7: Searching—This chapter starts with
in-depth theoretical descriptions of full-text searching,
commonly used algorithms, and approaches. Then we
move to practical solutions using the popular search
engines Sphinx, Lucene, and Google Custom Search.

Chapter 8: Security—Security issues are always
important for a professional web developer. After
reading this chapter, you will know how to provide
secure connections and defend against the two most
dangerous kinds of attacks: server-side XSS injections

25

and client-side cross-side request forgeries (CSRF). We
discuss the various types of dangers and introduce
security measures.

Chapter 9: Templates—The last thing covered in this
part of the book is something everyone should know:
how to make a web app visually appealing. In this
chapter, we first show you how to create a simple image
gallery and then we compare native template engines of
the frameworks with add-ons such as the very popular
Smarty engine.

Advanced Features

Chapter 10: AJAX—The first of more advanced topics
discussed in this part is Asynchronous JavaScript and
XML, or AJAX. It allows various features that are both
useful and impressive. The first that we discuss is
autocompletion of text fields with strings from a given
database. The second example is dynamic popup
windows for fun and profit, and the third is a simple
chat room for multiple users.

Chapter 11: Making Plug-ins—Plug-ins provide
advanced functionalities that you need. This chapter
discusses creating your own plug-ins. For Symfony and
CakePHP, you will write a PDF creation tool, but Zend
Framework plug-ins work in a somewhat different
manner, so they will be discussed with an appropriate
example.

Chapter 12: Integrating Web Services—Web
applications cannot live alone. They need integration

26

with other web services and we discuss how to do it
here. This chapter discusses the two most common
standards, REST and SOAP, as well as providing
examples of their use.

Chapter 13: Back end—Most web applications have a
content management system (CMS). This chapter shows
how to implement simple CMSs and how to use more
advanced plug-ins. We also introduce the topic of
content management frameworks.

Chapter 14:

Internationalization—Internationalization doesn't end
with the use of UTF8 character encoding. This chapter
covers everything you need to know in order to make a
website truly multilingual, including right-to-left
languages, user input, collation for sorting algorithms,
date formats, and other localization techniques.

Chapter 15: Testing—Quality is the word that best
describes the emphasis of this chapter. Testing is a very
important part of web application development. This
chapter introduces basic testing, including manual and
automatic functional tests using the Selenium testing
suite; and also black box, grey box, and unit tests.

Chapter 16: User Management—Web 2.0 applications
revolve around users, who log-in, socialize, and create
content. This chapter discusses efficient and secure
ways to authenticate users and grant them access to
certain features, starting with Role-Based Access
Control (RBAC) and access control lists (ACLs)
provided by the frameworks, and then moving on to

27

Lightweight Directory Access Protocol (LDAP), an
enterprise-grade solution.

Comparison

Chapter 17: Performance—This last part has fewer
chapters than the previous parts, but it starts with an
important one. We show here how to use JMeter to run
your own customized performance and load tests. We
also present two benchmarks made by us: throughput of
a simple CRUD application and something even more
important: comparison of lines of code written to create
this application.

Chapter 18: Summary—The last chapter summarizes
everything we have learned in this book. It lists all the
pros and cons of each framework, both from a
programmer's point of view and the quality of
applications that can be developed with their help. And
we'll tell you which PHP framework is the best one.

Appendices

We feel really sorry for less-popular frameworks because
some of them are really delicious, and we had to focus on
three mainstream ones only. However, we added basic info
on CodeIgniter, Lithium, and Agavi with some code
examples. They are young but very promising, and have
good chances to gain great popularity.

There are also a list of interesting web resources for
download and further reading, and a glossary of acronyms
and technical terms used in the book.

28

Source Code

The source code presented in this book is designed to
illustrate technologies described in the chapters in which it
appears. Consistent with the idea that you should be able to
freely read the code, not figure it out, the snippets are as
simple and informative as possible. We didn't aim to print
full listings of all files in the book.

However, we wouldn't leave you without full working
applications. They can be downloaded from the Wrox
website at www.wrox.com or from a dedicated website
maintained by us at www.phpframeworks.org. The
advantages of this approach are that we can put all needed
files in one convenient downloadable packet. What is even
more important is that you can adapt the examples to
newer versions of the rapidly evolving frameworks.

To find the source code at the Wrox website, simply locate
the book's title (use the Search box or one of the title lists)
and click the Download Code link on the book details page
to obtain all the source code for the book. Code that is
included on the website is highlighted in this book by the
following icon:

You'll find the filename in a code note such as this:

Code snippet filename

29

www.allitebooks.com

Because many books have similar titles,
you might find it easiest to search by ISBN;
this book's ISBN is 978-0-470-88734-9.

Once you download the code, just decompress it with your
favorite compression tool. Alternately, you can go to the
main Wrox code download page at www.wrox.com/
dynamic/books/download.aspx to see the code available
for this book and all other Wrox books.

Conventions

Conventions used in this book are pretty intuitive and
straightforward. In order to distinguish inline source code
from normal text, we are using a monospace font. The
same applies to filenames and directories. Names of
variables are additionally italicized (unless they appear
in code snippets or listings, where they are not italicized).
Names of all methods and functions have parentheses at
the end in order to make more visible that they are
methods; however, their arguments are usually omitted and
the parentheses are empty, as in this ExampleMethod().
URLs are monospace_and_underlined.

Snippets of code look like this:

$ zf create model AddressBook

Italic font is used in multiple contexts:

30

http://www.allitebooks.org

• When introducing new terms and important words.
• When joking and generally not being completely serious.

In the whole book, “Symfony” is always capitalized, like
any other specific name, even when referring to 1.x
versions, which were called “symfony.” It not only appeals
to our aesthetic sense but it is also much easier to find in
dense text this way.

Contact Us

We have worked hard to make this book approachable,
informative, and bug-free. If you have any comments or
suggestions, please let us know. Also, if you find an error,
you would do us a favor by telling us about it. More
general info about this book, the authors, and an up-to-date
list of errata can be found on our website at
www.phpframeworks.org.

Also, if you ever wish to buy us a drink for job well done
or insult us for massive incompetence, feel free to write us
at web-frameworks-book@googlegroups.com.

Contact info for individual authors for more intimate
proposals:

: bartosz.porebski@gmail.com

Karol Przystalski: kprzystalski@gmail.com

Leszek Nowak: dr.leszek.nowak@gmail.com

The authors (from left): , Karol Przystalski and
Leszek Nowak.

31

Errata

We make every effort to ensure that there are no errors in
the text or in the code. However, no one is perfect, and
mistakes do occur. If you find an error in one of our books,
like a spelling mistake or faulty piece of code, we would
be very grateful for your feedback. By sending in errata,
you might save another reader hours of frustration, and at
the same time, you will be helping us provide even
higher-quality information.

To find the errata page for this book, go to
http://www.wrox.com and locate the title using the Search
box or one of the title lists. Then, on the book details page,
click the Book Errata link. On this page, you can view all
errata that have been submitted for this book and posted by
Wrox editors. A complete book list, including links to each
book's errata, is also available at www.wrox.com/
misc-pages/booklist.shtml.

If you don't spot “your” error on the Book Errata page, go
to www.wrox.com/contact/techsupport.shtml and complete

32

the form there to send us the error you have found. We'll
check the information and, if appropriate, post a message
to the book's errata page and fix the problem in subsequent
editions of the book.

p2p.wrox.com

For author and peer discussion, join the P2P forums at
p2p.wrox.com. The forums are a web-based system for
you to post messages relating to Wrox books and related
technologies and interact with other readers and
technology users. The forums offer a subscription feature
to e-mail you topics of interest of your choosing when new
posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on
these forums.

At http://p2p.wrox.com, you will find a number of
different forums that will help you, not only as you read
this book, but also as you develop your own applications.
To join the forums, just follow these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join, as well as
any optional information you wish to provide, and click
Submit.

4. You will receive an e-mail with information
describing how to verify your account and complete the
joining process.

33

You can read messages in the forums
without joining P2P, but in order to post
your own messages, you must join.

Once you join, you can post new messages and respond to
messages other users post. You can read messages at any
time on the Web. If you would like to have new messages
from a particular forum e-mailed to you, click the
Subscribe to this Forum icon by the forum name in the
forum listing.

For more information about how to use the Wrox P2P, be
sure to read the P2P FAQs for answers to questions about
how the forum software works, as well as many common
questions specific to P2P and Wrox books. To read the
FAQs, click the FAQ link on any P2P page.

34

Chapter 1

Introducing Symfony, CakePHP, and Zend Framework

An invasion of armies can be resisted, but not an idea
whose time has come.

—Victor Hugo

What's In This Chapter?

• General discussion on frameworks.

• Introducing popular PHP frameworks.

• Design patterns.

Everyone knows that all web applications have some
things in common. They have users who can register, log
in, and interact. Interaction is carried out mostly through
validated and secured forms, and results are stored in
various databases. The databases are then searched, data is
processed, and data is presented back to the user, often
according to his locale. If only you could extract these
patterns as some kind of abstractions and transport them
into further applications, the development process would
be much faster.

This task obviously can be done. Moreover, it can be done
in many different ways and in almost any programming
language. That's why there are so many brilliant solutions
that make web development faster and easier. In this book,
we present three of them: Symfony, CakePHP, and Zend

Framework. They do not only push the development
process to the extremes in terms of rapidity but also

35

provide massive amounts of advanced features that have
become a must in the world of Web 2.0 applications.

What are Web Application Frameworks and How are They
Used?

A web application framework is a bunch of source code
organized into a certain architecture that can be used for
rapid development of web applications. You can think of
frameworks as half-produced applications that you can
extend and form to make them take shape according to
your needs. Well, that means half your work has already
been done, but for some it is as much a blessing as a curse
because this work was done in a particular way, without
your supervision.

Thus all frameworks are either stained with a coding
methodology and naming and structural conventions, or if
they try to avoid these restrictions, they need to be heavily
configured by you. This either reduces their flexibility or
makes their learning curve significantly steeper. And if
you really want to escape from these problems toward a
more library-like approach, you have to sacrifice some
development speed. You can see that frameworks are all
about tradeoffs.

That's why it is really good to take a look at many
frameworks and compare their differences. Perhaps one of
them offers conventions that you would use as good
practices, anyway? Perhaps you have nothing against some
initial configuration that allows you to be rapid and
flexible at the same time? And maybe you want just a
library of powerful components to link together by

36

yourself? The choice is yours, and if you find a way to
mitigate their disadvantages, you can fully enjoy the
greatest benefit of all frameworks: truly rapid
development.

Further advantages of frameworks are elegance of code
and minimizing the risk of programming errors.
Frameworks conform to the Don't Repeat Yourself (DRY)
principle, which means that they have all the pieces of
logic coded only once in one place. This rule forbids
duplication of code, especially copypasting. This facilitates
maintenance of code and prevents nasty errors. Generally,
frameworks promote code reusability and other good
programming practices wherever they can, which is great
for programmers who do not have enough knowledge or
discipline to care for quality of code by themselves.

Another great feature is the clean organized look of links
that can be done with URL rewriting, which is supported
by most frameworks. Instead of
/animals.php?species=cats&breed=mainecoon, type just
/animals/cats/mainecoon. This is not only appealing to the
eye but also very search engine optimization
(SEO)–friendly.

Framework versus Library

The main difference between a library and a framework is
that:

• libraries are called from your code
• frameworks call your code

37

In other words, a framework in your application is a
skeleton that you fill with features or serves as a platform
on which you build your modules. Whereas a library
instead provides attachable modules on top of a platform
made by yourself. Some people perceive a framework as
something better or more complete than a library, so
“framework” became a buzzword that is often overused.
That's why people call some libraries frameworks, even
though they do not invoke developers' code. There is
nothing wrong with a piece of code being a library, as it is
just a different entity. And there are also some bad
frameworks that damage the reputation of the good
ones—basically you can take any half-done application,
release it, and call it a framework. These two software
groups just behave differently and should not be confused.

The application architecture utilized by frameworks is
called inversion of control, because the data flow is
inverted compared to ordinary procedural programming. It
is also referred to as The Hollywood Principle: “Don't call
us, we'll call you.” This corresponds to third-party code
calling developer's code. The main reason behind it is to
make the high-level components less dependent on their
subsystems. High-level components pass the control to
low-level components, who themselves decide how they
should work and when to respond. A good example is the
difference between a command-line program, which stops
and then asks the user for input, and a program with a
windowed user interface, in which the user can click any
button and then the window manager calls the program
instead.

38

Some frameworks, such as Zend Framework or
CodeIgniter, follow loosely coupled architecture, which
means that their components are less dependent on each
other and may be used separately, more library-style.
Loosely coupled frameworks do not provide development
as rapidly as those following a tighter framework
architecture and Model-View-Controller (MVC) pattern;
however, such an approach allows more flexibility and
control over code.

When You Should Use a Framework and When You
Should Not

Frameworks are not the cure for all programming
problems. Putting aside today's awesome state of
development, you should always remember how
frameworks were created a few years ago. Most of them
were more or less unoptimized junk created by one guy to
help him speed up his development process, without much
care for documentation, elegance, ease of use, or even
readability of his code. Then another group of guys took
this code and bloated it with a patchwork of extra
functionalities barely consistent with the original code.
Then it became apparent that this whole lot needs a solid
cleanup in order to be usable, but this would mean either
rewriting it from scratch or packaging code in additional
wrapper classes, further increasing its unnecessary
complexity.

Of course, today the disorganized origin of frameworks is
not as evident as before because the quality of code has
risen considerably. But still, that's why most beefed-up
frameworks have performance issues. That's why they are

39

www.allitebooks.com

not always easy to learn. And that's why new ones emerge
to cover up weaknesses of older ones. And finally that's
why major frameworks provide completely rewritten 2.0
versions, which address all previously mentioned
problems.

Advantages

When web application frameworks are useful:

• For more or less standard projects with dynamic content, like
social networking, online stores, news portals, and so on

• For easily scalable applications that can grow from start-up
to worldwide popular services without need for big changes
in code

• For producing consecutive apps, in which modularity and
reusability of pieces of code like controllers and views may
be helpful

• For real-world development with deadlines, rotating staff,
and fitful customers

• If you are, or want to be, a professional web developer, so
learning how to work with frameworks is not an excessive
effort

As you can see, this applies to most commercial web
applications that connect to a database and allow its users
to create and modify its content. Therefore, programming
with web app frameworks becomes a standard and
common practice in the web development world.

Disadvantages

When you should consider development without any
frameworks at all:

40

http://www.allitebooks.org

• Purely informative web pages without user-created content,
for example an artist's portfolio with fancy graphics

• Small projects with limited database connection that
wouldn't benefit much from frameworks' code generation

• Really big projects that additionally need extreme
performance, like the Google suite (you would be using a
compiled programming language for that rather than PHP,
anyway)

• With limited hardware resources that call for top
performance as well (not really a likely scenario because
programming costs are now always higher than hardware
costs)

• Specialist or experimental applications that may evolve in
completely unknown direction or work with some custom
solutions, like interfaces for scientific experiments with an
object-oriented database

• When you really need (and can afford) total control over the
code and evolution of the application

• When you want to create a web app, but you or your
co-workers don't want or, even worse, cannot learn how to
use a framework

These conditions are generally fulfilled by three types of
projects: small static websites, extremely specialist

websites, and failed websites. Frameworks are created for
development of common web applications with
well-known standard architecture. Of course, they may be
greatly extended thanks to plug-ins and modules, but
complete alteration of their structure may require much
painful hacking, so you should always check their
capabilities with the design requirements of your project.

PHP versus Other Programming Languages

PHP for many years has been a very popular programming
language; however, it was commonly judged as

41

unprofessional. A stereotypical PHP developer was an
undereducated freelancer producing cheap, low-quality
code. Professionals were supposed to use Zope, ASP, or
various Java technologies. Then in 2005 there was a boom
of Ruby. Everyone was amazed with the elegance of this
programming language; and Ruby on Rails, the central
piece of software ever written in Ruby, was claimed to be
the ultimate web applications framework. Soon clones of
Ruby on Rails began popping out. That's how Python's
Django and Turbogears, as well as all PHP frameworks
were born.

In 2004 PHP5 was released. It was neat and
object-oriented. If somebody still wrote old-styled HTML
mixed with pieces of PHP script, it was only his choice,
and the programming language no longer was to blame. It
took some time, but people gradually considered PHP as a
disciplined and professional tool. Together with the
modern MVC paradigm and features styled after other
frameworks, PHP begun its amazing way to the top of web
development applications.

After a few years, it became evident that Ruby on Rails
had various limitations. One important limitation was the
low availability and high price of Ruby hostings while
there was a lot of cheap hosting for PHP everywhere in the
world. There was also a great community that eagerly
developed early PHP frameworks. This resulted in an IT
revolution that dethroned Ruby on Rails as the most
popular framework and placed a council of PHP
frameworks in its place.

42

Figure 1.1 illustrates the change in interest in various
frameworks over time expressed as search volume in the
Google search engine in the Computers & Electronics

category. The figure was created with Google Insights for

Search, which is a more advanced form of the well known
Google Trends tool. You can check these search terms
yourself to obtain results beyond mid-2010 (that's when
this book was written), at the website www.google.com/
insights/search/.

Figure 1.1 Search volumes of frameworks in various
programming languages

Open Source PHP Web Frameworks

Another question we want to answer is why we have
chosen these three particular frameworks. Are they really
better in any way, or are we biased or perhaps have some
financial interest in promoting them? Well, starting with

43

that last question, we are completely independent open
source enthusiasts and we wanted to compare free (“free”
as free speech) software only, so there is certainly no Evil

Corporation behind us, and nobody told us which
frameworks to choose. We answer the question of whether
they're better than other frameworks in the following
sections.

There were once closed source PHP
frameworks as well, but due to widespread
success of the free frameworks, nowadays
closed source frameworks are a thing of the
past.

Comparison of Popular Interest

We have chosen Symfony, CakePHP, and Zend
Framework due to their popularity in the web developers'
community, including our own experience in PHP. We
believe that open source programming tools show at least
some correlation between their popularity and quality

because they are used only if they are really useful. In that
way they are different from things like proprietary
software or pop music, in which quality can be easily
replaced by aggressive marketing as the popularity gaining
factor.

44

It turns out that the public interest in web frameworks can
be measured quite objectively. Figure 1.2 shows search
volumes for various PHP frameworks in Google Insights

for Search. You can easily see that there are four leading
competitors. All the others combined are less popular than
any one of these four. The Lithium and Prado frameworks
have been deliberately omitted because their names are
nonunique, which generates false positives in trends. We
have checked these names in specific categories and found
that they are not significant as search terms, either.

Figure 1.2 Comparison of search volumes of different
PHP frameworks

When users search for information on a framework, the
search results usually reflect talk about it on various blogs
and forums, items about learning this technology, and
finally developing applications using it. So public interest
in a web framework results in real, long-term use of it.

45

CodeIgniter was really problematic for us. We had a long
debate whether it should be included as one of the main
frameworks. Perhaps now it is as frequently searched for
as Symfony or CakePHP, but what matters more is the
area under the graph because it reflects how many people
have found the answers they sought and have probably
used this knowledge for their projects.

Of course this graph shows nothing more than search
volume, and when you see such fast growth it is hard to
distinguish a long-lasting trend from temporary hype. We
know that CodeIgniter is really good, so it is definitely
more than a fad, and perhaps in a year or two it will have
its place among the leading web tools.

We finally agreed that three men against four frameworks

is not an equal fight. We have not completely forsaken
CodeIgniter, though; its features are described, along with
Lithium and Agavi, in Appendix b02, where a simple
application is developed using each one of them.

The First Look

The first look at the frameworks really gives us little
information on their individual features. Their websites
just try to impress you with marketing descriptions and a
list of features that vary little from one framework to
another:

“Symfony is a full-stack framework, a library of cohesive
classes written in PHP. It provides an architecture,
components and tools for developers to build complex web
applications faster. Choosing symfony allows you to

46

release your applications earlier, host and scale them
without problem, and maintain them over time with no
surprise. Symfony is based on experience. It does not
reinvent the wheel: it uses most of the best practices of
web development and integrates some great third-party
libraries.”

“CakePHP is a rapid development framework for PHP
that provides an extensible architecture for developing,
maintaining, and deploying applications. Using commonly
known design patterns like MVC and ORM within the
convention over configuration paradigm, CakePHP
reduces development costs and helps developers write less
code.”

“Extending the art & spirit of PHP, Zend Framework is
based on simplicity, object-oriented best practices,
corporate friendly licensing, and a rigorously tested agile
codebase. Zend Framework is focused on building more
secure, reliable, and modern Web 2.0 applications & web
services.”

Now see whether you can spot three differences. Well, the
websites are not really informative about unique features
of their frameworks. You can find more in various blogs
and forums, but still there is little verified data, and general
discussions tend to exchange purely personal opinions.

That is why we have written this book. In fact, the
differences between frameworks are not really obvious,
and it takes some time and practical examples to see them
and then harness them in business solutions. Let's begin
with some most basic facts.

47

Symfony

Started: 2005

License: MIT

PHP versions:

• Symfony 1.4: PHP 5.2.4+
• Symfony 2.0: PHP 5.3+

Its logo is shown in Figure 1.3. Website:
www.symfony-project.org

Figure 1.3 Symfony logo

Symfony was produced in a French web development
company, Sensio Labs, by Fabien Potencier. First it was
used for the development of its own applications and then
in 2005 it was released as an open source project. Its name
was “symfony,” but it is sometimes capitalized (as we do
in this book) in order to make it more distinct.

Symfony was based on an ancient Mojavi MVC
framework, with some inevitable influences from Ruby on
Rails. It also integrated Propel Object-Relational Mapper
and took advantage of the YAML Ain't Markup Language
(YAML) serialization standard for configuration and data

48

modeling. The default object-relational mapping (ORM)
solution has been later changed to Doctrine.

Today Symfony is one of the leading web frameworks. It
has a large active community and a lot of
documentation—mainly free e-books. Symfony 2.0 is
being released in late 2010. It offers various new features
and greatly enhanced performance.

CakePHP

Started: 2005

License: MIT

PHP versions: 4.3.2+

Its logo is shown in Figure 1.4. Website:
http://cakephp.org

Figure 1.4 CakePHP logo

CakePHP was started in 2005 by the effort of Polish web
developer Michał Tatarynowicz. Heavily inspired by Ruby
on Rails, CakePHP is an entirely community-driven open
source project with lead developer Larry Masters (aka

49

www.allitebooks.com

PhpNut). The next major release of CakePHP has also
been announced, but its release date is still unknown.

The most important goals of CakePHP are its friendliness,
development speed, and ease of use. And it really excels in
that. Works out of the box (or oven), with no
configuration. It has perfect documentation with working
examples for most of its features. And it has really a lot of
features to use. That allows the most rapid development
with a smaller amount of code.

One of the most controversial features of CakePHP is its
compatibility with PHP4. While once it allowed
deployment on old cheap hosts that did not support PHP5,
now it is more a drawback hindering CakePHP's
development. Fortunately, version 2.0 will use PHP 5.3+.
There are also reports of CakePHP's really bad
performance, but they were mainly due to disabled caching
by default.

Zend Framework

Started: 2005

License: new BSD

PHP versions: 5.2.4 since ZF 1.7.0

Its logo is shown in Figure 1.5. Website: http://
framework.zend.com

Figure 1.5 Zend Framework logo

50

http://www.allitebooks.org

Zend Framework is sponsored by the U.S.-Israeli
company, Zend Technologies Ltd., which was cofounded
by Andi Gutmans and Zeev Suraski, the core developers of
PHP. Strategic partners of Zend Technologies Ltd. include
Adobe, IBM, Google, and Microsoft. The company offers
various commercial products; however, Zend Framework
is an open source project released under the “corporate
friendly” new BSD license.

ZF is meant to be simple, component-based, and loosely
coupled. This means that it is a library of components,
which you can use as you wish, and usage of MVC
architecture is optional. This lowers the learning curve and
increases its flexibility. The documentation is great, and
the source code is of very high quality, both because it's
fully object oriented and thoroughly unit-tested. Zend
announced an upcoming 2.0 version as well, but its release
date is still unknown.

Other Frameworks

There are hundreds of PHP frameworks. This is not an
exaggeration if you count all of them, including ancient
and already abandoned projects, as well as brilliant
younger startups and some useless short-lived junk. The
web app market is a big one, but the amount of PHP tools
is disproportionally huge and perhaps somewhat excessive.

51

Here is an overview of a few more notable ones that we
have found to be used successfully to develop web
applications.

CodeIgniter

Started: 2006

License: modified BSD

PHP versions: 4.3.2+

Its logo is shown in Figure 1.6. Website:
http://codeigniter.com

Figure 1.6 CodeIgniter logo

CodeIgniter is developed and maintained by a
privately-owned software development company, Ellis
Labs. It is focused on having a very small footprint, while
allowing a big increase in performance. It follows the
MVC pattern only partially, for the models are optional. It
is loosely coupled and in the words of Rasmus Lerdorf, it's
“the least like a framework.” Its lightweight approach has

52

earned a wide recognition in the developers' community,
but it is sometimes criticized for conformance with PHP 4.

CodeIgniter is a good choice for less complex web
applications that would benefit from using a framework,
but the heavier ones would either hinder the applications'
performance with excessive features, or their configuration
would take too much time. The structural simplicity of
CodeIgniter makes it also a frequent pick by beginners
who choose it as learning platform before moving to a full
MVC framework.

Lithium

Started: 2009

License: BSD

PHP versions: 5.3+

Its logo is shown in Figure 1.7. Website: http://lithify.me

Figure 1.7 Lithium logo

Lithium took all the best that CakePHP had to offer and
moved it to PHP 5.3. First it was a branch of CakePHP
called Cake3, now it is a separate project run by some
former CakePHP developers. It is lightweight, fast, and
extremely flexible with extensive plug-in support. It has

53

many truly experimental and innovative functions like a
filter system and an integrated test suite.

The second search result Google showed us for “Lithium
framework” is a page titled “CakePHP is dead…Lithium
was born.” This claim is still far from true, however, with
the advantages provided by Lithium's support for PHP 5.3,
Lithium may really endanger CakePHP in the future unless
the latter takes immediate action.

Agavi

Started: 2005

License: LGPL

PHP versions: 5.2.0+ (recommended 5.2.8+)

Its logo is shown in Figure 1.8. Website: www.agavi.org

Figure 1.8 Agavi logo

Like Symfony, Agavi is based on the Mojavi framework. It
was started in 2005, but the 1.0.0 version was worked upon
until early 2009. The source code is very polished and

54

sometimes called the best-written MVC OOP framework.
However, it has not gained much popularity, perhaps due
to scarce documentation.

It was never meant to be popular. The authors stress that
Agavi is not a website construction kit, but a serious
framework built with power and extensibility in mind. Its
target applications are long-term specialist projects that
need full control of their developers.

Kohana

Started: 2007

License: BSD

PHP versions: 5.2.3+

Its logo is shown in Figure 1.9. Website:
http://kohanaphp.com

Figure 1.9 Kohana logo

Kohana is a community-supported offshoot of CodeIgniter.
In contrast with CodeIgniter, Kohana is designed for PHP5
and is fully object oriented. While boasting higher
elegance of code, it still has all the qualities of
CodeIgniter: It is extremely lightweight, flexible, and easy
to learn. The community behind Kohana is large and
active, so despite its young age it should be considered a
stable and reliable framework.

55

Prado

Started: 2004

License: revised BSD

PHP versions: 5.1.0+

Its logo is shown in Figure 1.10. Website:
www.pradosoft.com

Figure 1.10 Prado logo

Prado stands for PHP Rapid Application Development

Object-oriented. It enjoyed moderate popularity some time
ago, but now its development seems a bit sluggish.
However, it is still a mature framework well-suited for
most business applications. One of its interesting features
is that it nicely supports event-driven programming. It has
some similarities with ASP.NET.

Yii

Started: 2008

License: BSD

PHP versions: 5.1.0+

56

Its logo is shown in Figure 1.11. Website:
www.yiiframework.com

Figure 1.11 Yii logo

Yii was founded by a developer of Prado and it continues
many of its conventions. Yii is very fast (leading in most
benchmarks) and extensible, modular, and strictly object
oriented. It has a rich set of features and decent
documentation. It uses no special configuration or
templating language, so you don't have to learn anything
apart from object-oriented PHP to use it. Also, unlike
many other frameworks, it follows pure MVC architecture
with data being sent directly from Model to View.

Akelos

Started: 2006

License: LGPL

PHP versions: 4 or 5

Its logo is shown in Figure 1.12. Website: http://
www.akelos.org, http://github.com/bermi/akelos

Figure 1.12 Akelos 2 logo

57

While all PHP frameworks are more or less inspired by
Ruby on Rails, Akelos aims to be its direct port. It is
focused on internationalization (provides multilingual
models and views as well as Unicode support without
extensions) and can run on low-cost shared hostings (that's
why it has support for PHP4).

The author of Akelos announced the completely rewritten
Akelos 2. It drops support for PHP4 and uses autoloading
and lazier strategies for loading functionality. Its hallmarks
will be advanced routing methods and strong REST
orientation (REST is described in Chapter 12). It is to be
released in late 2010 and it looks very promising.

Seagull

Started: 2001

License: BSD

PHP versions: 4.3.11+

Its logo is shown in Figure 1.13. Website:
http://seagullproject.org

Figure 1.13 Seagull logo

58

Seagull is a true veteran among PHP frameworks—it was
founded in 2001. Years of development made it solid,
stable, and tested. It is no longer actively developed, so
perhaps it is not the best choice when starting a new
project, but there are still numerous successful applications
that were built with it. It has contributed greatly to the
development of all other PHP frameworks.

Qcodo

Started: 2005

License: MIT

PHP versions: 5.x

Its logo is shown in Figure 1.14. Website:
www.qcodo.com

Figure 1.14 Qcodo logo

Qcodo is an MVC framework that excels in code
generation from database design. It has a very powerful
code generator that analyzes the structure of the data
model, and creates PHP object code and also HTML pages
for database manipulation. Perhaps this is not one of the
more popular frameworks you are likely to hear about
during a casual conversation, but several top institutions
(including NASA) have applied it for their projects. Qcodo
was created by Mike Ho of QuasIdea Development and is

59

www.allitebooks.com

now developed by an active community. It also has a
completely community-driven fork called Qcube.

Solar

Started: 2005

License: New BSD

PHP versions: 5.2+

Its logo is shown in Figure 1.15. Website:
http://solarphp.com

Figure 1.15 Solar Framework logo

SOLAR stands for Simple Object Library and Application

Repository. Its structure and naming conventions are
similar to those of Zend Framework. One of the biggest
differences is how you construct objects—all are created
with a unified constructor and configured with an array in
a config file. It has many helpful built-in example
applications.

PHP On Trax

Started: 2007

60

http://www.allitebooks.org

License: GPL

PHP versions: 5.x

Its logo is shown in Figure 1.16. Website:
www.phpontrax.com

Figure 1.16 PHP on Trax logo

As the name cleverly suggests, this framework was
designed as an exact PHP copy of Ruby on Rails. At least
it was meant to be because it still lacks many features and
it is highly unlikely that it will finally realize this goal. It is
just one of many good-looking frameworks that have
eventually failed.

Design Patterns in Web Frameworks

There are certain abstractions that can be transported
between applications in order to make the development
process faster. This section takes a closer look at these
abstractions and the way they shape the web application
frameworks.

It is not absolutely necessary to understand design patterns
in order to start working with frameworks, so if you are

61

bored, you can skip to the next chapter and come back here
later. However, design patterns are fairly fundamental to
these frameworks and application development as a whole,
so we insist that you really come back here if you decide to
skip this section now.

What Is a Design Pattern?

The definition of design pattern states that it is a general

solution to a commonly occurring problem in software

design. There is really not much more formal foundation
because design patterns are a generally practical means
that make up for a lack in formal mechanisms. Most often
they are created when programming languages do not
provide abstract mechanisms that become undeniably
useful during the development of real-world applications.

A good analogy for design patterns is the game of chess. A
novice player needs just to know the rules. It's like learning
the basic syntax of a programming language. Still,
knowing how a bishop moves doesn't make you a
successful chess player, just like knowing how to open
braces doesn't make you a PHP programmer. Skilled
players are able to predict a few moves forward and
respond with a winning scheme. That's like an experienced
programmer who can, in fact, produce working software.

As you begin to master the game of chess, you begin to see
patterns emerging. You can barely glance at the
chessboard to classify the situation into one of these
patterns and provide a proven response, both for present
and future risks. You can perceive these patterns just
intuitively, or you may try to name them. It's the same with

62

software design patterns: when you are truly proficient,
you use them all the time. There is a good chance that you
have used some of them without even knowing it.

Naming design patterns is not necessary, but is indeed
good for two things. First is an aid for thinking with
patterns, because when you name something abstract, it is
much easier to implement it in practice. Then you may
further analyze this pattern, draw diagrams of it, and take
full advantage of it. And the other thing is that you can
share your experience. Chess players love to talk about
various openings and gambits, and programmers can learn
a lot by exchanging knowledge of design patterns as well.

And even more important, if you want another
programmer to add some functionality to a fixed class and
then tell him to use the Decorator pattern, you can expect
that it will be done the way you want it rather than with a
random makeshift solution. Thus design patterns have a
great potential for preventing future problems.

Model-View-Controller as the Main Structural Design
Pattern

Web frameworks take advantage of most, if not all, design
patterns. However, MVC is the absolute structural
backbone of all frameworks. The main idea of MVC is
dividing the application into three layers:

• Model—Represents the business logic of the application. It
is more than just the raw data; the Model has to represent the
structure of data with all relationships and dependencies. It
may comprise one or more classes that correspond to logic
objects of the application and provide an interface for

63

manipulating them. The Model is the only layer that uses
persistent storage. It should completely encapsulate all
database connections. The model should also notify the
View when its internal state changes, so the View can be
refreshed.

• View—The output displayed to the user. The most important
thing is that the View never modifies the application data; it
only presents it. There may be multiple Views for the same
data, such as traditional HTML, PDF, Flash, or WML for
mobile devices. They should be interchangeable without
modifying the other layers.

• Controller—The part of an application responsible for
handling user interaction and taking all other actions. The
Controller should be created with simplicity in mind—it
should be the controlling part that uses methods provided by
the Model and the View; it shouldn't do everything by itself.

Figure 1.17 illustrates the relations between the three
layers.

Figure 1.17 Model-View-Controller pattern

MVC versus MVP

64

MVC is an old design pattern, dating back to the 1979
work “Applications Programming in Smalltalk-80: How to
use Model–View–Controller.” by Trygve Reenskaug.
Since that time, it was often used in non-web applications,
mostly graphical user interfaces in compiled languages like
C++ or Java. There it was easy and natural to implement
an exact MVC pattern, but for web applications, it was
somewhat modified.

Model-View-Presenter (MVP), shown in Figure 1.18, is a
derivative of MVC. It is a three-tier application structure,
where the Presenter acts as a middle layer between the
View and the Model. The Presenter differs from the
Controller in that it loads data from the Model and delivers
it to the View.

Figure 1.18 Model-View-Presenter pattern

Most so-called MVC frameworks follow the MVP pattern.
While it is not bad itself because MVP seems even better
suited to the task, this naming convention may be

65

somewhat confusing. As long as MVP is derived directly
from MVC, it is not a big problem, so in this book we will
follow the names conferred by the authors of the
frameworks. So we will call all frameworks
Model-View-Controller, even if the Controller does the
majority of data-transferring work.

Overview of Other Design Patterns

Design patterns can be divided into creational, behavioral,
and structural patterns. Full description of all design
patterns is well beyond the scope of this book, but you can
find it in the most influential book on this subject: Design

Patterns: Elements of Reusable Object-Oriented Software,
by Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides (the Gang Of Four). However, we want to
provide you with just a short overview of design patterns
that are commonly used in web frameworks.

Singleton

This design pattern, which is so trivial it is often called an
antipattern, is very useful. The purpose of the Singleton

pattern is to ensure that a class has only one instance and
to make this instance globally accessible. Whenever
another object needs access to the Singleton, it calls a
static, globally accessible function that returns reference to
the single instance. You can see the structure of the
Singleton in Figure 1.19.

Figure 1.19 Singleton pattern structure

66

The trick behind Singleton is to make the instance and all
its constructors private. So there is no way to demand
creation of a Singleton class instance. How is the first
and only instance created? The instance() method
checks whether this object already exists; if not, it creates
the single instance before returning it. Let's look at how
this works with the PHP code.

<?php

class CarSingleton {

private $make = ‘Dodge’;

private $model = ‘Magnum’;

private static $car = NULL;

private static $isRented = FALSE;

private function __construct() {

}

static function rentCar() {

if (FALSE == self::$isRented) {

67

if (NULL == self::$car) {

self::$car= new CarSingleton();

}

self::$isRented = TRUE;

return self::$car;

} else {

return NULL;

}

}

function returnCar(CarSingleton $carReturned) {

self::$isRented = FALSE;

}

function getMake() {return $this->make;}

function getModel() {return $this->model;}

function getMakeAndModel() {return $this->getMake().’ ‘.$this->getModel();}

}

?>

code snippet /singleton/CarSingleton.class.php

The class in the preceding code is a Singleton representing
one concrete specimen of a Dodge Magnum car in a car
rental business. The __construct() function is the
constructor of this class. Note that it is set to private to
prevent usage from outside of the class. The double
underscore indicates that __construct() is one of the

68

magic functions in PHP (special functions provided by the
language), and declaring the constructor in a class will
override the default one.

CarSingleton does provide an interface for renting and
returning the car as well as pretty obvious getters. The
rentCar() function checks first whether the car is already
rented. This is not part of the Singleton pattern, but is
important for the logic of our example. If the car wasn't
rented, the function checks if the $car variable is NULL
before returning it. If it equals NULL, it is constructed
before the first use. Thus, rentCar() corresponds to the
instance() method of the design pattern.

The Customer class in the following example represents a
person who uses the services of the car rental business. He
can rent the car (there is only one), return it, and tell the
make and model of the car, provided that he drives it at the
moment.

<?php

include_once(‘CarSingleton.class.php’);

class Customer{

private $rentedCar;

private $drivesCar = FALSE;

69

www.allitebooks.com

function __construct() {

}

function rentCar() {

$this->rentedCar = CarSingleton::rentCar();

if ($this->rentedCar == NULL) {

$this->drivesCar = FALSE;

} else {

$this->drivesCar = TRUE;

}

}

function returnCar() {

$this->rentedCar->returnCar($this->rentedCar);

}

function getMakeAndModel() {

if (TRUE == $this->drivesCar) {

return ‘I drive ‘.$this->rentedCar->getMakeAndModel().’ really fast!’;

} else {

return “I can't rent this car.”;

}

}

}

?>

code snippet /singleton/Customer.class.php

70

http://www.allitebooks.org

We can test these classes with the following code. It
creates two customers, who both want to rent the car at the
same time. But the second one will have to wait until the
car is returned.

<?php

include_once(‘Customer.class.php’);

$Customer_1 = new Customer();

$Customer_2 = new Customer();

echo ‘Customer_1 wants to rent the car.
’;

$Customer_1->rentCar();

echo ‘Customer_1 says: ‘ . $Customer_1->getMakeAndModel() . ‘
’;

echo ‘
’;

echo ‘Customer_2 wants to rent the car.
’;

$Customer_2->rentCar();

echo ‘Customer_2 says: ‘ . $Customer_2->getMakeAndModel() . ‘
’;

echo ‘
’;

$Customer_1->returnCar();

echo ‘Customer_1 returned the car.
’;

echo ‘
’;

71

echo ‘Customer_2 wants to rent the car. Again.’ . ‘
’;

$Customer_2->rentCar();

echo ‘Customer_2 says: ‘ . $Customer_2->getMakeAndModel() . ‘
’;

echo ‘
’;

?>

code snippet /singleton/Test.php

The output of this code will look like this:

Customer_1 wants to rent the car.

Customer_1 says: I drive Dodge Magnum really fast!

Customer_2 wants to rent the car.

Customer_2 says: I can't rent this car.

Customer_1 returned the car.

Customer_2 wants to rent the car. Again.

Customer_2 says: I drive Dodge Magnum really fast!

The Singleton pattern is used often in other design patterns
such as Prototype, State, Abstract Factory, or Facade.
Apart from that, it can be used in all classes where you
need a single instance with global access, but there is no
way to assign it to another object, and perhaps you can
also benefit from initialization on the first use. Be wary,
though, because it is easy to overuse Singletons, and they

72

may be dangerous, just like global variables. Another
problem with Singletons is that they carry their state
throughout the execution of the program, which seriously
harms unit testing. Some experts even argue that Singleton
is a bad idea and it generally should be avoided.

Frameworks use Singletons for various reasons. One of
them is storing user data for security purposes. You want
to have a single instance of a user that holds authentication
data and make sure that no second instance can be created.
This approach is represented, for example, by the sfGuard
class of Symfony.

Prototype

The Prototype pattern is useful when you need the
flexibility of parameterized object creation and when you
want to avoid using the new operator. Object creation is
done here by creating a parent class with an abstract
clone() method and a few subclasses implementing
clone(). Each of these subclasses comes with one
instantiated Prototype object, which clones itself when you
call for a new instance. This results in easiness and
flexibility of object creation—you don't have to hard-wire
the concrete subclass name in your code. Instead you can
pass the name of the class as a string or reference to the
appropriate Prototype.

This pattern also greatly supports deep copying of objects.
Instead of cloning the Prototype, you can clone an existing
object, receiving an exact copy as the result. You can even
copy objects from a container with mixed objects of
various subclasses. The only requirement is that they

73

implement the clone() interface. Copying objects this
way is much faster than creating objects with new and
assigning values. A general diagram of this pattern is
shown in Figure 1.20.

Figure 1.20 Prototype pattern structure

PHP has another magic function: __clone()does most of
the work for you. All you have to do in the following
example is to create an abstract CarPrototype class and
subclasses for different producers. The __clone()
function is declared abstract, so subclass methods are
used by default when this method is called.

<?php

abstract class CarPrototype {

protected $model;

74

protected $color;

abstract function __clone();

function getModel() {

return $this->model;

}

function getColor() {

return $this->color;

}

function setColor($colorIn) {

$this->color= $colorIn;

}

}

class DodgeCarPrototype extends CarPrototype {

function __construct() {

$this->model = ‘Dodge Magnum’;

}

function __clone() {

}

}

class SubaruCarPrototype extends CarPrototype {

function __construct() {

$this->model = ‘Subaru Outback’;

}

75

function __clone() {

}

}

?>

code snippet /prototype/CarPrototype.class.php

Cars are quite an accurate example here, because in real
life a prototype is created by a manufacturer and then
different models are based on this prototype and filled with
unique features. The following code tests the preceding
classes. First, it creates two Prototype objects as showcase
cars and then clones one of them to serve the customer.
Then the color can be picked by the uniform interface.

<?php

include_once(‘CarPrototype.class.php’);

$dodgeProto= new DodgeCarPrototype();

$subaruProto = new SubaruCarPrototype();

echo ‘Which car do you want?
’;

$customerDecision = ‘Subaru’;

if($customerDecision == ‘Subaru’){

$customersCar = clone $subaruProto;

76

} else {

$customersCar = clone $dodgeProto;

}

echo $customersCar->getModel().‘
’;

echo ‘What color do you want?
’;

$customersCar->setColor(‘red’);

echo ‘Fine, we will paint your ‘.$customersCar->getModel().

‘ ‘.$customersCar->getColor().‘.
’;

?>

code snippet /prototype/Test.php

The previous code will result in the following messages:

Which car do you want?

Subaru Outback.

What color do you want?

Fine, we will paint your Subaru Outback red.

The Prototype pattern is used commonly in different
modules of frameworks. An example can be nesting of
forms within forms in Symfony or the AppController
class of CakePHP.

Decorator

Subclassing is a great mechanism, but it has some serious
limitations. Suppose that you want to produce a car. You
put all your effort into designing a good yet affordable

77

standard model of the car. It is a complete design that
defines the look and feel of this model and it is a reference
for any possible modifications. Then you seek to provide
some optional equipment that improves the quality of the
car and adds some new functionalities. For example, it
may be all-wheel drive instead of front-wheel drive. It may
be automatic transmission instead of manual. The car may
also come in different trim levels with electric leather
seats, sunroof, better audio, or GPS satellite navigation.
However the basic interface remains the same—you can
drive this car and feel good doing it.

When you face such alternatives, the number of possible
combinations rises really fast. Figure 1.21 shows some
combinations for just three improvements, described as
inheritance hierarchy.

Figure 1.21 Nasty inheritance hierarchy

The answer to this problem is the Decorator pattern. The
Decorator is a class that shares the interface with the

78

decorated class (in our example, it is the basic car). It
encapsulates an instance of the decorated object and
extends its responsibilities dynamically. It is like putting a
gift into a solid box and then wrapping it with colorful
paper—it is still a gift, but durable and decorated. The
inheritance structure of the Decorator pattern is presented
in Figure 1.22.

Figure 1.22 More reasonable inheritance hierarchy with
Decorator

You can put the decorated object into other Decorators
without limitations. This way you can add as many
optional modules as you wish. Decorators can have their
own inheritance hierarchy, and within this hierarchy they
encapsulate the core object recursively.

The code below creates a standard Car class without
optional equipment.

79

<?php

class Car{

public $gearMessage = ‘Remember to shift up.’;

public $comfortMessage = ‘standard.’;

function drive() {

return ‘Accelerating ‘ . $this->gearMessage .

‘ Driving comfort is ‘ . $this->comfortMessage;

}

}

?>

code snippet /decorator/Car.class.php

The following classes are responsible for extending the
functionality of the car. The first one, CarDecorator, is
the first level of wrapping. It stores the $car variable and
a copy of $comfortMessage. This variable will be
changed by a Decorator, so we create a copy to avoid
changing the original $car object. On the other hand,
$gearMessage is changed internally. The drive()
function is also subclassed to use the proper variables
$car->model and $this->gearMessage because we
want to access the core object here, but

80

$this->comfortMessage because we want to use the
amended value.

Second-level Decorators wrapping the CarDecorator are
used to install optional components, as shown below.
AutomaticTransmissionDecorator installs the
$gearMessage directly into the core $car, but
GPSDecorator is installed into the CarDecorator
instead. Note that all decorators share the common
interface and additionally provide specific installers.

<?php

class CarDecorator {

protected $car;

protected $gearMessage;

protected $comfortMessage ;

public function __construct(Car $car_in) {

$this->car = $car_in;

$this->comfortMessage = $car_in->comfortMessage;

}

function drive() {

return ‘Accelerating. ‘ . $this->car->gearMessage .

81

‘ Driving comfort is ‘ . $this->comfortMessage;

}

}

class AutomaticTransmissionDecorator extends CarDecorator {

protected $decorator;

public function __construct(CarDecorator $decorator_in) {

$this->decorator= $decorator_in;

}

public function installAutomaticTransmission(){

$this->decorator->car->gearMessage = ‘Auto transmission shifts up.’;

}

}

class GPSDecorator extends CarDecorator {

protected $decorator;

public function __construct(CarDecorator $decorator_in) {

$this->decorator= $decorator_in;

}

public function installGPS(){

$this->decorator->comfortMessage= ‘very high.’;

}

}

?>

82

code snippet /decorator/CarDecorator.class.php

We can test these classes with the following code.

<?php

include_once(‘Car.class.php’);

include_once(‘CarDecorator.class.php’);

$car = new Car();

$decorator = new CarDecorator($car);

$transmission = new AutomaticTransmissionDecorator($decorator);

$gps = new GPSDecorator($decorator);

echo ‘Driving standard car:
’;

echo $car->drive().‘
’;

$transmission->installAutomaticTransmission();

$gps->installGPS();

echo ‘Driving fully decorated car:
’;

echo $decorator->drive() . ‘
’;

echo ‘Driving the car without decoration:
’;

echo $car->drive() . ‘
’;

?>

83

code snippet /decorator/Test.php

And the result will be the following:

Driving standard car:

Accelerating. Remember to shift up. Driving comfort is standard.

Driving fully decorated car:

Accelerating. Auto transmission shifts up. Driving comfort is very high.

Driving the car without decoration:

Accelerating. Auto transmission shifts up. Driving comfort is standard.

First we call the basic Car model. Next we install the
optional equipment and call the drive() function of the
CarDecorator. Finally we choose to drive the car not
using the Decorator wrapping. Note that after calling the
$car then, its transmission is still automatic. That's
because the Decorator changed it permanently.

Going back to frameworks, the Decorator pattern is used
among others for layouts and templates. It is very useful
for adding optional visual components or extending the
user interface when new widgets are needed. An example
may be adding scrollbars when user input exceeds the field
area.

Chain of Responsibility

The three preceding design patterns concerned object
creation and inheritance structure. Chain of Responsibility

is a pattern of another kind, because it applies to the
behavior of objects. Its main intent is to decouple the

84

sender of a request from its receiver. Let's see how it
works with an automotive example.

Imagine that there is an emergency on the road and you
need to quickly stop the car. In other words, stop is the
emitted request. In most cases, hitting the brake pedal is a
sufficient solution, but there are rare cases when you find
the brakes broken; that's when Chain of Responsibility

comes in handy. If brakes cannot handle the request, they
pass it to the handbrake. If for any reason the handbrake is
broken, too, and you are going to hit the obstacle, at least
airbags should open potentially saving your life. Airbags
are the most generic solution to most road emergencies.
They are less preferred than more specialized solutions
(braking, evading), but still better than nothing if those
maneuvers fail. It's the same with your applications—it is
better to give the request a chain of potential handlers, as
shown in Figure 1.23, instead of letting it fail without even
an error message.

Figure 1.23 Chain of Responsibility as a response to a
request

85

So, how do you create such Chain of Responsibility? The
main idea of this pattern is to process a request by a list of
consecutive handlers to avoid any hard-wired mappings.
The initial client holds a reference only to the first element
in the chain of handlers. Then each handler holds a
reference to the handler afterward. The last handler must
always accept the request to avoid passing it to a NULL
value.

A good class structure supporting this behavioral pattern is
shown in Figure 1.24. It consists of a parent Handler class
that calls the handle() method to delegate the request to
the next concrete handler nextHandler. This Handler
class is subclassed by concrete handlers that try to do
something with the request; if they fail, they call the
handle() method of their superclass.

Figure 1.24 Chain of Responsibility pattern structure

86

Chain of Responsibility is commonly used for filters. One
example of filtering is when a user request is being
processed. First it checks whether the given controller
exists or not. If it doesn't exist, a 404 error is displayed. If
it does exist, the request is passed to the controller, which
handles it further. It checks whether a user tries to access
an unsecured page; if it's true, it redirects the request to an
SSL-secured page. Then it is checked for authentication,
and so forth.

State

Sometimes you want a component to behave differently
for various possible states of the application. First, define
an abstract State class, which is a common interface for
various ConcreteStates. All states provide a handle()
method that provides various behaviors of your
component. The Context class is the core class that wraps
a ConcreteState state object. This design pattern
makes sense when Context is a complete class that also
provides state-independent functionalities. Otherwise,
simple subclassing of Context would be more efficient.

Context calls the state->handle() method when
processing its own requests. Context also has methods for

87

switching between States. Depending on which
ConcreteState the state variable holds, the
state->handle() method provides different behaviors.
This can be regarded as emulation of a partial type change
at runtime. You can see a diagram of this pattern in Figure
1.25.

Figure 1.25 State pattern structure

The State pattern, although rather simple, is very useful for
application development. One example is database
connection—the database abstraction layer may change its
behavior depending on the current connection state.
Another example can be the state of a transaction in an
online store—the application may display different pages
depending on which steps are needed to complete the
transaction.

Iterator

There are many kinds of aggregate objects and many ways
to traverse them. One simple example is an array traversed
by consecutive integers supplied to the array operator. To
print out a five-element myArray, you could use the
following:

88

for ($i=0;$i<=4;$i++) {

echo $myArray[$i];

}

However, this solution is not at all elegant. First of all, you
have to take care of i variable values. PHP is not C/C++,
so it is not catastrophic to call for myArray[100] here—it
will not return random trash from memory. However, it is
still easy to skip some values with hard-wired ranges.
Another problem is that such an approach exposes the
underlying representation of this aggregation. It makes the
traversal procedure dependent on this specific
representation and thus is not reusable. Object-oriented
programming aims to encapsulate the internal structure of
aggregate objects and provide a uniform, safe, and useful
interface like this one provided by PHP:

interface Iterator{

function current(); // Returns the value of element under current key

function key(); // Returns the current key

function next(); // Moves the internal pointer to the next element

function rewind(); // Moves the internal pointer to the first element

function valid(); // Returns true if the element under current key is valid

}

Now every class implementing this interface can use the
foreach structure. The following snippet of code
produces the same output as the previous for loop:

foreach ($myArray as $value) {

89

echo $value;

}

The abstraction behind this mechanism is the Iterator

design pattern, pictured in Figure 1.26. The Client
application has access to two abstract classes:
Collection, which is the aggregate object interface, and
TraversalAbstraction, which is created by a
corresponding Collection. The underlying concrete
collections can be as different as a List and a Map, yet
corresponding methods of traversal can be produced for
both of them. When Client calls the next() method,
different ordering algorithms are executed for List and for
Map, but in both cases a subsequent element is found.

Figure 1.26 Iterator pattern structure

In web frameworks the Iterator pattern is used mainly for
pagination. You need a uniform interface to divide web

90

content into adequate pieces, turn them into separate web
pages, and then traverse through them.

91

Chapter 2

Getting Started

If you think your users are idiots, only idiots will use it.

—Linus Torvalds

What's In This Chapter?

• Setting up the hosting environment.

• Installing and configuring frameworks.

• Creating a Hello World application.

• Using integrated development environments (IDEs).

Before you start developing applications with the
frameworks, you need to follow a few simple steps. Web
applications cannot operate alone; they need to be placed
in a special hosting environment. This chapter will show
you how to install and configure all software required to
get your frameworks going and let you produce working
web apps.

Web applications and web frameworks are
system-independent, but must be configured properly for
the hosting environment they're in. We will show you how
to set up workspaces for Windows 7 64-bit, Ubuntu
Desktop 10.04.1 64-bit and Mac OS 10.6 Snow Leopard.
Of course, these instructions should work for most related
operating systems such as Windows Vista or other flavors
of Linux.

Requirements

92

In order to successfully build web applications with web
frameworks you need the following server software:

• An HTTP server that accepts incoming connections and
returns displayed websites

• A relational database based on SQL for persistent storage of
all kinds of data

• A PHP interpreter to turn your PHP code into system calls,
database queries, and dynamic web page content

To run the application on the client side, you just need a
web browser. Examples presented in this book were tested
on Mozilla Firefox 3.6.10 and Google Chrome 6.0.472.63
browsers, although they should work well on any modern
browser.

XAMPP

The server software requirements presented in the
preceding list are common for most web applications.
Therefore, the open source community has begun to create
packages of the best solutions to satisfy these needs.
Combining the Linux operating system, Apache web
server, MySQL database, and PHP interpreter, the popular
LAMP bundle emerged in the same way WAMP did for
Apache, MySQL and PHP for Windows, and MAMP for
Mac OS.

XAMPP stands for X = cross platform, Apache, MySQL,
PHP, and Perl. It is a wonderful server package that saves
hours (okay, maybe just minutes, but minutes are precious,
too) of work needed to install all these components
independently and make them work together. It is available
for all major operating systems. In addition to its main

93

components it also provides some other useful free
software, including the following:

• PEAR package manager—Discussed later in this chapter.
• phpMyAdmin—An immensely clever PHP application that

allows MySQL database administration from the level of
your browser. It allows modifying whole databases, tables,
and individual fields, executing raw SQL statements, and
importing and exporting data into various formats, among
other tasks. You can see the main page in Figure 2.1.

• OpenSSL—A cryptographic library implementing SSL and
TLS protocols, used for secure connections.

• SQLite—Embedded database system (also discussed later in
this chapter).

Figure 2.1 Main page of the phpMyAdmin database
management tool

After installing XAMPP, you may notice a security
warning on the phpMyAdmin main page: http://localhost/
phpmyadmin (see Figure 2.1). That's because
phpMyAdmin notices that your database's root user has
no password, which is indeed an open door for intrusion.
XAMPP is configured this way for your convenience—in

94

a development environment it's much easier to have
privileged access to the database without needing to type
in any passwords.

However, before moving to any production environment
you must make XAMPP secure. You can use the
http://localhost/security/ page to monitor your security
settings and also fix most basic security issues. Making a
web server fully secure is enough material for another
thick book, so we will not even begin to discuss it here.

XAMPP for Windows

Just go to the XAMPP website (www.apachefriends.org/
en/xampp.html), download the Windows version, and run
the installer. After the files are extracted, a command
window will open and ask you a few questions. The
default installation is advised. After the successful
installation, you should be able to run the XAMPP Control
Panel Application, as shown in Figure 2.2. Try to run
Apache and MySQL.

Figure 2.2 XAMPP Control Panel with Apache and
MySQL running

95

If any of these modules doesn't start, first check your
firewall settings. Apache uses ports: 80 (HTTP), 81
(WebDAV), and 443 (HTTPS). MySQL uses port 3306.
For Apache and MySQL to start properly, these ports must
not be blocked by a firewall nor used by any other
program. You can use the Port-Check button in the
XAMPP Control Panel to find out if any other program
uses these ports. A common conflict-maker here is Skype.
You need to close such conflicting programs first or
change their settings not to block these ports.

On Windows Vista, a problem was reported with the User
Account Control (UAC). To deactivate it, type msconfig
in the start menu; then go to Tools and disable User Access
Control.

Another thing you need to do is set the PATH environment
variable. Right-click Computer and select Properties from
the context menu. In the window that opens, click

96

Advanced system settings to open the System Properties
dialog. Select the Advanced tab and click the Environment
Variables button. In the Environment Variables dialog you
will see a list of all environment variables. In the System
variables pane in the lower part of the dialog, find Path
and edit it to add the following path:

;C: xampp php;C: xampp mysql bin

Note that all entries must be separated by a semicolon and
no spaces. All steps of this process are shown in Figure
2.3.

Figure 2.3 Setting the PATH environment variable

You will know that your XAMPP is working fine when
you type http://localhost in your browser and you see a
welcome screen.

97

XAMPP for Linux

Although there are also downloadable installation files of
XAMPP for Linux, most Linux users prefer to install all
components separately using package managers because it
is even faster and simpler than downloading a compressed
folder from the Internet. This will be covered in the next
few pages. It is also consistent with Linux methodology
that recommends using package managers for installation
whenever possible because it allows easy management and
automated updating of your software. As one somewhat
radical friend commented, “No true Tuxhead would ever
use that!”

XAMPP for Mac OS

Download the Mac OS package from the XAMPP website
(www.apachefriends.org/en/xampp.html). A window will
open (see Figure 2.4).

Figure 2.4 Mac OS XAMPP package

It is a .dmg installer, so just drag and drop it into the
/Applications folder. You will see a progress bar like
the one shown in Figure 2.5.

Figure 2.5 Mac OS XAMPP installer progress bar

98

Finally, go to /Applications/XAMPP and run the
XAMPP controls. You will see a nice little Control Panel
(see Figure 2.6).

Figure 2.6 Mac OS XAMPP Control Panel

Now add /Applications/XAMPP/xamppfile/bin to
your environment variables. You can do it in a few ways,
including using the following command:

$ export PATH=${PATH}:/Applications/XAMPP/xamppfile/bin/

Apache

Apache, the most popular HTTP web server, is used to
host the majority of websites around the world. It is an
open source project, maintained and developed by the
Apache Software Foundation.

Windows Installation

Apache is installed as a part of XAMPP, so you don't have
to install it separately.

Linux Installation

99

You can get Apache for all flavors of Linux. The following
command installs it for Ubuntu:

sudo aptitude install apache2

When you go to http://localhost/ in your browser, you
should see a welcome message from the server (see Figure
2.7).

Figure 2.7 Apache welcome message

Your installation is not done yet. You need to install the
PHP5 engine and PHP5 module for the server:

sudo aptitude install php5 libapache2-mod-php5

Then restart Apache with following command:

sudo /etc/init.d/apache2 restart

MacOS Installation

Just as with Windows, Apache is installed with XAMPP
on Mac OS.

Database

All web applications need persistent data storage. The
most widely used mechanisms are relational database

100

management systems (RDBMSs). They are not really
perfectly matched for object-oriented web applications
(this is further discussed in Chapter 3), but they are
standard technologies used by most companies and by the
frameworks.

Now let's focus on installing a database solution.

MySQL

MySQL is one of the leading open source databases. First
it was developed by a Swedish company, MySQL AB;
then the company was bought by Sun Microsystems,
which in turn was bought by Oracle Corporation in 2010.
MySQL is equipped with innovative features such as
triggers, views, replication, and stored procedures. It is
written in C/C++, is multithreaded, and is among the
fastest RDBMSs with client-server architecture.

XAMPP includes MySQL, so you don't have to install it
anymore on Windows and Mac OS. To install MySQL and
PHP5 support under Ubuntu, type the following into the
console:

sudo aptitude install mysql-server mysql-client php5-mysql

The package manager will ask you if you want to set up a
root password. Although such a password is strongly
recommended for production environments, it is easier to
develop our applications without this password. If you
need to set it (for example, if phpMyAdmin wants it), you
can do it any time with following command:

sudo mysqladmin -u root password NEW_PASSWORD

101

SQLite

Most databases are built on client-server architecture, in
which the database is a standalone process of the operating
system, and all applications need to establish connections
with it. SQLite is completely different. It works as a
statically or dynamically linked programming library that
is embedded into applications, allowing communication
with the database by function calls (which is much more
efficient). This approach also removes the necessities of
installation and administration. The whole database is
stored in a single file with a mechanism of locking it for
read and write operations. SQLite is light, but fast and
capable. It is generally ACID-compliant (atomicity,
consistency, isolation, durability), but the programmer
must manually impose integrity constraints on data types;
otherwise, it is possible to insert incorrect data types.
SQLite lacks some features of heavier databases, such as
views or triggers.

XAMPP also includes SQLite. To install both SQLite and
PHP5 support under Ubuntu, just type the following:

sudo aptitude install sqlite php5-sqlite

phpMyAdmin—Linux

If you envy XAMPP users the phpMyAdmin application,
you can install it now with following command:

sudo aptitude install phpmyadmin

102

It will automatically configure your Apache and MySQL
database. You only need to include into /etc/apache2/
apache2.conf the following line:

Include /etc/phpmyadmin/apache.conf

You can access phpMyAdmin at http://localhost/
phpMyAdmin.

PEAR

PEAR stands for PHP Extension and Application
Repository. It is a distribution system, sometimes also
called a framework, and can be very helpful in PHP
development. PEAR provides modules of PHP code, called
packages, and a package manager for easy installation of
these. The full list of packages can be found at
http://pear.php.net/packages.php.

To install some packages, go to the command line. To call
a Windows command line with PEAR support, go to the
XAMPP Control Panel and click the Shell button. Find on
the package list at the PEAR website the name of the
package you want to install; for example, let it be a tool for
Fibonacci series computation: Math_Fibonacci-0.8.
You can install it using following command:

pear install Math_Fibonacci-0.8

As you can see in Figure 2.8, this package is dependent on
another package: Math_Integer. You can install it
automatically with following switch:

pear install --alldeps Math_Fibonacci-0.8

103

Figure 2.8 Installing PEAR packages with XAMPP shell
for Windows

Now you have the package installed and you can include
its classes into your applications.

PEAR also provides an upgrade tool for easy updating of
packages. A special example is upgrading the PEAR itself
with following command, (which is a recommended
action, by the way):

pear upgrade pear

Windows

PEAR is included within the XAMPP package.

Linux

PEAR is included into some Linux distributions. If it's not,
you can easily install it with package managers:

104

apt-get install php-pear

Mac OS

PEAR is already installed within XAMPP.

Subversion (SVN)

Subversion is a revision control system founded in 2000 by
CollabNet Inc. Its popular name, SVN, is derived from its
shell command svn. It is not required for installation of
web frameworks, nor for further development with them,
so this installation is optional.

This tool is essential in most community projects, so even
if you do not use it to install the frameworks, you will
surely run across it one way or another. If you have never
used this tool, you should become familiar with it.

The features of Subversion include the following:

• Full tracking of the past versions of the project
• Allows branching and merging of code
• Interrupted commit operations do not break the files (they

are atomic)
• Efficient storage using differences between versions
• Program messages are translated into many languages.

You can learn more about SVN and get download
instructions at http://subversion.apache.org/.

Installation Overview

At this point you have all your required software
downloaded and set up. Generally there is more than one

105

way to install the frameworks. Installation with PEAR is
generally the easiest way. You can also download sandbox
applications that need just extraction to a chosen folder.
Package managers provide a Linux way of fast managed
installation, but some distributions use very obsolete
versions (see the following table for consideration of
Ubuntu packages). Finally, there is the possibility of SVN
checkout for advanced users to get fresh, updated code.

The following table compares availability of the
installation methods.

Installation

This section covers the installation of Symfony, CakePHP,
and Zend Framework for Windows 7 64-bit, Ubuntu
10.04.1 Desktop Edition 64-bit, and Mac OS 10.6 Snow
Leopard. Of course, this should work with little or no
modifications for other versions of these operating
systems. We assume that you have all your required
software installed and properly configured. Installation of
frameworks varies little between different operating
systems. Generally we will provide one installation guide,
and minor differences will be put into square braces: [].

Symfony

106

Although there are many ways to install Symfony, we will
show only the simplest approaches in this section. The
sandbox is a fast preview—you don't have to follow this
installation, but we believe it might be useful if you have
never installed any frameworks before. PEAR is our
default installation for Windows and for Linux as well.
Advanced developers will probably want to check out
from SVN (and they will need no guidance), but this
involves setting up an SVN environment, which is not
necessary and might be an effort for beginners. Package
managers provide (for Ubuntu) the obsolete 1.0 version, so
they will be disregarded here.

Installation instructions are for Symfony 1.4.8. By the time
you read this book, Symfony 2.0 should be available to
download with PEAR. At the time of writing, the 2.0 beta
is available for preview as a sandbox application and that's
how we installed it to describe Symfony 2.0 features.

Sandbox

Sandbox is the absolutely fastest way to start playing with
Symfony because all you need to do is download a
package from http://www.symfony-project.org/installation
and unzip the /sf_sandbox folder into the web root
directory:

• Windows—C: xampp htdocs
• Linux—/var/www
• Mac OS—/Applications/XAMPP/htdocs/

Then you can type http://localhost/sf_sandbox/web/ into
your browser to see your sample project.

107

Well, even if the sample project is working, it probably
lacks CSS and images. If that's the case, you will see this
message:

This project uses the symfony libraries. If you see no image

in this page, you may need to configure your web server so

that it gains access to the symfony_data/web/sf/ directory.

This page with no CSS is shown later in this chapter in
Figure 2.11, where it is the output of the default project
generator. When you look at the web page source, you see
that the image links point to nonexistent folders. This may
lead to lots of confusion because you might expect that a
sandbox application would really run out of the box, just
like the Symfony developers promised!

You do not really need these images because you will
shortly transform this example into your first application,
but it's educative to do it anyway. The simplest way to
enjoy these images is to add an alias to your Apache
server, redirecting the nonexistent directory to the proper
path. To do that, go to C: xampp apache conf in
Windows, /etc/apache2/ in Linux, or
/Applications/XAMPP/etc/ in Mac OS and then add
the following line at the end of the httpd.conf file:

• Windows:

Alias /sf_sandbox/web/sf “C: xampp htdocs sf_sandbox lib vendor
symfony data web sf”

• Linux:

Alias /sf_sandbox/web/sf var/www/sf_sandbox/lib/vendor/symfony/data/web/
sf

108

• Mac OS:

Alias /sf_sandbox/web/sf /Applications/XAMPP/xamppfiles/lib/php/pear/data

/symfony/web/sf/

Restart the Apache server. The resulting webpage will look
like Figure 2.9.

Figure 2.9 Sample Symfony project

It is perfectly okay to use the sandbox version of Symfony
stored in the web root folder for learning and development
because it is a complete installation of Symfony. However,
for production environments you have to separate the
configuration files from the web presentation files for
security reasons. Otherwise, vulnerable files such as
/config/databases.yml will be accessible to the
public.

109

To uninstall the sandbox, simply delete the /sf_sandbox
folder and undo the modification in httpd.conf.

PEAR

This method is also fast and simple. Just open your
command line and type (sudo for Linux) the following:

pear channel-discover pear.symfony-project.com

pear install symfony/symfony

The most up-to-date version of Symfony will be installed.
This book was written using Symfony 1.4.8, so if you want
to install this specific version, type this instead:

pear channel-discover pear.symfony-project.com

pear install symfony/symfony-1.4.8

A great advantage of this approach is that the symfony
command has been integrated with the console. You can
check it with this:

symfony

You will get a list of available tasks.

CakePHP

CakePHP installation is extremely straightforward because
in contrast with Symfony, everything works out of the box.
You just need to go to the CakePHP website
(http://cakephp.org) and download the package. Then
create in your web root directory a /cakephp folder and
unpack the package contents into it. At the time of writing

110

this book, the most recent CakePHP version was 1.3.4, and
we have used it for most code samples. If you experience
problems with a newer version, you can download 1.3.4
from the CakePHP website. When the package is
unpacked, you should see a welcome screen like that
shown in Figure 2.10 after typing http://localhost/cakephp
in your browser.

Figure 2.10 CakePHP welcome page

Linux users probably will not see a page like this because
of default Linux settings. If images are missing and you
get warnings that some files are not writeable, you need to
do a few things more. First, recursively change the web
root directory to be writeable:

$ sudo chmod -R 777 /var/www

The second thing is to make sure that mod_rewrite is
activated. To do it, invoke the following command:

$ sudo a2enmod rewrite

111

And finally edit /etc/apache2/sites-enabled/
000-default. Locate the following block:

<Directory /var/www/>

Options Indexes FollowSymLinks MultiViews

AllowOverride None

Order allow,deny

allow from all

</Directory>

Change AllowOverride None to AllowOverride All.
Restart your Apache. It should now work as shown in
Figure 2.10.

Apart from this sandbox application, you can also install
development versions of CakePHP using the Git online
revision control tool, but stable versions are highly
recommended.

Zend Framework

Zend Framework has a wide choice of install options. Our
recommended approach is to use the PEAR channel. This
is an unofficial PEAR channel, yet it is regularly updated
and works just fine. However, just in case it is ever broken
or discontinued, we also present the installation from
archive. The version that was used to write this book is
1.10.8, so you may look for it if you experience
compatibility issues with the latest version.

112

You can also install Zend Framework bundled with Zend
Server Community Edition (CE), which is a nice and easy
way to start development with Zend Server. However, in
this book we will not follow this approach in favor of
approaches that are easier to compare between
frameworks.

There are also almost up to date Ubuntu packages of Zend
Framework. Perhaps there is not a regular update schedule,
but if you feel adventurous, you can try installing ZF with
package managers. Of course, SVN checkout is possible as
well.

PEAR

The PEAR channel provides the fastest and simplest
installation method. Just go to your console and type the
following:

pear channel-discover pear.zfcampus.org

pear install zfcampus/zf

Zend Framework libraries will be installed and the
command-line tool will be integrated with your shell.

Archive

First download a Full package of Zend Framework from
its website, http://framework.zend.com/download/latest.
There is also a Minimal package, but it lacks several
modules you will need later. ZF doesn't provide any
sandbox application, so installing from archive means just
extracting its contents to a directory of your choice.

113

Configuration

There are some minor tasks that need to be done before
you can create your sample projects. The solutions
presented here are absolutely the simplest methods to
make things work and sometimes are not elegant. If you
are experienced in operating systems and web
development, you can add several upgrades such as
separating your development environment from the web
root and creating a personalized /public_html folder,
but it's not needed for a quick start. Also we will not
configure frameworks to connect to the databases. The
next chapter is focused on everything associated with
databases and data models, and they will be explained in
detail there.

Symfony

There is not much configuration for Symfony here. Some
configuration will be done during the Hello World
example, but there is nothing to prepare before getting to
that point. However, don't be lulled into a sense of
complacency by this fact, as you will configure many
things in Symfony later on.

CakePHP

Remember the welcome page of CakePHP (Figure 2.10) at
http://localhost/cakephp? It displayed some notices to
attract your attention, and now we will deal with them.

First, change the Security.salt and
Security.cipherSeed values in /app/config/

114

core.php, as shown in the following code. They are
needed for security purposes—you need to provide random
values generated by yourself. Security issues are further
described in Chapter 8.

/**

* A random string used in security hashing methods.

*/

Configure::write(‘Security.salt’, ‘nrhG93b0qyJfIxfs3guVoUubWwvniR2G0dgaC9mi’);

/**

* A random numeric string (digits only) used to encrypt/decrypt strings.

*/

Configure::write(‘Security.cipherSeed’, ‘46859309657453543496741683645’);

The two top yellow (light grey in Figure 2.10) blocks
should be gone now. While you are in the /app/config
directory, make a copy of the database.php.default
file and change the name of the copy to database.php.

When all other configuration steps are done, the last thing
is to add the cake command to the command-line
interface:

• Windows—Add to the PATH environment variable (the
process was shown during XAMPP installation) following
path:

;C: xampp htdocs cakephp cake console

• Linux—The following command is a smart way to add the
path to the environment of the current user. The /home/
username/.profile file is modified as the result:

115

echo ‘export PATH=/var/www/cakephp/cake/console:$PATH’ >> /.profile

• Mac OS—You can export the path with the following
command:

$ export PATH=${PATH}:/Applications/XAMPP/htdocs/cakephp/cake/
console

Zend Framework

Once you have your framework installed, you need to do
two things. The first one is to make sure that the ZF's
command-line tool is added into the PATH environment
variable. This tool is found here:

• Windows—/path_to_zf/bin/zf.bat
• Linux—/path_to_zf/bin/zf.sh
• Mac OS—/Applications/XAMPP/xamppfiles/bin/zf

The good thing about PEAR is that this will be already
done during the installation.

The second thing is to add the Zend /library to the PHP
include_path. To do it, you need to find a corresponding
line in php.ini and add the path to /path_to_zf/
library. This file can be found here:

• Windows—C: xampp php
• Linux—/etc/php5/apache2
• Mac OS—/Applications/XAMPP/xamppfiles/etc

Also check register_globals and magic_quotes_gpc
and make sure they are both Off.

Hello World!

116

It is finally the time to create and run your first framework
application. If you have used a sandbox, most of the work
has been already done. That's why we recommend the
PEAR installs wherever possible—they are the easiest to
configure and you can still learn how to use the
command-line interface to create your projects.

Symfony

Go to your web root and create a new directory there, for
example /symfony. Then open the console, navigate to
this new folder, and turn it into a Symfony project:

$ symfony generate:project symfony

Inside this project, create an application. Let it be named
frontend because it will produce the output for the user:

$ symfony generate:app frontend

Still inside the main project folder, execute the following
statement to create a hello module of the frontend
application:

$ symfony generate:module frontend hello

You can now go with your browser to http://localhost/
symfony/hello and admire the web page of your default
generated project, shown in Figure 2.11. If you played
with the sandbox installation, notice that it's the same
image-less page.

Figure 2.11 Web page of the default Symfony project

117

We want to change this default view to a view of our new
module. Locate the file /symfony/apps/frontend/
config/routing.yml and change the homepage
parameter from the default module to the hello module.
After editing, these lines should look as follows:

homepage:

url: /

param: { module: hello, action: index }

code snippet /symfony/apps/frontend/config/routing.yml

This code redirected the main page of this application to
our module. You can check this in your browser, but you
need to clear the cache from the command line:

symfony cc

Now when you go to http://localhost/symfony/hello, you
should see Figure 2.12.

118

Figure 2.12 Web page of the generated hello module

It is just a bit better, but you are still in the default
module. To be able to display your own module, go to
/symfony/apps/frontend/modules/hello/
actions/actions.class.php and comment out the
forwarding function, just like this:

<?php

class helloActions extends sfActions {

public function executeIndex(sfWebRequest $request) {

//$this->forward(‘default’, ‘module’);

}

}

code snippet /symfony/apps/frontend/modules/hello/

actions/actions.class.php

119

Now the browser will display a blank page because the
index view for the hello module is empty. To change
that, go to /symfony/apps/frontend/modules/
hello/templates/indexSuccess.php and put the
following there:

<h1>Hello World!</h1>

code snippet /symfony/apps/frontend/modules/hello/

templates/indexSuccess.php

Now check http://localhost/symfony/hello again. You
should see a big black Hello World! message, as shown in
Figure 2.13. Well done!

Figure 2.13 Hello World example in Symfony

CakePHP

It's time to create the first application in CakePHP. You
will need a controller, a model, and a view. First, let's
make the controller. Create a new file in /app/
controllers and name it hello_controller.php.
Names are important in CakePHP because they indicate

120

the default file for the hello controller. You need to add
into this controller the following code:

<?php

class HelloController extends AppController{

function index(){

$this->set(‘test’, “Hello World!”);

}

}

?>

code snippet /cakephp/app/controllers/

hello_controller.php

It is possible to create a controller that uses no model, but
we want to include a dummy model instead into our
example. When you set the $useTable property to false,
it makes a model that does not use a database. Your
database is not connected yet, so that's exactly what you
need now.

121

<?php

class Hello extends AppModel{

var $useTable = false;

}

?>

code snippet /cakephp/app/models/hello.php

Create the view that will present the data to the user. In the
controller, you have set a test variable that can be
displayed in the associated view. You need to create an
additional /hello folder inside /app/views. Note also
that this view needs a peculiar CakePHP template file
.ctp extension.

<html>

<body><h1><?php echo $test ?></h1>

<p>Congratulations! You have created your first CakePHP project.

</body>

</html>

code snippet /cakephp/app/views/hello/index.ctp

Go to the file /app/config/routes.php and comment
out the two default routing schemes. Write a rule that

122

redirects connections from the web root to the hello
controller and sets index() as the default action.

// Router::connect(‘/’, array(‘controller’ => ‘pages’, ‘action’ =>

‘display’, ‘home’));

// Router::connect(‘/pages/*’, array(‘controller’ => ‘pages’, ‘action’ =>

‘display’));

Router::connect(‘/’, array(‘controller’ => ‘hello’, ‘action’ => ‘index’));

The result is presented in Figure 2.14. Notice that the
CakePHP default stylesheet was used.

Figure 2.14 Hello World example in CakePHP

Zend Framework

Navigate with your command line to the place where you
want to set up your Hello World application. In this case, it
will be the web root folder. Then use ZF's command-line
tool to create a project template:

$ zf create project zfhello

Now you can go to your browser and type in this link:
http://localhost/zfhello/public. You will hopefully see a

123

blue image (its grayscale version is presented in Figure
2.15).

Figure 2.15 The default web page of a new Zend
Framework project

The default controller and view were already created by
the zf create project command, so there is not much
work to be done. But take a look at them anyway. First the
controller:

<?php

class IndexController extends Zend_Controller_Action

{

public function init()

124

{

/* Initialize action controller here */

}

public function indexAction()

{

// action body

}

}

code snippet /zfhello/application/controllers/

IndexController.php

As you can see, it has only stubs of actions. You will fill
them later and write new ones as well.

Second, take a look at the view. It is located at /zfhello/
application/views/scripts/index/index.phtml.
Notice the .phtml extension. It is a pre-HTML template
that is preprocessed before being served as an HTML
page. It may also have PHP scripts embedded. You can
type a paragraph or two into it. For example, in the
following code you add a Hello World message under the
<h3> title:

<style>

125

// various style definitions

</style>

<div id=”welcome”>

<h1>Welcome to the Zend Framework!</h1>

<h3>This is your project's main page</h3>

<div id=”more-information”>

<p><img src=”http://framework.zend.com/images

/PoweredBy_ZF_4LightBG.png” /></p>

<p>

Helpful Links:

<a href=”http://framework.zend.com/
”>Zend Framework Website |

<a href=”http://framework.zend.com/manual/en

/”>Zend Framework Manual

</p>

</div>

</div>

code snippet /zfhello/application/views/scripts/index/

index.phtml

We couldn't leave without showing a Hello World
example, so we have edited this file a little and you can see
the effect in Figure 2.16.

Figure 2.16 Hello World example in Zend Framework

126

That's it! You've managed to install all frameworks,
configure them, and create your sample Hello World
applications.

Structure

This section will take a look at the structure of folders and
the most important files after the default installation and
creation of a project. The default installation method is
PEAR for Symfony and Zend Framework, and the sandbox
application for CakePHP.

Symfony

Symfony framework core installation—that is, all files
installed by PEAR will be called the global files, while the
place where your application is developed with all files
generated by Symfony will be referred to as local files. In
the sandbox installation, global and local files are placed
together, so if you decided to use it, you will have to make

127

the appropriate adjustments to follow the information in
this section.

The global files are divided into two folders. The first
folder, /data/symfony, is located in the user space of
your operating system. Under Linux, it is in the standard
directory, C: xampp php PEAR data symfony, but under
Windows. You must look for it at C: Users Username
pear data symfony web. This folder contains Symfony's
command-line tool and media files for web
templates—check /data/symfony/web/sf/
sf_default if you want styles for your default Symfony
website. The hierarchy for this folder is the following:

/data/symfony

bin

web

The second global folder contains Symfony libraries, as
shown in the following list. If you have installed XAMPP,
it will be located at /xampp/php/PEAR/symfony. Under
Linux it will be /usr/share/php5/symfony/.

/symfony

action

addon

autoload

cache

command

config

128

controller

database

debug

escaper

event_dispatcher

exception

filter

form

generator

helper

i18n

log

mailer

plugin

plugins

request

response

routing

storage

task

test

user

util

129

validator

vendor

view

widget

yaml

The local folder is created by you in the web root or in any
other location you prefer. It consists of the following
folders:

/symfony

apps

cache

config

data

lib

log

plugins

test

web

The important thing about Symfony is that it generates
three levels of applications. The root local symfony folder
is the project folder. In /apps there may be multiple
applications. And each of these applications has a
/modules folder where you create individual modules
folders, resulting in organized, yet needlessly long, paths
to individual files.

130

CakePHP

After installation, CakePHP has the following folder
structure:

/cakephp

app

cake

vendors

plugins

.gitignore

.htaccess

index.php

README

• app—The folder of your application. It contains a template
folder structure and some default files.

• cake—Contains core components of CakePHP. You should
never edit it.

• vendors—Placeholder for third-party libraries.
• plugins—Here you can install CakePHP plug-ins.
• .htaccess—Server access rule that redirects you to /app/

webroot, where the welcome message and a script verifying
your installation are located.

• index.php—PHP redirection in case mod_rewrite was
not enabled.

The /app folder is especially interesting and you will use
it often:

/app

131

config

controllers

libs

locale

models

plugins

tests

tmp

vendors

views

webroot

.htaccess

index.php

The names are mostly self-explanatory, but please note the
following folders:

• config—CakePHP follows a convention over configuration

approach. There are only a few necessary configuration files
and they are stored there.

• controllers, models and views—The MVC pattern in
action.

• plugins & vendors—There are also folders with these
names in the main /cakephp folder. These additional
folders allow better customization of multiple applications.

• tmp—Stores temporary data-like logs or session
information. It must be writeable.

132

• webroot—The document root of your application for
production environments. Contains CSS, images,
JavaScripts, and other deployable files.

Zend Framework

The full downloadable package after installation includes
these directories:

/ZendFramework-1.10.8

bin

demos

externals

extras

incubator

library

resources

src

tests

INSTALL.txt

LICENSE.txt

README.txt

Of these, the most important is the /library folder that
holds the majority of the framework itself. That's why ZF
is sometimes called “more a library than a framework.”
You can unpack this whole structure to any directory, as
long as it is a fixed place. If installed with PEAR, only
libraries and binaries are installed. The command-line

133

binaries are exported into the shell then. You will find the
libraries in the following folders:

Under Windows:

C: xampp php PEAR Zend

Under Linux (usually):

/usr/share/php/Zend/

And under Mac OS:

/Applications/XAMPP/xamppfiles/lib/php/pear/Zend/

When you create a project using command-line tools, it
looks like this:

/zfhello

application

Bootstrap.php

configs

application.ini

controllers

ErrorController.php

IndexController.php

models

views

helpers

scripts

134

error

error.phtml

index

index.phtml

library

public

htaccess

index.php

tests

application

bootstrap.php

library

bootstrap.php

phpunit.xml

An important file here is /zfhello/application/
Bootstrap.php. It allows mapping URLs to controller
actions. It also defines which components and resources
should be initialized.

IDE Support

In this book, we will show you how to build web
applications using pure frameworks and their plug-ins with
as little third-party support software as possible. That's the
best way to understand the nature of each framework and
grasp its unique qualities. However, once you get familiar

135

with them, you might want to use an integrated
development environment (IDE) to further speed up and
organize your development process. There are a few IDE
solutions that you can integrate with your frameworks; the
most notable are NetBeans, Eclipse, and Zend Studio.

These IDE integrations are purely optional and not
required for further chapters of this book. Moreover, you
can integrate an IDE while in any part of this book, so you
can skip it now. As a rule of thumb, you should use an IDE
only if you exactly know how you will benefit from it.

NetBeans

NetBeans is written entirely in Java, so it is commonly
called “a Java tool.” Many developers do not know that it
is also a great IDE for PHP development. It provides
built-in support for Symfony and Zend Framework. It
offers a few development enhancements like:

• Autocompletion for both application and framework classes
• Running framework commands by keyboard shortcuts or

convenient menus with searching and documentation
• Automated creation of frontend and backend apps
• Support for YAML syntax
• Error messages printed with red font—simple yet useful

You can download NetBeans from http://netbeans.org/
downloads/index.html. Then you need to include the
framework's library in NetBeans preferences and set some
framework-specific options. If you did it well, you should
be able to create a new Framework project with the New
PHP Project wizard, as shown in Figure 2.17.

136

Figure 2.17 NetBeans New PHP Project wizard's
framework selection

Despite efforts of the community, NetBeans still doesn't
have built-in support for CakePHP. That situation is about
to change in the upcoming 7.0 version, but for now you
can, with some effort, use only some of the most basic IDE
functions. Fortunately, you can also integrate CakePHP
with Eclipse, which seems the best IDE solution for
CakePHP now.

Eclipse

Eclipse is a generic IDE, but it provides several tools for
PHP development, for instance the intuitively named PHP
Development Tools (PDT) project. You can download it
from http://www.eclipse.org/pdt/. While Eclipse has no
direct support for any of the frameworks, it can be
configured with little effort for each one to provide several
basic enhancements such as autocompletion. The preferred
solution for both Symfony and Zend Framework is

137

NetBeans, so we will show you how to integrate Eclipse
with CakePHP.

First, download both CakePHP and Eclipse with the PDT
pack. There are no installers, so just unpack them to
separate folders on your hard drive. Run eclipse.exe
from the Eclipse main folder. Set a convenient
workspace—a good idea is a web server's applications
folder such as C: xampp htdocs. Then copy CakePHP's
/app folder into this workspace and rename it as you wish
(in this example, it is named cake_example). In Eclipse's
File menu create a new PHP project and name it just like
the folder you have previously renamed. You should see
the folder name in the source list, and when you click
Finish, there will be a tree of all subfolders that were once
inside the original /app folder.

Once you have your application imported, you can make
several development upgrades; the two most important are
linking the project with the CakePHP core and the
integration of Cake's bake script with Eclipse's Run
External Tool command. The first thing can be done by
creating a separate PHP project for CakePHP and pointing
to the core files as existing sources. Then right-click the
cake_example project in the source list and select
Configure Include Path. Then include the CakePHP project
as shown in Figure 2.18. Then you should have
autocompletion for all core CakePHP classes.

Figure 2.18 Including CakePHP core files into an example
application

138

The integration of Symfony and Zend Framework is
almost the same. You can also use Eclipse to provide an
IDE for other less-known frameworks.

Zend Studio

Zend Studio offers great functionalities for extending the
Zend Framework, including code generation, an integrated
debugger, and integration with Zend Server. However it is
proprietary software. In this book we focus on open source
solutions for individual developers and small companies,
so we will not use this IDE in further chapters. However,
you are encouraged to download a 30-day trial version at
http://www.zend.com/en/products/studio/. Figure 2.19
shows creating a new ZF project with Zend Studio.

Figure 2.19 Zend Studio project creation wizard

139

140

Chapter 3

Working with Databases

To forget one's purpose is the commonest form of
stupidity.

—Friedrich Nietzsche

What's In This Chapter?

• Understanding various approaches to object-relational
mapping (ORM).

• Configuring different database engines.

• Writing schemas of object models.

• Using the command-line interface.

In order to produce your first application, you need to
know how to communicate with your database. To
communicate with it, the database must be configured
properly for use with your framework. And before the
configuration can be made, you should know how the
frameworks join with database systems and perhaps
choose your preferred object-relational mapping (ORM)
solution.

To help you with that before you move to coding the
sample app, this chapter takes a close look at the ORM
concept, which is essential for almost every PHP
framework available. The rest of the chapter covers
configuring various databases for chosen ORM solutions
and how to communicate with them efficiently. In the next
chapter, you will write an address book example in each

141

framework. The good thing is that with ORM support,
communicating with databases is really straightforward.
You no longer need to write lengthy SQL queries manually
nor join tables each time you need to call another object by
reference. So this little bit of overhead is certainly worth
the effort.

Object-Relational Mapping

ORM is one of the core concepts of PHP frameworks. It
creates an abstraction layer between relational database
management systems (RDBMSs) and object-oriented
business logic. There are specialized ORM-only
frameworks that can be used alone in any PHP code or
combined with Model-View-Controller (MVC)
frameworks. The three frameworks provide the following
ORM solutions:

• Symfony—Versions 1.x offer Propel and Doctrine as
plug-ins. Since Symfony 1.3, Doctrine has been the default
ORM plug-in. Since Symfony 2.0, support for Doctrine 2.0
only is provided. Other ORMs can also be used.

• CakePHP—Uses its own integrated ORM solution. Other
ORMs can also be used.

• Zend Framework (ZF)—Provides only some database
access tools, but a full ORM third-party framework can be
easily installed. Future versions will integrate Doctrine by
default.

Figure 3.1 shows the structure of applications built atop an
ORM tool. The application has a data model, which is used
by the ORM mapper to create corresponding tables. ORM
tools commonly use PHP Data Objects (PDOs) to execute
particular queries.

142

Figure 3.1 Structure of applications using ORM and
relational databases

Object-Relational Impedance Mismatch

Object-relational impedance mismatch is a term coined to
encompass several difficulties related to persistence of
object-oriented data in relational databases. These
problems are not only technical but also conceptual and
even cultural (if database administrators and software
developers are seen as two different cultures). Among the
most common problems are the following:

143

• Inheritance—Relational databases do not support
inheritance. There are ways to simulate inheritance in
databases by using some special tricks in object-oriented
programming (OOP) language classes (for example, a
separate table for each subclass), but at the cost of increasing
complexity of code, adding new tables, leaving large
amounts of NULL cells or repeating source code, and greatly
raising maintenance costs.

• Encapsulation—OOP emphasizes hiding objects' private
data behind interfaces provided by the objects themselves.
This notion is not known to RDBMSs, in which data is
accessible globally, protected only by mechanisms of user
roles and permissions.

• References—Relational databases never use attributing by
reference (nor pointers), although it is one of the most basic
properties of OOP.

• Data types—There are various differences between data
types used in RDBMSs and OOP. For example, String types
in RDBMSs have fixed maximum length, have specified
collation, and ignore trailing spaces. On the other hand, OOP
string types usually have variable, unlimited length, and do
not trim white spaces unless commanded otherwise. Also,
they are collation-free and must be provided separately for
any sorting algorithms.

• Data structures—OOP uses heavily nested data structures
with object lists of previously unspecified length. RDBMSs
use a “flat” data model with relations characterized by
primary and foreign keys. The number of fields in each row
is predefined. Although some RDBMSs can dynamically add
a column when needed, it is not a trivial operation.

• Constrains—RDBMSs extensively use declarative
constrains imposed on variables and tables. OOP languages
do not provide such mechanisms; the closest things are
assertions and exceptions, but they affect the application's
state after certain operations instead of being an internal part
of the data model.

• Transactions—The closest counterpart of RDBMS
transactions is data access in concurrent programming. It

144

does not include all the subtleties of atomicity, consistency,
isolation and durability (ACID), and even when it does,
transaction-like behavior is ensured by the application, not
by the language. OOP languages use small, low-level
operations and do not need transactions. RDBMSs do need
them, however, to ensure transactional persistence of
objects, for example.

• Conceptual differences—Relational thinking is based on
sets, OO thinking is based on graphs, databases see data as
interface, OOPs favor interface via actions, databases are
oriented on fixed structure, OOPs are directed toward
dynamic behavior, and so on. These different approaches can
lead to fundamental misunderstandings between database
administrators and programmers.

• Responsibilities—According to the old school of computer
systems design, the database schema is carefully constructed
to reflect reality, and software is built on top of the database
to access and modify data. ORM tools allow you to create
databases that reflect only the schema of objects. This
reversal often leads to poorly designed databases.

• Maintenance—Introducing new classes of objects often
requires changes in database schema. Database
administrators who are not willing to make unnecessary
changes may block development of software attempting such
changes. And unreasonable requests by software developers
can damage the database. Even if such extremes do not
occur, the mismatch greatly increases maintenance costs.

One way to solve this impedance mismatch is to abandon
OOP completely. We bet that no developer considers this
solution when it comes to any serious web application,
unless he has really important reasons to do so.

Object-oriented database management systems
(OODBMSs) are another way to solve the problems
mentioned in the preceding list. Although OODBMSs are
still limited (mainly to some scientific projects), some of

145

the world's biggest databases are object-oriented ones.
However, the relational approach is still the prevailing
approach in commercial web applications. Its
establishment in the market is so strong that it will take
years before databases fully adapt to OOP, so we will not
concentrate on the OODBMS approach.

Object-relational databases are RDBMS bases that
support the object-oriented data model. Although they
support inheritance and by-reference behavior, they are
still inferior in terms of performance. However, they may
help to bridge the gap from the database side, whereas
ORMs bridge it from the software side.

Propel

Introduced in 2005, Propel was the first open-source ORM
solution for PHP. First it was built on top of Creole, but
since version 1.2 it has used PDOs instead. Both Creole
and PDO are database access application programming
interfaces (APIs) that provide uniform communication
with various database engines. Creole was a Propel
subproject, whereas PDO is an official extension of the
PHP language. That's why when PDO was introduced, it
was adopted by Propel, and Creole was no longer
developed.

Propel gained great popularity when it became part of
Symfony—first as a core component and then as default
plug-in competing with Doctrine. However, Propel's
development is less active today (its abandonment is even
being unofficially talked about).

146

Propel was inspired by and based on a Java ORM
implementation: Torque. Solutions used in both Propel and
Torque are simple and effective, resulting in great
performance, but also have some drawbacks. One
drawback is one-to-one mapping (each class is mapped to
one database table). With this approach, it is necessary to
create additional join tables and write some code to reflect
many-to-many relations in the database.

One of the requirements for ORM in Propel is to create an
XML file that describes both database schema and object
model of application as well as their connections. This file
can also be generated by Propel from an existing database.
With the XML schema, Propel can generate PHP model
classes. Propel can also generate nice visual schema
diagrams.

The usage of Propel in source code is really
straightforward. All you need to do is create an object and
then use its save() method, as in the following code. The
object is now written into a database. For more complex
operations, Propel uses Criteria objects to formulate SQL
statements.

<?php

$user = new User();

$user->setForename(‘Karol’);

147

$user->setSurname(‘Przystalski’);

$user->save();

?>

code snippet /examples/propel.php

Doctrine

The Doctrine project was started in 2006, so it had to face
the competition of already-popular Propel. Doctrine is
based on one of the leading ORM solutions: Java
Hibernate. Doctrine's popularity is increasing rapidly and
since mid-2009 it is more frequently searched than Propel
(based on the Google Insights Web Development
category).

The programmer does not have to create and update the
database schema in an XML file because Doctrine can
generate a PHP model or a YAML Ain't Markup Language
(YAML) schema, reflecting an existing database. It is also
possible to create a YAML schema to specify the mapping
manually.

From the perspective of PHP code, the basic syntax of
Doctrine is very similar to Propel's. The configuration of a
YAML schema is preferred over XML, and it can be
written manually or generated by an ORM engine. The
basic example of Doctrine usage in PHP code, shown in
the following snippet, is the same as for Propel; however,
there are differences for more advanced features, mainly
searching.

148

<?php

$user = new User();

$user->setForename(‘Leszek’);

$user->setSurname(‘Nowak’);

$user->save();

?>

code snippet /examples/doctrine.php

Doctrine is now a top ORM solution mainly because it
supports many-to-many relationships. Doctrine's other
exclusive features include data fixtures, migration,
behaviors, full text searching, and Doctrine Query
Language (DQL) (based on Hibernate's HQL) for a
generation of advanced SQL operations through the
Doctrine_Query class. Doctrine's documentation is also
a big plus.

Even though Doctrine's performance is sometimes lower
than Propel's, it is now a superior ORM from the
programmer's perspective, because of its advanced features
like DQL language. Its development also seems faster and
better organized than Propel's, which is why we use
Doctrine as our default ORM.

CakePHP's ORM

149

CakePHP comes with a bundled ORM. Unfortunately, it
does not support inheritance, which is a big drawback
compared with other ORMs. Another weakness of this
ORM is its lack of a PDO database extension layer. This is
because of Cake's compatibility with PHP 4, which forbids
use of extensions specific to PHP 5.

Object persistence is organized by saving arrays of data.
Arrays contain pairs of field names and values. This
approach is different because it resembles preparing data
for individual tables rather than simple persistency of
objects. It may look less object-oriented, but it is useful for
web apps that get data from organized forms. The
following example demonstrates this use of arrays for data
persistence:

<?php

$this->data(array(‘forename’=>‘Bartosz’,

‘surname’=>‘Porebski’));

$this->User->save($this->data);

?>

code snippet /examples/cakeORM.php

Zend_Db

150

ZF provides database access tools from the Zend_Db
family:

• The Zend_Db_Adapter class is used to connect RDBMSs
with the application. There are separate adapters for different
databases both using PDO drivers and using PHP extensions
only. Note that you must have these PHP extensions enabled
in your PHP environment to use a corresponding adapter.

• MySQL: pdo_mysql, mysqli
• Oracle: pdo_oci, oci8
• IBM DB2: pdo_ibm, ibm_db2
• Microsoft SQL Server: pdo_dblib
• PostgreSQL: pdo_sql
• SQLite: pdo_sql
• Firebird/Interbase: php_interbase

Adapter classes are created by appending one of the
preceding names (uppercase first letter) to
Zend_Db_Adapter. The following code is a simple
example of a MySQL database adapter using PDO:

$db = new Zend_Db_Adapter_Pdo_Mysql(array(

‘host’ => ‘127.0.0.1’,

‘username’ => ‘user’,

‘password’ => ‘pass’,

‘dbname’ => ‘dbtest’

));

151

code snippet /examples/zendDB.php

• The Zend_Db_Profiler class provides tools for profiling
SQL queries. This is useful for inspecting recent queries and
their execution time. Advanced filtering by query type and
elapsed time is also provided. Specialized profilers can be
made through inheriting Zend_Db_Profiler by custom
classes.

• The Zend_Db_Statement class, based on PDOStatement
from the PDO extension, provides a convenient way to
execute SQL statements and fetch results. It allows the use
of parameterized statements, fetching single rows and
columns from a result set, and fetching a row as an object by
passing the row's values to a constructor of a specified class.

• The Zend_Db_Select class enables object-oriented
methods for creation of SQL SELECT queries. Here's an
example:

$select = $db->select()

->from(‘table1’)

->joinUsing(‘table2’, ‘column1’)

->where(‘column2 = ?’, ‘foo’);

code snippet /examples/zendDB.php

• The Zend_Db_Table is a family of classes for creating and
managing tables and relations. When you want to operate a
database table, all you need to do is to simply instantiate
Zend_Db_Table (available since ZF 1.9) or extend the
Zend_Db_Table_Abstract class. Relations may be set
between table objects based on the database schema. Other

152

classes from this family include Zend_Db_Row,
Zend_Db_Rowset, and Zend_Db_Table_Definition.

Generally, Zend_Db is more of a lightweight wrapper for
unified PDO layers rather than a full ORM solution. Even
if this set of tools can be useful and sufficient for a small to
middle-sized project, you will probably need a more
comprehensive approach for anything more serious. There
are some experimental classes aiming for true ORM, but
their development stage is still far from maturity. That's
why many developers integrate Zend with a proven
solution such as Propel or Doctrine. Doctrine is a
prevailing choice, not only because of its recent popularity
in the development community but also because of its
chances of being officially integrated into Zend. The lead
developer of a data mapper for ZF called Zend_Entity
announced that it will be discontinued in favor of
integrating Doctrine into future versions of ZF.

Other ORM Solutions

There are various other ORM solutions, both closed- and
open-source. Among the most advanced technologies are
Hibernate for Java, ActiveRecord (part of Ruby on Rails),
Python framework, Django, and Microsoft's .NET. ORMs
for PHP are generally younger and usually borrow the best
solutions from other languages. Propel and Doctrine are
the best and most successful examples to date. They are
now well established and popular in the PHP community,
so new ORMs must be experimental and innovative to gain
some market share. Among the most interesting are the
following:

153

• RedBean—A very experimental project with high
aspirations. It needs absolutely no configuration; it creates a
database schema by analyzing classes in PHP code instead.
It can be easily integrated into ZF and CodeIgniter.

• Qcodo—A whole web application framework with an
integrated ORM, inspired by .NET. Qcodo features
object-relational model code generation as well as
generation of web pages for object management, called
Qforms. Its structure is completely object-oriented and
therefore contributes to rapid development of elegant code.

• php-activerecord—Inspired by Ruby on Rails Active
Record architecture, it creates an object-oriented database
representation that can be used by programmers.

Database Configuration

As mentioned previously, all ORMs use PDO as a
database abstraction layer. Another solution is Creole,
which was used by Propel some time ago. An abstraction

layer is a very useful solution that makes it possible to
change a database that an application is using. Let's use a
simple example to make it clear. Let's say that you need to
develop a small application that will use MySQL. In pure
PHP, the code should look like this:

<?php

$con =
mysql_connect(“localhost”,”wroxuser”,”wroxpassword”) or die(“cannot connect”);

mysql_select_db(“wroxdb”) or die(“database doesn't exist”);

154

$query = “SELECT * FROM users; “;

while($row=mysql_fetch_array($response)) {

// do a lot of things

}

mysql_close($con);

?>

code snippet /examples/mysql.php

Suppose that you use fragments of this code in many
places in your application. This code may be very
important, providing some crucial features of your
application. Because you are almost done with your
application, the product owner says that your previously
approved requirements and specifications have changed.
You need to switch to PostgreSQL because of a very
important reason that is known only to the product owner.
So you are considering how it will be done.

A trivial solution would be to change your PHP functions
such as mysql_connect() to equivalents for PostgreSQL.
This is a very time-consuming process and is only a theory
in web application development; nobody follows this
approach. From an architect's perspective, if you know that
there is even the smallest chance that a database would be
changed, you should think about a solution that
implements a database abstraction layer idea. The idea is
that you need only to change the configuration of your
application, not its functions, because the functions are
chosen in the lower layer of your application. As an

155

example, let's look at the database-specific configuration
of your frameworks.

Open Database Connectivity (ODBC)

Open Database Connectivity (ODBC) is an API standard
that provides database management and configuration,
independent of the database engine, operating system, or
programming language. Let's think about ODBC as
another layer between an application and the database.
ODBC configuration is needed to make it possible to
connect to the MS SQL Server, but can optionally be used
for other databases as well. PHP uses the pdo_odbc
extension to work with ODBC. Be sure that it is present in
the PHP /ext directory.

ODBC is a standard created by the SQL Access Group and
was developed by Microsoft for Windows, but its
implementations are available for other operating systems
such as Linux, MacOS, and OS/2. There are many
different ODBC implementations, and among the most
important open-source ones are Independent ODBC
(iODBC), which is platform independent; and unixODBC,
which is designed for all flavors of UNIX and Linux.
There is also Java Database Connectivity (JDBC), which
bridges Java-based applications to native ODBC drivers.

An important notion is a data source name (DSN)—not to
be confused with a domain name system (DNS). It is a
data structure that contains information on a data source
(in this case, a database) in order to provide the ODBC
driver all the information it needs to establish a connection

156

to this data source. It is similar in structure to a URL
address and contains the following information:

• Name of driver connecting to the database
• Data source address
• Name of the data source
• Username accessing the database
• Password for user validation

An example of a valid DSN for MySQL connection is the
following:

mysql://username:password@host/db_name

SQLite

SQLite is supported by all major ORMs. Thanks to
SQLite's lightweight embedded structure, generally all you
need to do is to specify the path to the file containing the
whole database. You connect to the database without a
username or login, but obviously SQLite can support all
modern security mechanisms.

Propel

Configuring Propel for use with SQLite is pretty much the
same as with Doctrine. The only difference is another
parameter in the param: section, in which you need to
specify the class that Propel will use to connect with the
database. Because Creole is universally replaced by PDO,
we assume that it is going to be used, and set the
classname: as PropelPDO.

157

all:

propel:

class: sfPropelDatabase

param:

classname: PropelPDO

dsn: sqlite:///<?php echo dirname(__FILE__); ?>/sample.db

code snippet /sqlite/symfony/config/database.yml

Doctrine

Doctrine uses PDO as the abstraction layer to connect with
databases. All you need to do is edit the config/
databases.yml file. In the doctrine: section, you set
class: as sfDoctrineDatabase; and in the param:
section, you should define the DSN for the database. The
dsn: should define the path to the file containing the
SQLite database, starting with sqlite:// as the resource
descriptor. We assume that it is located in the same folder
as the configuration file, the path to which is returned by
the PHP expression <?php echo dirname(__FILE__);
?>. If the database is in another location, the path must be
changed accordingly. The extension of the database file
can also be .sqlite. A short example is shown here:

158

all:

doctrine:

class: sfDoctrineDatabase

param:

dsn: sqlite:///<?php echo dirname(__FILE__); ?>/sample.db

code snippet /sqlite/symfony/config/database.yml

CakePHP

In CakePHP, you configure the database with the
DATABASE_CONFIG class. It has a $default variable,
which is an array containing all necessary information
about the default environment. There can be several
different environments for testing, developing, or
releasing, but for now you should focus on the default one.

First, set the driver as sqlite. Note that CakePHP does
not support PDO because of its backward compatibility
with PHP 4. It is a big drawback, although you can try to
avoid all problems that may be generated by it. The line
‘persistent’ => false determines whether the
connection should be permanent or initialized in lazy
mode, which affects performance. In the following
example, you should replace <path_to_cakephp> with a

159

full path to your CakePHP folder (or wherever SQLite is
installed):

<?php

class DATABASE_CONFIG {

var $default = array(

‘driver’ => ‘sqlite’,

‘persistent’ => false,

‘database’ => ‘<path_to_cakephp>/sample.db’

);

?>

code snippet /sqlite/cakephp/app/config/database.php

Zend_Db

In ZF, you have to choose the specific driver that Zend_Db
will use. SQLite has only a PDO-dependent driver, but for
other databases there may also be non-PDO variants.
APPLICATION_PATH is the path to the application folder.
This example is for the production environment, which we
consider to be the default:

160

[production]

...

resources.db.adapter = “PDO_SQLITE”

resources.db.params.dbname = APPLICATION_PATH “/data/db/sample.db”

...

code snippet /sqlite/zf/application/configs/application.ini

PostgreSQL

PostgreSQL is also universally supported by ORM
software. Like most client-server databases, PostgreSQL
requires user authentication.

Propel

The configuration file config/databases.yml is the
same as for Doctrine, but again you need to specify the
classname: parameter as PropelPDO:

all:

161

propel:

class: sfPropelDatabase

param:

classname: PropelPDO

dsn: pgsql:dbname=sample;host=localhost

username: login

password: secret

code snippet /postgres/symfony/config/database.yml

Doctrine

The DSN for a standard server database is quite different
from the database in a file. Here in the param: section,
you must specify the type of DSN resource along with the
database name and host (localhost in this example). In
the following lines, username and password are used for
authentication in PostgreSQL:

all:

propel:

class: sfDoctrineDatabase

param:

dsn: pgsql:dbname=sample;host=localhost

162

username: login

password: secret

code snippet /postgres/symfony/config/database.yml

CakePHP

CakePHP's object-oriented approach boils down to an
array of values determining the database connection in the
default environment: the driver type, connection mode,
database name, host name, username, and password:

<?php

class DATABASE_CONFIG {

var $default = array(

‘driver’ => ‘pgsql’,

‘persistent’ => false,

‘database’ => ‘sample’,

‘host’ => ‘localhost’,

‘login’ => ‘login’,

‘password’ => ‘secret’

);

?>

163

code snippet /postgres/cakephp/app/config/database.php

Zend_Db

The PostgreSQL adapter with PDO support is used as a
database abstraction layer. Then you must set four fields of
connection parameters:

[production]

...

resources.db.adapter = “PDO_PGSQL”

resources.db.params.host = “localhost”

resources.db.params.username = “login”

resources.db.params.password = “secret”

resources.db.params.dbname = “dbname”

code snippet /postgres/zf/application/configs/

application.ini

MySQL

MySQL has two different drivers that allow connections.
The first one is mysql, which is used by ORMs and
provides a standard API mapped by PDO. The other driver
is mysqli (“i” for “improved”), an extension that allows
several improvements for communication with newer

164

versions of MySQL (4.1.3+) from PHP 5 source code.
These improvements include object-oriented interface,
transaction support, prepared statements, or debugging
with PHP 5 exceptions.

Propel

For Propel, there is only one single difference from
PostgreSQL:

all:

propel:

class: sfPropelDatabase

param:

classname: PropelPDO

dsn: mysql:dbname=sample;host=localhost

username: login

password: secret

code snippet /mysql/symfony/config/database.yml

Doctrine

The following example is the same as for PostgreSQL,
except the DSN driver is changed from pgsql to mysql:

165

all:

propel:

class: sfDoctrineDatabase

param:

dsn: mysql:dbname=sample;host=localhost

username: login

password: secret

code snippet /mysql/symfony/config/database.yml

CakePHP

The same is true for CakePHP as for Propel and
Doctrine—the code is the same as for PostgreSQL, with
the driver as the only difference:

<?php

class DATABASE_CONFIG {

166

var $default = array(

‘driver’ => ‘mysql’,

‘persistent’ => false,

‘database’ => ‘sample’,

‘host’ => ‘localhost’,

‘login’ => ‘login’,

‘password’ => ‘secret’

);

?>

code snippet /mysql/cakephp/app/config/database.php

Zend_Db

The driver used for Zend_Db is PDO_MYSQL:

[production]

...

resources.db.adapter = “PDO_MYSQL”

resources.db.params.host = “localhost”

resources.db.params.username = “login”

resources.db.params.password = “secret”

167

resources.db.params.dbname = “dbname”

code snippet /mysql/zf/application/configs/application.ini

Microsoft SQL Server

Microsoft SQL Server runs only on the Windows platform.
So in order to connect to this database, the best solution is
to configure it using ODBC. The following steps walk you
through the various windows that will collect the same
data as were previously written into configuration files.

1. To access the ODBC Data Source Administrator
under Windows, simply open Data Sources (ODBC) in
Control Panel. You should see the ODBC Data Source
Administrator window shown in Figure 3.2.

This screenshots in this section were
created using Windows XP SP2. This
process will work on Windows 7 and
Windows Vista as well, although the
windows will look slightly different.

Figure 3.2 The ODBC Data Source Administrator
window

168

The User DSN and Drivers tabs are the most important
for you. The User DSN tab shows defined DSNs for
your databases, and the Drivers tab shows available
drivers. Click Add to create a new data source.

The window shown in Figure 3.3 will display with a list
of drivers for different database engines. Select SQL
Server and click Finish.

Figure 3.3 Choosing an ODBC driver

169

2. The Create a New Data Source to SQL Server
window will appear (see Figure 3.4). Type a name and a
brief description for the data source. From the
drop-down list, select the server you want to connect to.

Figure 3.4 Defining properties of database connection

170

To access a SQL Server (refer to Figure 3.4), two
services must be running. The first, SQL Server
(SQLEXPRESS), is working by default, but the second,
SQL Server Browser, may be set to be activated
manually from the SQL Server Configuration Manager
(see Figure 3.5).

Figure 3.5 Configuring ODBC using Server
Configuration Manager

3. Next is user authentication, shown in Figure 3.6. Type
your login ID and password for the server.

Figure 3.6 User authentication with Create a New Data
Source to SQL Server

171

4. Click Next two times. Figure 3.7 lists all properties of
the created data source.

Figure 3.7 Testing ODBC Microsoft SQL Server Setup

If you see an entry like the one shown in Figure 3.8, the
new data source has been successfully added.

172

Figure 3.8 A successfully added entry

Propel

As usual, the only difference between Propel and Doctrine
is classname: PropelPDO:

all:

propel:

class: sfPropelDatabase

param:

classname: PropelPDO

dsn: odbc:WROXSQL

173

username: login

password: secret

code snippet /mssql/symfony/config/database.yml

Doctrine

When the data source is properly installed, configuring
Doctrine is even simpler than before. All properties of the
connection are stored in ODBC, so all you need to do is to
add your username and password. Note that the name you
have given to the ODBC data source is now the only
identifier for the ODBC driver.

all:

propel:

class: sfDoctrineDatabase

param:

dsn: odbc:WROXSQL

username: login

password: secret

code snippet /mssql/symfony/config/database.yml

CakePHP

174

Just point to ODBC as the driver. You don't need to
specify the host because that information is already stored
in ODBC.

<?php

class DATABASE_CONFIG {

var $default = array(

‘driver’ => ‘odbc’,

‘persistent’ => false,

‘database’ => ‘WROXSQL’,

‘login’ => ‘login’,

‘password’ => ‘secret’

);

?>

code snippet /mssql/cakephp/app/config/database.php

Zend_Db

Just point to the PDO_ODBC adapter and then specify the
login name, password, and database name.

175

[production]

...

resources.db.adapter = “PDO_ODBC”

resources.db.params.username = “login”

resources.db.params.password = “secret”

resources.db.params.dbname = “WROXSQL”

code snippet /mssql/zf/application/configs/application.ini

Oracle

Oracle has its own ODBC-like solution, called Oracle Call
Interface (OCI). It provides a PHP interface for database
communication. You can also connect to Oracle by
ODBC, but here you use this native driver instead.

Propel

Propel is the same as in Doctrine, except for the addition
of the classname parameter.

176

all:

propel:

class: sfPropelDatabase

param:

classname: PropelPDO

dsn: oci:host=localhost

username: login

password: secret

code snippet /oracle/symfony/config/database.yml

Doctrine

The IP address you have used is an equivalent for
localhost hostname.

all:

propel:

class: sfDoctrineDatabase

param:

dsn: oci:host=127.0.0.1

username: login

password: secret

177

code snippet /oracle/symfony/config/database.yml

CakePHP

For CakePHP, you don't need the database name, only the
host address.

<?php

class DATABASE_CONFIG {

var $default = array(

‘driver’ => ‘oci’,

‘persistent’ => false,

‘host’ => ‘127.0.0.1’,

‘login’ => ‘login’,

‘password’ => ‘secret’

);

?>

code snippet /oracle/cakephp/app/config/database.php

Zend_Db

The driver for OCI in Zend_Db is PDO_OCI.

178

[production]

...

resources.db.adapter = “PDO_OCI”

resources.db.params.host = “localhost”

resources.db.params.username = “login”

resources.db.params.password = “secret”

code snippet /oracle/zf/application/configs/application.ini

DB2

The IBM DB2 database is officially supported only by ZF
and CakePHP, which is a disadvantage of using Symfony.
DB2 can be accessed with ODBC, however, so you could
use it with Propel and Doctrine, as in the MS SQL
example, and it should work fine.

CakePHP

CakePHP provides support for DB2, so you can set a
native driver and general configuration as in all the other
cases:

179

<?php

class DATABASE_CONFIG {

var $default = array(

‘driver’ => ‘db2’,

‘persistent’ => false,

‘database’ => ‘WROX’,

‘host’ => ‘localhost’,

‘login’ => ‘login’,

‘password’ => ‘secret’

);

?>

code snippet /db2/cakephp/app/config/database.php

Zend_DB

In ZF, you can configure DB2 support by native PDO_IBM
and IBM_DB2 adapters or through the PDO_ODBC adapter
after configuring the data source. Here we demonstrate the
second approach. In this case, WROX is not the name of the
database; it's a DSN name created with ODBC config.

180

[production]

...

resources.db.adapter = “PDO_ODBC”

resources.db.params.host = “localhost”

resources.db.params.username = “login”

resources.db.params.password = “secret”

resources.db.params.dbname = “WROX”

code snippet /db2/zf/application/configs/application.ini

Communication with a Database

Every web framework should deliver enhancements that
are normally included as scaffolding tools. Some of these
enhancements are intended for databases and can be
divided into five classes:

• Schema—Represents the database structure
• Fixtures—Sample data that is used mostly in testing
• SQL—Language for communicating with databases
• CLI—Command-line interface tools
• Model—Database model representing your database in the

OO approach

The relationships between these enhancements are shown
in Figure 3.9.

181

Figure 3.9 Relationships between framework database
issues

Schema

Every ORM is, or should be, designed so that the database
structure is not dedicated for only one specific database
engine such as MySQL or PostgreSQL. That's why
schemas were invented. A schema describes a database
blueprint for ORMs that describes the database in ORM
known types.

Propel

A different approach to writing a schema is proposed in
Propel. Java developers probably appreciate this approach
because XML is used here. It looks like this:

182

<?xml version=”1.0” encoding=”UTF-8”?>

<database name=”propel” defaultIdMethod=”native” noXsd=”true” package=”lib.model”>

<table name=”users” phpName=”Users”>

<column name=”id” type=”integer” required=”true” primaryKey=”true”

autoIncrement=”true” />

<column name=”surname” type=”varchar” size=”255” />

<column name=”forename” type=”varchar” size=”255” />

<column name=”created_at” type=”timestamp” />

</table>

</database>

code snippet /communication/symfony/config/schema.xml

This code demonstrates Propel's advantage. At the
beginning, you declare an XML-specific header. The next
line provides the database name (in this example, it is
propel, but it could be named any other name). The
DefaultIdMethod tells you about currently used ID
incrementation methods that are specific for every
database. For example, MySQL uses auto_increment,
and PostgreSQL uses sequences. The native keyword
says that Propel should use database native methods. Set
noXsd to true if you don't want your schema to be
validated before generating the model. table has two

183

attributes: name is for the database name, and phpName is
the name that will be used in your PHP code. This is the
name that your class for that table will have. Declaring
columns is mostly obvious.

Propel 1.5 provides these types: boolean, numeric,
tinyint, smallint, integer, bigint, double,
decimal, float, real, double, char, varchar,
longvarchar, clob, binary, varbinary,
longvarbinary, blob, date, time, and timestamp.
Each field type also has some attributes such as size,
primaryKey, and autoIncrement. These attributes are
well known from database structure on MySQL 5. These
types have equivalents for other databases. We will
describe these types in later chapters as we will be using
them in practical solutions.

Doctrine

A schema represents a database structure, as described in
an XML or a YAML file. Let's look at an example:

Users:

actAs: { Timestampable: }

columns:

forename: string(30)

184

lastname: string(30)

code snippet /communication/symfony/config/doctrine/

schema.yml

This is a Doctrine schema. First, it describes that you want
a table named Users with 2 columns that are an array of 30
chars. By default, Doctrine adds an ID field that is a
primary key. The second line says what you also want to
have. Timestampable is an attribute that adds a
created_at column. This feature is used often in all
kinds of applications because it is very practical.

A schema in Doctrine is described in the schema.yml file.
YAML is also used in Propel. This is a good language for
describing a schema, but it's very frustrating for beginners
because of tab characters. Tabs are not allowed in YAML
and should be replaced with spaces. This is important
because in case of an error, no proper message is shown.

Doctrine provides a lot of data types: boolean, integer,
decimal, float, timestamp, time, date, blob, clob,
string, array, object, enum, and gzip. Additionally,
integer is divided into integer(1),
integer(2)…(5). This division corresponds to MySQL
tinyint, smallint, mediumint, int, and bigint types.
The same is true for blob(255), which corresponds to
MySQL tinyblob/tinytext, blob(65532) to
blob/text, and blob(16777215) to
mediumblob/mediumtext. The gzip type is very
interesting because it compresses a string in the database.
Each type and table has some behaviors that you can set in
your schema file: geographical, i18n, nestedset,

185

searchable, sluggable, softdelete, timstampable,
and versionable. We will use these types in later
chapters.

CakePHP

This solution is placed between ZF and Symfony in terms
of schema creation and utilization. It is far less complex
and useful than in Symfony, but also more advanced than
in ZF. You use PHP code to declare a schema. Here's an
example:

<?php

class AppSchema extends CakeSchema

{

var $name = ‘App’;

function before($event = array())

{

return true;

}

function after($event = array())

{

}

186

var $user = array(

‘id’ => array(‘type’ => ‘integer’, ‘null’ => false, ‘default’ => NULL,

‘key’ => ‘primary’),

‘forename’ => array(‘type’ => ‘string’, ‘null’ => false, ‘default’ => NULL,

‘length’ => 25),

‘surname’ => array(‘type’ => ‘string’, ‘null’ => true, ‘default’ => NULL,

‘length’ => 25),

‘created’ => array(‘type’ => ‘datetime’, ‘null’ => false, ‘default’ =>

NULL),

‘indexes’ => array(‘PRIMARY’ => array(‘column’ => ‘id’, ‘unique’ => 1))

);

}

?>

code snippet /communication/cakephp/app/config/schema/

schema.php

It is possible to declare only some basic types of data, such
as string, text, integer, datetime, date, and so on.
Developers are free to use the before() and after()
methods to implement code before and after callback to the
schema. The variable $user is the name of the table that
you want to operate on.

Zend Framework

Both solutions described previously represent an approach
that depends on command-line tools. The next solution

187

shows a manual way of developing models. Zend and
CakePHP frameworks assume that models should be
written from scratch instead of being generated, as they
were in Symfony. Regardless, Doctrine and Propel can
also be installed on Zend and CakePHP instead of their
native solutions. The following example is a ZF model,
which is equivalent to the Doctrine schema you saw earlier
in this section:

<?php

class Application_Model_User

{

protected $_forename;

protected $_surname;

protected $_created;

protected $_email;

protected $_id;

public function __construct(array $options = null) {

}

public function __set($name, $value) {

}

188

public function __get($name) {

}

public function setForename($text) {

$this->_forename = (string) $text;

return $this;

}

public function getForename() {

return $this->_forename;

}

/**

* here should be also methods for each column,

*/

public function getId() {

return $this->_id;

}

public function setId($text) {

$this->_id = (int) $id;

return $this'

}

}

code snippet /communication/zf/application/models/

User.php

189

Table columns are protected fields. They are available only
by using table model class methods. That's why you need
each field to declare a setter and getter method. This
pattern is commonly used. A class constructor should also
be defined as well as default getter and setter methods.

You should add a relationship between your model and
DbTable by creating a file in your models directory (in the
DbTable directory). This file should be called as your
database table. In this example, it will be User.php, and it
should look like this:

<?php

class Application_Model_DbTable_User extends Zend_Db_Table_Abstract {

protected $_name = ‘User’;

}

code snippet /communication/zf/application/models/

DbTable/User.php

You have just one important line that describes your
database table. This can be done quickly by using ZF's
command-line tools. We will describe these tools later in
this chapter.

The primary functionality of ORM is to map relationships
between tables and deliver them as objects that are easier

190

to use for developers. To make this mapping possible, you
need to write this mapper class manually in Zend. This can
be a boring process if you do it for a lot of tables.
Unfortunately, ZF's command-line tools provide only some
basic facilities. The following code is an example of User
table mapping.

<?php

class Application_Model_UserMapper {

protected $_dbTable;

public function setDbTable($dbTable) {

if (is_string($dbTable)) {

$dbTable = new $dbTable();

}

if (!$dbTable instanceof Zend_Db_Table_Abstract) {

throw new Exception(‘Invalid table data gateway provided’);

}

$this->_dbTable = $dbTable;

return $this;

}

191

public function getDbTable() {

if (null === $this->_dbTable) {

$this->setDbTable(‘Application_Model_DbTable_User’);

}

return $this->_dbTable;

}

public function save(Application_Model_User $user) {

$data = array(

‘forename’ => $user->getForename(),

‘surname’ => $user->getSurname(),

‘email’ => $user->getEmail(),

‘created’ => date(‘Y-m-d H:i:s’),

);

if (null === ($id = $user->getId())) {

unset($data[‘id’]);

$this->getDbTable()->insert($data);

} else {

$this->getDbTable()->update($data, array(‘id = ?’ => $id));

}

}

192

public function find($id, Application_Model_User $user) {

$result = $this->getDbTable()->find($id);

if (0 == count($result)) {

return;

}

$row = $result->current();

$user->setId($row->id)

->setForename($row->forename)

->setSurname($row->surname)

->setEmail($row->email)

->setCreated($row->created);

}

public function fetchAll() {

$resultSet = $this->getDbTable()->fetchAll();

$entries = array();

foreach ($resultSet as $row) {

$entry = new Application_Model_User();

$entry->setId($row->id)

->setForename($row->forename)

->setSurname($row->surname)

->setEmail($row->email)

193

->setCreated($row->created);

$entries[] = $entry;

}

return $entries;

}

}

code snippet /communication/zf/application/models/

UserMapper.php

The setDbTable() and getDbTable() methods make
clear which model is currently being used. The next three
methods are just simple methods for manipulating with
database data. The save(), find(), and fetchAll()
methods are using some methods that you have previously
defined in your model.

The last thing we'll discuss related to ZF's schema is how
the database is built. Unfortunately, ZF prefers a database
schema in the form of a SQL query. This pattern is not
really useful because it makes your application
database-dependent. For MySQL 5 it looks like the
following:

CREATE TABLE users (

id INTEGER NOT NULL PRIMARY KEY AUTO_INCREMENT,

194

forename VARCHAR(25) NULL,

surname VARCHAR(25) NULL,

email VARCHAR(32) NOT NULL,

created DATETIME NOT NULL

);

code snippet /communication/zf/library/sql/User.sql

Fixtures

Fixtures in computer science are sample data pieces that
can often be used for testing purposes. They can also be
useful when you want to show some sample data in your
application (for example, to show added products in an
e-commerce website). Each framework takes a different
approach to this problem, just like ORMs.

Symfony

Symfony prefers YAML in schemas. That's why Symfony
fixtures are more legible and more independent from
currently used databases. An exemplary fixture for a user
table looks like the following:

User:

kprzystalski:

195

forename: Karol

surname: Przystalski

email: karol.przystalski@wrox.com

code snippet /communication/symfony/data/fixtures/

fixtures.yml

CakePHP

Compared with Zend and Symfony, CakePHP prefers
more coding than configuring. Looked at as an advantage,
it's a very good practice when a developer can't work with
the command line—for example, when using file transfer
protocol (FTP) and Secure Shell (SSH) is not allowed. In
other cases it results in more code than in Symfony though.
Another advantage of this approach is its friendly OO
approach.

<?php

class UserTestFixture extends CakeTestFixture {

var $name = ‘UserTest’;

var $fields = array(

‘id’ => array(‘type’ => ‘integer’, ‘key’ => ‘primary’),

‘forename’ => array(‘type’ => ‘string’, ‘length’ => 25, ‘null’ => false),

196

‘surname’ => array(‘type’ => ‘string’, ‘length’ => 25, ‘null’ => false),

‘email’ => array(‘type’ => ‘string’, ‘length’ => 25, ‘null’ => false),

‘created’ => ‘datetime’);

var $records = array(

array (

‘id’ => 1,

‘forename’ => ‘Karol’,

‘surname’ => ‘Przystalski’,

‘email’ => ‘karol.przystalski@wrox.com’,

‘created’ => ‘2010-10-01 10:39:23’));

}

?>

code snippet /communication/cakephp/app/tests/fixtures/

user_test_fixture.php

Zend Framework

Zend prefers pure SQL files. This is not an approach that
we recommend for these fixtures because this solution
depends on specific database behavior (for example,
differences between the enum type in MySQL and
PostgreSQL). This simple example works fine on MySQL
and PostgreSQL:

197

INSERT INTO users (forename,surname, email, created) VALUES

(‘Karol’, ‘Przystalski’,‘karol.przystalski@wrox.com’,

DATETIME(‘NOW’));

INSERT INTO users (forename,surname, email, created) VALUES

(‘Bartosz’, ‘Porebski’,‘bartosz.porebski@wrox.com’,

DATETIME(‚NOW’));

INSERT INTO users (forename,surname, email, created) VALUES

(‘Leszek’, ‘Nowak’,‘leszek.nowak@wrox.com’,

DATETIME(‚NOW’));

code snippet /communication/zf/library/sql/User.sql

There are two ways to load fixtures in Zend: copy and
paste the SQL code or use the console.

$ mysql -u user -p < data.mysql.sql

A completely different approach is to write a script, as
shown in the following code:

198

// Initialize the application path and autoloading

defined(‘APPLICATION_PATH’)

|| define(‘APPLICATION_PATH’, realpath(dirname(__FILE__) . ‘/../
application’));

set_include_path(implode(PATH_SEPARATOR, array(

APPLICATION_PATH . ‘/../library’,

get_include_path(),

)));

require_once ‘Zend/Loader/Autoloader.php’;

Zend_Loader_Autoloader::getInstance();

$getopt = new Zend_Console_Getopt(array(

‘withdata|w’ => ‘Load database with sample data’,

‘env|e-s’ => ‘Application environment for which to create database (defaults

to development)',

‘help|h’ => ‘Help -- usage message’,));

try {

$getopt->parse();

199

} catch (Zend_Console_Getopt_Exception $e) {

// Bad options passed: report usage

echo $e->getUsageMessage();

return false;

}

if ($getopt->getOption(‘h’)) {

echo $getopt->getUsageMessage();

return true;

}

$withData = $getopt->getOption(‘w’);

$env = $getopt->getOption(‘e’);

defined(‘APPLICATION_ENV’)

|| define(‘APPLICATION_ENV’, (null === $env) ? ‘development’ : $env);

$application = new Zend_Application(

APPLICATION_ENV,

APPLICATION_PATH . ‘/configs/application.ini’

);

// Initialize and retrieve DB resource

$bootstrap = $application->getBootstrap();

200

$bootstrap->bootstrap(‘db’);

$dbAdapter = $bootstrap->getResource(‘db’);

if (‘testing’ != APPLICATION_ENV) {

echo ‘Writing Database Guestbook in (control-c to cancel): ‘ . PHP_EOL;

for ($x = 5; $x > 0; $x--) {

echo $x . “ r”; sleep(1);

}

}

$options = $bootstrap->getOption(‘resources’);

$dbFile = $options[‘db’][‘params’][‘dbname’];

if (file_exists($dbFile)) {

unlink($dbFile);

}

try {

$schemaSql = file_get_contents(dirname(__FILE__) . ‘/
schema.sqlite.sql’); //

important line

$dbAdapter->getConnection()->exec($schemaSql);

chmod($dbFile, 0666);

201

if (‘testing’ != APPLICATION_ENV) {

echo PHP_EOL;

echo ‘Database Created’;

echo PHP_EOL;

}

if ($withData) {

$dataSql = file_get_contents(dirname(__FILE__) . ‘/data.sqlite.sql’); //

important line

// use the connection directly to load sql in batches

$dbAdapter->getConnection()->exec($dataSql);

if (‘testing’ != APPLICATION_ENV) {

echo ‘Data Loaded.’;

echo PHP_EOL;

}

}

} catch (Exception $e) {

echo ‘AN ERROR HAS OCCURED:’ . PHP_EOL;

echo $e->getMessage() . PHP_EOL;

return false;

}

202

return true;

code snippet /communication/zf/library/scripts/

load.sqlite.php

This code is described on the ZF web page. To be honest,
we don't know why this code is not included out of the
box. There are two very important lines in which you
should set your database schema and data files:

$schemaSql = file_get_contents(dirname(__FILE__) . ‘/schema.sqlite.sql’);

$dataSql = file_get_contents(dirname(__FILE__) . ‘/data.sqlite.sql’);

To run this script to load your fixtures into a database, run
it with the --withdata parameter.

$ php scripts/load.sqlite.php --withdata

Command-line Interface

CLI tools are very useful because they generate code
automatically and save a lot of time, so an application can
be developed significantly faster. It's important when time

is money.

Symfony—Propel

Propel, just like Doctrine, provides a strong CLI. As
mentioned earlier, your schema can be written in two file
types: YAML and XML. That's why there are two special
commands available to convert both schemas
(schema-to-xml and schema-to-yml).

203

The following are the CLI commands provided by Propel:

propel

:build

:build-all

:build-all-load

:build-filters

:build-forms

:build-model

:build-schema

:build-sql

:data-dump

:data-load

:graphviz

:insert-sql

:schema-to-xml

:schema-to-yml

Another new command is build-all, which is equivalent
to the build --all command in Doctrine. This task also
has an extension that loads defined fixture data:
build-all-load. Build-schema is a command we did
not describe in the Doctrine discussion, but it's available
there as well. With this task, you can build a schema from
an existing database. This is very useful when you switch
from a legacy application that was written in a different
framework, language, and so on.

204

Another great feature that Propel offers is the ability to
generate graphs from a model. Just create a schema, build
a model, and then table relationships can be built. To do
this, you should use the graphviz command, which will
generate a .dot file in the /graph directory. To convert
.dot to .png, you can use the graphviz tool, which is
available for free from www.graphviz.org. Use the
following command to convert it to PNG:

$ cd graph/

$ dot -Tpng -oGraph.png propel.schema.dot

For a simple schema with two tables and a simple
relationship, you should see a picture similar to Figure
3.10.

Figure 3.10 Schema visualized with the graphviz tool

Symfony—Doctrine

The following are the CLI commands provided by
Doctrine:

doctrine

205

:build

:build-db

:build-filters

:build-forms

:build-model

:build-schema

:build-sql

:clean-model-files

:create-model-tables

:data-dump

:data-load

:delete-model-files

:dql

:drop-db

:insert-sql

As mentioned before, Doctrine's architecture is inspired by
Hibernate. Hibernate uses Hibernate Query Language
(HQL) and so Doctrine uses very similar Doctrine Query
Language (DQL), a specific language used only by
Doctrine. It can be executed directly from the command
line:

$ symfony doctrine:dql “FROM User”

This command returns a list of users added previously. Use
this query only if you have few users in the database,

206

otherwise you will get your console flooded. Thanks to
DQL, developers can work with databases without
knowing details. In complicated projects, it's likely that
using specific database tools and features will be
necessary.

The most important Doctrine console command is build.
This is an all-in-one command, a compilation of all other
tasks that begin with build and will probably be the
command you use most if Doctrine is the right ORM for
you.

The following command builds a model from your
schema; a database is based on that model:

$ symfony doctrine:build --all

Forms, filters, and SQL files are also generated by this
command. (We will discuss more about forms and filters
in later chapters.) Forms, filters, and models are stored in
the /lib directory; SQL is stored in the /data directory.

While developing an application, your tables can change;
some may need to be deleted; others have to be added. If
you remove tables from your schema, to keep your code
clean you can use the clean-model-files command to
delete no-longer-used models. To delete all model files,
use delete-model-files; to delete a database, use
drop-db. The last “cleaning” command is
create-model-table, which deletes existing tables and
creates a new one for your model. Doctrine also provides a
command for executing a SQL query (insert-sql) that is
used with the build or build-sql command. You can

207

also add some specific SQL queries by editing the .sql
file in /data/sql/schema.sql.

The last tasks that we want to show are designed to operate
on fixtures. data-load loads your fixture YAML files
into a database. You can also do it in another way
(data-dump), exporting data from a database to a YAML
fixture.

CakePHP

Cake gives developers two main branches of basic but
necessary command-line tools: bake and schema.

cake bake

cake schema

schema view

schema generate

schema dump <filename>

schema run create <schema> <table>

schema run update <schema> <table>

The first branch, bake, provides some basic options such
as creating a model, controller, view, project, or other
database configuration-related tasks. They are asked as
questions after executing bake, so there are no specific
options for this command.

From the command line, type d for database configuration,
and Cake will ask a series of questions about database
details, as shown in the following code:

208

Name:

[default] >

Driver: (db2/firebird/mssql/mysql/mysqli/odbc/oracle/postgres/sqlite/sybase)

[mysql] >

Persistent Connection? (y/n)

[n] >

Database Host:

[localhost] >

Port?

[n] >

User:

[root] >

Password:

>

Database Name:

[cake] >

Table Prefix?

[n] >

Table encoding?

[n] >

Next you are asked to confirm all database information. If
confirmed, Cake will save it into database.php. If not
confirmed, you will be asked again or default values will

209

be assumed. You can then connect to the database. You
need to make sure that all environments (development,
testing, production) have been configured, not just the
default one. To configure other environments, just change
the proposed [default] to another one.

As mentioned earlier, Cake provides some tools for
working with a schema. The simplest one is view, which
just prints your schema.php file. You can manipulate a
schema in two ways. generate option allows you to build
a schema file from a database. It's useful if you have
designed the database manually. A different approach is
available with the run option. Both create and update
parameters can create new tables, if they are not present,
otherwise they will just update tables already existing in
the database. With the -s parameter of the run command,
you can make snapshots of schema changes. This is useful
if you want to do a dry run of a new schema (the -dry
parameter should be used). An example of using -dry to
simulate creating users table from users schema looks
as follows:

$ cake schema run create users users -dry

The last option is dump, which generates a .sql file. It
contains all queries needed to build the database structure.
Like all files related to a schema, .sql files are stored in
the /app/config/sql directory.

Zend Framework

Each framework has its CLI tools that offer some
scaffolding enhancements. Although you can work without

210

these tools, they let you save a lot of time. There are many
kinds of enhancements, but we want to show here only
those that are applicable to databases. ZF offers two simple
commands, shown in the following snippet:

$ zf configure db-adapter dsn section-name[=production]

$ zf create db-table name actual-table-name module force-overwrite

The first command adds db-adapter configuration in
application.ini. This can be done very quickly (also
manually). Here's an example of how it should be used:

$ zf configure db-adapter “adapter=PDO_MYSQL&dbname=WROX&username=wroxuser&password

=secret&hostname=127.0.0.1” -s production

The above command will add the line below into
application.ini.

[production]

...

resources.db.adapter = “PDO_MYSQL”

resources.db.params.dbname = “WROX”

resources.db.params.username = “wroxuser”

resources.db.params.password = “secret”

211

resources.db.params.hostname = “127.0.0.1”

code snippet /communication/zf/application/configs/

application.ini

Database settings should be made separately for each of
the three environments: production, testing, and
development. In most cases, different databases are used
for each environment.

The following command generates db-table files, which
can be done in two different ways. The simplest method is
to generate a DbTable file for a given model and database
table:

$ zf create db-table users Users

The second method is to generate these files from database
tables (the database should be configured before running
this method):

$ zf create db-table.from-database

Both methods prepare only basic files without any
methods for manipulating data. This is a disadvantage, but
gives developers flexibility while developing applications,
especially complex ones.

212

Chapter 4

Your First Application in the Three Frameworks

—Your mother ate my dog!

—Not all of it.

—Braindead

What's In This Chapter?

• Designing an address book application.

• Implementing in Symfony, CakePHP, and Zend Framework.

This chapter will take you through the process of designing
and developing your first application: an online address
book. This application will be built on top of a simple
database, used for storing information about your contacts.
Each entry consists of a few fields (first name, last name,
address, phone number, e-mail address), and the basic
functionality is to perform all create, read, update, and
delete (CRUD) operations for each database entry.

Because this is your first step of developing applications
using frameworks, we want it to be as simple as possible,
introducing you to benefits offered by presented
frameworks. This chapter should show how with little or
no effort, you can achieve great results, all thanks to the
frameworks' basic functionality.

Design

213

At this point we assume that you have done the all steps
from the previous chapters and you have your frameworks
up and running. Before you can continue, you need to
make sure that your server is running (Apache, for
example), a database connection is configured, and a
framework is installed and configured accordingly.

Project Requirements

When working on a project, it is good to have some
expectations defined before any coding is done. A properly
planned project greatly enhances workflow and helps you
avoid unnecessary development issues.

In this project you will be using MySQL as the default
database. So, we will specify requirements for the database
that will be needed to build the address book application.

For storing typical address data such as first name, last
name, address, e-mail address, and telephone number, one
table is required. At this point, we assume that every
contact in your address book has only one phone number
and only one e-mail address.

In addition to the fields already mentioned, the project
table will contain a few other fields that will be used for
additional functionality:

214

Later in this book we will explain how to
work with multiple tables containing
related data and handle them with one
controller.

• ID—A unique integer value that identifies every address in
your address book

• created/modified—Fields that introduce additional
functionality and will be used in the future to present
autocompletion functions of the frameworks

The structure we suggest for the addresses table is shown
in Figure 4.1.

Figure 4.1 Database design for the address book table

You need to make sure that this table is created before you
can proceed. To do this you can use various methods. For
example, you can use phpMyAdmin to do it manually, use
the SQL query (introduced later in this chapter), or (for
Symfony and CakePHP) generate the required table using
command-line tools. Before that you should define it in
schema.yml schema.xml (Symfony) or schema.php
(CakePHP). How to work with schemas was explained in
Chapter 3.

215

The suggested encoding for the database is UTF-8 because
it supports various localizations and special characters. To
use that encoding in Doctrine, you should invoke the
following methods to
ProjectConfiguration.class.php in the /config
directory:

<?php

public function configureDoctrine(Doctrine_Manager $manager) {

$manager->setCollate(‘utf8_unicode_ci’);

$manager->setCharset(‘utf8’);

}

code snippet /symfony/config/

ProjectConfiguration.class.php

Propel has two files that you need to change. They should
be modified in the same way, which is why it can
sometimes be confusing. First you should set UTF-8
encoding in database.yml:

all:

propel:

class: sfPropelDatabase

param:

216

encoding: utf8

Next, edit the propel.ini config file and set it as “utf8”
(it should be set as the default):

propel.database.encoding = utf8

CakePHP allows you to change that option in the database
configuration:

var $default = array(‘encoding’ => ‘utf8’);

In Zend Framework (ZF), you use a pure SQL query
because you have no schema.

CREATE TABLE IF NOT EXISTS ‘addresses’ (

‘id’ int(11) unsigned NOT NULL AUTO_INCREMENT,

‘first_name’ varchar(25) NOT NULL,

‘last_name’ varchar(25) DEFAULT NULL,

‘email’ varchar(25) DEFAULT NULL,

‘phone’ int(11) DEFAULT NULL,

‘address’ text,

‘created’ datetime NOT NULL,

‘modified’ datetime NOT NULL,

PRIMARY KEY (‘id’)

) ENGINE=MyISAM DEFAULT CHARSET=utf8 COLLATE=utf8_unicode_ci;

There is another important issue that should be handled for
each framework. You should create not only individual
tables, but also your whole database with the default

217

encoding set as UTF-8. For example, here's how to do this
in MySQL (and PostgreSQL as well):

CREATE DATABASE foo_bar_db CHARACTER SET utf8 COLLATE utf8_unicode_ci;

CREATE DATABASE foo_bar_db WITH ENCODING ‘UTF8’

There are equivalent queries for other database servers.

Symfony

So far we have briefly discussed the first application that
you are going to develop and you know what
functionalities it is going to provide. Now it is time to see
the frameworks in action.

Project

In previous chapters, you configured the Symfony
installation; now you can use console commands to
automatically generate various parts of the application.
You can now create a new project using the
generate:project command. To do so, you need to
create a new folder in your /htdocs directory, where your
project will be stored. In this case, let it be named
/htdocs/symfony. In this location, a new project called
addressBook will be installed.

$ cd htdocs/symfony

$ symfony generate:project addressBook

With the new project created, it is possible to add a new
application to it by typing the symfony generate:app
command at the command line. When you do so, the

218

application files will be created in the directory you
specify. The following command creates the /htdocs/
symfony/apps/frontend directory:

$ symfony generate:app frontend

In previous chapters we showed you how to configure
proper aliases and directories with Apache and LightPad.
If everything is set properly, you should be able to see
your project start page at http://localhost/
frontend_dev.php.

Model

Now you can use Doctrine to generate the model, SQL,
modules, and database tables for the project. To do this,
you need to edit the schema.yml file located in
/symfony/config/doctrine/, as shown in following
code.

Addresses:

actAs:

Timestampable:

created:

name: created

219

type: timestamp

format: Y-m-d H:i:s

notnull: false

updated:

name: updated

type: timestamp

format: Y-m-d H:i:s

notnull: false

columns:

first_name: { type:string(40), notnull: false }

last_name: { type:string(40), notnull: false }

email: { type:string(40), notnull: false }

phone: { type:integer(40), notnull: false }

description: { type:object, notnull: false }

options:

type: MYISAM

collate: utf8_general_ci

code snippet /symfony/config/doctrine/schema.yml

While editing schema.yml it is very important not to use
any tabulation because that may prevent proper execution
of the file. The schema in Listing 4-1 was also discussed in
Chapter 3, but the last three lines are new. This is another
solution for setting proper encoding; in this case you set it
directly in the schema instead of in the database

220

configuration. All three solutions—Symfony, CakePHP,
and ZF—can be set at the same time.

The next step is to use the command line to call
doctrine:build --all command. This will create
tables in the project database according to the
schema.yml file.

$ symfony doctrine:build --all

Controller

There are two main ways to create a controller. The first
one uses project branch tasks, and the second one uses
object-relational mapping (ORM)-based tasks. The project
method generates only a template of the controller and a
simple view. The ORM method generates more functional
controllers with a lot of ready-to-use code. Here, we
present one kind of these ORM-generated controllers. The
command that you need to type is
doctrine:generate-module, which will generate all
the CRUD files. The parameters that need to be passed to
this command are the application name, the generated
module name, and the database table that CRUD
operations are created for.

$ symfony doctrine:generate-module frontend addressBook Addresses

The project files generated by Doctrine are located in
/symfony/apps/frontend/modules:

/modules

/addressbook

221

/actions

actions.class.php

/templates

_form.php

editSuccess.php

indexSuccess.php

newSuccess.php

First, look into one of the generated files:
actions.class.php. Doctrine generates a controller
class that contains all methods needed to provide CRUD
functionality, and also provides form validation. Forms are
generated at the same time when building models, during
the execution of these tasks: build, build-all, or
build-forms.

<?php

class addressbookActions extends sfActions {

public function executeIndex(sfWebRequest $request) { }

public function executeNew(sfWebRequest $request) { }

public function executeCreate(sfWebRequest $request) { }

public function executeEdit(sfWebRequest $request) { }

public function executeUpdate(sfWebRequest $request) { }

public function executeDelete(sfWebRequest $request) { }

protected function processForm(sfWebRequest $request, sfForm $form) { }

222

}

Address List

The executeIndex() method lists all available items
from a database table (in this case, only the User table). To
get all available entries from the User table, you should use
Doctrine's getTable() method. Next you need to execute
a query on the selected table. Parameter a is passed to a
query method. This is the name for the parameter that will
be used in your table, when using some of the more
complex queries; for example, to set an equal expression
such as a.firstName==‘John’.

public function executeIndex(sfWebRequest $request) {

$this->users = Doctrine::getTable(‘User’)

->createQuery(‘a’)

->execute();

}

code snippet /symfony/apps/frontend/modules/

addressbook/actions/actions.class.php

The results of the query execution are stored in the
$this->users variable. In Symfony any variable that is
created in controllers and is marked as $this->variable

223

is automatically forwarded to the view layer after the
controller method is executed properly.

Adding and Editing Entries

The ExecuteNew() method, which is responsible for
creating new users, is very simple: It contains only one
line, which creates a form for the user table and at the
same time renders the view layer. UserForm definitions
are stored in /lib/forms/ directory.

Every method in addressbookActions class gets a
parameter of sfWebRequest type. This variable contains
all the data that the user can submit through the forms. In
the case of the executeNew() or executeIndex()
methods, sfWebRequest is not relevant because it is not
used in those methods, as you can see in the following
code. In all other methods, the sfWebRequest variable is
important because GET or POST parameters are used in
these methods.

public function executeNew(sfWebRequest $request) {

$this->form = new UserForm();

}

code snippet /symfony/apps/frontend/modules/

addressbook/actions/actions.class.php

224

As you can see in the following code, Symfony provides
some methods that help you secure your application
against simple attacks:

public function executeCreate(sfWebRequest $request) {

$this->forward404Unless($request->isMethod(sfRequest::POST));

$this->form = new UserForm();

$this->processForm($request, $this->form);

$this->setTemplate(‘new’);

}

public function executeEdit(sfWebRequest $request) {

$this->forward404Unless($user = Doctrine::getTable(‘User’)->

find(array($request->getParameter(‘id’))),

sprintf(‘Object users does not exist (%s).’,

$request->getParameter(‘id’)));

$this->form = new UserForm($user);

}

public function executeUpdate(sfWebRequest $request) {

$this->forward404Unless($request->isMethod(sfRequest::POST)

|| $request->isMethod(sfRequest::PUT));

$this->forward404Unless($user = Doctrine::getTable(‘User’)->

find(array($request->getParameter(‘id’))),

225

sprintf(‘Object users does not exist (%s).’,

$request->getParameter(‘id’)));

$this->form = new UserForm($user);

$this->processForm($request, $this->form);

$this->setTemplate(‘edit’);

}

code snippet /symfony/apps/frontend/modules/

addressbook/actions/actions.class.php

For example, in executeEdit() the
forward404Unless() method is used and it checks if a
given user exists in the database. If not, a 404 Not Found
error message is shown. In case of an error, the rest of the
code is not executed. This is a good practice because you
don't need to do anything else when you cannot retrieve
selected user data. The same is true with request type. If
you expect a POST request, you should not proceed any
further for security purposes.

The next security feature is the checkCSRFProtection()
method, which protects you against cross-site request
forgery (CSRF) attacks. You can find more about this and
other kinds of attacks in Chapter 8. The Update method
creates a new user form—UserForm($user). In this case,
you should send as a parameter user data that is to be
intercepted by the constructor. All given $request data
and also $form data is sent to the processForm()
method, which binds all the data together. You can observe
it in the following code snippet. The $request variable is
also needed because of any files that could be uploaded

226

within forms. Form method processForm() and other
forms-related topics are described in detail in Chapter 5.

protected function processForm(sfWebRequest $request, sfForm $form) {

$form->bind($request->getParameter($form->getName()),

$request->getFiles($form->getName()));

if ($form->isValid()) {

$user = $form->save();

$this->redirect(‘addressbook/edit?id=’.$user->getId());

}

}

code snippet /symfony/apps/frontend/modules/

addressbook/actions/actions.class.php

Deleting an Address

As shown in the following code, to delete a user you can
just invoke the delete() method of your object. After
deletion, you should redirect to another site that will
inform users that the delete operation was successful.

227

public function executeDelete(sfWebRequest $request) {

$request->checkCSRFProtection();

$this->forward404Unless($user = Doctrine::getTable(‘User’)->

find(array($request->getParameter(‘id’))),

sprintf(‘Object users does not exist (%s).’,

$request->getParameter(‘id’)));

$users->delete();

$this->redirect(‘addressbook/index’);

}

code snippet /symfony/apps/frontend/modules/

addressbook/actions/actions.class.php

View

By default, Symfony generates some basic views for a new
module: index, new, edit, and form. As we mentioned in
Chapter 1, it is important not to repeat yourself. That's why
the form view is a separate view and it can be re-used this
way both in new and in edit templates.

Editing/Updating Addresses

For each method that begins with execute, a template is
created. The only exception in your case is the update

228

method because this template would be the same as the
edit method, so they can share one view. That's why the
setTemplate() method is used: to let Symfony know
which templates should be currently applied.

In previous Symfony releases, a form view was generated
for each template. Now you need to change the form only
once. Both new and edit templates import the form
template by invoking the include_partial() helper, as
shown in the following code:

<h1>New Addresses</h1>

<?php include_partial(‘form’, array(‘form’ => $form)) ?>

code snippet /symfony/apps/frontend/modules/

addressbook/templates/newSuccess.php

The same include_partial() helper is present in an
edit template. Everything that is added to the template
before and after the include_partial() method is
displayed as normal HTML code while being viewed in a
web browser. The include_partial() method inserts
another template into the view; in this example, it is a form
template. As you can see in the preceding code, the second
parameter in the include_partial() method is an array.
In this array, you assign to the form name a $form object
that you get from the controller. The ‘form’ string
describes the name of the variable that is available in the

229

form (_form.php) partial template. That's why it's
possible to have access to the $form object in _form.php.

Every partial template name should start with an
underscore (‘_’). The first two lines of the following code
are responsible for adding form-specific cascading style
sheets (CSSs) and JavaScript code.

The following code, which displays the form, validates it
and handles errors, may look rather complicated—that's
because it's a piece of HTML structure intertwined with
PHP code blocks.

<?php use_stylesheets_for_form($form) ?>

<?php use_javascripts_for_form($form) ?>

<form action=“ <?php echo url_for(‘addressbook/’.

($form->getObject()->isNew() ? ‘create’ : ‘update’).

(!$form->getObject()->isNew() ? ‘?id=’.$form->getObject()->getId() : ‘’))

?>” method=“post”

<?php $form->isMultipart() and print ‘enctype=“multipart/form-data” ’ ?> >

230

<?php if (!$form->getObject()->isNew()): ?>

<input type=“hidden” name=“sf_method” value=“put” />

<?php endif; ?>

<table>

<tfoot>

<tr>

<td colspan=“2”>

<?php echo $form->renderHiddenFields(false) ?>

<a href=“<?php echo url_for(‘addressbook/
index’) ?>”>Back to list

<?php if (!$form->getObject()->isNew()): ?>

<?php echo link_to(‘Delete’,

‘addresbook/delete?id=’.$form->getObject()->

getId(), array(‘method’ => ‘delete’,

‘confirm’ => ‘Are you sure?’))

?>

<?php endif; ?>

<input type=“submit” value=“Save” />

</td>

</tr>

</tfoot>

<tbody>

<?php echo $form->renderGlobalErrors() ?>

231

<tr>

<th><?php echo $form[‘forname’]->renderLabel() ?></th>

<td>

<?php echo $form[‘forname’]->renderError() ?>

<?php echo $form[‘forname’] ?>

</td>

</tr>

<tr>

<th><?php echo $form[‘lastname’]->renderLabel() ?></th>

<td>

<?php echo $form[‘lastname’]->renderError() ?>

<?php echo $form[‘lastname’] ?>

</td>

</tr>

<tr>

<th><?php echo $form[‘created_at’]->renderLabel() ?></th>

<td>

<?php echo $form[‘created_at’]->renderError() ?>

<?php echo $form[‘created_at’] ?>

</td>

</tr>

<tr>

<th><?php echo $form[‘updated_at’]->renderLabel() ?></th>

232

<td>

<?php echo $form[‘updated_at’]->renderError() ?>

<?php echo $form[‘updated_at’] ?>

</td>

</tr>

</tbody>

</table>

</form>

code snippet /symfony/apps/frontend/modules/

addressbook/templates/_form.php

When you split the preceding listing into parts, you will
see that most of the code generates the action link. First
you have a logical operator:

$form->getObject()->isNew() ? ‘create’ : ‘update’

It tells you if the object that you want to create is a new
one or just an update of an existing one. Note that you
have one form for the create and update methods. If the
isNew() method returns true, you put into your link a
‘create’ string. In the other case, you would use
‘update’. This is obvious because if you want to add a
new user, you should process the form data to the
controller's create method.

The logical operator (?) used in the code below returns an
empty string in the case of new data. Otherwise, the ID of
an existing user is returned. The ID is concatenated with
the ‘?id=’ string, which in conjunction with the

233

previously returned string gives you a proper link for the
action attribute of the form.

!$form->getObject()->isNew() ? ‘?id=’.$form->getObject()->getId() : ‘’

Additionally you should add the enctype attribute if you
plan to upload files. Without enctype=“multipart/
form-data”, your form will work, but will not upload any
files.

$form->isMultipart() and print ‘enctype=“multipart/form-data” ‘

But let's go back to the controller. As shown in the
following code, the PUT method is also added
automatically. This is described in the “RESTful News
Reading” section in Chapter 12.

<?php if (!$form->getObject()->isNew()): ?>

<input type=“hidden” name=“sf_method” value=“put” />

<?php endif; ?>

The PUT method simulates only the PUT request. In this
case, the method does nothing because a false parameter is
sent by default. Normally, this method should generate all
the needed hidden input fields. This is further explained in
Chapter 5. The following code prevents generating hidden
fields in embedded forms.

echo $form->renderHiddenFields(false)

Deleting Addresses

An edit template should provide an address deletion
option. The easiest way to do that is to add a link that

234

should allow you to invoke the controller's delete
method. There are two new elements introduced here.
First, you use another HTTP request method. This time, it
is delete. This is described in more detail in Chapter 12.
Second, Symfony allows the link_to() helper to add
some simple JavaScript that will confirm your choice.
Simple, isn't it?

echo link_to(‘Delete’,

‘addresbook/delete?id=’.$form->getObject()->getId(),

array(‘method’ => ‘delete’,

‘confirm’ => ‘Are you sure?’))

Both the edit and new forms should look like those shown
in Figure 4.2.

Figure 4.2 The New Address and Edit Address forms in
Symfony

Address List

Timestamp fields don't look very user-friendly, but they
provide some basic functionality that serves your purpose
for now. Chapter 5 describes how to make them trendier.

235

The last issue is to list all available addresses. In the index
method you send all user data as a $users variable to the
index view. For each user, data is printed as shown in the
following code:

<h1>Address List</h1>

<table>

<thead>

<tr>

<th>Id</th>

<th>FirstName</th>

<th>Lastname</th>

<th>Email</th>

<th>Phone</th>

<th>Description</th>

<th>Created at</th>

<th>Updated at</th>

</tr>

</thead>

<tbody>

236

<?php foreach ($userss as $users): ?>

<tr>

<td><a href=“<?php echo url_for(‘addresbook/
edit?id=’.$users->getId()) ?>”>

<?php echo $users->getId() ?>

</td>

<td><?php echo $users->getFirstName() ?></td>

<td><?php echo $users->getLastName() ?></td>

<td><?php echo $users->getEmail() ?></td>

<td><?php echo $users->getPhone() ?></td>

<td><?php echo $users->getDescription() ?></td>

<td><?php echo $users->getCreatedAt() ?></td>

<td><?php echo $users->getUpdatedAt() ?></td>

</tr>

<?php endforeach; ?>

</tbody>

</table>

<a href=“<?php echo url_for(‘addresbook/new’) ?>”>New

code snippet /symfony/apps/frontend/modules/

addressbook/templates/indexSuccess.php

237

Figure 4.3 shows how the index view should look in the
web browser.

Figure 4.3 The Address List in Symfony

CakePHP

You will now produce an address book in CakePHP, just
like you did in Symfony. With all the experience you have
gained so far, it should not be a hard task.

Project

Before you start building an application, you should make
sure that the database you are working with is properly
created for this purpose. This project will use a database
that is named Cake, and this database should contain one
table called addresses, with a structure the same as that
shown in the “Design” section of this chapter.

The following code shows the files used to build the
address book application:

/cake_installation

/app

/config

routes.php

238

database.php

core.php

/controllers

addresses_controller.php

/models

address.php

/views

/addresses

add.ctp

edit.ctp

index.ctp

view.ctp

Routing

Previous chapters should have left you with a fresh
CakePHP framework installation in the /webroot
directory. With that in place, you can start writing the
functionality. At this point, you will repeat the steps used
in previous chapters and begin with connecting your
current application to a URL that you choose.

For example, you would like to access your address book
project by typing http://localhost/cake/the-book in the
browser. What you need to do now is to add an instruction
to the CakePHP routing file that will make that URL point
to the proper controller and its functions. To do this, it is

239

necessary to edit the routes.php file and add another
line:

Router::connect(‘/the-book’,

array(‘controller’ => ‘addresses’,

‘action’ => ‘index’));

code snippet /cakephp/app/config/routes.php

This will map /the-book to the execute action index of
controller addresses. Now take a look at the model and
controller.

Model

So far, you have created the routing directive. Now it's
time to create the model for the project. It should be
located in the /models directory (see the file structure
listed right under “Project” above).It needs to look like
this:

<?php

240

class Address extends AppModel {

var $name = ‘Address’;

}

?>

code snippet /cakephp/app/models/address.php

For this application, leave it as it is now; that way the
framework will try to read the model information from the
structure of the addresses table.

Schema

We mentioned in Chapter 3 that you can create all needed
tables in two different ways. One way is to do it manually
(as in ZF), and the other is to use a schema. In this case,
the schema should look like this:

var $_schema = array(

‘id’ => array(‘type’ => ‘string’, ‘length’ => 30),

‘first_name’ => array(‘type’ => ‘string’, ‘length’ => 30),

‘last_name’ => array(‘type’ => ‘string’, ‘length’ => 30),

‘email’ => array(‘type’ => ‘string’,‘length’ => 30),

‘phone’ => array(‘type’ => ‘string’,‘length’ => 30),

‘address’ => array(‘type’ => ‘text’),

241

‘created’ => array(‘type’ => ‘date’),

‘modified’ => array(‘type’ => ‘date’)

);

code snippet /cakephp/app/config/schema/schema.php

Don't forget to run the appropriate commands to complete
this task (see in the previous chapter—CakePHP part of
“Command-line Interface” section). However, for the
purpose of this example, you will use the manual approach
instead of using a schema.

Controller

You have created the routing for the URL of your choice,
and you have linked it with the ‘addresses’ controller,
as shown in the following code:

<?php

class AddressesController extends AppController {

var $name = ‘addresses’;

}

?>

code snippet /cakephp/app/controllers/

addresses_controller.php

242

Now is a good time to say a word or two about naming
conventions because they can be a little confusing.

Naming conventions in CakePHP are applied to make the
use of the Model-View-Controller (MVC) as easy as
possible. In your address book, the controller will be used
to handle actions performed on data (addresses) that your
address book will contain. Knowing this, you will need to
name your controller addresses. As you know, CakePHP
will automatically try to look for a model to connect with.
The model's name is singular, unlike the controller's file
and views' folder names. Therefore, if you want to use the
automatic functions of the CakePHP framework, you need
to use plural names for the controller, database tables, and
views folders. Singular names will be used only for the
model.

List of All Addresses

Now create some actions for the controller. As discussed
with the routing file, the index() action should be
executed while viewing http://localhost/cake/the-book
address. Now you need to create this action, so add a
function index inside the brackets of the addresses
controller:

class AddressesController extends AppController {

var $name = ‘addresses’;

243

function index($id = null) {

$this->set(‘address_list’, $this->Address->find(‘all’));

}

}

code snippet /cakephp/app/controllers/

addresses_controller.php

This action finds all addresses available in your database.
It is the same as this SQL query:

SELECT * FROM addresses;

That way, whenever someone types http://localhost/cake/
the-book into a web browser window, an index() action
will be called, and all data contained in addresses table will
be read and saved into the address_list variable. The
set() method used in this example creates a variable (in
this case, it is address_list) and assigns data to it (here
it is a list of all addresses) so later it can be read and used
in a view template to display its content.

Note that for every controller method that is supposed to
display something, a view file should be created
(index.ctp, add.ctp, and so on).

Adding a New Address

Now you know how to pass variables into view templates.
Suppose that you create an add link to add some new data.
If you click it, you will get an error about missing the
add() action, so you can create a new function that will
handle adding new addresses to the database.

244

Putting function add() into the
addresses_controller.php file should get you where
you want to go. The following code will handle adding
new addresses to the database:

function add() {

if (!empty($this->data)) {

if ($this->Address->save($this->data)) {

$this->Session->setFlash(‘New address has been saved.’);

$this->redirect(array(‘action’ => ‘index’));

}

}

}

code snippet /cakephp/app/controllers/

addresses_controller.php

Now we will explain what this function does. The first if
statement checks to see whether there is anything in
$this->data, which is data submitted by the form. In
CakePHP, $this->data is a known variable where form
data can also be found. If any data has been sent, it is
saved using information from the address model. Then a
confirmation message is generated to be displayed in the

245

page. Finally, redirection to the index action is done, and
the confirmation message is shown.

Editing an Address

Because you now have a list of all addresses and can add
new addresses, you can move on to editing entries. To do
so, you will add another action to the addresses controller
and create a new view file. Add the edit() function as
follows:

function edit($id = null) {

$this->Address->id = $id;

if (empty($this->data)) {

$this->data = $this->Address->read();

} else {

if ($this->Address->save($this->data)) {

$this->Session->setFlash(‘New address has been saved.’);

$this->redirect(array(‘action’ => ‘index’));

}

}

}

246

code snippet /cakephp/app/controllers/

addresses_controller.php

This function is very similar to the add() function and is
divided into two sections. The first section is responsible
for loading selected address information into data
($this->data) that will be displayed by an edit form. The
second section is responsible for saving submitted form
data into the database. This is intuitive because you use the
edit() method to display and save entry data. The first if
statement determines whether you want to display the data
or save it. As you can see, all GET data that you want to get
is intercepted as method parameters.

Deleting a Selected Address

Now that you have created most of the application's
functionality, the last thing to do is add the delete option.
Add the new delete() action as follows:

function delete($id) {

$this->Address->delete($id);

$this->Session->setFlash(‘Address with id: ‘.$id.’ has been deleted.’);

$this->redirect(array(‘action’=>’index’));

}

247

code snippet /cakephp/app/controllers/

addresses_controller.php

As before, this file uses most of the framework's
functionality, and by running
$this->Address->delete($id), it removes every entry
with the given ID from the database without writing any
database queries. The next line generates a message to be
displayed after redirection is done. This method should be
used very carefully because of security issues (see Chapter
8).

Viewing a Selected Address

This is the most obvious and simplest task. As before, you
need to add a new action to addresses_controler.php
according to the following code:

function view($id = null) {

$this->Address->id = $id;

$this->set(‘address’, $this->Address->read());

}

code snippet /cakephp/app/controllers/

addresses_controller.php

248

You get the address's ID and assign it to
$this->Address, which is the same as saying this: Get
an address with an ID of $id (where $id is a number).
That's why in the next line you need only assign a chosen
address to a view variable. The rest of the work to find the
proper address is done by Cake.

View

Now is a good time to take care of the view part by adding
a few lines of code to the index.ctp file.

Address List

To display all data from the database, use an HTML table
as shown here:

<table>

<tr>

<th>Id</th>

<th>First name</th>

<th>Last name</th>

<th>Email</th>

<th>Phone</th>

<th>Address</th>

249

<th>Options</th>

</tr>

<?php

foreach ($address_list as $line) {

$address = $line[‘Address’];

echo

‘<tr>’.

‘<td>’.$address[‘id’].‘</td>’.

‘<td>’.$address[‘first_name’].‘</td>’.

‘<td>’.$address[‘last_name’].‘</td>’.

‘<td>’.$address[‘email’].‘</td>’.

‘<td>’.$address[‘phone’].‘</td>’.

‘<td>’.$address[‘address’].‘</td>’.

‘<td></td>’.

‘</tr>’;

};

?>

</table>

code snippet /cakephp/app/views/addresses/index.ctp

You can see all addresses saved to the database through
the Add New Address form. As mentioned previously in
the “Controller” section, you get all data in the
$address_list.

250

Now you have all the prerequisites to fill the add view file.
Add a link to the top of index.ctp:

<?php

echo $html->link(‘Add new address’, array(‘action’=>‘add’));

?>

code snippet /cakephp/app/views/addresses/index.ctp

You can now see the results of your work. It is not much,
but typing http://localhost/cake/the-book into a web
browser window should display your index page. Here you
can see the standard CakePHP header and footer, as well
as the content created by us, which should be a single link
called Add New Address. This link, if clicked, will call the
same controller, but a different action, which in this case
will be the add action. The address list with the Add New
Address link is displayed in Figure 4.4.

Figure 4.4 The Address List with the Add new address
link

Forms

251

Adding forms in CakePHP is very simple. This framework
creates all needed input fields for a given model. The
necessary code is shown as follows:

<?php

echo $form->create(‘Address’);

echo $form->inputs();

echo $form->end(‘Save address’);

?>

code snippet /cakephp/app/views/addresses/add.ctp

This code creates a form like the one shown in Figure 4.5.
Note that only three form methods were used: form
starting and ending tag methods, and an input generation
method. The last method generates all needed input files.
This is a time-saving approach because it gets the
create() parameter, which is in fact the name of the
model and automatically returns all needed input fields
based on model information. You might wonder why the
two additional methods are necessary. The answer is that
they're needed because the HTML form tag can be
customized, as can the submit button.

Figure 4.5 The New Address form in CakePHP

252

The form displayed in Figure 4.5 will be
slightly different from the one you will see
in your web browser because the stylesheet
has been modified for the purpose of
generating smaller images for this book.

Editing an Address

To edit an entry, you need to add a proper link that will
redirect you to the edit form page. To do that, you need to
edit index.ctp and change it a little bit, as shown in the
following code:

253

<?php

foreach ($address_list as $line) {

$address = $line[‘Address’];

echo

‘<tr>’.

‘<td>’.$address[‘id’].‘</td>’.

‘<td>’.$address[‘first_name’].‘</td>’.

‘<td>’.$address[‘last_name’].‘</td>’.

‘<td>’.$address[‘email’].‘</td>’.

‘<td>’.$address[‘phone’].‘</td>’.

‘<td>’.$address[‘address’].‘</td>’.

‘<td>’.$html->link(‘edit’,

array(‘action’=>‘edit’,

‘id’=>$address[‘id’])).‘</td>’.

‘</tr>’;

};

?>

code snippet /cakephp/app/views/addresses/index.ctp

254

We didn't explain what $html->link() does earlier while
creating the add.ctp template, but we will do so now. The
link() function added in this template has two
parameters. The first is the text that will be displayed as a
link, and the second is an array that allows you to set
various parameters, such as the action name that will be
called when the generated link is clicked and the id
parameter that will be passed by the $_GET variable to
identify which address will be edited.

At this point, the edit action is still missing a view file, so
create one as follows:

<?php

echo $form->create(‘Address’, array(‘action’ -> ‘edit’));

echo $form->inputs();

echo $form->end(‘Save address’);

?>

code snippet /cakephp/app/views/addresses/edit.ctp

Note that this file is nearly identical to add.ctp. The only
difference is that you have added another parameter to the
$form->create() function, which is an array defining
what action will be called after sending the form data. It is
set to add by default, which is why you need to change it

255

to edit. Check the result shown in Figure 4.6 and
compare it with the New Address form shown in Figure
4.5.

Figure 4.6 The Edit Address form in CakePHP

The Edit Address form is generated by the file that you
have just created and looks identical to the form that
handles adding new addresses, except that it contains the
data of a selected address rather than being blank.

Viewing a Selected Address

Now create a view that will allow you to see detailed
address information using a custom view. The most
intuitive approach is to click an address entry from the
address list. To do this, change the index.ctp file again:

256

<?php

foreach ($address_list as $line) {

$address = $line[‘Address’];

echo

‘<tr>’.

‘<td>’.$address[‘id’].‘</td>’.

‘<td>’.$html->link($address[‘first_name’],

array(‘action’=>‘view’,

‘id’=>$address[‘id’])).‘</td>’.

‘<td>’.$address[‘last_name’].‘</td>’.

‘<td>’.$address[‘email’].‘</td>’.

‘<td>’.$address[‘phone’].‘</td>’.

‘<td>’.$address[‘address’].‘</td>’.

‘<td>’.$html->link(‘edit’,

array(‘action’=>‘edit’,

‘id’=>$address[‘id’])).‘</td>’.

‘</tr>’;

};

?>

257

code snippet /cakephp/app/views/addresses/index.ctp

The added line works the same way as when you added an
edit link. It makes the first_name value clickable and
allows it to call the view action that will display the
following file, which you need to create in the /views
folder:

<?php

$address = $address[‘Address’];

echo $html->link(‘Back to list’, array(‘action’=>‘index’));

echo ‘<h1>’.$address[‘first_name’].’ ‘.$address[‘last_name’].‘</h1>’.

‘<p>Email: ‘.$address[‘email’].‘</p>’.

‘<p>Phone: ‘.$address[‘phone’].‘</p>’.

‘<p>Street: ‘.$address[‘street’].‘</p>’.

‘<p>Address: ‘.$address[‘address’].‘</p>’;

?>

code snippet /cakephp/app/views/addresses/index.ctp

After creating this file, you can browse through your
address book and view selected entries. When an entry is
selected, the page shown in Figure 4.7 should be
displayed.

258

Figure 4.7 An address book entry

Deleting an entry

Now that the code responsible for deleting entries has been
created, modify the index.ctp file in the /views
directory so that it allows you to select an entry for
deletion. The bold font in the following code snippet
shows how it is done:

<?php

foreach ($address_list as $line) {

$address = $line[‘Address’];

echo

‘<tr>’.

‘<td>’.$address[‘id’].‘</td>’.

‘<td>’.$html->link($address[‘first_name’],

array(‘action’=>‘view’,

‘id’=>$address[‘id’])).‘</td>’.

‘<td>’.$address[‘last_name’].‘</td>’.

259

‘<td>’.$address[‘email’].‘</td>’.

‘<td>’.$address[‘phone’].‘</td>’.

‘<td>’.$address[‘address’].‘</td>’.

‘<td>’.$html->link(‘edit’,

array(‘action’=>‘edit’,

‘id’=>$address[‘id’])).

‘ ‘.$html->link(‘delete’,

array(‘action’=>‘delete’,

‘id’=>$address[‘id’])).‘</td>’.

‘</tr>’;

};

?>

code snippet /cakephp/app/views/addresses/index.ctp

This concludes the creation of a basic CRUD functionality.

Zend Framework

ZF suffers from not having a proper ORM tool to generate
useful code without much effort. You have to write many
lines of code using Zend_Db instead. (That's why this
section is more than twice as long as previous ones.)

Project

As was mentioned in Chapter 3, there are a few ways to
start a project with ZF. Let's say that you have done

260

everything properly, as described in Chapter 3, and are
ready to move on. In the command-line interface, type
<path> (use the path to the directory in which you want to
start developing your application):

$ zf create <path>

There is also another way to do that. Just type the project
name (for example, addressBook):

$ zf create project addressBook

The only difference between these two methods is that the
first one just creates all needed project files in the current
directory, whereas the second command does the same but
also creates the project directory with the name given as
the parameter.

Routing

Zend has no routing configuration like Symfony has. There
are two main controllers: index and error. The first one is
the root controller in which all applications start. The main
routing rules are defined in the .htaccess file of the
mod_rewrite module, which is a good approach to allow
for reusing code and tools. There is a default main rule that
says that the first given parameter is the controller's name
and the second is the action of this controller. All
additionally given parameters are sent as GET parameters
to the action method (for example, http://localhost/
addressBook/address/delete/id/1). Your root path is
http://localhost/addressBook in this case.

Model

261

The following SQL code creates a table that is used in your
address book application. Remember to create and use
the database first:

CREATE TABLE IF NOT EXISTS ‘AddressBook’ (

‘id’ int(11) unsigned NOT NULL AUTO_INCREMENT,

‘first_name’ varchar(25) NOT NULL,

‘last_name’ varchar(25) NOT NULL,

‘email’ varchar(25) NOT NULL,

‘phone’ int(11) DEFAULT NULL,

‘address’ text,

‘created’ datetime NOT NULL,

‘modified’ datetime NOT NULL,

PRIMARY KEY (‘id’)

) ENGINE=MyISAM DEFAULT CHARSET=utf8;

code snippet /zf/library/sql/addressbook.sql

Creating data models is probably the most difficult issue
when developing with ZF. You need to create an
additional model, mapper, and Db_Table model for each
table. That's three files for each table! Although this
approach is not the best because most of this code could be
autogenerated, go with it anyway.

262

Model Class

Start with the model:

$ zf create model AddressBook

This command generates a template model of
AddressBook. Model files are placed in the
/application/models/ folder. A generated template is
an empty class definition, as shown in the following code,
which needs to be filled out:

<?php

class Application_Model_AddressBook {

}

This template needs to be filled out with proper code. As
mentioned in Chapter 3, you need to create two methods
for each field. Additionally, there is a constructor and two
default methods needed. The following code snippet shows
how the address book template should be filled with code:

<?php

class Application_Model_AddressBook

{

263

protected $_firstName;

protected $_lastName;

protected $_email;

protected $_phone;

protected $_address;

protected $_created;

protected $_modified;

protected $_id;

public function __construct(array $options = null) {

}

public function __set($name, $value) {

$method = ‘set’ . $name;

if ((‘mapper’ == $name) || !method_exists($this, $method)) {

throw new Exception(‘Invalid property’);

}

$this->$method($value);

}

public function __get($name) {

$method = ‘get’ . $name;

if ((‘mapper’ == $name) || !method_exists($this, $method)) {

throw new Exception(‘Invalid property’);

}

264

return $this->$method();

}

public function setOptions(array $options) {

$methods = get_class_methods($this);

foreach ($options as $key => $value) {

$method = ‘set’ . ucfirst($key);

if (in_array($method, $methods)) {

$this->$method($value);

}

}

return $this;

}

public function setFirstName($text) {

$this->_firstName = (string) $text;

return $this;

}

public function getFirstName() {

return $this->_firstName;

}

public function setLastName($text) {

$this->_lastName = (string) $text;

return $this;

265

}

public function getLastName() {

return $this->_lastName;

}

public function setEmail($text) {

$this->_email = (string) $text;

return $this;

}

public function getEmail() {

return $this->_email;

}

public function setPhone($text) {

$this->_phone = (string) $text;

return $this;

}

public function getPhone() {

return $this->_phone;

}

public function setAddress($text) {

$this->_address = (string) $text;

return $this;

}

public function getAddress() {

266

return $this->_address;

}

public function setCreated($text) {

$this->_created = (string) $text;

return $this;

}

public function getCreated() {

return $this->_created;

}

public function setModified($text) {

$this->_modified = (string) $text;

return $this;

}

public function getModified() {

return $this->_modified;

}

public function getId() {

return $this->_id;

}

public function setId($text) {

$this->_id = (int) $id;

return $this‘

}

267

}

code snippet /zf/application/models/AddressBook.php

This is a long but very simple piece of code. Getter and
setter methods can be easily generated by any
Eclipse-based integrated development environment (IDE)
such as Zend Studio. If you use Zend Studio, just use the
Source option in the main menu and select Generate
Getters/Setters. Note that a proper class file needs to have
the focus. You can see now what the individual methods
shown in the preceding code are responsible for:

public function __get($name) {

$method = ‘get’ . $name;

if ((‘mapper’ == $name) || !method_exists($this, $method)) {

throw new Exception(‘Invalid property’);

}

return $this->$method();

}

code snippet /zf/application/models/AddressBook.php

This is a common get() method, which takes the name of
the model's field (for example, firstName) as a
parameter. First, the method that is responsible for getting

268

data from this field is searched for. If the method exists,
the returned value of the invoked method is given as the
result. So for $name=‘firstName’, this method throws
‘John’, for example.

The set() method works in much the same way, but
accomplishes something quite different. The $name and
$value fields are needed as parameters. Like previously,
the proper method is searched for. If it exists, it is invoked,
and the result is returned, as shown in the following code:

public function __set($name, $value) {

$method = ‘set’ . $name;

if ((‘mapper’ == $name) || !method_exists($this, $method)) {

throw new Exception(‘Invalid property’);

}

$this->$method($value);

}

code snippet /zf/application/models/AddressBook.php

The last method is setOptions(), which just gets an
array that is a kind of a hashtable/dictionary. Each key
represents a field. For each key, a value is assigned, even if
it is just a null value. For each key/value pair an

269

appropriate method is searched for. If it exists, the value is
set. An object with all fields filled out is returned as the
result. This method is very useful when you get an array
that you want to assign directly to an existing instance of a
model object:

public function setOptions(array $options) {

$methods = get_class_methods($this);

foreach ($options as $key => $value) {

$method = ‘set’ . ucfirst($key);

if (in_array($method, $methods)) {

$this->$method($value);

}

}

return $this;

}

code snippet /zf/application/models/AddressBook.php

Unfortunately, this is not everything you need to do to
make a working model. To develop it, you need to define
some basic methods to load and save data into a database.
This is why you need to define a mapper for the
AddressBook table.

270

Mapper

The next step is to define a mapper class. The model class
is only responsible for how the table looks. The mapper
class is designed to be responsible for manipulating data.
The relations between each of the three classes (Db_Table,
mapper, and model) are shown in Figure 4.8.

Figure 4.8 Relations between classes in ZF

The mapper class is shown in the following code. It should
be placed as AddressBookMapper.php in the
/application/models/ folder.

<?php

class Application_Model_AddressesBookMapper {

protected $_dbTable;

271

public function setDbTable($dbTable) {

}

public function getDbTable() {

}

public function deleteOne($id) {

}

public function save(Application_Model_AddressBook $address) {

}

public function find($id, Application_Model_AddressBook $address) {

}

public function fetchAll() {

}

}

code snippet /zf/application/models/

AddressBookMapper.php

First, you need to set the right Db_Table. You can just
create a new instance of it by putting a string as the
parameter or a concrete instance to assign. This method is
responsible for assigning a proper Db_Table class instance

272

to the mapper. Note in the following code that the
Db_Table class implements Zend_Db_Table_Abstract:

public function setDbTable($dbTable) {

if (is_string($dbTable)) {

$dbTable = new $dbTable();

}

if (!$dbTable instanceof Zend_Db_Table_Abstract) {

throw new Exception(‘Invalid table data gateway provided’);

}

$this->_dbTable = $dbTable;

return $this;

}

code snippet /zf/application/models/

AddressBookMapper.php

The same thing goes with getting a Db_Table instance,
but in this a case, a proper Db_Table class instance is
returned.

273

public function getDbTable() {

if (null === $this->_dbTable) {

$this->setDbTable(‘Application_Model_DbTable_AddressBook’);

}

return $this->_dbTable;

}

code snippet /zf/application/models/

AddressBookMapper.php

The preceding two methods are responsible for
establishing the relationship with the Db_Table model
class shown in Figure 4.8.

Now you can focus on methods that are commonly used
when working with the model. Previously created model
methods are used here. You need to consider what should
really be done in the save() method because there is a
difference between an existing address entry that needs to
be saved after editing and a new one that is to be added.
First, the $data array is prepared to save all needed entry
information. Only the modified field is changed when the
save() method is invoked. The rest of the form is filled
out with existing information or just with empty data (from
the database's perspective). In the following code, notice

274

that the created field is filled only when a new entry is
added:

public function save(Application_Model_AddressBook $address) {

$data = array(

‘firstName’ => $address->getFirstName(),

‘lastName’ => $address->getLastName(),

‘email’ => $address->getEmail(),

‘phone’ => $address->getPhone(),

‘address’ => $address->getAddress(),

‘created’ => $address->getCreated(),

‘modified’ => date(‘Y-m-d H:i:s’),

);

if (null === ($id = $user->getId())) {

unset($data[‘id’]);

$data[‘created’]=date(‘Y-m-d H:i:s’);

$this->getDbTable()->insert($data);

} else {

$this->getDbTable()->update($data, array(‘id = ?’ => $id));

275

}

}

code snippet /zf/application/models/

AddressBookMapper.php

The find() method is used only to find just one specific
entry. Because in almost all cases, id is the primary key
and also a common identifier, it is needed as a parameter
in this method so you know what to search. Additionally,
an address's model instance is needed to collect all found
information. In the first line, the find() method is
invoked on an instance of the Db_Table object. Results
are then prepared to be returned as your model object. To
set all needed data models, set methods are used, as shown
in the following code:

public function find($id, Application_Model_AddressBook $address) {

$result = $this->getDbTable()->find($id);

if (0 == count($result)) {

return;

}

$row = $result->current();

$address->setId($row->id)

->setFirstName($row->firstName)

276

->setLastName($row->lastName)

->setEmail($row->email)

->setPhone($row->phone)

->setAddress($row->address)

->setCreated($row->created)

->setModified($row->modified);

}

code snippet /zf/application/models/

AddressBookMapper.php

The find() method shown in the preceding code is used
only in cases where one entry is expected to be returned.
To get all entries, the fetachAll() method, shown in the
following code, is the proper choice:

public function fetchAll() {

$results = $this->getDbTable()->fetchAll();

$entries = array();

foreach ($results as $row) {

$entry = new Application_Model_Addresses();

$entry->setId($row->id)

->setFirstName($row->firstName)

277

->setLastName($row->lastName)

->setEmail($row->email)

->setPhone($row->phone)

->setAddress($row->address)

->setCreated($row->created)

->setModified($row->modified);

$entries[] = $entry;

}

return $entries;

}

code snippet /zf/application/models/

AddressBookMapper.php

To see all the available methods for the
Zend_Db_Table class, go to
http://framework.zend.com/apidoc/1.10/.
From the Packages drop-down menu at the
top of the page, choose Zend_Db and select
Table from the list of choices in the left
pane.

The last method is a tiny one that deletes a row. Db_Table
is also used here. The row is identified by the ‘id=’ field

278

because the table's primary key could be also named
address_id or something similar.

public function deleteOne($id) {

$this->getDbTable()->delete(‘id = ‘. (int)$id);

}

code snippet /zf/application/models/

AddressBookMapper.php

In your sample application, only these four methods are
needed. We could also implement more complex methods
with defined criteria, but for now this is enough.

Db_Table Model

All the methods just covered are very similar to
equivalents in Symfony and CakePHP. The last thing to do
to get them working is to define a relation between the
Db_Table model and the real name of the table to which it
is dedicated, as shown in the following code:

<?php

279

class Application_Model_DbTable_AddressBook extends Zend_Db_Table_Abstract {

protected $_name = ‘AddressBook’;

}

code snippet /zf/application/models/DbTable/

AddressBook.php

A different approach to create Db_Table files is to invoke
the zf command, which does this for each table:

$ zf create db-table.from-database

Controller

Zend also provides some commands for controllers. To
easily create a controller, you can use this command:

$ zf create controller AddressBook

This command generates a basic controller with two
default methods. Controllers are placed in the
/application/controllers folder (for example,
IndexController.php, shown in the following code).
The first method is invoked when initializing, and the
second method is just an index action. Let's skip init()
because it is not needed in this example. Note, however,
that the init() method is very often used in more
complex applications.

280

<?php

class IndexController extends Zend_Controller_Action {

public function init() {

}

public function indexAction() {

}

}

code snippet /zf/application/controllers/

IndexController.php

Note, that in this code the default index controller is
shown. The only difference between Index and
AddressBook is the controller's name. Use the default
controller because there is less code to write.

List of All Addresses

First, show all entries in your address book. To do that,
you need to create a mapper object; then the fetchAll()
method should be invoked. The results are sent to the view
layer by the $this->view->addresses variable. Every
time you assign a value to $this->view->var, this
variable is sent to the view layer as $this->var. Then
just present all entries in the view layer.

281

public function indexAction() {

$addresses = new Application_Model_AddressBookMapper();

$this->view->addresses = $addresses->fetchAll();

}

code snippet /zf/application/controllers/

IndexController.php

Adding a New Address

Adding entries is a bit more complex than the
fetchAll() method. The following steps should be done:

1. Get data if the form is filled.

2. If not, show an empty form.

3. If given data is valid, proceed to save it.

4. After adding, just redirect to index page.

And this is how the addAction() method looks in PHP:

282

public function addAction() {

$form = new Application_Form_AddressAdd();

$request = $this->getRequest();

if ($this->getRequest()->isPost()){

if ($form->isValid($request->getPost())) {

$entry = new Application_Model_Addresses($form->getValues());

$mapper = new Application_Model_AddressesMapper();

$mapper->save($entry);

return $this->_helper->redirector(‘index’);

}

}

$this->view->form = $form;

}

code snippet /zf/application/controllers/

IndexController.php

Forms are described later in this chapter.

Editing an Entry

The edit action is more complex because this is an
all-in-one method. It shows a form with current data and
also processes submitted data. It begins like the add()
action. If $this->getRequest()->isPost() is true,
this means that some data was submitted. Next, validation
of submitted data needs to be done. (Form validation is
described in more detail in Chapter 5.)

283

If the validation process is successful,
$form->getValues() is called, which returns submitted
data. That submitted data is subsequently sent to the
AddressBook model. The $entry variable now contains
all submitted data. As described previously, to work with
data in databases, invoking mapper methods is required.
Note that it doesn't matter whether the data given as a
parameter to the save() method is completely new or just
an update because it is checked inside the mapper's
method. At the end or the process, the user is redirected to
an index page. Redirection is done by using the Zend
helper methods.

If no data is submitted, the ID should be intercepted. If the
user clicks an edit link, the ID should be sent to the edit
action (for example, http://localhost/addressbook/
edit/id/1. To get any parameter that is sent using GET,
the getParam() method should be used. As the parameter
to getParam(), the proper parameter name should be
given (for example, ID). Then the initialization of both the
model and mapper classes needs to be done because they
are needed to get data from the database. The mapper
class's find() method selects a row from the
AddressBook table with an ID specified as $id. The
$entry variable is your model object filled with data after
invoking the find() method.

The next step is to create an array of previously prepared
data and set it inside the value=“” HTML input/textarea
attribute by using the setDefaults() method. Note in
the following code that an
Application_Form_AddressEdit object is created at

284

the beginning. If everything runs successfully without any
exceptions, the form is assigned to the $this->form view
variable:

public function editAction() {

$form = new Application_Form_AddressEdit();

$request = $this->getRequest();

if ($this->getRequest()->isPost()){

if ($form->isValid($request->getPost())) {

$entry = new Application_Model_AddressBook($form->getValues());

$mapper = new Application_Model_AddressBookMapper();

$mapper->save($entry);

return $this->_helper->redirector(‘index’);

}

}else{

$id=$this->getRequest()->getParam(‘id’);

$entry = new Application_Model_AddressBook();

$mapper = new Application_Model_AddressBookMapper();

$result = $mapper->find($id,$entry);

$data = array(

‘id’ => $id,

285

‘firstName’ => $entry->getFirstName(),

‘lastName’ => $entry->getLastName(),

‘email’ => $entry->getEmail(),

‘phone’ => $entry->getPhone(),

‘address’ => $entry->getAddress(),

‘created’ => $entry->getCreated(),

‘modified’ => date(‘Y-m-d’),

);

$form->setDefaults($data);

}

$this->view->form = $form;

}

code snippet /zf/application/controllers/

IndexController.php

Delete

The delete action is easy to create. In the first line of the
following code, the identifier is taken from GET (see
$_GET on http://php.net) as in the edit action. Next, a
mapper is created, and the deleteOne() method is
invoked. The $id parameter is given because you need to
show which data to delete. After that, the user is redirected
to the index page:

286

public function deleteAction() {

$id = $this->getRequest()->getParam(‘id’);

$addresses = new Application_Model_AddressBookMapper();

$addresses->deleteOne($id);

return $this->_helper->redirector(‘index’);

}

code snippet /zf/application/controllers/

IndexController.php

Forms

To make sure that the forms invoked in the code snippet
above are working properly, they should be first defined.
Forms are placed in the /application/forms directory
(for example, AddressAdd.php). As shown in the
following code, a form should inherit the Zend_Form class
and have an init() method:

<?php

class Application_Form_Addresses extends Zend_Form {

287

public function init() {

$this->setMethod(‘post’);

/* form here */

$this->addElement(‘submit’, ‘submit’, array(

‘ignore’ => true,

‘label’ => ‘Save’,

));

}

}

code snippet /zf/application/forms/Addresses.php

There are two methods that should be invoked when
defining forms: setMethod() and
addElement()—shown in the following code. The
setMethod() method defines the form's method attribute.
The post attribute is commonly used with the
setMethod() method. The next method, addElement(),
is responsible for adding form elements such as inputs or
textareas. Because there are a few different types of input
in Zend, they are represented by their type: text, textarea,
submit, hidden. Each field can also have parameters such
as label and filters, or it can be defined as a required
field or not. Attributes are given as an array (a hashmap,
really). The filters parameter defines which filter for
data should be applied, (for example, String):

288

public function init() {

$this->setMethod(‘post’);

$this->addElement(‘text’, ‘firstName’, array(

‘label’ => ‘Your first name:’,

‘required’ => false,

‘filters’ => array(‘StringTrim’),

)

);

$this->addElement(‘text’, ‘lastName’, array(

‘label’ => ‘Your last name:’,

‘required’ => false,

‘filters’ => array(‘StringTrim’),

)

);

$this->addElement(‘text’, ‘email’, array(

‘label’ => ‘Your e-mail address:’,

‘required’ => false,

‘filters’ => array(‘StringTrim’),

)

289

);

$this->addElement(‘text’, ‘phone’, array(

‘label’ => ‘Your phone:’,

‘required’ => false,

‘filters’ => array(‘StringTrim’),

)

);

$this->addElement(‘textarea’, ‘address’, array(

‘label’ => ‘Your Address:’,

‘required’ => false,

‘filters’ => array(‘StringTrim’),

)

);

$this->addElement(‘submit’, ‘submit’, array(

‘ignore’ => true,

‘label’ => ‘Save’

));

}

code snippet /zf/application/forms/Addresses.php

To complete the forms for this example, two forms need to
be defined: AddressEdit and AddressAdd. They should
be the same except for the name. Although each of the

290

forms can be used alone, the code is easier to understand
with two separate forms.

View

First of all, a layout needs to be created. To do this, the
enable parameter should be used. This command also
creates the following layout in the /application/
layouts/scripts directory:

$ zf enable layout

There are two main view templates: index.phtml and
error.phtml, which are placed in the /application/
views/scripts/ directory. The first one is (by default)
the ZF welcome page. The second one, shown in the
following code, is the page that shows all errors and
exceptions that happen while executing your code. As you
can probably guess, it's better not to see this page too
often.

<h1>An error occurred</h1>

<h2><?php echo $this->message ?></h2>

<?php if (isset($this->exception)): ?>

291

<h3>Exception information:</h3>

<p>

Message: <?php echo $this->exception->getMessage() ?>

</p>

<h3>Stack trace:</h3>

<pre><?php echo $this->exception->getTraceAsString() ?>

</pre>

<h3>Request Parameters:</h3>

<pre><?php echo var_export($this->request->getParams(), true) ?>

</pre>

<?php endif ?>

code snippet /zf/application/views/scripts/error/

error.phtml

The index template is the first page that should be
changed, so change it to a list of addresses. Below the ZF
welcome page, the view code is shown:

<style>

a:link,

292

a:visited

{

color: #0398CA;

}

span#zf-name

{

color: #91BE3F;

}

div#welcome

{

color: #FFFFFF;

background-image: url(http://framework.zend.com/images/
bkg_header.jpg);

width: 600px;

height: 400px;

border: 2px solid #444444;

overflow: hidden;

text-align: center;

}

div#more-information

293

{

background-image:

url(http://framework.zend.com/images/bkg_body-bottom.gif);

height: 100%;

}

</style>

<div id=“welcome”>

<h1>Welcome to the Zend Framework!</h1>

<h3>This is your project's main page</h3>

<div id=“more-information”>

<p>

<img src=“http://framework.zend.com/images/
PoweredBy_ZF_4LightBG.png” />

</p>

<p>

Helpful Links:

<a href=“http://framework.zend.com/
”>Zend Framework Website |

Zend Framework Manual

</p>

294

</div>

</div>

code snippet /zf/application/views/scripts/index/

index.phtml

List of All Addresses

Because the main page can be also the address book index
page, the preceding code can be replaced by a simple loop,
shown here:

<style>

a:link, a:visited {

color: #0398CA;

}

span#zf-name {

color: #91BE3F;

}

td {

background: #cdcdcd;

}

</style>

295

<div id=“header-navigation” style=“float: left; width: 100%;”>

Address Book

</div>

<div style=“float: left; ”>

<table>

<tr>

<td>ID</td>

<td>First Name</td>

<td>Last Name</td>

<td>E-mail</td>

<td>Phone Number</td>

<td>Address</td>

<td>Created</td>

<td>Modified</td>

<td>Options</td>

</tr>

<?php foreach ($this->addresses as $entry): ?>

<tr>

<td><?php echo $entry->getId(); ?></td>

<td><?php echo $entry->getFirstName(); ?></td>

<td><?php echo $entry->getLastName(); ?></td>

<td><?php echo $entry->getEmail(); ?></td>

296

<td><?php echo $entry->getPhone(); ?></td>

<td><?php echo $entry->getAddress(); ?></td>

<td><?php echo $entry->getCreated(); ?></td>

<td><?php echo $entry->getModified(); ?></td>

</tr>

<?php endforeach ?>

</table>

</div>

code snippet /zf/application/views/scripts/index/

index.phtml

Note that $this->addresses was passed from the
controller. This variable is an instance of AddressBook.
That's why in order to show proper data, the AddressBook
model methods are used (for example, getAddress()).
As a result, you should see something similar to what is
shown in Figure 4.9 (it can be a little different because all
links are added here).

Figure 4.9 The Index page of ZF's CRUD application

Adding an Entry Page

To make it possible to add any kind of data, a link to the
add page needs to be included, as shown in the following
code:

297

<div id=“header-navigation” style=“float: left; width: 100%;”>

Address Book

<a href=“<?php echo $this->url(

array(‘action’=>‘add’)); ?>”>Add a new entry

</div>

code snippet /zf/application/views/scripts/index/

index.phtml

To do that, the $this->url() helper method can be used.
An array should be given as the parameter. The array
should consist of information that makes it possible to
determine exactly what kind of URL should be generated.
It can be an action, as shown, but also a controller.
Because this URL is inside a template, which is a part of
the Index controller, there is no need to also add the
controller attribute, because it is set by default to the
currently used controller.

The previously described form should be included inside
the add.phtml template. Only one line of code is needed:

298

<?php echo $this->form;?>

code snippet /zf/application/views/scripts/index/add.phtml

You then see a page that includes a form (see Figure 4.10).

Figure 4.10 The Add form in ZF

Editing an Address Entry

To edit address book entries, a link to the add action is
needed, as is a link that redirects the user to the proper
place. Additionally, the ID needs to be added with the
$this->url() parameter, as shown in the following

299

code, which generates a link like http://localhost/
addressbook/ edit/id/1:

<td><?php echo $entry->getId(); ?></td>

<td><?php echo $entry->getFirstName(); ?></td>

<td><?php echo $entry->getLastName(); ?></td>

<td><?php echo $entry->getEmail(); ?></td>

<td><?php echo $entry->getPhone(); ?></td>

<td><?php echo $entry->getAddress(); ?></td>

<td><?php echo $entry->getCreated(); ?></td>

<td><?php echo $entry->getModified(); ?></td>

<td><a href=”<?php echo $this->url(

array(‘action’=>‘edit’,‘id’=> $entry->getId())); ?>”>Edit</td>

code snippet /zf/application/views/scripts/index/

index.phtml

The following code displays the form template:

<?php echo $this->form;?>

The form with proper data is shown in Figure 4.11.

Figure 4.11 The Edit form in ZF

300

Deleting an Entry

No view template code is needed to delete an entry
because redirection to an index page is done after deletion.
That's why no delete.phtml file is needed. You only
need to add a URL in index.phtml (almost the same
process as editing):

<td><?php echo $entry->getId(); ?></td>

301

<td><?php echo $entry->getFirstName(); ?></td>

<td><?php echo $entry->getLastName(); ?></td>

<td><?php echo $entry->getEmail(); ?></td>

<td><?php echo $entry->getPhone(); ?></td>

<td><?php echo $entry->getAddress(); ?></td>

<td><?php echo $entry->getCreated(); ?></td>

<td><?php echo $entry->getModified(); ?></td>

<td><a href=“<?php echo $this->url(

array(‘action’=>‘delete’,‘id’=> $entry->getId())); ?>”>Delete

<a href=“<?php echo $this->url(

array(‘action’=>‘edit’,‘id’=> $entry->getId())); ?>”>Edit</td>

code snippet /zf/application/views/scripts/index/

index.phtml

302

Chapter 5

Forms

Computers are like Old Testament gods; lots of rules and
no mercy.

—Joseph Campbell

What's In This Chapter?

• Field validation.

• Customizing forms.

• Using Captcha as spam protection.

Input forms have become so common and natural that
users probably do not even notice when they fill them in.
There is also nothing strange about a form noticing that
our e-mail address is incorrect or requesting us to write
down some barely recognizable characters. This chapter
explores forms: form creation and the various common
tasks associated with them, such as customization and
validation. Several automatic functions of frameworks
regarding building forms and their validation are presented
here as well.

Web forms can be found at various websites throughout
the Internet. They are used in all sorts of situations,
allowing users to pass data that is later processed by
server-side scripts. By including forms in your web
application, you allow visitors to register and enter their
unique content. Furthermore, forms can also be used for
ordering various products online, voting in polls, and other

303

sorts of user input. In some situations, forms can also be
used when you must implement some mechanisms to
ensure the security of transmitted data. (More about form
security and secured connections can be found in Chapter
8.) This chapter focuses on form validation and
customization. We also discuss Captcha tests as a spam
protection instrument.

Field Validation

One of the most important parts of any web application is
data validation. It is most helpful in ensuring that entered
data is consistent with a web application's assumed data
model. There are many common field validation methods,
and they are (or should be) applied to most input forms.
For example, you may want to make sure that the user
creating a new account in your application enters a unique
username, or that the password is no shorter than six
characters and no longer than twelve. Of course, there are
also more complex rules used during form validation; for
example, they allow passing of only alphanumeric
characters or even only strings that follow a certain
predefined pattern.

There is also one very important, but often overlooked
aspect of form validation. Obviously, form handling is
much easier when validation rules are defined, but at the
same time those rules are protecting the application from
web-bots that are looking for vulnerable sites that can later
be used for posting spam messages, or be targeted with
other methods of attack. Later in this chapter we discuss
Captcha, the second line of defense against these forms of
attack. Chapter 8 of this book addresses injection and

304

cross-site request forgery (CSRF) attacks, a special attack
on a web application that utilizes poorly protected forms as
an attack point.

Chapter 4 left us with a basic web application, but with no
data validation, and now we will add it. We will also show
alternative methods of creating forms in the project.

The address book that we created has a few fields that will
require validation, so we want to add these rules:

• first_name—This field will be obligatory and at least 3
characters long, but no longer than 25.

• last_name—This field is optional; it should be no longer
than 25 characters.

• email—Must be an e-mail format and no longer than 25
characters.

• phone—Integer value no longer than 11 digits.
• created—Date format (MDY).

Field length values here are related to database design. It is
a good practice to consider database restrictions while
including validation in the project. Because, for example,
if a name 10 characters long is put into a VARCHAR(5) type
field in a database, the input data will be truncated
accordingly. This can be avoided by adding field
validation that would prohibit sending improper data into
the database.

How Does Form Validation Work?

Form validation verifies submitted data against a set of
validation rules. When any information is about to be

305

submitted via a form, validation decides whether the
information is correct and can be processed or not.

There are two levels of validation that can be applied to an
application. The first one can be applied before any data is
sent to a server and it is done on the client side using
JavaScript. This is quite useful because in case of bigger
forms, the user can be informed whether a field is valid or
not. This validation can be easily omitted by disabling
JavaScript in a user's browser. The second stage of
validation is done by sending the form input to the
application server where it will be validated, and a proper
reply will be sent back to the user, informing him of any
errors.

Let's consider the simplest case of server-only validation,
as shown in Figure 5.1. We assume that a user is about to
post a comment to a blog post via a web form. Here we
can decide that there have to be some values submitted for
the UserName and Comment fields. The first stage of
validation will check if the UserName and the Comment
fields have any values assigned, and if they do, this data is
further validated by a set of predefined rules. Those rules
may check whether the comment contains any unwanted
scripts or contains any offensive words. Later, based on
validation results, an action is performed. In this case, it is
saving the submitted comment into a database. On the
other hand, if the user has not filled in the UserName or
the Comment fields, the form validation will generate an
appropriate error message, and the page will be reloaded
displaying it.

Figure 5.1 Diagram of the form validation process

306

Now let's consider an example that employs JavaScript as
the most commonly used client-side validation method.
This example will use the scheme shown in Figure 5.2 to
illustrate how client-side form validation works.

Figure 5.2 JavaScript form-validation process

307

As before, the user fills in the HTML comment form and
then clicks the submit button to send data. When the
submit button is clicked, the JavaScript validator
function is called, which checks whether the UserName
and the Comment fields have been both filled in. If any of
those fields has no values inside, the validator function
returns false, and an appropriate message is displayed to
the user. If the UserName and the Comment fields have
been filled in properly and the submit button was clicked
by the user, the validator function can verify form data
against a set of rules.

After passing all validation rules, the form data is sent to
the server, where it is validated again. Server rules can be
similar to the JavaScript rules from the previous example,
but any security filtering should necessarily be repeated on
the server side because JavaScript can be easily disabled. It
is a good practice to always validate all submitted data on
the server side, due to security reasons. JavaScript
validation may still be performed as an auxiliary for user
convenience and to reduce server workload.

308

So far, we have dealt with theory; now is the time to see
how the validation is done in practice. We will focus on
server-side validation provided by the three frameworks'
core functionality.

Symfony

In Chapter 4, the app was created using Doctrine and it
automatically created forms by using a command-line
interface (CLI) parameter: doctrine:build --all.
Forms created that way have classes represented by
validators and widgets. These classes provide a way to
manage forms in an easy manner. Every field of a form has
its own validator and widget.

While developing the first application, we used Doctrine
and basic form validation rules were created. These rules
can be found in the file /lib/form/doctrine/base/
BaseAddressesForm.class.php.

In the following code, you can see the setup() function
that calls two important methods: setWidgets() and
setValidators().

<?php

abstract class BaseAddressesForm extends BaseFormDoctrine {

public function setup() {

309

$this->setWidgets(array(

‘id’ => new sfWidgetFormInputHidden(),

‘first_name’ => new sfWidgetFormInputText(),

‘last_name’ => new sfWidgetFormInputText(),

‘email’ => new sfWidgetFormInputText(),

‘phone’ => new sfWidgetFormInputText(),

‘address’ => new sfWidgetFormInputText(),

‘created’ => new sfWidgetFormDateTime(),

‘updated’ => new sfWidgetFormDateTime(),

));

$this->setValidators(array(

‘id’ => new sfValidatorDoctrineChoice(array(

‘model’ => $this->getModelName(),

‘column’ => ‘id’, ‘required’ => false)),

‘first_name’ => new sfValidatorString(array(

‘max_length’ => 40, ‘required’ => false)),

‘last_name’ => new sfValidatorString(array(

‘max_length’ => 40, ‘required’ => false)),

‘email’ => new sfValidatorString(array(

‘max_length’ => 40, ‘required’ => false)),

‘phone’ => new sfValidatorInteger(array(‘required’ => false)),

‘address’ => new sfValidatorPass(array(‘required’ => false)),

‘created’ => new sfValidatorDateTime(),

310

‘updated’ => new sfValidatorDateTime(),));

$this->widgetSchema->setNameFormat(‘address[%s]’);

$this->errorSchema =
new sfValidatorErrorSchema($this->validatorSchema);

$this->setupInheritance();

parent::setup();

}

public function getModelName(){ return ‘Addresses’; }

}?>

code snippet /validation/symfony/lib/form/doctrine/base/

BaseAddressesForm.class.php

Those basic validation rules were generated according to
the schema.yml file that was used to generate the first
application project.

sfValidatorSchema is an array that holds the validators
of the form. The setValidators() method is used to fill
sfValidatorSchema with validation rules.

Symfony offers a wide range of available validators that
can be defined in various ways. The setOption() and
setMessage() methods can be used to customize
validators.

$value = new sfValidatorString();

$value ->setOption(‘required’, true);

311

$value ->setMessage(‘required’, ‘This value is required.’);

It is possible to define more than one rule to a validator by
using the setOptions() and setMessages() methods.

$name= new sfValidatorString();

$name->setOptions(array (‘min_length’ => 4, ‘max_length’ => 12));

$name->setMessages(array (

‘min_length’ => ‘Supplied name must be at least 4 characters long’,

‘max_length’ => ‘Supplied name cannot be longer than 12 characters’));

The same validation rules can be defined like this:

$this->setValidators(array(‘name’ => new sfValidatorString(

array(‘min_length’ => 4, ‘max_length’ => 12),

array(‘min_length’ => ‘Supplied name must be at least 4 characters long’,

‘max_length’ => ‘Supplied name cannot be longer than 12 characters’))

));

Let's look at a few of the most commonly used validators:

• sfValidatorString—Used to validate a string. It converts
the input value to a string.

$value = new sfValidatorString();

$value ->setOption(‘required’, true);

$value ->setMessage(‘required’, ‘This value is required.’);

• sfValidatorPass—Passes the value unmodified.

$value= new sfValidatorPass();

312

• sfValidatorInteger—Validates an integer value. It
converts the input value to an integer value.

$age => new sfValidatorInteger(array(‘min’ => 0,‘max’ => 100,‘required’ => false));

• sfValidatorNumber—Used to validate a number (integer
or float). It converts the input value to a float value.

$percent = new sfValidatorNumber(array(‘min’ => 0, ‘max’ => 99.99,),

array(‘min’ => ‘Percentage must be grater than 0%’,

‘max’ => ‘Percentage cannot exceed 99.99%’,));

• sfValidatorEmail—Used to validate e-mail format.

$email = new sfValidatorEmail();

• sfValidatorChoice— Used to check if the given value is
one of the expected values.

$fruit = new sfValidatorChoice(array(‘required’ => false,

‘choices’ => array(‘banana’, ‘apple’, ‘pear’)));

• sfValidatorTime— Used to validate time format. It
converts the input value to a valid time format.

$time = new sfValidatorTime();

• sfValidatorDate—Used to validate a date format. It
converts the input value to a valid date format.

$value = new sfValidatorDate(array(‘with_time’ => true));

• sfValidatorUrl—Used to verify whether a given value is
a valid URL address. It has protocol options that allow
specifying what protocols are allowed.

$url = new sfValidatorUrl(array(

‘protocols’ => array(‘http’, ‘https’, ‘ftp’, ‘ftps’)));

313

• sfValidatorRegex—Validates a value with a user-defined
regular expression.

$ip = new sfValidatorRegex(array(

‘pattern’ => ‘ˆ[0-9]{3} .[0-9]{3} .[0-9]{2} .[0-9]{3}$’));

For full list of validators, please refer to the
Symfony documentation.

Now modify your application so that the validation rules
better match the purpose of the project, as shown in the
following code. Set the required option of the
first_name field to true so that it no longer will be
possible to add empty entries. Next, create some messages
to inform the user if the supplied values are incorrect.
Finally, you should add an e-mail validation rule.

<?php

abstract class BaseAddressesForm extends BaseFormDoctrine {

public function setup() {

$this->setWidgets(array(

‘id’ => new sfWidgetFormInputHidden(),

314

‘first_name’ => new sfWidgetFormInputText(),

‘last_name’ => new sfWidgetFormInputText(),

‘email’ => new sfWidgetFormInputText(),

‘phone’ => new sfWidgetFormInputText(),

‘address’ => new sfWidgetFormInputText(),

‘created’ => new sfWidgetFormDateTime(),

‘updated’ => new sfWidgetFormDateTime(),

));

$this->setValidators(array(

‘id’ => new sfValidatorDoctrineChoice(array(

‘model’ => $this->getModelName(),‘column’ => ‘id’,‘required’ => false)),

‘first_name’ => new sfValidatorString(

array(‘max_length’ => 25, ‘required’ => true),

array (‘max_length’ => ‘First name must be no longer than 25 characters’,

‘required’ => ‘First name is required’)),

‘last_name’ => new sfValidatorString(

array(‘max_length’ => 25, ‘required’ => false),

array (‘max_length’ => ‘Last name must be no longer than 25 characters’)),

‘email’ => new sfValidatorEmail(array(‘required’=>false),

array(‘invalid’=>‘Supplied email address email is invalid’)),

‘phone’ => new sfValidatorInteger(array(‘required’ => false)),

‘address’ => new sfValidatorPass(array(‘required’ => false)),

‘created’ => new sfValidatorDateTime(),

315

‘updated’ => new sfValidatorDateTime(),

));

$this->widgetSchema->setNameFormat(‘address[%s]’);

$this->errorSchema =
new sfValidatorErrorSchema($this->validatorSchema);

$this->setupInheritance();

parent::setup();

}

public function getModelName(){ return ‘Addresses’; }

}?>

code snippet /validation/symfony/lib/form/doctrine/base/

BaseAddressesForm.class.php

In addition to the core validation helpers offered by
Symfony, there are a few plug-ins available that offer
additional validation options.

Plug-ins

HTML5 is making its way into the web applications world
quickly, so it is natural that web frameworks incorporate
new features that are offered by it.

The sfHtml5FormPlugin supplies your application with an
additional set of widgets and validators to be used with the
new HTML5 input types.

To install the sfHtml5FormPlugin, you simply need to type
following command into console from your project folder:

316

$ symfony plugin:install sfHtml5FormPlugin

To activate the newly installed plug-in, it is necessary to
modify the /config/
ProjectConfiguration.class.php file and add the
following line:

$this->enablePlugins(array(‘sfHtml5FormPlugin’));

The ProjectConfiguration.class.php file should
now contain code that looks like this:

class ProjectConfiguration extends sfProjectConfiguration {

public function setup() {

$this->enablePlugins(‘sfDoctrinePlugin’);

$this->enablePlugins(array(‘sfHtml5FormPlugin’));

}

}

As of this writing, the current version of the
sfHtml5FormPlugin is version 0.49 and it provides
validators such as sfValidator5Color,
sfValidator5Date, sfValidator5DateTimeLocal,
sfValidator5DateTime, sfValidator5Email,
sfValidator5Month, and sfValidator5Time.

Another useful plug-in is sfJqueryFormValidationPlugin.
As the name implies, it is a Symfony plug-in that
introduces client-side forms validation that is performed
using the jQuery library and the jQuery Validation plug-in.
So how does it work? It creates JavaScript client-side
validation rules and messages, according to validation

317

rules and messages from the validation schema. This
solution has a few features that are worth mentioning here.
First, when an HTML page is generated, there is no need
to generate additional JavaScript code because the
validation is added using progressive-enhancement
techniques. The second important feature is that there is no
need to create new containers for client-side error
messages; they are written using the same HTML elements
as the server-side validation.

Installation of sfJqueryFormValidationPlugin requires
modification of a few files located in the /config folder
of Symfony installation.

First, it is necessary to include the jQuery library and the
jQuery Validation plug-in into your site in view.yml. This
can be done either by downloading them or by simply
including them from their respective content delivery
network (CDN), as shown here:

default:

javascripts:

[http://ajax.googleapis.com/ajax/libs/jquery/1.4/jquery.min.js,

http://ajax.microsoft.com/ajax/jquery.validate/1.7/jquery.validate.min.js]

code snippet /validation/symfony/app/frontend/config/

view.yml

318

To install the sfJqueryFormValidationPlugin, you can type
the following command into the console from your project
folder:

$ symfony plugin:install sfJqueryFormValidationPlugin

The filters.yml file should contain the following filter:

jquery_form_validation:

class: sfJqueryFormValidationFilter

code snippet /validation/symfony/app/frontend/config/

filters.yml

The next module should be enabled in your
settings.yml by adding the following line:

all:

.settings:

enabled_modules: [default, sfJqueryFormVal]

code snippet /validation/symfony/app/frontend/config/

settings.yml

319

Finally, the cache should be cleared by typing the
following in the console:

$ symfony cc

There are some additional configuration options for this
plug-in. For more information, please refer to the plug-in
documentation.

CakePHP

Core validation rules that are offered by CakePHP make
model data validation an easy task. These rules can
automatically handle many often-used validation tasks that
otherwise would need to be written manually. CakePHP is
equipped with a powerful validation engine that allows a
number of built-in rules such as e-mail address, postal
number, IPv4, Social Security number, credit card
numbers, and so on. You can also add your own validation
rules that can be used the same way as built-in rules.

Previously, when the first application was created we
created a model file. Basically, it was an empty class with
no validation present at all.

In the following example, the same model file is expanded
by a $validate array:

<?php

320

class Address extends AppModel {

var $name = ‘Address’;

var $validate = array(‘first_name’ => ‘notEmpty’);

} ?>

code snippet /validation/cakephp/app/models/address.php

The newly added $validate array tells CakePHP how
data fields will be validated when values are sent and the
save() method is called. The first rule introduced is very
simple: It requires only that the first_name field should
not be empty, but this rule will not generate any error
message when that field is left empty. As well, no message
will be generated when longer data is passed than the
database can accept (VARCHAR(25)).

The key of the $validate array is the name of the form
field, for which the validation rule is created, and it can
take a single value or (more commonly) an array.

The following example illustrates the simplest method of
defining a validation rule. The general syntax for defining
rules in a model file looks like this:

var $validate = array(‘first_name’ => ‘alphaNumeric’,

‘last_name’ => array(‘rule’ => array(‘maxLength’, 25)));

The ‘rule’ key defines the validation method and takes
either a single value or an array. An array is used when the
rule requires some parameters as is illustrated by the rule
created for the last_name field. The rule may be the

321

name of a method added in your model file, a name of the
core validation rule, or even a regular expression.

In this model, any data sent by a first_name field will be
validated against the alphaNumeric rule, which means
that the data must contain only letters and numbers. And a
second rule restricts last_name to be no longer than 25
characters.

Probably the most commonly used validation rule is the
email rule. It ensures that the user is providing a properly
formatted e-mail address through the email field.

var $validate = array(‘email’ => ‘email’);

Creating validation rules in a model file allows us to define
error messages that will be displayed when the data
submitted does not match the defined rules. The following
example uses the isUnique rule in conjunction with an
error message to be displayed if the supplied phone
number is not unique.

var $validate = array(‘phone’ => array(‘rule’ => ‘isUnique’,

‘message’ => ‘This phone number has already been saved.’));

To verify data passed by a Checkbox field, a boolean
rule can be applied that can be used as a protection against
any code injection.

The data for the AgreeCheckbox field must be a boolean
value. Values that are accepted are true or false,
integers 0 or 1, or strings ‘0’ or ‘1’.

var $validate = array(‘AgreeCheckbox’ => array(‘rule’ => ‘boolean’));

322

Next, rules ensure that data meets the minimum length and
maximum length requirements.

var $validate = array(‘password’ => array(‘rule’ => array(‘minLength’, 6),

‘message’ => ‘Password must be at least 6 characters long’)

‘login’ => array(‘rule’ => array(‘maxLength’, 16),

‘message’ => ‘Usernames must be no larger than 15 characters long.’));

Date format validation is done by using a date rule to
ensure that submitted data has a valid format. By setting
the value of a rule array, it is possible to specify which
date format is considered valid. This value can be one of
the following: dmy, mdy, ymd, dMy, Mdy, My, my. The
following code demonstrates date validation:

var $validate = array(‘birth_date’ => array(‘rule’ => array(‘date’, ‘ymd’),

‘message’ => ‘Enter a date in YY-MM-DD format.’,

‘allowEmpty’ => true));

In a practical application of form validation, a single field
may have multiple validation rules. Let's look at how these
rules are defined in the model file:

<?php

class User extends AppModel {

323

var $name = ‘User’;

var $validate = array(

‘login’ => array(‘login_1’ => array(‘rule’ => array(‘minLength’, 6),

‘message’ => ‘Login must be at least 6 chars long’),

‘login_2’ => array(‘rule’ => array(‘isUnique’),

‘message’ => ‘This login is already taken’, ‘last’ => true)),

‘email’ => array(‘email_1’ => array (‘rule’ => ‘email’,

‘message’ => ‘Please enter valid email address’),

‘email_2’ => array (‘rule’ => array(‘isUnique’),

‘message’ => ‘This email address was already used’)));

} ?>

code snippet /validation/cakephp/app/models/user.php

A new validation parameter has been introduced here.
Setting the last key as true will cause the validator to stop
on the rule if it fails instead of continuing with the next
rule. This can be used if you want validation to stop if a
selected rule has failed.

In addition to already built-in validation rules, it is possible
to create your own custom regular expression validation
rules, simply by creating the desired regular expression
and placing it into a validation rule according to following
example:

var $validate = array(‘login’ => array(‘rule’ => ‘/ˆ[a-z0-9]{3,}$/i’,

‘message’ => ‘Only letters and integers, min 3 characters’

324

));

The examples shown so far are some of the
most common validation rules that can be
found in various online forms. (Of course,
there are more validation options than have
we presented here.) Other useful rule
names include between, blank, cc (credit
card), comparison, date, decimal,
equalTo, extension, file, IP, money,
multiple, inList, numeric, phone,
postal, range, ssn, and url. For more
examples, please refer to the CakePHP
documentation.

If none of the predefined rules meets our requirements,
there is one more thing we can do about form validation in
CakePHP. While using a model to apply validation rules, it
is possible to add your own validation methods simply by
creating them inside the model file. In a normal situation,
while not using any web framework, it is necessary to
write your own functions to validate form data. When
writing a validation method in a model file, this situation is
the same, but you keep all the validation in one file.

The following example indicates how this should be done:

<?php

class Item extends AppModel {

325

var $name = ‘Item’;

var $validate =
array(‘field_value’ => array(‘rule’ => array(‘myValidation’, 20),

‘message’ => ‘Supplied value must be lower than 20’,));

function myValidation($check, $limit) { return $check< $limit; }

} ?>

The rule array takes the method name myValidation()
as a key. That way, this method is called when validation
is done. The myValidation() function takes two
parameters: $check and $limit. The first one is a value
posted through the form, and the second variable takes a
value that is specified in a rule array (e.g., 20).

Zend Framework

When you work with Zend Framework, you can use the
Zend_Form object in order to create a web form. It is a
more than adequate tool for most cases of form building
and validation. It is possible to create single form elements
while encapsulating it with options that allow you to
configure validation, error messages, filtering (character
escaping and data normalization), and rendering. For this
section, we will focus on forms data-validation options,
and later you will see how to customize forms some more.

In the previous chapter, we created this file to be
responsible for generating an “Add a new entry” form in
the address book application:

326

<?php

class Application_Form_AddressAdd extends Zend_Form {

public function init() {

$this->setMethod(‘post’);

$this->addElement(‘text’, ‘firstName’, array(‘label’ => ‘Your first name:’,

‘required’ => false, ‘filters’ => array(‘StringTrim’),));

$this->addElement(‘text’, ‘lastName’, array(‘label’ => ‘Your last name:’,

‘required’ => false,‘filters’ => array(‘StringTrim’),));

$this->addElement(‘text’, ‘email’, array(‘label’ => ‘Your e-mail address:’,

‘required’ => false,‘filters’ => array(‘StringTrim’),));

$this->addElement(‘text’, ‘phone’, array(‘label’ => ‘Your phone:’,

‘required’ => false, ‘filters’ => array(‘StringTrim’),));

$this->addElement(‘textarea’, ‘address’, array(‘label’ => ‘Your Address:’,

‘required’ => false, ‘filters’ => array(‘StringTrim’),));

$this->addElement(‘submit’, ‘submit’, array(‘ignore’ => true,

‘label’ => ‘Save’,)); }

} ?>

code snippet /validation/zf/application/forms/

AddressAdd.php

327

The addElement() method of the Zend_Form object is
responsible for creating form elements, and it can take
parameters that will create field validators. Let's see the
simplest method of defining a validation rule for the
preceding code:

$this->addElement(‘text’, ‘firstName’, array(‘validators’ => array(‘alnum’),

‘label’ => ‘Your first name:’, ‘required’ => false,

‘filters’ => array(‘StringTrim’),));

By adding the ‘validators’ key, it is possible to include
various validation parameters. Here we used the ‘alnum’
option. It verifies if any data sent through the firstName
field is alphanumeric (letters and numbers) type. If any
special characters are passed, an automatic error message
will be generated and displayed. As you can see, the
addElement() method received the‘required’ and
‘filters’ keys. The first one can be used in validation to
specify whether a field can be empty or not; this actually
creates a ‘NotEmpty’ validator that will be the first one
validating a field to ensure that the verified element has a
value when required. And by setting ‘filters’ you can
filter certain form data before it will be validated. For
example, it is possible to strip all HTML and PHP tags
from form input simply by using the following:

‘filters’ => array(‘StripTags’)

For more information about using filters, refer to the Zend
Framework documentation.

The Zend_Validate module provides a set of commonly
used validators. It also provides a simple validator

328

mechanism that allows chaining multiple validators to be
applied on data in a user defined order.

It is possible to specify multiple validation rules by adding
them as values in the validators array.

$this->addElement(‘text’, ‘firstName’, array(

‘validators’ => array(array(‘stringLength’, true, array(5, 15)), ‘alnum’),

));

Validators created in this example ensure that the data
provided is alphanumeric and 5 to 15 characters long. The
first validator is stringLength and in this case it is
configured by a true/false parameter and the array. The
second parameter of the validation array is set to true and it
means that the validation chain will be broken when the
rule is not met, which means no following validation rules
will be applied. The third parameter is an array that allows
us to define the range in which the firstName value must
be contained.

Now let's see how to validate the format of an e-mail
address. Of course, there is a validator for that as well.

$this->addElement(‘text’, ‘email’, array(

‘validators’ => array(array(‘EmailAddress’, false, array(‘domain’ => true)))

));

If more complex validation options are required, the
EmailAddress validator can be configured through
various parameters that can regard domain, hostname, and
local names. But for a basic and the most common

329

application, this example should be adequate. As before,
we use three parameters to create the validator. The third
one allows us to decide if we want to validate the domain
or not; by setting it to false, we tell the validator to
ignore the domain part of an e-mail address.

Zend_Validate is automatically equipped with a broad
range of error messages, but if there is a need to customize
any of these messages, it is possible to do so by adding
another parameter to the validation array. In the following
example, the ‘messages’ key is added, and an array is
created that defines two error messages:

$this->addElement(‘text’, ‘email’, array(

‘validators’ => array(array(‘EmailAddress’, false,

array(‘domain’ => true, ‘messages’ =>array(

Zend_Validate_EmailAddress::INVALID => ‘Please enter a valid email address’,

Zend_Validate_EmailAddress::INVALID_FORMAT => ‘Invalid email format’)))

));

To modify a desired message, it is necessary to know its
error code. These codes can be found in the Zend
Framework documentation.

Basic date format validation can be as simple as this:

$this->addElement(‘text’, ‘productionDate’, array(

‘validators’ => array(array(‘Date’, false,array(‘YYYY-MM-dd HH:mm’)))

));

330

But there is a whole Zend_Date API to give developers
maximum control over things that can be done with dates.
As in previous examples in this chapter, the validator array
contains a third parameter that is an array of options. In
this case, it defines an acceptable date format.

Zend Framework gives you quite a few ways to do the
same thing, and you can do things according to your liking
or habit. So let's look at how validators can be created by
calling the addValidators() method:

$form = new Zend_Form;

$form->addElement(‘text’, ‘firstName’);

$firstName->addValidators(array(array(‘NotEmpty’, true), array(‘alnum’),

array(‘stringLength’, false, array(5, 15)),));

A more verbose version of the same code can look like
this:

$form = new Zend_Form;

$form->addElement(‘text’, ‘firstName’);

$firstName->addValidators(array(

array(‘validator’ => ‘NotEmpty’,’breakChainOnFailure’ => true),

array(‘validator’ => ‘alnum’),

array(‘validator’ => ‘stringLength’, ‘options’ => array(5, 15)),));

Customizing Forms

Building validated forms manually can take quite a long
time. To build a functional form with form data validation,

331

it is necessary to enter the same values in multiple places,
like in the view, the field's error messages, and the field
itself. Most of this is done automatically by frameworks,
giving developers tools to easily build custom forms.

A common form can contain various input elements such
as text fields, checkboxes, select lists, textareas, labels, and
so on. In Chapter 4, we have created basic forms, by using
tools offered by frameworks. Excluding Zend Framework,
we didn't have much influence on how the forms were
built and how will the final result looked. It is time to
change that.

You will modify forms generated for your first application.
We will show you how to change labels, replace input
fields, and modify their functionalities. To do that, you
will use built-in core helpers and some external plug-ins.

Symfony

As discussed in the validation part of this chapter,
Symfony offers a wide range of validators and widgets that
give you all sorts of possibilities for building your forms.
There are two main classes that you will use when building
forms: sfForm and sfWidget. These classes are the root
classes, and every other form or widget inherits from one
of them. Widgets are a type of add-on that allows you to
add content to your form, such as input fields, for example.
You can define your own widget that can be a customized
input field not commonly used anywhere else. You can
add proper widgets that are delivered within a framework
by using the setup() method. Note that there are two
main types of forms. The first are defined by developers;

332

the second are generated by object-relational mapping
(ORM). In this case, it's Doctrine. When you use the
following command:

$ symfony doctrine:build --all

or

$ symfony doctrine:build-forms

forms will be generated by Doctrine for each model that
you defined earlier. This can be very useful, especially
when building the back end. These forms are stored in the
project's /lib/form directory. The second directory is the
application's /lib directory, in which you will store all
defined forms. Doctrine also generated BaseForm classes
that inherit from sfForm. These BaseForm classes are
stored in the /lib/form/doctrine/base directory. An
exemplary file can contain the following lines:

abstract class BaseAddressesForm extends BaseFormDoctrine {

public function setup() {

}

}

While not using Doctrine to build your application, you
would usually have an exemplary
AddressesForm.class.php in a /lib/form directory
that should contain the following class:

class BaseAddressesForm extends BaseForm {

public function setup() { }

333

}

Let's look at the setup() function that was built by
Doctrine when first project was created in the previous
chapter.

public function setup() {

$this->setWidgets(array(

‘id’ => new sfWidgetFormInputHidden(),

‘first_name’ => new sfWidgetFormInputText(),

‘last_name’ => new sfWidgetFormInputText(),

‘email’ => new sfWidgetFormInputText(),

‘phone’ => new sfWidgetFormInputText(),

‘address’ => new sfWidgetFormInputText(),

‘created’ => new sfWidgetFormDateTime(),

‘updated’ => new sfWidgetFormDateTime(),));

$this->setValidators(array(

‘id’ => new sfValidatorDoctrineChoice(array(‘model’ => $this->getModelName(),

‘column’ => ‘id’,‘required’ => false)),

‘first_name’ => new sfValidatorString(array(

‘max_length’ => 40, ‘required’ => false)),

‘last_name’ => new sfValidatorString(array(

‘max_length’ => 40, ‘required’ => false)),

‘email’ => new sfValidatorString(array(

‘max_length’ => 40, ‘required’ => false)),

334

‘phone’ => new sfValidatorInteger(array(‘required’ => false)),

‘description’ => new sfValidatorPass(array(‘required’ => false)),

‘created’ => new sfValidatorDateTime(),

‘updated’ => new sfValidatorDateTime(),));

$this->widgetSchema->setNameFormat(‘address[%s]’);}

There are a few widgets in there that correspond to fields
in a database. Those widgets were created to match field
types in the database and are as simple as possible. This
solution worked earlier; we wanted to see how quickly we
could create a project, so we didn't interfere with the forms
because they were doing their task. The fragment of
HTML code responsible for displaying form fields
generated by this script looks like this:

<tr><th><label for=”address_first_name”>First name</label></th>

<td><input type=”text” name=”address[first_name]” id=”address_first_name” />

</td></tr>

<tr><th><label for=”address_last_name”>Last name</label></th>

<td><input type=”text” name=”address[last_name]” id=”address_last_name” />

</td></tr>

<tr><th><label for=”address_email”>Email</label></th>

<td><input type=”text” name=”address[email]” id=”address_email” />

</td></tr>

<tr><th><label for=”address_phone”>Phone</label></th>

<td><input type=”text” name=”address[phone]” id=”address_phone” />

</td></tr>

335

<tr><th><label for=”address_description”>Description</label></th>

<td><input type=”text” name=”address[description]” id=”address_description” />

</td></tr>

Figure 5.3 illustrates how input fields for the preceding
code should look in a browser.

Figure 5.3 Form fields created in first application

Now we want to know how customize or build these forms
ourselves, so let's consider this simple example:

public function setup() {

$this->setWidgets(array(‘id’ => new sfWidgetFormInputHidden(),

‘first_name’ => new sfWidgetFormInputText(),

‘description’ => new sfWidgetFormTextarea(),));

$this->widgetSchema->setNameFormat(‘address[%s]’);}

The setup() function calls for the setWidgets()
method that is used to define widgets that will be used to
create form elements. This method accepts an associative
array. Field names are accepted as the keys; as the values,
the widget objects are given. The last line invokes the
setNameFormat(‘%s’) method that sets the naming

336

convention for the name and ID attributes of HTML tags
that will be form fields. For example, the name attribute of
first_name input will look like this:

<input type=”text” name=”address[first_name]” />

Let's move on to field creation. In this example, three types
of widgets are used.

The first one is sfWidgetFormInputHidden() and it
corresponds to a hidden HTML field. The id field is the
unique ID of the entry and this shouldn't be viewable to the
user. When generated the field will look like this:

<input type=”hidden” name=”address[id]” id=”address_id” />

Next there is a sfWidgetFormInputText() widget that
will generate standard a HTML field as follows:

<tr><th><label for=”address_first_name”>First name</label></th>

<td><input type=”text” name=”address[first_name]” id=”address_first_name” />

</td></tr>

The last widget in this example is
sfWidgetFormTextarea(). It is responsible for creating
HTML textarea form fields that look like this:

<tr><th><label for=”address_description”>Description</label></th>

<td><textarea rows=”4” cols=”30”name=”address[description]”

id=”address_description”></textarea> </td></tr>

337

Of course, every widget can take a number of parameters
that will allow us to customize generated HTML code and
the behavior of created form fields.

While the automatic generation of labels is very useful, the
framework allows you to define personalized labels for
multiple fields using the setLabels() method.

$this->widgetSchema->setLabels(array(‘name’ => ‘Your name’,

‘email’ => ‘Your email address’,‘message’ => ‘Your message’,));

You can also only modify a single label using the
setLabel() method:

$this->widgetSchema->setLabel(‘email’, ‘Your email address’);

There is another way to customize HTML code generated
by widgets and it enables us to pass multiple parameters to
specify functionality and attributes of form fields.

$this->setWidgets(array(

‘first_name’ => new sfWidgetFormInputText(

array(‘label’ => ‘Different label’), array(‘class’ => ‘fname’))));

As illustrated in the previous example, the widget
sfWidgetFormInputText() is used, and three arrays are
given. These parameters affect how the HTML code will
be generated:

<tr><th><label for=”first_name”>Different label</label></th>

<td><input class=”fname” type=”text” name=”first_name” id=”first_name” /></td></tr>

338

We can see that the class argument of the input tag is the
same as the class parameter supplied for
sfWidgetFormInputText().

Now let's look at another example of form code that can be
used as a simple mailing form.

public function setup() {

$this->setWidgets(array(

‘name’ => new sfWidgetFormInput(array(‘label’ => ‘Name’)),

‘email’ => new sfWidgetFormInput(array(‘label’ => ‘Email’)),

‘subject’ => new sfWidgetFormSelect(array(

‘label’ => ‘Select subject’,

‘choices’ => array(‘Item 1’, ‘Item 2’, ‘Item 3’))),

‘message’ => new sfWidgetFormTextarea(array(‘label’ => ‘Message’)),

));

$this->widgetSchema->setNameFormat(‘contact[%s]’);

}

One new thing about this example is the
sfWidgetFormSelect() widget. It is responsible for
creating the select HTML tag.

Figure 5.4 illustrates how the mailing form should look in
a web browser.

Figure 5.4 Example mailing form

339

The widget sfWidgetFormSelect() is an array of
selectable items, so it requires parameter choices to be
defined. As a result of using this widget, the following
HTML code is created:

<tr><th><label for=”address_created”>Select subject </label></th>

<td><select name=”contact[subject]” id=”contact_subject”>

<option value=”A”>Subject A</option>

<option value=”B”>Subject B</option>

<option value=”C”>Subject C</option></select></td></tr>

Widgets

Symfony has a large variety of widgets that can be used to
build complex forms for web applications. The following
list presents selected widgets with code implementation. It
illustrates the range of available options. Those that can be
found in most common web forms and are simplest to
implement are the following:

• sfWidgetFormInput—Represents a simple HTML input
tag.

• sfWidgetFormInputPassword—Represents a password
HTML input tag.

• sfWidgetFormTextarea—Represents a textarea HTML
tag.

340

• sfWidgetFormInputCheckbox—Represents an HTML
checkbox input.

• sfWidgetFormInputFile—Represents an upload file
HTML input tag.

The following code is an example of how to use these
widgets in your form class:

$this->setWidgets(array(

‘first_name’ => new sfWidgetFormInputText(array(‘label’ => ‘Name’)),

‘pass’ => new sfWidgetFormInputPassword (array(‘label’ => ‘Password’)),

‘agreement’ => new sfWidgetFormInputCheckbox(array(‘label’ => ‘I agree’)),

‘description’ => new sfWidgetFormTextarea (array(‘label’ => ‘Description’)),

‘file’ => new sfWidgetFormInputFile(array(‘label’ => ‘Upload file:’)),

));

code snippet /customization/symfony/apps/frontend/lib/

form/ExampleForm.class.php

And to make sure that all these widgets will display
correctly, your template should contain code similar to the
following:

341

<tr><th><?php echo $form[‘first_name’]->renderLabel() ?></th>

<td><?php echo $form[‘first_name’]->renderError() ?>

<?php echo $form[‘first_name’] ?></td></tr>

<tr><th><?php echo $form[‘pass’]->renderLabel() ?></th>

<td><?php echo $form[‘pass’]->renderError() ?>

<?php echo $form[‘pass’] ?> </td></tr>

<tr><th><?php echo $form[‘agreement’]->renderLabel() ?></th>

<td><?php echo $form[‘agreement’]->renderError() ?>

<?php echo $form[‘agreement’] ?></td></tr>

<tr><th><?php echo $form[‘description’]->renderLabel() ?></th>

<td><?php echo $form[‘description’]->renderError() ?>

<?php echo $form[‘description’]?> </td></tr>

<tr><th><?php echo $form[‘file’]->renderLabel() ?></th>

<td><?php echo $form[‘file’]->renderError() ?>

<?php echo $form[‘file’] ?></td></tr>

code snippet /customization/symfony/apps/frontend/

modules/exampleForm/templates/_form.php

342

The image shown in Figure 5.5 should be rendered in the
browser.

Figure 5.5 Form fields created in Chapter 4

Next you can see an interesting widget because it can work
four different ways, depending on how you set the
‘expanded’ and ‘multiple’ parameters for this widget.
You will see how to implement and how to configure each
option separately. Implementation is straightforward, and
it is done in the same way as previous examples.

sfWidgetFormChoice—this widget can represent HTML
select tag, checkbox, radiobutton, and list input types. The
first configuration works like the select tag and toggled by
setting the expanded and multiple parameters to false.
The output is shown in the Figure 5.6.

Figure 5.6 Drop-down select field generated by the
sfWidgetFormChoice widget

sfWidgetFormChoice(array(‘label’ => ‘Select item’,

343

‘expanded’ => false, ‘multiple’ => false,

‘choices’ => array(‘1’ =>‘item 1’, ‘2’=>‘item 2’)))

The second configuration shown in Figure 5.7 represents a
selection from an expanded list, and it is achieved by
setting the multiple parameter to true. This form
element allows multiple item selection by holding down
the Ctrl or Shift key while clicking the item selected. Item
2 was selected manually in this figure.

Figure 5.7 Multiselection field generated by the
sfWidgetFormChoice widget

sfWidgetFormChoice(array(‘label’ => ‘Select item’,

‘expanded’ => false, ‘multiple’ => true,

‘choices’ => array(‘Item 1’, ‘Item 2’, ‘Item 3’)))

The next configuration represents a radiobutton select
input (see Figure 5.8), which is done by setting the
expanded parameter to true.

sfWidgetFormChoice(array(‘label’ => ‘Select item’,

‘expanded’ => true, ‘multiple’ => false,

‘choices’ => array(‘Item 1’, ‘Item 2’, ‘Item 3’)))

Figure 5.8 Multiradiobutton list generated by the
sfWidgetFormChoice widget

344

Finally when both parameters are set to true, multiple
checkboxes are displayed, as shown in Figure 5.9. Items 1
and 3 were selected manually.

sfWidgetFormChoice(array(‘label’ => ‘Select items’,

‘expanded’ => true, ‘multiple’ => true,

‘choices’ => array(‘Item 1’, ‘Item 2’, ‘Item 3’)))

Figure 5.9 Multicheckbox list generated by the
sfWidgetFormChoice widget

Symfony offers a number of widgets that generate
date-time form inputs. Next, you will see how seven of
them can be implemented in your form. First you should
become familiar with the four most common date-time
widgets:

• sfWidgetFormTime—Represents a time selection input.
• sfWidgetFormDate—Represents a date selection input.
• sfWidgetFormDateRange—Represents a date range

selection input.
• sfWidgetFormDateTime—Represents a date-time selection

input.

The next widgets presented are those designed to help with
internationalization of the forms. They include a list of
months and days translated to multiple languages that can
be specified by setting the culture parameter.

345

• sfWidgetFormI18nTime—Represents a time selection
input that is very similar to the sfWidgetFormTime widget
in terms of HTML generation.

• sfWidgetFormI18nDate—Represents a date selection
input that can be customized in terms of language.

• sfWidgetFormI18nDateTime—Represents a date and time
selection input that can be customized in terms of language.

The following code illustrates how each of above widgets
can be configured for your form. Note that by setting the
culture parameter in the last three widgets you can
specify in which language months are written.

$this->setWidgets(array(

‘Time’ => new sfWidgetFormTime (array(

‘label’ => ‘Select Time’)),

‘Date’ => new sfWidgetFormDate(array(

‘label’ => ‘Select Date’)),

‘DateRange’ => new sfWidgetFormDateRange(array(

‘from_date’ => new sfWidgetFormDate(),

‘to_date’ => new sfWidgetFormDate(),

‘label’ => ‘Select DateRange’)),

‘DateTime’ => new sfWidgetFormDateTime(array(

‘label’ => ‘Select DateTime’)),

346

‘I18nTime’ => new sfWidgetFormI18nTime (array(

‘label’ => ‘Select I18nTime’,

‘culture’ => ‘en’)),

‘I18nDate’ => new sfWidgetFormI18nDate(array(

‘label’ => ‘Select I18nDate’,

‘culture’ => ‘fr’)),

‘I18nDateTime’ => new sfWidgetFormI18nDateTime(array(

‘label’ => ‘Select I18nDateTime’,

‘culture’ => ‘de’)),

));

code snippet /customization/symfony/apps/frontend/lib/

form/I18NForm.class.php

To make sure that all widgets are rendered in your form,
you need to have in your form template a code similar to
the one shown here:

<tr><th><?php echo $form[‘Time’]->renderLabel() ?></th>

<td><?php echo $form[‘Time’]->renderError() ?>

<?php echo $form[‘Time’] ?></td></tr>

<tr><th><?php echo $form[‘Date’]->renderLabel() ?></th>

347

<td><?php echo $form[‘Date’]->renderError() ?>

<?php echo $form[‘Date’] ?></td></tr>

<tr><th><?php echo $form[‘DateRange’]->renderLabel() ?></th>

<td><?php echo $form[‘DateRange’]->renderError() ?>

<?php echo $form[‘DateRange’] ?></td></tr>

<tr><th><?php echo $form[‘DateTime’]->renderLabel() ?></th>

<td><?php echo $form[‘DateTime’]->renderError() ?>

<?php echo $form[‘DateTime’] ?></td></tr>

<tr><th><?php echo $form[‘I18nTime’]->renderLabel() ?></th>

<td><?php echo $form[‘I18nTime’]->renderError() ?>

<?php echo $form[‘I18nTime’] ?></td></tr>

<tr><th><?php echo $form[‘I18nDate’]->renderLabel() ?></th>

<td><?php echo $form[‘I18nDate’]->renderError() ?>

<?php echo $form[‘I18nDate’] ?></td></tr>

<tr><th><?php echo $form[‘I18nDateTime’]->renderLabel() ?></th>

<td><?php echo $form[‘I18nDateTime’]->renderError() ?>

<?php echo $form[‘I18nDateTime’] ?></td></tr>

code snippet /customization/symfony/apps/frontend/

modules/i18nForm/templates/_form.php

When you run the preceding code, your browser will
render the form illustrated in Figure 5.10.

Figure 5.10 Various date-time form input fields generated
by Symfony widgets

348

Finally, you can use a few more widgets that help with
internationalization of your forms, three of which are listed
here:

• sfWidgetFormI18nChoiceCountry—Represents a
country HTML select tag that can be customized in terms of
language (see Figure 5.11).

sfWidgetFormI18nChoiceCountry(array(‘label’ => ‘Select country’,‘culture’ => ‘fr’))

Figure 5.11 Country selection element generated by the
sfWidgetFormI18nChoiceCountry widget

• sfWidgetFormI18nChoiceCurrency—Represents a
currency HTML select tag that can be customized in terms
of language (see Figure 5.12).

sfWidgetFormI18nChoiceCurrency(array(‘label’ => ‘Select currency’,

‘culture’ => ‘en’))

Figure 5.12 Currency selection element generated by the
sfWidgetFormI18nChoiceCurrency widget

349

• sfWidgetFormI18nChoiceLanguage—Represents a
language HTML select tag that can be customized in terms
of language (see Figure 5.13).

sfWidgetFormI18nChoiceLanguage (array(‘label’ => ‘Select language’,

‘culture’ => ‘en’))

Figure 5.13 Language selection element generated by the
sfWidgetFormI18nChoiceLanguage widget

For a full list of widgets and more specific examples,
please refer to the Symfony documentation.

Plug-ins

It is possible to introduce even more customization options
in Symfony forms by using plug-ins. This section looks at
two plug-ins that extend the possibilities of automated
form building.

sfFormExtraPlugin

350

This plug-in is a collection of very specific validators,
widgets, and forms that extend the main Symfony package.
Those components have some external dependencies.

To install the sfFormExtraPlugin, you simply need to type
the following command into console from your project
directory:

$ symfony plugin:install sfFormExtraPlugin

Next you may clear cache data by typing the following
command into the console:

$ symfony cache:clear

This command will make available a new set of widgets to
be used in our project. Those components may depend on
the jQuery library to be displayed. Some of these widgets
are as follows:

• sfWidgetFormJQueryDate—Displays a date picker using
jQuery.

• sfWidgetFormJQueryAutocompleter—Displays an input
tag with auto complete support using jQuery.

• sfWidgetFormTextareaTinyMCE—A rich textarea
rendered with TinyMCE WYSIWYG editor.

• sfWidgetFormSelectUSState—Creates a select menu of
U.S. states.

To use jQuery-based widgets it is necessary to include into
the project a jQuery UI package that will contain the
jquery-1.4.2.min.js and
jquery-ui-1.8.2.custom.min.js libraries and a
graphic theme that consists of the

351

jquery-ui-1.8.2.custom.css style sheet and images.
You can get it at http://jqueryui.com/.

To make it all come together, it is necessary to put jQuery
libraries into the /symfony/web/js/ directory and the
theme folder into /symfony/web/css/.

Finally the /symfony/apps/frontend/config/
view.yml file needs to be modified, so that it includes
jQuery libraries:

javascripts: [jquery-1.4.2.min.js, jquery-ui-1.8.2.custom.min.js]

And the style sheet needs to be included as well using the
path to the theme.

stylesheets: [main.css, [theme name]/jquery-ui-1.8.2.custom.css]

After these changes are made, clearing the cache may be
required. Again it can be done by typing symfony
cache:clear into the command console.

Let's now see how to use the
sfWidgetFormJQueryDate() widget to give the user an
option to pick a date from a jQuery calendar. To see how it
is done, we can modify the earlier example simply by
changing sfWidgetFormDateTime() to
sfWidgetFormJQueryDate().

public function setup() {

$this->setWidgets(array(

‘id’ => new sfWidgetFormInputHidden(),

‘first_name’ => new sfWidgetFormInputText(),

352

‘last_name’ => new sfWidgetFormInputText(),

‘email’ => new sfWidgetFormInputText(),

‘phone’ => new sfWidgetFormInputText(),

‘address’ => new sfWidgetFormInputText(),

‘created’ => new sfWidgetFormJQueryDate(array(‘config’ => ‘{}’)),

‘updated’ => new sfWidgetFormDateTime(),));

As a result, you should see a new form in the web browser,
as shown in Figure 5.14.

Figure 5.14 Form with jQuery date picker

CakePHP

353

For data validation, CakePHP has FormHelper, which
offers many useful automatic functions; the most common
will be described here.

While writing the add new address action in Chapter 4,
you used the following code:

<?php

echo $form->create(‘Address’);

echo $form->inputs();

echo $form->end(‘Save address’);

?>

code snippet /customization/cakephp/views/addresses/

add.ctp

This solution is quick and good for creating backend
applications that give you full access to information stored
in a database. For example, information such as the date
when an entry was created should not be available for
modifications. As a result of those three lines, the
following HTML code is generated. Note that date
selection lists have been removed to improve code
readability.

<form id=”AddressAddForm” method=”post” action=”/cake/addresses/add”>

354

<fieldset style=”display:none;”>

<input type=”hidden” name=”_method” value=”POST” />

</fieldset>

<fieldset>

<legend>New Address</legend>

<input type=”hidden” name=”data[Address][id]” value=”” id=”AddressId” />

<div class=”input text required”>

<label for=”AddressFirstName”>First Name</label>

<input name=”data[Address][first_name]”

type=”text” maxlength=”25”

value=””

id=”AddressFirstName” />

</div>

<div class=”input text”>

<label for=”AddressLastName”>Last Name</label>

<input name=”data[Address][last_name]”

type=”text”

maxlength=”25”

value=””

id=”AddressLastName” />

</div>

<div class=”input text”>

<label for=”AddressEmail”>Email</label>

355

<input name=”data[Address][email]”

type=”text”

maxlength=”25”

value=””

id=”AddressEmail” />

</div>

<div class=”input text”>

<label for=”AddressPhone”>Phone</label>

<input name=”data[Address][phone]”

type=”text”

maxlength=”11”

value=””

id=”AddressPhone” />

</div>

<div class=”input textarea”>

<label for=”AddressAddress”>Address</label>

<textarea name=”data[Address][address]”

cols=”30”

rows=”6”

id=”AddressAddress” >

</textarea>

</div>

<select>

356

// select form goes here

</select>

</fieldset>

<div class=”submit”>

<input type=”submit” value=”Save address” />

</div>

</form>

The form rendered by the browser will have the same input
composition as the one shown in Figure 5.15.

Figure 5.15 Form generated for the first application in
Chapter 4

Now you will see how to build your own custom form
input using the input() method of the FormHelper. The
following code example invokes the input() method a

357

number of times to create a web form that is identical to
the one generated by the previous solution:

<?php echo $form->create(‘Address’, array(‘type’ => ‘post’, ‘action’ => ‘add’));

echo ‘<fieldset><legend>New Address</legend>’;

echo $form->input(‘first_name’).

$form->input(‘last_name’).

$form->input(‘email’).

$form->input(‘phone’).

$form->input(‘address’, array(‘rows’ => ‘5’, ‘cols’ => ‘5’)).

$form->input(‘created’).

$form->input(‘modified’);

echo‘</fieldset>’;

echo $form->end(‘Save address’); ?>

code snippet /customization/cakephp/views/addresses/

add.ctp

In this example of using the input() method, the form
fields are generated according to specifications defined in
the corresponding model file. It is possible to override
model information and force certain input types. To do so,
you need to define some additional parameters that are
passed into this input() method. The following example

358

illustrates how: By adding the ‘type’ parameter to the
option array you can customize rendered form input. You
can force normal text input to be rendered as password
type form input. The implementation is shown here:

<?php

echo $form->input(‘first_name’);

// input based on model data

echo $form->input(‘first_name’, array(‘type’ => ‘password’));

// input with modified type field

?>

The following HTML code snippet illustrates how the
<input> tag is modified when the ‘type’ parameter is
set:

<div class=”input text required”>

<label for=”AddressFirstName”>First Name</label>

<input name=”data[Address][first_name]”

type=”text” maxlength=”25” value=”” id=”AddressFirstName” /></div>

<div class=”input password required”>

<label for=”AddressFirstName”>First Name</label>

<input name=”data[Address][first_name]”

type=”password” value=”” id=”AddressFirstName” /></div>

Customizing Generated HTML

359

The form generated using $form->input() function has
some additional HTML code added to every form field.
This includes putting elements into a <div> tag or adding
labels to a created field. This can be modified to better
match your preferences using an options array that is
passed into the input() method.

For example, it is possible to modify label text assigned to
a field simply by setting the ‘label’ option:

<?php echo $form->input(‘last_name’,

array(‘label’ => array(‘text’ => ‘Label text’))); ?>

The same way can be used to disable label generation. It is
done by setting the ‘label’ option to false, just like
this:

<?php echo $form->input(‘last_name’, array(‘label’ => false)); ?>

Similarly, we can disable the <div></div> tags that
surround a form field or set a class name to a field:

<?php echo $form->input(‘last_name’,

array(‘div’ => false, ‘class’=>‘last_name_class’)); ?>

It is possible to add a class name to a <div> containing
form field by setting an option array as shown here:

<?php echo $form->input(‘last_name’,

array(‘div’ => array(‘class’=>‘div_class’))); ?>

There are a few more options that will be shown here. First
there are options that can be used to define the number of

360

<textarea> field rows and columns, and they work like
this:

<?php echo $form->input(‘address’, array(‘rows’ => ‘5’, ‘cols’ => ‘5’)); ?>

The next thing that FormHelper allows you to do is to
generate complex <select> inputs in very simple way.
Suppose you want to add a group option to your address
book in order to classify entries to groups such as Family,
Friends, Client, or Co-worker. You need to add a new field
to your database and you can use the following code to
create the <select> field:

<?php echo $form->input(‘group’, array(‘options’ => array(

‘Work’ => array(‘Value 1’=>‘Client’, ‘Value 2’=>‘Coworker’),

‘Private’ => array(‘Value 3’=>‘Family’, ‘Value 4’=>‘Friends’))

));?>

Finally, let's look at how to customize the date field. It is
possible to set the time and date format. For time, there are
two formats: ‘12’ and ‘24’; for date, it is possible to set
it to ‘DMY’, ‘MDY’, ‘YMD’, and ‘NONE’. The ‘minYear’
and ‘maxYear’ options are self-explanatory.

<?php echo $form->input(‘created’,

array(‘timeFormat’=>‘24’, ‘dateFormat’ => ‘MDY’,

‘minYear’ => date(‘Y’) - 20, ‘maxYear’ => date(‘Y’))); ?>

CakePHP FormHelper allows developers to create a large
variety of different form inputs that are created using the
input() method. A list of a few selected form elements is
presented here:

361

• file—Represents file selection input.
• checkbox—Represents standard checkbox input.
• gender—Represents gender selection input.
• dateTime—Represents a date-time selection input.

The implementation code for the previous input types can
look as follows:

echo $form->create(‘Address’, array(‘enctype’ => ‘multipart/form-data’,

‘type’ => ‘post’, ‘action’ => ‘add’));

echo ‘<fieldset>’;

echo $form->input(‘file’, array(‘type’ => ‘file’));

echo $form->input(‘Agreement’, array(‘type’=>‘checkbox’,‘label’ => ‘I agree’));

echo $form->input(‘gender’, array(‘type’ => ‘select’,

‘options’ => array(‘M’ => ‘Male’,‘F’ => ‘Female’)));

echo $form->input(‘dateTime’, array(‘type’ => ‘datetime’, ‘label’ => ‘Date-time’,

‘minYear’ => date(‘Y’) - 5, ‘maxYear’ => date(‘Y’),

‘dateFormat’ => ‘DMY’, ‘timeFormat’ => ‘12’));

echo‘</fieldset>’;

echo $form->end(‘Save address’); ?>

You can see that the input types utilize a set of options that
are used for configuration. On form submission, most
input fields send their value, but in the case of file input,
an array is given. It contains the following:

• name—Name of a submitted file.
• type—File extension and type (e.g., ‘application/pdf’).
• tmp_name—Temporary patch filename for uploaded file.

362

• error—Variable that returns 0 if upload is successful.
• size—Uploaded file size in bytes.

Note that the array is generated by PHP.

As a result of running the preceding script, the following
HTML form is generated:

<form enctype=”multipart/form-data” id=”AddressAddForm” method=”post”

action=”/cake/addresses/add”>

<fieldset style=”display:none;”>

<input type=”hidden” name=”_method” value=”POST” />

</fieldset>

<fieldset>

<div class=”input checkbox”>

<input type=”hidden” name=”data[Address][Agreement]” id=”AddressAgreement_”

value=”0” />

<input type=”checkbox” name=”data[Address][Agreement]” value=”1”

id=”AddressAgreement” />

<label for=”AddressAgreement”>I agree</label>

</div>

<div class=”input file”>

<label for=”AddressFile”>File</label>

<input type=”file” name=”data[Address][file]” value=”” id=”AddressFile” />

</div>

<div class=”input select”>

363

<label for=”AddressGender”>Gender</label>

<select name=”data[Address][gender]” id=”AddressGender”>

<option value=”M”>Male</option>

<option value=”F”>Female</option>

</select>

</div>

<div class=”input datetime”>

<label for=”AddressDateTimeMonth”>Date-time</label>

<select name=”data[Address][dateTime][day]” id=”AddressDateTimeDay”>

<option value=”01”>1</option>

<option value=”02”>2</option>

...

</select>-<select name=”data[Address][dateTime][month]”

id=”AddressDateTimeMonth”>

<option value=”01”>January</option>

<option value=”02”>February</option>

...

</select>-<select name=”data[Address][dateTime][year]” id=”AddressDateTimeYear”>

<option value=”2010” selected=”selected”>2010</option>

<option value=”2009”>2009</option>

...

</select><select name=”data[Address][dateTime][hour]” id=”AddressDateTimeHour”>

...

364

</select>:<select name=”data[Address][dateTime][min]” id=”AddressDateTimeMin”>

...

</select> <select name=”data[Address][dateTime][meridian]”

id=”AddressDateTimeMeridian”>

<option value=”am”>am</option>

<option value=”pm” selected=”selected”>pm</option>

</select>

</div>

</fieldset>

<div class=”submit”>

<input type=”submit” value=”Save address” />

</div>

</form>

This example will render the web form illustrated in Figure
5.16.

Figure 5.16 Web form with example input fields

Of course, this is not all in terms of forms customization
that CakePHP can offer. For a full list of options, please

365

refer to the FormHelper section in the CakePHP
documentation.

Zend Framework

As you saw in the preceding section, “How Does Form
Validation work?” Zend Framework allows you to easily
create form validation rules, and customization is done in a
similar manner. The Zend_Form_Element module
corresponds to a single HTML form input (e.g., text field,
textarea, and so on). Such elements are used to create a
web form. And to make it easier, Zend Framework is
equipped with element classes that encapsulate most of the
HTML form input types.

It is possible to further influence HTML code generated by
utilizing decorators to modify elements of a form. These
decorators have access to the elements and the methods of
the web content being generated.

Let's look at the init() function that was built while
creating the first project in the previous chapter.

class Application_Form_AddressAdd extends Zend_Form {

public function init() {

$this->setMethod(‘post’);

$this->addElement(‘text’, ‘firstName’, array(

366

‘label’ => ‘Your first name:’,

‘required’ => true,

‘filters’ => array(‘StringTrim’),

)

);

$this->addElement(‘text’, ‘lastName’, array(

‘label’ => ‘Your last name:’,

‘required’ => false,

‘filters’ => array(‘StringTrim’),

)

);

$this->addElement(‘text’, ‘email’, array(

‘label’ => ‘Your e-mail address:’,

‘required’ => false,

‘filters’ => array(‘StringTrim’),

)

);

$this->addElement(‘text’, ‘phone’, array(

‘label’ => ‘Your phone:’,

‘required’ => false,

‘filters’ => array(‘StringTrim’),

)

);

367

$this->addElement(‘textarea’, ‘address’, array(

‘label’ => ‘Your address:’,

‘required’ => false,

‘filters’ => array(‘StringTrim’),

)

);

$this->addElement(‘submit’, ‘submit’, array(

‘ignore’ => true,

‘label’ => ‘Save’

));

}

}

code snippet /customization/zf/application/forms/

AddressAdd.php

You can see that there are a few addElement() methods
in this file, and every addElement() method corresponds
to a field in your form. Those elements take a list of
parameters that allow you to create field types matching
those of database fields.

The following HTML code fragment is a result of
execution of the script above. It is responsible for
displaying a form in a web browser.

<form enctype=”application/
x-www-form-urlencoded” method=”post” action=””>

368

<dl class=”zend_form”>

<dt id=”firstName-label”>

<label for=”firstName” class=”required”>Your first name:</label>

</dt><dd id=”firstName-element”>

<input type=”text” name=”firstName” id=”firstName” value=””>

</dd><dt id=”lastName-label”>

<label for=”lastName” class=”optional”>Your last name:</label>

</dt><dd id=”lastName-element”>

<input type=”text” name=”lastName” id=”lastName” value=””>

</dd><dt id=”email-label”>

<label for=”email” class=”optional”>Your e-mail address:</label>

</dt><dd id=”email-element”>

<input type=”text” name=”email” id=”email” value=””>

</dd><dt id=”phone-label”>

<label for=”phone” class=”optional”>Your phone:</label>

</dt><dd id=”phone-element”>

<input type=”text” name=”phone” id=”phone” value=””>

</dd><dt id=”address-label”>

<label for=”address” class=”optional”>Your address:</label>

</dt><dd id=”address-element”>

<textarea name=”address” id=”address” rows=”24” cols=”80”></textarea>

</dd>

<dt id=”submit-label”> </dt>

369

<dd id=”submit-element”>

<input type=”submit” name=”submit” id=”submit” value=”Save”></dd>

</dl>

</form>

You can see in Figure 5.17 how input fields for the
preceding HTML code should look in a browser. Note that
the textarea field can be made larger using CSS styles.

Figure 5.17 Web form created for the first application in
Chapter 4

Now you are familiar with how forms are generated step
by step, it is time to move on to customization of form
elements.

Zend_Form provides several accessories for adding and
removing form elements.

370

The most basic way to add an element to your form is to
use the addElement() method. This method can take
either an object of a class extending Zend_Form_Element
or a list of arguments that specify addElement()
behavior. These include element type, field name, and
number of configuration options.

Because there is a choice of how to add a new form
element, we will present two possibilities here. The first
one looks as follows:

$element = new Zend_Form_Element_Text(‘fieldName’);

$form->addElement($element);

You can see that a Zend_Form_Element_Text object is
created with a ‘fieldName’ value. This value is the name
of the form field that will be generated in the web page.
Next, the addElement() method is invoked using the
$element parameter. This will generate a standard text
input field.

Building a form this way requires the developer to use
long names of classes that encapsulate fields' functionality
(e.g., Zend_Form_Element_Text or
Zend_Form_Element_Submit).

Exactly the same HTML output can be achieved using the
next presented way for creating form elements. It is shorter
and it requires passing some parameters to the
addElement() method. An example of how it is done
looks as follows:

$form->addElement(‘text’, ‘fieldName’);

371

As a result of running the preceding code, a standard text
type form input field is rendered. Parameters passed to this
method are the type of a form field (e.g., text, textarea,
submit, and so on) and a name for the field that will be
used to handle form data. And as you can see in following
example, there is a third parameter that is an array and
allows customization as well as adding functionality such
as filters or validators:

$form->addElement(‘text’, ‘fieldName’, array(‘label’ => ‘Enter a value:’));

This example is different from the previous one simply by
the label that says: ‘Enter a value:’ right above the
input field.

Zend Framework has a variety of element classes that
cover most HTML form elements that are used in web
forms.

The following is an implementation of
Zend_Form_Elements that can be used in your
applications:

• Zend_Form_Element_Hidden—Generates a hidden field
that can hold data that is invisible to users.

$this->addElement(‘hidden’, ‘userId’, array(‘value’ => ‘123’));

This element will generate the following HTML code:

<dt id=”userId-label”> </dt>

<dd id=”userId-element”>

<input type=”hidden” name=”userId” value=”123” id=”userId”></dd>

372

Note that this will not render any visible form input.

The next example you will see is built using the following
form elements:

• Zend_Form_Element_Text—Generates a standard input
field.

• Zend_Form_Element_Password—Generates a standard
password form field.

• Zend_Form_Element_Textarea—Generates a standard
textarea HTML tag.

• Zend_Form_Element_Button—Represents an HTML
button input.

• Zend_Form_Element_Submit—Generates a standard
submit button that is used for sending form data.

• Zend_Form_Element_Reset—Standard element that
generates a form reset button.

• Zend_Form_Element_Image—Creates an image type
button. To render this element, it is necessary to give an
image path either by an image parameter or by an src
parameter. In this case, the path is set to the image that is
located in an /addressBook/public/images directory.

The purpose of the following code is to illustrate an
implementation of the elements introduced previously
because the resulting form may have little use in a
real-world application:

class Application_Form_ExampleAdd extends Zend_Form {

public function init() {

373

$this->setMethod(‘post’);

$this->addElement(‘text’, ‘name’, array(‘label’ => ‘Your name:’));

$this->addElement(‘password’, ‘pass’, array(‘label’ => ‘Enter password:’));

$this->addElement(‘textarea’, ‘comment’, array(‘label’ => ‘Enter your comment:’));

$this->addElement(‘button’, ‘button’, array(‘label’ => ‘Click Me’));

$this->addElement(‘submit’, ‘submit’, array(‘ignore’ => true, ‘label’ => ‘Save’));

$this->addElement(‘reset’, ‘reset’, array(‘label’ => ‘Reset form data’));

$this->addElement(‘Image’, ‘imgButton’, array(‘label’ => ‘’,

‘image’ => ‘../images/imageButton.png’, ‘alt’ => ‘Submit’));

}}

code snippet /customization/zf/applications/forms/

ExampleAdd.php

This example will render the form illustrated in Figure
5.18.

Figure 5.18 Form generated using the addElement()
method

374

The form elements presented next are responsible for
rendering various selection inputs such as checkboxes,
radiobuttons, and select lists.

• Zend_Form_Element_Checkbox—Represents an HTML
checkbox input and allows you to return a specific value
(basically, it works as a boolean value). When the checkbox
is checked, the value is submitted; otherwise, nothing is
submitted.

$this->addElement(‘Checkbox’, ‘option’,

array(‘label’ => ‘Option’, ‘checkedValue’ => ‘1’,

‘uncheckedValue’ => ‘0’, ‘value’ => ‘1’));

The preceding example will render a single standard
checkbox field. It is possible to define the behavior of this
element by setting a number of options. By setting the
value option to 1, the rendered checkbox is checked by
default.

375

• Zend_Form_Element_MultiCheckbox—This element is
one of the nonstandard input field types. It allows you to
group a set of related checkboxes. A MultiCheckbox
ensures that on form submission, the selected options are
passed as an array. The following code illustrates
implementation of the MultiCheckbox element:

$this->addElement(‘MultiCheckbox’, ‘options’,

array(‘label’ => ‘Select your options:’,

‘multiOptions’ => array(‘opt_1’ => ‘Option 1’,

‘opt_2’ => ‘Option 2’,

‘opt_3’ => ‘Option 3’,)));

To set some of the options as checked by default, you need
to add another parameter to an options array, and it is a
value array. The code for this should look like this:

$this->addElement(‘MultiCheckbox’, ‘options’, array(

‘label’ => ‘Select your options:’, ‘multiOptions’ => array(

‘opt_1’ => ‘Option 1’, ‘opt_2’ => ‘Option 2’,

‘opt_3’ => ‘Option 3’, ‘opt_4’ => ‘Option 4’),

‘value’ => array(‘opt_1’, ‘opt_3’)));

As a result of setting the value array, two options are
checked by default. Figure 5.19 illustrates how this form
element is rendered by the browser.

Figure 5.19 Form element rendered using the
MultiCheckbox option

376

• Zend_Form_Element_Radio—Renders a radio button
element that is quite similar in terms of code implementation
to the MultiCheckbox element. The difference comes with
a value parameter that indicates a single radio button to be
checked by default. The rendered form element is illustrated
in Figure 5.20.

$this->addElement(‘Radio’, ‘radioOption’, array(

‘label’ => ‘Select option’, ‘multiOptions’ => array(

‘opt_1’ => ‘Choice 1’, ‘opt_2’ => ‘Choice 2’, ‘opt_3’ => ‘Choice 3’),

‘value’ => ‘opt_2’));

Figure 5.20 Form element rendered using the Radio option

• Zend_Form_Element_Select—An HTML select tag is
rendered by this element and is nearly identical in
functionality and implementation to the element introduced
previously, as you can see in the following code. The
difference is that the rendered form element is a drop-down
selection list, like the one illustrated in Figure 5.21.

$this->addElement(‘Select’, ‘items’, array(

‘label’ => ‘Select an item:’, ‘multiOptions’ => array(

‘1’ => ‘Item 1’, ‘2’ => ‘Item 2’, ‘3’ => ‘Item 3’,),

‘value’ => ‘2’));

377

Figure 5.21 Form element rendered using the Select
option

By setting the value parameter to the value of an item, it
is possible to specify which item is selected by default.

• Zend_Form_Element_Multiselect—Allows a user to
select multiple items from a selection list by holding the
Shift or Control key. The value parameter allows you to
define multiple items that are selected by default. The
rendered element is presented in Figure 5.22.

$this->addElement(‘Multiselect’, ‘items’, array(

‘label’ => ‘Select multiple items:’,

‘multiOptions’ => array(

‘1’ => ‘Item 1’, ‘2’ => ‘Item 2’, ‘3’ => ‘Item 3’,

‘4’ => ‘Item 4’, ‘5’ => ‘Item 5’, ‘6’ => ‘Item 6’,),

‘value’ => array(‘2’,‘3’,‘5’)));

Figure 5.22 Form element rendered using the Multiselect
option

• Zend_Form_Element_File—Provides a mechanism that
makes file upload handling easier.

378

• Zend_File_Transfer—Used to handle internal file
transfers. It is possible to influence file uploads by setting
parameters such as destination that say where uploaded files
should be saved, or by adding validators. Validators can
automatically verify if an uploaded file has an acceptable file
extension or that the file size does not exceed a defined limit.
The following example illustrates how basic image
uploading can be done:

$this->addElement(‘File’, ‘file’, array(‘label’ => ‘Upload an image:’,

‘destination’ => ‘upload’, ‘validators’ => array(

‘Extension’=> array(false, ‘jpg,png,gif’),

‘Size’ => array(false, 102400)),));

The form element rendered by the preceding code is a
standard file selection input that allows users to browse
through local files. Figure 5.23 illustrates this element.

Figure 5.23 Form element rendered using the File option

Decorators

So far when building forms, <dl> and <dt> tags were
used every time the addElement() method was used. As
a result, a form with a single text input field could look
like this:

<form enctype=”application/
x-www-form-urlencoded” method=”post” action=””>

<dl class=”zend_form”>

<dt id=”firstName-label”>

379

<label for=”firstName” class=”required”>Your first name:</label>

</dt><dd id=”firstName-element”>

<input type=”text” name=”firstName” id=”firstName” value=””>

</dd><dt id=”submit-label”>

</dt><dd id=”submit-element”>

<input type=”submit” name=”submit” id=”submit” value=”Save”> </dd>

</dl></form>

Zend_Form comes with decorators that can be used to
customize the way the forms are rendered. These
decorators can be applied to form elements to influence
how the HTML code is generated. It can be used for
setting the appearance of error messages or defining where
field labels are displayed in relation to their input fields.

As a default behavior, the decorator wraps forms in a
definition list <dl> tag and form elements in an item
description <dd> tag. A decorator responsible for creating
tags of a form element looks as follows:

$form->setDecorators(array(‘FormElements’, array(‘HtmlTag’,

array(‘tag’ => ‘dl’)),‘Form’));

This code creates HTML output like the following:

<form action=”/form/action” method=”post”>

<dl></dl>

</form>

380

The following is a list of five decorators that are used by
Zend_Form_Element by default:

• ViewHelper—Simply specifies a view helper that is used to
render the element.

• Errors—Used to add error messages to the element. If not
specified, no message is added.

• Description—Can be used to specify the element
description. As the default, the description is rendered in a
<p> tag with a class of ‘description’. If not specified, no
description is added.

• HtmlTag—Is used to wrap the element and errors messaged
in an HTML tag. By default, it is the <dd> tag.

• Label—Defines a label to the element, and by default wraps
it in a <dt> tag. If no label is specified then only the <dt>
tag is rendered.

These decorators can be used to modify rendered form
elements. The following code is an example of a basic
login form with two fields—login name and password
generated—without setting any custom decorators. Code
required to render such a form can look like the following:

$this->addElement(‘text’, ‘login’, array(‘label’ => ‘Enter login:’,));

$this->addElement(‘password’, ‘password’, array(‘label’ => ‘Enter password:’,));

As a result the following HTML code is created:

<dt id=”login-label”>

<label for=”login” class=”optional”>Enter login:</label>

</dt><dd id=”login-element”>

<input type=”text” name=”login” id=”login” value=””>

</dd><dt id=”password-label”>

381

<label for=”password” class=”optional”>Enter password:</label>

</dt><dd id=”password-element”>

<input type=”password” name=”password” id=”password” value=””>

</dd>

Form fields are inside <dd> tags, and labels are in <dt>
tags. This makes the web browser render a form like that
displayed in Figure 5.24.

Figure 5.24 Basic login form rendered by a web browser

It is possible that, for some reason, you may want to have
different HTML output than this solution offers. The
following example illustrates how such modification can
be done:

$this->addElement(‘text’, ‘login’, array(‘label’ => ‘Enter login:’,

‘Decorators’ => array(‘ViewHelper’, ‘Errors’, ‘Description’,

array(‘HtmlTag’, array(‘tag’ => ‘div’, ‘class’ => ‘login’)),

array(‘Label’, array(‘tag’ => ‘b’, ‘placement’ => ‘prepend’,

‘class’ => ‘loginLabel’)),),));

$this->addElement(‘password’, ‘password’, array(‘label’ => ‘Enter password:’,

‘Decorators’ => array(

‘ViewHelper’, ‘Errors’, ‘Description’,

array(‘HtmlTag’, array(‘tag’ => ‘div’, ‘class’ => ‘password’)),

382

array(‘Label’, array(‘tag’ => ‘b’, ‘placement’ => ‘prepend’,

‘class’ => ‘passwordLabel’)),),));

You can see that code from the previous example has been
extended by adding the Decorators parameter to the
addElement() method. In both elements, decorators are
used to make labels precede input fields and to be enclosed
in a tags to display the text of the label in bold
font. Input fields are also modified to be enclosed by
<div> </div> tags. For each newly set <div> and
tag, classes are set to allow possible styling.

As a result of introducing these decorators, the HTML
code is generated as follows:

<b id=”login-label”>

<label for=”login” class=”loginLabel optional”>Enter login:</label>

<div class=”login”>

<input type=”text” name=”login” id=”login” value=””>

</div>

<b id=”password-label”>

<label for=”password” class=”passwordLabel optional”>Enter password:</label>

<div class=”password”>

<input type=”password” name=”password” id=”password” value=””></div>

And if no additional CSS styles are included, the form
illustrated by Figure 5.25 would be rendered.

383

Figure 5.25 Modified login form rendered by a web
browser

As you can see, it is possible to customize forms rendering
by setting a number of parameters while creating form
fields.

Using Captcha as Spam Protection

Spam refers not only to unwanted mail but also to any
messages that can be displayed to any group of users after
being posted by automated software through an unsecured
form. A Captcha, which stands for Completely Automated
Public Turing Test to Tell Computers and Humans Apart,
is a program designed to protect websites against
automated bots by generating tests that humans can pass
but current computer programs cannot.

Problem

We all are accustomed to regular e-mail spam. If someone
gets your e-mail address, you can anticipate your inbox
getting filled with all kinds of junk. Web form spam is a
slightly different problem.

Spam-bots are automated programs that surf the Web in
search of web forms that can be used for spamming. Once
a proper form is found, it is analyzed by a spambot to
determine whether the form is usable for spamming

384

purposes. Later, the targeted form is filled with data,
hyperlinks, and content that is supposed to be exposed.

If a website contains at least one web form (e.g.,
registration, comments, message board, and so on), it is
highly likely that spambots will infest this website soon
enough. When that happens, forums are flooded with
unwanted content and spam messages are posted on
websites and displayed to the site visitors.

Why Should I Use Captcha?

Captcha is a technology that is used as a security system
by websites, aiming to allow only data submitted by
humans. This mechanism is commonly used when we want
to allow only users to pass any data through a form, or we
want to prevent passing any values generated by
computers. One good example of automatically generated
values may be automated software that browses websites
and automatically creates accounts on popular web
applications. When Captcha is present in the registration
form on such websites, this software cannot figure out
what to enter into the Captcha field to pass the form
validation. Other popular applications of Captcha are to
protect systems vulnerable to e-mail spam or to block
automated posting to blogs or forums.

Captcha protection is most commonly applied as
automatically generated images (usually random sets of
characters or random words) that must be recognized. It is
possible for people to read the image, but computers
should find that reading it is very difficult.

385

Unfortunately, many authors that design their own Captcha
mechanisms are convinced that if an image is difficult to
read for them, it will be difficult for the machine as well.
This is not always the case.

Optical character recognition (OCR) software can be used
to attempt to defeat Captcha. This software has a wide
range of tools at its disposal that are dedicated to
recognizing various fonts or handwritten characters. You
can find online articles that describe how Captcha systems
used by Windows Live, Gmail, or Yahoo have been
broken. Examples of filtered-out Captcha tests are shown
in Figures 5.26 and 5.27.

Figure 5.26 Example of how a Captcha image can be
cleaned by software

Figure 5.27 Another pair of examples of how a Captcha
image can be cleaned

Captcha's strength lies elsewhere, namely in fact that it
takes time to break a certain variation of the standard
Captcha, and these variations can be easily changed.

386

Various Implementations of Captcha

Text-based Captcha, in which the user has to type a few
letters that are displayed on the screen to complete the
form submission, is not the only type of Captcha used on
the Internet. There are other types of Captcha as well:

• Math Captcha—User has to solve a mathematical equation
(for example: What is the result of 2+2?).

• Question Captcha—Solution requires answers to questions
regarding some context (for example: What day is it today?).

• Audio Captcha—User has to type a word that is played-back
through speakers. This solution is similar to text-based
Captcha and is frequently combined with it.

However, in those solutions, automatic generation is the
usual problem.

In addition to this form-protection arsenal, there is the
following:

• ReCaptcha—a free antibot service that according to the
authors of this service: “It helps digitize books, newspapers
and old time radio shows.” (See Figure 5.28).

Figure 5.28 Dialog box of the reCaptcha plug-in

387

We have mentioned that OCR programs are used for text
recognition. During the digitization process of the scanned
text (e.g., books), unintelligible fragments can often occur,
for which the OCR software cannot give a clear result.
Because humans are better than machines at dealing with
the recognition of such fragments, the institutions involved
in the digitization of library resources employ staff whose
task is to verify the OCR results.

The idea of reCaptcha is that it can replace the work of the
people who verify OCR results with a random group of
users who can solve everyday millions of Captcha tasks.
This solution can save thousands of work hours a day that
otherwise would have to be done by employees working
on scanned text digitization. This solution is important
because it utilizes users' online activity to aid in the
recognition of scanned text fragments that OCR software
cannot handle. It combines websites' protection
mechanisms with the beneficial work of digitization of
library resources.

Writing Your Own Captcha

There are a few things to keep in mind while designing
your own text-based Captcha system. If letters are close
together, there is a high chance that two characters will be
interpreted as one. Next, if nonlinear transformations are
applied to a generated image, this transformation is
difficult to identify on the basis of the outline of the text.
Rotating or fluctuating a text string is not hard to undo
automatically. More troublesome is the “fish-eye” effect
applied in a few random places.

388

OCR usually gives several possible answers that are then
checked in the dictionary, which makes it easier to choose
the final text. For example when OCR recognizes a text
like “thir,” it assumes that it is the most probable word,
“this,” and not “their” or “third.” That's why a completely
random set of letters is much more difficult than dictionary
words.

Solution

Let's proceed with implementing some Captcha protection
in our forms. We will go through framework-specific
solutions and those offered online. We will use a different
solution for each framework because the implementation
should be fairly similar regardless of framework chosen.

Symfony

In the “Customizing Forms” section of this chapter,
plug-ins were used to add multiple new elements that
expanded functionality of the forms. To add Captcha
elements to secure your forms from unwanted web-bots,
you need to install plug-ins as well. Symfony offers
various Captcha plug-ins that you can install easily.
Plug-ins available to install are sfFormExtraPlugin,
sfCaptchaGDPlugin, sfReCaptchaPlugin,
gyCaptchaPlugin, sfPHPCaptchaPlugin, and
sfCryptoCaptchaPlugin. Of these plug-ins, only the
first three are available for the newest Symfony version.
All unavailable plug-ins are also graphical systems similar
to those described in the following section.

sfWidgetFormReCaptcha

389

The sfWidgetFormReCaptcha widget is available when
the sfFormExtraPlugin is installed. The sfFormExtraPlugin
was used in the “Customizing Forms” section of this
chapter. If you haven't read that section, you can follow
these instructions.

To install sfFormExtraPlugin you simply need to type the
following command into the console from your project
directory:

symfony plugin:install sfFormExtraPlugin

Next it is recommended to clear cache data by typing the
following command into the console:

symfony cache:clear

If you haven't done so already, you need to
acquire public and private keys by
registering on the reCaptcha website at
www.google.com/recaptcha.

Now it is possible to use sfWidgetFormReCaptcha()
and sfValidatorReCaptcha()in your project. You can
use the sfWidgetFormReCaptcha() widget to render the
reCaptcha form element. This will require you to add one
line to an array that is used in setWidgets(), and the
same thing needs to be done for the setValidators()
array.

390

Note that sfWidgetFormReCaptcha() requires you to set
the public_key value, and sfValidatorReCaptcha()
requires the private_key value. The public and private
keys are are those values received from the reCaptcha
website.

An example of the extended form used in Chapter 4 is
shown here:

public function setup() {

$this->setWidgets(array(

‘id’ => new sfWidgetFormInputHidden(),

‘first_name’ => new sfWidgetFormInputText(),

‘last_name’ => new sfWidgetFormInputText(),

‘email’ => new sfWidgetFormInputText(),

‘phone’ => new sfWidgetFormInputText(),

‘address’ => new sfWidgetFormInputText(),

‘created’ => new sfWidgetFormDateTime(),

‘updated’ => new sfWidgetFormDateTime(),

‘captcha’ => new sfWidgetFormReCaptcha(

array(‘public_key’=>‘6Ldq_QkAAAAAAKEyHHrEbMz9FkDJaxwVGi7hjh22’)),));

391

$this->setValidators(array(

‘id’ => new sfValidatorDoctrineChoice(array(

‘model’ => $this->getModelName(), ‘column’ => ‘id’,

‘required’ => false)),

‘first_name’ => new sfValidatorString(array(

‘max_length’ => 40, ‘required’ => false)),

‘last_name’ => new sfValidatorString(array(

‘max_length’ => 40, ‘required’ => false)),

‘email’ => new sfValidatorString(array(

‘max_length’ => 40, ‘required’ => false)),

‘phone’ => new sfValidatorInteger(array(‘required’ => false)),

‘description’ => new sfValidatorPass(array(‘required’ => false)),

‘created’ => new sfValidatorDateTime(),

‘updated’ => new sfValidatorDateTime(),

‘captcha’ => new sfValidatorReCaptcha(

array(‘private_key’ => ‘6Ldq_QkAAAAAAJ-pdmnNYWxhe7GM1apcL6YI2B1_’)),));

code snippet /captcha/symfony/apps/frontend/lib/form/

RegistrationForm.class.php

Now you need to make sure that the newly added form
element will be rendered properly. To do so, add the
following code into the _form.php file:

<tr><th><?php echo $form[‘captcha’]->renderLabel() ?></th>

392

<td><?php echo $form[‘captcha’]->renderError() ?>

<?php echo $form[‘captcha’] ?></td></tr>

As the result of the preceding code, a web form is rendered
like the one illustrated in Figure 5.29.

Figure 5.29 Form with the reCaptcha form element

CakePHP

There are various Captcha solutions for CakePHP that you
could include in your forms, but only OpenCaptcha and
reCaptcha will be shown here because they are free
solutions.

OpenCaptcha

Installation of OpenCaptcha is quite easy, so let's
incorporate it with one of the forms you created earlier in
this chapter while upgrading your first application.

393

To begin, you need to dynamically create a filename
(www.opencaptcha.com/img/{random}.jpgx) that will be
displayed in the form page. The following code shows how
to insert Captcha into your form. Basically it needs to be
placed somewhere between the $form->create() and
$form->end() functions:

<?php

echo $form->create(‘Address’, array(‘type’ => ‘post’, ‘action’ => ‘add’));

echo ‘<fieldset><legend>New Address</legend>’;

echo $form->input(‘first_name’, array(‘type’ => ‘password’)).

$form->input(‘last_name’, array(‘div’ => array(

‘class’=>‘last_name_class’))).

$form->input(‘email’).

$form->input(‘phone’).

$form->input(‘address’, array(‘rows’ => ‘5’,‘cols’ => ‘5’)).

$form->input(‘group’, array(‘options’ => array(

‘Work’ => array(‘Value 1’=>‘Client’, ‘Value 2’=>‘Coworker’),

‘Private’ => array(‘Value 3’=>‘Family’, ‘Value 4’=>‘Friends’)))).

$form->input(‘created’, array(‘timeFormat’=>‘24’, ‘dateFormat’ => ‘MDY’,

394

‘minYear’ => date(‘Y’) - 20, ‘maxYear’ => date(‘Y’)))

$form->input(‘modified’);

if(isset($opencaptcha) && $opencaptcha==‘failed’) {

echo “ <script> alert(‘You Did Not Fill In The Security Code Correctly’);

</script>”;

}

$date = date(“Ymd”);

$rand = rand(0,9999999999999);

$img = “$date$rand.jpgx”;

$height = “80”;

$width = “240”;

echo “<input type=‘hidden’ name=‘img’ value=‘$img’>”;

echo “<img src=‘http://www.opencaptcha.com/img/$img’

alt=‘captcha’ width=‘240’ height=‘80’ />
”;

echo “<input type=‘text’ name=‘code’ value=‘Enter Above Code’ size=‘35’ />”;

echo‘</fieldset>’;

echo $form->end(‘Save address’);

?>

code snippet /captcha/cakephp/views/addresses/add.ctp

To generate a random filename, we have used the current
timestamp and a random number. And to indicate a failed
verification, a JavaScript alert is generated. An example of
this plug-in is shown in Figure 5.30.

395

Figure 5.30 Dialog box of the OpenCaptcha plug-in

In the addresses_controller.php file, it is necessary
to check whether www.opencaptcha.com/
validate.php?img={imageName}&ans={usersAnswer}
returns “pass” or “fail”, as shown in the following code:

<?php

class AddressesController extends AppController {

var $name = ‘addresses’;

function add() {

if (!empty($this->data)) {

if (file_get_contents(“http://www.opencaptcha.com/
validate.php?ans=”.$_POST

[‘code’].”&img=”.$_POST[‘img’])==‘pass’ && $this->Address->save

($this->data))

{ $this->Session->setFlash(‘New address has been saved.’);

$this->redirect(array(‘action’ => ‘index’));

396

} else { $this->set(‘opencaptcha’, ‘failed’);

$this->Session->setFlash(‘You Did Not Fill In The Security Code Correctly’);

}

}

}

} ?>

code snippet /captcha/cakephp/controllers/

addresses_controller.php

This should be enough to get OpenCaptcha working in our
form. Alternatively, you could use the CakePHP
$this->Session->setFlash() function to generate a
message that will be displayed in case of Captcha
verification failure.

reCaptcha

Earlier you learned how to include reCaptcha into your
Symfony application using two different methods. In this
section, you learn how to use reCaptcha in CakePHP
forms.

First obtain the private and public keys as was shown in
the Symfony section. Then visit the Bakery web page for
CakePHP and get the reCaptcha component and helper.
Those files can be found at http://bakery.cakephp.org/
articles/view/recaptcha-component-helper-for-cakephp.

397

The component file should be downloaded and placed in
the /app/controllers/components/ directory and the
helper file in the /app/views/helpers/ directory.

If you have acquired both reCaptcha keys as well as the
component and helper files, you can modify your
controller file by adding the $components array and a
function beforeFilter(), as shown in the following
code:

class AddressesController extends AppController {

var $name = ‘addresses’;

var $components = array(‘Recaptcha’); //new line

function beforeFilter() {

$this->Recaptcha->publickey =
“6Ldq_QkAAAAAAKEyHHrEbMz9FkDJaxwVGi7hjh22”;

$this->Recaptcha->privatekey =
“6Ldq_QkAAAAAAJ-pdmnNYWxhe7GM1apcL6YI2B1_”; }

}

Next you can modify your view so that the reCaptcha
element is rendered. Just call the display_form()
method of the $recaptcha object in your code.

<?php

echo $form->create(‘Address’, array(‘type’ => ‘post’, ‘action’ => ‘add’));

echo ‘<fieldset><legend>New Address</legend>’.

398

$form->input(‘first_name’, array(‘type’ => ‘password’)).

$form->input(‘last_name’, array(‘div’ => array(‘class’=>‘last_name_class’))).

$form->input(‘email’).

$form->input(‘phone’).

$form->input(‘address’, array(‘rows’ => ‘5’, ‘cols’ => ‘5’)).

$recaptcha->display_form(‘echo’).

.‘</fieldset>’.

$form->end(‘Save address’);

?>

The preceding example renders a form similar to the one
presented in Figure 5.31. Any difference should be only in
the element styles.

Figure 5.31 Form containing the reCaptcha element

And finally, validation should be added in a controller file,
as shown in the following example:

399

function add() {

if (!empty($this->data)) {

if($this->Recaptcha->valid($this->params[‘form’])) // recaptcha validation

{

$this->Address->save($this->data)

$this->Session->setFlash(‘New address has been saved.’);

$this->redirect(array(‘action’ => ‘index’));

} else {

$this->Session->setFlash(‘Invalid reCaptcha code’);

}

}

}

Zend Framework

In this section, you will see how to implement
Zend_Captcha into your Zend_Form. Zend Framework
comes with four Captcha solutions to work with: Image,
Figlet, Dumb, and ReCaptcha. Three of these are available
by using Zend_Form_Element_Captcha; the other one
relies on using Zend_Service_ReCaptcha.

First, Zend_Captcha_Image will be implemented because
it is probably the most common type of Captcha used
throughout the Internet. It relies on a user's ability to read
obscured and disfigured text from an image. To add this
type of Captcha in your form, you simply need to create a

400

new form element using the addElement() method the
same way it was done earlier with form building. The main
difference is a set of options that can be used to customize
the Captcha element. This solution requires a folder that
has write permission. This is where Captcha images will
be generated and saved. This folder should be located in
the /public folder. (For this example, it will be in the
./public/captcha/ folder.) The following code shows
that it is possible to specify your own font used to generate
the Captcha image.

$this->addElement(‘captcha’, ‘captchaImage’, array(

‘label’ => ‘Enter image code:’,

‘captcha’ => array(‘captcha’ => ‘Image’, ‘wordLen’ => 6, ‘timeout’ => 300,

‘imgDir’ => ‘captcha/’, ‘imgUrl’ => ‘../captcha/’,

‘width’ => 250, ‘height’ => 150,

‘font’ => ‘font/font.ttf’, ‘fontSize’ => 34,)));

In addition to the standard parameters that are used to
customize form elements, there is a captcha parameter
that is associated to an option array you can modify:

• captcha—Specifies the type of Captcha that is used. In this
case. it is image type Captcha.

• wordLen—Specifies how long the words generated in the
image are.

• timeout—A number seconds after which image will
become invalid. Here it is set to 5 minutes (300s).

• imgDir—A directory for storing generated images.

401

• imgUrl—Patch to generated images. It is used for display
purposes.

• width—Width of the generated image.
• height—Height of the generated image.
• font—Patch to a font file.
• fontSize—Font size parameter.

The image rendered by a web browser looks like the one
shown in Figure 5.32.

Figure 5.32 Form element rendered by the
Zend_Captcha_Image adapter

A form element generated that way has full functionality,
and no additional coding is required to verify whether a
user posted a valid image code.

The second implementation is Zend_Captcha_Figlet,
and the implementation is quite similar to the previous
one. The difference is only in the number of options that
are used for customization.

$this->addElement(‘captcha’, ‘captchaFiglet’, array(

‘label’ => ‘Enter image code:’,

402

‘captcha’ => array(‘captcha’ => ‘Figlet’, ‘wordLen’ => 6, ‘timeout’ => 300,)

));

As you can see, the Captcha parameter is changed from
image to figlet, and only the wordLen and timeout
parameters are set. Functionality is similar to the previous
example, and it requires a user to read the text from an
image that is generated using only ASCII characters to
form the text. Following is the HTML code that forms the
text for a user to read:

The resulting web form rendered for this example will
contain an “image” similar to the one presented in Figure
5.33.

Figure 5.33 Form element rendered by the
Zend_Captcha_Figlet adapter

403

Next you will see the one of the simplest Captcha
elements: Zend_Captcha_Dumb. What it does is write
random sets of letters and requires a user to write it
backward into a text field. The implementation is as simple
as this:

$this->addElement(‘captcha’, ‘captchaDumb’, array(

‘captcha’ => array(‘captcha’ => ‘Dumb’, ‘wordLen’ => 6, ‘timeout’ => 300,)));

No label is set in this example because the text next to the
field is generated automatically. Figure 5.34 illustrates
rendered Zend_Captcha_Dumb.

Figure 5.34 Form element rendered by the
Zend_Captcha_Dumb adapter

Finally Zend_Captcha_ReCaptcha is the reCaptcha
service used to secure your forms. It requires having public
and private keys that are given to registered users on the
reCaptcha website.

When you have the required keys, you need to create an
object for the reCaptcha Zend service, and the rest goes the
same as previously:

$publicKey = “6Ldq_QkAAAAAAKEyHHrEbMz9FkDJaxwVGi7hjh22”;

$privateKey = “6Ldq_QkAAAAAAJ-pdmnNYWxhe7GM1apcL6YI2B1_”;

404

$recaptcha = new Zend_Service_ReCaptcha($publicKey, $privateKey);

$this->addElement(‘captcha’, ‘captchaRecaptcha’, array(

‘captcha’ => array(‘captcha’ => ‘ReCaptcha’, ‘service’ => $recaptcha)));

Again, the value of the captcha parameter has been
changed to ReCaptcha, and a new parameter defining the
service is set. As a result, you will get a reCaptcha form
element that looks like the one in Figure 5.35.

Figure 5.35 Form element rendered by the
Zend_Captcha_ReCaptcha adapter

405

Chapter 6

Mailing

The more technologically advanced the medium, the more
primitive, trivial and useless messages are transmitted
through it.

—Stanisław Lem

What's In This Chapter?

• Sending plain text and HTML-formatted e-mail.

• Including attachments and adding carbon copies.

• Configuring SMTP servers and setting secure connections.

• Overview of the most popular mailing engines.

E-mail predates the first web pages and even the Internet
itself, and compared to other web technologies, mailing
has not changed much over the years. However e-mail is
still the backbone of all advanced web services and the
Internet could not work without it. Apart from user-to-user
communication, mailing is indispensable for creating
accounts, reminding users about passwords they've
forgotten, sending newsletters, keeping up with
newsgroups, and so on.

You can't develop web apps without mailing, and this
chapter explains how to do it efficiently and effortlessly.
Using the mailing engines presented here is easy and
straightforward, so this chapter will be a piece of cake for

406

you—a piece of very nutritious cake, in fact, taking into
account how many beneficial uses of mailing there are.

Creating Mailing Applications

Developers need to make sure that e-mail is automated and
works as designed. Most of the commonly encountered
problems are associated with the following:

• Establishing connections
• Sending HTML-formatted e-mail
• Sending e-mail to multiple receivers
• Carbon copies

All these problems can be easily solved with mailers.
Mailers are ready-to-use solutions that are included within
web application frameworks or separate modules that can
be added to a web framework.

Mailing Approaches and Web Servers

One of the biggest nuisances of web development is when
you deploy your application on a hosting server and your
mailing module stops working. This often happens because
of configuration issues. One hosting server may work fine
with mailing enabled in the PHP configuration and a
properly configured mail server such as Sendmail or
Postfix, but others may have the mailing server disabled.
In most cases, you cannot force the administrators to
configure the server and enable mailing. They don't want
to do that, mostly for security reasons—which is a good
point by the way. Unfortunately it's not a good point for
you because you need to do more work on your side in this
case.

407

The more complete details of the e-mail-sending process
are beyond the scope of this chapter, but in general it looks
like Figure 6.1.

Figure 6.1 General schema of e-mail sending

After you create the e-mail's content and click the Send
button, all data is collected from the text fields and sent
either to a remote mail server or a local mail server if you
have an e-mail server where the application is deployed.

In most cases, a remote SMTP server is
used, even when it's on the same machine
(it's not really remote, but it's treated as
such).

Connecting to a remote mail server has some advantages.
In almost all cases, this kind of connection requires a

408

username and password because of the authentication
process. While you are authenticated, your e-mail can be
sent to any other mail server without being treated as
spam. After the e-mail is sent from the remote mail server,
it moves through the SMTP protocol to the destination
mail server and can be read by the recipient through a web
application or it can be requested by the recipient through
the POP3/IMAP protocol.

PHP Configuration

The php.ini file is used to configure PHP settings. It is
placed in the /etc/php5/apache2/ directory under
UNIX systems and in the C: xampp php under Windows
if you use XAMPP. Important parts of this file are shown
in Figures 6.2 and 6.3.

Figure 6.2 PHP's php.ini configuration file represented
through the phpinfo() function

Figure 6.3 PHP's php.ini configuration file represented
through the phpinfo() function

409

You can set the default SMTP hostname, SMTP port, and
Sendmail's path and from values. You can also configure
some mail-specific issues such as creating headers or a log
file.

After editing php.ini, you should have something similar
to these values:

[mail function]

SMTP = localhost

smtp_port = 25

;sendmail_from = me@example.com

;sendmail_path =

;mail.force_extra_parameters =

mail.add_x_header = On

;mail.log =

To apply an entry, you need to remove the semicolon that
comments it out.

SMTP Server Configuration

Sendmail, like almost all leading mail servers, is available
both for UNIX and Windows systems.

UNIX

To install Sendmail, you can use a package manager like
Sendmail:

apt-get install sendmail

410

Now, you should configure Sendmail by executing the
following command with root privileges:

sendmailconfig

You can now easily send an e-mail from the command
line. Create a file called mail.txt and fill it with some
text.

$ touch mail.txt

$ echo “Test mail” > mail.txt

$ mail -s “Hello world” john@wroxexample.com < mail.txt

At the end, you need to execute the mail command, as
shown previously. Replace the example e-mail with your
own text, send it, and check your mailbox. Probably it will
be delivered but filtered as spam, so search your spam
inbox as well.

Windows

This may come as a surprise, but despite the fact that
Sendmail is a UNIX application, it is delivered within
XAMPP for Windows, so if you followed XAMPP
installation in Chapter 2, you don't have to install anything
else. The file structure of Sendmail for Windows is
presented below.

c: xampp sendmail

libeay32.dll

sendmail.exe

sendmail.ini

411

ssleay32.dll

Sendmail is also used by PHP under Windows to send
e-mail.

SwiftMailer

SwiftMailer is available not only as part of Symfony, but
also as a separate application (see Figure 6.4). It is
available for every framework considered in this book.

Figure 6.4 SwiftMailer logo

Symfony

SwiftMailer is Symfony's default mailer and is included
within framework libraries, so you don't need to install any
additional libraries. The code snippets in this section can
be put wherever you like into the controllers' actions.

Sending Simple E-mail

You can employ SwiftMailer in Symfony by invoking the
getMailer() method as shown here:

$mailer = $this->getMailer();

Creating and sending simple e-mail can be easily done
using one method only: composeAndSend(), as shown in
the following code. This is very useful when you are

412

developing a big application in which the mailing code is
not really the important part, but you need to close some
functionalities that depend on sending e-mail.

$mailer->composeAndSend(

‘example@wroxexample.com’,

‘example@wroxexample.com’,

‘Hello World!!!!’,

‘John Smith’

);

After executing this code through a browser, you should be
able to see in the right corner of the debug toolbar an
envelope with the count of sent e-mail (see Figure 6.5).

Figure 6.5 Symfony debug toolbar

When you click the envelope, you should see details of
each e-mail on the left (see Figure 6.6).

Figure 6.6 E-mail details toolbar

413

Sending HTML E-mail

You can send not only plain text e-mail but also
HTML-formatted messages. You may specify what kind of
e-mail you want to send with the setBody() method. It
gets two parameters: message body (content) and message
type. In the following example, an HTML message is sent:

$message =
Swift_Message::newInstance(‘Hello World Subject!’, ‘foobar message’);

$message->setBody(‘foobar <p style=”font-weight: bold;”>message</p>’, ‘text/
html’);

$this->getMailer()->send($message);

Additionally you can use Symfony's partial files for the
message body. To get partial content, you should use the
getPartial() method. As the second parameter, you
send an array with key variables and their assigned values.

$message =
Swift_Message::newInstance(‘Hello World Subject!’, ‘foobar message’);

414

$htmlBody = $this->getPartial(‘activation’,array(‘name’=>‘John Smith’));

$message->setBody($htmlBody,‘text/html’);

$this->getMailer()->send($message);

To run this example, you need to create a partial file that
should be saved as _activation.php in
/modules/<example>/templates/ directory. Note that
you replace <example> with your module name. The
partial file's content can look like this:

Hello World!

<?php echo $name; ?>

Adding Attachments

The Swift_Attachment class is responsible for creating
attachments in SwiftMailer. Attachments can be added in
two major ways:

• Using the path to an existing file
• Dynamically

Depending on your business strategy and application
architecture, you can store attachment files directly under a
file system path or in a database. When you store
attachments just as files, you can attach them using the
fromPath() method and the file's path. An example
e-mail code is shown following. Note that you can also set
a proper content-type value. This is not obligatory, and you
can omit this parameter, but it can be helpful for some
e-mail clients to let them know the attachment type.

$message =
Swift_Message::newInstance(‘Hello World Subject!’, ‘foobar message’);

415

$message->setFrom(‘producer@wroxexample.com’);

$message->setTo(‘example@wroxexample.com’);

$attachment = Swift_Attachment::fromPath(‘C: funny.jpg’, ‘image/jpeg’);

$message->attach($attachment);

$this->getMailer()->send($message);

To hide files from public, sometimes they are kept with
strange names such as frt4754fehrt954643gfwe0.jpg.
Such names are very hard to guess, so they cannot be
easily accessed from outside. This approach can't be called
real security, but proves to be good for keeping the files
out of the view of general public. In this case, you can set
another filename that will be seen by the receiver. To do
that, you should use the setFilename() method as
follows:

$message =
Swift_Message::newInstance(‘Hello World Subject!’, ‘foobar message’);

$message->setFrom(‘producer@wroxexample.com’);

$message->setTo(‘example@wroxexample.com’);

$attachment = Swift_Attachment::fromPath(

‘C: xampp public_html cake app webroot attach
frt4754fehrt954643gfwe0.jpg’)

->setFilename(‘funny.jpg’);

$message->attach($attachment);

$this->getMailer()->send($message);

However, most developers keep files in databases,
especially when attachments are dynamic and change very

416

often, or if they differ for each e-mail. You can easily
attach a file that was saved before in a database. Assume
that your Attachments table structure looks as follows:

field name type

id int(3) primary key auto_increment

fileName varchar(32)

content BLOB

You can get attachment's content using Doctrine, as shown
in the following code:

$attachData = Doctrine_Core::getTable(‘Attachments’)->find(1);

$data=$attachData->getContent();

$fileName=$attachData->getFileName();

$message =
Swift_Message::newInstance(‘Hello World Subject!’, ‘foobar message’);

$message->setFrom(‘producer@wroxexample.com’);

$message->setTo(‘example@wroxexample.com’);

$attachment = Swift_Attachment::newInstance($data, $fileName);

$message->attach($attachment);

$this->getMailer()->send($message);

That's really easy to implement.

Carbon Copy

417

Adding more than one recipient can be done in few ways.
The simplest way is to add more recipients in the TO field
as follows:

$message =
Swift_Message::newInstance(‘Hello World Subject!’, ‘foobar message’);

$message->setFrom(‘producer@wroxexample.com’);

$message->setTo(array(‘example@wroxexample.com’,‘john@wroxexample.com’));

$this->getMailer()->send($message);

In some cases this solution is not the proper one. That's
why carbon copies (CC) and blind carbon copies (BCC)
were invented. You can add carbon copies using the
addCc() method of the Swift_Message object.

$message =
Swift_Message::newInstance(‘Hello World Subject!’, ‘foobar message’);

$message->setFrom(‘producer@wroxexample.com’);

$message->setTo(‘example@wroxexample.com’);

$message->addCc(‘boss@wroxexample.com’, ‘John Kowalski’);

$this->getMailer()->send($message);

Adding blind carbon copies is similar to adding carbon
copies.

$message =
Swift_Message::newInstance(‘Hello World Subject!’, ‘foobar message’);

$message->setFrom(‘producer@wroxexample.com’);

$message->setTo(‘example@wroxexample.com’);

$message->setBcc(array(

418

‘pm@wroxexample.com’,

‘boss@wroxexample.com’ => ‘John Kowalski’,

));

$this->getMailer()->send($message);

Both in CC and BCC, you can apply more than one
recipient, as shown previously.

Remote SMTP Servers

SwiftMailer is integrated with Symfony. Therefore, you
can configure an SMTP connection in application
configuration files. By editing the factories.yml file in
an application's /config directory, you can add some
configuration entries dedicated to Symfony's default
mailer. You can enable or disable logging for SwiftMailer,
and set default charset and delivery options. But most
interesting are the SMTP configuration entries. You can
set user, password, host name and port for all sent
e-mail. So you don't need to set it anywhere else when
sending e-mail. Exemplary SwiftMailer entries for all
environments can be set as follows:

all:

routing:

class: sfPatternRouting

param:

generate_shortest_url: true

extra_parameters_as_query_string: true

419

view_cache_manager:

class: sfViewCacheManager

param:

cache_key_use_vary_headers: true

cache_key_use_host_name: true

mailer:

class: sfMailer

param:

logging: %SF_LOGGING_ENABLED%

charset: %SF_CHARSET%

delivery_strategy: realtime

transport:

class: Swift_SmtpTransport

param:

host: localhost

port: 25

encryption:

username:

password:

Secure Connections

Because nonsecure connections (shown in the preceding
code snippet) are very rarely used, you will most likely be
using secure connections. You can easily change the

420

configuration according to your needs. For example, for a
secure connection, the configuration entries could be as
follows:

all:

routing:

class: sfPatternRouting

param:

generate_shortest_url: true

extra_parameters_as_query_string: true

view_cache_manager:

class: sfViewCacheManager

param:

cache_key_use_vary_headers: true

cache_key_use_host_name: true

mailer:

class: sfMailer

param:

logging: %SF_LOGGING_ENABLED%

charset: %SF_CHARSET%

delivery_strategy: realtime

transport:

class: Swift_SmtpTransport

param:

421

host: smtp.gmail.com

port: 465

encryption: ssl

username: wroxexample@gmail.com

password: wroxexample123

See Chapter 8 to read more about the
differences between secured and
nonsecured connections.

In some situations, one global configuration for all sent
e-mail is not a good solution. Let's assume that you use a
few accounts on different SMTP servers. In this case, it's
better to use Swift_SmtpTransport to define connection
parameters for each e-mail module, as follows:

$transport = Swift_SmtpTransport::newInstance(‘smtp.example.org’, 25)

->setUsername(‘your username’)

->setPassword(‘your password’);

Next you need to send the authentication data to
Swift_Mailer as a parameter:

$mailer = Swift_Mailer::newInstance($transport);

You can also define a secure connection with the same
effect as described previously:

422

$transport =
Swift_SmtpTransport::newInstance(‘smtp.example.org’, 465, ‘ssl’);

All in One

To summarize, the following code shows a registration
module example in which all previously described features
are presented.

<?php

class RegistrationActions extends sfActions {

public function executeRegister() {

$transport =
Swift_SmtpTransport::newInstance(‘smtp.gmail.com’, 465, ‘ssl’)

->setUsername(‘wroxexampleregistration@gmail.com’)

->setPassword(‘wroxexample123’);

$mailer = Swift_Mailer::newInstance($transport);

$message = Swift_Message::newInstance(‘Hello World Subject!’, ‘foobar

message’);

$message->setFrom(‘wroxexampleregistration@gmail.com’);

$message->setTo(‘example@wroxexample.com’);

$message->setCc(array(

‘admin@wroxexample.com’ => ‘John Kowalski’,

423

));

$attachment = Swift_Attachment::fromPath(

‘/home/wrox/public_html/symfony/web/attachments/
subscription_pack.zip’,

‘application/zip’);

$message->attach($attachment);

$mailer->send($message);

}

}

code snippet /swiftmailer/symfony/app/frontend/modules/

registration/actions/actions.class.php

CakePHP

SwiftMailer is not integrated with CakePHP the way it is
in Symfony. That's why you need to use SwiftMailer
through CakePHP's /vendor library path. You can
download SwifMailer files from http://swiftmailer.org/
download. After extraction, your directory structure should
be as follows:

app/vendors/swift_mailer/

CHANGES

lib/

classes/

dependency_maps/

mime_types.php

424

preferences.php

swift_init.php

swift_required_pear.php

swift_required.php

tests/

test-suite/

LICENSE

README

VERSION

Now you can use the SwiftMailer library by importing it
within the controller. The missing mailing code will be
shown later in this section.

<?php

App::import(‘Vendor’, ‘Swift’, array(‘file’ =>

‘swift_mailer’.DS.‘lib’.DS.‘swift_required.php’));

class RegistrationController extends AppController {

var $name = ‘registration’;

function send() {

/* mailing code */

}

}

?>

Sending Simple E-mail

425

After you import SwiftMailer, you can send e-mail as you
can in Symfony. The only difference is that you need to set
transport parameters through Swift_SmtpTransport
every time you use SwiftMailer. The following code shows
sending an e-mail with SwitfMailer via Gmail.

$transport = Swift_SmtpTransport::newInstance(‘smtp.gmail.com’, 465, ‘ssl’)

->setUsername(‘wroxexample@gmail.com’)

->setPassword(‘wroxexample123’);

$mailer = Swift_Mailer::newInstance($transport);

$message =
Swift_Message::newInstance(‘Cake SwiftMailer’,‘Hello World!’);

$message->setFrom(‘wroxexample@gmail.com’);

$message->setTo(‘example@wroxexample.com’);

$mailer->send($message);

Sending HTML E-mail

You can easily add message content using the setBody()
method. But what about message templates? Can they be
made as shown in Symfony using partials? Template
loading is possible with CakePHP's View class.

$viewPath=‘email’;

$type=‘html’;

$viewName=‘registration’;

$view = new View($this);

$view->layout=$this->layout;

426

$content=$view->element($viewPath.DS.$type.DS.$viewName, array(‘name’ => “John

Smith”), true);

$htmlBody= $view->renderLayout($content);

Note that in the preceding example you get a page with the
layout used by the current controller as the $htmlBody
variable. To see any results, you need to create a
registration.phtml template element, which should be
placed in the /app/views/elements/email/html/
directory. If you print the $htmlBody content with the
echo command, you will see something similar to Figure
6.7.

Figure 6.7 CakePHP SwiftMailer–delivered mail content

Your registration.ctp should be as follows:

Hello World!

<?php echo $name; ?>

The output shown in Figure 6.7 is probably not exactly the
one you expected. This is because the default layout was
used. To replace the default layout, you need to assign the
layout's name to the $this->layout variable instead of
assigning the current layout, which is by default the default
layout. For example if you set the layout as follows:

$this->layout=‘mailing’;

427

then you should also create mailing.ctp in the /app/
views/layouts/ directory with the following content:

<?php echo $content_for_layout; ?>

The preceding layout has only one line, which includes the
template's content. It works in the same way as it does in a
usual application. After merging, your code should look
like the following:

$viewPath=‘email’;

$type=‘html’;

$viewName=‘registration’;

$view = new View($this);

$view->layout=$this->layout;

$content=$view->element($viewPath.DS.$type.DS.$viewName,

array(‘name’ => “John Smith”), true);

$htmlBody= $view->renderLayout($content);

$transport = Swift_SmtpTransport::newInstance(‘smtp.gmail.com’, 465, ‘ssl’)

->setUsername(‘wroxexample@gmail.com’)

->setPassword(‘wroxexample123’);

$mailer = Swift_Mailer::newInstance($transport);

$message = Swift_Message::newInstance();

$message->setSubject(‘swiftExample’);

$message->setFrom(‘wroxexample@gmail.com’);

$message->setTo(‘example@wroxexample.com’);

428

$message->setCc(array(‘admin@wroxexample.com’ => ‘John Kowalski’,));

$message->setBody($htmlBody,‘text/html’);

$mailer->send($message);

Note that it is a good practice to keep HTML and plain
e-mail in separate folders in the elements/email/
directory.

views/elements/email/html/

views/elements/email/text/

Adding Attachments, Carbon Copy, and SMTP
Connection

These are done exactly as described in the “Symfony”
section earlier in this chapter, so it will not be covered
again here.

All in One

When you merge all code described in this section, your
code should be similar to following code.

<?php

App::import(‘Vendor’, ‘Swift’, array(‘file’ =>

‘swift_mailer’.DS.‘lib’.DS.‘swift_required.php’));

429

class RegistrationController extends AppController {

var $name = ‘registration’;

function send() {

$transport =
Swift_SmtpTransport::newInstance(‘smtp.gmail.com’, 465, ‘ssl’)

->setUsername(‘wroxexample@gmail.com’)

->setPassword(‘wroxexample123’);

$mailer = Swift_Mailer::newInstance($transport);

$message = Swift_Message::newInstance();

$message->setSubject(‘swiftExample’);

$message->setFrom(‘wroxexample@gmail.com’);

$message->setTo(‘example@wroxexample.com’);

$message->setCc(array(‘admin@wroxexample.com’ => ‘John Kowalski’,));

$viewPath=‘email’;

$type=‘html’;

$viewName=‘registration’;

$view = new View($this);

$view->layout=$this->layout;

$content=$view->element($viewPath.DS.$type.DS.$viewName,

array(‘name’ => “John Smith”), true);

$htmlBody= $view->renderLayout($content);

$message->setBody($htmlBody,‘text/html’);

$attachment = Swift_Attachment::fromPath(

430

‘/home/wrox/public_html/symfony/web/attachments/
subscription_pack.zip’,

‘application/zip’);

$message->attach($attachment);

$mailer->send($message);

}

}

?>

code snippet /swiftmailer/cakephp/app/controllers/

registration_controller.php

Note that you also need to create proper template files and
attachments to make this example runnable.

Zend Framework

Using SwiftMailer in Zend Framework is done the same
way as in CakePHP. You need to unpack SwiftMailer into
your project's /library path. Your directory structure
should look as follows:

library/swiftmailer/

CHANGES

lib/

classes/

dependency_maps/

mime_types.php

431

preferences.php

swift_init.php

swift_required_pear.php

swift_required.php

tests/

test-suite/

LICENSE

README

VERSION

You can now add the SwiftMailer library:

<?php

require_once(‘swiftmailer/lib/swift_required.php’);

class RegistrationController extends Zend_Controller_Action {

}

Sending Simple E-mail

The rest of the code within the controller is almost the
same as in Symfony and CakePHP.

$mailer = Swift_Mailer::newInstance($transport);

$message = Swift_Message::newInstance();

$message->setSubject(‘swiftExample’);

$message->setFrom(‘wroxexample@gmail.com’);

$message->setTo(‘example@wroxexample.com’);

432

$message->setBody(“Hello World”,‘text/plain’);

$mailer->send($message);

The only difference, explained in the following section, is
in getting the view template because it depends on the
framework's architecture and libraries.

Sending HTML E-mail

To get a template and send it as an HTML e-mail, you
need to use Zend_View class.

$view = new Zend_View();

$view->addScriptPath(APPLICATION_PATH . ‘/application/views/scripts/
email/’);

$view->assign(‘name’,‘John Smith’);

$htmlBody = $view ->render(registration.phtml’);

$mail->setBody($htmlBody,‘text/html’);

Your template should be saved as /application/
views/scripts/email/registration.phtml and can
look as follows:

Hello World!

<?php echo $this->name; ?>

Note that the APPLICATION_PATH variable is defined in
/application/public/index.php.

<?php

defined(‘APPLICATION_PATH’)

433

|| define(‘APPLICATION_PATH’, realpath(dirname(__FILE__) . ‘/../
application’));

All in One

Your merged efforts will result in following code.

<?php

require_once(‘swiftmailer/lib/swift_required.php’);

class RegistrationController extends Zend_Controller_Action {

function send() {

$transport =
Swift_SmtpTransport::newInstance(‘smtp.gmail.com’, 465, ‘ssl’)

->setUsername(‘wroxexample@gmail.com’)

->setPassword(‘wroxexample123’);

$mailer = Swift_Mailer::newInstance($transport);

$message = Swift_Message::newInstance();

$message->setSubject(‘swiftExample’);

$message->setFrom(‘wroxexample@gmail.com’);

$message->setTo(‘example@wroxexample.com’);

$message->setCc(array(

‘admin@wroxexample.com’ => ‘John Kowalski’,

));

434

$view = new Zend_View();

$view->addScriptPath(APPLICATION_PATH .

‘/application/views/scripts/email/’);

$view->assign(‘name’,‘John Smith’);

$htmlBody = $view ->render(registration.phtml’);

$message->setBody($htmlBody,‘text/html’);

$attachment = Swift_Attachment::fromPath(

‘/home/wrox/public_html/symfony/web/attachments/
subscription_pack.zip’,

‘application/zip’);

$message->attach($attachment);

$mailer->send($message);

}

}

?>

code snippet /swiftmailer/zf/application/controllers/

RegistrationController.php

CakePHP's Mailing Component

CakePHP delivers within itself a ready-for-use mailing
component. You can find it in the /cake/libs/
controller/components directory. The component
filename is very meaningful because it's called
email.php. You can check it for default variables like the
following:

435

var $replyTo = null;

You can change this variable if there is an address that is
usually used.

To add this component to a controller to work with, you
need to add the component name to the $components
variable. Let's create an exemplary controller
(MailController) with one method: sendEmail().
Your code should look like the following:

<?php

class MailController extends AppController {

var $components = array(‘Email’);

var $uses = ‘’;

function sendEmail() {

}

}

The bold line demonstrates how you can add components
in CakePHP. Assume that the sendEmail() action is
invoked every time when you want to send an e-mail with
a fixed content. You can modify it to make the content
dynamic, but to simplify the problem we will use fixed
values such as subject, message, and so on.

Sending Simple E-mail

To begin this example, we want to send a simple e-mail
with “Hello World!” as the message. You can do it by
accessing the Email component's methods and variables

436

through $this->Email. The code that sends a plain text
e-mail should look like the following:

$this->Email->to = ‘john.smith@localhost’;

$this->Email->subject = ‘Just want to say Hi’;

$this->Email->replyTo = ‘noreply@wrox.com’;

$this->Email->from = ‘Example <noreply@wrox.com>’;

$this->Email->send(‘Hello World!’);

This piece of code sends an e-mail. The parameter given to
the send() method is the body of the message. It's useful
only when we want to send short messages, but what if we
want to do more? We can define a variable where we can
hold a bigger message. In CakePHP, there is also a
different approach available. We can use layouts to send
messages, which is an advantage of CakePHP. This feature
facilitates working with e-mail because you can work only
with code and then someone else prepares the e-mail
layouts. To make it possible, we need to create an /email
directory in the view's /layouts directory. We should
also separate plain text and HTML layout directories, so
the default text layout path will be /views/layouts/
email/text/default.ctp. To make it possible to
assign a layout as the message of an e-mail, you need to
assign it as a template. You can do it with the following
line:

$this->Email->template = ‘default’;

The content of default.ctp could be as follows:

Hello World!

437

Note that you don't add the .ctp extension to the template
name. The line adding the template needs to be placed
before the send() method is invoked. As mentioned
before, we can send an e-mail in multiple formats. To
mark a concrete format, we need to assign it to the sendAs
variable like this:

$this->Email->sendAs = ‘text’;

As the default value, text is used here. So the prepared
e-mail will be sent as a text with message defined within
the detault.ctp file. Note that if you set a template to be
the message within the Email object, you don't need to set
it as a parameter of the send() method.

Sending HTML E-mail

Usually you want to produce HTML-formatted e-mail
because they look much better and almost all e-mail clients
(web or standalone applications) can interpret them. The
CakePHP mailer component supports HTML e-mail. As
with plain text e-mail, we need to create a template layout.
This time, you need to place default.ctp in the
/views/layouts/email/html/ directory. Also in this
case you need to point to the template that should be used.

$this->Email->template = ‘default’;

Note that you can create more than one template and
assign only the one that is now needed.

To have this e-mail sent as HTML, we need to assign the
proper mail format:

438

$this->Email->sendAs = ‘html’;

Because sometimes only one format can be interpreted by
an e-mail client, we can send e-mail in both formats, so in
worst case the client can read plain text. When you send
both formats, the client can skip one of them and read the
preferred one. To send both formats you need to set both
values as below:

$this->Email->sendAs = ‘both’;

You will use mailing probably more often with dynamic
data than with static data. To use information generated
with templates, you need to use the set() method to
assign some data to a variable, which is next sent to the
template. An example of this may be the following:

$this->set(‘name’, ‘John Smith’);

And now your template can look like this:

<p>Hello World!</p>

Regards,

<?php echo $name; ?>

Using e-mail templates allows you to separate the
presentation layer from the core mailing and thus maintain
an organized structure of business logic. You can create
generic messages and store all mailing code in one place,
conforming to the DRY principle.

Adding Attachments

439

Adding attachments in the CakePHP e-mail component
can be a little annoying. You first need to set the path or
paths where attachments are placed. Next, the filename of
the attachment or multiple attachments needs to be given.
Example code could look like this:

$this->Email->filePaths=array(getcwd().‘/’);

$this->Email->attachments = array(‘foo.doc’);

Note that this approach makes it impossible to include an
attachment directly from a database, so it must have been
saved previously and accessible by a file system path. In
the preceding code, we added the getcwd() method,
which returns the current path for the attachments. You
may need to change it to your path for the attachments.

Carbon Copy

There are two ways to add a copy of a message for
someone else: through carbon copy (CC) or blind carbon
copy (BCC). The difference between them is the visibility.
When you use CC, the copy receiver is visible to the
original recipient. Addresses from the BCC list are not
visible to the recipient nor to anyone else who is copied on
the message. In CakePHP's mailer, you can use these
copies this way:

$this->Email->cc=array(‘foo@bar.com’);

$this->Email->bcc=array(‘’foo@bar.com’);

You can add more than one e-mail in CC and/or BCC
arrays.

440

Remote SMTP Servers

As described earlier in this chapter, in many cases we need
to use a remote SMTP server to send e-mail. You need to
provide a username and password with which you sign in.
A hostname and SMTP port number are also required. An
unsecure SMTP server port number is set by default to 25.
In CakePHP, you need to set all these parameters as
smtpOptions in the following way:

$this->Email->smtpOptions = array(

‘port’=>‘25’,

‘timeout’=>‘30’,

‘host’ => ‘smtp.wroxexample.com’,

‘username’=>‘john.smith@wroxexample.com’,

‘password’=>‘secretPassword123’

);

$this->Email->delivery = ‘smtp’;

$this->Email->send();

Additionally you need to change the delivery mode to
smtp because by default it's set to mail. Note that
everything, including SMTP options, need to be set before
Email's send() method is used. If you have some
problems with this option, you can check smtpError
where all errors are stored. You can access this variable as
follows:

$this->Email->smtpError;

441

Remember that unlike previous variables, you should use it
after the send() method is invoked.

Secure Connections

In most cases, you should use secure connections. For a
secure SMTP connection through SSL/TLS, port 465 is
reserved. A secure connection in CakePHP's e-mail
component looks like this:

$this->Email->smtpOptions = array(

‘port’=>‘465’,

‘timeout’=>‘30’,

‘host’ => ‘ssl://smtp.gmail.com’,

‘username’=>‘wroxexample@gmail.com’,

‘password’=>‘secretPassword123’,

);

In this example, Gmail's SMTP server was used.

All in One

To summarize, a full example is presented below. Assume
that your attachment is placed in /home/wrox/
public_html/cake/app/webroot/attachments/
schedule.doc. Additionally, you need to create two
e-mail templates that should be placed in /home/wrox/
public_html/cake/app/ views/layouts/email/
html/schedule.ctp and /home/wrox/public_html/
cake/app/views/layouts/email/text/
schedule.ctp. In Windows, equivalent paths to

442

attachment and e-mail templates would be C: xampp
htdocs cake app webroot attachments
schedule.doc, C: xampp htdocs cake app views
layouts email html schedule.ctp and C: xampp
htdocs cake app views layouts email text
schedule.ctp.

<?php

class MailController extends AppController {

var $components = array(‘Email’);

var $uses = ‘’;

function sendEmail() {

$this->Email->to = ‘john.smith@localhost’;

$this->Email->subject = ‘Schedule’;

$this->Email->replyTo = ‘hr@wroxexample.com’;

$this->Email->from = ‘Example <noreply@wroxexample.com>’;

$this->Email->filePaths =

array(‘/home/wrox/public_html/cake/app/webroot/attachments/’);

$this->Email->attachments = array(‘schedule.doc’);

$this->Email->cc=array(‘pm@wroxexample.com’);

$this->Email->template = ‘schedule’;

443

$this->Email->sendAs = ‘both’;

$this->Email->smtpOptions = array(

‘port’=>‘465’,

‘timeout’=>‘30’,

‘host’ => ‘ssl://smtp.wroxexample.com’,

‘username’=>‘mailing-list@wroxexample.com’,

‘password’=>‘secretPassword123’,

);

$this->Email->send();

}

}

code snippet /cakeMailer/cakephp/app/controllers/

mail_controller.php

Such a prepared mailer will work if you change SMTP
options to those that are relevant to you. If you want to
send e-mail one by one, you should use the reset()
method.

$this->Email->send();

This method resets all variables to default values, which
can prevent mistakes.

Zend Mailer

Zend mailer is located in C: xampp php Zend Mail.php
or /usr/share/php/Zend/Mail.php under UNIX. You

444

can view all methods and variables at
http://framework.zend.com/apidoc/1.10/Zend_Mail/
Zend_Mail.html. An example controller could be like this:

<?php

class MailingController extends Zend_Controller_Action {

public function sendMail() {

}

}

?>

The sendMail() method in our example is invoked when
you want to send an e-mail.

Sending Simple E-mail

To send a simple e-mail, you need to fill in the
sendMail() method with the following code:

$mail = new Zend_Mail();

$mail->setBodyText(‘Hello World!’);

$mail->setFrom(‘noreply@wrox.com’, ‘Example’);

$mail->addTo(john.smith@localhost‘, ‘John Smith’);

$mail->setSubject(‘Just want to say Hi’);

$mail->send();

This code gives almost the same result as in CakePHP's
mailer component. The only difference between these two
solutions is that in Cake you assigned data through

445

variables, whereas in Zend you use methods to complete
all mail information.

Sending HTML E-mail

Zend's approach is not as comfortable as CakePHP's. You
cannot use e-mail templates as easily as in CakePHP.
Usually you will also need another method for sending an
HTML-formatted e-mail:

$mail = new Zend_Mail();

$mail->setBodyText(‘Hello World!’);

$mail->setBodyHtml(‘<div class=”text-weight: bold;”>Hello World!</div>’);

$mail->setFrom(‘noreply@wrox.com’, ‘Example’);

$mail->addTo(john.smith@localhost‘, ‘John Smith’);

$mail->setSubject(‘Just want to say Hi’);

$mail->send();

But not-so-easy doesn't equal impossible. Assigning a
proper view template content to a variable can be done by
using Zend_View.

$htmlTemplate = new Zend_View();

$htmlTemplate->addScriptPath(APPLICATION_PATH.‘/views/scripts/email/
’);

$htmlTemplate->assign(‘name’,‘Administrator’);

$html_body = $htmlTemplate ->render(‘test.phtml’);

After adding the rest of the mailing code, your code should
be as follows:

446

$view = new Zend_View();

$view->addScriptPath(APPLICATION_PATH . ‘/application/views/scripts/
email/’);

$view->assign(‘name’,‘John Smith’);

$htmlBody = $view ->render(email.phtml’);

$mail = new Zend_Mail();

$mail->setBodyHtml($htmlBody);

$mail->setFrom(‘wroxexample@gmail.co’, ‘Example’);

$mail->addTo(‘kprzystalski@gmail.com’, ‘Karol’);

$mail->setSubject(‘Just want to say Hi’);

$mail->send();

You should also create a view template that should be
saved as email.phtml in the /application/views/
scripts/email/ directory.

<p>Hello World!</p>

Regards,

<?php echo $name; ?>

Adding Attachments

The easiest way to attach a file within a mail with
Zend_Mail is to get the file content and send it as the
parameter to the Zend_Mail createAttachment()
method. To get the content from any file, you can use the
PHP file_get_contents() function.

$fileContents = file_get_contents(‘schedule.doc’);

447

Because you get only the content of the file, you should
also set the filename that will be shown. You can also
provide a file type.

$mail = new Zend_Mail();

$mail->setBodyText(‘Hello World!’);

$mail->setFrom(‘noreply@wrox.com’, ‘Example’);

$mail->addTo(john.smith@localhost‘, ‘John Smith’);

$mail->setSubject(‘Just want to say Hi’);

$fileContents = file_get_contents(‘schedule.doc’);

$attachment = $mail->createAttachment($fileContents);

$attachment->filename=‘schedule.doc’;

$attachment->type=‘application/msword’;

$mail->send();

Carbon Copy

Adding more recipients is as easy as in CakePHP's mailing
component: Just use the addCc() or addBcc() methods.

$mail = new Zend_Mail();

$mail->setBodyText(‘Hello World!’);

$mail->setFrom(‘noreply@wrox.com’, ‘Example’);

$mail->addTo(john.smith@localhost‘, ‘John Smith’);

$mail->setSubject(‘Just want to say Hi’);

$mail->addCc(‘john@wroxexample.com’, ‘John Smith’);

$mail->addBcc(‘topsecret@wroxexample.com’, ‘Top Secret Recipient’);

448

$mail->send();

You can add more than one recipient in CC/BCC by
invoking the addCc() or addBcc() method again. This is
a good approach when getting e-mail from a database in an
iterative way.

Remote SMTP Servers

You will probably send e-mail through remote servers. In
Zend_Mail you need to define an array for configuration
with expected keys: auth, username, and password. This
array should be sent as the second parameter when
initializing a Zend_Mail_Transport_Smtp object
instance. The auth key can be set to plain, login, or
crammd5. If you want to send an e-mail through a remote
server, you should use login.

$config = array(‘auth’ => ‘login’,

‘username’ => ‘username’,

‘password’ => ‘password’);

$transport =
new Zend_Mail_Transport_Smtp(‘mail.wroxexample.com’, $config);

$mail = new Zend_Mail();

$mail->setBodyText(“Hello World!”);

$mail->setFrom(‘wroxexample@gmail.co’, ‘Example’);

$mail->addTo(‘kprzystalski@gmail.com’, ‘Karol’);

$mail->setSubject(‘Just want to say Hi’);

$mail->send($transport);

449

The Zend_Mail_Transport_Smtp configuration should
be set as the parameter for the send() method if you want
to use these configuration entries for sending an e-mail.

Secure Connection

To secure the connection between your application and an
SMTP server, you need to set two additional configuration
entries: ssl and port. The port option is not really a
security configuration entry, but remote servers usually use
a different port number for secured SMTP connections.

<?php

$config = array(‘auth’ => ‘login’,

‘username’ => ‘wroxexample@gmail.com’,

‘password’ => ‘wroxexample123’,

‘ssl’ => ‘ssl’,

‘port’ => 465);

$transport = new Zend_Mail_Transport_Smtp(‘smtp.gmail.com’, $config);

$mail = new Zend_Mail();

$mail->setBodyHtml(“Hello World!”);

$mail->setFrom(‘wroxexample@gmail.co’, ‘Example’);

$mail->addTo(‘kprzystalski@gmail.com’, ‘Karol’);

$mail->setSubject(‘Just want to say Hi’);

$mail->send($transport);

All in One

450

Merging all the examples shown previously, you will get
the following piece of code. It should be saved as
MailingController.php in the /application/
controllers/ directory.

<?php

class MailingController extends Zend_Controller_Action {

public function sendAction() {

$config = array(‘auth’ => ‘login’,

‘username’ => ‘wroxexample@gmail.com’,

‘password’ => ‘wroxexample123’,

‘ssl’ => ‘ssl’,

‘port’ => 465);

$transport =
new Zend_Mail_Transport_Smtp(‘smtp.gmail.com’, $config);

$htmlTemplate = new Zend_View();

$htmlTemplate->addScriptPath(ROOT_DIR .

‘/application/views/scripts/templates/’);

$htmlTemplate->assign(‘name’,‘Administrator’);

$html_body = $htmlTemplate ->render(htmlEmailExample.phtml’);

$mail = new Zend_Mail();

451

$mail->setBodyHtml($html_body);

$mail->setFrom(‘sender@test.com’, ‘Some Sender’);

$mail->addTo(‘recipient@test.com’, ‘Some Recipient’);

$mail->addCc(‘someone@example.com’, ‘Someone Else’);

$mail->addBcc(‘topsecret@example.com’, ‘Top Secret Recipient’);

$fileContents = file_get_contents(‘schedule.doc’);

$attachment = $mail->createAttachment($fileContents);

$attachment->filename=‘schedule.doc’;

$attachment->type=‘application/msword’;

$mail->addAttachment($attachment);

$mail->setSubject(‘TestSubject’);

$mail->send($transport);

}

}

code snippet /zendMailer/zf/application/controllers/

MailingController.php

PHPMailer

PHPMailer (see Figure 6.8) is not included in any of the
frameworks presented in this chapter. However it is fairly
popular and you may wish to add it as a separate mailer
application, as in CakePHP and Zend Framework, or as a
Symfony plug-in. You can find more about PHPMailer at
http://phpmailer.worxware.com. As you can see, there are
also a few add-ons available for PHPMailer on this page

452

(PHPMailer-FE, PHPMailer-ML, PHPMailer-BMH).
Additionally, you can also get support for PHPMailer from
its founder: Worx International (not to be confused with
Wrox Press, of course).

Figure 6.8 PHPMailer logo

Symfony

Symfony doesn't support PHPMailer since version 1.2.
There was a plan to include PHPMailer as a part of
Symfony 2.0, but SwiftMailer won this battle and it's still a
part of Symfony. If you want to check how PHPMailer
works with Symfony, you can try earlier versions of
Symfony (1.2 and earlier) and install PHPMailer as a
plug-in using the following command:

$ symfony plugin:install sfPHPMailerPlugin

If you really need to use PHPMailer, it's also possible to
use PHPMailer in Symfony in a different way, similar to
the way it's used in CakePHP, but you will break the
strategy of adding add-ons in Symfony then. Anyway, we
don't recommend this option. You should rather consider a
different mailer to use with Symfony.

CakePHP

Unfortunately, CakePHP bases this installation on its
individual components. But as in case of SwiftMailer, you

453

can still use PHPMailer. To download PHPMailer, go to
http://sourceforge.net/projects/phpmailer/files/
phpmailer%20for%20php5_6/. Probably you have noticed
that there are more versions available, including a Lite
version, but we will describe in this chapter only the most
popular PHPMailer for PHP5/6. To integrate PHPMailer
with CakePHP, you need to unpack the proper PHPMailer
package to the CakePHP application's /vendors
directory. After unpacking, your directory structure should
look like this:

app/vendors/phpmailer/

docs/

examples/

language/

test/

LICENSE

README

aboutus.html

changelog.txt

class.phpmailer.php

class.pop3.php

class.smtp.php

All in One

The individual code snippets demonstrating PHPMailer are
discussed in the Zend Framework section. For CakePHP

454

developers, there is a merged example presented below
and the discussion in the Zend Framework section applies
to this example as well. Almost all PHPMailer code used
in CakePHP example is the same as in Zend Framework.

<?php

App::import(‘Vendor’, ‘PHPMailer’, array(‘file’ =>

‘phpmailer’.DS.‘class.phpmailer.php’));

class MailController extends AppController {

var $uses = ‘’;

function sendEmail() {

$mail = new PHPMailer();

$mail->IsSMTP();

$mail->SMTPAuth = true;

$mail->SMTPSecure = ‘ssl’;

$mail->Host = ‘smtp.gmail.com’;

$mail->Port = 465;

$mail->Username = “wroxexample@gmail.com”;

$mail->Password = “wroxexample123”;

$mail->SetFrom(“wroxexample@gmail.com”, “PHPMailer Wrox Example”);

$mail->Subject = “PHPMailer example”;

455

$mail->AddAddress(“kprzystalski@gmail.com”);

$viewPath=‘email’;

$type=‘html’;

$viewName=‘registration’;

$view = new View($this);

$view->layout=$this->layout;

$content=$view->element($viewPath.DS.$type.DS.$viewName,

array(‘name’ => “John Smith”), true);

$htmlBody= $view->renderLayout($content);

$mail->MsgHTML($htmlBody);

$mail->Send();

}

}

code snippet /phpMailer/cakephp/app/controllers/

registration_controller.php

As you did with SwiftMailer, you need to include the
PHPMailer libraries using the import() method. Note
that you also need to use the View class to create e-mail
contents using templates.

Zend Framework

In Zend Framework, after unpacking PHPMailer, your
directory structure should be as follows:

library/phpmailer/

456

docs/

examples/

language/

test/

LICENSE

README

aboutus.html

changelog.txt

class.phpmailer.php

class.pop3.php

class.smtp.php

The file highlighted with bold in the preceding code is one
you need to include (as shown in the following code), as is
the case with every other add-on.

<?php

require_once(‘phpmailer/class.phpmailer.php’);

class RegistrationController extends Zend_Controller_Action {

function send() {

}

}

Sending Simple E-mail

457

To send an e-mail with PHPMailer, you need to create an
instance of PHPMailer and set some commonly known
attributes.

$mail = new PHPMailer();

$mail->SetFrom(“boss@wroxexample”, “Boss”);

$mail->Subject = “PHPMailer example”;

$mail->Body = “Hello World!”;

$mail->AddAddress(“john@wroxexample.com”);

$mail->Send();

Sending HTML E-mail

HTML e-mail can be sent using the MsgHTML() method.
PHPMailer has a nice attribute, AltBody, which allows
you to set a message that is shown when recipient can't
receive HTML e-mail. Getting templates is done in the
same way as in SwiftMailer.

$mail = new PHPMailer();

$mail->SetFrom(“boss@wroxexample”, “Boss”);

$mail->Subject = “Wrox example”;

$htmlTemplate = new Zend_View();

$htmlTemplate->addScriptPath(APPLICATION_PATH.‘/views/scripts/email/
’);

$htmlTemplate->assign(‘name’,‘Foo Bar’);

$htmlBody = $htmlTemplate ->render(‘registration.phtml’);

$mail->AltBody=”To view the message, use an HTML compatible e-mail viewer!”;

458

$mail->MsgHTML($htmlBody);

$mail->AddAddress(“john@wroxexample.com”);

$mail->Send();

Adding Attachments

PHPMailer has options very similar to the CakePHP
mailing component. You can attach a file using its file
system path.

$mail = new PHPMailer();

$mail->SetFrom(“boss@wroxexample”, “Boss”);

$mail->Subject = “PHPMailer example”;

$mail->MsgHTML(“Hello World!”);

$mail->AddAddress(“john@wroxexample.com”);

$mail->AddAttachment(“attachments/schedule.doc”);

$mail->AddAttachment(“attachments/fnf84y534thb38h53.doc”,”plan.doc”);

$mail->Send();

Additionally, you can set the name of the attachment that
will be shown to the recipient.

Carbon Copy

This solution delivers three methods with which we can set
the reply address, add additional recipients, and add hidden
recipients: AddReplyTo(), AddCC(), and AddBCC().

$mail = new PHPMailer();

$mail->SetFrom(“boss@wroxexample”, “Boss”);

459

$mail->Subject = “PHPMailer example”;

$mail->MsgHTML(“Hello World!”);

$mail->AddAddress(“john@wroxexample.com”);

$mail->AddReplyTo(“pm@wroxexample.com”,”PM”);

$mail->AddCC(“john.smith@wroxexample.com,”John Smith”);

$mail->AddBCC(“foo.bar@wroxexample.com”, “foo bar”);

$mail->Send();

Remote SMTP Servers

To connect to a remote SMTP server, you need to express
it directly by invoking the isSMTP() method. Additionally
you need to set all commonly needed attributes such as
host name, port number, username, and password.
PHPMailer also has additional functionalities dedicated to
specific mail servers such as Qmail, Sendmail, or Gmail.

$mail = new PHPMailer();

$mail->IsSMTP();

$mail->SMTPAuth = true;

$mail->Host = ‘smtp.wroxexample.com’;

$mail->Port = 25;

$mail->Username = “admin@wroxexample.com”;

$mail->Password = “wroxexample123”;

$mail->SetFrom(“admin@wroxexample.com”, “Admin”);

$mail->Subject =”PHPMailer example”;

$mail->Body =”Hello World!”;

460

$mail->AddAddress(“john@wroxexample.com”);

$mail->Send();

Secure Connection

For a secure connection you need only to set the
SMTPSecure attribute to ssl and change the port to a
secured one.

$mail = new PHPMailer();

$mail->IsSMTP();

$mail->SMTPAuth = true;

$mail->SMTPSecure = ‘ssl’;

$mail->Host = ‘smtp.gmail.com’;

$mail->Port = 465;

$mail->Username = “wroxexample@gmail.com”;

$mail->Password = “wroxexample123”;

$mail->SetFrom(“wroxexample@gmail.com”, “Admin”);

$mail->Subject = “PHPMailer example”;

$mail->Body = “Hello World!”;

$mail->AddAddress(“john@wroxexample.com”);

$mail->Send();

All in One

Your merged code should be as shown here.

461

<?php

require_once(‘phpmailer/class.phpmailer.php’);

class RegistrationController extends Zend_Controller_Action {

function send() {

$mail = new PHPMailer();

$mail->IsSMTP();

$mail->SMTPAuth = true;

$mail->SMTPSecure = ‘ssl’;

$mail->Host = ‘smtp.gmail.com’;

$mail->Port = 465;

$mail->Username = “wroxexample@gmail.com”;

$mail->Password = “wroxexample123”;

$mail->SetFrom(“wroxexample@gmail.com”, “PHPMailer Wrox Example”);

$mail->Subject = “PHPMailer example”;

$mail->AddAddress(“kprzystalski@gmail.com”));

$htmlTemplate = new Zend_View();

$htmlTemplate->addScriptPath(APPLICATION_PATH.‘/views/scripts/
email/’);

$htmlTemplate->assign(‘name’,‘Foo Bar’);

$htmlBody = $htmlTemplate ->render(‘registration.phtml’);

462

$mail->MsgHTML($htmlBody);

$mail->Send();

}

}

code snippet /phpMailer/zf/application/controllers/

RegistrationController.php

463

Chapter 7

Searching

If you type “Google” into Google, you can break the
Internet. So please, no one try it, even for a joke. It's not a
laughing matter. You can break the Internet!

—Jen, The IT Crowd

What's In This Chapter?

• Introducing full-text searching and indexing.

• Sphinx searching engine with Symfony.

• Apache Lucene with Zend Framework.

• Google Custom Search with CakePHP.

With the advent of Web 2.0, web content was no longer
generated solely by webmasters and dedicated editors, but
by communities of end users themselves. One side effect
of this transformation was a huge increase in web content
that needs to be stored and occasionally searched.

In this chapter, we are going to show you how to integrate
search engines with the frameworks. There are many
search engines on the market, but we chose only three
because of their usefulness, efficiency, and popularity; we
also discuss important differences between them. The
engines we describe are Lucene, Sphinx, and the Google
API. Apache Lucene is a popular, Java-based, open-source
engine that has spawned several successful subprojects.
Sphinx was written in C++ by a sole dedicated software

464

engineer with top performance and scalability in mind. The
Google AJAX Search API allows you to easily embed web
search capability into your website. It is unfortunately not
open-source, but it is so cool we couldn't ignore it.

Problem

When you have a small database of a few thousand records
and you need to run a query as rarely as once a minute, the
search method doesn't really matter. You may use the SQL
WHERE clause and built-in database mechanisms then.
But when the query count increases, you simply cannot
afford to run each search separately. You need to look for
a more advanced mechanism.

Matters further complicate when you want to broaden your
results to synonyms of your search phrase. You may
expect that if somebody looks for guns he would be
interested in firearms, too. However, the situation gets
really messed up if you decide that searching should be
intelligent and filter out irrelevant hits like Guns N'
Roses. Of course that's messed up unless you integrate
your application with a search engine. If you do,
everything gets much simpler.

Full Text Searching

There is a good chance that you have used Google, Yahoo,
or another web search engine. You were using full-text
searching then. The web search engines are the most
prominent examples of search engines, but there are also
other solutions, especially those called enterprise search
engines used for applications' internal resources. The only

465

difference is that they do not crawl the Internet to get the
content, but instead they search and index databases or
files filled with content written by web app users. The type
of data source is not that important as long as you have full
access to it.

The problem with full-text searching is that you want to
quickly get a large number of relevant results. It is hard to
achieve that goal, and relevance seems to decrease as the
number of results increases. To quantify these results, two
important notions were defined:

• Recall—The ratio of the quantity of returned relevant results
to the quantity of all relevant items. In other words, it is the
ratio of those items that you intended to hit and actually did
to all items that you wanted to hit.

• Precision—The ratio of the quantity of returned relevant
results to the quantity of all returned results, including
irrelevant ones. In other words, it is the ratio of those items
you wanted to hit and did to all items you hit whether you
wanted them or not.

These notions are illustrated in Figure 7.1. Recall is
increased when relevant items are returned, and precision
is increased mainly if irrelevant items are not returned (but
also by increasing recall). The density of dots roughly
represents the fact that most items are not relevant and stay
within the database.

Figure 7.1 Precision and recall

466

Indexing

As you probably expect, naive scanning of all data looking
for exact matches is the worst option possible. If you look
for “how to feed cats”, this process compares this
exact phrase with the beginning of every string in the
database, moves one letter forward, compares it again, and
so on. If 100 users look for “how to feed cats”, the
process is repeated from scratch. Moreover, such an exact
phrase search cannot hit a sentence like “The favorite
food of my cat is raw fish”, which seems quite a
relevant answer.

There are many indexing algorithms, but the thing they all
have in common is that they initially analyze the database
to decrease the work that needs to be done later, possibly
increasing the recall of search. The index itself needs to be
stored, but it is usually not much bigger than a few
thousand commonly used words, so it is a little tradeoff for
its effectiveness. Some common steps done during
indexing include the following:

467

• Tokenization—Continuous strings need to be segmented
into individual words, called tokens. In most Western
languages, words are clearly separated by spaces, but even
then some problems may occur. For example, in English,
“killer whale” is the same as “orca”, but when indexed
as separate words may lead to “whale killers”, meaning
“whalers”. Proper tokenization of the German language
may be even more difficult, as it tends to dynamically create
compound words such as “Tempolimit”, which is “speed
limit”. Eastern languages are even less clearly
whitespace-delineated, which makes tokenization
challenging.

• Stop words—Some words are themselves meaningless,
extremely common, or otherwise unwanted, and you want
them filtered out from the index. Some common stop words
are “the”, “it”, “how”, “to”, or “however”.

• Stemming—Many words may be derived from a common
stem. For example, “painting”, “painted”, “paints”,
and “painter” have a common stem “paint” and can be
stored as one concept word under one index. This can
dramatically improve recall, but at the cost of precision. A
more sophisticated form of stemming is lemmatization. The
word is first identified as a part of speech (e.g., a noun), and
then an appropriate rule is used to find the stem. This allows
better precision as the word “painting” may be either a
noun, like “Caravaggio's painting”, or a verb, like
“Mary likes painting”.

• Entity extraction—Some phrases in text can be identified
as named entities and stored under their own indexes. This
may include places like “Great Barrier Reef”,
organizations like “Free Software Foundation”,
currencies, dates recognized from multiple formats, or
others.

• Experimental methods—There is still much that can be
done to improve general indexing algorithms and even more
regarding language-specific indexing algorithms. There are
some interesting methods introducing human-like fuzziness,
like those indexing the phonetic sound of words. Some other

468

systems try to match synonyms of various words to index
pure concepts that can be expressed using several different
words. Sometimes even semantic webs are constructed that
allow the calculation of conceptual distance between
particular words.

As you can see, this is quite a complex issue, perhaps more
related to linguistics than information technology or
computer science in general. Fortunately you do not have
to go deep and you can focus on application development
instead as each of the search engines discussed in this
chapter provides its own indexing methods.

Search Query

When users enter a search query, some magic can be done
by the search engine. There are some well-known
techniques for increasing the quality of returned hits:

• Boolean operators—Queries can be more precise when you
are able to specify that you want only results with all queried
words or exclude results with some unwanted words.

• Wildcards—Special characters that may substitute any other
character or an indefinite amount of other characters.

• Regular expressions—The preceding methods can be
further refined to create a full syntax that allows for
matching a word/character pattern with indexed items.

• Fuzzy search—If fuzziness was not introduced in the index
itself, you can do it during the search to improve the recall.

• Field match—If the data source is a database of known
structure, you can employ field-specific searching. For
example, you can search only Title fields or filter old
results using the Date_Created field.

Solutions

469

In web application development, three search engine
solutions are most commonly used: Sphinx, Lucene, and
the Google Custom Search API. Because this book is not a
never-ending story, we decided to integrate each search
engine with only one web framework. It's an exception
from the rule we've followed generally in this book that we
show how to do exactly the same thing for each of the
frameworks. The reason was to give every framework
full-text search capabilities, rather than integrate it with a
concrete search engine. Moreover, each search engine can
be integrated with each web framework, often with few
modifications. So after reading this, you should be able to
get all combinations working (for example, Sphinx with
CakePHP), even one that wasn't explained explicitly. We
believe it's better than showing three nearly identical
integrations.

Sphinx

Sphinx is a free search engine licensed under General
Public License version 2. It was developed by a Russian
software engineer, Andrew Aksyonoff. To get more
detailed information about Sphinx, go to
http://sphinxsearch.com. This section describes how to use
Sphinx within Symfony. Sphinx is also available as a
CakePHP plug-in or you can just use Sphinx's libraries to
integrate it with Zend Framework. The Sphinx logo is
shown in Figure 7.2.

Figure 7.2 Sphinx search engine logo

470

Installing Sphinx

Before you can use Sphinx inside your application, you
need to install it first. Sphinx is a stand-alone application
that is accessed rather than included by your web
applications. Therefore, before using any framework's
extension or enhancement, you need to install the engine
separately. For some systems (for example, Windows and
Ubuntu Linux), a binary version of Sphinx is available.

For Windows, the binaries are the default solution. You
can grab them from Sphinx's homepage. Under Linux
distributions, it is best to create binaries from the newest
sources to avoid version compatibility issues. To do that,
you first need to install some additional packages that are
needed for the building process:

apt-get install build-essential

When installation is complete, you can run the
configuration script to set up your Sphinx to work with a
chosen database engine, as it's done here:

./configure --with-mysql

make

make install

You need to edit the configuration file. On Linux, you can
find it at /etc/sphinxsearch/sphinx.conf or /usr/
local/etc/sphinx.conf, depending on the Sphinx

471

version. On Windows, choose the file called
sphinx-min.conf.in located in the main Sphinx
installation directory and make a copy for editing called
sphinx.conf. The reference manual recommends that
you install Sphinx at C: Sphinx, so we will follow this
convention.

The following code snippet shows how this configuration
file should look on Ubuntu Linux. You need to include a
named data source with an SQL query that gets data from a
database table. You also need to specify details for
connecting to this database. The second thing you need to
include is a named index. Set the data source as the source
of this index and provide a path to store it.

source wroxSrc {

type = mysql

sql_host = localhost

sql_user = foo

sql_pass = bar

sql_db = sphinx

sql_port = 3306

sql_query =

SELECT id, title, description

472

FROM news

sql_query_info = SELECT * FROM news WHERE id=$id

}

index wroxIndex {

source = wroxSrc

path = /home/wrox/sphinx/source/wroxSrc

docinfo = extern

charset_type = sbcs

}

indexer {

mem_limit = 32M

}

searchd {

port = 3312

log = /var/log/sphinxsearch/searchd.log

query_log = /var/log/sphinxsearch/query.log

read_timeout = 5

max_children = 30

pid_file = /var/run/searchd.pid

max_matches = 1000

seamless_rotate = 1

preopen_indexes = 0

unlink_old = 1

473

}

code snippet /sphinx/sphinx.conf

The next thing that needs to be done is adding the
directory, where executable files are stored, to the PATH
variable of your environment. This allows you to use
available Sphinx tools: indexer, indextool, search,
searchd, spelldump. On UNIX-like operating systems,
after you execute make install, the symlinks are
automatically added into /usr/bin/ or another directory
that was already included into the system's PATH
environment variable. On Windows you need to include
the C: Sphinx bin directory using dialog windows (refer
to Chapter 2).

Create the target folder for your index folder
(Linux—/home/wrox/sphinx/source; Windows—C:
Sphinx data) and an empty wroxSrc.spl file inside it.
As always, make sure the paths are valid for your
operating system. In the Windows configuration file, you
will see in some places, the @CONFDIR@ variable. It is a
placeholder and you must change these paths to correct
ones like C: Sphinx data wroxSrc.

Using the following tool, you can create the index (the
parameter is the name of the index created in the
configuration file):

$ indexer wroxIndex

It will consume the wroxSrc.spl file and create these
files in the /data directory:

474

wroxSrc.spa

wroxSrc.spd

wroxSrc.sph

wroxSrc.spi

wroxSrc.spl

wroxSrc.spm

wroxSrc.spp

Now, run the Sphinx daemon so your application can
access it to conduct search queries. It is a compiled C++
application, so it runs really fast. On Linux, you can run it
just like this:

/etc/init.d/sphinxsearch start

On Windows, you need to add it to Windows Services
first. It will be more convenient than starting it from the
console every time manually. Create another folder: /log,
in C: Sphinx. You need to run the console as
administrator. Find the cmd.exe executable (type cmd in
the Windows 7 start menu), right-click it, and choose the
shielded option. When you've got the admin console, run
the following command:

$ searchd --install --config C: Sphinx
sphinx.conf --servicename SphinxSearch

The console output should look like Figure 7.3 if
everything went well.

Figure 7.3 Installing Sphinx as a Windows Service

475

Now, when you go to Windows Services, you can start this
SphinxSearch daemon, as shown in Figure 7.4. Automatic
startup means that this service will be started on demand,
so you don't have to do it manually.

Figure 7.4 Sphinx daemon in the list of Windows Services

Symfony

In Symfony, there is a plug-in for almost everything,
including Sphinx. You can read more about it at

476

http://www.symfony-project.org/plugins/sfSphinxPlugin.
To install it through the command line, you need to type
the following command:

$ symfony plugin-install sfSphinxPlugin

Installing the Symfony plug-in gives you the possibility to
access the Sphinx daemon.

As shown in the following code, generate the mysearch
project that contains the frontend application and a nice
search module:

$ symfony generate:project mysearch

$ symfony generate:app frontend

$ symfony generate:module frontend search

Controller

Fill the controller file with the index action as in the
following code:

<?php

class searchActions extends sfActions {

public function executeIndex(sfWebRequest $request) {

477

$this->query = $this->getRequestParameter(‘search’);

$this->page = $this->getRequestParameter(‘p’, 1);

$options = array(

‘limit’ => 5,

‘offset’ => ($this->page - 1) * 5,

‘weights’ => array(100, 1),

‘sort’ => sfSphinxClient::SPH_SORT_EXTENDED,

‘sortby’ => ‘@weight DESC’,

);

if (!empty($this->query)) {

$this->sphinx = new sfSphinxClient($options);

$res = $this->sphinx->Query($this->query, ‘wroxIndex’);

$this->pager =

new sfSphinxDoctrinePager(‘News’, $options[‘limit’], $this->sphinx);

$this->pager->setPage($this->page);

$this->pager->init();

}

}

}

code snippet /sphinx/symfony/apps/frontend/modules/

search/actions/actions.class.php

This code requires some explanation. The first two
parameters are fetched from the web request: the query and

478

the page number. If no page number is present, it is set to
1. Then, an array of options is constructed, including
display count limit, offset in search result number, weights,
and sorting method. If the query is not empty, an instance
of sfSphinxClient is created and then used to execute
the query. Note that the second argument of the Query()
function is the name of the index created before. The next
line creates a Doctrine pager. There is also a pager for
Propel called sfSphinxPager. Set the page and run the
init() method that initializes the pager and results in
pagination.

Displaying Results

The next step is to create the search form. The following
snippets are segments of one template file,
sindexSuccess.php.

As shown in the following code, you should include the
Search helper because it will be helpful for displaying
data. Create a simple GET form with an input field and a
submit button:

<?php use_helper(‘Search’) ?>

What are you looking for?

<form action=”<?php echo url_for(‘/index.php/search’) ?>” method=”get”>

<input type=”text” name=”search” value=”<?php echo $query; ?>” />

479

<input type=”submit” name=”submit” value=”search” />

</form>

code snippet /sphinx/symfony/apps/frontend/modules/

search/template/indexSuccess.php

If the query is empty then, well, return and that's all:

<?php if (empty($query)): ?>

<?php return ?>

<?php endif ?>

code snippet /sphinx/symfony/apps/frontend/modules/

search/template/indexSuccess.php

If the query is not empty, handle it appropriately. The bold
section in the following code is important because it
displays in a loop all the titles and descriptions of the
results of this query. Moreover, the search result in these
texts gets highlighted.

<?php $res = $pager->getResults() ?>

480

<?php if (empty($res)): ?>

No result matches your query

<?php else: ?>

<?php if ($sphinx->getLastWarning()): ?>

Warning: <?php echo $sphinx->getLastWarning() ?>

<?php endif ?>

<ol start=”<?php echo $pager->getFirstIndice() ?>”>

<?php foreach ($res as $news): ?>

<?php echo link_to(highlight_search_result($news->getTitle(), $query),

‘news?id=’ . $news->getId()) ?>

<?php echo highlight_search_result($news->getDescription(), $query) ?>

<?php endforeach ?>

<?php endif ?>

code snippet /sphinx/symfony/apps/frontend/modules/

search/template/indexSuccess.php

Pagination

Now, prepare the pagination module. If there is enough
content to be paginated, the following code will split it into
pages and provide the well-known navigation links:

481

<?php if ($pager->haveToPaginate()): ?>

<?php echo link_to(‘«’, ‘index.php/search?q=’ . $query . ‘&p=’ .

$pager->getFirstPage()) ?>

<?php echo link_to(‘<’, ‘index.php/search?q=’ . $query . ‘&p=’ .

$pager->getPreviousPage()) ?>

<?php $pages = $pager->getLinks() ?>

<?php foreach ($pages as $page): ?>

<?php echo ($page == $pager->getPage()) ? $page : link_to($page,

‘index.php/search?q=’ . $query . ‘&p=’ . $page) ?>

<?php endforeach ?>

<?php echo link_to(‘>’, ‘index.php/search?q=’ . $query . ‘&p=’ .

$pager->getNextPage()) ?>

<?php echo link_to(‘»’, ‘index.php/search?q=’ . $query . ‘&p=’ .

$pager->getLastPage()) ?>

<?php endif ?>

code snippet /sphinx/symfony/apps/frontend/modules/

search/template/indexSuccess.php

The last thing you need to include in your template is the
number of matches found as the query result. It can be
achieved with the following line:

482

Sphinx search “<?php echo $query; ?>” found

<?php echo $pager->getNbResults(); ?> matches.

code snippet /sphinx/symfony/apps/frontend/modules/

search/template/indexSuccess.php

Testing

It would be nice to test the search engine on a data set,
wouldn't it? Well, that's what fixtures are for. Create a
fixturex.yml fixture file. It may be as simple as the one
following, but you are free to generate a really big file.
You can read more about fixtures and testing in Chapter
15.

news:

first:

title: first news

description: important news

second:

title: second news

483

description: important news

third:

title: third news

description: important news

fourth:

title: fourth news

description: important news

fifth:

title: fifth news

description: important news

sixth:

title: sixth news

description: important news

seventh:

title: seventh news

description: important news

code snippet /sphinx/symfony/data/fixtures/fixtures.yml

Load the data with following command. The database must
be configured before and contain a news table with id
(autoincremented INT), title (VARCHAR), and
description (VARCHAR too, but bigger) fields.

$ symfony doctrine:data-load

484

To see the output you've been waiting for (see Figure 7.5),
go to your browser, enter http://localhost/index.php/search
in the address bar (remember to configure the routing), and
then search for a phrase that can be found in the fixtures'
titles.

Figure 7.5 Output of the Sphinx search application in
Symfony (mouse pointer irrelevant)

If you need continuous indexing, you have to set Linux
cron or Windows Scheduler to systematically run the
indexer tool.

CakePHP and Zend Framework

Integrating Sphinx is nearly as easy and straightforward in
any other framework as it is in Symfony. When working
with CakePHP, it's best to use the SphinxClient class in
the model. In ZF, use it as an adapter. However, the
Symfony plug-in makes it even easier, which is why we
chose this combination in this chapter.

Lucene

485

Lucene was written originally by Dave Cutting, but now, it
is developed and supported by the Apache Software
Foundation. At first, it was Jakarta family Java software,
but it has been ported to many other programming
languages, including PHP. You can read more about
Lucene at its website: http://lucene.apache.org/java/docs/
index.html. The Lucerne logo is shown in Figure 7.6.

Figure 7.6 Apache Lucene search engine logo

Zend Framework

Using Lucene and Zend Framework together is not a big
deal because Lucene is already integrated with Zend
Framework by default. Zend_Search_Lucene included in
Zend Framework is one of the most successful ports of the
Apache Lucene project. You can read more about this
Zend component in the official documentation:
http://framework.zend.com/manual/en/
zend.search.lucene.html.

Creating an Index

Go to /application/controllers/IndexController.php and
create an indexing action that will be responsible for
generating the index. All indexed items in Zend Lucene
are instances of the Zend_Search_Lucene_Document
class. The following code creates the documents, fills them
with sample data, and adds them to the index:

486

public function indexingAction() {

$index = Zend_Search_Lucene::create(‘/home/wrox/public_html/lucene/’);

$doc = new Zend_Search_Lucene_Document();

$doc->addField(Zend_Search_Lucene_Field::Text(‘title’, ‘first news’));

$doc->addField(Zend_Search_Lucene_Field::Text(‘description’,‘hot news’));

$index->addDocument($doc);

$doc = new Zend_Search_Lucene_Document();

$doc->addField(Zend_Search_Lucene_Field::Text(‘title’, ‘second news’));

$doc->addField(Zend_Search_Lucene_Field::Text(‘description’,‘hot news’));

$index->addDocument($doc);

$doc = new Zend_Search_Lucene_Document();

$doc->addField(Zend_Search_Lucene_Field::Text(‘title’, ‘third news’));

$doc->addField(Zend_Search_Lucene_Field::Text(‘description’,‘hot news’));

$index->addDocument($doc);

$doc = new Zend_Search_Lucene_Document();

$doc->addField(Zend_Search_Lucene_Field::Text(‘title’, ‘fourth news’));

$doc->addField(Zend_Search_Lucene_Field::Text(‘description’,‘hot news’));

$index->addDocument($doc);

$doc = new Zend_Search_Lucene_Document();

487

$doc->addField(Zend_Search_Lucene_Field::Text(‘title’, ‘fifth news’));

$doc->addField(Zend_Search_Lucene_Field::Text(‘description’,‘hot news’));

$index->addDocument($doc);

$doc = new Zend_Search_Lucene_Document();

$doc->addField(Zend_Search_Lucene_Field::Text(‘title’, ‘sixth news’));

$doc->addField(Zend_Search_Lucene_Field::Text(‘description’,‘hot news’));

$index->addDocument($doc);

}

code snippet /lucene/zf/application/controllers/

IndexController.php

Create the associated view. It can be as simple as this one.

indexing..

code snippet /lucene/zf/application/views/scripts/index/

indexing.phtml

When you execute this action through your browser with
the following link: http://localhost/index.php/index/
indexing, you will see the simple view, as shown in Figure
7.7, and the index will be created in the background.

Figure 7.7 Creating the search index using a controller

488

This is a makeshift solution designed as an example
illustrating how to implement searching in Lucene. In a
production environment, you can't create a single
controller with hard-coded values to create an index.
Instead, the index should be updated when new data is
entered into or deleted from the database. We hope that it's
clear for you.

Searching

In the same IndexController.php, edit the
indexAction() as shown in the following code. The
searched query is retrieved using the
$this->_getParam() method with ‘search’ as the
argument.

if ($this->_getParam(‘search’) == “”) {

$searchQuery = “”;

}else {

$searchQuery =$this->_getParam(‘search’);

}

489

$this->view->search = $searchQuery;

$index = Zend_Search_Lucene::open(‘/home/username/lucene/’);

$this->view->results = $index->find($searchQuery);

code snippet /lucene/zf/application/controllers/

IndexController.php

The phrase is searched using the index created before, and
the results are returned to the view as the
$this->results variable.

Displaying Results

Create a view that allows you to enter the queries with a
form and displays the results at the same time. The
following code realizes these goals:

<form method=”get” action=”/index.php/index”>

Something missing?

<input type=”text” name=”search” value=”<?php echo $this->search; ?>” />

<input type=”submit” name=”submit” value=”search” />

</form>

<?php foreach ($this->results as $res): ?>

<?php echo $res->title.’ - ‘.$res->description; ?>

490

<?php endforeach; ?>

code snippet /lucene/zf/application/views/scripts/index/

index.phtml

Pagination

Pagination is only a little bit more complicated; you need
to use the Zend_Paginator library. All you have to do is
to supply the Zend_Paginator::factory() method
with the results. This factory method produces the $pager
paginator that is really easy to use. Just set the current page
number and items per page. The full index action grows to
look something like this:

public function indexAction() {

if ($this->_getParam(‘search’) == “”) {

$searchQuery = “”;

}else {

$searchQuery =$this->_getParam(‘search’);

}

$this->view->search = $searchQuery;

$index = Zend_Search_Lucene::open(‘/home/username/lucene/’);

491

$results = $index->find($searchQuery);

if ($this->_getParam(‘page’) == “”) {

$page = 1;

} else {

$page = $this->_getParam(‘page’);

}

$pager = Zend_Paginator::factory($results);

$pager->setCurrentPageNumber($page);

$pager->setItemCountPerPage(3);

$this->view->results=$pager;

$this->view->page = $page;

}

code snippet /lucene/zf/application/controllers/

IndexController.php

You need also to update the view to use the pagination as
shown in the following code. Notice the $res->score
fragment; Zend allows you to access the relevance score
determined by Lucene for each queried word.

<form method=”get” action=”/index.php/index”>

Something missing?

492

<input type=”text” name=”search” value=”<?php echo $this->search; ?>” />

<input type=”submit” name=”submit” value=”search” />

</form>

<?php // print_r($this->results); ?>

<?php if(!empty($this->results)): ?>

<?php foreach ($this->results as $res): ?>

<?php echo $res->title.’ - ‘.$res->description.’, score: ‘.$res->score; ?>

<?php endforeach; ?>

<?php echo $this->paginationControl(

$this->results, ‘Jumping’,‘index/pager.phtml’,

array(‘search’=>$this->search));?>

<?php else: ?>

No result matches your query

<?php endif; ?>

code snippet /lucene/zf/application/views/scripts/index/

index.phtml

Zend's paginationControl() method highlighted in
bold calls another view, here named pager.phtml, to do
the pagination. There are also various scrolling styles
available. According to Zend documentation, they are as
follows:

493

• Elastic—A Google-like scrolling style that expands and
contracts as a user scrolls through the pages.

• Jumping—As users scroll through, the page number
advances to the end of a given range and then starts again at
the beginning of the new range.

• Sliding—A Yahoo!-like scrolling style that positions the
current page number in the center of the page range or as
close as possible. This is the default style.

The pagination view pager.phtml mentioned before is
presented in the following code. The first section is
responsible for checking whether the Previous link is
applicable; if so, link it with the previous page. The middle
section shows pages from the neighborhood determined by
the $this->pagesInRange variable. And the last section
is responsible for the Next button.

<?php if ($this->pageCount): ?>

<?php if (isset($this->previous)): ?>

<a href=”

<?php echo $this->url(array(‘search’=>$this->search,

‘page’ => $this->previous)); ?>

“>Previous

<?php else: ?>

Previous

<?php endif; ?>

494

<?php foreach ($this->pagesInRange as $page): ?>

<?php if ($page != $this->current): ?> <a

href=”<?php echo $this->url(array(‘search’=>$this->search,

‘page’ => $page)); ?>”> <?php echo $page; ?>

<?php else: ?>

<?php echo $page; ?>

<?php endif; ?>

<?php endforeach; ?>

<?php if (isset($this->next)): ?>

<a href=”

<?php echo $this->url(array(‘search’=>$this->search,

‘page’ => $this->next)); ?>

“> Next

<?php else: ?>

Next

<?php endif; ?>

<?php endif; ?>

code snippet /lucene/zf/application/views/scripts/index/

pager.phtml

The final output of this application is displayed in Figure
7.8.

Figure 7.8 The Zend_Search_Lucene application with
match scores

495

Please notice that this is a full-featured fuzzy search. The
search term was first news, but there were many other
results displayed with lower match scores. A big advantage
of Zend Framework is that it includes a search engine of
such capabilities out of the box.

Symfony and CakePHP

The Symfony integration is also rather simple because a
Lucene plug-in is available at www.symfony-project.org/
plugins/sfLucenePlugin. CakePHP developers are not so
lucky, and again, they would have to write a special
component to handle Lucene searching. This is not very
hard, but it is rather time-consuming.

Google Custom Search

The previous two search engines were oriented for
searching a named data source, preferably a local database.
The solution presented here is powered by the Google
Search Engine and allows you to use its vast database of
indexed websites. The Google logo is shown in Figure 7.9.

Figure 7.9 Google logo (the caption is obvious).

496

The first web-search API from Google was called the
Google SOAP search API, and it is no longer supported. A
newer solution was the Google AJAX Search API. We
were going to present it here, but it became deprecated as
we were writing this chapter. Therefore, the newest
solution from the Google search family will be used here:
the Google Custom Search.

Setting up Google Custom Search

Go to the following web page and follow the white rabbit:
http://www.google.com/cse.

Click the Create a Custom Search Engine button. You'll
need a Google account for this, so create it if you don't
have one. The first step is shown in Figure 7.10.

Figure 7.10 Step 1—Setting up the search engine

497

Provide the name and description of the search engine.
Chose the websites your search engine will focus on. In
most cases, this will be your own website, but you can
include some friends' sites as well or create a search engine
for any other combination of places. Well, that's why it's
called custom. Accept the terms of service and free or
ads-free edition. Proceed to the second step shown in
Figure 7.11.

Figure 7.11 Step 2—Picking a stylesheet

498

Pick one of the ready-to-use stylesheets or customize them
to your liking. You can test the outputs with the following
form. Proceed to the last step shown in Figure 7.12.

Figure 7.12 Step 3—Getting the code

All you have to do is to copy the code and paste it into
your web page. That's all.

CakePHP

Symfony had Sphinx and Zend had Lucene, so we will
show how to integrate Google Custom Search with
CakePHP only. Well, “integration” is surely too strong a

499

word here as it boils down to inserting a bunch of Google
code into a view. It just couldn't be easier.

Take a view and insert the obtained code into it. It will
look similar to the following snippet, although not exactly
the same because the keys will vary.

<div id=”cse” style=”width: 100%;”>Loading</div>

<script src=”http://www.google.com/jsapi” type=”text/javascript”></script>

<script type=”text/javascript”>

google.load(‘search’, ‘1’, {language : ‘en’});

google.setOnLoadCallback(function() {

var customSearchControl =

new google.search.CustomSearchControl(

‘008847152987572801710:baanh-mj9ly’);

customSearchControl.setResultSetSize(

google.search.Search.FILTERED_CSE_RESULTSET);

customSearchControl.draw(‘cse’);

}, true);

</script>

The result is shown in Figure 7.13.

Figure 7.13 Google Custom Search in a CakePHP view

500

Symfony and Zend Framework

In Symfony and Zend Framework, Google Custom Search
works exactly the same way. You just copy the Google
code as presented previously, put it into any framework's
view or static web page, and it will work. That's why
separate sections for every framework would be redundant.

501

Chapter 8

Security

Knowledge is power. Guard it well.

—Warhammer 40,000: Dawn of War

What's In This Chapter?

• Setting secure SSL connections

• Defending against XSS injection attacks

• Securing forms against CSRF session hijacking

Security enforcement is one of the best things that
frameworks have to offer. While basic functionalities of a
web application are mostly straightforward and obvious,
proper dealing with security takes a lot of work and
knowledge. This is also very responsible work. When you
mess up something trivial like mailing, this error shows
right away, and you can fix it before the application is
launched. On the contrary, when there is a hole in security,
it remains completely unseen until somebody exploits it;
then the damage may be catastrophic.

When you are an inexperienced programmer, frameworks
do a great job of taking care of the best security practices
for you. If you are a professional, they are still valuable
because they save you from writing a lot of not really
exciting fragments of code. This chapter takes a closer
look at various security problems like setting safe HTTPS
connections that allow sending vulnerable data. Next we'll
show how to defend against a cross-site scripting (XSS)

502

attack that injects malicious code into a website, and a
cross-site request forgery (CSRF) that hijacks the security
context of an inconspicuous user.

Setting Secure Connections

In most cases, sending unsecured data is a normal
behavior, but when an application has more to do with
business (for example, e-commerce), then security matters.
There are ways to secure connections between customers
and the server where the web application is deployed.
However, you must remember that a Secure Socket Layer
(SSL) connection is just a tool and it does not guarantee
full security of data transfer. There is currently no secure
way to have mixed HTTP/HTTPS access to a site.

Problem

There are many reasons to hide sent information, so you
want to make the connection as secure as possible. For
web application frameworks, the main problem is closely
coupled with secure connection protocols such as HTTPS.
Other protocols are very rarely used, so in this section we
describe how to prevent information sniffing using
HTTPS. But why should you use a secure connection at
all? Because you usually don't want to share data
transferred to and from clients with third parties. These
strangers can use the data to do really nasty things to the
application or users, such as stealing passwords or credit
card numbers.

Here's an example of data sniffing when someone tries to
log on to a web application with HTTP and with HTTPS.

503

We used Wireshark (www.wireshark.org/) to sniff packet
transmissions.

Under Linux, you need to run Wireshark
with root privileges.

For Linux distributions, it's easier to install
Wireshark using the specific distribution's
package manager.

On Wireshark's homepage, you can
download a version for Windows and Mac
OS X as well.

So, let's try to sniff some packets. To sniff the proper data,
you need to define the capture options. There is an icon
below the main menu that shows the capture options
window, as shown in Figure 8.1.

Figure 8.1 Wireshark main menu

504

Next, a capture filter needs to be defined. On the capture
filter list (shown in Figure 8.2), there is an entry called
TCP or UDP port 80 (HTTP) that perfectly satisfies your
needs now.

Figure 8.2 Wireshark capture filter selection

In this example, you can use a simple login form. To
capture packets, you need to click the Start button, which
is shown on the bottom right of Figure 8.2. Enter random
data in the login and password form input fields; then

505

submit this form. In Wireshark, you should be able to see
something like Figure 8.3. If the next page appears,
capturing can be switched off because you don't need any
more data.

Figure 8.3 Sniffed HTTP POST request

Captured requests and responses are shown in Figure 8.4.
(Note that we assume that the web application is on the
same PC where Wireshark is working.) That's why
127.0.0.1 is shown as the address (refer to Figure 8.3) and
the pseudo-interface any (refer to Figure 8.2) is set in the
capture options. Your captured data can differ a bit from
the data shown in Figures 8.3 and 8.4. The highlighted
HTTP request in Figure 8.3 shows the submit action,
which is in fact a POST request to a specific URL. After
clicking the highlighted entry in Figure 8.3, you will see
something similar to Figure 8.4 at the bottom of the
Wireshark's window. This is the captured information that
is sent to the server. This data is sent as plain text, so it can
be sniffed and is easily readable by humans.

Figure 8.4 Sniffed HTTP POST packets

506

In the example, the intercepted information is rather
useless because you sniffed data that was sent by you to
your own web application. But the same can be done at
any node between the client and the server. In most cases,
such a node is a switch or a server that is relaying the
packets, which is why it's so dangerous to send
confidential data with an unsecured channel such as HTTP.

Configuring the Web Server

The solution for this problem is really simple. First you
need to start with generating proper X.509 keys with
OpenSSL. Next, the web server needs to be configured
properly to make it possible to connect using HTTPS.

Before running Apache with HTTPS enabled, you need to
generate a server certificate, which is used every time
when connecting to Apache using the HTTPS protocol.
The certificate needs to be signed by someone. In this
example, you will sign the certificate yourself. The
following approach should be used for testing only. In real
business applications, each certificate should be signed by
a trusted company. Many companies offer certificates

507

signed by a certificate authority (CA), which promises that
the signed certificate is valid.

In the example, you need only a private and public key.
The first step is to install OpenSSL, which is really
straightforward.

You can get OpenSSL for Linux here:
www.openssl.org/, and for Windows here:
www.openssl.org/related/binaries.html.

For Linux, you can also install OpenSSL
using the distribution's package manager.

As the first step after installation, a private key needs to be
created, which can be done with this command:

openssl genrsa -out /etc/apache2/ssl/apache.key 1024

This gives you a private key file with .key extension that
is generated using an RSA algorithm with key strength of
1024 bytes. This strength size is now commonly used
because 512 may be too weak, and bigger ones are not
properly interpreted by some applications. This key should
not be published anywhere because it's the private key

508

needed to decrypt encrypted information. The second step
is to generate a public key for the private key. This key is
published to everyone who wants to connect to the server
and is used to encrypt any information sent from clients to
the server:

openssl req -new -x509 -days 365 -key /etc/apache2/ssl/apache.key

-out /etc/apache2/ssl/apache.crt

Notice that if the previous folder doesn't exist, you need to
create it; otherwise, both commands will print an error
message. The previous command needs to include the key
standard and expiration time, as well as the private key
path and the path for the newly created public key as the
parameters. X509 and updated standards derived from the
same idea are commonly used standards in private and
public key cryptography. The time expiration should be
given as the number of days from the present that this key
is valid. In this example, the public key is valid for one
year. Note that if you are using Windows, you should
replace the /etc/... path with the Windows equivalent;
for example, C: xampp apache ssl OpenSSL will
ask you some questions about key details such as city,
region, country, and e-mail address. If you don't like filling
in your details, just put in some random data. This doesn't
matter in the example, but does in a real production
environment. In that case, you should buy a certificate like
those offered by VeriSign.

Now Apache or the other web server installed by you
needs to know about the generated keys, so you need to
make some changes in one configuration file. In XAMPP
for Windows, you should edit the httpd-ssl.conf file,

509

which is placed in the C: xampp apache conf extra
directory. Ubuntu stores Apache configuration files in
/etc/apache2/sites-enabled/000default-ssl.
Note that Ubuntu sometimes asks to enable sites with SSL.
To enable them, create a link in /sites-enabled to the
file default-ssl placed in the sites-available
directory. In other distributions, it can be stored under
other configuration file names, but you should easily find
it because it contains the name ssl or https.

cd /etc/apache2/sites-enabled

ln -s /etc/apache2/sites-available/default-ssl 000default-ssl

Lines to be changed are those that point to the key files.
SSLCertificateFile handles the public key file, and
SSLCertificateKeyFile handles the private key file.

SSLEngine on

SSLOptions +FakeBasicAuth +ExportCertData +CompatEnvVars +StrictRequire

SSLCertificateFile /etc/apache2/ssl/apache.crt

SSLCertificateKeyFile /etc/apache2/ssl/apache.key

code snippet ssl/configuration/default-ssl

510

Don't forget to turn SSLEngine on if it's turned off. After
the configuration, it's time to start or restart Apache web
server:

/etc/init.d/apache2 restart

This should not take long. For this example, you can use
(as with the case of the unsecured page) the login form
used previously in this chapter. Because the certificate is
not signed by a real CA, a security message is displayed in
Firefox, shown in Figure 8.5. This is good security from
the browser. To proceed, you need to get this certificate
and confirm it as an exception.

Figure 8.5 Firefox unknown certificate security page

When you go to https://127.0.0.1/index.php/, you should
see that 127.0.0.1 has a blue background in the
navigation bar. For the purpose of this example, we used
Firefox as the browser, so if you use a different browser,

511

the window might look a little bit different from Figure
8.6. When you click on it, a new window appears. This
window shows more details about the certificate.

Figure 8.6 Secured connection information

There is also a second window with full certificate
information. In Firefox, it looks like Figure 8.7. This
window also shows your certificate details given as
answers for OpenSSL questions.

Figure 8.7 Certificate information

512

Let's see what the sniffed information looks like. Instead of
HTTP in the capture filter options, you should set HTTPS.
It's the last entry in the list in Figure 8.2. After repeating
the steps as in HTTP, you should see something similar to
Figure 8.8.

Figure 8.8 Sniffed HTTPS POST request and key
exchange

As you can see in the figure, there is a key exchange at the
beginning, after which the data is sent. Highlight the
Application Data entry and you should see something
similar to Figure 8.9 at the bottom of the screen.

513

Figure 8.9 Encrypted HTTPS POST request packets

Try to read it now. This is an encrypted text, so it's not
human-friendly. We can't promise that decrypting it is
impossible, but it's almost impossible in a short period of
time. That's why using the HTTPS protocol is very useful
when sending any confidential information.

Symfony

Symfony provides filters, which are methods executed
before sending any data to the client. Filters are
implemented as a design pattern called chain of

responsibility. (This pattern is described in Chapter 1 of
this book).

To create a filter, you need to make a class that inherits
sfFilter. This definition should be stored as

514

sslFilter.class.php in the application's /lib
directory.

<?php

class sslFilter extends sfFilter {

public function execute($filterChain) {

$context = $this->getContext();

$request = $context->getRequest();

if (!$request->isSecure()) {

$secure_url = str_replace(‘http’, ‘https’, $request->getUri());

return $context->getController()->redirect($secure_url);

} else {

$filterChain->execute();

}

}

}

code snippet /ssl/symfony/apps/frontend/lib/

sslFiler.class.php

The main method that is invoked when the filter is running
is execute(). The preceding code checks whether the
current page is secured (that this action has an is_secure

515

entry in the /config/security.yml file of modules). To
access this action, you must have privileges, so you need
to be authenticated first. In other words, if the current
action is available for the public, it should replace http
with https in the URL and redirect to a page prepared this
way. If the current action is not available for the public,
return the handle to the next filter. To enable a filter, add
an entry in filters.yml in the configuration directory of
the application. Call this entry SSL, as in the following
code. It is important to set the class name so it reflects the
name of the filter it refers to.

ssl:

class: sslFilter

rendering:

security:

cache:

execution:

code snippet /ssl/symfony/apps/frontend/config/filters.yml

Another important thing to note is where this filter is
placed in filters.yml. Symfony goes through

516

filters.yml from the beginning to the end, and invokes
each filter. The last invoked filter is execution. It doesn't
matter whether there is any filter after this one because it
will not be invoked. That's why SSL is the first filter in the
preceding code, but it could also be placed after
rendering or security. The list of executed filters is
available in Symfony's web debug logs (see Figure 8.10).

Figure 8.10 Web debug logs

If you want to use HTTPS in one module, you can easily
get the current module name by invoking this method:
$context->getModuleName(). Now you need only to
create a simple if-else statement.

CakePHP

In CakePHP, the process is a little bit different and much
easier to implement. Because HTTPS is used only when
confidential data is sent, it is more useful to place every
confidential action into one controller. CakePHP
controllers are built so that the beforeFilter() method

517

is executed, as in Symfony, before any other action is
invoked.

function beforeFilter() {

if(!$this->RequestHandler->isSSL()) {

$this->redirect(‘https://’ . env(‘SERVER_NAME’) . $this->here);

exit();

}

}

code snippet /ssl/cakephp/app/controller/

ssl_controller.php

This code redirects to a secured web page if the isSSL()
method doesn't return a true value. The $this->here

variable stores the module name and action, which you can
give as a fixed string. The isSSL() method is a part of the
RequestHandler component that needs to be added prior
to beforeFilter().

var $components = array(‘RequestHandler’);

518

code snippet /ssl/cakephp/app/controller/

ssl_controller.php

At the end, the exit() method should be invoked for
security purposes because nothing else should be executed
after redirecting.

Zend Framework

Zend Framework offers a solution similar to that of
CakePHP. Each controller has an init() method, which
is invoked before any other actions.

<?php

require_once ‘Zend/Controller/Action.php’;

class IndexAction extends Zend_Controller_Action {

function init() {

$path = “/”;

if(empty($_SERVER[“HTTPS”])) {

$hostname = $_SERVER[“HTTP_HOST”];

$url = ‘https://’.$hostname .$path;

$this->_redirect($url);

}

519

}

}

code snippet /ssl/zf/applications/controllers/

IndexController.php

Because you are in the default index controller, the $path
variable is set to /. In the lines that follow, the HTTPS
protocol is checked. If it is being used, nothing happens; if
it isn't being used, the $url of the application is set, and
the redirection method is invoked for it. This is a good
solution when you are in the default controller. A more
generic solution is presented in the following code:

function init() {

$request = $this->getRequest();

$module = $request->getModuleName();

$controller = $request->getControllerName();

$action = $request->getActionName();

$path = $module .‘/’.$controller.‘/’.$action;

/* as previously */

code snippet /ssl/zf/applications/controllers/

IndexController.php

520

In this piece of the code module, the controller and action
names are retrieved. Next, a proper $path for current
module and action is built. In the case of an index action in
the index controller, the $path variable would look like
index/index, so you would be redirected to
https://127.0.0.1/index/index, for example.

Securing a Profile Form Against XSS and Injection
Attacks

Cross-site scripting (XSS) and all kinds of injection attacks
are a real threat that must always be taken into account
when developing web applications. These attacks are
commonly used by hackers because of their simplicity.
The only knowledge one needs is just some basics of SQL,
HTML, JS, CSS, and general web application structure.

Problem

XSS and injection attacks are different security problems,
but they use almost the same web application
vulnerabilities. This section explains how each attack
works and how is it used.

What Is XSS?

Unlike CSRF, XSS is not dedicated against a particular
user, but against the website. XSS utilizes the injection
mechanism. Figure 8.11 shows an example of how it
works.

Figure 8.11 XSS attack example

521

This example starts with a vulnerable functionality of a
web application. This security bug can be used to add
some malicious code to the website that will be executed
every time a user invokes this functionality (for example, it
displays a profile on a social network). Because it's
invoked for every user who executes it, this code can send
user confidential information (for example, session
cookies) to the attacker. The problem is that the web
application doesn't check the data that is sent to it.

Why SQL Injections Are So Dangerous

SQL injection attacks exploit the vulnerability that occurs
when the data entered into a form on the website (or
otherwise sent to the server) is not properly validated. If
someone enters a string that contains an apostrophe or
quote into a web form, various things can happen—from
simple SQL query execution errors to erasing all data from
a database. Suppose that a web page contains the following
form:

522

<form method=”post” action=”login.php”>

Login: <input type=”text” name=”login”>

Password: <input type=”password” name=”pass”>

<input type=”submit” value=”Login”>

</form>

Now suppose that after form data is submitted, a PHP
script is executed with the following query:

SELECT user FROM users WHERE login = ‘$login’ AND password = $pass

The $login and $pass variables contain the username
and password entered within the form. Of course, this is a
simplified example and in real applications, passwords are
never stored in databases as plain text, but as MD5 or
SHA1 hashes. However, no matter what the storage
technique is, when you enter the following string as a
password:

‘ OR ‘1’=’1

the resulting query to be executed is as follows:

SELECT user FROM users WHERE login =
‘admin’ AND password=” OR ‘1’=‘1’

The form input has changed the query that checks the
password, and now it uses two logical conditions.
Although the first might be false, the other one is always
true. So it is possible to log in having only a valid login
name.

523

The next example is more aggressive. After inserting the
following code as the password, the users table and all its
contents are removed from the database. This could be
truly catastrophic because you have a table called users.

‘; DROP TABLE users;

Attacks exploiting SQL injection vulnerability can steal,
modify, or remove information from databases, as well as
grant unauthorized access, so they are very dangerous.

How Do Other Injection Attacks Work?

Besides SQL injections, there are also JavaScript, HTML,
and CSS injection attacks. JavaScript injection is
commonly used in XSS attacks. If there is a security
vulnerability in web applications that enables an attacker
to inject client-side code, which is then displayed in a web
page viewed by other users, it can mislead them to perform
undesirable actions. Scripts located in the affected site can
bypass some of the mechanisms that control access to user
data held by the browser. A potential attacker can find
ways of injecting malicious scripts into web pages in order
to gain greater privileges to access sensitive page content,
session cookies, and other information stored for the user
by the web browser.

One of the most common forms of JavaScript injection is
when web page content is generated directly from data
submitted to a server by parameters in an HTTP query, or
simply by an HTML form. It is possible only when no
proper sanitizing of the submitted data is present. At first
glance, submitting a JavaScript injection input to the

524

website does not seem to be a serious problem because the
user would could influence only his own security (his own
browser cookies, cache data, and so on). A potential
attacker can prepare malicious code sections to modify
web-page content by adding hidden frames or misleading
links that can cause a viewer's browser to navigate to other
URLs. This process can happen completely in the
background; in such a case, an attacker can interact with a
user without his knowledge, which can threaten his
security. For example, the following code can be put into a
browser's URL bar:

javascript:void(document.cookie=”login=true”);

JavaScript will modify the content of a cookie. This
example illustrates how simple it is to interfere with
information held by the browser. The next example shows
how easy it is to view session cookie content stored by the
browser:

javascript:alert(document.cookie);

There is a more persistent variation of JavaScript injection
that can be used to attack vulnerable web applications. It
relies on the fact that the data submitted by the attacker is
later saved on the server; then this data (whenever it is
malicious script or simple text) is displayed on a web page
displayed to other users while they are browsing affected
content. Without proper HTML escaping, this can be a
serious security flaw.

Most malicious JavaScript programs act upon the
document object model (DOM) and modify the structure

525

and content of a web page by injecting them with
dynamically generated data.

For example, a persistent attack can look like this. A social
network allows posting of HTML-formatted messages on
an online message board. An attacker prepares a message
containing malicious code and posts it on that board.
While a user views that message board, his cookies and
session data are stolen and sent to the attacker. At this
point, the attacker can use the stolen cookie to use the
user's session and impersonate him.

Solution

HTML sanitization (validation, escaping, filtering) is a
method to eliminate some XSS vulnerabilities. This
solution also works against injection attacks. To sanitize is
to validate incoming data and reject undesired characters
or replace them with acceptable ones. Of course, simple
character replacement isn't the only solution to this
problem. The appropriate method may depend on the
context in which the problem occurs. These methods rely
on escaping all unwanted data and leaving only the content
that is correct for the context. In this way, it is possible to
apply a proper escaping scheme, depending on where the
sanitized input needs to be placed. For example,
sanitization can be done by JavaScript escaping, HTML
escaping, CSS escaping, and so on. By using these
methods, protection against injection attacks can be a fairly
simple task as long as the web application does not require
rich data storage.

526

Look at some examples of how to protect scripts against
injection attacks. The primary way to protect against SQL
injection is to prevent unauthorized changes of queries
executed by the database engine. In PHP, this can be done
by executing the PHP built-in function addslashes() on
the text in each parameter used for the construction of
queries. This function adds the backslash before
characters, such as ‘, “, or , so that the characters are not
treated as special characters. There are also functions
specific to each database, such as that offered by the
MySQL server: mysql_real_escape_string(). This
function works like addslashes(), with the difference
that it takes into account the character set used in the
MySQL connection. The following example shows how to
utilize the server mysql_real_escape_string()
function while building an SQL query.

$user = mysql_real_escape_string($_POST[‘user_name’]);

$sql = “SELECT * FROM users WHERE username = ‘$user’”;

PHP delivers functions that can be used to sanitize strings.
There are two commonly used PHP functions:
htmlentities() and htmlspecialchars().

htmlentities($str);

htmlspecialchars(“Test”);

These commands are very similar. They change HTML
tags such as <a>link to <a>link</
a>. A user will see strange text, but thanks to the
above commands, it will not be executed as an HTML or
JavaScript code.

527

Symfony

In Symfony, it's very easy to protect against XSS and
injection attacks. Symfony does it globally; you need only
to edit the application's settings.yml configuration file
and turn on the escaping.

all:

.settings:

escaping_strategy: on

escaping_method: ESC_SPECIALCHARS

code snippet /xss/symfony/app/frontend/config/settings.yml

There are a few escaping methods in Symfony. As
described before, PHP delivers two main functions, which
are used in Symfony as follows:

ESC_SPECIALCHARS - htmlspecialchars(),

ESC_ENTITIES - htmlentities().

Symfony also has two methods dedicated to JavaScript
escaping:

ESC_JS,

ESC_JS_NO_ENTITIES.

528

These methods are used when you want to use dynamically
changed HTML code or just a string inside JavaScript. If
you don't want to escape any values, just set ESC_RAW as
the method or turn escaping off.

CakePHP

The Sanitize class is responsible for escaping in
CakePHP. To use its methods, you need to add it at the
beginning of the controller.

App::import(‘Sanitize’);

class xssController extends AppController {

}

code snippet /xss/cakephp/app/controller/

xss_controller.php

Sanitizing allows the use of four methods: clean(),
escape(), html(), and paranoid().

Sanitize::clean($data, $options);

The clean() method changes the $data input and
outputs as given in $options. Available options are
odd_spaces, encode, dollar, carriage, unicode,
escape, and backslash. Each option cleans the input

529

string or array. To enable them, set them as true, as
shown in the following code:

Sanitize::clean($data, array(‘backslash’=>true));

code snippet /xss/cakephp/app/controller/

xss_controller.php

The escape() method escapes a SQL statement where
$database is the variable that describes the used database
(see database.php in the configuration directory); for
example, ‘default’.

Sanitize::escape(string $SQL, string $database)

code snippet /xss/cakephp/app/controller/

xss_controller.php

The html() method cleans a string of HTML tags:

530

$HTMLString = ‘Test’;

echo Sanitize::html($HTMLString);

code snippet /xss/cakephp/app/controller/

xss_controller.php

The method in the preceding code will print Test:

echo Sanitize::html($HTMLString, array(‘remove’ => true));

If you set the remove option to true, you get a string that
doesn't contain any HTML tag.

The last method is paranoid(), which removes all special
characters such as ;, :, <, >, @, #.

$HTMLString = “Test”;

echo Sanitize::paranoid($HTMLString);

code snippet /xss/cakephp/app/controller/

xss_controller.php

The preceding code prints a href=testTesta.

531

Zend Framework

Zend Framework delivers the Zend_Filter class, which
is responsible for sanitizing. Additionally, ZF offers a
method that is available as a helper in the view layer.

$this->escape($this->testData);

Some developers prefer a strategy to escape only the
output that is shown to the user. This is usually a good
practice because XSS and injection attacks are based on
showing malicious code. If it's escaped before it's sent to
the user, the attack fails.

A second approach in ZF is to filter the bad code within
the controller. To do this, you need to create an instance of
Zend_Filter_HtmlEntities and invoke filter()
with a parameter that is the filtered data. The filter()
method returns an escaped value, so it's clean and ready to
safely use.

$entityFilter = new Zend_Filter_HtmlEntities();

$goodData = $entityFilter->filter($HTMLString);

code snippet /xss/zf/application/controllers/

IndexController.php

532

It is possible to specify filters still while building a web
form, as shown here:

$this->addElement(‘text’, ‘firstName’, array(

‘label’ => ‘Your first name:’,

‘required’ => false,

‘filters’ => array(‘StripTags’),

));

code snippet /xss/zf/application/forms/Addresses.php

A filter created this way will return the input string, with
all HTML and PHP tags removed from it. Yet it is possible
to specify which tags are allowed and which are not.

CSRF

Cross-site request forgery (CSRF) attacks are commonly
mistaken for XSS attacks because of similarities in their
outcomes. They work completely differently, however.
While for XSS the attacker must put malicious code on a
targeted website, for CSRF all he needs is to make you
click a prepared link. That's all; there is no JavaScript
required, and you can even have scripting disabled in your
browser.

Problem

533

Developers have some problems defending against this
kind of attack because it takes much knowledge to know
how to do it properly. And there is no limit on the severity
of these attacks. Fortunately, all this knowledge is already
included in the frameworks, so this section describes how
to secure against CSRF fast and simply.

What Is CSRF?

This attack is linked with form security and exploits some
form vulnerabilities. Unlike XSS attacks, CSRF attacks are
more user-oriented, and they do more harm to users than to
web applications. Figure 8.12 illustrates a short CSRF
example. C is the unaware Customer, and H stands for the
Hacker.

Figure 8.12 CSRF attack example

Because CSRF attacks can be carried out only in some
situations, to make this attack possible, some additional
favorable circumstances need to be fulfilled. Let the web

534

application in Figure 8.12 be an e-commerce application.
H wants to get profile data. To get it, H needs to execute a
piece of code such as the following on the attacked side. C

needs to be logged in to the web application, and then H

makes him execute this script by a prepared link.

<script>

var url = ‘http://example.com/profile;

setTimeout(30000, “window.open(url)”);

</script>

</html>

So here's how it works: Customer C logs in to the web
application. Next, H sends a link to the prepared web page.
As shown in the preceding code, a fixed URL is opened in
a new window after a period of time. This window
displays the profile data. This script could be even more
malicious and save this data somewhere or buy something
expensive. C doesn't know about this attack because the
malicious web page can be opened in another tab in his
browser or even completely in the background. Therefore,
this kind of attack is very popular, but it also needs some
information about the attacked person to make it possible.

Solution

To defend against CSRF attacks, a small change needs to
be done in all forms that could be potentially used for this
attack. Hacker needs to collect some information about
Customer and also about the web application that he uses.
Suppose that H is also a customer that has his own account

535

in the example e-commerce web application. H can collect
information about form structure and fields, so he can
prepare a malicious web page on this basis.

Each form has some input fields (name, forename, email,
and so on). Values that are entered into these fields are
different for each user, but fields usually still have the
same names (<input name=””>). In some applications,
the fields may differ for each user, which makes this attack
more difficult, but it's still possible. If the attacker can
figure out the form names that are expected to be sent from
C, this attack may succeed.

Symfony

Symfony delivers CSRF protection utilities out of the box,
just as all the frameworks described in this book do. By
default, these protection utilities are enabled in
settings.yml, which is placed in the application's
/config directory.

all:

.settings:

csrf_secret: vxfdb8wrh34ni3th93y

code snippet /csrf/symfony/apps/frontend/config/

settings.yml

536

For security purposes, you need to change the
csrf_secret value. When this value is correctly set, an
additional input field will be placed in each form, called
_csrf_token.

<input type=”hidden” name=”_csrf_token” value=”58702cd53a37190250899563f3dd9928”

id=”csrf_token” />

code snippet /csrf/symfony/apps/frontend/modules/

csrfExample/templates/indexSuccess.php

The value of this field is different from that given in the
configuration file because csrf_secret in the
settings.yml config file is a salt, or random seed, used
to generate the token. The salt is only one of the items that
produce the resulting token value. All other items can be
known to the attacker in some cases, but the salt is and
should be always kept in secret.

CakePHP

CakePHP allows for securing a web application against
CSRF attacks as well. Instead of setting a common
variable in configuration files, as in Symfony, CakePHP
gives the possibility to secure each controller separately.

To secure all forms that are generated with a controller,
add this line at the top of it:

537

public $components = array(‘Security’);

After adding it, an exemplary controller looks like the
following:

<?php

class AddressesController extends AppController {

var $name = ‘addresses’;

var $components = array(‘Security’);

function index($id = null) {

$this->set(‘address_list’, $this->Address->find(‘all’));

}

code snippet /csrf/cakephp/app/controller/

xss_controller.php

As with Symfony, a salt needs to be set. This can be done
in core.php, which is placed in the /config directory.

Configure::write(‘Security.salt’, ‘vxfdb8wrh34ni3th93y’);

code snippet /csrf/cakephp/app/config/core.php

538

Unlike Symfony, CakePHP generates not one, but two
CSRF tokens.

<form id=”AddressEditForm”

method=”post”

action=”/index.php/addresses/edit/addresses/edit”

accept-charset=”utf-8”>

<div style=”display:none;”>

<input type=”hidden” name=”_method” value=”POST” />

<input type=”hidden” name=”data[_Token][key]”

value=”7f72422a68cfce07a88966cade00118025b034a8”

id=”Token1034995606” />

</div>

code snippet /csrf/cakephp/app/view/csrf/index.ctp

The first one is placed after <form> start tag, and the
second one is placed in the bottom part of the following
code:

539

<div class=”submit”>

<input type=”submit” value=”Save address” />

</div>

<div style=”display:none;”>

<input type=”hidden” name=”data[_Token][fields]”

value=”5d49a9573ceb05291667243fcc672d85f1

bdbd25%3An%3A1%3A%7Bv%3A0%3Bf%3A10%3A%22Nqqerff.vq%22%3B%7D”

id=”TokenFields1736401509” />

</div>

</form>

code snippet /csrf/cakephp/app/view/csrf/index.ctp

These keys are both checked after each submit. If they are
not the same, an error message is shown. The preceding
code prevents CSRF attacks because token values are
different for each user, and the attacker can't know the
values for each user.

Zend Framework

In contrast with the previous two frameworks, each form is
secured separately in Zend Framework. To enable CSRF
protection, you need to add an additional element of type
hash into the form definition.

540

<?php

class Application_Form_Guestbook extends Zend_Form {

public function init() {

$this->addElement(

‘hash’, ‘csrf_token’, array(‘salt’ => ‘vxfdb8wrh34ni3th93y’));

}

}

code snippet /csrf/zf/application/forms/Guestbook.php

In ZF, a salt is also employed, which generates a form field
as follows:

<dt id=”csrf_token-label”> </dt>

<dd id=”csrf_token-element”>

<input type=”hidden”

name=”csrf_token”

value=”5e7b35565c404102c04697fa4637f4c7”

541

id=”csrf_token”>

</dd>

code snippet /csrf/zf/application/views/scripts/index/

index.phtml

This field is checked during form validation. The same
result can be achieved as well with the following code:

$token = new Zend_Form_Element_Hash(‘token’);

$token->setSalt(md5(uniqid(rand(), TRUE)));

$token->setTimeout(Globals::getConfig()->authentication->timeout);

$this->addElement($token);

code snippet /csrf/zf/application/forms/Guestbook.php

A timeout can also be set for the token to make it lose
validity after a certain amount of time.

542

Chapter 9

Templates

Beware the Jabberwock, my son!

The jaws that bite, the claws that catch!

Beware the Jubjub bird, and shun

The frumious Bandersnatch!

—Lewis Carroll

What's In This Chapter?

• Creating an image gallery using Lightbox

• Integrating chosen template engines with frameworks

• Pros and cons of using template engines

• Overview of popular template engines

Previous chapters discussed frameworks' innards; this
chapter focuses on the presentation layer instead. So what
are these template engines, and why are they so important?
In web development, PHP code processes all data, so it's
responsible for the business logic. The view layer
represented by template engines is the presentation part of
your site. A template engine allows you to develop
websites with various different layouts or themes for the
same core functionality.

Template engines are very popular tools among PHP
projects that do not use any frameworks. Despite their

543

popularity however, they are not often used along with
web frameworks. In this chapter, we will explain why it is
so and show a few tricks to make them get along with each
other.

Creating a Simple Image Gallery by Using Helpers and
Lightbox

The following script renders an index page. It uses some
PHP functions to generate the page content intertwined
with HTML blocks. (This is a programming style from the
year 2000, when PHP was a new thing altogether.)

<?php

$head_title = ‘Title’;

$block_name =‘News block’;

display_content();

function_1();

function_2();

?>

<html>

<head>

<title>

<?php echo $head_title; ?>

</title>

</head>

544

<body>

<tag>

<tag>

<?php echo $block_name; ?>

</tag>

</tag>

<tag>

<?php echo display_content(); ?>

</tag>

</body>

</html>

Today, more advanced template engines are used to
separate the view layer from PHP code, which is used for
the business logic. This allows developers to work on the
code of the system without interfering with the designers
who create different layouts for it. This is a good
programming practice just like the Model-View-Controller
(MVC) architecture offered by the frameworks.

A second commonly known good practice that can be used
here is Don't Repeat Yourself (DRY). You can use just one
template file for a few functionalities if the template code
is the same in all of them. This is possible because of
separating business logic from the view. The following
pseudo-code example demonstrates how PHP scripts
should be separated from an HTML template:

<?php

545

$variable1;

$variable2;

$variable3;

function_1();

function_2();

function_3();

function_4();

render_template (template.tpl);

?>

This code presents a quasi-controller that renders the
following template file:

<html>

<head>

<title></title>

</head>

<body>

<tag>

<tag></tag>

</tag>

<tag></tag>

<tag></tag>

</body>

546

</html>

The template fragment can still contain PHP scripts, but
usually it requires a template language to indicate
segments that are to be filled with content by a script.
These languages vary from one template engine to another,
but usually cover the same functions.

Presentation Layer Helpers

Before you move to the template engines, we will discuss a
nice and easy topic concerning the presentation layer as
well. We'll show you how to create an image gallery in
your frameworks by using the frameworks' helper classes
and the Lightbox JavaScript application.

Helpers are classes that encapsulate certain frequently used
functionalities and allow developers to use these complex
functions easily without the need for much coding. Usually
helpers are designed for the view part of the MVC pattern
because most repeated code lines are located in the view
files. You can use helpers to format and prepare output
data easily using a single function/method.

The three frameworks that you work with in this book
have a number of useful helpers. In previous chapters,
helpers were used many times in a very natural manner,
without the necessity to learn their usage or even to
explain it too much. Well, look at the following example:

<?php echo $html->text(‘UserName’) ?>

This line from a view file can create the standard HTML
text input tag with the name attribute set to UserName, but

547

it also may encapsulate this input field in <p></p> tags or
<div></div> tags just like this:

<div class=”form-Input”>

<input type=”text” name=”UserName” />

</div>

It all depends on how this HTML helper is designed. Now,
knowing only this example and the common HTML form
tags, you can assume that when you write the following
line:

<?php echo $html->password(‘UserPass’) ?>

it should render a password input field with name attribute
set to UserPass, just like this:

<div class=”form-Input”>

<input type=”password” name=”UserPass” />

</div>

The preceding code snippets illustrate how intuitive
helpers can be. Similar helpers are available for formatting
data, field validation, time-date operations, and so on.
Custom helpers can also be added to facilitate other
aspects of web development.

Now we will focus on the main topic of this section: for
every web developer there comes a time when he needs to
have an image gallery in the project that he is working on,
be it his own portfolio or a different random project. The
most basic image gallery can be created using only an
HTML page with multiple thumbnails or plain links

548

connected to large images that can be opened in a new
page or different frame. This solution is rather outdated
because the user can spend more time navigating the
gallery than viewing it.

Lightbox

Today, in most cases, image galleries are built using
JavaScript. JavaScript requires more work for the
developer and makes it more difficult to modify an
existing gallery, but most JavaScript libraries provide a
few additional features—for example, opening images
with some basic navigation, such as next and previous
buttons.

Now if you wonder whether you can learn how to create
your own image gallery from this book, the answer is no.
We would love to show it, but the book would grow
another 50 pages or so and it would not really be
framework-related code. Instead you will learn how to
implement one of the most common, lightweight, and
dynamic ready-to-use image galleries: the Lightbox.

Lightbox is a JavaScript application, written by Lokesh
Dhakar, used to display image galleries utilizing a popup
window. This script has gained wide popularity, mostly
due to easy implementation and great presentation style
that fits any website. You can read more about Lightbox at
its author's website: www.huddletogether.com/projects/
lightbox2. Now you will learn how to include Lightbox 2
in your application, developed for all three frameworks.

Symfony

549

There are several solutions that allow you to create web
image galleries simply by adding one of the available
Symfony plug-ins. First you will learn how to implement
one of these solutions that enables you to display image
galleries in your application using the popular Lightbox
script. Later you will find a short description of two
selected alternative solutions.

sfJQueryLightBoxPlugin

If you've read this book chapter by chapter, you probably
already know the routine and will not be surprised by
anything written in this section. sfJQueryLightBoxPlugin
allows you to use the sfJQueryLightbox helper that
transforms image links into a Lightbox image gallery. You
can find details about this plug-in at
www.symfony-project.org/plugins/
sfJQueryLightboxPlugin. First of all, the
sfJQueryLightBoxPlugin requires you to have
sfJqueryReloadedPlugin already installed. To install it,
simply execute the following command in your project
command line:

$ symfony plugin:install sfJqueryReloadedPlugin

For details on this plug-in, please refer to its website:
www.symfony-project.org/plugins/
sfJqueryReloadedPlugin. If you already have
sfJqueryReloadedPlugin, you can proceed to
sfJQueryLightboxPlugin installation.

550

To install sfJQueryLightboxPlugin, you need to simply
type the following command into the console at your
project directory:

$ symfony plugin:install sfJQueryLightBoxPlugin

Next, you can clear the cache data by typing the following
command into your console:

$ symfony cache:clear

Assuming that you created a project and a sample
frontend application, at this point you should be ready to
start editing the files of your project. Let's create a sample
module:

$ symfony generate:module frontend lightexample

You need only one method for this example. What is more,
this method should be empty because all the gallery
presentation is done in the view layer:

public function executeIndex() {

}code snippet

In order to use features that were installed by
sfJQueryLightBoxPlugin, you need to modify the module's
view file located in /apps/frontend/modules/lightexample/
templates. It is necessary to indicate there that you want to
use the jQuery helper required by the sfJQueryLightbox
helper to make it work. To do so, just add the following
line in your indexSuccess.php file:

551

<?php use_helper(“jQuery”) ?>

code snippet /gallery/symfony/apps/frontend/modules/

lightexample/templates/indexSuccess.php

Once it is done, you can now do the same for the
JQueryLightbox helper. Just add another line:

<?php use_helper(“sfJQueryLightbox”) ?>

code snippet /gallery/symfony/apps/frontend/modules/

lightexample/templates/indexSuccess.php

Now in the same template file, you can use the
light_image() function for the image that you want to
have the Lightbox effect. It is done like this:

<?php echo light_image(

$thumbnail_url,

552

$full_image_url,

array(‘title’ => $image_title),

$thumb_options

);

?>

code snippet /gallery/symfony/apps/frontend/modules/

lightexample/templates/indexSuccess.php

The example of a simple gallery can look as follows:

<?php use_helper(‘jQuery’, ‘sfJQueryLightbox’) ?>

<h1>Lightbox Logos Gallery</h1>

<?php echo light_image(

‘http://www.symfony-project.org/images/symfony_logo.gif’,

‘http://www.symfony-project.org/images/symfony_logo.gif’,

array(‘title’ => ‘Symfony Logo’),

array(‘border’ => 0)); ?>

<?php echo light_image(

‘http://cakephp.org/img/cake-logo.png’,

‘http://cakephp.org/img/cake-logo.png’,

553

array(‘title’ => ‘CakePHP Logo’),

array(‘border’ => 0)); ?>

<?php echo light_image(

‘http://framework.zend.com/images/logo.gif’,

‘http://framework.zend.com/images/logo.gif’,

array(‘title’ => ‘Zend Framework Logo’),

array(‘border’ => 0)); ?>

code snippet /gallery/symfony/apps/frontend/modules/

lightexample/templates/indexSuccess.php

Note that in this example, the same image is used for the
thumbnail as well as for the normal-size image. The
preceding example should be rendered by the browser the
same way as it is illustrated by Figure 9.1.

Figure 9.1 Example of an image gallery using
sfJQueryLightBoxPlugin

554

If your image gallery misses some graphics, such as the
next or close buttons, it may be due to having a different
web root than the one assumed by the plug-in. The default
directory for Lightbox graphics is
/sfJQueryLightboxPlugin/images/.

It is possible to change paths for every image used by
Lightbox. To do this, you need to add a few code lines into
the app.yml file. For this example, the first slash character
had to be removed from the image paths, in order to make
Lightbox display all elements correctly. This is shown in
the following code:

all:

sf_jquery_lightbox:

css_dir: ‘/sfJQueryLightboxPlugin/css/’

555

js_dir: ‘/sfJQueryLightboxPlugin/js/’

imageLoading: ‘sfJQueryLightboxPlugin/images/lightbox-ico-loading.gif’

imageBtnClose: ‘sfJQueryLightboxPlugin/images/lightbox-btn-close.gif’

imageBtnPrev: ‘sfJQueryLightboxPlugin/images/lightbox-btn-prev.gif’

imageBtnNext: ‘sfJQueryLightboxPlugin/images/lightbox-btn-next.gif’

imageBlank: ‘sfJQueryLightboxPlugin/images/lightbox-blank.gif’

txtImage: ‘Image’

txtOf: ‘of’

code snippet /gallery/symfony/apps/frontend/config/

app.yml

sfLightboxPlugin

sfLightboxPlugin is an alternative to
sfJQueryLightBoxPlugin introduced earlier. After
installation, sfLightboxPlugin provides you with
LightboxHelper that allows you to create image galleries
and slideshows very easily.

It may be a little less popular among users of the Symfony
framework, but on the other hand it is compatible with
older versions of Symfony. Installation files and examples
for this plug-in can be found at www.symfony-project.org/
plugins/sfLightboxPlugin.

sfMediaBrowserPlugin

sfMediaBrowser is a plug-in that works directly on the file
structure to allow users to manage file uploads. It comes

556

with a complete user interface for managing files as well
as folders that are contained in a specific directory. What is
unusual about sfMediaBrowser is that it does not use any
database.

This plug-in comes with a widget and a validator that can
be used in any form to replace the standard HTML file
upload input field. You can get installation files from the
following website: www.symfony-project.org/plugins/
sfMediaBrowserPlugin.

CakePHP

Using Lightbox in Cake is nearly as straightforward as in
any static website. To demonstrate this example of
Lightbox 2, you need to download the package from the
author's website: www.huddletogether.com/projects/
lightbox2. The example gallery will consist of three links
to framework logos, as illustrated in Figure 9.2.

Figure 9.2 Links to framework logos

When you have the Lightbox2 package, it is time to put all
the files into your CakePHP application directory.
Lightbox uses the Prototype and Scriptaculous libraries to
render some effects while displaying images. Assuming
that you follow the standard CakePHP installation, you

557

need to put the following JavaScript libraries inside the
CakePHP /app/webroot/js/ directory:

• builder.js
• effects.js
• lightbox.js
• prototype.js
• scriptaculous.js

The same thing goes for the Lightbox CSS file
(lightbox.css) that you need to place into the /app/
webroot/css/ directory.

The Lightbox styles use the ../images/ path to display
images, so you also need to make sure that any paths to
images in the CSS are correct. If you placed the
lightbox.css file as instructed, all images used by
Lightbox should be located in the /app/webroot/
images/ directory. That is all you need to do in terms of
Lightbox installation.

Next there are a few things that need to be done to use the
installed Lightbox in your application. Add the following
lines of code to your site's layout that is located in the
/app/views/layouts/ directory and you're good to go.
In this example, the default.ctp layout file is used.
CakePHP allows you to easily link CSS and JavaScript
files into your site's head section of layout. The layout used
for this example looks as follows:

558

<html>

<head>

<?php

echo $html->css (“lightbox”, “stylesheet”);

if (isset ($javascript)):

echo $javascript->link (“/app/webroot/js/prototype.js”);

echo $javascript->link(

“/app/webroot/js/scriptaculous.js?load=effects,builder”);

echo $javascript->link (“/app/webroot/js/lightbox.js”);

endif;

?>

</head>

<body>

<?php echo $content_for_layout ?>

</body>

</html>

code snippet /gallery/cakephp/app/views/layouts/

default.ctp

The routing file should contain the following line:

559

Router::connect(‘/lightbox’, array(

‘controller’ => ‘lightbox’,‘action’ => ‘index’));

code snippet /gallery/cakephp/app/config/routes.php

Now you can use the http://localhost/lightbox URL to test
your project.

You need to prepare the controller for this example. To use
Lightbox in your view files, the controller needs to have
the $helpers value specified and set to use Javascript.
This will define which helper is used in this example. If
you have already specified $helpers within your
controller, you can just append another value at the end of
your helper array, and set it to “Javascript”. The
controller file used in this example looks like this:

<?php

class LightboxController extends AppController {

var $name = ‘lightbox’;

var $helpers = array (“Javascript”);

560

function index() {

}

}

?>

code snippet /gallery/cakephp/app/controllers/

lightbox_controller.php

In the model file, you need to indicate that this small
project does not use any database table by setting the
$useTable variable to false. If you don't, a missing
table error message will be displayed.

<?php

class Lightbox extends AppModel {

var $useTable = false;

}

code snippet /gallery/cakephp/app/models/lightbox.php

The last thing to do is to create your view file that will
contain the image gallery and will use Lightbox to display
images. At this point, you only need to add the
rel=”lightbox” parameter to a link in order to use
Lightbox. The rel parameter used for this example looks

561

different because it is possible to group image sets using
brackets, just like in the following view file:

<h1>Lightbox Logos Gallery</h1>

<a href=”http://www.symfony-project.org/images/symfony_logo.gif”

rel=”lightbox[logos]”

title=”Symfony Logo”>Symfony Logo

<a href=”http://cakephp.org/img/cake-logo.png”

rel=”lightbox[logos]”

title=”CakePHP Logo”>CakePHP Logo

<a href=”http://framework.zend.com/images/logo.gif”

rel=”lightbox[logos]”

title=”Zend Framework Logo”>Zend Framework Logo

code snippet /gallery/cakephp/app/views/lightbox/index.ctp

Finally, you should be able to run Lightbox through the
http://localhost/lightbox page, and by clicking any of the
image links, an image like the one illustrated in Figure 9.3
will be displayed as the result. Note that text links can be

562

replaced with image thumbnails simply by adding an
 tag between the <a> and tags.

Figure 9.3 Images displayed using Lightbox

Now you have Lightbox up and running, and if you wish
to use any other external JavaScript file, this example
should give you a general idea how to do it.

Zend Framework

Using Lightbox2 in Zend Framework is not a complicated
task; the installation is very similar to the one done in
CakePHP. To begin, you need to download the Lightbox2
package from www.huddletogether.com/projects/
lightbox2. After downloading and unpacking the libraries,
you need to copy the JavaScript files into your
application's /public/lightbox/js/ directory. Then the
stylesheet lightbox.css goes to: /public/css/, and
finally images used by Lightbox go to: /public/
images/. If any of these directories does not exist, create
it.

563

At this point, the /appDirectory/public/ directory
should contain the following:

js/

lightbox/

builder.js

effects.js

lightbox.js

prototype.js

scriptaculous.js

css/

lightbox.css

images/

closelabel.gif

...

If you have this directory structure, you can create the
controller file. To use Lightbox inside an existing project,
you probably need to add another action to your controller,
as in the following code:

<?php

class IndexController extends Zend_Controller_Action {

564

public function init() {

}

public function lightboxAction() {

}

}

code snippet /gallery/zf/application/controllers/

IndexController.php

The controller file does not require any additional code
lines added in order to use Lightbox because it is all done
in the layout file.

The following is the listing of the layout.phtml file that
uses helpers to append Lightbox libraries into the
application:

<html>

<head>

<title>Lightbox Logos Gallery</title>

<?php

echo $this->headLink()->appendStylesheet(

$this->baseUrl(‘/css/lightbox.css’));

echo $this->headScript()->appendFile(

565

$this->baseUrl(‘/js/lightbox/prototype.js’));

echo $this->headScript()->appendFile(

$this->baseUrl(‘/js/lightbox/scriptaculous.js?load=effects,builder’));

echo $this->headScript()->appendFile(

$this->baseUrl(‘/js/lightbox/lightbox.js’));

?>

</head>

<body>

<?php echo $this->layout()->content; ?>

</body>

</html>

code snippet /gallery/zf/application/layouts/layout.phtml

As you can see,
$this->headLink()->appendStylesheet() is used to
append the CSS file, and the
$this->headScript()->appendFile() lines append
the JavaScript files.

Now you have all files in their places and you can use the
standard HTML syntax to turn any image link into a
Lightbox effect gallery using rel=”lightbox”. You can
also group a number of images using the
rel=”lightbox[groupname]” syntax.

The following code is an example view file that renders an
image like the one shown in Figure 9.4 when you type

566

http://localhost/appName/public/index/lightbox into your
browser:

<h1>Lightbox Logos Gallery</h1>

<a href=”http://www.symfony-project.org/images/symfony_logo.gif”

rel=”lightbox[logos]”

title=”Symfony Logo”>Symfony Logo

<a href=”http://cakephp.org/img/cake-logo.png”

rel=”lightbox[logos]”

title=”CakePHP Logo”>CakePHP Logo

<a href=”http://framework.zend.com/images/logo.gif”

rel=”lightbox[logos]”

title=”Zend Framework Logo”>Zend Framework Logo

code snippet /gallery/zf/application/views/scripts/index/

index.phtml

Figure 9.4 Image gallery using Lightbox

567

If your Lightbox window happens to be missing the
loading image or close button image, you can fix it by
modifying the corresponding paths in the lightbox.js
file at lines 49 and 50. In this example, the paths look as
follows:

LightboxOptions = Object.extend({

fileLoadingImage: ‘../images/loading.gif’,

fileBottomNavCloseImage: ‘../images/closelabel.gif’,

code snippet /gallery/zf/public/js/lightbox/lightbox.js

Using Template Engines within Web Frameworks

So far we have described only the advantages of the
framework template engines. However, to be honest with
you, opinions on their usefulness are varied. They are often
praised by teams where PHP programmers deal with
business logic only and leave the presentation layer for the
designers. However, individual developers tend to judge
template engines as nearly useless.

568

PHP is an interpreted programming language that can act
as a template engine. This means that the template engines
are not necessary, and when you use them, they must be
interpreted separately by PHP. Template engines provide
an interpreted language inside the PHP-interpreted
language, and that requires the templates to be parsed two
times. This looks like an additional overhead that degrades
performance of web apps, but in fact most of today's
templating engines have caching features that make
parsing necessary only once per template. The
performance is no longer a big issue while using templates.

The following code illustrates how plain PHP can be a
natural substitute for the Smarty template engine, which is
described more fully in the following section. Smarty code
first:

{if $user eq ‘Martin’}

Martin has logged in.

{elseif $ user eq ‘Susie’}

Susie has logged in.

{else}

Anonymous has logged in.

{/if}

And the regular PHP equivalent:

<?php

if ($user == ‘Martin’} {

echo ‘ Martin has logged in.’;

569

} elseif ($user == ‘Susie’) {

echo ‘Susie has logged in.’;

} else {

echo ‘Anonymous has logged in.’;

}

?>

Another reason for negative opinions about template
engines is that there is a learning curve tied to any template
system because most PHP templates have their own set of
tags or even their own language. However, don't be
prejudiced against template engines before you try them
out. Many developers value them as an elegant way of
view representation, and even if you won't like them,
perhaps your fellow web designers will, so it's valuable to
get to know this technology anyway.

Smarty

Over the years, Smarty has gained lots of popularity and
became probably the best known web template system
written in PHP. Its logo is presented in Figure 9.5. Many
newly created template engines were created based on
Smarty because it has been for a long time a popular tool
for separating system logic from HTML templates.
Version 3 of Smarty is coming in big steps and will
address shortcomings of its predecessor as well as add new
features. This new version of Smarty is object-oriented,
written from scratch, and written entirely in PHP 5.0.
Moreover, tests indicate that it will offer much better
performance than the current version.

570

Figure 9.5 Smarty template engine logo

You can install Smarty in various ways. The most basic is
downloading the most recent release from the Smarty
website: www.smarty.net. Then unpack it to your PHP
library folder.

There is also a PEAR channel provided by a GoogleCode
project. You can use it with the following console
commands:

pear channel-discover pear-smarty.googlecode.com/svn

pear install smarty/smarty

UNIX/Linux has packages for various package managers,
so you can install Smarty with the following command:

apt-get install smarty3

Web content generated by Smarty relies on Smarty tags
placed within documents (templates), later to be processed
and substituted with PHP code. This is done by the
template engine, allowing people working on application
development to keep their work more organized and less
reliant on the progress of others.

Smarty tags can be functions, loops, variables, or logical
statements. These directives are enclosed in template
delimiters and are used by Smarty's parser while the
template is processed later. It is possible for PHP

571

programmers to define custom functions that can be
invoked using Smarty tags. The following code is an
example implementation of Smarty. First is the PHP file
that acts as the controller:

<?php

require ‘libs/Smarty.class.php’;

$smarty = new Smarty;

$smarty->template_dir = ‘templates/’;

$smarty->compile_dir = ‘templates/compile/’;

$smarty->cache_dir = ‘templates/cache/’;

$smarty->assign(‘title’, ‘Smarty example’);

$smarty->assign(“frameworks”, array(‘Symfony’, ‘CakePHP’, ‘Zend Framework’));

$smarty->display(‘index.tpl’);

?>

code snippet /templates/smarty/index.php

On top of the standard inclusion of a template engine class
and the creation of its object, you usually need to set three
paths for Smarty. The template directory is where Smarty
looks for template files. Next the compile and cache files,
which need to be writable, are placed where the processed
templates will be compiled and cached. The variable

572

assignment is done through the $smarty->assign()
function that takes two parameters. The first parameter is
the name of the variable, through which it will be visible in
the template file, and the second parameter is the value to
be passed to the template.

The template file used by this PHP script may look like
this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”

“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html>

<head>

<title> {$title} </title>

<meta http-equiv=”content-type” content=”text/html; charset=utf-8” />

</head>

<body>

<h1>List of covered frameworks</h1>

{* Smarty comment *}

<div>

{section name=row loop=$frameworks}

{strip}

573

{$smarty.section.row.index}) {$frameworks[row]}

{/strip}

{/section}

</div>

{include file=”footer.tpl”}

</body>

</html>

code snippet /templates/smarty/templates/index.tpl

To print the passed variables into the template file the
{$variable} syntax is used. The syntax for commenting
looks like this: {* comment *}. {section}. It is used to
encapsulate fragments of Smarty code; in this case, it is
Smarty's equivalent of the foreach loop. And at the end,
{include} is used to include other templates. In the
preceding code, the template file is footer.tpl. It is not
introduced here, so just create another empty template. The
resulting image for this example is shown in Figure 9.6.

Figure 9.6 Printing the passed variables in the template
file

As you can see in the preceding example, the mechanics
offered by Smarty allow web page functionality to be
modified separately from the presentation part. This allows

574

developers to simplify and enhance workflow as well as
the software maintenance process.

You read at the beginning of this section that template
engines receive some criticism. This is no different with
Smarty because it replicates features offered natively by
PHP, causing additional processing overhead. Actually,
this general opinion could have originated from Smarty; at
the early development stage of Smarty, server resources
were not as cheap as they are today, to say the least. Today
Smarty3 offers caching that greatly mitigates this problem;
however, it was one of the first template engines and its
early versions have influenced the general opinion.
Additionally, any developers who wish to use Smarty need
to learn the Smarty new pseudo-language.

PHP frameworks' view components usually provide most
of the benefits offered by Smarty without sacrificing
performance and adding the unnecessary complexity of
learning a new language. This makes integration of such
template engines with frameworks rather questionable. To
make things worse, without well-maintained plug-ins or at
least strong documentation, the template engines can be
really hard to integrate with any framework.

Smarty for Zend Framework

The integration of Smarty with Zend Framework is a good
example of how loosely coupled framework architecture
results in its extensibility. Combined with good
documentation on both sides, the process is fairly simple.

575

First you need to build a Smarty handling library. And of
course, you must have Smarty installed prior to this. This
library just replaces Zend View calls by Smarty methods.
It extends the Zend_View class by an interface that has all
the Zend_View methods; that's why this integration is so
easy.

Create the SmartyView.class.php file in the /library
folder of ZF. At the beginning of this file, import Smarty.
(The path shown in the following code in bold is relevant
for standard Linux installations; you need to provide the
valid path for your environment.)

Create the constructor for your Zend_View_Smarty
adapter class. It will take at least two arguments: the path
to your template files folder, the path to the compilation
results folder, and an optional array of extra parameters.
Most of this class consists of getters and setters that
translate Zend View arguments into Smarty fields. The last
method passes a rendering of the view to the Smarty
template. Now fill the SmartyView.class.php file with
following code:

<?php

require_once(“/usr/share/php/smarty/Smarty.class.php”);

class Zend_View_Smarty implements Zend_View_Interface {

public $_smarty;

576

public function __construct($tmplPath = null, $cmplPath = null,

$extraParams = array()) {

$this->_smarty = new Smarty;

if (null !== $tmplPath) {

$this->setScriptPath($tmplPath);

$this->setCompilePath($cmplPath);

}

foreach ($extraParams as $key => $value) {

$this->_smarty->$key = $value;

}

}

public function getEngine() {

return $this->_smarty;

}

public function setScriptPath($path) {

if (is_readable($path)) {

$this->_smarty->template_dir = $path;

return;

}

throw new Exception(‘Invalid path provided’);

}

public function getScriptPaths() {

return array($this->_smarty->template_dir);

577

}

public function setCompilePath($path) {

if (is_readable($path)) {

$this->_smarty->compile_dir = $path;

return;

}

throw new Exception(‘Invalid path provided’);

}

public function getCompilePaths() {

return array($this->_smarty->compile_dir);

}

public function setBasePath($path, $prefix = ‘Zend_View’) {

return $this->setScriptPath($path);

}

public function addBasePath($path, $prefix = ‘Zend_View’) {

return $this->setScriptPath($path);

}

public function __set($key, $val) {

$this->_smarty->assign($key, $val);

}

public function __isset($key) {

return (null !== $this->_smarty->get_template_vars($key));

}

578

public function __unset($key) {

$this->_smarty->clear_assign($key);

}

public function assign($spec, $value = null) {

if (is_array($spec)) {

$this->_smarty->assign($spec);

return;

}

$this->_smarty->assign($spec, $value);

}

public function clearVars() {

$this->_smarty->clear_all_assign();

}

public function render($name) {

return $this->_smarty->fetch($name);

}

}

code snippet /templates/zf/library/SmartyView.class.php

Create the controller and load your adapter library, shown
in bold in the next snippet. Now ZF's init() method
comes in handy because you can easily replace the view of
this controller before any other methods are called. This
single line (segmented to fit the page) is shown in bold as

579

well. Again you need to supply the proper paths for your
environment.

The next few lines demonstrate the power of Zend
Framework libraries. They allow you to get the
ViewRenderer helper and then configure paths and the
file suffix to work neatly with the adapter view. Create the
IndexController.php file and fill it with following
code:

<?php

require_once(“../library/SmartyView.class.php”);

class IndexController extends Zend_Controller_Action {

public function init() {

$this->view =

new Zend_View_Smarty(

“/home/wrox/public_html/application/views/templates/”,

“/home/wrox/public_html/application/views/compile/”

);

$viewRenderer =

Zend_Controller_Action_HelperBroker::getStaticHelper(‘ViewRenderer’);

$viewRenderer->setView($this->view)

580

->setViewBasePathSpec($this->view->_smarty->template_dir)

->setViewScriptPathSpec(‘:controller/:action.:suffix’)

->setViewScriptPathNoControllerSpec(‘:action.:suffix’)

->setViewSuffix(‘tpl’);

}

public function indexAction() {

$this->view->name = “Wrox”;

}

}

code snippet /templates/zf/application/controller/

IndexController.php

This controller handles all its methods, but you can go
even further and include the init() part into the
bootstrap. You will then have all the controllers use the
adapter view by default.

Finally, create a simple index view file like the following:

Smarty works! {$name}

code snippet /templates/zf/application/views/templates/

index/index.tpl

581

Note that the path of this view is created with a pattern
very similar to the Zend View views:
/templates/controller/action. The {$name} Smarty
tag produces the $this->view->name variable set in the
indexAction() method of the controller. The output is
presented in Figure 9.7.

Figure 9.7 Smarty template in Zend Framework

Smarty for Symfony and CakePHP

Integrating Smarty with Symfony and CakePHP, even
when using ready-to-use plug-ins, can be a real pain in the
neck and the profits still are marginal. The Symfony
plug-in installation doesn't work. You can install Smarty
manually instead, but you have to put in a lot of work to
get this solution working with Symfony's command-line
interface (CLI) code-generating tools.

Smarty can be integrated with CakePHP using
SmartyView; it was recently updated to work with
CakePHP 1.3 only, and it appears to have problems
working without conflict with various versions of the
Smarty engine. So you can waste a lot of time to figure out
a working set among CakePHP, SmartyView, and Smarty.
In the best-case scenario, you end up with a

582

non-upgradable application using old versions of both the
framework and the template engine.

You should not try these solutions unless you are a really
experienced developer who has some spare time.

Dwoo

The Dwoo template engine (the logo is shown in Figure
9.8) is quite similar to Smarty, but is written entirely in
PHP 5.0. In many aspects, Dwoo is compatible with
Smarty's templates and plug-ins because Dwoo's authors
based it on the general ideas that Smarty has introduced to
the world of web development. Dwoo takes advantage of
the new features offered by PHP 5.0, so it is a well-written,
object-oriented template engine that allows easier and
faster development compared with Smarty, and still it is
compatible enough to allow developers using Smarty to
make a smooth transition to Dwoo—and vice versa. What's
more, Dwoo offers adapters that help developers integrate
it into web frameworks such as CakePHP, Zend
Framework, Code Igniter, Agavi, or Yii. Utilizing this
feature, you will learn how to integrate Dwoo into
CakePHP.

Figure 9.8 Dwoo template engine logo

583

The Dwoo template engine is released under a modified
BSD license. (The Dwoo website is http://dwoo.org/.)

CakePHP

To make your application use Dwoo, first you need to get
the package from http://dwoo.org/ and extract the library to
the /vendor directory of your application (for example,
/app/vendors/dwoo). You can use a different directory
if you wish, but it requires an additional adjustment of line
3 in the dwoo.php file. By default, it looks like this:

App::import(‘vendor’, ‘dwoo’, array(“file” => ‘dwooAutoload.php’));

The second step is to place the /Dwoo/Adapters/
CakePHP/dwoo.php file from the package into the /app/
views directory of your application. In the last step, you
need to create the /app/tmp/dwoo/cache and the /app/
tmp/dwoo/compile directories. Those directories should
have write privileges.

It is possible to use a different template file extension than
the default .tpl. To do so, you need to modify the
dwoo.php file. Line 44 has the following line, which gives
you the option to change the template file extension that
Dwoo will use:

$this->ext = ‘.tpl’;

584

code snippet /templates/cakephp/app/views/dwoo.php

Let's move on with the example. As usual, you must set the
routing for this project by adding the following line in the
routes.php file:

Router::connect(‘/
dwoo’, array(‘controller’ => ‘dwooexample’, ‘action’ => ‘index’));

code snippet /templates/cakephp/app/config/routes.php

Next you need to create a model file and configure it not to
use the database:

<?php

class Dwooexample extends AppModel {

var $useTable = false;

}

code snippet /templates/cakephp/app/models/

dwooexample.php

585

Then there is the controller file, in which you need to
import dwooAutoload.php and set the beforeFilter()
function with autoRender set to false. It is marked with
bold in the following code. Doing so disables the standard
CakePHP template files. The rest of Dwoo-related code is
located in the index() function. Three objects are created:
one is the main Dwoo object, the second object loads the
template file, and the last one creates the object for storing
data:

<?php

App::import(‘Vendor’, ‘dwoo’, array(‘file’ => ‘dwooAutoload.php’));

class DwooexampleController extends AppController {

function beforeFilter() {

$this->autoRender = false;

}

function index() {

$dwoo = new Dwoo();

$tpl = new Dwoo_Template_File(‘../views/dwooexample/index.tpl’);

$data = new Dwoo_Data();

$frameworks = array(‘sf’ => ‘Symfony’,

‘ck’ => ‘CakePHP’,

586

‘zf’ => ‘Zend Framework’);

$data->assign(‘frameworks’, $frameworks);

$dwoo->output($tpl, $data);

}

}

?>

code snippet /templates/cakephp/app/controller/

dwooexample_controller.php

At the end, the data is assigned to be displayed by the
template file, and finally the template file is rendered.

Now you can use Dwoo template files to display data, as
shown in the following code:

<h1>List of covered frameworks</h1>

<p>{$frameworks[sf]}</p>

<p>{$frameworks[ck]}</p>

<p>{$frameworks[zf]}</p>

code snippet /templates/cakephp/app/views/dwooexample/

index.tpl

The resulting image is shown in Figure 9.9.

587

Figure 9.9 Dwoo template engine example in CakePHP

Unfortunately, this solution is not really what you want to
get. It allows you to use only Dwoo templates, while
CakePHP templates are not rendered, including the main
layout file. This is similar to using Dwoo as a stand-alone
application with a library that provides you with CakePHP
controller functions.

This section has demonstrated just a crude example of how
to get things done. To make Dwoo global for the whole
project you would have to write a component that would
map Dwoo to the CakePHP view, but this is beyond the
scope of this book. Frankly speaking, this is a job that
should be done by Dwoo developers if they really want it
integrated with CakePHP.

Dwoo for Symfony and Zend Framework

You could try to integrate Dwoo with Symfony, but it
would be hard because Symfony's file–generation CLI
tools do not work with it, and there is no Dwoo plug-in for
Symfony. You can also try to develop a new plug-in that
would support Dwoo. For today, however, Symfony
doesn't support Dwoo.

588

You can use Dwoo in Zend Framework by integrating its
libraries with a ZF project. This is not an easy task, mainly
because of Dwoo's disastrous documentation, some
sections of which are now written in three different
languages at random, so we don't recommend using ZF
with Dwoo. In fact, it is hard to recommend using Dwoo
with any framework, even if it is a worthy template engine
for stand-alone projects.

Twig

Twig is one of the most full-featured modern PHP
template engines and also one of the fastest. Twig
compiles the templates down to plain optimized PHP code,
so the overhead is minimal. It features native template
inheritance in which templates are compiled as classes,
automatic auto-escaping is done during compilation, and it
has a secure sandbox mode. All these features give Twig
great extensibility. A flexible lexer and parser allow the
developer to define his own custom tags, filters, and much
more.

Website: http://www.twig-project.org

License: MIT

Twig (the logo is shown in Figure 9.10) was developed by
Sensio Labs and is an integral part of Symfony 2.0. We
can't show you how to integrate Twig with Symfony
because it is compatible only with old Symfony versions,
so we will show you how to use Twig with Symfony 2.0
beta. Note that many things may change between now and
the stable release of this framework.

589

Figure 9.10 Twig logo

Twig is packaged together with Symfony 2.0 by default. If
you downloaded the Symfony 2.0 sandbox app (the default
approach used in this example), you can find the Twig
libraries in following directory: /src/vendor/twig/
lib/. You can also install Symfony 2.0 by PEAR. In both
cases, you don't have to install Twig separately. However,
if you want to install just the Twig alone, you can do it by
PEAR using following console command:

$ pear channel-discover pear.twig-project.org

$ pear install twig/Twig

Some configuration needs to be done. Find the
config.yml file and add the bold lines shown in the
following listing:

kernel.config:

590

charset: UTF-8

error_handler: null

web.config:

csrf_secret: fsnbfw7e5y593hrt4057541y01h410t80

router: { resource: “%kernel.root_dir%/config/routing.yml” }

validation: { enabled: true, annotations: true }

web.templating:

escaping: htmlspecialchars

twig.config:

auto_reload: true

code snippet /templates/symfony2/app/config/config.yml

You can set the environment-related options in the
config_prod.yml and config_test.yml files,
although it is optional. YAML is the default format, but
you can switch to XML or simply PHP if you like.

Create a controller like the one shown in the following
code. The only difference from a standard Symfony 2.0
controller is highlighted with bold font. It sets the Twig
template to be used by this action:

<?php

591

namespace Application WroxBundle Controller;

use Symfony Bundle FrameworkBundle Controller Controller;

class WroxController extends Controller

{

public function indexAction($name)

{

return $this->render(‘WroxBundle:Hello:index:twig’, array(‘name’ => $name));

}

}

code snippet /templates/symfony2/src/Application/Bundle/

WroxBundle/Controller/WroxController.php

The final page will be rendered using two files. First
change the main layout into something like this:

{% extends “::layout” %}

{% block body %}

<h1>Wrox Example</h1>

{% block content %}{% endblock %}

{% endblock %}

592

code snippet /templates/symfony2/src/Application/Bundle/

WroxBundle/Resources/views/layout.twig

It will print the “Wrox Example” title for every view.

And finally, make a view to fill the {% block content
%}{% endblock %} tags. The view uses the $name
variable from the controller. The |upper switch makes it
uppercase:

{% extends “WroxBundle::layout” %}

{% block content %}

Hello {{ name|upper }}!

{% endblock %}

code snippet /templates/symfony2/src/Application/Bundle/

WroxBundle/Resources/views/Wrox/index.twig

The output is shown in Figure 9.11.

Figure 9.11 Twig template example

593

Twig is dedicated for Symfony 2.0, but you can try to
include it as a library for any other framework with the
following code:

<?php

require_once ‘lib/Twig/Autoloader.php’;

Twig_Autoloader::register();

$loader = new Twig_Loader_String();

$twig = new Twig_Environment($loader);

$template = $twig->loadTemplate(‘Wrox {{ test }}!’);

$template->display(array(‘test’ => ‘example’));

The first two lines can go to a bootstrap file or initializing
method and the next four lines allow you to use Twig
within a controller.

Overview of Other Add-on Template Engines

There is a large variety of PHP template engines available
for use. From more than 50 known PHP template engines,
implementation of only 3 was shown in the previous
section. This section presents a handful of other valuable
template engines. The code snippets presented here are just
plain PHP files and templates to make you familiar with

594

the templating languages. Integration with web
frameworks, if possible, should be similar to those shown
in the previous section.

Template Blocks

Template Blocks is a visual template engine, which means
that it uses an AJAX interface to let the developer handle
everything through online forms in the browser. There is
no need to write everything by yourself because a
significant part of site building is done simply by dragging
blocks, as you can see in Figure 9.12.

Figure 9.12 Page building using the Template Blocks
drag-and-drop interface

Website: http://www.templateblocks.com

595

License: GPL

Open Power Template (OPT)

One of the few template engines written natively in PHP
5.0, the Open Power Template (OPT) is a powerful and
rapidly developing tool. Its logo is shown in Figure 9.13. It
uses a domain-specific XML template language for
creating templates. Its API is object-oriented by design,
which helps in integration with frameworks. It is well
documented as part of a bigger set of tools: the Open
Power Library. We recommend that you check this one
out!

Figure 9.13 Open Power Template logo

Website: http://www.invenzzia.org/en/projects/
open-power-libraries open-power-template

License:

• Open Power Template 2.0: BSD-new
• Open Power Template 1.1: GNU LGPL

The following code shows an example implementation.
First the controlling PHP file needs some additional
configuration. The path to OPT is set, template directories
are defined, the OPT object is created, and finally the
setup() method is called:

596

<?php

require(‘../lib/Opl/Base.php’);

Opl_Loader::setDirectory(‘../lib/’);

Opl_Loader::register();

$tpl = new Opt_Class;

$tpl->sourceDir = ‘templates/’;

$tpl->compileDir = ‘templates_c/’;

$tpl->setup();

$view = new Opt_View(‘index.tpl’); // Load template

$view->pageTitle = ‘List of covered frameworks’;

$view->list = array(‘Sf’ => ‘Symfony’,

‘Cake’ => ‘CakePHP’,

‘ZF’ => ‘Zend Framework’);

$view->setFormat(‘list’, ‘Array’);

$output = new Opt_Output_Http;

$output->render($view);

code snippet /templates/opt/index.php

Compared with other template engines, setting up OPT
gives more configuration options. In OPT, templates are

597

loaded before the variables are assigned. And as you can
see in the following code, OPT gives developers some
additional tags that generate common fragments of web
pages or cover common tasks such as the foreach loop
made using the <opt:foreach> tag. Displaying variables
is exactly the same as in Smarty: by using {$variable}:

<?xml version=”1.0” ?>

<opt:root>

<!-- generate an XML prolog for the browser -->

<opt:prolog version=”1.0” />

<!-- generate the DTD for the browser from a template -->

<opt:dtd template=”xhtml10transitional” />

<html>

<head>

<title>{$pageTitle}</title>

</head>

<body>

<h1>List of covered frameworks</h1>

<opt:foreach array=”$list” index=”short” value=”value”>

<p>{@short} - {@value}</p>

598

</opt:foreach>

</body>

</html>

</opt:root>

code snippet /templates/opt/index.tpl

You can see the output of these two files in Figure 9.14.

Figure 9.14 Page content rendered using OPT

TinyButStrong

What can be said about this template engine is that it is
indeed tiny, which means one file and one PHP class! It
has a few distinguishing features. It can natively work with
MySQL, SQLite, and PostgreSQL. And it is not restricted
to working with HTML files: it can work with XML, RTF,
and WML files; and also with document files of
OpenOffice and Microsoft Office.

Website: http://www.tinybutstrong.com

License: GNU LGPL

599

The following code shows an example implementation. It
begins with the controlling PHP file, which is quite
elegant. Then there is the standard class inclusion and
template engine object creation at the beginning. Loading
the template is done using the aptly named
LoadTemplate() function. Variables are assigned as in a
standard PHP file. An array variable is assigned by using
the MergeBlock() function. Finally, the template is
rendered using the Show() method:

<?php

include_once(‘tbs_class_php5.php’);

$TBS = new clsTinyButStrong;

$TBS->LoadTemplate(‘index.htm’);

$title = ‘List of covered list’;

$list = array(‘Symfony’, ‘CakePHP’,‘Zend Framework’);

$TBS->MergeBlock(‘list’, $list);

$TBS->Show();

code snippet /templates/tiny/index.php

Next, the following code shows the template file that uses
minimalistic syntax to display variables. If the $list
variable was set, the [list.val;block=p] block can be

600

used to render blocks of <p> </p> tags filled with the
items from the $list variable:

<html>

<head>

<title>[onshow.title]</title>

</head>

<body>

<h1>List of covered frameworks</h1>

<p>[list.val;block=p]</p>

</body>

</html>

code snippet /templates/tiny/index.htm

You can see the output of these two files in Figure 9.15.

Figure 9.15 Page content rendered using the
TinyButStrong template engine

601

Rain TPL

This template engine is a part of the Rain framework, but it
can be used stand-alone as well. It is quite small (only two
files) and comes in a package with a simple example that
can help you get familiar with it.

Website: http://www.raintpl.com

License: GNU GPL

An example implementation is illustrated by the two
following files. Again the controller goes first:

<?php

//include the RainTPL class

include “inc/rain.tpl.class.php”;

//initialize a Rain TPL object

$tpl = new RainTPL(‘tpl’);

602

//assign title variable

$tpl->assign(“title”, ‘List of covered frameworks’);

// assign array variable

$frameworks = array(1 => ‘Symfony’,

2 => ‘CakePHP’,

3 => ‘Zend Framework’);

$tpl->assign(“frameworks”, $frameworks);

//draw the template

echo $tpl->draw(‘index’);

?>

code snippet /templates/rain/index.php

The PHP file, in this case called index.php, begins with
the RainTPL class, and then a new Rain TPL object is
created. Data preparation is done as in standard PHP code,
but variables that are to be passed to the template file are
assigned using the assign() method of the Rain TPL
object. Finally, index.html, shown following, is rendered
using prepared data:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN” >

<html>

603

<head>

<meta http-equiv=”Content-Type” content=”text/html; charset=utf-8” >

<title>{$title}</title>

</head>

<body>

<h1>List of covered frameworks</h1>

{loop name=”frameworks”}

<p>

{$key }) {$value}

</p>

{/loop}

</body>

</html>

code snippet /templates/rain/index.html

The page title is printed using {$title} syntax. In the
page body, three paragraphs are generated using the
{loop}{/loop} statement. The variables $key and
$value are generated automatically using {loop} on the
frameworks array. The resulting page looks like the one
illustrated in Figure 9.16.

Figure 9.16 Page content rendered using Rain template
engine

604

Savant

Savant (the logo is shown in Figure 9.17) is a somewhat
unique template engine because of the language it uses. In
most cases, developers need to learn a new markup
language when they start using a new template engine. In
Savant this is not the case because its templates use PHP.

Figure 9.17 Savant3 logo

Website: http://phpsavant.com

License: GNU LGPL

Most of Savant's syntax is identical to PHP, so in the
following code the first Savant3.php file is included into
the index.php file and then the Savant3 object is
created. Variables are assigned as if they were variables of
the Savant3 object called $tpl in this example. The
template to be displayed is selected by the
$tpl->display() method:

605

<?php

// Load the Savant3 class file and create an instance.

require_once ‘Savant3.php’;

$tpl = new Savant3();

// Set title

$title = “List of covered frameworks”;

// Prepare data

$frameworks = array(

array(

‘nr’ => ‘1’,

‘short’ => ‘Sf’,

‘name’ => ‘Symfony’

),

array(

‘nr’ => ‘2’,

‘short’ => ‘Cake’,

‘name’ => ‘CakePHP’

),

array(

606

‘nr’ => ‘3’,

‘short’ => ‘ZF’,

‘name’ => ‘Zend Framework’

)

);

// Assign values to the Savant instance.

$tpl->title = $title;

$tpl->frameworks = $frameworks;

// Display a template

$tpl->display(‘index.tpl.php’);

?>

code snippet /templates/savant/index.php

The template file uses the .tpl.php extension; in this
case, the file is the index.tpl.php file. Variables are
displayed using the $this object and the eprint()
method:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN” >

<html>

<head>

<meta http-equiv=”Content-Type” content=”text/html; charset=utf-8” >

607

<title><?php echo $this->eprint($this->title); ?></title>

</head>

<body>

<h1>List of covered frameworks</h1>

<table>

<tr>

<th>Nr.</th>

<th>Short</th>

<th>Framework name</th>

</tr>

<?php foreach ($this->frameworks as $key => $val): ?>

<tr>

<td><?php echo $this->eprint($val[‘nr’]); ?></td>

<td><?php echo $this->eprint($val[‘short’]); ?></td>

<td><?php echo $this->eprint($val[‘name’]); ?></td>

</tr>

<?php endforeach; ?>

</table>

</body>

</html>

code snippet /templates/savant/index.tpl.php

Standard echo() and print() functions can be used to
display variables, but the $this->eprint() method

608

automatically escapes the output. This helps to protect
your page against XSS scripting attacks. The result of this
example is illustrated in Figure 9.18.

Figure 9.18 Page content rendered using Savant3

Because the templates in Savant are regular PHP files, it
can be said that Savant is not an interpreted template
system (that means they are interpreted a second time
inside PHP). This feature makes Savant one of the fastest
template engines available. It is also very well commented
and easy to extend. Developers can use their own
interpreters inside Savant to use any template markup
system.

609

Chapter 10

AJAX

It was a joke, okay? If we thought it would actually be
used, we wouldn't have written it!

—Mark Andreessen, speaking of the HTML tag BLINK

What's In This Chapter?

• Introducing AJAX

• Including autocomplete feature into your text fields

• Using pop-up windows

• Making an AJAX chat

In Greek mythology, Ajax was a Titan who supported the
heavens on his back. This applies to AJAX as well, but
instead of the heavens, this technology supports the whole
world of modern interactive websites. (Well, OK, the
Titan's name was Atlas, but it doesn't really matter as long
as the trope is valid, right? Just look at what AJAX is
capable of!)

In many ways, AJAX has become a hallmark of modern
web applications. Users expect autocomplete, updating
content without reloading, and other AJAX goodies. And
sometimes they get angry with a web page that doesn't
provide it.

AJAX, which stands for Asynchronous JavaScript and
XML, is a web development technique that provides web
developers with the capability to create dynamic and

610

interactive web applications. Applications developed using
AJAX perform all the operations on the client side and can
communicate with a server to retrieve data that results
from running various scripts and database queries. Data
retrieved from a server using the XMLHttpRequest object
can be used to update website content without the
necessity of reloading the entire page or influencing the
application's behavior.

There is also another similar technique:
Asynchronous HTML and HTTP (AHAH),
which uses XHTML instead of XML for
data retrieval. It allows for easier
development with less code, but is not as
popular as AJAX.

Introducing AJAX

Let's start with two clarifications concerning the AJAX
name. The first letter of AJAX stands for asynchronous

because the client communicates with the server
asynchronously, mainly because of the interactive interface
of AJAX web pages and the dynamic content sent back
from the server. This isn't always true because the server
queries do not need to be asynchronous. Also, the X in
AJAX stands for XML, but the developer does not need to
use XML anywhere to perform complex AJAX actions,
although it is good practice in this technology.

611

So, what exactly is AJAX and how does it work? AJAX is
not a software package; it is not a software library, a
programming language, a markup language, or a
communication protocol. It is actually a little of every
technology used in web development tied up together to
achieve some miraculous results. The easiest way to grasp
the concept behind AJAX is to understand how it
processes a portion of data. The following example is
meant to illustrate the basic mechanics of AJAX:

<html>

<head>

<script type=”text/javascript”>

function loadNewContent() {

if (window.XMLHttpRequest) { //support for IE7+, Firefox, Chrome, Opera, Safari

xmlhttp = new XMLHttpRequest();

}

else { //support for IE6, IE5

xmlhttp = new ActiveXObject(“Microsoft.XMLHTTP”);

}

xmlhttp.onreadystatechange=function() {

if (xmlhttp.readyState==4 && xmlhttp.status==200) {

612

document.getElementById(“ajax_content”).innerHTML=xmlhttp.responseText;

}

}

xmlhttp.open(“GET”,”ajax_script.php”,true);

xmlhttp.send();

}

</script>

</head>

<body>

<div id=”ajax_content”>

<h2>Page content</h2>

<p>This content will reload after you press the button</p>

<button type=”button” onclick=”loadNewContent()”>Use AJAX</button>

</div>

</body>

</html>

code snippet /introduction/index.html

As you can see, the index.html file contains a basic
HTML structure with little content and one JavaScript
function that is called when the button is pressed. This
function is called thanks to the DHTML onclick action.
The loadNewContent() function first creates a new
XMLHttpRequest object, and then there is a function
declared that is responsible for updating the content of the

613

HTML element with ajax_content ID. This second
function is called automatically each time the readyState
property of the document changes. The content used for
updating is a result of running ajax_script.php script.
The code presented so far will render content like that
shown at the left in Figure 10.1.

Figure 10.1 On the left—sample page content. On the
right—content reloaded using AJAX

Then, when the Use AJAX button is clicked, the following
code will be loaded through the AJAX XMLHttpRequest
object:

<?php

echo ‘<h2>AJAX loaded page content</h2>

Bold title

<p style=”color: red;”>

Red color text paragraph

</p>’;

?>

614

code snippet /introduction/ajax_script.php

Loaded content will replace the current content without
reloading the whole page, and the image illustrated to the
right in Figure 10.1 will be rendered.

The XMLHttpRequest object has two status parameters:
the readyState and status. These properties allow
developers to perform certain actions corresponding to
various status changes.

The xmlhttp.readyState variable holds the current
state of the XMLHttpRequest. It is denoted as an integer
and may have the following values:

• 0—Request not initialized
• 1—Server connection established
• 2—Request received
• 3—Processing request
• 4—Request finished and response is ready

When the readyState property changes, an event is
triggered. It results in execution of the function stored in
onreadystatechange. You can store just the name of a
function there instead.

The xmlhttp.status variable can take two values: 200
and 404. The first one means that everything went well,
and the second one means that page (or script in this case)
was not found, and results in the famous “404 error.”

This basic example should explain the concept of AJAX
technology. In short, the Document Object Model (DOM)
provides tools that allow manipulation of page content,

615

while JavaScript and XMLHttpRequest objects are used to
update web document structure. PHP or any scripting
language used by the server can prepare web content that
later is inserted into the current document structure. These
scripts could be run as standalone scripts, without any
participation of AJAX. Finally, AJAX utilizes HTML and
CSS to present style-generated page content.

Autocomplete

Autocomplete is a great feature that was introduced for the
first time in desktop software such as command-line
interpreters and code editors. In web applications,
autocompletion arrived with the increasing popularity of
JavaScript and found its place in online search engines
such as Google, Yahoo, and Altavista. Now users expect
this improvement in every web app.

There is a large variety of ready-to-use AJAX scripts that
can easily be integrated with your applications, although
web frameworks usually have some kind of solutions for
that as well. For instance, CakePHP has an AJAX helper
that gives you the option to use autocomplete very easily.
Zend Framework has the ZendX library that includes
jQuery autocomplete, and Symfony can use
sfJqueryReloadedPlugin or sfFormExtraPlugin to achieve
the same results.

Symfony

In this example, the autocomplete feature is realized for
Symfony, thanks to sfJqueryReloadedPlugin. This plug-in
gives you access to the

616

jq_input_auto_complete_tag() function that can be
used in forms to create autocomplete elements.
Alternatively, sfFormExtraPlugin, used in Chapter 5, gives
you access to a number of widgets that enhance the
form-building process. This plug-in includes the
sfWidgetFormJQueryAutocompleter widget as well, and it
can be used to create autocomplete form fields.

Moving to the sfJqueryReloadedPlugin installation, it is a
standard procedure, as with any Symfony plug-in. In your
command console you need to call the following command
from the project directory:

$ symfony plugin:install sfJqueryReloadedPlugin

Cache clearing is suggested, too:

$ symfony cache:clear

The database table used to provide suggested values in the
autocomplete field is defined by the following
schema.yml file:

Mails:

connection: doctrine

tableName: mails

columns:

617

id: {type: integer(4) fixed: false unsigned: false

primary: true autoincrement: true}

email: {type: string(32) fixed: false unsigned: false

primary: false notnull: true autoincrement: false}

code snippet /autocomplete/symfony/config/doctrine/

schema.yml

Then you need to build it using the following command in
your console:

$ symfony doctrine:build --all

If you wish to use styles for autocomplete, it is a good idea
to modify the view.yml file and add the
JqueryAutocomplete stylesheet. It should look as
follows:

default:

metas:

stylesheets: [main.css, JqueryAutocomplete]

code snippet /autocomplete/symfony/apps/frontend/config/

view.yml

The most important fragment of this implementation is the
actions file, in which the executeList() action is

618

defined. It is responsible for generating a list of suggested
values for the autocomplete input form element. The data
is taken from a database and displayed by the list view:

<?php

class addressbookActions extends sfActions {

public function executeIndex(sfWebRequest $request){

}

public function executeList(sfWebRequest $request) {

$query = $request->getParameter(‘query’);

$q = Doctrine_Query::create()

->from(‘mails’)

->andWhere(‘email like ?’, ‘%’ . $query . ‘%’)

->addOrderBy(‘email’)

->limit(10)

->execute();

$this->results = $q;

}

}

code snippet /autocomplete/symfony/apps/frontend/

modules/addressbook/actions/actions.class.php

619

The view file responsible for displaying the form element
with the autocomplete option looks as follows:

<?php use_helper(‘jQuery’); ?>

<?php echo jq_input_auto_complete_tag(‘query’,‘’,‘addressbook/

list’,array(),array());?>

code snippet /autocomplete/symfony/apps/frontend/

modules/addressbook/templates/indexSuccess.php

The second view file is responsible for displaying the
suggestion list, prepared by the list action from the
actions.class.php file:

<?php foreach($results as $res): ?>

<?php echo $res->getEmail().” n”; ?>

<?php endforeach; ?>

code snippet /autocomplete/symfony/apps/frontend/

modules/addressbook/templates/listSuccess.php

620

You can see the result of using the solution introduced
here in Figure 10.2.

Figure 10.2 Autocomplete created using the
jq_input_auto_complete_tag() function

CakePHP

There are a number of solutions that enable you to
implement autocomplete in most web applications. You
could use one of the many available JavaScript libraries or
simply use the CakePHP AJAX core helper. Because this
book is all about frameworks and their features, you will
see how to use the solution native to CakePHP.

The first thing necessary to implement autocomplete is to
create a database of words that will be autocompleted. In
this example, you can use the following SQL script to fill
the months table with names of months.

INSERT INTO ‘months’ (‘id’, ‘name’) VALUES

(1,‘January’), (2,‘February’), (3,‘March’), (4,‘April’),

(5,‘May’), (6,‘June’), (7,‘July’),(8,‘August’),

(9,‘September’), (10,‘October’), (11,‘November’), (12,‘December’);

621

The months table is now a part of the CakePHP database
and consists of two columns: id (autoincremented int) and
name (varchar(15)) that serves as the month name. The
following SQL query can help you generate this table:

CREATE TABLE IF NOT EXISTS ‘months’ (

‘id’ int(11) NOT NULL AUTO_INCREMENT,

‘name’ varchar(15) NOT NULL,

PRIMARY KEY (‘id’)

) ENGINE=MyISAM DEFAULT CHARSET=utf8;

You can use any words or phrases in the database, but we
advise that you use those suggested for this example,
especially if you are new to CakePHP. Otherwise, the table
name and variable names might be easy to confuse. The
goal for this example is to achieve a simple one-field form
that allows users to input a month name, as shown in
Figure 10.3.

Figure 10.3 Month input form

Moving on to the example, the layout file should contain
the JavaScript libraries used by the CakePHP AJAX
helper: prototype.js, scriptaculous.js,
effects.js and controls.js. Make sure that your
/app/webroot/js/ directory contains all the mentioned
libraries. You can get up-to-date versions of these scripts

622

from www.prototypejs.org and http://script.aculo.us/
downloads. The layout used in this example looks as
follows:

<html>

<head>

<?php

echo $html->css (“autocomplete”, “stylesheet”);

if (isset ($javascript)):

echo $javascript->link(‘prototype’);

echo $javascript->link(‘scriptaculous.js?load=effects’);

echo $javascript->link(‘controls’);

endif;

?>

</head>

<body>

<?php echo $content_for_layout ?>

</body>

</html>

code snippet /autocomplete/cakephp/app/views/layouts/

default.ctp

623

Note the order in which the JavaScript libraries are linked,
and that autocomplete.css is included in the <head>
section. The autocomplete.css file is used to modify
the style of the autocomplete box.

Set the routing to connect the web address http://localhost/
cake/autocomplete with the controller and one of its
actions by using the following line:

Router::connect(‘/autocomplete’,

array(‘controller’ => ‘autocomplete’, ‘action’ => ‘index’));

code snippet /autocomplete/cakephp/app/config/routes.php

Next, create the Month model file like this:

<?php

class Month extends AppModel {

var $name = ‘Month’;

var $useTable = ‘months’;

}

624

code snippet /autocomplete/cakephp/app/models/

month.php

The most important file is the
autocomplete_controller.php file located in the
/app/controllers/ directory. It is responsible for
processing actions, and needs to contain the
autoComplete() function that will be responsible for
creating the list of phrases matching text entered into a
form field using autocomplete. The controller file for this
example looks as follows:

<?php

class AutocompleteController extends AppController {

var $uses = ‘Month’;

var $helpers = array (‘Html’, ‘Javascript’, ‘Ajax’);

function index() {

}

function autoComplete() {

$months = $this->Month->find(‘all’,

array(‘conditions’ =>

array(‘Month.name LIKE’ =>

$this->data[‘Date’][‘month’].‘%’),

625

‘fields’ => array(‘name’)

));

$this->set(‘months’,$months);

$this->layout = ‘ajax’;

}

}

?>

code snippet /autocomplete/cakephp/app/controllers/

autocomplete_controller.php

So far, you should have the most important pieces needed
for autocompletion already in your form, but at this point
comes a twist. To use autocomplete in the form, you
actually need two view files. One is the standard view
matching the index action, and the second one is the view
that is used to display the list of words matching the input
text. Start with the view file that generates the suggestion
list. It will be called and filled with data by AJAX. This
file looks as follows:

<?php foreach($months as $month): ?>

<?php echo $month[‘Month’][‘name’]; ?>

626

<?php endforeach; ?>

code snippet /autocomplete/cakephp/app/views/

autocomplete/auto_complete.ctp

Now the view file is located in the same directory, contains
a small web form, and looks as follows:

<h1>AutoComplete example</h1>

<?php echo $form->create(‘Date’, array(‘url’ => ‘/autocomplete’)); ?>

<label for=”Date.month”>Month:</label>

<?php echo $ajax->autoComplete(‘Date.month’, ‘/autocomplete/
autoComplete’)?>

<?php echo $form->end(‘Post date’)?>

code snippet /autocomplete/cakephp/app/views/

autocomplete/index.ctp

As you can see in this code fragment, while calling the
$ajax->autoComplete() function, the form field is
created with the name parameter set to Date.month, and
/autocomplete/autoComplete.ctp is requested to
generate the suggestion list. The form shown in Figure
10.4 is rendered by the web browser.

627

Figure 10.4 Month input form with the suggestion box
visible

If you do not like how your suggestion box looks, you can
use styles such as those shown in this example. The
autocomplete.css stylesheet needs to be located in the
/app/webroot/css directory:

div.auto_complete {

position :absolute;

width :150px;

background-color :white;

border :1px solid #888;

margin :0px;

padding :0px;

}

li.selected {

background-color: #ffb;

628

}

div.auto_complete ul {

margin:0px;

padding:0px;

}

div.auto_complete li {

margin:0px;

padding:0 5px;

list-style-type: none;

}

code snippet /autocomplete/cakephp/app/webroot/css/

autocomplete.css

One more thing. If by any chance you have artifacts in
your suggestion box like those illustrated in Figure 10.5, it
is probably because of the configuration settings in the
/app/config/core.php file that contains the following
line:

Configure::write(‘debug’,2);

Figure 10.5 Artifacts displayed in the suggestion box

629

It is used to set the debugging level. These artifacts are
actually a summary of database queries that are run
whenever the suggestion box is updated. To solve this
problem, you simply need to change the debugging level
by modifying the configuration line as follows:

Configure::write(‘debug’,1);

Zend Framework

ZendX is an additional library that includes jQuery–based
view and form helpers that allow developers to enhance
their applications. It contains elements such as date-picker,
color-picker, slider, dialog container, and the autocomplete
feature, which you will learn how to use in your
application. Its stub is presented in Figure 10.6.

Figure 10.6 Basic form with color input field

630

In Zend Framework 1.10.8, the ZendX library is not a part
of the standard libraries yet. To be able to use ZendX, you
need to do a few things first. In the downloaded Zend
Framework package, you can find the /extras folder
containing the ZendX library. You need to copy this folder
into your /appName/library directory.

In the next step, add autoloaderNamespaces[] into
your application.ini file and set its value to ‘ZendX’.
Add this line under the [production] tag after the
database part, as shown in the following code fragment:

[production]

...

autoloaderNamespaces[] = “ZendX”

[staging : production]

code snippet /autocomplete/zf/application/configs/

application.ini

By enabling autoloader, it is now possible to use jQuery
JavaScript by loading it from the Google Ajax Library

631

content distribution network (CDN). It gives you the
possibility to load both jQuery and jQuery UI libraries.
What does this mean in practice? To load JavaScript files
in your layout file, the following method was generally
used:

<html>

<head>

<title>Autocomplete example</title>

<?php

echo $this->headScript()->appendFile(

$this->baseUrl(‘/js/jquery-1.4.3.min.js’)

);

echo $this->headScript()->appendFile(

$this->baseUrl(‘/js/jquery-ui-1.8.5.custom.min.js’)

);

?>

</head>

<body>

<?php echo $this->layout()->content; ?>

</body>

632

</html>

code snippet /autocomplete/zf/application/layouts/scripts/

layout.phtml

This required you to have all the included scripts stored
inside your application file structure (for example, in the
/appName/public/js/ folder). But now you can use the
following code (used also throughout this example):

<html>

<head>

<title>Autocomplete example</title>

<?php

echo $this->headLink();

echo $this->jQuery()->setVersion(‘1.4.3’)->setUiVersion(‘1.8.5’);

?>

</head>

<body>

<?php echo $this->layout()->content; ?>

</body>

</html>

633

code snippet /autocomplete/zf/application/layouts/scripts/

layout.phtml

By using the $this->jQuery() method, you make sure
that whenever jQuery is needed, it is loaded.
setVersion() specifies what version of jQuery you want
to use, and setUiVersion() specifies what version of
jQuery UI is loaded.

Now you can proceed to create the controller file. Here in
the init() function it is necessary to define the path to
the ZendX helper using the addHelperPath() method.
The autocompleteAction() function creates a new
element to be rendered in the view file. The form element
will work because autocomplete is created using the
autocompleteElement object. The configuration for this
object consists of a field label and a list of values from
which suggestions will be generated.

<?php

class IndexController extends Zend_Controller_Action

{

public function init() {$this->view->addHelperPath(

“ZendX/JQuery/View/Helper”, “ZendX_JQuery_View_Helper”);

}

634

public function autocompleteAction() {

$this->view->autocompleteElement = new

ZendX_JQuery_Form_Element_Autocomplete(‘ac’);

$this->view->autocompleteElement->setLabel(‘Color name:’);

$this->view->autocompleteElement->setJQueryParam(

‘data’, array(‘Red’, ‘Green’, ‘Blue’,‘Redish’, ‘Rose Red’)

);

}

}

code snippet /autocomplete/zf/application/controllers/

IndexController.php

Finally, the view file needs to be created. In the following
listing you can see that only the
$this->autocompleteElement object needs to be
called to make autocomplete work:

<h1>ZendX autocomplete example</h1>

<form>

<?php echo $this->autocompleteElement; ?>

</form>

635

code snippet /autocomplete/zf/application/views/scripts/

index/autocomplete.phtml

The left side of Figure 10.7 illustrates the result of running
the application in the browser by typing http://localhost/
appName/public/index/autocomplete.

Figure 10.7 On the left—autocomplete with suggested
values. On the right—autocomplete with styled suggested
values

Looking at the effect of this example so far, you may not
be entirely happy with the results. For one thing, you put
all the autocompleting values inside the controller file, and
this is a rough solution to say the least. And, of course, the
appearance is somewhat crude. You can take care of the
latter now because the jQuery user interface (UI) is a
JavaScript library that gives you the possibility to build
interactive web applications, and it comes with a number
of different visual style variants. For this example, the
ui-lightness theme was selected. You can download
any of the available styles from http://jqueryui.com/
download. After downloading the package, you need to
copy the theme folder (/ui-lightness) into your project
to the /addressBook/public/css/ directory. When
that's done, you need to link the downloaded stylesheet to

636

your layout file using the appendStylesheet() method.
The following code listing illustrates how this is done:

<html>

<head>

<title>Autocomplete example</title>

<?php

echo $this->headLink();

echo $this->headLink()->appendStylesheet(

$this->baseUrl(‘/css/ui-lightness/jquery-ui-1.8.5.custom.css’)

);

echo $this->jQuery()->setVersion(‘1.4.3’)->setUiVersion(‘1.8.5’);

/* alternative jQuery loading

echo $this->headScript()->appendFile(

$this->baseUrl(‘/js/jquery-1.4.3.min.js’));

echo $this->headScript()->appendFile(

$this->baseUrl(‘/js/jquery-ui-1.8.5.custom.min.js’)); */

?>

</head>

<body>

637

<?php echo $this->layout()->content; ?>

</body>

</html>

code snippet /autocomplete/zf/application/layouts/scripts/

layout.phtml

If all went well, and you updated your layout file, you
should get a result similar to the right side of Figure 10.7.
This should be more acceptable in terms of appearance.

Now you will see how to use a database to hold your
autocomplete data. Note that this topic is not about AJAX
itself, and it refers to the standard application to database
communication that was covered in Chapter 3 and Chapter
4. First, the database table can be created using the
following SQL query:

CREATE TABLE IF NOT EXISTS ‘colors’ (

‘id’ int(11) NOT NULL AUTO_INCREMENT,

‘name’ varchar(25) NOT NULL,

PRIMARY KEY (‘id’)

) ENGINE=MyISAM DEFAULT CHARSET=utf8;

INSERT INTO ‘colors’ (‘id’, ‘name’) VALUES

(1, ‘AliceBlue’), (2, ‘AntiqueWhite’), ...

The content was filled using a list of color names that are
supported by web browsers, although any other content

638

can be entered. Next, the model file needs to be created,
and for this example it can be the following:

<?php

class Application_Model_Color {

}

code snippet /autocomplete/zf/application/models/

Color.php

Then create the DbTable model file that looks like this:

<?php

class Application_Model_DbTable_Colors extends Zend_Db_Table_Abstract {

protected $_name = ‘colors’;

}

code snippet /autocomplete/zf/application/models/

DbTable/Colors.php

And the Color mapper used for this example is like the
following:

639

<?php

class Application_Model_ColorMapper {

protected $_dbTable;

public function setDbTable($dbTable) {

if (is_string($dbTable)) {

$dbTable = new $dbTable();

}

if (!$dbTable instanceof Zend_Db_Table_Abstract) {

throw new Exception(‘Invalid table data gateway provided’);

}

$this->_dbTable = $dbTable;

return $this;

}

public function getDbTable() {

if (null === $this->_dbTable) {

$this->setDbTable(‘Application_Model_DbTable_Colors’);

}

return $this->_dbTable;

}

640

public function fetchAll() {

$resultSet = $this->getDbTable()->fetchAll();

$entries = array();

foreach ($resultSet as $row) {

$entry = new Application_Model_Color();

$entries[] = $row->name;

}

return $entries;

}

}

code snippet /autocomplete/zf/application/models/

ColorMapper.php

When all model files are ready, the controller needs to be
modified slightly. Two new lines are introduced to the
controller. The first one creates the object that gives access
to database data. The second one fetches the name column
of the colors table. Finally the data is passed to the
autocompleteElement:

<?php

class IndexController extends Zend_Controller_Action{

641

public function init() {

$this->view->addHelperPath(

“ZendX/JQuery/View/Helper”,

“ZendX_JQuery_View_Helper”

);

}

public function autocompleteAction() {

$this->view->autocompleteElement = new

ZendX_JQuery_Form_Element_Autocomplete(‘ac’);

$this->view->autocompleteElement->setLabel(‘Color name:’);

$colors = new Application_Model_ColorMapper();

$colorList = $colors->fetchAll();

$this->view->autocompleteElement->setJQueryParam(‘data’, $colorList);

}

}

code snippet /autocomplete/zf/application/controllers/

IndexController.php

As a result, you should have the suggestion list generated
from the database. Figure 10.8 illustrates the final result of
this example.

Figure 10.8 Autocomplete-styled suggested values read
from database

642

Dynamic Popup Windows

Not long ago, popup windows were considered more of a
nuisance than something useful. A popup would usually
appear out of nowhere and cover the entire screen with
some kind of advertisement. Of course, those popup
windows had nothing to do with current AJAX technology
because they used an early browser mechanism that didn't
feature tabs. All web browsers currently protect users from
this kind of popup.

With the appearance of AJAX, new kinds of advertising
came to life, but at the same time AJAX opened a
completely new set of possibilities that could be used to
enhance web applications. Using AJAX it is easy to create
a child window that users can interact with. Such windows
are called modal windows. In Chapter 9 you read about
Lightbox, which is an excellent example of how AJAX can
generate modal windows with interactive content.

Another application of modal windows can be to display
additional information on a website (for example, warning
messages) without reloading it or modifying currently

643

visible content. Another great use of modal windows is to
block access to certain sections of a web application, by
forcing users to interact with the window (to log in, for
example).

In this section we discuss a few modal
window mechanisms that all allow the
same outcome and differ little in their
usage. We decided to show each of them
used with one framework only, but they
obviously can be used with every other
framework.

Symfony

For Symfony, this chapter shows two examples. One is
sfFlashMessagePlugin, which allows you to change the
default method of displaying messages to AJAX–based
message windows. The other one illustrates how to use
Lytebox script to create popup windows containing HTML
content.

sfFlashMessagePlugin

This plug-in relies on JqueryReloadedPlugin, which offers
easy integration of jQuery with your application. You can
read about JqueryReloadedPlugin at
www.symfony-project.org/plugins/

644

sfJqueryReloadedPlugin, and about sfFlashMessagePlugin
at www.symfony-project.org/plugins/
sfFlashMessagePlugin.

To install JqueryReloadedPlugin, from your project
directory enter the following command in your command
window (if you have JqueryReloadedPlugin already
installed, skip this step):

$ symfony plugin:install sfJqueryReloadedPlugin

sfJqueryReloadedPlugin gives you the possibility to use
the jQuery helper in your project files.

Do the same for sfFlashMessagePlugin using the following
command:

$ symfony plugin:install sfFlashMessagePlugin

Cache clearing is advised:

$ symfony cache:clear

As far as installation goes, this is all you need to do. Now
you can move to the project files. First, the layout file
needs to have the include_javascripts() function
present inside the <head></head> tags. The code used in
this example is as follows:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

645

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>

<head>

<?php include_http_metas() ?>

<?php include_metas() ?>

<?php include_title() ?>

<link rel=”shortcut icon” href=”/favicon.ico” />

<?php include_stylesheets() ?>

<?php include_javascripts() ?>

</head>

<body>

<?php echo $sf_content ?>

</body>

</html>

code snippet /popup/flash/symfony/apps/frontend/

templates/layout.php

Next, the action file needs to set some example flash
messages. Four message types are available here: success,
notice, warning, and error. Every one of these messages
has a different color when rendered. The following are the
example messages used for this example:

646

<?php

class flashmessageActions extends sfActions{

public function executeIndex(sfWebRequest $request){

$this->getUser()->setFlash(‘success’, ‘This is success message!’); //green

$this->getUser()->setFlash(‘notice’, ‘This is notice message!’); //yellow

$this->getUser()->setFlash(‘warning’, ‘This is warning message!’); //orange

$this->getUser()->setFlash(‘error’, ‘This is error message!’); //red

}

}

code snippet /popup/flash/symfony/apps/frontend/modules/

flashmessage/actions/actions.class.php

The view file is responsible for rendering those messages,
and it usually is done as shown in the following code:

<h1>Flash Messages</h1>

<p>

<?php echo $sf_user->getFlash(‘success’) ?>

647

<?php echo $sf_user->getFlash(‘warning’) ?>

<?php echo $sf_user->getFlash(‘notice’) ?>

<?php echo $sf_user->getFlash(‘error’) ?></p>

code snippet /popup/flash/symfony/apps/frontend/modules/

flashmessage/templates/indexSuccess.php

The resulting page content is rendered as shown in Figure
10.9.

Figure 10.9 Standard flash messages, displayed using the
getFlash() method

Now, you should use sfFlashMessagePlugin and render
these messages using AJAX. To do so, you only need to
prepend this file with the use_helper() function and set
it to use the jQuery and sfFlashMessage helpers. The
code of the indexSuccess.php view file can be
shortened to the following code:

<?php use_helper(‘jQuery’, ‘sfFlashMessage’) ?>

<h1>Flash Messages</h1>

648

code snippet /popup/flash/symfony/apps/frontend/modules/

flashmessage/templates/indexSuccess.php

This will make your messages look like Figure 10.10.

Figure 10.10 Flash messages rendered using
sfFlashMessagePlugin

Messages rendered using sfFlashMessagePlugin disappear
after a set amount of time, except the error message; that is
visible until it is closed manually. It is possible to modify
the style and display delay time by modifying the plug-in's
configuration in the app.yml file. Here you can select a
display method from the pop and growl options, and set a
delay time in milliseconds, as shown here:

sf_flash_message:

delay: 2500

method: growl

Lytebox

The script demonstrated in this example is another
variation of Lightbox, which was introduced in Chapter 9.

649

It differs from other similar scripts mainly by its
independence from other AJAX libraries such as jQuery.
Lytebox, created by Markus F. Hay, offers you options to
create slideshow image galleries or windows with the
possibility to browse HTML content in catalog-like style.
The implementation for this script is probably the easiest
of all scripts presented in this chapter.

To get moving with the integration, first visit the authors'
website www.dolem.com/lytebox and get the Lytebox
package. In this example, you need to place the unpacked
content (lytebox.js file, lytebox.css file, and
/images folder) inside the /appName/web/lytebox
folder. If you wish to separate package files to the
corresponding folders inside /appName/web folder, you
could do so, but this will require you to modify all file
paths accordingly, including the lytebox.css file.

When you have Lytebox in place, you need to include
lytebox.js and lytebox.css into your layout file. The
code for layout.php used in this example looks like the
following:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>

<head>

650

<?php include_http_metas() ?>

<?php include_metas() ?>

<?php include_title() ?>

<link rel=”shortcut icon” href=”/favicon.ico” />

<?php use_stylesheet(‘../lytebox/lytebox.css’) ?>

<?php include_stylesheets() ?>

<?php use_javascript(‘../lytebox/lytebox.js’) ?>

<?php include_javascripts() ?>

</head>

<body>

<?php echo $sf_content ?>

</body>

</html>

code snippet /popup/lytebox/symfony/apps/frontend/

templates/layout.php

As for the actions file, only the index action is needed, as
shown in the following code:

<?php

class lyteboxActions extends sfActions{

651

public function executeIndex(sfWebRequest $request){

}

}

code snippet /popup/lytebox/symfony/apps/frontend/

modules/lytebox/actions/actions.class.php

For the HTML side of this example, the base content is
shown in Figure 10.11.

Figure 10.11 Lytebox application example

The first two links will open a window with HTML
content, in which you can browse back and forth through
the items in this list. This window is shown in Figure
10.12. The third link will open a window of the size
specified in the following code without the possibility of
scrolling its HTML content. Note that the rev attribute can
be used for any link in this example to change the size of
the displayed window. The code of the view file in this
example looks as follows:

652

<h1>LyteBox example</h1>

<a href=”http://www.wrox.com/” title=”Wrox”

rel=”lyteframe[catalog]”>Show list item 1

<a href=”http://www.wiley.com/” title=”Wiley”

rel=”lyteframe[catalog]”>Show list item 2

<a href=”http://www.wrox.com/” title=”Wrox”

rel=”lyteframe” rev=”width: 400px; height: 300px; scrolling: no;”>

Show new window in full screen

code snippet /popup/lytebox/symfony/apps/frontend/

modules/lytebox/templates/indexSuccess.php

Figure 10.12 Gallery style, HTML content viewer using
Lytebox

653

The gallery capabilities of the Lytebox script can be used
by adding the following code into your
indexSuccess.php view file:

<h2>LyteBox gallery example: </h2>

<a href=”http://www.symfony-project.org/images/symfony_logo.gif”

rel=”lyteshow[logos]”

654

title=”Symfony Logo”>Symfony Logo

<a href=”http://cakephp.org/img/cake-logo.png”

rel=”lyteshow[logos]”

title=”CakePHP Logo”>CakePHP Logo

<a href=”http://framework.zend.com/images/logo.gif”

rel=”lyteshow[logos]”

title=”Zend Framework Logo”>Zend Framework Logo

code snippet /popup/lytebox/symfony/apps/frontend/

modules/lytebox/templates/indexSuccess.php

Figure 10.13 illustrates the image gallery that is displayed
when any gallery link is clicked.

Figure 10.13 Lytebox image slideshow gallery

CakePHP

655

To create popup windows in CakePHP, you will
incorporate ThickBox into your application. ThickBox is a
script written by Cody Lindley in JavaScript. It originates
from the Lightbox script designed to enhance websites
with interactive image galleries. ThickBox works in a very
similar manner, but is not restricted to images only
because it allows you to display all sorts of content. There
are many features behind ThickBox, such as simple system
integration and displaying various kinds of content
(images, iframed content, inline content, and AJAX
content).

Figure 10.14 shows an example page that consists of a
paragraph of text and two links using ThickBox to display
content.

Figure 10.14 Sample content with two links prepared for
ThickBox

Now integrate ThickBox into your CakePHP application.
The first thing to do is to download ThickBox files from
the website: http://jquery.com/demo/thickbox/. You need
to download thickbox.js or
thickbox-compressed.js and place it inside the /app/
webroot/js/ directory. The thickbox.js and
thickbox-compressed.js files require jQuery in order
to work properly. You can download jQuery from the

656

same page as ThickBox or you can download it from the
jQuery website at http://docs.jquery.com/
Downloading_jQuery. The jQuery library should be placed
in the same folder as the ThickBox script. Next you need
to download thickbox.css and copy it to the /app/
webroot/css/ directory. The last file that needs to be
downloaded into /app/webroot/img/ is
loadingAnimation.gif. When you're done, you should
have the following file structure:

/app/webroot/

js/

thickbox-compressed.js

jquery-1.4.3.min.js

css/

thickbox.css

img/

loadingAnimation.gif

To begin integration of ThickBox into a CakePHP
application, start by creating a route in the routes.php
file. This can look as follows:

Router::connect(‘/modalbox’, array(

‘controller’ => ‘thickbox’, ‘action’ => ‘index’));

657

code snippet /popup/cakephp/app/config/routes.php

The layout file should contain corresponding helpers inside
the <head> section. The three bold lines in the following
code make sure that the supplied libraries are loaded
properly. The layout used for this example is as follows:

<html>

<head>

<?php

echo $html->css (“thickbox”, “stylesheet”);

if (isset ($javascript)):

echo $javascript->link (“/app/webroot/js/jquery-1.4.3.min.js”);

echo $javascript->link (“/app/webroot/js/thickbox-compressed.js”);

endif;

?>

</head>

<body>

<?php echo $content_for_layout ?>

</body>

</html>

658

code snippet /popup/cakephp/app/views/layouts/default.ctp

This is nearly enough to use ThickBox, but you still need
to define the set of helpers that your application is using.
Set the $helpers variable in the
thickbox_controller.php controller file. The code for
this file is as follows:

<?php

class ThickboxController extends AppController {

var $name = ‘thickbox’;

var $helpers = array (“Javascript”);

function index() {

}

}

?>

code snippet /popup/cakephp/app/controllers/

thickbox_controller.php

The thickbox.php model file should be created and it
might look like this one:

659

<?php

class Thickbox extends AppModel {

var $useTable = false;

}

code snippet /popup/cakephp/app/models/thickbox.php

Finally, the index.ctp view file allows you to use
ThickBox with your content. Assuming that you are using
a standard link element to call popups, you will need to
set the class attribute to the thickbox value, like this:

The href attribute needs to begin with the #TB_inline
anchor. Next there are several options:

<a href=”#TB_inline?height=100&width=200&inlineId=modalContent&modal=true”

class=”thickbox”>

The height and width options define the size of the
popup window. The inlineId option is the id value of the
element that will contain the ThickBox content. If the
modal option is set as true, the content displayed in the
window will have to contain an element with the
onclick=”tb_remove()” attribute. The following code

660

illustrates how to use a simple message window and a yes/
no message box:

<h1>Modal Window</h1>

<p>

<a href=”#TB_inline?height=100&width=200&inlineId=modalContent”

class=”thickbox”>Show modal content.

<a href=”#TB_inline?height=150&width=200&inlineId=hiddenModalContent&modal=true”

class=”thickbox”>Show hidden modal content.

</p>

<div id=”modalContent” >

<p>Modal window can be used to display additional information on a website,

without reloading it or modifying currently visible content.</p>

</div>

<div id=”hiddenModalContent” style=”display:none”>

<p>Modal windows are great way to block access to certain section of web

application, by forcing user to interact with it.</p>

<p>Do you agree?</p>

<input type=”button” id=”Login” value=” Yes “ onclick=”tb_remove()” />

661

<input type=“button” id=“Login” value=“ No ” />

</div>

code snippet /popup/cakephp/app/views/thickbox/index.ctp

To the left in Figure 10.15 is the message window
displayed as the result of clicking the Show modal content
link.

Figure 10.15 On the left—the ThickBox window,
displayed by clicking the Show modal content link. On the
right—the ThickBox window, displayed by clicking the
Show hidden modal content link

To the right in Figure 10.15 you can see another message
window that requires the user to click the Yes button in
order to close it.

Zend Framework

To create a popup window able to display content of
various types, the GreyBox JavaScript library was
selected. It is an independent library, and it means that no
additional AJAX libraries are required. So no jQuery this
time.

662

Installation of GreyBox in Zend Framework is a simple
and swift task. Proceeding with the installation, first you
need to download the GreyBox package from its author
website: http://orangoo.com/labs/GreyBox/. The
downloaded package contains GreyBox, and various
examples of usage as well. You need to copy the
/greybox folder to the /appName/public/js directory
of your application. The /greybox folder contains various
files: images, scripts, and stylesheets. You could group
them into separate folders, but this is unnecessary.

When the application using GreyBox is finished, it will
look as shown in Figure 10.16. The links demonstrate
various usage examples.

Figure 10.16 GreyBox example application

Moving to the controller file, it does not contain any
additional functionality. Only the blank
greyboxAction() is added. The following code is the
listing of the controller used in this example:

663

<?php

class IndexController extends Zend_Controller_Action {

public function init() {

}

public function greyboxAction() {

}

}

code snippet /popup/zf/application/controllers/

IndexController.php

The layout file makes GreyBox available for use in your
application. Additionally, to include the GreyBox scripts
and the stylesheet, you need to set the GB_ROOT_DIR

variable to be used in GreyBox scripts. This variable holds
the path to the image files used by GreyBox. You can see
in the following code what value is set to make this
example work with the Zend Framework file structure:

<html>

664

<head>

<title>Greybox example</title>

<script type=”text/javascript”>

var GB_ROOT_DIR = “../js/greybox/”;

</script>

<?php

echo $this->headLink()->appendStylesheet(

$this->baseUrl(‘/js/greybox/gb_styles.css’)

);

echo $this->headScript()->appendFile($this->baseUrl(‘/js/greybox/
AJS.js’));

echo $this->headScript()->appendFile(

$this->baseUrl(‘/js/greybox/AJS_fx.js’)

);

echo $this->headScript()->appendFile(

$this->baseUrl(‘/js/greybox/gb_scripts.js’)

);

?>

</head>

<body>

<?php echo $this->layout()->content; ?>

</body>

</html>

665

code snippet /popup/zf/application/layouts/scripts/

layout.phtml

A CSS stylesheet in this example is linked by the
appendStylesheet() method and it points to the folder
where JavaScript is usually held. All scripts used by
GreyBox here are located in the same folder, however. The
JavaScript files are linked by the appendFile() method.

You should now have everything necessary to use the
features of GreyBox with the standard HTML syntax.
Using the rel attribute, you can now turn a hyperlink tag
into a link to a new window or an image gallery. As the
value for the rel attribute you can use a number or
variables such as gb_page, gb_page_fs, gb_imageset,
and so on. Each of these values has its own uses. For the
full list of features, please refer to the GreyBox
documentation. The following code illustrates various
usages of the GreyBox library:

<h1>Greybox example</h1>

<a href=”http://www.wrox.com/”

title=”Wrox”

rel=”gb_page[790, 200]”>Show new window

<a href=”http://www.wrox.com/”

title=”Wrox”

666

rel=”gb_page_center[200, 200]”>Show centered new window

<a href=”http://www.wrox.com/”

title=”Wrox”

rel=”gb_page_fs[]”>Show new window in full screen

<h2>Greybox gallery example: </h2>

<a href=”http://www.symfony-project.org/images/symfony_logo.gif”

rel=”gb_imageset[logos]”

title=”Symfony Logo”>Symfony Logo

<a href=”http://cakephp.org/img/cake-logo.png”

rel=”gb_imageset[logos]”

title=”CakePHP Logo”>CakePHP Logo

<a href=”http://framework.zend.com/images/logo.gif”

rel=”gb_imageset[logos]”

title=”Zend Framework Logo”>Zend Framework Logo

code snippet /popup/zf/application/views/scripts/index/

greybox.phtml

Finally, you can see results by typing http://localhost/
appName/public/index/lightbox in your web browser.
Figure 10.17 illustrates a centered window displaying a
web page.

Figure 10.17 A new window opened using GreyBox

667

Figure 10.18 demonstrates how an image gallery can be
realized using GreyBox. There is an issue with displaying
images in a gallery reported in version 5.54 of GreyBox,
where the images are not rendered the first time. If you
encounter this problem, switching to version 5.53 should
fix it.

Figure 10.18 Image gallery using GreyBox

668

AJAX User Chat

Web chat is a form of conference-like communication
between multiple users, using a web application. Chats are
usually part of larger applications, such as social networks,
information services, forums, or online games. They allow
users to divide into chat rooms, where various subjects can
be discussed. Chat can take different forms. It can be a
shoutbox, user-to-user private conversation, or Internet
Relay Chat (IRC). Some of these may require special
software to use. Features of chat applications can cover
things such as image sending, sound messages, IP
blocking, forbidden word filtering, user bans, moderation,
and so on.

In this section you will learn how to implement
ready-to-use chat scripts and implement them as a part of
your web application, created in web frameworks. One of
the solutions uses a file system for storing chat messages;
the two other use a database to do this.

Symfony

To learn how a basic chat can be integrated into a Symfony
application, the chat script created by Ryan Smith was
chosen. This chat solution is easy to use in standalone
applications, but in Symfony it needs to be slightly
modified to take full advantage of the features offered by
this framework. So go on and grab the AJAX chat package
from www.dynamicajax.com/tutorials/ajax_chat_1.zip.

669

This package contains the following files: chat.html,
chat.sql, database.php, getChat.php, and
readme.html.

The first step is to create two files for your application: the
chat.js file inside the /appName/web/js folder and the
chat.css file in the /symfony/web/css folder. Now
you need to copy all JavaScript code from between the
<script> </script> tags of the chat.html file and
paste it into the chat.js file of your project. You can do
the same thing for styles in chat.html. Simply copy the
style content from between the <style> </style> tags
and place it inside chat.css. Later you can add your own
styles inside this file to modify the visual style of the chat
window and messages.

You must now modify the chat.js file and make sure
that the AJAX sendReq.open() and
receiveReq.open() requests point to the getchat
action. This should be done in three lines, and these line
numbers are 26, 38, and 84. An example of how this
should be done is as follows:

// line 26

receiveReq.open(

“GET”,

670

‘index.php/moduleName/getchat?chat=1&last=’ + lastMessage,

true

);

// line 38

sendReq.open(

“POST”,

‘index.php/moduleName/getchat?chat=1&last=’ + lastMessage,

true

);

// line 84

sendReq.open(

“POST”,

‘index.php/moduleName/getchat?chat=1&last=’ + lastMessage,

true

);

code snippet /chat/symfony/web/js/chat.js

When you have the chat.js file ready, a modification to
the view.yml file is necessary (highlighted in bold) as
shown here:

671

default:

http_metas:

content-type: text/html

metas:

stylesheets: [main.css, chat.css]

javascripts: [chat.js]

has_layout: true

layout: layout

code snippet /chat/symfony/apps/frontend/config/view.yml

When chat.js and chat.css are included in view.yml,
you need to make sure that those files are loaded when the
page is displayed. To do so, the <head> section of the
layout file needs to contain the following code:

<?php include_stylesheets() ?>

<?php include_javascripts() ?>

code snippet /chat/symfony/apps/frontend/templates/

layout.php

The chat application uses a database to hold all messages
posted by users. The design for the database tables can be

672

found in chat.sql of the original package. Alternatively
you can use the following schema:

Message:

connection: doctrine

tableName: message

columns:

message_id: { type: integer(4) fixed: false unsigned: false

primary: true autoincrement: true }

user_id: { type: integer(4) fixed: false unsigned: false

primary: false default: ‘0’ notnull: true autoincrement: false }

user_name:{ type: string(64) fixed: false unsigned: false

primary: false notnull: false autoincrement: false }

message: { type: string() fixed: false unsigned: false

primary: false notnull: false autoincrement: false }

post_time: { type: timestamp(25) fixed: false unsigned: false

primary: false notnull: false autoincrement: false }

code snippet /chat/symfony/apps/config/doctrine/

schema.yml

673

To generate the table described in schema.yml, use the
following command in the command console from your
project directory:

$ symfony doctrine:build --all

Now you can view the getChat.php file of the original
package. This file is responsible for performing all
database operations regarding user messages. Notice that it
includes database.php to create a database connection.
While using the Symfony framework, all this can be
replaced by creating the executeGetchat() function in
your actions.class.php file. The code in this function
is equivalent to the code of the original package, and it
looks as follows:

<?php

class chatActions extends sfActions {

public function executeIndex(sfWebRequest $request) {

}

public function executeGetchat(sfWebRequest $request) {

if(isset($_POST[‘message’]) && $_POST[‘message’] != ‘’) {

$msg = new Message();

$msg->setUserId(1);

$msg->setUserName(‘unknown’);

674

$msg->setMessage($_POST[‘message’]);

$msg->setPostTime(date(“Y-m-d H:i:s”));

$msg->save();

}

$xml = ‘<?xml version=”1.0” encoding=”UTF-8” ?><root>’;

if(!isset($_GET[‘chat’])) {

$xml .= ‘<message id=”0”>’;

$xml .= ‘<user>Admin</user>’;

$xml .= ‘<text>Your are not currently in a chat session.</text>’;

$xml .= ‘<time>’.date(“Y-m-d H:i:s”).‘</time>’;

$xml .= ‘</message>’;

} else {

$last = (isset($_GET[‘last’]) && $_GET[‘last’] != ‘’) ? $_GET[‘last’] : 0;

$messages = Doctrine_Core::getTable(‘Message’)

->createQuery(‘c’)

->where(‘c.message_id > ?’, $last)

->orderBy(‘c.message_id’)

->execute();

foreach($messages as $msg) {

$xml .= ‘<message id=”’ . $msg->getMessageId() . ‘”>’;

$xml .= ‘<user>’ . $msg->getUserName() . ‘</user>’;

$xml .= ‘<text>’.htmlspecialchars($msg->getMessage()).‘</text>’;

$xml .= ‘<time>’ . $msg->getPostTime(). ‘</time>’;

675

$xml .= ‘</message>’;

}

}

$this->text = $xml .= ‘</root>’;

$response = $this->getResponse();

$response->setContentType(‘text/xml’);

return $this->renderText($this->text);

}

}

code snippet /chat/symfony/apps/frontend/modules/chat/

actions/actions.class.php

Because actions.class.php contains two actions, two
view files are needed; the first one is indexSuccess.php
and must be filled with HTML code from chat.html
from the original package. At the end of this file the
startChat() JavaScript function needs to be called. The
code used in this example is as follows:

<h2><a href=”http://www.dynamicAJAX.com”

style=”color: #000000; text-decoration: none;”>

AJAX Driven Web Chat

676

</h2>

<div id=”div_chat”

style=”height: 300px; width: 500px; overflow: auto; background-color:

#CCCCCC; border: 1px solid #555555;”>

</div>

<form id=”frmmain” name=”frmmain” onsubmit=”return blockSubmit();”>

<input type=”button” name=”btn_get_chat” id=”btn_get_chat” value=”Refresh Chat”

onclick=”javascript:getChatText();” />

<input type=”button” name=”btn_reset_chat” id=”btn_reset_chat”

value=”Reset Chat” onclick=”javascript:resetChat();” />

<input type=”text” id=”txt_message” name=”txt_message” style=”width: 447px;” />

<input type=”button” name=”btn_send_chat” id=”btn_send_chat” value=”Send”

onclick=”javascript:sendChatText();” />

</form>

<script language=”JavaScript” type=”text/javascript”>

startChat();

</script>

code snippet /chat/symfony/apps/frontend/modules/chat/

templates/indexSuccess.php

Finally, in the same directory as indexSuccess.php, you
should create a blank getchatSuccess.php file, and you

677

are done. The results of this example should look as
illustrated in Figure 10.19.

Figure 10.19 Chat window in Symfony application

CakePHP

The solution used in CakePHP is an AJAX chat plug-in
written by Matt Curry. It allows user communication by a
web form, illustrated in Figure 10.20. This solution was
selected because of its easy implementation and
popularity.

Figure 10.20 Chat window without any messages

678

You can get the plug-in package from http://github.com/
mcurry/chat. Unpacked content needs to be placed in the
/app/plugins/chat directory. There you will find the
chats.sql file that contains an SQL query that is
responsible for creating the chats database table for
holding all user posts. This query is as follows:

CREATE TABLE ‘chats’ (

‘id’ int(10) unsigned NOT NULL auto_increment,

‘key’ varchar(45) NOT NULL default ‘’,

‘name’ varchar(20) NOT NULL default ‘’,

‘message’ text NOT NULL,

‘ip_address’ varchar(15) NOT NULL default ‘’,

‘created’ datetime default NULL,

PRIMARY KEY (‘id’),

KEY ‘KEY_IDX’ (‘key’)

);

It is good to have the chats table created before
proceeding. When that is done, you can begin creating the
routing connection in the routing file. For this example, the
following code is used:

Router::connect(‘/chat’, array(‘controller’ => ‘chatbox’, ‘action’ => ‘index’));

679

code snippet /chat/cakephp/app/config/routes.php

The chat plug-in uses the jQuery library, so it needed to be
included in the default.ctp layout file. You can get
jQuery library from http://jquery.com/. Also, the plug-in's
chat.css stylesheet and chat.js need to be linked
inside the layout. In this case, the following layout is used:

<html>

<head>

<?php

echo $html->css(‘/chat/css/chat.css’, “stylesheet”);

if (isset ($javascript)):

echo $javascript->link(‘jquery’);

echo $javascript->link(‘/chat/js/chat.js’);

endif;

?>

</head>

<body>

<?php echo $content_for_layout ?>

</body>

</html>

680

code snippet /chat/cakephp/app/views/layouts/default.ctp

We suggest not using the same name for the controller as
the name of the plug-in. In this case,
ChatboxController is used instead of
ChatController. So moving to the controller file, you
need to add the chat.ajaxChat value into the $helpers
array, as well as the Ajax value.

<?php

class ChatboxController extends AppController {

var $uses = ‘Chatpost’;

var $helpers = array(‘Ajax’, ‘chat.ajaxChat’);

function index() {

}

}

?>

code snippet /chat/cakephp/app/controllers/

chatbox_controller.php

The model file is quite standard and goes like this:

681

<?php

class Chatpost extends AppModel {

var $name = ‘Chatpost’;

var $useTable = ‘chats’;

}

code snippet /chat/cakephp/app/models/chatpost.php

And finally the view file index.ctp needs only one line
to have your chat up and running:

<?php echo $ajaxChat->generate(‘chatWindowName’); ?>

code snippet /chat/cakephp/app/views/index.ctp

By setting different values in the generate() method, it
is possible to have multiple chat windows at the same time.
The index.ctp view file used in this example goes as
follows:

682

<h1>Ajax Chat Example</h1>

<?php echo $ajaxChat->generate(‘chat’); ?>

code snippet /chat/cakephp/app/views/index.ctp

There may be some problems with displaying messages. If
this happens, you need to modify one of the plug-in's files:
chat.js. This file is located in the /app/plugins/
chat/vendors/js directory. At the end of this file there
are lines similar to those presented here. Here you can set
the path to update the script of the plug-in, and you can
modify the interval in which the chat box is reloaded:

...

$.fn.chat.defaults = {

update: ‘/cake/chat/update’,

interval: 5000

};

code snippet /chat/cakephp/app/plugins/chat/vendors/js/

chat.js

683

At this point you should have a working AJAX chat that
looks like the one illustrated by Figure 10.21.

Figure 10.21 Chat window with users' messages

Zend Framework

The AJAX chat script selected to be implemented into the
Zend Framework application is the Most Simple Ajax Chat
Script, available from www.linuxuser.at. It will introduce
you to the problem of implementing external scripts into
your application. So why this script and not another? Well,
it is a great piece of code for such a small package. It
contains only three files. One is a PHP file responsible for
saving and loading chat history. The other file is an HTML
page with chat window and some JavaScript embedded
inside it. The last is a text file that holds chat messages.
This example will show you how to use AJAX chat and
will set you up if you ever wish to develop the application
further.

There is a huge selection of free AJAX scripts on the
Internet, but most of them are quite large applications—too

684

big to be introduced in this book. But if you have some
spare time, we suggest the AJAX chat tutorial available at
this page:http://devzone.zend.com/article/
1581-Ajax-Chat-Tutorial.

Moving to the example, first get the Most Simple Ajax
Chat Script package from www.linuxuser.at/chat/
index.html. You can run it just after unpacking it to your
server and see how it works. A modified example rendered
in the browser is shown in Figure 10.22.

Figure 10.22 Chat window without messages

The package contains three files:

• index.html—hat form, styles sheet, JavaScript code
• w.php—Responsible for reading and writing content of the

chat.txt file
• chat.txt—Contains chat history

First you should open the index.html file and prepare to
split it into three files: chat.css, chat.js, and the
chat.phtml view file. Start with cutting everything
between the <style></style> tags from index.html
and placing it inside chat.css in the /appName/
public/css folder. For this example, the content of this
file was slightly modified to achieve a white-gray theme
style. When you have the CSS file ready, you can modify

685

your layout file to include this style, as shown in the
following code:

<html>

<head>

<title>Chat example</title>

<?php

echo $this->headLink();

echo $this->headLink()->appendStylesheet($this->baseUrl(‘/css/
chat.css’));

?>

</head>

<body>

<?php echo $this->layout()->content; ?>

</body>

</html>

code snippet /chat/zf/application/layouts/scripts/

layout.phtml

Next you should cut JavaScript from between the
<script> </script> tags of the index.html file and
copy the extracted content into the chat.js file, placed

686

inside the /appName/public/js/ folder. The rest of the
index.html file needs to be copied into the chat.phtml
file inside the /appName/application/views/
scripts/index/ folder and modified so that it matches
to the view file introduced next:

<div id=”content”>

<p id=”chatwindow”> </p>

<!--

<textarea id=”chatwindow” rows=”19” cols=”95” readonly></textarea>

-->

<input id=”chatnick” type=”text” size=”9” maxlength=”9” >

<input id=”chatmsg” type=”text” size=”60” maxlength=”80”

onkeyup=”keyup(event.keyCode);”>

<input type=”button” value=”add” onclick=”submit_msg();”

style=”cursor:pointer;border:1px solid gray;”>

</div>

<?php echo $this->headScript()->appendFile($this->baseUrl(‘/js/chat.js’));

?>

687

code snippet /chat/zf/application/views/scripts/index/

chat.phtml

Notice that at the end of this file, appendFile() is used
to include the chat.js file created before.

Finally the controller file contains two functions:
chatAction(), which is responsible for displaying the
initial view file; and chatwriteAction(), which
contains the whole functionality of the w.php file.

As highlighted in the following code, you need to include
$this->_helper->viewRenderer->setNoRender();
inside the chatwriteAction() action, because it is not
supposed to render any view files:

<?php

class IndexController extends Zend_Controller_Action{

public function init() {

}

public function chatAction() {

}

public function chatwriteAction() {

$this->_helper->viewRenderer->setNoRender();

688

// the content of w.php file goes here.

}

}

code snippet /chat/zf/application/controllers/

IndexController.php

The last file is the one containing the chat history. For this
example the chat.txt file is located inside the newly
created /appName/public/chat/ directory and it has
write rights enabled.

You're nearly ready to have your chat application running,
but first you need to adjust all paths pointing to the
chat.txt file. The first code line of w.php and now the
second line of the chatwriteAction() function is a
variable containing the full path to chat.txt. For this
example this path goes as follows:

$fn = “../public/chat/chat.txt”;

Next the chat.js file needs to be modified. If you
followed this example exactly without removing any
comments, you have to modify lines 51, 100, and 109 of
the chat.js file. Otherwise, you can look at the code and
find the corresponding lines yourself. Modifications done
for this example go as follows:

// line 51

intUpdate = setTimeout(“ajax_read(‘../chat/chat.txt?x=” + ms + “’)”, waittime)

// line 100

ajax_write(“./chatwrite?m=” + msg + “&n=” + nick);

689

// line 109

var intUpdate = setTimeout(“ajax_read(‘../chat/chat.txt’)”, waittime);

Now you can run your application and enjoy the results.
You should have a chat window similar to the one shown
in Figure 10.23.

Figure 10.23 Chat window with various messages

Your chatwriteAction() allows you to set some
additional options, such as IP address blocking or word
filtering. The following snippet illustrates the code
responsible for these options:

/* Set this to a minimum wait time between posts (in sec) */

$waittime_sec = 0;

/* spam keywords */

$spam[] = “ass”;

$spam[] = “hell”;

$spam[] = “poo”;

/* IP‘s to block */

690

$blockip[] = “72.60.167.89”;

/* spam, if message IS exactly that string */

$espam[] = “ajax”;

Additionally, with a little understanding of PHP and
experience in development, you can easily modify this
example to use a database instead of the text file.

691

Chapter 11

Making Plug-ins

Death seed blind man's greed

Poets' starving children bleed

Nothing he's got he really needs

Twenty first century schizoid man.

—King Crimson, In the Court of the Crimson King [1969]

What's In This Chapter?

• Making PDF plug-ins for Symfony and CakePHP

• Introducing Zend Framework plug-in philosophy

Frameworks offer great enhancements in web development
by themselves, but with plug-ins you can achieve even
more! There are various ready-to-use plug-ins that greatly
extend the core functionalities of the frameworks. In this
chapter, we show you how to build a plug-in in all three
frameworks. In Symfony and CakePHP, you will see how
to create a plug-in that prepares PDF files. Plug-ins in
Zend Framework are of a somewhat different nature and
are dedicated to purposes different from plug-ins of other
frameworks.

Plug-ins are great for two reasons. First, they help with
separating code that provides certain additional
functionalities from the framework's core. This way, the

692

framework can remain lighter and achieve better
performance, while the optional add-ons are installed on
demand. And that's the second advantage of this approach:
it is beneficial for core developers who are freed to focus
on development of the framework, for the open-source
community that can easily prepare and maintain plug-ins
dedicated for certain solutions, for companies that may
develop sophisticated commercial plug-ins, and finally for
all users who can choose from the wide range of
ready-to-use solutions.

Symfony

This section describes how to write a plug-in for
generating PDF files. Actually, making PDF files can be
done easily in Symfony by installing sfTCPDFPlugin
using the following command:

$ symfony plugin:install sfTCPDFPlugin

However, if you have read this book up to this part, you
should know how to install existing plug-ins, and using
this one is not the objective of this section. We've shown
this just to let you know that this ready-made plug-in
exists, but in this section you will learn how to create your
own plug-in for Symfony.

Plug-in Structure

Let's start with Symfony's plug-in structure. In general, it
consists of folders and files as follows:

sfPlugin/

693

config/

sfPluginConfiguration.class.php

routing.yml

doctrine/

schema.yml

lib/

sfPlugin.class.php

helper/

filter/

form/

model/

task/

modules/

pluginModule/

actions/

config/

templates/

web/

You can see that there is a strong similarity between this
file structure and Symfony's application file structure. You
don't need to create every directory, only those that you
will need when making this plug-in. The /config
directory contains all configuration files, such as
routing.yml, that can be used for adding a module for

694

routing. Schema and plug-in dependencies go to this
folder, too. The /lib folder holds tasks, helpers, forms,
models, and the main plug-in class. Inside /modules, all
ready-to-use modules are kept; inside /web are all images,
stylesheets, and JavaScripts.

Developing the Plug-in

As you want to develop your own plug-in, you will avoid
the TCPDF plug-in mentioned in the introduction to this
section and use an alternative: the Free PDF PHP (FPDF)
general-purpose library.

For simple PDF creation, you don't have to code much; all
you need is one simple helper with one exemplary function
that will generate a PDF with text. You must have the
FPDF library installed before creating this helper. You can
download it from www.fpdf.org and copy it into the PHP
libraries. Under Linux, you can also install it as a package.
This helper file could look like this:

<?php

require(‘fpdf/fpdf.php’);

function generatePDF() {

$pdf=new FPDF();

$pdf->AddPage();

695

$pdf->SetFont(‘Times’,‘B‘,12);

$pdf->Cell(40,10,‘Symfony FPDF Plugin’);

$pdf->Output();

}

?>

code snippet /symfony/plugins/sfFPDFPlugin-1.0.0/lib/

helper/sfFPDFHelper.php

Plug-in development requires a few basic facts about the
plug-in. This information is stored in the package.xml
file in the root folder of the plug-in. An example is
presented here:

<?xml version=”1.0” encoding=”UTF-8”?>

<package xmlns=”http://pear.php.net/dtd/package-2.0”

xmlns:tasks=”http://pear.php.net/dtd/tasks-1.0”

xmlns:xsi=”http://www.w3.org/2001/
XMLSchema-instance” packagerversion=”1.8.0”

version=”2.0” xsi:schemaLocation=”http://pear.php.net/dtd/tasks-1.0

http://pear.php.net/dtd/tasks-1.0.xsd http://pear.php.net/dtd/package-2.0

http://pear.php.net/dtd/package-2.0.xsd”>

<name>sfFPDFPlugin</name>

696

<channel>pear.symfony-project.com</channel>

<summary>Exemplary FPDF Plugin</summary>

<description>Very short example</description>

<lead>

<name>Wrox</name>

<user>Wrox</user>

<email>foo_bar@wrox.com</email>

<active>yes</active>

</lead>

<date>2011-02-27</date>

<time>00:00:00</time>

<version>

<release>1.0.0</release>

<api>1.0.0</api>

</version>

<stability>

<release>stable</release>

<api>stable</api>

</stability>

<license uri=”http://www.symfony-project.com/
license”>MIT license</license>

<notes>

Exemplary notes

697

</notes>

<contents>

<dir name=”/”>

<file md5sum=”2779dd4abdee0683069bc5ecb9721cde”

name=”lib/helper/sfFPDFHelper.php” role=”data”/>

</dir>

</contents>

<dependencies>

<required>

<php>

<min>5.3.0</min>

</php>

<pearinstaller>

<min>1.4.1</min>

</pearinstaller>

</required>

</dependencies>

<phprelease/>

</package>

code snippet /symfony/plugins/sfFPDFPlugin-1.0.0/

package.xml

Note that you can set the minimal version of PEAR and
PHP as well as the plug-in's version and its stability. You

698

need to supply the MD5 sum as well. This is a minimal
security measure to counteract unauthorized file
replacement and also helps with discovering corrupt file
download.

The file structure of your plug-in should be as follows
now:

sfFPDFPlugin-1.0.0

lib

helper

sfFPDFHelper.php

package.xml

Testing Your Plug-in

To test your plug-in, all you have to do is to pack it into an
archive and install it:

$ symfony plugin:install /home/wrox/public_html/sfFPDFPlugin-1.0.0.tar.gz

Although the directory path may differ on your machine,
the output will be the same:

>> plugin installing plugin “/home/wrox/public_html/
sfFPDFPlugin-1.0.0.tar.gz”

>> sfSymfonyPluginManager Installation successful for plugin

“/home/wrox/public_html/sfFPDFPlugin-1.0.0.tar.gz”

Your helper can be now added into the configuration file
of your applications. An example is presented here:

699

all:

.settings:

standard_helpers: [Partial, Cache, sfFPDF]

code snippet /symfony/apps/frontend/config/settings.yml

And here is an example action that utilizes this helper:

public function executeIndex(sfWebRequest $request)

{

$response = $this->getResponse();

$response->setContentType(‘application/pdf’);

}

code snippet /symfony/apps/frontend/modules/pdfexample/

actions/actions.class.php

The preceding code sets the output type as PDF. You need
to execute the helper in a view as follows:

700

<?php echo generatePDF(); ?>

code snippet /symfony/apps/frontend/modules/pdfexample/

templates/indexSuccess.php

When the routing is set to call this action, you should see a
PDF file like the one in Figure 11.1.

Figure 11.1 Symfony PDF plug-in output

CakePHP

Plug-ins in CakePHP are basically mini-applications that
can be deployed in different CakePHP projects and used
therein. In this section, you will have the opportunity to
learn how to prepare a plug-in that will be responsible for
generating PDF reports. The content of this report will be a

701

list of persons held in an addresses database table—the
same one that was introduced in Chapter 4. To generate
this report, the Free PDF PHP (FPDF) class is used.

To use FPDF in your application, you should download
FPDF from the http://fpdf.org/ website and place all its
content into the /app/vendors/fpdf/ directory. Later it
will be called from the controller file of your plug-in.

Plug-in Structure

When a copy of fpdf.php is in your /app/vendors/
fpdf/ directory, you can proceed with the process of
creating a CakePHP plug-in. Plug-ins in CakePHP are
usually self-contained applications on their own, so the file
structure for such a plug-in is nearly identical to those of a
normal CakePHP application.

First you need to name your plug-in. For this example,
pdfreport should be a good name. The basic plug-in file
structure used for the pdfreport example plug-in looks as
follows:

/pdfreport

/app

/plugins

/pdfreport

/controllers

/models

/views

702

/pdfreport_app_controller.php

/pdfreport_app_model.php

In the main plug-in folder, there are two important files:
the pdfreport_app_controller.php file that is the
plug-in's AppController and the
pdfreport_app_model.php file that is the plug-in's
AppModel. These files are named after plug-in's name.

Developing the Plug-in

To start building your plug-in, you need to create the file
structure shown in the preceding section. The content of
the AppController file of the plug-in in this example is a
simple class extending the AppControler of your main
application. The listing of this file is as follows:

<?php

class PdfreportAppController extends AppController {

}

?>

code snippet /cakephp/app/plugins/pdfreport/

pdfreport_app_controller.php

The situation is similar with the AppModel of the plug-in.
The code for this example is as follows:

703

<?php

class PdfreportAppModel extends AppModel {

}

?>

code snippet /cakephp/app/plugins/pdfreport/models/

pdfreport_app_model.php

Now you have the basis of your plug-in, and it is time to
create a controller that will handle all the capabilities of
your plug-in. Since you want to generate PDF reports from
your application, you need to create
GeneratePdfController inside the /controllers
folder of your plug-in. In this example, the controller file
will prepare a user list that is stored in the addresses
database table. To do this, you need to use the $uses
variable to point out that this controller uses the Address
model to read all the data. The controller file used in this
example goes as follows:

<?php

class GeneratePdfController extends PdfreportAppController {

704

var $name = ‘GeneratePdf’;

var $uses = array(‘Address’);

function index() {

$this->layout = ‘pdf’;

$this->set(‘address_list’, $this->Address->find(‘all’));

}

}

?>

code snippet /cakephp/app/plugins/pdfreport/controllers/

pdfreport_app_controller.php

This controller file has an index() action that does two
things: specify the layout file that was used to render the
view file and read all data from the Address model and
pass it to the view file as the address_list variable.

The layout file pdf.ctp, specified in the index action,
needs to be created inside the /views/layouts folder. It
will be used to render the index.ctp view file as PDF
content instead of HTML content. The content of the
layout file should be as follows:

<?php

header(“Content-type: application/pdf”);

705

echo $content_for_layout;

?>

code snippet /cakephp/app/plugins/pdfreport/views/

layouts/pdf.ctp

You should create the model file and set the $useTable

variable to false because this model does not use any
database tables. Code for this file can go like this:

<?php

class GeneratePdf extends PdfreportAppModel {

var $name = ‘GeneratePdf’;

var $useTable = false;

}

?>

code snippet /cakephp/app/plugins/pdfreport/models/

generate_pdf.php

Finally, the view file, index.ctp, needs to be created in
the /app/plugins/pdfreport/views/generate_pdf
folder. Here you will place all the PDF building
commands, but first you need to import the FPDF library
by using the App::import() command. The code used to
illustrate how the PDF file is generated is listed next:

706

<?php

App::import(‘Vendor’, ‘fpdf/fpdf’);

$pdf = new FPDF();

$pdf->AddPage();

$pdf->SetFont(‘Times’, ‘’, 16);

$pdf->Write(5, ‘Persons list’);

$pdf->Ln();

$pdf->SetFontSize(10);

$pdf->Write(5, ‘Report of users held in database.’);

$pdf->Ln();

$pdf->Ln(5);

$pdf->SetFont(‘Arial’, ‘i’, 10);

$pdf->Cell(10 ,7, ‘Nr.’, 1);

$pdf->Cell(20 ,7, ‘Name’, 1);

$pdf->Cell(50 ,7, ‘Email’, 1);

$pdf->Cell(20 ,7, ‘Phone’, 1);

$pdf->Ln();

$pdf->SetFont(‘Helvetica’, ‘’, 10);

foreach ($address_list as $line) {

707

$address = $line[‘Address’];

$pdf->Cell(10 ,7, $address[‘id’], 1);

$pdf->Cell(20, 7, $address[‘first_name’].‘ ’.$address[‘last_name’], 1);

$pdf->Cell(50, 7, $address[‘email’], 1);

$pdf->Cell(20, 7, $address[‘phone’], 1);

$pdf->Ln();

}

$pdf->Output();

?>

code snippet /cakephp/app/views/addresses/index.ctp

If you wish to learn more on how PDF files are created,
please visit http://fpdf.org/ because this example
introduces only basic functions.

Testing Your Plug-in

This concludes writing your CakePHP plug-in, and now
you probably wonder how you can use it. Well, this is
quite simple. Because this plug-in was designed to
generate PDFs containing a user list, it would be nice to
add this option to an application that has a user list already.
For this example, the application from Chapter 4 will be
used, but you need to add one code line at the end of the
index.ctp file that is responsible for displaying the
address list. It will create the Get pdf report link illustrated
in Figure 11.2. The report is presented in Figure 11.3. The
code line that needs to be added is as follows:

708

<?php echo $html->link(‘Get pdf report’, array(‘plugin’ => ‘pdfreport’,

‘controller’ => ‘GeneratePdf’, ‘action’ => ‘index’)); ?>

code snippet /app/views/addresses/index.ctp

Figure 11.2 Address list in your application

Figure 11.3 The user list PDF report

Zend Framework

709

In the Symfony and CakePHP sections of this chapter, you
learned how to create plug-ins that allow you to generate
PDF files on the fly. In this section, no such plug-in will be
created. This is because of the specificity of plug-ins in
Zend Framework, which is discussed in this section.

As for generating PDF files, Zend Framework is supplied
with the Zend_Pdf component that allows you to do that.
The Zend_Pdf component offers a number of features that
allow you to load, create, modify, and save PDF
documents. If you wish to learn more about generating
PDF files in Zend Framework, please refer to the
Zend_Pdf component documentation at:
http://framework.zend.com/manual/en/zend.pdf.html or
consider using the Free PDF PHP library introduced in the
Symfony and CakePHP sections of this chapter.

If you think of plug-ins in general, you imagine something
that you connect to an application, and that you can use as
a part of a bigger whole. As a hardware example, consider
a USB web camera or a game controller that you can
connect to any computer, and is ready to use after the
installation process. The concept is similar with plug-ins
for Symfony or CakePHP, in which a plug-in can have
nearly unlimited functionality and can be used in any
application.

In Zend Framework, plug-ins are completely different and
are designed to be used in a different manner than in
Symfony or CakePHP. In Zend Framework, a plug-in is a
class that contains a number of preset methods that are
called every time an application page is loaded. Because of
this, when you wish to create a Zend Framework plug-in,

710

you need to keep in mind that its code will be executed
every time the page is loaded. This limits your plug-ins to
a small set of specific tasks that can be performed this
way. It differentiates Zend Framework plug-ins from
typical plug-ins, where you create a controller class that
can give you access to additional helpers.

So what are Zend Framework plug-ins used for? A Zend
Framework plug-in is a set of listeners that is called when
certain events occur in the front controller. These events
correspond to the routing and dispatch actions. So
typically, Zend Framework plug-ins can be applied to
application initialization, caching, routing modification,
user authentication, and so on.

Creating your own plug-in is a simple task because you
need only one file to make it work. You may have noticed
that in Symfony and CakePHP, there is a certain folder
named plug-ins that gives you a general idea of where
your plug-ins should be. But in Zend Framework, you
don't have such a folder. So where should you place your
plug-in? Usually you should create a /My folder inside the
/Library folder of your application.

Now let's create an example plug-in called
Pluginexample.php, which you'll create in the
/appName/library/My/Controller directory. Note
that the path name influences how the class is named
inside Pluginexample.php, and for appName/library/
My/Controller the plug-in class name will be
My_Controller_Pluginexample. The following code is
a listing of a basic plug-in with a set of functions. These

711

functions will be executed one by one when any page is
loaded in the application that uses this plug-in:

<?php

class My_Controller_Pluginexample extends Zend_Controller_Plugin_Abstract {

public function routeStartup(Zend_Controller_Request_Abstract $request){

echo ‘<p>1. Router startup executed.</p>’;

}

public function routeShutdown(Zend_Controller_Request_Abstract $request){

echo ‘<p>2. Router shutdown executed.</p>’;

}

public function dispatchLoopStartup(Zend_Controller_Request_Abstract $request){

echo ‘<p>3. Dispatch loop startup.</p>’;

}

public function preDispatch(Zend_Controller_Request_Abstract $request){

echo ‘<p>4. Pre dispatch executed.</p>’;

}

public function postDispatch(Zend_Controller_Request_Abstract $request){

echo ‘<p>5. Post dispatch executed.</p>’;

}

712

public function dispatchLoopShutdown(){

echo ‘<p>6. Dispatch loop shutdown.</p>’;

}

}

?>

code snippet /zf/library/My/Controller/Pluginexample.php

In this file, you can place the desired functions for your
application instead of the example functions we used; for
example, for processing session variables or influencing
routing.

To use this plug-in, you need to make sure that your
application's Bootstrap.php contains the following line.
This will register name space for your plug-in folder; in
this case, its name is /My.

$autoloader->registerNamespace(‘My_’);

code snippet /zf/application/Bootstrap.php

Finally, to enable a specific plug-in, you need to add the
following line inside the application.ini file:

713

resources.frontController.plugins.param = “My_Controller_Pluginexample”

code snippet /zf/application/configs/application.ini

Now when you run your application, all messages
contained in My_Controller_Pluginexample will be
displayed before any content of your application is
rendered. These messages will look as follows:

1. Router startup executed.

2. Router shutdown executed.

3. Dispatch loop startup.

4. Pre dispatch executed.

5. Post dispatch executed.

6. Dispatch loop shutdown.

714

Chapter 12

Web Services

Always be wary of any helpful item that weighs less than
its operating manual.

—Terry Pratchett

What's In This Chapter?

• Creating basic CRUD-like web services with REST

• Using SOAP for enterprise web services

• Testing SOAP web services with soapUI

Web services are commonly considered by beginner
programmers as something terribly hard to learn. This is
only half true, as web services are advanced technologies
indeed and they are mostly on the bleeding edge of
development. There are also many different standards that
are compliant with different web services. So they are
quite hard to learn, but still it is not rocket science and if
you made it through all previous chapters of this book, you
can cope with web services as well.

There are good reasons for using web services. First of all,
they are incredibly trendy now, especially REST with its
small learning curve, allowing for rapid web development.
The popularity of SOAP is declining somewhat, but it is
still a successful heavyweight enterprise solution used by
many companies. With the exchange of data constantly
increasing between applications over networks, you can

715

expect that the importance of web services will continue to
increase.

The second reason is much more practical. Assume that
you have another application. Not a web app itself, but you
need to integrate it with a web app you are developing
now. Using web services is the best way to deliver such a
rich, elegant interface that would allow these applications
to communicate with each other.

Restful News Reading

REST stands for Representational State Transfer and any
application conforming to this standard is called RESTful.
It is a kind of stateless web software architecture that is
based on HTTP requests such as the commonly known
GET.

REST is probably the best choice to start for developers
who don't have experience with web services. In this
section, we will show how to develop a simple RESTful
application using HTTP methods. Frameworks add-ons
and features allow you to develop it easily and fast.

How Does REST Work?

REST is very simple and based on HTTP request methods:
GET, POST, DELETE, and PUT. You probably remember the
first two methods from developing previous example
applications. The last two methods are not so popular in
common application development, but PUT and DELETE
can be used in the same way as POST and GET. GET is used
every time you use an Internet browser in the usual way to

716

gather web content. POST is commonly used when some
data needs to be sent to an application. It's used in almost
all web forms. REST is based on all four methods to
implement a create, read, update, and delete (CRUD)
application without filling any forms, but just by simple
method-invoking. Comparing REST to CRUD operations,
GET would be read, POST would be create, DELETE would
be delete, and PUT would be update.

What is cURL?

cURL is tool that allows for data between miscellaneous
protocols, for example http, https, ftp, telnet, or ldap. You
can grab it at http://curl.haxx.se/. LibcURL is a library
used also by PHP. It's installed with XAMPP under
Windows and should also be available out of the box when
installing PHP under UNIX systems. What you need to do
is to make sure that cURL is enabled in php.ini. In
Windows, there should be an entry like the following:

extension=php_curl.dll

Under Linux, you should look for something like this:

extension=curl.so

If there is no semicolon at the beginning of this line, this
library should be enabled. Now you can use cURL
libraries in your PHP scripts.

In this chapter, some examples will be shown using the
command line curl. You can download Windows binaries
from http://curl.haxx.se/ or if you use a UNIX system such
as Ubuntu Linux, you can install it using a native package

717

manager. In Ubuntu, the command that installs cURL is as
follows:

apt-get install curl

This chapter discusses enterprise solutions, and Red Hat
Enterprise Linux (RHEL) and its derivatives are common
production environments. To install cURL on RHEL,
Fedora, and other RPM-based distributions, use the
following command:

rpm -I curl-7.15.5-*.rpm

Note that if you use Windows, you need to copy all files
you have downloaded with the binaries and unpack them
to C: xampp php . You will invoke curl.exe directly
from C: xampp php . This is important because as
described in Chapter 2, you need to add the C: xampp php

directory to the PATH environment variable. This makes
accessing it through the command line possible and not
dependent on the directory where you currently invoke
curl.

Let's try to use it and access google.com with the HTTP
GET method:

$ curl -I http://google.com/

The I parameter returns only the header of the response.
The command executed previously should give you a
response that's similar to the following one:

HTTP/1.1 301 Moved Permanently

Location: http://www.google.com/

718

Content-Type: text/html; charset=UTF-8

Date: Sun, 12 Sep 2010 16:26:21 GMT

Expires: Tue, 12 Oct 2010 16:26:21 GMT

Cache-Control: public, max-age=2592000

Server: gws

Content-Length: 219

X-XSS-Protection: 1; mode=block

As can be seen, the response gives you the information that
http://google.com/ is in fact a redirection to
www.google.com. So, let's try this one:

$ curl -I http://www.google.com/

And now you can observe the expected response result,
which should be similar to the following:

HTTP/1.1 200 OK

Date: Sun, 12 Sep 2010 16:26:17 GMT

Expires: -1

Cache-Control: private, max-age=0

Content-Type: text/html; charset=ISO-8859-1

Set-Cookie:

PREF=ID=36b253584c333970:TM=1284308777:LM=1284308777:

S=SD1VOPq6YCXFl8vN;expires=Tue, 11-Sep-2012 16:26:17 GMT;

path=/; domain=.google.com

Set-Cookie: NID=38=QeuwPnG5FULmdUstQvm-RCG52Q1x2TBAmynr0G5

719

GREXEKCmpqMCUuxVU5xxCFhqhkSXoqsVeHLMOWMr367Rn1w4bRyupJ

_Yo5tzICyhUQQ0kXrjtp2SPjZVHTN1bDHO;

expires=Mon, 14-Mar-2011 16:26:17 GMT; path=/;

domain=.google.com; HttpOnly

Server: gws

X-XSS-Protection: 1; mode=block

Transfer-Encoding: chunked

If you use the --help parameter, you will see a lot of
available options. cURL is a powerful tool with many
possibilities. In this section, it will be used to get
information about web application responses. We use it
later in this chapter to simulate the client-side application.

Symfony

Symfony provides multiple plug-ins for most imaginable
tasks. Symfony also delivers a few plug-ins that implement
the REST architecture. The two most commonly used
plug-ins are the following:

• sfRestWebServicePlugin—Offers an easy interface for
REST API based on your domain model:
http://www.symfony-project.org/plugins/
sfRestWebServicePlugin

• sfDoctrineRestGeneratorPlugin—An additional Doctrine's
task for generating RESTful modules based on defined
models: http://www.symfony-project.org/plugins/
sfDoctrineRestGeneratorPlugin

sfRestWebServicePlugin is used in this section of the
chapter. The following example is about reading news

720

through REST, so you should use a simple example model
to see how it works. Let's create a simple model in
schema.yml:

news:

columns:

title: string(50)

description: string(50)

content: string(255)

code snippet /rest/symfony/config/doctrine/schema.yml

Then you need to build the model, forms, and all the things
related to the model:

$ symfony doctrine:build --all

The following code installs the sfRestWebServicePlugin
plug-in:

$ symfony plugin:install sfRestWebServicePlugin

sfRestWebService has a few nice features. One of them
implements a security enhancement that makes your REST
services available only from fixed hosts. You can
configure this enhancement directly in the plug-in
configuration file config.yml, which is placed in the
/plugins /sfRestWebServicePlugin/config

721

directory. You can also add REST services you want to
enable and define a model, which should be assigned to
particular services. For the news model, config.yml
could be like the following:

all:

protected: true

allowed: [127.0.0.1]

protectedRoute: secure

services:

news:

model: news

methodForQuery:

states:

code snippet /rest/symfony/plugins/

sfRestWebServicePlugin/config/config.yml

Additionally, you can define which states should be
enabled for the current service. By default, all four states
are enabled. There is also a second configuration file:
routing.yml, shown below, in which all available
routing possibilities are presented. You can also set the
default response format, which is by default set to XML.

722

ws_entry:

url: /api/:service.:sf_format

class: sfRequestRoute

param: { module: sfRestWebService, action: entry, sf_format: xml }

requirements:

id: d+

sf_method: [GET, POST]

ws_resource:

url: /api/:service/:id.:sf_format

class: sfRequestRoute

param: { module: sfRestWebService, action: resource, sf_format: xml }

requirements:

id: d+

sf_method: [GET, PUT, DELETE]

ws_search:

url: /api/:service/search/:column/:value.:sf_format

class: sfRequestRoute

param: { module: sfRestWebService, action: search, sf_format: xml }

requirements:

723

id: d+

sf_method: [GET]

ws_500:

url: /api/error

param: { module: sfRestWebService, action: 500 }

code snippet /rest/symfony/plugins/

sfRestWebServicePlugin/config/routing.yml

As shown here, the search action is possible for each
concrete column, which in this example would be title or
description. If you type /search/title/HotNews, the
REST module will return all news items where the title
contains HotNews.

Getting a List of News

You don't need to configure anything else. Typing the
following in the command line:

$ curl -X GET http://localhost/api/news/

you should see XML output like this:

<?xml version=“1.0” encoding=“utf-8”?>

<objects>

<object id=“1”>

<id>1</id>

<title>Hot news</title>

<description>Symfony REST services works!</description>

724

</object>

</objects>

This is what is expected from a REST module. Note that
you had to previously add some data to the database to get
these responses.

Adding a News Item

To add a news item, you need to execute a command that
will send an HTTP POST request with additional POST
data:

$ curl -X POST -d “title=Second&description=News” http://localhost/api/
news

Adding news doesn't require providing any additional GET
parameters. You should get a proper message in XML
format as the response.

Updating News

Updating an entry requires that you give the ID of the
entry to be changed. PHP does not handle HTTP PUT
requests well. In Symfony, this problem is solved by
sending an HTTP POST request with the sf_method
parameter set to PUT. The cURL command should look
like this (the line has been broken to fit the page margins,
but you should write this as a single line):

$ curl -X POST -F sf_method=PUT -F title=First -F

description=News http://localhost/api/news/1

725

Note that you need to give the ID parameter of the news in
the URL. As a result, you should get an XML response
showing the changed row:

<?xml version=“1.0” encoding=“utf-8”?>

<object id=“1”>

<id>1</id>

<title>First</title>

<description>News</description>

</object>

Deleting News

Deleting entries couldn't be easier. Just invoke an HTTP
DELETE request with the news ID as the parameter:

$ curl -X DELETE http://localhost/rest/index.php/api/news/1

The response should be shown as an info message like this
one:

<?xml version=“1.0” encoding=“utf-8”?>

<object>

Object has been deleted

</object>

CakePHP

CakePHP also supports REST. This example uses the same
model as was used for Symfony in the previous section on
the logical level only because the code will differ.

726

CakePHP not only supports HTML as the output, but it can
also easily give you an XML file. For example, if you
request http://localhost/index.xml, this request is
automatically properly interpreted by CakePHP as a
request for an XML file instead of the default HTML. This
can be done by invoking the parseExtensions()
method, which is a part of the Router class.

To make it possible to access CakePHP modules through
REST requests, you may also invoke a resource mapper
method that maps REST methods (GET, POST, PUT,
DELETE) to CakePHP's controller CRUD equivalents
index(), add(), edit(), and delete(). Both sets of
methods should be added in the app/config/
routes.php configuration file:

Router::mapResources(‘news’);

Router::parseExtensions();

Now you can proceed with the implementation of a
controller that will handle all news requests.

Getting a List of News

Let's assume that a news controller is placed in
/controllers/news_controller.php as shown in the
following code for index() and view() actions:

727

<?php

class NewsController extends AppController {

var $components = array(‘RequestHandler’);

function index() {

$recipes = $this->News->find(“all”);

$this->set(compact(“news”));

}

function view($id) {

$recipe = $this->News->findById($id);

$this->set(compact(“news”));

}

}

code snippet /rest/cakephp/app/controllers/

news_controller.php

It's very similar to the default controller, but note that
PHP's compact() function is used to prepare an array that
will be used further to display the requested XML file.
This array is next serialized to be shown as an XML. Both
templates, view.ctp and index.ctp, look the same:

<newss>

728

<?php echo $xml->serialize($news); ?>

</newss>

code snippet /rest/cakephp/app/views/news/index.ctp

Both files are placed in the /app/views/news/xml
directory because we want to request an XML file, such as
http://localhost/news/index.xml. CakePHP recognizes
automatically that an XML file is requested and renders
proper template files. When you want to get the
information about just one concrete news item, you should
go to http://localhost/news/1.xml. This could not be
simpler. To get news entries you can use also cURL:

$ curl -I -X GET http://localhost/news/index.xml

The resulting response depends on what entries were
added before invoking the preceding command, but it
should be similar to the following:

<?xml version=“1.0” encoding=“UTF-8” ?>

<newss>

<news id=“1” title=“Foo” description=“Bar” />

<news id=“2” title=“Hot” description=“News” />

</newss>

Note that even when you request an XML file, templates
are wrapped by a layout template. In this case, an XML
layout template is placed in the project's /cake/libs/
view/layouts/xml/default.ctp directory. That's why
an array that is serialized to XML is wrapped with an
XML header.

729

Creating New Entries

Creating new entries is done in the same way as it was in
the Symfony example earlier in this chapter, through
sending POST data. Unlike index or view actions, adding
new entries cannot be done by a request to an XML file.
That's why POST requests are sent to http://localhost/news/
add. The problem is that CakePHP will not recognize this
as an XML file request. This is not a proper behavior, but
we could live with that. If we wanted to be more
professional, then it would be nice to send the response as
JSON or XML, because this is what the requester expects.
The solution is to create a template just like the previous
ones, but to keep it in the /app/views/news directory. To
add an XML header, you need to set a proper layout path.
The rest of the add() action is built like an action that
handles the form submissions:

function add() {

$this->layoutPath=‘xml’;

if ($this->News->save($this->data)) {

$message = “Saved successfully”;

} else {

$message = “Error while saving item”;

}

730

$this->set(‘message’,$message);

$this->render(‘message’);

}

code snippet /rest/cakephp/app/controllers/

news_controller.php

Additional actions should also provide XML message
answers. That's why you should create only one template
and render it within an action. For example, a message
template could look like this:

<message><?php echo $message; ?><message>

This template should be saved as /app/views/news/
message.ctp.

To invoke an add action, you need to send data as it's done
by the CakePHPs forms. Therefore, the cURL command
should be as follows (again, you should write this as a
single line):

$ curl -X POST -F data[News][title]=REST -F data[News][description]=Works!

http://localhost/news/add

Updating News

Editing entries should be done almost in the same way as
creating new items:

731

function edit($id) {

$this->layoutPath=‘xml’;

$this->News->id = $id;

if ($this->News->save($this->data)) {

$message = “News updated successfully”;

} else {

$message = “Error while updating item”;

}

$this->set(‘message’,$message);

$this->render(‘message’);

}

code snippet /rest/cakephp/app/controllers/

news_controller.php

One line needs to be added to let CakePHP know which
news need to be updated. Unlike adding entries, in
updating you need to set the news ID number in the URL:

$ curl -X POST -F data[News][title]=Brand -F data[News][description]=New

http://localhost/cake/index.php/news/edit/1

Deleting News

732

Deleting news can be done very easily by using the news
ID as a parameter to the model's delete() method:

function delete($id) {

if($this->News->delete($id)) {

$message = “News deleted successfully”;

} else {

$message = “Error while deleting item”;

}

$this->set(‘message’,$message);

$this->render(‘message’);

}

code snippet /rest/cakephp/app/controllers/

news_controller.php

To check out how it works, use HTTP DELETE:

$ curl -X DELETE http://localhost/cake/index.php/news/1

Zend Framework

Zend Framework offers quite a few possibilities to
implement REST, but the easiest way is to inherit a
controller from Zend_Rest_Controller. But before you

733

start adding REST functionalities, you need to add some
routing rules that intercept REST-specific requests and
invoke proper actions. You should add the
_initRestRoute() method within the application's
bootstrap /application/Bootstrap.php file:

<?php

class Bootstrap extends Zend_Application_Bootstrap_Bootstrap {

protected function _initRestRoute() {

$this->bootstrap(‘frontController’);

$frontController = Zend_Controller_Front::getInstance();

$restRoute = new Zend_Rest_Route($frontController);

$frontController->getRouter()->addRoute(‘default’, $restRoute);

}

}

code snippet /rest/zf/application/Bootstrap.php

This allows you to invoke HTTP requests without sending
the action's name. So instead of http://localhost/news/put,
you can invoke http://localhost/news/. Because the HTTP
method is known, Zend will recognize it and invoke the
proper action that is dedicated for each HTTP request; for
example, the putAction() method will be invoked when
PUT HTTP is requested. Now, you are ready to create the

734

controller. As mentioned before, you should inherit from
Zend_Rest_Controller:

<?php

class NewsController extends Zend_Rest_Controller {

}

code snippet /rest/zf/application/controllers/

NewsController.php

Save the controller as NewsController.php in the
application's controller directory. When you try now to
execute any action on this controller, you get an error
message because you haven't added inherited methods
indexAction(), getAction(), postAction(),
deleteAction(), and putAction(). You need to add
them before proceeding to the next steps:

public function init() {

$this->_helper->viewRenderer->setNoRender(true);

}

735

code snippet /rest/zf/application/controllers/

NewsController.php

If you want to respond with an XML file, you should also
set the NoRender variable to true. If you do that, Zend
will not include layouts while executing an action. For this
example, we need to create a News model, News.php,
which should be placed in the application's /model
directory, as shown here.

<?php

class Application_Model_News {

protected $_title;

protected $_description;

protected $_id;

public function __construct(array $options = null) {

}

public function __set($name, $value) {

$method = ‘set’ . $name;

if ((‘mapper’ == $name) || !method_exists($this, $method)) {

throw new Exception(‘Invalid property’);

}

736

$this->$method($value);

}

public function __get($name) {

$method = ‘get’ . $name;

if ((‘mapper’ == $name) || !method_exists($this, $method)) {

throw new Exception(‘Invalid property’);

}

return $this->$method();

}

public function setOptions(array $options) {

$methods = get_class_methods($this);

foreach ($options as $key => $value) {

$method = ‘set’ . ucfirst($key);

if (in_array($method, $methods)) {

$this->$method($value);

}

}

return $this;

}

public function setTitle($text) {

$this->_title = (string) $text;

return $this;

}

737

public function getTitle() {

return $this->_title;

}

public function setDescription($text) {

$this->_description = (string) $text;

return $this;

}

public function getDescription() {

return $this->_description;

}

public function getId() {

return $this->_id;

}

public function setId($text) {

$this->_id = (int) $text;

return $this;

}

}

code snippet /rest/zf/application/models/News.php

Additionally, as shown in the following code, you need to
create a News model mapper and save it as
NewsMapper.php at the same path.

738

<?php

class Application_Model_NewsMapper {

protected $_dbTable;

public function setDbTable($dbTable) {

if (is_string($dbTable)) {

$dbTable = new $dbTable();

}

if (!$dbTable instanceof Zend_Db_Table_Abstract) {

throw new Exception(‘Invalid table data gateway provided’);

}

$this->_dbTable = $dbTable;

return $this;

}

public function getDbTable() {

if (null === $this->_dbTable) {

$this->setDbTable(‘Application_Model_DbTable_News’);

}

return $this->_dbTable;

}

739

public function deleteOne($id) {

$this->getDbTable()->delete(‘id = ’. (int)$id);

}

public function save(Application_Model_News $news) {

$data = array(

‘title’ => $news->getTitle(),

‘description’ => $news->getDescription()

);

if (null === ($id = $news->getId())) {

unset($data[‘id’]);

$id = $this->getDbTable()->insert($data);

} else {

$this->getDbTable()->update($data, array(‘id = ?’ => $id));

}

return $id;

}

public function find($id, Application_Model_News $news) {

$result = $this->getDbTable()->find($id);

if (0 == count($result)) {

return;

}

$row = $result->current();

$news->setId($row->id)

740

->setTitle($row->title)

->setDescription($row->description);

}

public function fetchAll() {

$results = $this->getDbTable()->fetchAll();

$entries = array();

foreach ($results as $row) {

$entry = new Application_Model_News();

$entry->setId($row->id)

->setTitle($row->title)

->setDescription($row->description);

$entries[] = $entry;

}

return $entries;

}

}

code snippet /rest/zf/application/models/NewsMapper.php

To finish, the DbTable model needs to be created in the
/models/DbTable directory:

741

<?php

class Application_Model_DbTable_News extends Zend_Db_Table_Abstract {

protected $_name = ‘News’;

}

code snippet /rest/zf/application/models/DbTableNews.php

Getting a List of News

To get a list of news, you need to fetch it, as was done with
the address list in Chapter 4, and generate an XML
response.

public function indexAction(){

$news = new Application_Model_NewsMapper();

$result = $news->fetchAll();

$xml = “<newss>”;

foreach($result as $news){

$xml = $xml. “<news>”;

$xml = $xml. “ <id>”.$news->getId().“</id>”;

$xml = $xml. “ <title>”.$news->getTitle().“</title>”;

$xml =
$xml. “ <description>”.$news->getDescription().“</description>”;

742

$xml = $xml. “</news>”;

}

$xml = $xml.“</newss>”;

$this->getResponse()

->setHttpResponseCode(200)

->setHeader(‘Content-Type’, ‘text/xml’)

->appendBody(‘<?xml version=“1.0“ encoding=“utf-8”?>’)

->appendBody($xml);

}

public function getAction(){

$this->getResponse()

->setHttpResponseCode(404)

->setHeader(‘Content-Type’, ‘text/xml’)

->appendBody(“<message>Try index action</message>”);

}

code snippet /rest/zf/application/controllers/

NewsController.php

Note that getAction() is needed, but in our case, we can
just redirect from it to indexAction() because both do
the same thing. You don't need to create any template file
because all response data is sent directly using the
getResponse() method within the action. To check how
the previous code works, execute the following command:

$ curl http://localhost/news

743

Create News

Adding news is as simple as getting a list. What you need
to do is just get POST parameters and create an instance of
Application_Model_News and save it. Finally, you also
need to return an XML file, which should contain
information on the currently added item. It should
especially contain the ID number:

public function postAction(){

$description = $this->_request->getPost(‘description’);

$title = $this->getRequest()->getPost(‘title’);

$entry = new Application_Model_News();

$entry->setTitle($title);

$entry->setDescription($description);

$mapper = new Application_Model_NewsMapper();

$id = $mapper->save($entry);

$xml = “<newss>”;

$xml = $xml. “<news>”;

$xml = $xml. “ <id>”.$id.“</id>”;

$xml = $xml. “ <title>”.$entry->getTitle().“</title>”;

$xml =
$xml. “ <description>”.$entry->getDescription().“</description>”;

744

$xml = $xml. “</news>”;

$xml = $xml.”</newss>”; $this->getResponse()

->setHttpResponseCode(201)

->setHeader(‘Content-Type’, ‘text/xml’)

->appendBody($xml);

}

code snippet /rest/zf/application/controllers/

NewsController.php

You can test the success of this with the following
command:

$ curl -X POST -d “description=Brand&title=New” http://localhost/index.php/
news

Updating News

While developing REST methods in Zend, the method for
updating news is the most annoying task because of some
workarounds that you need to do. Normally when adding a
new item, you need to send data through POST, but in this
case a better way would be sending it by GET and marking
the HTTP method as PUT:

public function putAction(){

$params = $this->_getAllParams();

745

$entry = new Application_Model_News();

$entry->setTitle($params[‘title’];);

$entry->setDescription($params[‘description’];);

$entry->setId($params[‘id’];);

$mapper = new Application_Model_NewsMapper();

$id = $mapper->save($entry);

$xml = “<newss>”;

$xml = $xml. “<news>”;

$xml = $xml. “ <id>”.$entry->getId().“</id>”;

$xml = $xml. “ <title>”.$entry->getTitle().“</title>”;

$xml =
$xml. “ <description>”.$entry->getDescription().“</description>”;

$xml = $xml. “</news>”;

$xml = $xml. “</newss>”;

$this->getResponse()

->setHttpResponseCode(503)

->appendBody($xml);

}

code snippet /rest/zf/application/controllers/

NewsController.php

To get all sent parameters to your application, you can use
the _getAllParams() method. The rest of the code is as
in the previous add method. To test it, you should execute
the cURL command like this:

746

$ curl -X PUT -G -d “description=Hot&title=News” http://localhost/
index.php/news/1

Deleting News

To delete items, you need to get GET parameters with the
getParam() method. The rest is done as in the usual
CRUD Delete action:

public function deleteAction(){

$id = $this->getRequest()->getParam(‘id’);

$news = new Application_Model_NewsMapper();

$news->deleteOne($id);

$this->getResponse()

->setHttpResponseCode(204)

->appendBody(“<message>News deleted</message>”);

}

code snippet /rest/zf/application/controllers/

NewsController.php

Maybe you have noticed that in all the previous Zend
examples, different response codes are used. This is the

747

power and versatility that ZF gives to you. The following
is a list of the response code meanings:

• 200 OK
• 201 Created
• 204 No Content
• 404 Not Found
• 503 Service Unavailable

Providing Soap Web Services in E-Commerce
Applications

Simple Object Access Protocol (SOAP) is a web service
protocol. To work, it needs a Web Services Description
Language (WSDL) method definition file. WSDL contains
methods, parameters, and all other information needed to
send web service requests. In fact, SOAP can be compared
to invoking a server application's methods remotely.

Despite of the recent boom of REST, SOAP is still very
popular and it is used in many advanced and complicated
applications. It is a powerful solution and it is used mainly
in enterprise solutions. In this section, you add
functionality to your application that is very similar to
what you added in the previous sections in this chapter, but
you use SOAP.

Installing the SOAP Extension for PHP

In some cases, you will need to add the PHP SOAP
extension. XAMPP delivers this extension out of the box,
so you can skip this section if you are using XAMPP. In
some UNIX systems, like most Linux distributions, this
extension is not installed by default, but you can easily

748

install it yourself. For example, in Ubuntu Linux you need
to use a package manager to install the php-soap package:

apt-get install php-soap

In both UNIX and Windows systems, you need to enable
the SOAP extension if it's disabled in php.ini by
uncommenting the proper entry:

extension=php_soap.dll

Testing with soapUI

To test SOAP functionalities, soapUI is a good choice.
You can download this tool from www.soapui.org (you
can see its logo in Figure 12.1). It's free and available for
every operating system (OS) that supports the described
frameworks. Download your soapUI installer and go
through the Installation Wizard steps. You should be able
to run it by clicking the created icons (for example, in the
Start menu in Windows) or by executing the soapUI
application through the command line, as in Linux
systems:

$ soapUI-3.6

Figure 12.1 soapUI logo

749

What is the Difference Between SOAP and REST?

SOAP is bigger and more advanced than REST. You can
do the same things, or find a workaround to implement the
same tasks with REST, but in some situations SOAP is just
a better solution, especially when you have to deal with
communicating with enterprise applications. On the other
hand, there is a common opinion that SOAP is just too big,
and REST would be a better solution when you are not
communicating with enterprise applications.

As shown in Figure 12.2, REST is just a request/response
scheme. A client application submits an HTTP request and
expects an XML response back.

Figure 12.2 REST approach

750

As you can see in Figure 12.3, SOAP is more complicated.
In REST, there are only four methods that need to be
handled. In SOAP, there can be more, and there is no limit
for that. That's why a client application must get a WSDL
file in which all available methods are defined with
parameters that are allowed. A server application location
should be also within this file because the client
application needs to know where to send its requests, and
it's not obvious that it's the same location where WSDL is
placed.

Figure 12.3 SOAP approach

Symfony

Symfony delivers a lot of ready-to-use plug-ins. You can
easily connect to different applications such as Google
Picasa, LinkedIn, or Last.fm. Here are some examples of
plug-ins that you can install:

• sfPicasaPlugin—Gives you access to the Google Picasa API:
http://www.symfony-project.org/plugins/sfPicasaPlugin

• sfGoogleLoginPlugin—Allows logging in to the Google
account: http://www.symfony-project.org/plugins/
sfGoogleLoginPlugin

751

• sfHarmonyPlugin—Library that provides SOAP
communication for applications:
http://www.symfony-project.org/plugins/sfHarmonyPlugin

• dbAmazonS3Plugin—Allows you to work with Amazon S3
through its API: http://www.symfony-project.org/plugins/
dbAmazonS3Plugin

• sfMapFishPlugin—Allows you to integrate your Symfony
application with MapFish application:
http://www.symfony-project.org/plugins/sfMapFishPlugin

• WebPurifyPlugin—Enables securing web applications with
WebPurify: http://www.symfony-project.org/plugins/
WebPurifyPlugin

• wpLastFmPlugin—Provides tools to integrate with the
Last.fm music network: http://www.symfony-project.org/
plugins/wpLastFmPlugin

• sfNuSoapPlugin—Another library that enables SOAP
communication: http://www.symfony-project.org/plugins/
sfNuSoapPlugin

• sfLinkedinProfilePlugin—Allows you to show a LinkedIn
profile on your page: http://www.symfony-project.org/
plugins/sfLinkedinProfilePlugin

• sfFlexymfonyPlugin—Makes communication with Flex
applications from Symfony side possible:
http://www.symfony-project.org/plugins/
sfFlexymfonyPlugin

This section uses the ckWebService plug-in to create an
application with SOAP. To install the plug-in, use the
following command:

$ symfony plugin:install ckWebServicePlugin

Until the installation of this plug-in, you could use only
three types of application environments: dev, prod, and
test. This plug-in will add the fourth: soap. So you need to
configure the soap environment in your application's
app.yml file, as shown in the following code:

752

all:

enable_soap_parameter: off

soap:

enable_soap_parameter: on

ck_web_service_plugin:

wsdl: %SF_WEB_DIR%/NewsApi.wsdl

handler: NewsApiHandler

persist: <?php echoln(SOAP_PERSISTENCE_SESSION) ?>

soap_options:

encoding: utf-8

soap_version: <?php echoln(SOAP_1_2) ?>

soap_headers:

MySoapHeader:

class: MySoapHeaderDataClass

code snippet /soap/symfony/apps/frontend/config/app.yml

By default, soap parameters are set to on, but you should
turn them off for all application environments and enable
them only for soap. Additionally, some plug-in–specific
configuration needs to be set, such as the default WSDL
file, encoding, SOAP version, and so on. In this example,

753

adding news will be presented, so the NewsApi handler
and definition will be further generated. It's already added
in the preceding configuration. After you have completed
the basic configuration of the SOAP application, you also
should let Symfony know what will be the default SOAP
environment's controller. You can define it in the
application's factories.yml configuration file, as shown
in the following code:

soap:

controller:

class: ckWebServiceController

code snippet /soap/symfony/apps/frontend/config/

factories.yml

Finally, you need to enable SOAP applications to get
parameters. Because that is done using filters you can set it
in filters.yml:

rendering:

security:

754

soap_parameter:

class: ckSoapParameterFilter

param:

condition: %APP_ENABLE_SOAP_PARAMETER%

cache:

execution:

code snippet /soap/symfony/apps/frontend/config/

filters.yml

Note that in this example, the sequence of entries is
important. That completes the configuration, but you still
cannot add any news through SOAP now. Doctrine classes
that you have used to manipulate the dates kept in the
database are not available in the SOAP controller out of
the box, so you need to add some hints to let everybody
know that particular classes will be used in SOAP actions.
You can do that easily just by adding comments before the
class definitions. In case of the news class that you
generated in the REST example, you need to add one line
in the /lib/model/doctrine/news.class.php file:

<?php

/**

* @PropertyStrategy(‘ckDoctrinePropertyStrategy’)

755

*/

class news extends Basenews {

}

code snippet /soap/symfony/lib/model/doctrine/

news.class.php

Now you can create a module that will hold your SOAP
action:

$ symfony generate:module frontend news

You are halfway finished with your Hello World SOAP
application. To add a new news entry, you need to get two
parameters: title and description. If you read
previous chapters carefully, you should know that the add
action would be like the following one:

<?php

class newsActions extends sfActions {

public function executeAdd($request) {

$news = new news();

$news->title=$request->getParameter(‘title’);

$news->description =$request->getParameter(‘description’);

$news->save();

756

$this->result = $news->getId();

}

}

code snippet /soap/symfony/apps/frontend/modules/news/

actions/actions.class.php

It would be nice to comment what exactly this action will
do. It is important also because this way, you specify
which web service should handle this action while
generating a new WSDL file (@WSMethod):

<?php

class newsActions extends sfActions {

/**

* An action for adding news

* @WSMethod(webservice=‘NewsApi’)

* @param string $title Title

* @param string $description Description

* @return double The result

*/

public function executeAdd($request) {

// ...

757

}

}

code snippet /soap/symfony/apps/frontend/modules/news/

actions/actions.class.php

Finally, you need to create a /config directory in the
current module path and create a module.yml
configuration file. It's needed for defining parameters and
responses for SOAP. You need to add the following lines
(from add: to the end, it should be written as a single line)
in /modules/news/config/module.yml:

soap:

add: { parameter: [title, description],

result: { class: ckPropertyResultAdapter, param: { property: result } } }

code snippet /soap/symfony/apps/frontend/modules/news/

config/module.yml

Before testing your first SOAP module, you need to create
the WSDL definition file, as it was discussed at the
beginning of this chapter. This plug-in provides a nice way
to generate this WSDL file based on information given in
the preceding configuration file. What you need to do is
just to invoke this task using Symfony's command-line
interface (CLI):

758

$ symfony webservice:generate-wsdl frontend NewsApi http://localhost/

Note that you need to put your URL as the last parameter.
The preceding task will generate the following output:

>> file+ /home/wrox/public_html/soapsymfony/web/NewsApi.php

>> tokens /home/wrox/public_html/soapsymfony/web/NewsApi.php

>> file- /home/wrox/public_html/soapsymfony/apps/frontend/lib/

BaseNewsApiHandler.class.php

>> file+ /home/wrox/public_html/soapsymfony/apps/frontend/lib/

BaseNewsApiHandler.class.php

>> tokens /home/wrox/public_html/soapsymfony/apps/frontend/lib/

BaseNewsApiHandler.class.php

>> file+ /home/wrox/public_html/soapsymfony/web/NewsApi.wsdl

As shown previously, all needed files were generated.
When you take a look inside NewsApi.wsdl, you will see
something similar to the following code (some lines had to
be broken for print; write each entry between brackets <>
as a single line):

<?xml version=“1.0” encoding=“utf-8”?>

<wsdl:definitions xmlns:wsdl=“http://schemas.xmlsoap.org/wsdl/”

xmlns=“http://schemas.xmlsoap.org/wsdl/”

xmlns:xsd=“http://www.w3.org/2001/XMLSchema”

xmlns:soap=“http://schemas.xmlsoap.org/wsdl/soap/” name=“NewsApi”

targetNamespace=“http://localhost/“ xmlns:tns=”http://localhost/”

xmlns:soapenc=“http://schemas.xmlsoap.org/soap/encoding/”>

759

<wsdl:types xmlns:xsd=“http://www.w3.org/2001/XMLSchema”>

<xsd:schema xmlns:xsd=“http://www.w3.org/2001/XMLSchema”

xmlns=“http://www.w3.org/2001/XMLSchema”

targetNamespace=“http://localhost/”/>

</wsdl:types>

<wsdl:portType name=“NewsApiPortType”>

<wsdl:operation name=“news_add” parameterOrder=“title description”>

<wsdl:input message=“tns:news_addRequest”/>

<wsdl:output message=“tns:news_addResponse”/>

</wsdl:operation>

</wsdl:portType>

<wsdl:binding xmlns:soap=“http://schemas.xmlsoap.org/wsdl/soap/”

name=“NewsApiBinding”

type=“tns:NewsApiPortType”>

<soap:binding xmlns:soap=“http://schemas.xmlsoap.org/wsdl/soap/
” style=“rpc”

transport=“http://schemas.xmlsoap.org/soap/http”/>

<wsdl:operation xmlns:soap=“http://schemas.xmlsoap.org/wsdl/soap/“

name=“news_add”>

<soap:operation xmlns:soap=“http://schemas.xmlsoap.org/wsdl/soap/”

soapAction=“http://localhost/news_add” style=“rpc”/>

<wsdl:input xmlns:soap=“http://schemas.xmlsoap.org/wsdl/soap/”>

<soap:body xmlns:soap=“http://schemas.xmlsoap.org/wsdl/soap/

” parts=”title

760

description” use=“literal” namespace=“http://localhost/”

encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”/>

</wsdl:input>

<wsdl:output xmlns:soap=“http://schemas.xmlsoap.org/wsdl/soap/”>

<soap:body xmlns:soap=“http://schemas.xmlsoap.org/wsdl/soap/”

parts=“result” use=“literal” namespace=“http://localhost/”

encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”/>

</wsdl:output>

</wsdl:operation>

</wsdl:binding>

<wsdl:message name=“news_addRequest”>

<wsdl:part name=“title” type=“xsd:string”/>

<wsdl:part name=“description” type=“xsd:string”/>

</wsdl:message>

<wsdl:message name=“news_addResponse”>

<wsdl:part name=“result” type=“xsd:double”/>

</wsdl:message>

<wsdl:service xmlns:soap=“http://schemas.xmlsoap.org/wsdl/soap/”

name=“NewsApiService”>

<wsdl:port xmlns:soap=“http://schemas.xmlsoap.org/wsdl/soap/”

name=“NewsApiPort” binding=“tns:NewsApiBinding”>

<soap:address xmlns:soap=“http://schemas.xmlsoap.org/wsdl/soap/”

location=“http://localhost/NewsApi.php”/>

761

</wsdl:port>

</wsdl:service>

</wsdl:definitions>

The bold text in this file listing defines the input and
output of actions, the parameters, and the result. For
testing your new SOAP application, you can use soapUI,
as mentioned before.

Run it and choose File from the main menu; then choose
New soapUI Project. You should see a new window, as
shown in Figure 12.4. Browse for the WSDL file if it's on
your workstation, or you can download it from a remote
machine and then use it.

Figure 12.4 Wizard for adding new project in soapUI

After you click OK, you are taken to the next step, shown
in Figure 12.5. Notice that the action you supplied in the
previous step is automatically recognized because WSDL
contains information of this kind.

762

Figure 12.5 Adding test cases and requests in soapUI

Click OK and, as the last step, you are asked to specify a
proper name for the test suite (see Figure 12.6).

Figure 12.6 Specifying a name for the soapUI test suite
generator

Click OK and a list of all created projects appears to the
left in the next window displayed. It should look like
Figure 12.7.

Figure 12.7 soapUI projects list

763

If you have followed the instructions in this chapter,
clicking Request 1 opens a window with a new prepared
request, as shown in Figure 12.8.

Figure 12.8 soapUI request definition

Change the question marks that you'll see to some data, as
it's done in Figure 12.8. (Question marks were displayed
there instead of Hot and News.)

After clicking the green arrow visible in the top-left part of
this window, you should see the application's response on
the right, as shown in Figure 12.9.

Figure 12.9 soapUI application's response

764

The result should contain the ID of the news you've added
before. In this example, it is 1.

CakePHP

CakePHP SOAP implementation is more time-consuming
than the other two frameworks because you need to
manually set some properties, such as the WSDL response
header. WSDL files in Symfony and Zend are generated
automatically and based on a given class. A model needs
to be created because you will operate on a News table.
You should also define a new method that you will use for
SOAP, such as the method shown in the following code
snippet:

<?php

class News extends AppModel {

function addNewItem($title,$description) {

$data[‘News’][‘title’]=$title;

765

$data[‘News’][‘description’]=$description;

$this->save($data);

return “News id:”.$this->id;

}

}

?>

code snippet /soap/cakephp/app/models/news.php

The returned value is a string with the information about
the currently added News ID. The model shown in the
preceding code should be saved as /app/models/
news.php. The controller that will handle the SOAP
request should be very similar to the controller presented
in the “Creating New Entries” section of the “CakePHP”
section of this chapter. You need a RequestHandler
component, but you will need only two methods, as shown
in the following code snippet. The first is used to handle
SOAP requests and the second one will show the WSDL
file that makes the request possible.

<?php

class NewsController extends AppController {

var $components = array(‘RequestHandler’);

function service() {

766

$this->layout = false;

$this->autoRender = false;

Configure::write(‘debug’, 0);

ini_set(“soap.wsdl_cache_enabled”, “0”);

$server = new SoapServer(‘http://localhost/news/wsdl’);

$server->setClass(“News”);

$server->handle();

}

function wsdl() {

$this->layout = false;

header(‘Content-Type: text/xml’);

}

}

?>

code snippet /soap/cakephp/app/controllers/

news_controller.php

The bold line assigns the News class, which is your News
model class and invokes the requested method on an object
of the News type. The second method generates just an
XML file; that's why a proper header needs to be set.
Additionally, you need to manually write a WSDL file.
This can be a very annoying issue, especially for
developers who haven't met SOAP before. You can use the
example shown here:

767

<wsdl:definitions name=‘News’

targetNamespace=‘http://localhost/’

xmlns:tns=‘http://localhost/’

xmlns:soap=‘http://schemas.xmlsoap.org/wsdl/soap/’

xmlns:xsd=‘http://www.w3.org/2001/XMLSchema’

xmlns:soapenc=‘http://schemas.xmlsoap.org/soap/encoding/’

xmlns:wsdl=‘http://schemas.xmlsoap.org/wsdl/’

xmlns=‘http://schemas.xmlsoap.org/wsdl/’>

<wsdl:types>

<schema xmlns=“http://www.w3.org/2001/XMLSchema”

targetNamespace=“http://www.ecerami.com/schema”

xmlns:wsdl=“http://schemas.xmlsoap.org/wsdl/”

xmlns:soapenc=“http://schemas.xmlsoap.org/soap/encoding/”>

<complexType name=“ArrayOfString”>

<complexContent>

<restriction base=“soapenc:Array”>

<attribute ref=“soapenc:arrayType”

arrayType=“string[]”/>

</restriction>

768

</complexContent>

</complexType>

</schema>

</wsdl:types>

<message name=‘addNewItemRequest’>

<part name=‘title’ type=‘xsd:string’/>

<part name=‘description’ type=‘xsd:string’/>

</message>

<message name=‘addNewItemResponse’>

<part name=‘Result’ type=‘xsd:string’/>

</message>

<portType name=‘NewsPortType’>

<operation name=‘addNewItem’>

<input message=‘tns:addNewItemRequest’/>

<output message=‘tns:addNewItemResponse’/>

</operation>

</portType>

<binding name=‘NewsBinding’ type=‘tns:NewsPortType’>

<soap:binding style=‘rpc’ transport=‘http://schemas.xmlsoap.org/soap/
http’/>

<operation name=‘addNewItem’>

<soap:operation soapAction=‘urn:your-urn’/>

<input>

769

<soap:body use=‘encoded’ namespace=‘urn:your-urn’

encodingStyle=‘http://schemas.xmlsoap.org/soap/encoding/’/>

</input>

<output>

<soap:body use=‘encoded’ namespace=‘urn:your-urn’

encodingStyle=‘http://schemas.xmlsoap.org/soap/encoding/’/>

</output>

</operation>

</binding>

<service name=‘NewsService’>

<port name=‘NewsPort’ binding=‘NewsBinding’>

<soap:address xmlns:soap=“http://schemas.xmlsoap.org/wsdl/soap/”

location=‘http://localhost/news/service’/>

</port>

</service>

</wsdl:definitions>

code snippet /soap/cakephp/app/views/news/wsdl.ctp

Save the preceding code as wsdl.ctp in the /views/
news directory. Now you can test your SOAP application
developed with CakePHP. In soapUI, you are also able to
set a URL instead of a path to your local WSDL file in the
WSDL file field. For this example, it would be
http://localhost/news/wsdl if your application is on
localhost.

770

Zend Framework

Zend Framework delivers a lot of ready-to-use classes
such as Zend_Soap_Client, Zend_Soap_Server,
Zend_Soap_Wsdl, and a class for generating WSDL files,
Zend_Soap_AutoDiscover. You can use the same News
model files you used with the REST example. Creating a
simple SOAP application is very similar to the one that
was presented in the “CakePHP” section. First of all, you
need to create a class to handle SOAP requests. Adding a
news class can be done as follows:

<?php

require ‘../application/models/News.php’;

require ‘../application/models/NewsMapper.php’;

require ‘../application/models/DbTable/News.php’;

class NewsAPI {

/**

* Add method

* @param String $title

* @param String $description

* @return Int

*/

771

public function news_add($title, $description) {

$entry = new Application_Model_News();

$entry->setTitle($title);

$entry->setDescription($description);

$mapper = new Application_Model_NewsMapper();

$id = $mapper->save($entry);

return $id;

}

}

code snippet /soap/zf/library/NewsAPI.php

You need to include the necessary model files on your
own, as it was already described a few times in previous
chapters, particularly in Chapter 4. Next you need to define
a simple method that saves the News title and description
within the request. You can save it in /library as
NewsAPI.php. You need to include it in the controller that
you will use to handle the SOAP request. To simplify, let's
use the main controller. Just as in CakePHP, two methods
need to be defined: one for generating WSDL and one for
handling SOAP requests:

<?php

772

require_once realpath(APPLICATION_PATH .‘/../library/’).‘/NewsAPI.php’;

class IndexController extends Zend_Controller_Action {

public function wsdlAction() {

}

public function serviceAction() {

}

}

code snippet /soap/zf/application/controllers/

IndexController.php

To generate a WSDL file, you can use
Zend_Soap_AutoDiscover:

public function wsdlAction() {

$this->_helper->viewRenderer->setNoRender();

$autodiscover = new Zend_Soap_AutoDiscover();

$autodiscover->setClass(‘NewsAPI’);

$autodiscover->handle();

}

code snippet /soap/zf/application/controllers/

IndexController.php

773

The preceding code generates the WSDL file based on the
NewsAPI class definition. This approach needs less effort
than in the case of CakePHP. Next, you need to handle the
SOAP request:

public function serviceAction() {

$this->_helper->viewRenderer->setNoRender();

$soapServer = new Zend_Soap_Server(“http://localhost/index/wsdl”);

$soapServer->setClass(‘NewsAPI’);

$soapServer->handle();

}

code snippet /soap/zf/application/controllers/

IndexController.php

In soapUI, the WSDL file's URL would be as shown as in
the preceding code. It's the parameter for the
Zend_Soap_Server constructor method. As the last task,
you should set http://localhost/index/service.

774

Chapter 13

Back End

Why so serious?

—Joker, the Dark Knight (Batman)

What's In This Chapter?

• Comparison of various content management systems
(CMSs).

• Introducing back-end applications for CRUD operations.

Content management systems (CMSs) are now so popular
that they are a well-known standard. It is not really a
problem to build a CMS from scratch, but why should you
reinvent the wheel? Developing just another CMS when
you need one is a waste of time because there are so many
really good solutions, and you will certainly find one to
suit your needs. The CMSs described in this chapter use
proven design patterns and promote best programming
practices, which makes using them both straightforward
and educative.

But what is really good about these solutions is that they
are based on the three frameworks covered in this book
and they inherit the Model-View-Controller (MVC)
architecture. Another benefit is that they follow their
parent framework's structure and conventions, so you don't
need to learn how to use a new piece of software, but
instead you will feel yourself at home. It's also definitely

775

much easier to add or change some functionalities of a
CMS based on your favorite framework.

Symfony

Symfony has an extensive plug-in repository, including
CMS plug-ins that can be installed directly from the
command line. Another way of installing a CMS is to
download a prepared package, complete with Symfony and
CMS inside. In addition, you can use one more solution
that is delivered with Symfony itself: the admin feature of
the Doctrine object-relational mapper (ORM). For more on
Doctrine and ORMs, refer to Chapter 3.

The two ready-to-use CMS plug-ins described in this
section are Apostrophe and Diem (their logos are shown in
Figure 13.1). Both solutions should attract your attention
because they are arguably the richest of the CMSs covered
in this chapter. There are also some other solutions, such
as Lfcms or Sympal, but they are not as refined.

Figure 13.1 Apostrophe and Diem logos

Doctrine admin Modules

Symfony delivers a lot of command-line tools as described
in earlier chapters. There are two commonly used tasks to
generate create, read, update, and delete (CRUD) modules:

776

doctrine

:generate-admin

:generate-module

In Chapter 4, the generate-module task was described in
detail. The generate-admin task generates
administration controllers and views, which implement the
CRUD operations. This simplifies the work when you
want to build a back-end application. Let's build a simple
CRUD back-end application, which will allow you to
manipulate e-mail data. Assume that you have an e-mail
model containing such fields as email, forename, and
surname. You can create the application with the following
command:

$ symfony generate:app backend

To generate an admin module, you need to use this
command:

$ symfony doctrine:generate-admin frontend Mails

Now, when you go to http://localhost/backend_dev.php/
mails, you should see something similar to the left side of
Figure 13.2. The right side of Figure 13.2 shows filters for
searching for records based on concrete fields. It's useful
when you want to constrain your results to a few fixed
fields.

Figure 13.2 Doctrine admin module

777

Note that the URL includes localhost because we
assume that you are working on your local computer. If
you go to /apps/backend/modules/mails, you notice
that almost all the directories are empty, and no class
definitions contain any defined methods; they are only
inherited from other classes that reside in cache. These
cache classes are generated from the libraries. So such
exemplary action.class.php files found in this folder
can be as simple as follows:

<?php

require_once dirname(__FILE__).‘/../lib/
mailsGeneratorConfiguration.class.phpr’;

require_once dirname(__FILE__).‘/../lib/mailsGeneratorHelper.class.php’;

class mailsActions extends autoMailsActions {

}

All files are generated and placed in the /cache directory.
The directory structure should be as follows:

cache/backend/dev/

config/

i18n/

modules/

778

template/

Inside the cache in a proper directory, you can find the
autoMailsActions class definition.

You can change how files are generated by changing the
generator.yml configuration file, as shown in the
following code. The generator.yml configuration file is
located in the /modules/config directory.

generator:

class: sfDoctrineGenerator

param:

model_class: Mails

theme: admin

non_verbose_templates: true

with_show: false

singular:

plural:

route_prefix: mails

with_doctrine_route: true

actions_base_class: sfActions

779

config:

actions:

fields:

list:

filter:

form:

edit:

new:

code snippet /symfony/app/frontend/modules/

adminexample/config/generator.yml

To summarize, you need to execute just one command to
get a CRUD module. You don't need to add any more lines
of code. Propel also has this kind of functionality that you
can use through Symfony's command-line tools. Note that
generating CRUD modules is a functionality of Doctrine,
so you can use this feature in any other web framework
where Doctrine integration is possible. You can download
Doctrine from www.doctrine-project.org.

Apostrophe

Apostrophe is a CMS in which the word management

means something different than in most other CMSs.
Instead of creating two different levels (management and
presentation), it blurs the boundary between the back end

and the front end. You can get Apostrophe from
www.apostrophenow.com.

780

If you have already created a project, you can install
Apostrophe as a plug-in with the following command:

$ symfony plugin:install apostrophePlugin

Note that installing only the previous plug-in will not give
you all functionalities that come with Apostrophe. You
should also install the following plug-ins:

apostropheBlogPlugin

apostrophePlugin

sfDoctrineActAsTaggablePlugin

sfDoctrineGuardPlugin

sfFeed2Plugin

sfJqueryReloadedPlugin

sfSyncContentPlugin

sfTaskExtraPlugin

sfWebBrowserPlugin

These plug-ins are available out of the box in the sandbox
version. After unpacking, you should change the
configuration filenames by deleting .sample at the end.
You need to edit database.yml and fill it with proper
database information. If your database doesn't exist, you
need to create it before going on to the next steps (this was
described in Chapters 2 and 3). Next, you need to execute
the following combination of commands:

$ symfony cc

$ symfony plugin:publish-assets

781

$ symfony doctrine:build --all

$ symfony doctrine:data-load

The first command is executed only to make sure that there
are no previously generated files within /cache. The
second command publishes Apostrophe's web assets. After
that, you need to build models, forms, and database tables,
as designed in Apostrophe's schema.yml files. Finally you
load some data to see it on the Web.

When you go to http://localhost/, you should be able to see
something similar to what is presented in Figure 13.3.

Figure 13.3 Apostrophe sandbox main page

If you cannot see the Apostrophe main page (refer to
Figure 13.3) and you are sure that you configured the web
server properly, you should check permissions by
executing the following command:

$ symfony project:permissions

That command will fix directories permissions if they are
set wrong.

782

In the right corner of the main page, you can see a Login
button. This allows you to enter the administration mode.
To get there, you need to fill out the login form with
admin for the login and demo for the password. Now you
can add, edit, or delete the contents of each page. A dialog
for creating a page is shown in Figure 13.4.

Figure 13.4 Adding pages with the Apostrophe CMS

As shown in the following code, Apostrophe also provides
a lot of new tasks available within Symfony's
command-line interface (CLI):

apostrophe-blog

:fix-untitled-posts

:migrate-page-slugs

apostrophe

:after-deploy

:demo-fixtures

:deploy

:fix-remote-permissions

:generate-slot-type

:import-files

:migrate

783

:migrate-data-from-pkcontextcms

:migrate-from-pkcontextcms

:optimize-search-index

:rebuild-search-index

:refresh

:repair-tree

:ssh

:update-search-index

Apostrophe's approach gives you the capability to use
CMS in a way other than how it is commonly used, where
a project is divided into two parts: the front end and the
back end. With Apostrophe the pages are nearly What You
See Is What You Get (WYSIWYG), so the page you make
changes to looks nearly the same as the page the user will
see.

Diem

Diem is more than a simple CMS. It's a content
management framework (CMF). It has huge capabilities
because you can build your pages with blocks. It has a lot
of widgets that can be placed within your website. To start
using Diem, you need to download the package from
http://diem-project.org/. Next, unpack it to a convenient
directory like C: diem . The next step, shown in the
following code, is to create a directory where your Diem
project will be finally placed:

$ cd C: xampp htdocs

784

$ mkdir diemproject

Now you can proceed with the installation by going to the
directory you created and executing the Diem PHP install
script:

$ cd C: xampp htdocs diemproject

$ php C: diem install

This script will create a lot of files. When it ends, you need
to configure Diem by executing the following command in
your Diem project directory:

$ symfony dm:setup

That command will ask you some simple questions and
will do the rest of the configuration by itself. After your
Diem project is configured, you will be able to execute
some Diem tasks using Symfony's command-line interface,
as shown in the following code:

dm

:clear-cache

:data

:loremize

:permissions

:publish-assets

:search-update

:server-check

:setup

785

:sitemap-update

:sync-pages

:upgrade

dmAdmin

:generate

:generate-module

dmFront

:generate

:page-indexable-content

dmUser

:change-password

:promote

You can access the Diem admin page by typing
http://localhost/admin_dev.php/ in your browser, and you
can access the front end with http://localhost/. The front
end won't look good when you first open it because you
have not built a page yet, so it's almost blank. If you go to
the admin site and sign in with admin as both the login and
the password, you will be able to change the website's
details. You might notice a link at the bottom of the page
to switch to the back end. After clicking it, you will have
access to the Diem tool for building websites, as shown in
Figure 13.5. You should see two panels: the one to the left
is called Pages, and the one to the right is called Media.
You need to choose a page on the left and add widgets
with drag and drop. After you are done making changes to
the front end, you can log out and try it out.

786

Figure 13.5 Diem website building

CakePHP

CakePHP framework has only two CMSs worth
describing: Croogo and Wildflower (their logos are shown
in Figure 13.6). There are also some other CMS or
e-commerce solutions (such as BakeSale) that are based on
CakePHP, but only these two are now in active
development. CakePHP doesn't support generating default
CRUD modules as Symfony does. That can be done by
integrating Doctrine with CakePHP, but it needs additional
effort.

787

Figure 13.6 Croogo and Wildflower logos

Croogo

Croogo is a simple CMS that you just need to unpack to
the /app directory. Croogo needs to be installed within an
existing CakePHP instance as its application. You need to
download it first from www.croogo.org. Unpack the
content of Croogo's main directory to the /app directory.
Your directory structure should look as follows:

app/

config/

controllers/

libs/

locale/

models/

plugins/

acl/

empty/

example/

extensions/

install/

tinymce/

translate/

788

tests/

tmp/

vendors/

views/

webroot/

app_controller.php

app_error.php

app_helper.php

app_model.php

.htaccess

index.php

LICENSE.txt

README.mdown

VERSION.txt

cake/

plugins/

vendors/

.htaccess

index.php

README

This listing doesn't show everything; only files and
directories that we selected are shown here, and the most
important directories are bold. The main /app folder

789

contains the Croogo application downloaded in the earlier
step. After this preparation, Croogo is ready to be installed.
The Croogo web installer will guide you through the next
configuration steps. Just type http://localhost/ into your
browser, provided you have installed the CMS on your
local workstation. After the installation process ends, you
need to delete the /install directory, shown in bold in
the preceding code. Now you can run the Croogo CMS.
Under http://localhost/ you can find your front-end
application, and the back end is under http://localhost/
admin. The default login is admin, and the password is
password. A front-end example page is shown in Figure
13.7.

Figure 13.7 Croogo main web page

Croogo is a decent CMS without unusual features, so don't
expect any rocket science, but at least this CMS has all the
basic features everyone expects.

Wildflower

790

Wildflower is also a CMS based on CakePHP. It's even
simpler than Croogo. Installation of Wildflower is not as
easy as it is with Croogo because it hasn't got an installer.
Before starting manual installation, you need to download
Wildflower from http://wf.klevo.sk/. The downloaded
package is a whole CakePHP application with CakePHP's
libraries. You only need to unpack it to a proper directory.

When you're done with that, you can start working with
Wildflower by changing database connection properties in
app/config/database.php. Database connection
entries should be changed as is usually done in a CakePHP
application. Then you can create proper database tables
and insert some example data in them. Wildflower delivers
a SQL file for import with your favorite database tool. If
you don't have a favorite database tool, you can import
these entries from the command line as follows:

$ mysql -u root -D wildflower < app/config/sql/wildflower.sql

Note that this works if you are currently in the project
directory. Otherwise, you should give the whole path to
wildflower.sql. Now you have Wildflower installed
and you can access the front end (http://localhost/) and
back end (http://localhost/admin) of the application.
Wildflower's back end is shown in Figure 13.8. The default
password for the admin account is admin321. Wildflower
is a very simple CMS, but you can develop a bigger
application based on it.

Figure 13.8 Wildflower's back end

791

Zend Framework

Zend Framework doesn't support generating CRUD
controllers by default (except when using Doctrine as the
default ORM). This is a big drawback, but you can live
without that because in most cases developers spend a lot
of time customizing those automatically generated
controllers and views, and thus the time savings are not as
great as one would expect.

A guide to building a CRUD module for Zend Framework
is the same as in Chapter 4: You need to create all CRUD
actions yourself manually. You can also use one of the
open source CMSs and customize it to your needs. This
section presents three of the best known open source
CMSs based on Zend Framework: TomatoCMS, Pimcore,

792

and Digitalus CMS. Their respective logos are shown in
Figure 13.9.

Figure 13.9 TomatoCMS, Pimcore, and Digitalus CMS
logos

TomatoCMS

TomatoCMS comes with a handy web installer. After
downloading it from www.tomatocms.com and unpacking
to your web root directory, you can access the installer just
by typing http://localhost/ into your web browser. You
should see something similar to what is presented in Figure
13.10.

Figure 13.10 TomatoCMS installation wizard

The installer will guide you step by step. In Step 3, you
should check Import sample data if you are using
TomatoCMS for the first time. The back-end application is

793

available at http://localhost/admin. The password for the
admin account is generated randomly, and you should be
able to see it in the last step of the installation wizard.
TomatoCMS is nicely integrated with Google applications
and also with Flickr and Twitter. The rest of the features
are as usual in all common CMS solutions.

Pimcore

Pimcore is one of the biggest CMSs presented in this
chapter. You can download it from its homepage:
www.pimcore.org. You can install Pimcore in two ways:
through a web installer or manually. We will show you the
manual approach because it gives deeper insight into the
CMS. When you unpack Pimcore, you will notice that the
directory structure is a little bit different from that of Zend
Framework. Pimcore developers made their libraries based
on ZF, and although they're not the same as in ZF, they're
quite close. If you know ZF, you should have no problems
with Pimcore.

After unpacking, you need to set information on the
database connection in the pimcore/website/var/
config/system.xml configuration file. Lines to be
edited are shown in bold:

<?xml version=”1.0”?>

794

<zend-config xmlns:zf=”http://framework.zend.com/xml/zend-config-xml/1.0/
”>

<general>

<timezone>Europe/Berlin</timezone>

<domain></domain>

<language>en</language>

<validLanguages>en</validLanguages>

<debug>1</debug>

<theme>/pimcore/static/js/lib/ext/resources/css/xtheme-blue.css</theme>

<welcomescreen>1</welcomescreen>

</general>

<database>

<adapter>Pdo_Mysql</adapter>

<params>

<host>localhost</host>

<username>root</username>

<password></password>

<dbname>pimcore_example</dbname>

</params>

</database>

<documents>

<versions>

<days></days>

795

<steps>20</steps>

</versions>

<default_module>website</default_module>

<default_controller>default</default_controller>

<default_action>default</default_action>

<error_page>/</error_page>

</documents>

<objects>

<versions>

<days></days>

<steps>20</steps>

</versions>

</objects>

<assets>

<webdav>

<hostname></hostname>

</webdav>

<versions>

<days></days>

<steps>20</steps>

</versions>

</assets>

<services>

796

<scribd>

<apikey></apikey>

<secret></secret>

</scribd>

code snippet /pimcore/website/var/config/system.xml

As in almost all previous cases, you need to additionally
create a proper database. After that, you should load some
example data if you are using it for the first time:

$ mysql -u wroxuser -D pimcore_example <

/home/wrox/public_html/pimcore/pimcore_example.sql

Now you can access the back-end application through
http://localhost/admin with admin as both login and
password. It has a lot of features and nice tools that make
your life easier. Pimcore's theme looks a little bit like
Microsoft Outlook (see Figure 13.11).

Figure 13.11 Pimcore admin site

797

You can now edit pages from the back end with a
WYSIWYG editor that shows you the result of the whole
web page, not only the content of it, as it is presented in
most of the other CMSs.

Digitalus CMS

You can grab this CMS from http://digitaluscms.com/.
Digitalus CMS comes with a nice installer, which checks
all prerequirements and creates all needed tables. You will
be asked for a user ID and password for your super-user
account.

After the installation is finished, you should be able to see
something similar to Figure 13.12. Digitalus comes with a
rich internationalization feature. The rest of it is very
similar to the other commonly used CMS solutions.

Figure 13.12 Digitalus CMS back end

798

Feature Summary

We have prepared a short summary of the unique features
of individual CMSs (see page 369). This table should be
helpful for comparing them and choosing the right one for
your needs.

799

800

801

Chapter 14

Internationalization

Let us be fully aware of all the importance of this day,
because today within the generous walls of
Boulogne-sur-Mer have met not French with English, nor
Russians with Polish, but people with people.

—Ludoviko Zamenhof, the founder of Esperanto

What's In This Chapter?

• Introducing i18n.

• Using the CLI to translate view templates.

• Displaying time and date in different locales.

• Translating form elements.

• Using a database to store translations.

Multilingual websites are becoming increasingly popular,
not only among users, but also developers and important
strategic partners who want to see web apps translated into
their native languages. While translating into languages
transcribed using Latin-derived charsets is relatively easy,
there are also multiple scripts that use completely different
charsets, ideographic symbols, and right-to-left text
orientation. Internationalization is not only a matter of
courtesy but is also an excellent tool for tapping into the
great revenue potential that an international market
presents.

802

Web frameworks widely support internationalization. They
provide useful libraries or even ready-to-use solutions. In
this chapter, we show you how easy it is to extend your
web applications to use multiple languages and cultural
settings.

Internationalization Defined

Internationalization, often abbreviated to i18n because it is
a long word, goes far beyond providing a full Unicode
charset. It concerns many other issues such as the
following:

• Text writing direction
• Character collation (character order for sorting purposes)
• Varying plural forms and suffixes affected by other words
• Formatting of numbers, especially the decimal separator and

optional thousands separator
• Date and time formatting and local time display, taking into

account time zones and daylight saving time
• Weights, measures, and currency
• Various other cultural traits, such as postal codes, addresses,

titles, and academic degrees
• Mapping of social institutions and government documents

covering the same responsibilities, such as insurance,
taxation, health care, and so on

• Conformance of content with legal restrictions (for example,
copyrights or alcoholic beverage advertising)

Apart from internationalization, you can also come across
other terms like localization (110n) and globalization
(g13n). l10n usually refers to translating the interface in to
a specific language while i18n refers to offering the
content in different languages. There is no strict definition

803

for these terms, however, and they are sometimes used
interchangeably.

Right-to-Left Text Orientation

Right-to-left text orientation (RTL) is one of the
most important i18n issues. It is very easily
implemented using CSS direction property, so it
can be used for every framework. The following
code sets the text orientation inside a div to rtl.

div {

direction: rtl;

}

This is a universal solution supported by all
modern browsers.

Symfony

Symfony provides, out of the box, two i18n command-line
tasks: i18n:extract and i18n:find. They are both very
useful. The i18n:find task allows you to locate
untranslated template elements. You should be careful,
though, because this task may return many false positives
when parsing PHP files with text strings that are not
intended to be displayed to the user. The i18n:extract
task extracts all i18n strings from the given application and
target culture. By default, this tool only counts the number
of strings to extract; if you want to make it save them in

804

the i18n message catalogue, use the --auto-save
option:

symfony i18n:extract --auto-save application_name culture

Configuration

To configure internationalization in Symfony, first create a
project, an application, and a module, as shown in the
following code. For this example, the module is called
i18nexample:

$ symfony generate:project wroxI18N

$ symfony generate:app frontend

$ symfony generate:module frontend i18nexample

Symfony uses a parameter of the user session called
culture. This parameter naturally combines the language
of the user and all the cultural settings of his country. You
may specify the default culture of your website in the
settings.yml file:

all:

.settings:

default_culture: en_US

code snippet /symfony/apps/frontend/config/settings.yml

805

The culture called en_US uses the U.S. flavor of the
English language and United States locale settings.

In the same file, you have to add the following line to
make the i18n module work:

all:

.settings:

i18n: true

code snippet /symfony/apps/frontend/config/settings.yml

You can specify which languages will be supported by
particular web pages. To do that, edit routing.yml. The
following example illustrates how to provide the news
module for three language versions: English (any variant),
German, and Polish:

news:

url: /:sf_culture/:page

param:

806

requirements: { sf_culture: (?:en|de|pl) }

code snippet /symfony/apps/frontend/config/routing.yml

Note that you get clean, organized URLs this way. When
you have a page about cars with an English link
(http://localhost/en/cars), the link of the German version
will be http://localhost/de/cars. There is also the
zxI18nRoutingPlugin plug-in to make it look like
http://localhost/de/fahrzeuge. It may have a great effect on
search engine optimization (SEO) of localized websites.

You can set the culture of a user anytime using the
following method:

$this->getUser()->setCulture(‘en_US’);

The getter method is equally simple:

$culture = $this->getUser()->getCulture();

Templates

Creating a multilingual application requires a modification
of your view templates. Go to the actions.class.php
file and comment out the line responsible for redirection to
the default module:

<?php

807

class i18wroxActions extends sfActions {

public function executeIndex(sfWebRequest $request) {

// $this->forward(‘default’, ‘module’);

}

}

code snippet /symfony/apps/frontend/modules/i18nwrox/

actions/actions.class.php

This way, the indexSuccess.php template of your
module will be displayed. Go to the /templates folder
and edit this template:

<?php use_helper(‘I18N’) ?>

<?php echo __(‘The latest news’) ?>

code snippet /symfony/apps/frontend/modules/i18nwrox/

templates/indexSuccess.php

Using the I18N helper gets the work done with minimal
effort. All you have to do is to surround the text to localize
with a double underscore and round parentheses:

808

<?php use_helper(‘I18N’) ?>

<?php echo __(‘The latest news’) ?>

<?php echo “Not translated string”; ?>

code snippet /symfony/apps/frontend/modules/i18nwrox/

templates/indexSuccess.php

The bold line is important for comparison because strings
in double apostrophes will not be extracted as translatable
text. Try out the find command-line tool, as shown in the
following code. It returns all strings that are not translated,
including those you don't want to translate. The output is
as follows:

$ symfony i18n:find frontend

>> i18n find non “i18n ready” strings in the “frontend” application

>> i18n strings in “/apps/frontend/modules/i18nwrox/templates/
indexSuccess.php”

I18N

The latest news

Not translated string

Now the extract tool can be used to prepare all relevant
strings to be worked by translators. Remember to set the
--auto-save option with the name of your application
and culture:

809

$ symfony i18n:extract --auto-save frontend en_US

The output will include only ‘The latest news’ string
that you marked for localization:

>> i18n extracting i18n strings for the “frontend” application

>> i18n found “1” new i18n strings

>> i18n found “0” old i18n strings

Now you can check your localization dictionary,
messages.xml. It will contain the extracted string:

<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE xliff PUBLIC “-//XLIFF//DTD XLIFF//EN”

“http://www.oasis-open.org/committees/xliff/documents/xliff.dtd”>

<xliff version=”1.0”>

<file source-language=”EN” target-language=”en_US” datatype=”plaintext”

original=”messages” date=”2010-10-09T06:22:52Z” product-name=”messages”>

<header/>

<body>

<trans-unit id=”1”>

<source>The latest news</source>

<target/>

810

</trans-unit>

</body>

</file>

</xliff>

code snippet /symfony/apps/frontend/i18n/en_US/

messages.xml

XML Localization Interchange File Format (XLIFF) is a
recognized XML standard used in localization. It was
standardized in 2002 by OASIS, a group of localization
service and localization tools providers, and it is used
widely in the localization industry. You can grab its full
specifications at its website: http://docs.oasis-open.org/
xliff/xliff-core/xliff-core.html.

The following command deletes old (no longer used)
localization strings and saves the new ones:

$ symfony i18n:extract --auto-save --auto-delete frontend en_US

To add another language, just run the extract command
with another target culture:

$ symfony i18n:extract --auto-save --auto-delete frontend pl_PL

You will get another source-target pair in your XLIFF
dictionary. Now you can add a <target> segment with
localized text just after the <source> segment. Try to do
that with a language of your choice, as shown in bold in
the following code:

811

<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE xliff PUBLIC “-//XLIFF//DTD XLIFF//EN” “http://www.oasis-open.org/

committees/xliff/documents/xliff.dtd”>

<xliff version=”1.0”>

<file source-language=”EN” target-language=”pl_PL” datatype=”plaintext”

original=”messages” date=”2010-10-09T06:22:52Z” product-name=”messages”>

<header/>

<body>

<trans-unit id=”1”>

<source>The latest news</source>

<target>Najnowsze wiadomo ci</target>

</trans-unit>

</body>

</file>

</xliff>

code snippet /symfony/apps/frontend/i18n/pl_PL/

messages.xml

Now all you have to do is to set the corresponding culture
in your i18wrox action:

812

$this->getUser()->setCulture(‘pl_PL’);

Remember to clear your cache because Symfony may hold
in its cache old translated strings, which forces it to
generate new files:

$ symfony cc

The result looks like Figure 14.1: the translatable string is
displayed in Polish, and the other is not translated, just as
you wanted.

Figure 14.1 The translated message

There is another group of useful helpers that can do
wonders with dates. It is best to display dates through an
internationalization filter because they can be adjusted to
user culture by default. The Date helper is shown in the
following code:

<?php use_helper(‘Date’) ?>

It provides the following methods:

• format_date()—Displays a formatted date. You can use
predefined formats or custom ones.

• format_datetime()—Formatted date and time of day
• time_ago_in_words()—Describes in words how much

time has passed since a date; for example, 2 months

• format_daterange()—Displays a formatted range of
dates; for example, from 1939-09-01 to 1945-05-08

• distance_of_time_in_words()—Describes in words a
time distance between two dates

813

The methods providing textual output will translate the
output according to the user culture or the default culture.

There is also a specialized helper for numbers and
currency:

<?php use_helper(‘Number’) ?>

It provides the following methods:

• format_number()—Returns the number formatted
according to user's culture. This includes the decimal
separator and the thousands separator.

• format_currency()—Provides a string with the numeric
value formatted as a chosen currency, with the currency
symbol displayed to the correct side of the number.

An example of the indexSuccess.php template created
for the U.S. culture is presented in the following code
snippet. Figure 14.2 shows the visual output of this
template. All dates, numbers, and currency are displayed
using standard U.S. locale.

<?php

use_helper(‘Date’);

use_helper(‘Number’);

echo ‘Date: ‘.format_date(time()).‘
’;

echo ‘Date and time: ‘.format_datetime(time()).‘
’;

814

echo ‘Number: ‘.format_number(123456.78).‘
’;

echo ‘Currency: ‘.format_currency(12345, ‘USD’);

code snippet /symfony/apps/frontend/modules/

i18nexample/templates/indexSuccess.php

Figure 14.2 Output formatted for U.S. English culture

And the same file using Polish culture looks as follows:

<?php

use_helper(‘Date’);

use_helper(‘Number’);

echo ‘Data: ’.format_date(time()).‘
’;

echo ‘Data i godzina: ‘.format_datetime(time()).‘
’;

echo ‘Liczba: ‘.format_number(123456.78).‘
’;

echo ‘Waluta: ‘.format_currency(12345, ‘PLN’);

code snippet /symfony/apps/frontend/modules/

i18nexample/templates/indexSuccess.php

815

Figure 14.3 shows the output. See how everything has
changed: The short date is displayed using the DD-MM-YY

pattern, the long date uses the Polish month name and 24h
clock, the decimal separator is changed to the comma, and
the currency symbol (zł) is automatically displayed to the
right of the numeric value.

Figure 14.3 Output formatted for Polish culture

Forms

Symfony's Form Helper allows you to create several useful
forms. First you need to include this helper:

<?php use_helper(‘Form’) ?>

The following i18n forms are available. They allow users
to choose their date and time formats as well as country,
language, and other locale. There are also corresponding
validators. The form names are pretty self-explanatory:

• sfWidgetFormI18nDate
• sfWidgetFormI18nDateTime
• sfWidgetFormI18nTime
• sfWidgetFormI18nChoiceCountry
• sfWidgetFormI18nChoiceCurrency
• sfWidgetFormI18nChoiceLanguage
• sfWidgetFormI18nChoiceTimezone
• sfValidatorI18nChoiceCountry
• sfValidatorI18nChoiceLanguage

816

• sfValidatorI18nChoiceTimezone

Most of these widgets, as well as forms in general, are
described in detail in Chapter 5.

It is possible to display the same fields in multiple
languages, using a schema. The following code illustrates
this:

<?php

class NewsForm extends BaseNewsForm {

public function configure() {

$this->embedI18n(array(‘en’, ‘pl’));

$this->widgetSchema->setLabel(‘en’, ‘English’);

$this->widgetSchema->setLabel(‘pl’, ‘Polski’);

}

}

code snippet /symfony/lib/form/doctrine/

NewsForm.class.php

Generate an administration module:

$ symfony doctrine:generate-admin frontend news

817

Now when you access http://localhost/index.php/news in
your browser, you can manage the module. It looks like
Figure 14.4.

Figure 14.4 Form for multilingual news editing

Using a Database for i18n

Another advanced approach is to use a database as a
repository for translated strings. This can be very efficient
for larger websites. Create the following schema:

News:

actAs:

I18n:

818

fields: [title,description]

columns:

title: { type: string(150) }

description: { type: string(150) }

code snippet /symfony/config/doctrine/schema.yml

Now use the doctrine:build command-line tool to
create tables based on this schema:

$ symfony doctrine:build --all

This code generates the following tables. There is the
source news table that holds the EN strings and the
news_translation table related to news. It holds the ID
of the source, the translated string, and the language of
translation. Note that the primary key is composed from ID
and lang because a source sentence can be translated to
multiple targets:

news table:

+-------------+--------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+-------------+--------------+------+-----+---------+----------------+

| id | bigint(20) | NO | PRI | NULL | auto_increment |

+-------------+--------------+------+-----+---------+----------------+

news_translation table:

+-------------+--------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

819

+-------------+--------------+------+-----+---------+-------+

| id | bigint(20) | NO | PRI | 0 | |

| title | varchar(150) | YES | | NULL | |

| description | varchar(150) | YES | | NULL | |

| lang | char(2) | NO | PRI | | |

+-------------+--------------+------+-----+---------+-------+

Now you can easily get the translated data using the
following code in a controller:

$this->news = Doctrine::getTable(‘News’)->findAll();

Now you can get all records and choose a specific
translation. Or (even better) you can create a query that
returns data for the specified language only. This is how a
view that utilizes the data from the above controller could
look:

<?php foreach ($news as $n): ?>

<?php echo $n[‘Translation’][‘pl’][‘description’]; ?>

<?php echo $n[‘Translation’][‘pl’][‘title’]; ?>

<?php echo $n[‘Translation’][‘en’][‘description’]; ?>

<?php echo $n[‘Translation’][‘en’][‘title’]; ?>

<?php endforeach; ?>

820

code snippet /symfony/apps/frontend/modules/

i18nexample/templates/indexSuccess.php

It displays the title and full description in both languages.

Add-ons

There are several Symfony plug-ins that can speed up and
ease the i18n process:

• mgI18nPlugin—Adds a translation panel into the debug
web panel. It displays all source-target pairs for the current
page, and a form that allows you to edit the target strings:
http://www.symfony-project.org/plugins/mgI18nPlugin

• zxI18nRoutingPlugin—A smart plug-in that allows you to
translate routing paths: http://www.symfony-project.org/
plugins/zxI18nRoutingPlugin

• sfDoctrineCultureFlagsPlugin—Automatically adds links
to localized versions of your web pages and decorates them
with little country flags: http://www.symfony-project.org/
plugins/sfDoctrineCultureFlagsPlugin

• sfI18NGettextPluralPlugin—Allows support of complex
plural forms of some languages. Also fixes a bug where
Symfony doesn't tokenize plural forms:
http://www.symfony-project.org/plugins/
sfI18NGettextPluralPlugin

• sfFormI18nNumberPlugin—Validates numbers:
http://www.symfony-project.org/plugins/
sfFormI18nNumberPlugin

There are also some language-specific plug-ins, like these
two:

• brFormExtraPlugin—Brazilian widgets and validators:
http://www.symfony-project.org/plugins/brFormExtraPlugin

821

• sfSlovenianPlugin—Slovenian translations of core Symfony
messages: http://www.symfony-project.org/plugins/
sfSlovenianPlugin

CakePHP

CakePHP has a few nice features, such as a command-line
interface (CLI) tool similar to the one offered by Symfony
and a database loaded from schema, although it offers no
additional i18n plug-ins and it lacks in the area of forms
translation.

Configuration

CakePHP requires no special configuration; you can use its
console tool right away:

$ cake i18n

Cake's i18n shell has the form of a wizard that guides you
through the process. This friendly, straightforward
approach makes it significantly easier for beginners to
include internationalization in their web applications.

Welcome to CakePHP v1.2.4.x Console

App : wrox

Path: /home/wrox

I18n Shell

822

[E]xtract POT file from sources

[I]nitialize i18n database table

[H]elp

[Q]uit

The database initialization command will be used later in
this section; for now, the focus is on extracting strings
from the sources.

Templates

Run the cake i18n tool and choose [E] to start extracting
translatable strings from the source files. Make sure that
the path for extraction points to your application's root
folder. When CakePHP asks you whether you want to
merge all translations into one file, answer yes [y], and
when it asks you to name the translation output file, you
can leave the default or name it after your default
language. For this example, the name is en.

The bold parts of the following example designate the
input. If no user input is present, that means the proposed
value was accepted:

What is the full path you would like to extract?

Example: /home/wrox/public_html/i18n/myapp

[Q]uit

[/home/wrox/public_html/i18n/app] >

What is the full path you would like to output?

823

Example: /home/wrox/public_html/i18n/app/locale

[Q]uit

[/home/wrox/public_html/i18n/app/locale] >

Extracting...

Path: /home/wrox/public_html/i18n/app

Output Directory: /home/wrox/public_html/i18n/app/locale/

Would you like to merge all translations into one file? (y/n)

[y] >

What should we name this file?

[default] > en

Processing /home/wrox/public_html/i18n/app/index.php...

Processing /home/wrox/public_html/i18n/app/config/acl.ini.php...

Processing /home/wrox/public_html/i18n/app/config/bootstrap.php...

Processing /home/wrox/public_html/i18n/app/config/core.php...

Processing /home/wrox/public_html/i18n/app/config/database.php...

Processing /home/wrox/public_html/i18n/app/config/routes.php...

Processing /home/wrox/public_html/i18n/app/config/schema/db_acl.php...

Processing /home/wrox/public_html/i18n/app/config/schema/i18n.php...

Processing /home/wrox/public_html/i18n/app/config/schema/sessions.php...

Processing /home/wrox/public_html/i18n/app/webroot/css.php...

824

Processing /home/wrox/public_html/i18n/app/webroot/index.php...

Processing /home/wrox/public_html/i18n/app/webroot/test.php...

Done.

You can watch the files being processed one after another.
The previous code will generate the en.pot localization
file, shown in the following code:

#: /webroot/test.php:88

msgid “Debug setting does not allow access to this url.”

msgstr “”

code snippet /cakephp/app/locale/default.pot

The file now contains only one translatable error message
from the /webroot/test.php file. Add a new controller,
a model, and a view to check how CakePHP's i18n works
with your classes. First, create a new dummy controller
called news_controller.php:

<?php

class NewsController extends AppController {

825

function index() {

}

}

code snippet /cakephp/app/controllers/

news_controller.php

Then create a dummy news.php model as well:

<?php

class News extends AppModel {

}

?>

code snippet /cakephp/app/models/news.php

Also make an index view that will contain only a string to
translate. The string is surrounded by __(), just as in
Symfony. Remember that there are two underscores in the
front:

<?php echo __(“Internationalization in CakePHP”); ?>

826

code snippet /cakephp/app/views/news/index.ctp

Now execute the extract command again:

$ cake i18n extract

You will be able to observe in the output the new files
created by you:

Processing /home/wrox/public_html/i18n/app/controllers/
news_controller.php...

Processing /home/wrox/public_html/i18n/app/models/news.php...

Processing /home/wrox/public_html/i18n/app/views/news/index.ctp...

The resulting file, default.po, will contain two entries
now:

#: /views/news/index.ctp:1

msgid “I18n in CakePHP!”

msgstr “”

#: /webroot/test.php:88

msgid “Debug setting does not allow access to this url.”

msgstr “”

code snippet /cakephp/app/locale/default.pot

827

To provide translations for other languages, copy this file
into the appropriate folders inside /app/locale/. Just as
/app/locale/eng/ is the folder for the English
language, you need folders for the target languages. In this
example, these folders are /app/locale/ind/ for Hindi
and /app/locale/pol/ for Polish. Edit the msgstr “”
line, inserting the Hindi phrase (“CakePHP
”) into /app/locale/ind/default.po and the Polish
phrase (“Wieloj zyczno w CakePHP”) into /app/
locale/pol/default.po. If you have trouble writing
non-ASCII characters, just write anything else instead.

Now you can edit the Config.language property in the
controller to change the language, as shown in the
following code. The outputs for these three languages are
juxtaposed in Figure 14.5.

<?php

class NewsController extends AppController {

function index() {

$this->Session->write(‘Config.language’, ‘pol’);

}

}

code snippet /cakephp/app/controllers/

news_controller.php

828

Figure 14.5 Internationalization in CakePHP in multiple
languages

You can set the default language in the core.php
configuration file by adding this line at the end of this file:

Configure::write(‘Config.language’, “pol”);

code snippet /cakephp/app/config/core.php

Forms

CakePHP has some problems with forms localization. It is
not really convenient, and many other frameworks have
similar problems. Unfortunately, the translatable form
parts must be saved as HTML and not using the $form
helper. The following code is a workaround that makes it
possible to have form labels translated at all. The output
for this example looks like the form in Figure 14.6.

<h1><?php echo __(“Add a news”); ?></h1>

829

<?php echo $form->create(‘News’); ?>

<label for=”NewsTitle”><?php echo __(“Title”); ?></label>

<?php echo $form->input(‘title’,array(‘label’=>‘’)); ?>

<label for=”NewsDescription”><?php echo __(“Description”); ?></label>

<?php echo $form->input(‘description’,array(‘label’=>‘’)); ?>

<input type=”submit” name=”submit” value=”<?php __(“Add”); ?>” />

<?php echo $form->end(); ?>

code snippet /cakephp/app/views/news/index.ctp

Figure 14.6 Form labels translated into Polish

Using a Database for i18n

Storing translations in a database is a convenient and
effective way of localizing web applications in CakePHP.
First you must set up your database connection in /app/
config/database.php. Then manually create the
database tables. These steps were described in detail in

830

Chapters 3 and 4. Now you are ready to generate the
schema:

$ cake schema generate

The output of schema generation is the following:

Welcome to CakePHP v1.x Console

App: app

Path: /home/wrox/public_html/i18n/app

Cake Schema Shell

Generating Schema...

Schema file: schema.php generated

Well, the news.php schema was generated, but where was
it saved? You can find it in /app/config/schema and it
looks like this:

<?php

class newsSchema extends CakeSchema {

var $name = ‘news’;

831

function before($event = array()) {

return true;

}

function after($event = array()) {

}

var $news = array(

‘id’ => array(‘type’ => ‘integer’, ‘null’ => false,

‘default’ => NULL, ‘length’ => 5, ‘key’ => ‘primary’),

‘title’ => array(‘type’ => ‘string’, ‘null’ => true,

‘default’ => NULL, ‘length’ => 150),

‘description’ => array(‘type’ => ‘string’, ‘null’ => true,

‘default’ => NULL, ‘length’ => 150),

‘indexes’ => array(‘PRIMARY’ => array(‘column’ => ‘id’, ‘unique’ => 1))

);

}

?>

code snippet /cakephp/app/config/schema/news.php

You can create this file manually instead. If you want to
generate this file, you need to run the following command:

$ cake schema create news news

And if everything went well, you will see the following
output:

832

Welcome to CakePHP v1.x Console

App: app

Path: /home/wrox/public_html/app

Cake Schema Shell

The following table(s) will be dropped.

news

Are you sure you want to drop the table(s)? (y/n)

[n] > y

Dropping table(s).

news updated.

The following table(s) will be created.

news

Are you sure you want to create the table(s)? (y/n)

[y] > y

Creating table(s).

news updated.

End create.

833

Additionally, you have to initialize the i18n table whether
the schema was created automatically or manually. Run
the following command:

$ cake i18n

The CakePHP console will ask you which i18n tasks you
would like to perform. Answer [I]:

Welcome to CakePHP v1.x Console

App: app

Path: /home/wrox/public_html/app

I18n Shell

[E]xtract POT file from sources

[I]nitialize i18n database table

[H]elp

[Q]uit

What would you like to do? (E/I/H/Q)

> I

You must answer two questions, as shown in the following
listing. First you are asked if you want to drop (delete)
your current i18n database. Agree unless you already have
some important data there. Next you are asked if you want
to re-create this table. Answer yes to finish the process.

834

Welcome to CakePHP v1.x Console

App: app

Path: /home/wrox/public_html/app

Cake Schema Shell

The following table(s) will be dropped.

i18n

Are you sure you want to drop the table(s)? (y/n)

[n] > y

Dropping table(s).

i18n updated.

The following table(s) will be created.

i18n

Are you sure you want to create the table(s)? (y/n)

[y] > y

Creating table(s).

i18n updated.

End create.

The following table will be created:

835

+-------------+--------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+-------------+--------------+------+-----+---------+----------------+

| id | int(10) | NO | PRI | NULL | auto_increment |

| locale | varchar(6) | NO | MUL | NULL | |

| model | varchar(255) | NO | MUL | NULL | |

| foreign_key | int(10) | NO | MUL | NULL | |

| field | varchar(255) | NO | MUL | NULL | |

| content | text | YES | | NULL | |

+-------------+--------------+------+-----+---------+----------------+

Before you start translating your strings, first indicate in
the model which fields should be translated, as shown
here:

<?php

class News extends AppModel {

var $name = ‘News’;

var $actsAs = array(

‘Translate’ => array(

‘title’, ‘description’

)

836

);

}

?>

code snippet /cakephp/app/models/news.php

The form used for adding content was shown in Figure
14.6. The controller method that handles this form is
presented here. The bold line sets the Polish locale. You
can modify it to add translations for other languages.

function add() {

if ($this->data) {

$this->News->locale = ‘pol’;

$this->News->create();

if ($this->News->save($this->data)) {

$this->redirect(array(‘action’ => ‘index’));

}

}

}

code snippet /cakephp/app/controllers/

news_controller.php

837

Add some content using the form and the method shown in
the preceding code. In this example, “nowa wiadomo ”
was written into the title field, and “bardzo wa na”
into description. Now when you look in the database,
you can find the following data in the i18n table:

select * from i18n;

+----+--------+-------+--------------+-------------+-----------------+

| id | locale | model | foreign_key | field | content |

+----+--------+-------+--------------+-------------+-----------------+

| 1 | pol | News | 1 | title | nowa wiadomo |

| 2 | pol | News | 1 | description | bardzo wa na |

+----+--------+-------+--------------+-------------+-----------------+

2 rows in set (0.00 sec)

As you can see, CakePHP stores the values for each
translated field separately, with the field name as an
identifier. If you want to get all records, you can call in a
controller the find() method on a model to fill the $data

variable with translated values, as shown here:

$this->set(‘data’,$this->News->find());

Then display this data in a view:

<?php print_r($data); ?>

For this example, you will see the following output, each
record listed with its translations:

Array ([News] => Array ([id] => 1 [title] => nowa wiadomo

838

[description] => bardzo wa na [locale] => pol))

Add-ons

Unfortunately, CakePHP doesn't offer any add-ons.
However, its core features seem quite sufficient, so it is not
a big drawback.

Zend Framework

Zend Framework has two libraries designed to help you
with application localization: Zend_Translate and
Zend_Locale. The Zend_Translate library is focused
on translating texts, while Zend_Locale deals with other
aspects of localization, such as date formats or decimal
separators.

Configuration

You need to set the default language. Add the following
line into application.ini:

resources.locale.default = “en”

Zend_Locale provides a few libraries for various cultural
settings, such as:

Zend_Date

Zend_Calendar

Zend_Currency

Zend_Translate

839

Zend_Translate is a well-developed library that
provides some useful translation tools. A family of
adapters is one really great solution. Both Symfony and
CakePHP force you to use one or two file formats, while
ZF introduces an additional layer of adapters. This allows
you to choose the file format of your translations from a
long list of supported formats:

• Array—Just PHP arrays, good for special purposes.
• CSV—Simple text, comma-separated values.
• Gettext—Binary files with the .mo extension for the

Gettext GNU localization tool.
• INI—Text-based .ini files.
• TBX—TermBase eXchange .tbx files. An ISO standard for

storage and exchange of terminology, used by
professional-grade computer aided translation (CAT) tools.

• TMX—Translation Memory eXchange .tmx files. Open
XML standard used by CAT tools for the exchange of
translation memories. Translation memories store whole
segments of text instead of single terms.

• Qt—QT Linguist .ts files, for use with the QT
programming framework.

• XLIFF—XLIFF .xliff/xml files.
• XMLTM—Similar to the TMX, XML-based format.
• SQL—Database queries stored as .sql files.

XLIFF format is used by Symfony, and sometimes stored
also as .xml files. CakePHP uses a custom POT format,
similar to INI. But Zend Framework, by allowing so many
formats, is the true winner here.

An example for an INI adapter is shown here:

$translate = new Zend_Translate(

array(

840

‘adapter’ => ‘ini’,

‘content’ => /home/wrox/public_html/application/translations/en.ini,

‘locale’ => ‘pl_PL’

)

);

Zend_Locale

Zend introduces the Zend_Locale library that allows
setting locale time and date according to a user's culture.
The following code sets two dates: one using a U.S. locale
and the second one using a Polish locale:

<?php

class IndexController extends Zend_Controller_Action {

public function init() {

}

public function indexAction() {

$usLoc = new Zend_Locale(‘en_US’);

$this->view->dateUS=new Zend_Date(date(“Y-m-d”), null, $usLoc);

$plLoc = new Zend_Locale(‘pl_PL’);

$this->view->datePL=new Zend_Date(date(“Y-m-d”), null, $plLoc);

}

841

}

code snippet /zf/application/controllers/

IndexController.php

Create the following simple view that displays these two
dates. The output is presented in Figure 14.7.

<?php echo $this->dateUS; ?>

<?php echo $this->datePL; ?>

code snippet /zf/application/views/scripts/index/

index.phtml

Figure 14.7 The same date and time in two different
formats

You can use the locale module directly in the view, too:

<?php

$date = new Zend_Date();

echo $date; ?>

Translation

842

ZF provides a translation library: Zend_Translate. A
sample view file using a simple array adapter is presented
here (while developing a real app, you should move the
translation part into a controller, leaving only the
presentation in the view):

code snippet /zf/application/views/scripts/index/

index.phtml

Forms

The translation of forms works great in Zend Framework.
It allows for translating form elements, which was not
possible in CakePHP. The following code builds a single
form and then displays it for three languages: Polish,
English, and Hindi. First you need to build arrays of

843

translations for each language. Then create an object of the
Zend_Translate class. Use its addTranslation()
method to feed it with the arrays for various locales.
Finally you just echo the form when the chosen locale is
set. You can see the results in Figure 14.8.

Figure 14.8 The Zend Framework form translated into
multiple languages

844

code snippet /zf/application/views/scripts/index/

index.phtml

Using a Database for i18n

Getting translations from a database is supported by Zend
Framework through an SQL adapter, but to achieve the
same result as in Symfony or CakePHP you would have to
write everything on your own. The approach using an SQL
adapter allows you to translate static text, but it would be
hard to support dynamic translations as it is presented in
Symfony or CakePHP. One solution is to write a plug-in

845

that will get the texts from a database. However, this
solution requires a very large amount of code, and this
book is meant to show what the frameworks can do rather
than develop custom workarounds when they can't.

There is one more way to do this. Another functionality ZF
lacks is a true ORM mapper. It turns out that if you
integrate ZF with Doctrine, you can use Doctrine's features
just as you can in Symfony. With one integration, you gain
two important modules: an excellent ORM and full support
for i18n databases.

Add-ons

Zend Framework provides so many libraries that in almost
all cases there is no real need to use any external add-ons.
Most of these add-ons available for use with ZF were not
created solely for this framework and are not especially
interesting.

846

Chapter 15

Testing

Computers are good at following instructions, but not at
reading your mind.

—Donald Knuth

What's In This Chapter?

• Basic facts on enterprise software testing.

• Functional and unit testing.

• Using testing frameworks.

• Automated tests with Selenium.

Many people associate “testing” with measuring the
performance of applications. These kinds of tests will be
conducted in Chapter 17, but this chapter deals with testing
on a much deeper level, namely testing whether an
application works as expected or not. It is easy to
underestimate this kind of testing because it may seem a
trivial issue. Indeed, it is trivial for very small applications,
but when they grow and gain new functionalities, testing
becomes an indispensable part of the software
development process. It is an area of computer science that
focuses on the quality of software.

Introducing Testing

Imagine that you have just written a really cool app with
abundant functionalities and you have instantly sold it at a
premium price. However, after a week your customer

847

wants his money back or even sues you because your
software crashes once a day. So, you delivered a piece of
software that could be really great, but in fact is useless for
your customer. Generally speaking, software stability may
be something not easily noticeable from a developer's
point of view, but it is critical for end users who will work
with this software every day in their environments.

How to Begin Testing

When starting a new project, some requirements for the
final product must be established. A requirement is
something a software quality engineer refers to while
testing the software. It is good to start with making sure
that all described requirements are comprehensible for
everyone. That's why requirements are often presented as a
list of stories and they are named as simply as possible; for
example: As a customer, I want to be able to use my credit

card so that I can pay for products in my basket. This story
should then be described with as much detail as possible,
but without overstatement.

There are various software development
and maintenance methodologies. A good
example of methodology that supports
defining requirements is the Scrum
methodology belonging to Agile software
development techniques. Scrum provides

848

the following template, which can be used
to develop meaningful stories: As a <type

of user>, I want <some goal> so that

<some reason>. It clearly defines the actor,
the action, and the consequences of this
story.

Test Cases, Test Suites, and Test Coverage

Test cases, test suites, and test coverage are concepts
commonly used in software quality assurance. We will
start by describing these concepts in detail.

Test Case

A test case is nothing more than a list of steps and
expected results. For example, assume that you need to test
authentication functionality. To make sure that
authentication works properly, you need to check that after
filling out the login form we will be redirected to the main
page if the authentication succeeds. So this test case could
be defined as shown in the following table.

Step Action Expected Result

1 Go to the page http://localhost/
login.

A page with a login form is
displayed.

2
Fill out the username and
password fields with admin and
secret values.

Username is filled out with plain
text, and password is filled out with
hidden text.

3 Click the login button. Form information is submitted.

849

4 Check the current page location. The page location is http://localhost/
main.

With the test case defined this way, you can to execute it
easily because everything is clear—you know what action
you need to execute and what the expectations are. All test
cases must fulfill the requirements, which are defined
before each functionality is implemented. Each
requirement has its own acceptance criteria. Test cases also
define steps to determine whether an application meets the
acceptance criteria.

Note that the test case described in the preceding table
doesn't really cover the requirement that authentication
function properly because if the application accepted just
any username and password, the test case would end
successfully, but the application obviously wouldn't work
properly and thus wouldn't meet the acceptance criteria.
Each requirement in most cases needs more than one test
case. Therefore, in the example you should also create
additional test cases that check the negative scenario as
well. An exemplary negative scenario test case is shown in
the following table.

Step Action Expected Result

1 Go to the page http://localhost/
login.

A page with a login form is
displayed.

2
Fill out the username and password
fields with the values admin and
wrongSecret.

Username is filled out with plain
text, and password is filled out
with hidden text.

3 Click the login button. Form information is submitted.

4 Check the current page location. The page location is
http://localhost/login.

850

5 Check the error message displayed.
Error message is Wrong

username/password. Please try

again.

Other test cases can be made to check the main page when
it's shown after successful login. You are free to invent
more test cases to cover the requirements. Each test case
can end as successful or failed. If it fails, we can show
exactly where it's failing, so searching for errors is easier.
That's why test cases are so important when we want to
deliver quality software.

Test Suite

Test suites are just collections of test cases. Test suites
collect test cases testing the same general issue. Most
often, test cases from one test suite are executed together
to cover a whole functionality.

For the issue of login authentication, you can call the
corresponding example test suite AppLogin, containing test
cases such as L001_PositiveLoginAdmin and
L002_NegativeLoginAdmin, and also
L003_PositiveLoginUser or L004_NegativeLoginUser,
because this test suite should cover not only administrators'
authentication but also users who are not administrators.
This test suite should cover all roles that are supported by
this authentication module.

And what if you deliver authentication through web
services as well? Should this also be covered by this test
suite? In most cases, there are separate test suites because
web services authentication is an additional functionality
that is not implemented at the same time as web

851

authentication. But this also depends on requirements. The
same concerns all other functionalities—test suites are
created to group test cases by functionality,
implementation time, and application structure.

Test Coverage

Test coverage is a term that corresponds to the percentage
of source code covered by test cases. It may be applied to
the coverage of automated or manual tests of source code:
code can be covered 50 percent through automated tests
and 30 percent through manual tests. We may also speak
of test coverage while testing concrete functionalities. We
can say whether this functionality is covered by tests or
not. A higher test coverage index usually results in higher
software quality, but only if the tests are executed in a
timely manner, of course.

Categories of Tests

There are two main layers of test categorization. The first
layer divides tests into groups of automatic and manual
tests. The second divides them into multiple purpose
groups. These two layers are quite independent, so there
can be a manual test used for build verification and an
automatic test used for the same purpose. Let's take a
closer look at the first layer of tests. The difference
between them is the way they are executed. Manual tests
are executed every time manually by software testers.
Manual test cases need to be done step by step manually,
so they are more time-consuming. On the other hand, they
not only verify whether all operations provide correct

852

output but also provide you with a look at its internal
structure.

Black-box Tests

Black-box tests are so named because they follow the
black-box scheme. In software testing this means that a
tester doesn't know the code he is executing. Therefore we
need to define the input of the application and then check
the application's output (see Figure 15.1).

Figure 15.1 Black-box testing idea

The actual output is compared with the expected output
value; if they are equal, the test case or step is checked as
successful. The two authentication test cases described
previously would be black-box tests if we didn't know the
application's code. We don't know exactly what is done
within the application's authentication module, but we
know that we should be redirected to the main page if the
authentication ends successfully.

To show the idea of black-box testing, we have used the
Lime test framework that is used in Symfony. As you can
see, the following code presents a step-by-step scenario
that covers the previously defined test case. Note that we
don't check each step because we assume that the
sfBrowser() methods are doing this correctly. If login
page loading fails, we should get an error within the
setField() method because we will not be able to set a

853

value to the username field. At the end, we check the result
page. If both values are equal, the test case succeeds. Note
that we are using only Lime classes and methods, so we do
not interfere with the application's code.

<?php

include(dirname(__FILE__).‘/../../bootstrap/functional.php’);

$browser = new sfTestFunctional(new sfBrowser());

$browser->get(‘/security/index’);

$browser->with(‘response’)->begin()->isStatusCode(200);

$browser->setField(‘login’, ‘admin’);

$browser->setField(‘password’, ‘secret’);

$browser->click(‘submit’);

$browser->end();

$response= $browser->getResponse();

$browser->with(‘response’)->

isStatusCode(200);

$browser->test()->like($response->getContent(), ‘/Main page/’);

White-box Tests

White-box tests, unlike black-box tests, are based on
knowledge of the code that is being tested. The tester
needs to have programming skills because he is testing the
application at a lower level than in the case of black-box
tests. The most popular tests that use white-box testing are
unit tests. Unit tests cover the application at the source
code level. The tester invokes methods to complete a

854

scenario that realizes a requirement. We have used
PHPUnit here to show the main assumptions of white-box
testing. It is one of the most popular test frameworks for
PHP. An exemplary scenario that tests the authorization
module can look as follows:

<?php

require_once(“Auth.class.php”);

class AuthTest extends PHPUnit_Framework_TestCase {

protected $_auth = null;

protected $_adminLogin = “admin”;

protected $_adminPassword = “secret”;

protected $_wrongLogin = “badAdmin”;

protected $_wrongPassword = “wrongSecret”;

public function setUp() {

$this->_auth = new Auth();

}

public function tearDown() {

unset($this->_auth);

}

public function testAdminLogin() {

$result = $this->_auth->authenticate($this->_adminLogin,

$this->_adminPassword);

$this->assertTrue($result);

}

855

public function testAdminLoginNegative() {

$result = $this->_auth->authenticate($this->_wrongLogin,

$this->_wrongPassword);

$this->assertTrue($result);

}

}

The preceding code has two test cases: AdminLogin and
AdminLoginNegative. Unlike black-box testing, in this
case we invoke authorization class methods, so we use the
code that was written by developers. After getting the
result of authentication, we need to check whether it is a
true value. If yes, the test case ends successfully.

Grey-box Tests

Grey-box tests are in fact a combination of black- and
white-box tests. Application testing is done at the
black-box level, but with knowledge of the application's
data structures and algorithms. Note that in black-box
testing, the data that is input can be given blindly.

Smoke Tests

Smoke tests are a group of tests that check the most
important functionalities. Most important means that these
are vital functionalities that are needed for an application
to make sense.

Suppose you are developing a banking application. If the
funds-transfer functionality of this application has blocking

856

bugs (bugs that don't allow the application to proceed to
the next step), the product doesn't make sense for any bank
and it must be repaired as soon as possible. Imagine what
would happen if you delivered a product without the main
functionalities. To prevent that situation, smoke tests
should be executed before delivery of every version of the
product. These tests are also used in situations when
developers deliver a new module and want to know if the
whole program still works as designed. Smoke tests are
very short tests that should take only a small part of the
execution time of all tests.

Performance, Load, and Stress Tests

Load tests and stress tests are sometimes recognized as
subgroups of performance tests, but they really aren't.
They are properly separate test groups because their goals
are different, even if the tools used to execute them are the
same.

With performance tests, you search for bottlenecks in your
application. Performance can be measured in throughput,
response times, scalability, or resource usage. The goal is
to find places in our application where we can improve it
to handle more web clients. For example, you can reduce
HTML or CSS files when it's possible, so you need less
bandwidth for the same effect.

Load tests check applications' behaviors in situations when
the load is high. For example, we can start 1,000 threads
that log in and log out from our application 24 hours per
day. Normally, memory usage should finally fix on one
value at some moment when testing begins and stays

857

constant for 24 hours. If it is increasing all the time, you
probably forgot to free the application's unused memory
and should look for such bugs.

Stress tests are responsible for testing the durability of our
application against peak load. As an example, let's take a
banking application. Stress tests will test how many
transfers your application can serve in a fixed period of
time. It may be able to handle 1,000 transfers at one
moment. If the application is working properly with 1,000,
you should increase the amount to 10,000, and so on. If the
application starts to crash or behave in an unstable way,
this is probably the application's transfer limit. It depends,
of course, on the hardware on which it is executed, but we
still can say that on this particular machine the limit is
10,000 transfers. Then this can be scaled to a more
powerful hardware configuration to achieve better results.

A popular tool for performance, load, and stress tests is
Apache JMeter, which is discussed and applied in Chapter
17.

Regression Tests

Regression tests are tests that are executed each time a new
functionality is delivered. Scrum methodology states that
these tests should be executed after each iteration ends. It
depends on the situation, time, and human resources, but in
most cases, whole tests are executed. Whole tests means all
test cases, including both automated and manual test cases.
The main reason for executing these tests is to check that
nothing changed in the application since it was tested last
time. In other words, we need to check that a new

858

functionality didn't break any functionalities that were
previously working correctly (the functionality passes all
tests).

When to Finish Testing

How should you determine when you've done enough
testing? This is a good question. In software development,
there are three main determinants of software
development: cheap, fast, or good (see Figure 15.2).

Figure 15.2 The testing triangle

It's important not to pay excessive attention to any single
one of these requirements. A good practice is to choose the
two that are most important to you and try to accomplish
them. That approach will get you near the middle of the
triangle shown in Figure 15.2, which is where you get the
best results. You can try to reach the very middle, but it's
really hard to do so. So if your application needs to be of
good quality, you need to decide whether it needs to be
done fast (then it cannot be done cheap) or cheap (then it
cannot be done fast).

The problem is described here because it's related to
testing. How many application functionalities we can

859

cover with tests depends on how much time and money we
have to do that. Each quality assurance (QA) engineer
needs to be paid. Fewer QA workers need more time to
cover the same functionalities. So before you start a
project, you need to create a good testing plan that includes
costs and time. Thanks to that plan, you can estimate when
the testing would finish.

Bugs Are Your Friends

Undiscovered bugs are very dangerous because they are
like ticking time bombs. You never know how much time
you have left until they explode or how much damage they
can inflict. You cannot be sure how many undiscovered
bugs there are in your software, but the fewer of them, the
better the application quality. Finding undiscovered bugs is
the main job of testers. To get the best results, you need to
cover as much of your code as possible with tests. Of
course, this quality assurance has its price, so this goal
should be balanced with your available costs and time.

The bugs you know are in fact a measure of the quality of
your software. Developers make mistakes like everybody
else, especially because their work is creative and
innovational, so some bugs are inevitable. Up to a point,
the more bugs you can locate, the better. However, there is
a limit above which more bugs imply that the developers
made too many mistakes and the initial quality of code was
really low.

Each bug, when it is discovered, should be placed within a
bug-tracking tool such as Bugzilla. The bug life cycle is
shown in Figure 15.3. At the beginning, each bug has new

860

status. In most cases it is then assigned to someone who
will be responsible for it. If this is not assigned naturally to
the person who wrote it, someone should be assigned to
this responsibility anyway. When a bug is assigned, it may
change the status back to new, but this does not happen
often. More likely it may change the status from new to
resolved without being assigned, if the problem described
in a bug is fixed at once, without the need to assign
anybody to it. The status is also changed from assigned to
resolved when the bug is handled normally (that is,
someone managed to solve it).

Figure 15.3 Bug life cycle

861

A bug can be handled in various ways. These conclusions
are divided into the following groups, called resolutions:
duplicated, fixed, invalid, moved, won't fix, and works for

me. When one of these conditions is met, this bug has
changed its status to resolved. If it's duplicated, this means
that someone has already added a bug entry that covers
this problem. There is no reason to fix the same issue more
than once; that's why this bug entry needs to be ignored in
future considerations. In bug-tracking tools, it's done
gently by changing its status to resolved with its resolution
set to duplicated. After that a duplicated bug can be
closed. Most bugs, however, need to be repaired and get a
fixed resolution afterward. Repairing or fixing bugs means
repairing the problem within the application that
constituted the issue within the bug description.

Invalid resolution means that this bug is not a real bug.
Mostly, this resolution is added due to a mistake. Some
bugs are not reproducible, so they were noticed only once.
Another reason for this situation may be when you do
testing on machines that are not configured properly. Each
test case should be tested on a clean machine, which is
prepared and meets all requirements. In other words, this is
a machine that is identical to a typical machine the
application's users will have. Let us illustrate this with an
example. Assuming you are using Firefox, normally you
don't install add-ons of unknown origin. One of these
add-ons might interfere with your application and could
generate bugs, which wouldn't exist without this add-on.
Unless this add-on is commonly used or specifically
required, such a conflict should not be considered a bug,
but an exception. Additionally, this information should be
included within the application's documentation.

862

The next resolution is moved, which means that this bug is
related to a different product, so it should be moved to its
bug tracker. It is not used when you develop only one
application.

The next very interesting resolution is won't fix. This
means that a developer agrees that it's a bug, but it cannot
be fixed now or fixing it requires too much effort (this last
case is sometimes denoted as another resolution,
postponed). This resolution can be set only if the priority
of this bug is low, it occurs in very rare situations, or it
occurs in a functionality that is almost never used by users.

The last resolution is works for me. It is used in similar
situations as in the case of the invalid resolution. Here a
bug is also considered not to be a bug, but unlike invalid, a
developer doesn't see any problem here at all. Another
reason could be that it was confused with an actual feature.
For example, some input fields may become inactive due
to some other options.

Testers should check all resolved bugs to be certain they're
really resolved. This is done mostly in situations when the
resolution was set to fixed. In other cases, a tester should
change the status to closed. Bugs are also closed after a
tester ends bug verification and changes the status to
verified. Note that closing bugs should not be done
immediately after verification, but after a period of time,
for example when Scrum iteration ends, the product is
released, and so on. When it is closed, the bug normally
ends its life.

863

When a resolved bug is verified negative, its status is
changed to reopen. Reopen in most cases means the same
as assigned, but the status was previously set as resolved.
A reopened bug can be changed to resolved when a
developer makes corrections based on testers' comments
and suggestions. When the bug is closed, it shouldn't later
be changed to any other status. But there are some
exceptions when it can be reopened. These situations
include development of a new version of the application
with the old bug occurring again. The other reason can be
when someone accidentally closed a bug that should not
have been closed.

Fixtures

Fixtures are data sets created for testing purposes. Assume
that you want to test some functionalities, but to make it
possible, you need to have sample data imported into the
database. These data sets are called fixtures. Fixtures can
be stored as XML, YAML, or SQL files, but they also can
be defined as a PHP class.

Imagine that you need to test a user's address list. You
cannot start testing on production databases with real users
because of the terrible consequences if something goes
wrong. Therefore, you should use a different database for
testing.

Another problem is loading and deleting a fixture's data.
Note that for each test suite, you usually need different
data within the database. That's why fixtures are loaded
before each test suite is executed. You don't want to collect
any previous testing results in the databases. Tests usually

864

manipulate data stored in the database, but we want to
have exactly the same data loaded every time. That's why
you should flush the database after the test suite is done.
Fixtures usage is shown in Figure 15.4.

Figure 15.4 Fixtures usage

Mocks

You should not always test a whole application as one big
system. Some functionalities need to be tested separately.
But how do you test intertwined systems separately (for
example, authentication without a user model)? The
answer to this question: by using a mock. We use mocks to
simulate objects to test other objects' behavior. If you
create a mock that properly simulates a user model, you
can test authentication for all unusual behaviors. Figure
15.5 shows how it works when you don't use mocks.

Figure 15.5 Exemplary authentication workflow

865

The authentication module consists of methods, classes,
and libraries that are responsible for authentication.
Authentication uses some libraries or models. When we
put a mock between the authentication module and the user
model, it will look like Figure 15.6.

Figure 15.6 Exemplary authentication workflow with a
mock object

As you can see, there is no connection between the user
model and authentication. The connection could exist
between the user model mock and the real user model if
needed, but this is not the reason why we create mocks. In
most cases there are no connections between mocks and
the models simulated by these mocks.

866

Assume that you have an authentication class such as that
shown in the following code. This class gets a User model
object as the parameter while creating its instance. The
authenticate() method returns a true value if the user
has $login and $password fields; otherwise, it returns
false.

<?php

class Authentication {

protected $_User = null;

public function __construct($User) {

$this->_User = $User;

}

public function authenticate($login,$password) {

$results=$User->get($login,md5($password));

if($results) {

return true;

}

return false;

}

}

Mocks are used mostly within testing code. They could be
used within development code as well, but this is not
considered a good practice. A test case testing the
authentication using mocks is presented here:

<?php

867

require_once ‘Auth.php’;

class AuthTest extends PHPUnit_Framework_TestCase {

public function testAdminAuth() {

$UserMock = $this->getMock(‘User’, array(‘get’));

$UserMock->expects($this->any())

->method(‘get’)

->will($this->returnValue(true‘));

$auth = new Authentication($UserMock);

$this->assertTrue($auth->authenticate(“admin”,“secret”));

}

}

The $UserMock variable keeps the mock that was
generated by the getMock() method. The parameters of
this method are class name and the array of methods that
this mock will have. In this case, it is the get() method.
Next you have to define the behavior of this mock. When
you set expects($this->any()), it means that the
method can be invoked many times. The
Authentication class needs a user model, so the
prepared mock is used instead of the real model. Finally,
an assertion is executed. It checks whether the
authenticate() method returns a true value; if not, an
exception is thrown and the test case fails.

Test-Driven Development

The common approach to development is to write
functionalities first and test them later. But there is another

868

interesting approach called test-driven development

(TDD). Using TDD, you don't wait for development of
functionalities; you prepare test cases first. An advantage
of this approach is that all requirements are well known
before the first line of code is written. The main idea of
TDD is shown in Figure 15.7.

Figure 15.7 Graph of TDD

After requirements are defined, we write test cases that
cover these requirements. Only then do we develop
modules that allow us to run these tests. If the tests fail, we
need to change our source code until they succeed. Then
we prepare new tests for new functionalities and iterate
until all requirements are met. Of course, sometimes we
need to change the tests as well if they do not cover the
requirements properly.

869

Test Frameworks

Each framework provides some tools and enhancements
for Quality Assurance, such as specialized test frameworks
and CLI commands. There are three commonly used test
frameworks: PHPUnit, SimpleTest, and Lime.

PHPUnit

PHPUnit (the logo is shown in Figure 15.8) is probably the
most popular test framework among the PHP frameworks.
It's the default test framework in Symfony 2.0 and Zend
Framework.

Figure 15.8 PHPUnit logo.

To install PHPUnit separately, you can use your Linux
distribution package manager or PEAR. The latter is like
installing Symfony or Zend Framework. You need to run
this command first:

pear channel-discover pear.symfony-project.com

You can also use PHPUnit's channel:

pear channel-discover pear.phpunit.de

After adding the channel, you can commence installation
using this command:

pear install phpunit/PHPUnit

870

Note that you can now run the PHPUnit command:

$ phpunit

Symfony

If you want to install PHPUnit in Symfony 1.x, you should
use the following command:

$ symfony plugin:install sfPhpunit2Plugin

Note that this command installs PHPUnit in version 2. We
use the older version of PHPUnit in our Symfony
examples because it's easier for beginners.

To install the newer version, you need to use the following
command:

$ symfony plugin:install sfPhpUnitPlugin

After you install PHPUnit3, you can use Symfony's CLI
tasks such as the following:

phpunit

:generate-compat

:generate-functional

:generate-selenium

:generate-unit

:test-all

:test-functional

:test-selenium

871

:test-unit

The first command makes it possible to use PHPUnit with
older Symfony versions, such as 1.2. The next three
commands generate sample test suites. The last four run
the appropriate tests. They're very simple and easy to use.
Note that all Symfony tasks are a kind of wrapper to the
phpunit command. So you need to have PHPUnit already
installed.

SimpleTest

SimpleTest (the logo is shown in Figure 15.9) is an
alternative solution to PHPUnit. It is also a full-featured
test framework, very popular as a stand-alone solution.
Modified SimpleTest is the default framework for
CakePHP.

Figure 15.9 SimpleTest logo.

CakePHP contributors don't include test framework
libraries into CakePHP, which can be a little annoying. Do
they assume that nobody tests their applications?! If the
libraries are not installed, you will see the following error:

$ cake testsuite

Error: Sorry, Simpletest could not be found. Download it from http://simpletest.org

and install it to your vendors directory.

872

You need to download SimpleTest from
http://simpletest.org and extract the package into the
CakePHP projects /app/vendors/ directory. Now you
can start testing, and the error message will not be shown.

Apart from the /vendors directory where your
SimpleTest libraries are placed, CakePHP also provides
also a separate directory for test cases. The directory
structure looks like this:

app/tests/

cases/

behaviors/

components/

controllers/

helpers/

models/

fixtures/

groups/

These directories are dedicated for test cases, fixtures, and
groups of tests, respectively. Test cases are divided into
those covering behaviors (such as ACL), components
(such as Email), controllers, helpers, and models.

Zend Framework

ZF does not provide any CLI facilities in this case, but
thanks to integrated PHPUnit, ZF gives us a lot of classes
that are ready to use. If you installed Zend Framework

873

with PEAR following the installation in Chapter 2, the test
library is placed in /usr/share/php/Zend/Test
(UNIX) or C: xampp php PEAR Zend Test (Windows
with XAMPP). These classes are (for example)
Zend_Test_PHPUnit_Db_Exception or
Zend_Test_PHPUnit_ControllerTestCase. ZF also
provides a testing directory structure that looks like this:

application/

bootstrap.php

library/

bootstrap.php

phpunit.xml

You can configure your tests by editing phpunit.xml.
This configuration file is used for running test cases with
PHPUnit as follows:

$ phpunit --configuration phpunit.xml

Lime

This framework is used in Symfony 1.x. It is obsolete and
is not used in Symfony 2.x as a part of the whole
framework. We recommend that you use PHPUnit instead
of Lime. We don't want to recommend bad practices,
which is why we don't use Lime further in this chapter.

Black-Box Registration Form Testing Using Functional
Tests

874

Black-box testing of web applications is done from the
browser level as described earlier in this chapter. From the
code-level perspective, there are two main testing
approaches: unit and functional testing. Functional tests
realize the black-box testing approach and we will describe
them here.

Problem

First of all, you need to define an exemplary test case that
will cover a simple user registration scenario, as shown in
the following table. Assume a success scenario where
everything goes as expected.

Step Action Expected Result

1 Go to the page http://localhost/
registration.

A page with a registration
form displays with login,
password, repeat password,
e-mail, forename, and
surname fields.

2

Fill in the login, passwords, e-mail,
forename, and surname fields with:
login: sampleUser, password: secret,
e-mail: leszek.nowak@wrox.com,
forename: Leszek, and surname: Nowak.

The login, e-mail,
forename, and surname
fields are filled out with
plain text, and the password
fields are filled out with
hidden text.

3 Click the register button. Form information is
submitted.

4 Check the current page location. The page location is
http://localhost/thankyou.

When someone fills out the registration form as above, a
Thank You page will be shown. There are many other
scenarios that should be considered, but to simplify let's
consider only the above test case.

875

Solution

The solution is to implement a test case that covers the
registration requirements. You need to use the frameworks'
test frameworks to provide good-quality registration
functionality. Assume that in each of our frameworks the
registration form looks like this:

<form action=”/registration/submit” method=”POST”>

<table>

<tr>

<th><label for=”username”>Username</label></th>

<td><input type=”text” name=”username” id=”username” /></td>

</tr>

<tr>

<th><label for=”password”>Password</label></th>

<td><input type=”password” name=”password” id=”password” /></td>

</tr>

<tr>

<th><label for=”repeat_password”>Repeat password</label></th>

<td><input type=”password” name=”repeat_password” id=”repeat_password”

/></td>

876

</tr>

<tr>

<th><label for=”forename”>Forename</label></th>

<td><input type=”text” name=”forename” id=”forename” /></td>

</tr>

<tr>

<th><label for=”surname”>Surname</label></th>

<td><input type=”text” name=”surname” id=”surname” /></td>

</tr>

<tr>

<th><label for=”email”>Email</label></th>

<td><input type=”text” name=”email” id=”email” /></td>

</tr>

<tr>

<td colspan=”2”>

<input type=”submit” id=”submit” name=”submit” value=”register” />

</td>

</tr>

</table>

</form>

code snippet /black-box/registration.html

It doesn't matter exactly how the form is formatted if it's
within <table></table> or <div></div> HTML tags.

877

It can be different from the HTML code perspective as
long as it has <input /> fields. After submitting it, you
should use a redirecting function to move to the Thank You

page. For Symfony and CakePHP, the redirecting function
is $this->redirect(); for Zend Framework it's
$this->_redirect().

Symfony

Functional tests in Symfony are better done using
Selenium. In Symfony 1.4 and later 1.x versions, the
PHPUnit plug-in is delivered as a fake wrapper that in fact
uses Lime in the background. PHPUnit is a solution we
can recommend, while Lime leaves much to be desired.
That's why we advise against using Symfony 1.x
functional tests. If possible, please use Symfony 2.0 or the
Selenium extension delivered within the PHPUnit2 plug-in
for Symfony 1.x.

CakePHP

CakePHP is based on a modified version of the SimpleTest
framework. Let's test the registration functionality.
(Chapter 5 discusses what you need to do to implement a
registration form.) The CakePHP testing approach requires
that every test file name should end with .test.php. For
this example, the filename will be
registration.test.php. We are testing the controller,
so you need to save this file into the /app/tests/cases/
controllers/ directory. Let's call the first test
RegistrationControllerTest and add the
testRegistrationPositive() method, which should
load our registration page and check whether expected

878

form fields exist. An exemplary test can look like the
following:

<?php

class RegistrationFormTests extends WebTestCase {

function testRegistrationPositive() {

$this->get(‘http://localhost/registration’);

$this->assertField(‘username’, ‘’);

$this->assertField(‘password’, ‘’);

$this->assertField(‘repeat_password’, ‘’);

$this->assertField(‘forename’, ‘’);

$this->assertField(‘surname’, ‘’);

$this->assertField(‘email’, ‘’);

}

}

code snippet /black-box/cakephp/app/tests/cases/

controllers/registration_controller.test.php

That's all you need for the first step. Why do we check to
see whether form fields are blank? Because developers
sometimes don't clean the code. By mistake, a username

field can be set to something like foo or worse. This is a

879

question for a QA engineer. Next, you need to fill out the
registration form with proper data. The setField()
method is used to set insert data into form input fields. The
following code snippet illustrates how to do this:

$this->setField(‘username’, ‘admin’);

$this->setField(‘password’, ‘secret’);

$this->setField(‘repeat_password’, ‘secret’);

$this->setField(‘forename’, ‘John’);

$this->setField(‘surname’, ‘Smith’);

$this->setField(‘email’, ‘john@example.com’);

code snippet /black-box/cakephp/app/tests/cases/

controllers/registration_controller.test.php

The preceding code needs to be placed after the
assertField() methods within the
testRegistrationPositive() method. We can, of
course, believe our testing tools that they are setting form
fields in the right way, but a good quality assurance
engineer never trusts programs completely. That's why a
good practice is to check registration form fields again.
This time, we need to check whether values within the
input fields are equal to those that we set earlier. We need
to use the same assertField() method as previously,
when we checked whether form fields are blank.

880

$this->assertField(‘username’, ‘admin’);

$this->assertField(‘password’, ‘secret’);

$this->assertField(‘repeat_password’, ‘secret’);

$this->assertField(‘forename’, ‘John’);

$this->assertField(‘surname’, ‘Smith’);

$this->assertField(‘email’, ‘john@example.com’);

code snippet /black-box/cakephp/app/tests/cases/

controllers/registration_controller.test.php

These lines of code need to be placed after the
setField() methods and within the
testRegistrationPositive() method.

At this point, you are done with Step 2. In the next step,
you will check whether the submit button can be pushed
and whether any response is given. To click any field, you
need to use the click() method. The
assertResponse() method is dedicated to checking the
response from the server. Step 3 should look like the
following:

$this->click(‘submit’);

$this->assertResponse(200);

881

This code needs to be added at the end of
testRegistrationPositive(). In the last step, you
expect to be redirected to a Thank You page. As shown in
the following code, you need to get the current URL and
compare it with the expected one. After that, you should
also search page content for the expected text:

$current=$this->getUrl();

$this->assertEqual(‘http://localhost/index.php/thankyou’,$current);

$this->assertText(‘Thank You’);

The preceding code completes Step 4. Normally, you
would be finished at this point, but when you go deeper
into this test case you will see a lot of problems. What if
the registration form is shown on the Thank You page?
What if validation rules throw a validation error? These
and more issues need to be coped with in further test cases.
Use your imagination and write more test cases that cover
the whole registration functionality.

Command-line Test Execution

CakePHP allows you to run tests from the command line.
To test all written tests, you need to use the following
command:

$ cake testsuite app all

This command starts with executing tests one by one. We
have only one test case, so it should go fast. As a result,
you see something similar to this:

Welcome to CakePHP v1.3 Console

882

App : app

Path: /home/wrox/public_html/cake/app

CakePHP Test Shell

Running app all

All App Tests

1/1 test cases complete: 15 passes.

As shown above, one test case is completed, and 15
assertions are passed. Note that assertions are those
methods that make a test case fail if their conditions are
not fulfilled. To run only the registration module, you need
to run the following command:

$ cake testsuite app case controllers/registration

To learn more about allowed parameters, you need to run
this command:

$ cake testsuite help

Web-based Test Execution

CakePHP, unlike Symfony or Zend Framework, delivers a
great feature for web-level testing. To see all available test
cases—those that you wrote and those delivered with
CakePHP—you need to access test.php in the CakePHP
/webroot directory. The right URL is http://localhost/
test.php if your CakePHP application path is set in Apache

883

to http://localhost/. When you access test.php, you
should see something similar to Figure 15.10.

Figure 15.10 CakePHP—all tests from web level

If you choose Test Cases from the App group (refer to
Figure 15.10), you should see only one test case, the one
that you wrote if you completed the example earlier in this
section. After clicking the name of the test case, you
should see something similar to Figure 15.11.

Figure 15.11 CakePHP—test execution results in the Web

884

You can see all assertions that have passed by clicking the
Show Passes option.

Zend Framework

Zend Framework's functional tests are based on Selenium.
We don't say that it's impossible to develop functional tests
that work like CakePHP's tests, but just as with Symfony,
we recommend using Selenium to accomplish this goal.
The next section describes how to do this. Note that
CakePHP uses SimpleTest, which doesn't support
Selenium out of the box because SimpleTest has its own
functional test solution. PHPUnit developers decided to
use a known, existing solution and integrate it.

CMS Tests Automation Using Selenium

Each tester or quality assurance engineer will confront test
automation sooner or later. This section describes how to
use Selenium to automate web GUI testing.

Selenium IDE Installation

Selenium consists of several components. You can see all
of them at http://seleniumhq.org/download/. The Selenium

885

integrated development environment (IDE) is only
available for Firefox. To run your tests on other Internet
browsers, you need to install Selenium Remote Control.
We will work with the Selenium IDE. You don't have to
install it to run the tests presented in this book, but if you
have no experience with automated tests or Selenium you
should try it to see how it works and get some experience
with clickable test automation tools. When you click the
Download link on the Selenium homepage, you will be
asked whether you really want to install this add-on (see
Figure 15.12).

Figure 15.12 Selenium Firefox security notice

When you click Allow, the window shown in Figure 15.13
will be displayed. This is a second security notice. If you
believe us that we are not trying to install malicious
software on your machine, click Install Now.

Figure 15.13 Selenium Firefox installation window

886

Next, you need to reboot Firefox. After rebooting, you will
be able to access Selenium through Tools ⊆ Selenium IDE
in the main menu on the top of the browser window.
Invoke the Selenium IDE and you should see the Selenium
IDE main window as in Figure 15.14.

Figure 15.14 Selenium IDE main window

887

In the top right of the Selenium IDE main window, there is
a red round button that is very similar to the well-known
audio record button. In fact, it is a record button, but it
records your browser actions. Push the button and do
something, such as sign in to your favorite social network.
After signing in, you should be able to see something
similar to Figure 15.15. Your password is not hidden and
is shown as plain text in Selenium IDE. But you have also
recorded your steps. Click the record button again to turn it
off. You can click the green arrow to run your recorded
test case.

Figure 15.15 Selenium IDE recorded actions

888

What can you use this for? Selenium IDE allows you to
create tests by recording actions, like mouse clicks, instead
of writing code. Of course, after you record these actions,
you can see the source code for them. By default, an
XHTML version of the source code is shown in the Source
tab. We are not interested in XHTML; a piece of PHP code
would be more useful, and the good news is that Selenium
IDE provides this kind of functionality. Go to the Options
menu and select the format type from the Format option.
Select PHP - Selenium RC. In the Source tab, you will see
something similar to this code:

889

<?php

require_once ‘PHPUnit/Extensions/SeleniumTestCase.php’;

class Example extends PHPUnit_Extensions_SeleniumTestCase {

protected function setUp() {

$this->setBrowser(“*chrome”);

$this->setBrowserUrl(“http://change-this-to-the-site-you-are-testing/”);

}

public function testMyTestCase() {

}

}

?>

code snippet /selenium/exampleTest.php

Remember this code; you will see more Selenium
PHPUnit code later in this chapter.

Selenium Remote Control Installation

With the Selenium IDE, you can click out your test cases,
but only on Firefox. But what if you want to use a browser
different from Firefox? This should be considered not only
because someone might prefer a different browser, but also
because you should test your application in all major

890

browsers, especially when you use a lot of JavaScript in
your web application. The solution is Selenium Remote
Control.

You probably noticed that Selenium IDE has not generated
the setBrowser() parameter as you might have expected.
Why is it chrome while you were using Firefox? Because
it's the default browser in Selenium, but you can replace
this parameter with any browser you want to run this test
case on. Note that the browser setup is set within the
setUp() method, not in the test case method. For
simplicity, we are running the Selenium test only on
localhost.

To see how Selenium Remote Control works, you need to
download it from http://seleniumhq.org/download/ and
unpack it. Note that you also need a Java Runtime
Environment (JRE) to work with Selenium RC. If you
don't have one, you can get it from the Sun website
(http://java.sun.com/). After installing it, you can run this
command from the command line:

java -jar selenium-server.jar

To run the previous command, you need to be in the
Selenium RC directory. After running it, you should see
something similar to this:

15:04:05.979 INFO - Java: Sun Microsystems Inc. 14.0-b16

15:04:05.980 INFO - OS: Linux 2.6.32-23-generic amd64

15:04:05.985 INFO - v2.0 [a2], with Core v2.0 [a2]

15:04:06.049 INFO - RemoteWebDriver instances should connect to:

891

http://192.168.1.3:4444/wd/hub

15:04:06.050 INFO - Version Jetty/5.1.x

15:04:06.050 INFO - Started HttpContext[/selenium-server/driver,

/selenium-server/driver]

15:04:06.051 INFO - Started HttpContext[/selenium-server,/selenium-server]

15:04:06.051 INFO - Started HttpContext[/,/]

15:04:06.059 INFO - Started org.openqa.jetty.jetty.servlet.ServletHandler@16a4e743

15:04:06.059 INFO - Started HttpContext[/wd,/wd]

15:04:06.062 INFO - Started SocketListener on 0.0.0.0:4444

15:04:06.062 INFO - Started org.openqa.jetty.jetty.Server@7d2a1e44

This is the output generated when starting Selenium RC.
You will see your individual configuration such as IP
address or operating system instead of what is shown here.

Problem

Selenium is one of many solutions that you can use to
realize black-box testing. The great thing about Selenium
is that it's free and available for all operating systems in
which Java is supported. Additionally, Selenium delivers
the recording feature, which is rare in most automation
frameworks/tools dedicated for web applications. Other
tools, such as HP QuickTest Professional, are not free and
are not dedicated only for the Web. The test case that we
want to cover in this section is shown in the following
table.

Step Action Expected Result

892

1 Go to the page http://localhost/
login.

A page with a login form is
displayed.

2
Fill out the username and
password fields with admin and
secret values.

Username is filled out with plain
text, and password is filled out with
hidden text.

3 Click the login button. Form information is submitted.

4 Check the current page location. The page location is http://localhost/
main.

Solution

Earlier in this chapter, we described a similar test case for
a functional test. We want to do the same now, but this
time we want to have it working as a part of Selenium.
Assume that the tested login form looks as follows:

<form action=”/login/submit” method=”POST”>

<table>

<tr>

<th><label for=”username”>Username</label></th>

<td><input type=”text” name=”username” id=”username” /></td>

</tr>

<tr>

<th><label for=”password”>Password</label></th>

<td><input type=”password” name=”password” id=”password” /></td>

893

</tr>

<tr>

<td colspan=”2”>

<input type=”submit” id=”submit” name=”submit” value=”submit” />

</td>

</tr>

</table>

</form>

code snippet /selenium/exampleLoginForm.html

This time we present all three web frameworks because it's
also possible to integrate CakePHP's SimpleTest with
Selenium using PEAR packages.

Symfony

As described earlier, Symfony delivers some
command-line tasks, and two are dedicated for Selenium
tests. One of them generates a default test case. To do it,
you need to type the following command:

$ symfony phpunit:generate-selenium frontend login

You should see output similar to this:

>> dir+ /home/wrox/public_html/symfony/test/phpunit/selenium/frontend

>> file+ /home/wrox/public_html/symfony/test/phpunit/selenium/frontend

/loginActionsTest.php

>> help run this test with: ./symfony phpunit:test-selenium frontend login

894

Generated code should be as follows:

<?php

require_once dirname(__FILE__).‘/../../bootstrap/selenium.php’;

class selenium_frontend_loginActionsTest extends sfPHPUnitBaseSeleniumTestCase {

protected function setUp() {

$this->setBrowser(‘*firefox’);

$this->setBrowserUrl(‘http://localhost/’);

}

public function testPositiveAdminLogin() {

}

}

code snippet /selenium/symfony/test/phpunit/selenium/

frontend/loginActionsTest.php

We changed the default test case method name to make it
more meaningful. Now we need to fill it out with proper
code. The following code accomplishes our earlier defined
test case:

895

public function testPositiveAdminLogin() {

$this->open(‘http://localhost/login’);

$this->assertTitle(‘Login Page’);

$this->type(“username”, “admin”);

$this->type(“password”, “secret”);

$this->click(“submit”);

$this->waitForPageToLoad(“30000”);

$this->verifyTextPresent(“Successfully logged in”);

}

code snippet /selenium/symfony/test/phpunit/selenium/

frontend/loginActionsTest.php

You can run Selenium tests with the following command:

$ symfony phpunit:test-selenium

This should give an output similar to this:

PHPUnit 3.4.15 by Sebastian Bergmann.

.

Time: 6 seconds, Memory: 10.00Mb

OK (1 test, 2 assertions)

896

We get plain text output, but Selenium also provides the
Selenium Remote Control Web console, as shown in
Figure 15.16.

Figure 15.16 Selenium Remote Control

Also, a second browser window is opened, in which all
steps are executed one by one.

CakePHP

CakePHP doesn't support Selenium by default because its
SimpleTest doesn't provide Selenium support, unlike
PHPUnit. But this problem can be easily solved using the
Testing_Selenium package that is available in the
PEAR package database. You can download it from
http://pear.php.net/package/Testing_Selenium. You can
also install it by using the PEAR command-line
installation parameter, but in this case, a better solution is
to extract this package to CakePHP's /vendors directory.
Because of dependencies within the main Selenium.php
file, it's better to extract files from the package to the
/Testing subdirectory. After proper extraction, your
directory structure should look like the following:

app vendors Testing

examples

Selenium

897

tests

ChangeLog

readme

Selenium.php

selenium-server.jar

todo

Make sure that it's exactly the same in your case. Next, you
need to make one easy change in Selenium.php. Find
this line:

require_once ‘Testing/Selenium/Exception.php’;

Change it to this:

require_once ‘Selenium/Exception.php’;

This is only one word, but without this change you would
not be able to run tests using Selenium. This PEAR
package is something like a wrapper for PHPUnit
Selenium classes. After making these changes, you can
start implementing a sample test case. The test case can be
saved as selenium.test.php and placed in the /app/
tests/cases/behaviors directory.

To begin, include the Selenium wrapper. In CakePHP, you
can do so by using the App::import() method. An
exemplary test class draft can look like the following:

898

<?php

App::import(‘Vendor’,‘Selenium’, array(‘file’ => ‘Testing’.DS.‘Selenium.php’));

class LoginSeleniumTest extends UnitTestCase {

function setUp() {

}

function tearDown() {

}

}

code snippet /selenium/cakephp/app/tests/cases/behaviors/

selenium.test.php

The first parameter in the import() method, Vendor,
states from which part of CakePHP we want to import a
class. The next parameter is only an identifier; you can call
it whatever you want. The last parameter is an array. For
the file key, assign the path and filename of
Selenium.php. The DS variable is the separator between
paths. In Windows, it's “ “; in UNIX it's “/“. Now you can
define what the setUp() and tearDown() functions will
do. These methods are very common in many testing
frameworks: setUp() is invoked when a test begins, and
tearDown() is invoked when all invoked methods are
done (except tearDown()). Before executing any test
case, we need to define in which Internet browser the test

899

cases should be executed and the starting URL. This
method looks like the following:

function setUp() {

$this->selenium =

new Testing_Selenium(“*firefox /usr/lib/firefox/firefox-bin”,

“http://localhost/login”);

$this->selenium->start();

}

code snippet /selenium/cakephp/app/tests/cases/behaviors/

selenium.test.php

Because we don't need to work with Selenium after test
cases are done, the tearDown() method should be as
follows:

function tearDown() {

$this->selenium->stop();

}

900

code snippet /selenium/cakephp/app/tests/cases/behaviors/

selenium.test.php

Let's name our test case as we did in Symfony and Zend
Framework: testPositiveAdminLogin():

function testPositiveAdminLogin() {

}

code snippet /selenium/cakephp/app/tests/cases/behaviors/

selenium.test.php

In CakePHP, follow the same steps as in Symfony. The
only difference is that you do not invoke Selenium
dedicated methods through $this, but through the
$this->selenium wrapper. Therefore, the
testPositiveAdminLogin() method content should be
as follows:

$this->selenium->open(‘http://localhost/login’);

$this->assertTrue($this->selenium->getTitle(‘Login page’));

$this->selenium->type(“username”, “admin”);

901

$this->selenium->type(“password”, “secret”);

$this->selenium->click(“login”);

$this->selenium->waitForPageToLoad(“30000”);

$this->selenium->verifyTextPresent(“Successfully logged in”);

code snippet /selenium/cakephp/app/tests/cases/behaviors/

selenium.test.php

Now, when you go to http://localhost/test.php, you should
be able to see two test cases, as shown in Figure 15.17.

Figure 15.17 CakePHP test case web browser

Remember to start Selenium RC before you run any
Selenium test cases. Otherwise, you will see something
similar to Figure 15.18.

Figure 15.18 CakePHP error when Selenium RC is not
found

Zend Framework

902

Zend Framework doesn't support any features that help
executing test cases. This is not really a problem, though,
because ZF delivers PHPUnit classes, so with the phpunit
command, you don't need anything else. To start, you need
to create a directory in which you want to keep your
Selenium test cases. Let it be /tests/application/
selenium. You can save your test drafts as
LoginTestCases.php. It should look like the following:

<?php

require_once ‘PHPUnit/Extensions/SeleniumTestCase.php’;

class LoginSeleniumTest extends PHPUnit_Extensions_SeleniumTestCase {

protected function setUp() {

$this->setBrowser(“*chrome”);

$this->setBrowserUrl(“http://localhost/”);

}

public function testPositiveAdminLogin() {

}

}

?>

code snippet /selenium/zf/tests/application/selenium/

LoginTestCases.php

903

In fact, all the test drafts do not differ from each other a
lot. The only difference is what libraries they import. In
the case of ZF, Selenium libraries are stored in C: xampp
php PEAR PHPUnit under Windows and in /usr/share/
php/PHPUnit under UNIX systems. Note that you don't
need to use Chrome or Firefox as testing browsers; you
can use any of the following with
$this->setBrowser():

*firefox

*chrome

*iexplore

*googlechrome

*safari

*opera

*custom

firefox, googlechrome, opera, safari, and
iexplore are obvious. Note that if you choose chrome,
Firefox will be used. When you choose custom, you will
be able to use other browsers not listed previously. In this
case, you need to give a proper path to the browser. (This
is also a good solution if you want to test more versions of
a browser.)

The test case should look like this:

904

$this->open(‘http://localhost/login’);

$this->assertTitle(‘Login Page’);

$this->type(“username”, “admin”);

$this->type(“password”, “secret”);

$this->click(“login”);

$this->waitForPageToLoad(“30000”);

$this->verifyTextPresent(“Successfully logged in”);

code snippet /selenium/zf/tests/application/selenium/

LoginTestCases.php

It's the same as with Symfony. The difference is in
execution. In Symfony, we did it with tasks delivered out
of the box. In ZF, we need to use PHPUnit's executables.
In ZF, each test can be executed as follows:

$ phpunit application/selenium/LoginTestCases.php

This needs more effort because you need to automate it
further when more tests are available. When you switch to
the Selenium RC console, you should be able to see
something similar to this:

11:12:43.261 INFO - creating new remote session

11:12:43.262 INFO - Allocated session 1b843f2a2f714a049305340656f72dc7 for

905

http://localhost/, launching...

11:12:43.285 INFO - Preparing Firefox profile...

11:12:45.658 INFO - Launching Firefox...

11:12:48.702 INFO - Got result: OK,1b843f2a2f714a049305340656f72dc7 on session

1b843f2a2f714a049305340656f72dc7

11:12:48.748 INFO - Command request: setTimeout[30000,] on session

1b843f2a2f714a049305340656f72dc7

11:12:48.755 INFO - Got result: OK on session 1b843f2a2f714a049305340656f72dc7

11:12:48.802 INFO - Command request: open[http://localhost/
login,] on session

1b843f2a2f714a049305340656f72dc7

11:12:48.912 INFO - Got result: OK on session 1b843f2a2f714a049305340656f72dc7

11:12:48.959 INFO - Command request: getTitle[Login Page,] on session

1b843f2a2f714a049305340656f72dc7

11:12:48.975 INFO - Got result: OK,Login Page on session

1b843f2a2f714a049305340656f72dc7

11:12:49.023 INFO - Command request: type[username, admin] on session

1b843f2a2f714a049305340656f72dc7

11:12:49.053 INFO - Got result: OK on session 1b843f2a2f714a049305340656f72dc7

11:12:49.101 INFO - Command request: type[password, secret] on session

1b843f2a2f714a049305340656f72dc7

11:12:49.128 INFO - Got result: OK on session 1b843f2a2f714a049305340656f72dc7

11:12:49.176 INFO - Command request: click[submit,] on session

906

1b843f2a2f714a049305340656f72dc7

11:12:49.288 INFO - Got result: OK on session 1b843f2a2f714a049305340656f72dc7

11:12:49.335 INFO - Command request: waitForPageToLoad[30000,] on session

1b843f2a2f714a049305340656f72dc7

11:12:49.358 INFO - Got result: OK on session 1b843f2a2f714a049305340656f72dc7

11:12:49.406 INFO - Command request: isTextPresent[Successfully logged in,] on

session 1b843f2a2f714a049305340656f72dc7

11:12:49.426 INFO - Got result: OK,true on session 1b843f2a2f714a049305340656f72dc7

11:12:49.474 INFO - Command request: testComplete[,] on session

1b843f2a2f714a049305340656f72dc7

11:12:49.474 INFO - Killing Firefox...

11:12:49.955 INFO - Got result: OK on session 1b843f2a2f714a049305340656f72dc7

This output shows what exactly was executed by Selenium
RC step by step. ZF doesn't deliver any scripts to run test
cases, but we still can use PHPUnit's configuration XML
file to run more test cases at one time. To make it possible,
edit the phpunit.xml file placed in the /tests directory.
It should look like the following code:

<phpunit bootstrap=”./application/bootstrap.php”>

<testsuite name=”Wrox Example”>

<directory>./</directory>

907

</testsuite>

</phpunit>

code snippet /selenium/zf/tests/phpunit.xml

You need to define the bootstrap file that will set up all
needed variables before the test suites are executed. A test
suite name should be defined as well as the test suite's
directory in which PHPUnit will start to search for test
cases. In the case of Zend Framework, bootstrap.php
should be as following:

<?php

define(‘BASE_PATH’, realpath(dirname(__FILE__) . ‘/../../’));

define(‘APPLICATION_PATH’, BASE_PATH . ‘/application’);

define(‘APPLICATION_ENV’, ‘testing’);

code snippet /selenium/zf/tests/application/bootstrap.php

Note that you define the application's environment as
testing, so all testing parameters, such as database
connection settings, will be used. To execute tests, you can
use PHPUnit's command-line application:

$ phpunit -configuration phpunit.xml

Mailing Unit Testing

908

Unit testing uses mostly white-box testing schemas.
However, depending on how we use unit testing
frameworks, we can also use other testing approaches.
Normally, unit tests focus on the quality of the code at the
code level. Formal test cases are not always defined
because unit tests are implemented mostly by developers,
not testers.

Problem

E-mails are often sent for subscriptions, registrations,
password recovery mechanisms, and so on. Developers
need to use mailing functionality many times in different
controllers. According to the Don't Repeat Yourself (DRY)
rule, mailing code is commonly extracted into libraries.
This gives you another advantage: the possibility to
encapsulate parts of code and test their quality separately.

Let's assume that you have a Mailing class with two
methods: sendMailSubscription() and sendMail().
sendMailSubscription() takes only two arguments:
subscription type and mail address. The sendMail()
method takes no arguments. The first method sends a
proper e-mail for a given subscription type. The next
method sends one e-mail to 10 random accounts from a
mailing database. For these two methods, you can define
four simple test cases, two negative and two positive, as
shown in the following table.

Step Action Expected result

1 Invoke with the full and
example@wroxexample.com arguments.

The method returns a
true value.

909

Let's assume that the sendMailSubscription() method
sends an e-mail with previously prepared content. The
content is fixed, but it depends on the subscription type.
Assume that there are two types of subscriptions: full and
trial, and for each type there is a different content. But
what happens if you invoke the method with a completely
different argument? The expected action is that if the
argument is not full or trial, the
sendMailSubscription() method returns a false
value, as shown in the following table.

Step Action Expected result

1 Invoke with the foobar and
example@wroxexample.com arguments.

The method returns a
false value.

Next, test cases use the Mails model. A random e-mail
address needs to be retrieved from the database, and we
need to use the Mails model to do that. One test case can
check a scenario in which the Mails table has valid e-mail.
To do that, we need to load some sample data (fixtures), as
shown in the following table.

Step Action Expected result

1 Load fixtures. Fixtures are loaded.

2 Invoke sendMail(). The method returns a true value.

3 Delete fixtures. Fixtures are deleted.

To keep test cases clean, you should delete fixtures when
they are no longer needed, which prevents mistakes in
subsequent test cases. The last test case, shown in the
following table, should check the action when
sendMail() is invoked and the table is empty.

910

Step Action Expected result

1 Check for mail in the database. The Mails table is empty.

2 Invoke sendMail(). The method returns a false value.

The Mailing class, described in Chapter 6, looks like this:

<?php

/* including libraries here */

class Mailing {

public function sendMailSubscription($type, $mail) {

/* method content */

}

public function sendMail() {

/* method content */

}

}

You should feed the method's content with proper code, as
described in Chapter 6.

Symfony

The Mailing class should be saved as
Mailing.class.php in the project's /lib directory to
make it available for every application.

CakePHP

911

In CakePHP, the Mailing class should be named as in
Symfony and placed in the application's library path:
/app/libs. But there is one difference. Because of
CakePHP's specific behavior, it's easier to make a model
object an argument of the sendMail() method. After this
change, the sendMail() method should be as follows:

public function sendMail($mail) {

/* method content */

}

Zend Framework

ZF's Mailing.class.php should be placed in the
project's /library path. It should not include the
CakePHP change.

Solution

As mentioned in the “Test Frameworks” section of this
chapter, each framework prefers a different unit testing
framework. We'll show only the most popular ones,
although some frameworks can use more than one testing
framework.

Symfony

Symfony 2.0 uses PHPUnit, whereas Symfony 1.0 uses
Lime (except when the PHPUnit2 plug-in is installed, in
which case Symfony1 uses PHPUnit). The following
example is written in Symfony 1.0 with the PHPUnit2

912

plug-in installed. To start working with Symfony tests, you
need to generate a default unit test:

$ symfony phpunit:generate-unit mailing

This will generate proper files:

>> dir+ /home/wrox/public_html/symfony//test/phpunit/unit

>> file+ /home/wrox/public_html/symfony//test/phpunit/unit/
mailingTest.php

>> help run this test with: ./symfony phpunit:test-unit mailingTest

You need to use the Mailing class, so it should be set up
for every test case. To do that, you can use the setUp()
and tearDown() methods as follows:

<?php

require_once dirname(__FILE__).‘/../bootstrap/unit.php’;

class unit_mailingTest extends sfPHPUnitBaseTestCase

{

public function setUp() {

$this->_mailing = new Mailing();

}

public function tearDown() {

unset($this->_mailing);

913

}

/* test cases methods */

}

code snippet /unit/symfony/test/phpunit/unit/

mailingTest.php

The first two test cases are very simple because the
implementation needs only to change the attributes that are
sent. Finally, the test cases should be as follows:

public function testSubscriptionPositive() {

$this->assertTrue($this->_mailing

->sendMailSubscription(“full”,”example@wroxexample.com”));

}

public function testSubscriptionNegative() {

$this->assertTrue(!$this->_mailing

->sendMailSubscription(“foobar”,”example@wroxexample@com”));

}

code snippet /unit/symfony/test/phpunit/unit/

mailingTest.php

914

Note that $this->_mailing is the Mailing instance.
The last test case doesn't need any data in the Mails table,
so it can be easily implemented as follows:

public function testRandomMailNegative() {

$this->assertTrue(!$this->_mailing->sendMail());

}

code snippet /unit/symfony/test/phpunit/unit/

mailingTest.php

In both negative test cases, we place an exclamation mark
to the left of $this->_mailing to check whether the
inversed values from the returned values are true.

The last test case is the most complicated of all. You need
to define fixtures that would be loaded before
sendMail() is invoked. Fixture files should be placed in
the project's /data/fixtures directory. For example,
you can save the fixture file as mailing.yml in the
/data/fixtures/mailing directory. This separates
fixture files from the functionalities for which they are
needed. mailing.yml should be defined as follows:

915

mails:

john_smith:

email: example@wroxexample.com

forename: John

surname: Smith

subscription: full

code snippet /unit/symfony/data/fixtures/mailing/

mailing.yml

To load data, you need information about the project
configuration, which provides information about database
connections that can be used to load fixture data into
proper tables. You should use sfDatabaseManager to
establish a connection and Doctrine_Core to load data.
After testing, the sendMail() method fixtures need to be
deleted, as shown in the following code:

public function testRandomMailPositive() {

$configuration =

916

ProjectConfiguration::getApplicationConfiguration(‘frontend’,‘test’,true);

$conn = new sfDatabaseManager($configuration);

Doctrine_Core::loadData(sfConfig::get(‘sf_data_dir’).‘/fixtures/mailing/’);

$this->assertTrue($this->_mailing->sendMail());

Doctrine_Core::getTable(‘mails’)->findAll()->delete();

}

code snippet /unit/symfony/test/phpunit/unit/

mailingTest.php

The test string defines which environment configuration is
to be loaded. sfConfig::get(‘sf_data_dir’) returns
the project's /data path (for example, /home/wrox/
public_html/symfony/data). To run the test, you need
to execute the following command:

$ symfony phpunit:test-unit

Output is similar to that from the Selenium tests you saw
earlier in this chapter.

CakePHP

In CakePHP, you should start with defining fixtures.
Fixtures, which are classes that inherit from
CakeTestFixture, are placed in the /app/test/
fixtures directory. CakePHP presents a slightly different
approach to fixtures. Fixtures are not loaded to a database
as is done in Symfony or ZF. This is a kind of mock that
simulates all behaviors of a model with data that can be
accessed with commonly used methods such as find().
But first you should define a fixture as follows:

917

<?php

class MailTestFixture extends CakeTestFixture {

var $name = ‘Mail’;

var $fields = array(

‘id’ => array(‘type’ => ‘integer’, ‘key’ => ‘primary’),

‘email’ => ‘text’,

‘surname’ => ‘text’,

‘forename’ => ‘text’,

‘subscription’ => ‘text’,

);

var $records = array(

array (‘id’ => 1, ‘email’ => ‘example@wroxexample.com’,

‘surname’ => ‘Smith’, ‘forename’ => ‘John’, ‘subscription’ => ‘full’)

);

}

?>

code snippet /unit/cakephp/app/test/fixtures/app/test/

fixtures

918

Because fixtures simulate a model, you don't need to
define any connections or get configuration information.
The fixture presented in the preceding code should be
saved as mail_test_fixture.php. Now you can load
this fixture file by assigning its name to the $fixtures
variable as follows:

<?php

require_once(‘libs/Mailing.class.php’);

class MailingTest extends CakeTestCase {

var $fixtures = array(‘mail_test’);

public function setUp() {

$this->_mailing = new Mailing();

}

public function tearDown() {

unset($this->_mailing);

}

/* test cases methods */

}

code snippet /unit/cakephp/app/test/cases/components/

mailing.test.php

919

The test case file should be placed in /app/test/cases/
components as mailing.test.php. The Mailing class
will be used. Therefore, we need to include it and get an
instance of Mailing as shown in the preceding code. The
first two test cases are obvious and look like the following:

public function testSubscriptionPositive() {

$this->assertTrue($this->_mailing->sendMailSubscription(

“full”,”example@wroxexample.com”));

}

public function testSubscriptionNegative() {

$this->assertTrue(!$this->_mailing->sendMailSubscription(

“foobar”,”example@wroxexample@com”));

}

code snippet /unit/cakephp/app/test/cases/components/

mailing.test.php

To get the Mail object fixtures, you need to get its
instance by using ClassRegistry:

920

public function testRandomMailPositive() {

$this->Mail =& ClassRegistry::init(‘Mail’);

$this->assertTrue($this->_mailing->sendMail($this->Mail));

}

code snippet /unit/cakephp/app/test/cases/components/

mailing.test.php

When find() is invoked within sendMail() with the
given object as the argument, a list of rows defined in the
fixture will be returned as the result. This is an advantage
of CakePHP because this approach is very easy to use and
you don't need to use the database at all. Of course, you
can use the database as well and sometimes that will be
necessary.

In the last test case, you need only to delete all data
defined in the fixture to get an empty database. Use the
delete() method, as shown in the following code, to
clear the Mails table:

public function testRandomMailNegative() {

$this->Mail =& ClassRegistry::init(‘Mail’);

$this->Mail->delete();

$this->assertTrue(!$this->_mailing->sendMail($this->Mail));

921

}

code snippet /unit/cakephp/app/test/cases/components/

mailing.test.php

You can now execute the preceding test using the
http://localhost/test.php URL.

Zend Framework

The most difficult approach for the QAs is delivered by
Zend Framework. However, it is still easy to implement,
just as it is in the two frameworks already discussed. To
begin, you should include ZF's Application class, and
PHPUnit's framework and Mailing classes. The first
class is used to get the project's configuration, especially
the database connection configuration. The second class is
used to make testing with the PHPUnit framework
possible. The purpose of the third class is obvious. In
setUp(), you need to get an instance of Mailing and
additionally get a database connection adapter. The adapter
looks like the following:

<?php

require_once ‘Zend/Application.php’;

require_once ‘PHPUnit/Framework.php’;

require_once ‘../library/Mailing.class.php’;

922

class MailingTest extends PHPUnit_Framework_TestCase {

public function setUp() {

$application = new Zend_Application(

APPLICATION_ENV,

APPLICATION_PATH . ‘/configs/application.ini’

);

$bootstrap = $application->getBootstrap();

$bootstrap->bootstrap(‘db’);

$dbAdapter = $bootstrap->getResource(‘db’);

$this->_mailing = new Mailing();

}

public function tearDown() {

unset($this->_mailing);

}

/* test cases methods */

}

code snippet /unit/zf/tests/application/unit/MailingTest.php

Unit tests should be placed in the /tests/application/
unit directory (for example, /tests/application/
unit/MailingTest.php). As the following code shows,
the first two test cases don't differ from Symfony and
CakePHP test case implementations:

923

public function testSubscriptionPositive() {

$this->assertTrue($this->_mailing->sendMailSubscription(

“full”,”example@wroxexample.com”));

}

public function testSubscriptionNegative() {

$this->assertTrue(!$this->_mailing->sendMailSubscription(

“foobar”,”example@wroxexample@com”));

}

code snippet /unit/zf/tests/application/unit/MailingTest.php

You can also try to load fixtures manually, as described in
Chapter 3, or try to execute this script from the code level,
but in cases where the test needs to be automated, a
simpler approach is available, as shown in the following
code. You need to define an array of data that should be
loaded into the database. Next, a model and mapper are
used in the same way as they are used in controllers:

public function testRandomMailPositive() {

924

$fixtures=array(‘firstName’=>‘John’,

‘lastName’=>‘John’,

‘email’=>‘John’,

);

$entry = new Application_Model_Mails($fixtures);

$mapper = new Application_Model_MailsMapper();

$id=$mapper->save($entry);

$this->assertTrue($this->_mailing->sendMail());

$mapper->deleteOne($id);

}

code snippet /unit/zf/tests/application/unit/MailingTest.php

At the end, you need to delete the entry saved previously
with $id that was returned through the save() method.
All methods such as save() or deleteOne() are defined
for each model, as described in Chapter 4.

The last test case is the same as in Symfony and CakePHP:

public function testRandomMailNegative(){

$this->assertTrue(!$this->_mailing->sendMail());

}

925

code snippet /unit/zf/tests/application/unit/MailingTest.php

To run the unit test, you can use the phpunit.xml
configuration file, as shown in the “CMS Tests
Automation Using Selenium” section of this chapter, or
you can use the following command:

$ phpunit tests/application/unit/MailingTest.php

All tests should pass if your Mailing class methods are
done correctly. The output is similar to that obtained with
Selenium.

926

Chapter 16

User Management

The world will look up and shout ‘save us' and I will look
down and whisper ‘no.‘

—Rorschach, The Watchmen

What's In This Chapter?

• RBAC and ACL as basic user management methods.
• Setting up LDAP.
• Advanced user management with LDAP.

How should a web application be secured against
unprivileged access? We want to explore this topic as
deeply as possible in this chapter because of its
significance and the severe consequences of neglecting
security. The first major section of this chapter, “Basic
User Management,” covers not only the basic security
issues, but also dynamic access control and features of
specific frameworks.

The second major section of this chapter, “Identifying
Users Using LDAP Implementation,” is focused on
implementing user authorization with LDAP within the
frameworks. This is an alternative industry-scale solution,
so you can skip this section if you don't need it. However,
this knowledge will be invaluable for more advanced
users, because it is not easily accessible on the Internet,
and it is highly valued among big companies and
corporations.

927

Basic User Management

There are many ways to manage user authorization. In the
frameworks featured in this book, there are two main user
management approaches, RBAC and ACL. They are quite
similar, but have some important differences that are
described and explained in the following section.

RBAC versus ACL

RBAC, which stands for Role-based Access Control, is
more role oriented (roles, not specific users, are
authorized). This approach is generally more sophisticated,
but also more practical than ACL. Figure 16.1 shows an
example of what this looks like.

Figure 16.1 RBAC example.

So let's assume that we have defined four roles:
anonymous, authorized user, accountant, and

928

administrator. Each of these roles has some privileges such
as adding product comments, viewing billings, and so on.
All that needs to be done is to assign users to roles. As
shown in Figure 16.1, the example user has two roles:
authorized user and administrator. These roles combined
entitle him to add comments, buy products, see billings,
and so on. Roles are named after the rights they provide:
administrator, accountant, customer, and so on. This is a
human-friendly approach because when someone talks
about the administrator or authorized user role,
automatically everyone connects this with some obvious
behaviors such as buying products or locking users. RBAC
is used in Symfony. Solaris 10 (and probably every
subsequent version) will also use RBAC, so it's not only in
web frameworks that there are RBAC capabilities.

An access control list, or ACL (see Figure 16.2), is used in
Zend and CakePHP. This solution is older than RBAC and
is commonly used in almost all operating systems as the
default access control methodology. This approach is also
commonly used in network administration and is even
implemented in network hardware. It is simpler than
RBAC because it is user-oriented. Every user has a
specific privilege for every object; for example, adding
comments can be allowed or disallowed separately for
every account.

Figure 16.2 ACL example.

929

That's why when you are setting access to buying a
product, for example, you need to add the rule for each
user. You must do this for each user who is to be granted
access, at least, because a non-access rule can be assumed
as a default rule. If an access rule to this object cannot be
found for a user, it is assumed that this user has no
privileges to access it. This saves lots of time needed to
define all rules because you define only the part needed for
allowing access. At first look, ACL seems easier to
implement than RBAC, but it isn't. It is more flexible
because each user can have custom rules assigned, but this
means more time spent on assigning them. For example,
userA may have the same privileges as userB, and there
may be as many as 100 objects; for each object the rule has
to be defined for both users. It's easier to create some main
groups of rules and assign users to these groups. When you

930

do so, you get something similar to RBAC, but this is not
exactly the same because you are also able to assign users
to objects. ACL with groups is very often mistaken for
RBAC, and vice versa.

Methodologies described previously show different
approaches to the problem of user access control. Let's see
how the problem is solved in each framework.

Symfony

Symfony implements the RBAC idea. Before you can take
advantage of RBAC, however, we must describe some
Symfony configuration features. In the main configuration
file settings.yml you can set default security modules.
Symfony delivers two default modules that display login
or credentials requirement information. These pages look
like the welcome pages shown in Figures 16.3 and 16.4. If
you want to have modules other than the default provided
by Symfony, you should create an additional security
module that would show these pages. Let's create a module
called security and add two actions into it: login and
auth. The first action would display an information screen
stating that login is required in order to access these
resources. The second would show an error message
saying that the user has no proper credentials. So there is
no proper role assigned to this user. These two actions are
created only for informational purposes. Symfony delivers
these two messages out of the box in its default layout (see
Figures 16.3 and 16.4).

Figure 16.3 Symfony default login requirement
information page.

931

Figure 16.4 Symfony default credentials requirement
information page.

To change these default pages you need to make some
changes in settings.yml. If these entries don't exist,
update or create them and then change the default login
and action modules to those that were just created. In the
all and actions sections, change the default module and
action from default/login to security/login.

932

all:

.actions:

login_module: default

login_action: login

code snippet /basic/symfony/frontend/config/settings.yml

This is how it should look after the changes:

all:

.actions:

login_module: security

login_action: login

code snippet /basic/symfony/frontend/config/settings.yml

To change the default page that shows the credentials
requirement information, you need to change a few other
entries in the settings.yml file.

933

all:

.actions:

secure_module: default

secure_action: secure

code snippet /basic/symfony/frontend/config/settings.yml

After modification these entries should look like this:

all:

.actions:

secure_module: security

secure_action: auth

code snippet /basic/symfony/frontend/config/settings.yml

You can provide any module and action that was
previously created. A usual practice is to set them both, or
at least the login requirement page entry, to a login action
that is not only an informational page but also has a login
form within.

934

Basic Security

In the simplest approach, no database for roles and users is
needed. Let's say that for the purpose of this section you
have three users and the same number of roles. The users
are named with capital A, B, and C at the end. Available
roles are admin, user, and anonymous. userA is
anonymous, userB is just an authenticated user, and
userC is an administrator. First, you can create a simple
user module with login and logout actions. These
modules should be responsible for checking user
authentication, such as giving privileges and also removing
them. Then create a products module that should be
available only for authenticated users and one
secretFeature for administrators only.

$ symfony generate:project securityExample

$ symfony generate:app frontend

$ symfony generate:module frontend user

$ symfony generate:module frontend products

$ symfony generate:module frontend secretFeature

Actions need to be added manually to the user module, as
described in previous chapters. It will look like this:

<?php

935

class userActions extends sfActions {

public function executeLogin(){

}

public function executeLogout() {

}

public function executeIndex() {

}

}

code snippet /basic/symfony/frontend/modules/user/

actions/actions.class.php

An index action should be created in the view layer as
well as a login form with the following fields: login and
password. That's why you need to create a login form
definition in the /forms directory. The login form should
also have some basic validation rules. Let's define it as
shown here:

<?php

class LoginForm extends sfForm

{

public function configure()

936

{

$this->setWidgets(array(

‘login’ => new sfWidgetFormInputText(),

‘password’ => new sfWidgetFormInputPassword(),

));

$this->setValidators(array(

‘login’ => new sfValidatorString(array(‘max_length’ => 255)),

‘password’ => new sfValidatorString(array(‘max_length’ => 255)),

));

}

}

code snippet /basic/symfony/frontend/lib/form/

LoginForm.class.php

When you create the preceding form in the index action
with $this->form = new LoginForm(),, it should be
also implemented in the view.

<form action=”<?php echo url_for(‘security/login’); ?>” method=”POST”>

<table>

<?php echo $form; ?>

<tr>

937

<td colspan=”2”>

<input type=”submit” />

</td>

</tr>

</table>

</form>

code snippet /basic/symfony/frontend/modules/user/

templates/indexSuccess.php

The generated web page should consist of all needed form
fields. Notice that there is a CSRF token generated
additionally by default. (CSRF is described in more detail
in Chapter 8.)

<form action=”security/login” method=”POST”>

<table>

<tr>

<th><label for=”login”>Login</label></th>

<td><input type=”text” name=”login” id=”login” /></td>

</tr>

<tr>

<th><label for=”password”>Password</label></th>

<td><input type=”password” name=”password” id=”password” />

<input type=”hidden” name=”_csrf_token”

value=”58702cd53a37190250899563f3dd9928”

938

id=”csrf_token” />

</td>

</tr>

<tr>

<td colspan=”2”>

<input type=”submit” />

</td>

</tr>

</table>

</form>

To simplify this example, user authentication is carried out
with if/else statements. So, if userB or userC is sent as
login value, the corresponding user will be authenticated.

<?php

class userActions extends sfActions {

public function executeLogin(){

if (($request->getParameter(‘login’) == ‘userB’) ||

($request->getParameter(‘login’) == ‘userC’)) {

$this->getUser()->setAuthenticated(true);

$this->redirect(‘products/index’);

939

}

}

public function executeLogout(){

$this->getUser()->setAuthenticated(false);

}

public function executeIndex() {

$this->form = new LoginForm();

}

}

code snippet /basic/symfony/frontend/modules/user/

actions/actions.class.php

The user is authenticated now. So far, this gives you
nothing because all modules and actions are not yet
secured; they are public. To secure an action, you need to
create a /config directory in the /module directory if it
doesn't exist. Next you need to create a file called
security.yml in this /config directory. In this
example, it should be secretFeature/config/
security.yml. There you create two actions: index and
admin. The first one should be available for both
authenticated users and administrators, and the second one
should be for administrators only.

940

index:

is_secure: true

admin:

is_secure: true

code snippet /basic/symfony/frontend/modules/

secretFeature/config/security.yml

Now both actions are secured and cannot be viewed by
unauthorized users. The next step is to organize the
privileges of actions and give credentials to roles that
should have access to concrete actions. For example, for
the action admin in the secretFeature module in
security.yml, the entry will look as follows:

admin:

is_secure: true

credentials: [admin]

code snippet /basic/symfony/frontend/modules/

secretFeature/config/security.yml

In the case of the index action, you need to add two roles
that are allowed to perform this action: user and admin.
These roles should be given: user for authenticated users
and admin for administrators. You can choose role names

941

as you wish, though they should reflect the real usage. So,
for the index action, security.yml should look
something like this:

index:

credentials: [admin,user]

code snippet /basic/symfony/frontend/modules/

secretFeature/config/security.yml

When you want to provide access for more than one role,
just add another role, separated by a comma. When you
add the previous entries into security.yml, you cannot
access these pages because you have still not assigned any
of these roles to any user. Therefore the next step in
Symfony is to add credentials.

<?php

class userActions extends sfActions {

public function executeLogin(){

$user = $this->getUser();

942

if ($request->getParameter(‘login’) == ‘userB’) {

$user->setAuthenticated(true);

$user->addCredential(‘user’);

}

if ($request->getParameter(‘login’) == ‘userC’) {

$user->setAuthenticated(true);

$user->addCredentials(‘user’,‘admin’);

}

}

public function executeLogout(){

$this->getUser()->setAuthenticated(false);

$user->clearCredentials();

}

code snippet /basic/symfony/frontend/modules/user/

actions/actions.class.php

There are two methods that manipulate the credentials:
clearCredentials() and addCredentials(). The
clearCredentials() method simply erases all
credentials that were given to the user. It is commonly
used in logout actions. The second one assigns roles to
users. These role names can be set as you wish, but the
names must be related to role names defined in
security.yml.

943

In the view layer you can check if the current user has a
credential using the hasCredential() method. The
following code shows how to do this:

<?php if ($sf_user->hasCredential(‘admin’)): ?>

<?php echo link_to(‘logout’, ‘user/logout’) ?>

<?php echo link_to(‘products’,‘products/index’) ?>

<?php echo link_to(‘products’,‘products/admin’) ?>

<?php elseif ($sf_user->hasCredential(‘user’)): ?>

<?php echo link_to(‘logout’, ‘user/logout’) ?>

<?php echo link_to(‘products’, products/index‘) ?>

<?php else: ?>

<?php echo link_to(‘login’, ‘user/login’) ?>

<?php endif; ?>

code snippet /basic/symfony/frontend/modules/user/

templates/indexSuccess.php

Everything described previously is just an example of
basic security authentication features. Now it is time to
move on to more advanced techniques.

944

Dynamic Access

Authentication is not usually based on fixed values like
those described previously. It's obvious because when
there are more than a few users, all your code responsible
for security would grow exponentially. That's why when
you plan to have a lot of users you should think about a
dynamic access algorithm. The easiest way to apply
dynamic user access in Symfony is by installing the
sfGuard plug-in, which is also available for Doctrine and
Propel. You install it just like any other Symfony plug-in.

$ symfony plugin:install sfDoctrineGuardPlugin

Note that for Propel this plug-in is called sfGuardPlugin
instead of sfDoctrineGuardPlugin. There are some
plug-in–naming intricacies because of history legacies. In
earlier Symfony versions, Propel was the default
object-relational mapping (ORM), which is why
sfGuardPlugin was dedicated only for Propel and there
wasn't a need to name it any differently.

sfDoctrineGuardPlugin provides basic dynamic access
functionality. After installation, you need to enable this
plug-in within the project configuration file
ProjectConfiguration.class.php, as shown in the
following code, unless the plug-in installation script does
that automatically. It's placed in the project /config
directory.

945

<?php

class ProjectConfiguration extends sfProjectConfiguration {

public function setup() {

$this->enablePlugins(array(

‘sfDoctrinePlugin’,

‘sfDoctrineGuardPlugin’

));

}

}

code snippet /basic/symfony/config/

ProjectConfiguration.class.php

Now you can use the features of this plug-in. The sfGuard
plug-in's security logic relies on a database, as mentioned
before. As is usual in situations of this kind, you need to
generate models, forms, and so on because sfGuard
delivers only a schema. To do that, run the following
command:

$ symfony doctrine:build --all

Note that after installing sfGuardPlugin you are able to run
new tasks in the guard group. To see the full task list, just
run the symfony command:

946

guard

:add-group

:add-permission

:change-password

:create-user

:promote

So now you can manage users, groups, and so on from the
command line. For example, to create a user you can use
the following command:

$ symfony guard:create-user nowak@wrox.com nowakuser nowakpass Leszek Nowak

To change the password you can use this command:

$ symfony guard:change-password nwoakuser nowakpass

You can promote a user to be a super-user with the
promote task:

$ symfony guard:promote nowak

These commands are nice, but it's not enough. To manage
it from the application level, you need to add sfGuard
modules.

all:

.settings:

947

enabled_modules: [default, sfGuardGroup, sfGuardUser, sfGuardPermission]

code snippet /basic/symfony/backend/config/settings.yml

The module gives you the ability to manage groups, users,
and permissions directly from the web page, for example:
http://localhost/backend_dev.php/sfGuardUser. It is
probably a good idea to enable these modules within a
back-end application. At first glance, these modules are
not the pretty ones. To apply Symfony admin stylesheets
to them, you need to copy them from /usr/share/php/
symfony/plugins/sfDoctrinePlugin/web/ to your
project /web directory. For Windows XAMPP, you need
to copy them from C: xampp php PEAR symfony
plugins sfDoctrinePlugin web . After this, you
should be able to see admin pages similar to those shown
in Figures 16.5 and 16.6. You can also access admin pages
for sfGuardPermission and sfGuardGroup.

Figure 16.5 Symfony permissions admin page.

Figure 16.6 Symfony sfGuardUser admin page.

948

In Figure 16.5, admin permissions are defined. Add a user
and assign it to an admin permission, as shown in Figure
16.6.

All the previous steps are for the back-end side. By
enabling the sfGuardAuth module, you can gain sfGuard
functionalities on the front-end side. As before, you need
to enable this module within the front-end settings.yml
configuration file, as follows:

all:

.settings:

949

enabled_modules: [default, sfGuardAuth]

code snippet /basic/symfony/frontend/config/settings.yml

When using the sfGuard security approach, Symfony
default security is not needed and should be replaced with
sfGuard. To apply sfGuard as the main user security, you
need to change myUser.class.php, which is placed in
the application's /lib directory.

class myUser extends sfGuardSecurityUser {

}

code snippet /basic/symfony/frontend/lib/myUser.class.php

Now user security management is inherited from sfGuard,
which also delivers login and logout actions. To add
these actions, you need to add signin and signout
actions from the sfGuardAuth module to routing rules:

sf_guard_signin:

url: /login

param: { module: sfGuardAuth, action: signin }

950

sf_guard_signout:

url: /logout

param: { module: sfGuardAuth, action: signout }

code snippet /basic/symfony/frontend/config/routing.yml

Note that the permissions you defined in the
sfGuardPermission back-end module are also used as
credentials that were described in the basic security
approach section. Because you added a permission called
admin, which is in fact a role definition, you can add it
within the security.yml file of a module that needs to be
secured.

index:

is_secure: true

credentials: [admin]

code snippet /basic/symfony/frontend/modules/

secretFeature/config/security.yml

As you can see, it works well. In most cases, you will not
add every user from the back-end side, but within a
front-end controller. For this example, you'll create a
method called executeCreateAccount(), which will

951

add a user, set his password, make his account active, and
assign him to a group and give him permissions.

<?php

class securityActions extends sfActions {

public function executeCreateAccount() {

$user = new sfGuardUser();

$user->setUsername($this->getRequestParameter(‘username’));

$user->setPassword($this->getRequestParameter(‘password’));

$user->setIsActive(false);

$user->save();

$user->addGroupByName(”admin”);

$user->addPermissionByName(”admin”);

}

code snippet /basic/symfony/frontend/modules/security/

actions/actions.class.php

You need to create also a registration form that should
have username and password fields. These fields are
taken from the form. Note that the password and the salt
are created appropriately as a SHA1 hash and as a random
generated hash. (Salt is described in detail in the “CSRF”
section of Chapter 8.) Take a look at the database to see

952

the results. In fact, this is a nice feature because you don't
need to spend time on generating secure passwords. The
next step is user activation. For a true value, the user is
activated; for false, it is deactivated. At the end you need
to assign the user to a group and/or permission. This is
important when you define roles within the application.

One commonly used extension of sfGuard is a plug-in that
registers the login history. To install it, do the following:

$ symfony plugin:install sfDoctrineGuardLoginHistoryPlugin

CakePHP

CakePHP presents a different approach. Security is
entirely based on an ACL. In fact, you could say that the
ACL mechanism is based on relations between the
requested resource and the requester.

Defining ACL Entries

CakePHP defines two main tables: ARO and ACO, which
stand for access request objects and access control objects.
ARO maintains users and, if needed, groups. ACO is
responsible for storing controllers and actions. There is
also a third table that defines the relation between these
tables. This table realizes the ideology of ACLs. Each user
has access to a fixed amount of actions. In CakePHP, this
boils down to controlling main actions for each model.
These actions are create, read, update, and delete (CRUD)
actions. To create all tables needed to make user
authentication and authorization operations possible, just

953

run the following command in your /app project
directory:

$ cake acl initdb

You can now define some basic users and actions that can
be requested later. One way to do this is to use CakePHP's
command line interface (CLI) commands. You need two
groups: User and Admin. To create these groups, run the
following commands:

$ cake acl create aro / Admin

$ cake acl create aro / User

$ cake acl create aro / Guest

These commands create two main groups. The root sign
(/) denotes that there is nothing higher in the hierarchy, so
these entries don't belong to anything. Adding users is
simple as well. Instead of the root, you need to enter the
right group:

$ cake acl create aro User UserB

To see which entries you already have, you can execute the
following command:

$ cake acl view aro

You should see something similar to this:

[1]Admin

[2]User

[4]UserB

954

[3]Guest

So you have three groups and one user that belong to the
group User. Note that the ARO/ACO rules have a tree
structure that gives you more flexibility when developing a
web application. For now, you have defined only
requesters. Now it's time for definitions of actions and
controllers. Create a controller called Confidential and
grant access to this controller for the sample user. To
create this controller, you need to create a
confidential_controller.php file in the
/controller path with the following content:

<?php

class ConfidentialController extends AppController {

var $name = ‘Confidential’;

function index() {

}

}

code snippet /basic/cakephp/app/controllers/

confidential_controller.php

Before granting any privileges to this controller, you need
to create an appropriate ACO entry:

$ cake acl create aco / Confidential

955

Note that the second parameter is also the route to a
controller/action in the application address (for example,
http://localhost/Confidential). You also need to create an
index.ctp view file for this controller in order to prevent
error messages. To give sample user privileges to access
this resource, you need to run this command:

$ cake acl grant sample Confidential *

The last sign in this command means that sample user has
all privileges provided by Confidential.

Accessing Resources

First of all, you need to create a User controller that holds
login() and logout() actions:

<?php

class UsersController extends Controller {

var $name = ‘Users’;

var $uses = array(‘User’);

var $components = array(‘Auth’);

function login(){

}

function logout(){

956

}

}

code snippet /basic/cakephp/app/controllers/

users_controller.php

Next, you need to create a view template for each method.
An exemplary login.ctp view may look as follows:

<?php echo $form->create(‘User’,

array(‘action’ => ‘login’,‘id’=>‘main_login_form’));?>

<div class=”oneline”>

<?php echo $form->input(‘login’, array(‘label’=>array(‘text’=>‘USERNAME’,

‘class’=>‘text_label’)‘class’=>‘text’,‘div’=> NULL)); ?>

<?php echo $form->input(‘password’,array(‘label’=>array(‘text’=>‘PASSWORD’,

‘class’=>‘text_label’),‘class’=>‘text’,‘div’=>NULL)); ?>

<input type=”submit” value=”SIGN-IN” class=”submit” />

</div>

<?php echo $form->end(); ?>

code snippet /basic/cakephp/app/views/users/login.ctp

CakePHP delivers form helpers, some of which you used
previously. The first parameter of create() is the name

957

of the model that is to be created. Further parameters are
given as an array of <form> tag attributes. There are also
two input() methods that print <input> tags with
appropriate name attributes set to login and password.
These fields are not the default ones provided by the Auth
component responsible for user authentication. To change
these settings, edit Auth.php, which is placed in the
cake/libs/controller/components/ folder of the
project. You need to find the lines shown here and change
the username and password values:

var $fields = array(‘username’ => ‘login’, ‘password’ => ‘password’);

The same is true for the model that is used for
authentication. By default, it is User. To change the
default value, you also need this line in Auth.php:

var $userModel = ‘User’;

To do anything with users, you need to create a User
model in /app/models as user.php, which should at
least contain the following code:

<?php

class User extends AppModel {

var $name = ‘User’;

}

958

code snippet /basic/cakephp/app/models/user.php

As described earlier, the user authentication controller
should contain login() and logout() actions. For the
given login form (as described previously), the login()
action should look like the following:

function login() {

if(!empty($this->data)) {

$this->Auth->login($this->data);

if($this->Auth->user()){

$this->redirect(‘/’, null, true);

}

}

}

code snippet /basic/cakephp/app/controllers/

users_controller.php

If the form data is not empty, it should proceed to the Auth
login() method, which checks whether the /login/
password entry exists in the model with defined fields. If
it does, then the user is redirected to the main page;
otherwise, the login form is shown.

959

The Auth component also delivers a logout() method
that does everything automatically. For security reasons,
the Session should also be destroyed. Then the user is
redirected to the main page:

function logout() {

$this->Auth->logout();

$this->Session->destroy();

$this->redirect(‘/’, null, true);

}

code snippet /basic/cakephp/app/controllers/

users_controller.php

The authentication mechanism is not working yet because
there is one more thing still missing. To enable access
control security for each controller, you need to edit the
AppController.php, which is placed in the /app
directory. Code that is stored within beforeFilter() is
executed before everything else. Also because all
controllers that a developer normally defines inherit from
the AppController, this code is executed for every other
controller as well:

960

<?php

class AppController extends Controller {

var $components = array(‘Auth’, ‘Acl’);

function beforeFilter() {

$this->Auth->loginAction = array(‘controller’=>‘users’,‘action’=>‘login’);

$this->Auth->logoutRedirect =
array(‘controller’=>‘pages’,‘action’=>‘index’);

$this->Auth->loginRedirect =
array(‘controller’=>‘pages’,‘action’=>‘index’);

}

code snippet /basic/cakephp/app/app_controller.php

First of all, authorization and authentication
components need to be loaded. Next login and logout
actions are defined. These are the default ones if CakePHP
points out that the current user has no credentials to access
a controller/action. Note that the default ARO-ACO
relation defines the access to four CRUD actions. Not
every controller defines only these actions, which is why
those mostly used are mapped by default in Auth.php to
proper CRUD actions. The mapping is as follows:

961

var $actionMap = array(

‘index’ => ‘read’,

‘add’ => ‘create’,

‘edit’ => ‘update’,

‘view’ => ‘read’,

‘remove’ => ‘delete’

);

code snippet /basic/cakephp/cake/lib/controller/

components/auth.php

You can search for this in Auth.php.

Dynamic ACL Creation

To define access control rules, you have used CLI
commands. This is a hard way to execute them from PHP
code. CakePHP also delivers aro and aco classes. To
define a User group, as done previously with CLI, you
need to invoke the following code:

962

$aro = new aro();

$aro->create();

$aro->save(array(

‘model’=>‘User’,

‘foreign_key’=>null,

‘parent_id’=>null,

‘alias’=>‘User’));

code snippet /basic/cakephp/app/controllers/

acl_controller.php

A foreign key is used to point to a concrete ID of a given
model; for example, user, with an ID equal to 1. Because
aro/aco lists can be tree hierarchies, there can be groups
and users within other groups. That's why parent_id is
used—to point to the parent entry from the list. Defining
an ACL list usually requires more effort than in the RBAC
case because concrete users are assigned to every resource
(controller/action). To decrease this effort, users are
grouped. This is the code you need to invoke when you
want to assign a user to a previously created User group:

$parent = $aro->findByAlias(‘User’);

$parentId = $parent[‘Aro’][‘id’];

$aro->create();

963

$aro->save(array(

‘model’=>‘User’,

‘foreign_key’=>1,

‘parent_id’=>$parentId,

‘alias’=>‘User::1’));

code snippet /basic/cakephp/app/controllers/

acl_controller.php

At the beginning, you need to search for a group called
User. If this group exists, its ID is retrieved. Because the
exemplary user has an id equal to 1, the foreign key is set
to 1. Additionally, the alias should be unique; that's why
it's commonly a concatenate of the model name and the
foreign key, separated with a double colon.

The next step is to define an ACO entry. Let it be the User
controller. The following code should solve this:

$aco = new Aco();

$aco->create();

$aco->save(array(

‘model’=>‘User’,

‘foreign_key’=>null,

964

‘parent_id’=>null,

‘alias’=>‘User’));

code snippet /basic/cakephp/app/controllers/

acl_controller.php

Analogically, in the case of ARO you can define groups.
To allow users in the User group to access all actions in
the User controller, you need to execute this code:

$this->Acl->allow(‘User’, ‘User’, ‘*’);

code snippet /basic/cakephp/app/controllers/

acl_controller.php

The first parameter is the ARO, and second one is ACO.

var $component = array(‘Acl’);

code snippet /basic/cakephp/app/controllers/

acl_controller.php

Don't forget to enable the Auth component in the
controller where you want to use the previous code.

965

Zend Framework

Zend Framework (ZF) doesn't support any CLI commands
for ACLs or authentication. Nevertheless you can
accomplish user access control just as you do in CakePHP
or Symfony. ZF delivers two classes (Zend_Acl and
Zend_Auth) that you use to realize the authentication and
authorization mechanisms.

Authentication

To authenticate users, you need to make it possible to get
their username and password from them. Therefore, you
need to define a login form with username and password
fields. As you know from Chapter 5, you need to create a
form definition in the application's /forms directory. The
login form should look like this:

<?php

class Application_Form_Login extends Zend_Form {

public function init() {

$this->setMethod(‘post’);

$this->addElement(‘text’, ‘username’, array(

‘label’ => ‘Username:’,

‘required’ => false,

966

‘filters’ => array(‘StringTrim’),

)

);

$this->addElement(‘password’, ‘Password:’, array(

‘label’ => ‘Password:’,

‘required’ => false,

‘filters’ => array(‘StringTrim’),

)

);

$this->addElement(‘submit’, ‘submit’, array(

‘ignore’ => true,

‘label’ => ‘Login’

));

}

}

?>

code snippet /basic/zf/application/forms/Login.php

That's quite obvious. Now, you need to add this form to the
login method in IndexController.php. This controller
is used in the example to simplify it. Add this form as
follows:

967

public function login() {

$form = new Application_Form_Login();

if ($this->getRequest()->isPost()){

if ($form->isValid($request->getPost())) {

/* authentication code here */

}

}

$this->view->form = $form;

}

code snippet /basic/zf/application/controllers/

IndexController.php

As soon as the form data is sent and validated, the
authentication can proceed. First, database credentials need
to be set. To do that, you need to create an array with
database information that will be used for user
authentication. In the example, this configuration is as
follows:

968

$config= array(‘dbname’=>‘addressBook’,

‘username’=> ‘dbUser’,

‘password’ =>‘secret’,

‘hostname’ => ‘localhost’,

);

code snippet /basic/zf/application/controllers/

IndexController.php

The preceding configuration needs to be loaded into a
proper database adapter. Let's say that you use MySQL as
the database, so the configuration should be loaded like
this:

$db = new Zend_Db_Adapter_Pdo_Mysql($config);

Next, you need to create a proper table within your
database. This table will store information about users and
will be used to verify them.

CREATE TABLE IF NOT EXISTS users (

uid int(11) NOT NULL AUTO_INCREMENT,

username varchar(32) NOT NULL,

password varchar(32) NOT NULL,

PRIMARY KEY (uid)

);

You also need to add an example user:

INSERT INTO users (username, password) VALUES (‘admin’, ‘secret’);

969

After that, you can add the MySQL database adapter and
create an instance of DbTable. You also need to define
which table and which fields should be taken into
consideration.

$adapter = new Zend_Auth_Adapter_DbTable($db);

$adapter

->setTableName(‘users’)

->setIdentityColumn(‘username’)

->setCredentialColumn(‘password’);

code snippet /basic/zf/application/controllers/

IndexController.php

The rest of the code is dedicated to authenticate concrete
users. The following shows an example setting using
username and password as the authentication values:

$adapter

->setIdentity($form->getValue(‘username’))

->setCredential($form->getValue(‘password’));

970

code snippet /basic/zf/application/controllers/

IndexController.php

An instance of Zend_Auth needs to be created because it
does all the authentication work. The authenticate()
method with the adapter attribute checks the table and
fields for a given username and password. The result is
stored in the $result variable.

$auth = Zend_Auth::getInstance();

$result = $auth->authenticate($adapter);

code snippet /basic/zf/application/controllers/

IndexController.php

If the result of the isValid() method returns true, the
user is authenticated successfully, and is redirected to the
index action.

if($result->isValid()) {

return $this->_helper->redirector(‘index’);

}

971

code snippet /basic/zf/application/controllers/

IndexController.php

Authentication data is stored, and to delete that data you
need to use the clearIdentity() method of Zend_Auth.

public function logout() {

$auth = Zend_Auth::getInstance();

$auth->clearIdentity();

}

code snippet /basic/zf/application/controllers/

IndexController.php

A good approach is to create a link that redirects the user
to the logout action that clears all credentials, as shown
previously.

Authorization

The shortest way to put an ACL approach into practice is
to define ACLs within, for example, .
AddressBookAcl.php. It should be placed in the
/library directory.

972

<?php

class AddressBookAcl extends Zend_Acl {

public function __construct() {

/* ACL roles, resources and privileges */

}

}

code snippet /basic/zf/library/AddressBookAcl.php

You store AddressBookAcl.php in the /library path
because these rules need to be available for all controllers.
You need to define the resources that should be secured:

$this->add(new Zend_Acl_Resource(‘index’));

$this->add(new Zend_Acl_Resource(‘confidential’));

$this->add(new Zend_Acl_Resource(‘backend’));

code snippet /basic/zf/library/AddressBookAcl.php

These are the controller names. Next, roles should be
defined:

973

$this->addRole(new Zend_Acl_Role(‘guest’));

$this->addRole(new Zend_Acl_Role(‘user’), ‘guest’);

$this->addRole(new Zend_Acl_Role(‘admin’), ‘user’);

code snippet /basic/zf/library/AddressBookAcl.php

Note that the user role inherits from the guest role because
the user role includes guest privileges.

$this->allow(‘guest’, ‘index’);

$this->allow(‘user’, ‘confidential’);

$this->allow(‘admin’);

code snippet /basic/zf/library/AddressBookAcl.php

The last thing is to define the relations between resources
and roles so the constructed access list meets your needs.
You can also build ACLs more dynamically by loading
them from the database. This is a good approach only if
the access list is short because loading a long access list
would take time and reduce performance. To enable

974

AddressBookAcl you need to include its class definition
within the application's Bootstrap.php.

<?php

require_once(“AddressBookAcl.php”);

class Bootstrap extends Zend_Application_Bootstrap_Bootstrap

{

code snippet /basic/zf/application/Bootstrap.php

Finally, you need to add ACLs within each controller. A
good place is the init() method because it's invoked
each time any action of this controller is executed.

<?php

class IndexController extends Zend_Controller_Action {

function init(){

$controller = $request->getControllerName();

$acl = new AddressBookAcl();

$acl->isAllowed($auth->getIndentity(),$controller);

975

}

code snippet /basic/zf/application/controllers/

IndexController.php

Identifying Users Using LDAP Implementation

In almost all cases, authentication mechanisms are built
using databases. This is a good approach in general
because it is easy to set up and configure, so it is attainable
for everyone. But there is a faster and more maintainable
solution, based on directory services and commonly used
by corporations: the Lightweight Directory Access

Protocol (LDAP), based on the X.500 standard, has
various implementations. Authentication mechanisms
based on LDAP are much faster than those based on
relational databases, because they are just simpler. This is
one of the reasons why LDAP is used for authentication
purposes instead of relational databases.

In the following examples, you will be using OpenLDAP,
which is an open source project; and Active Directory

Application Mode (ADAM), which is an LDAP
implementation offered by Microsoft. ADAM is free for
use and is still very close to the LDAP standard, so it will
be used here instead of Active Directory—another
Microsoft LDAP implementation. Please, do not mistake
ADAM (and its newer version called AD LDS) with
Active Directory, which is a different and much more
complex product.

Microsoft also delivers an LDAP implementation that is
called Active Directory Lightweight Directory Services

976

(AD LDS), which is a newer version of ADAM. In fact, it
is just the same as ADAM, but it is a renamed version
released for Windows 7 and later operating systems. The
most important changes are the name and Windows 7
integration. In the examples you'll be using both ADAM
and AD LDS. You will probably not see any differences,
but when there are considerable ones, we will discuss
them. There are also other LDAP implementations, such as
IBM Tivoli Directory Server or Red Hat 389 Directory
Server. They should work as well, but they are not within
the scope of this book.

Requirements

There are no special requirements needed to start. ADAM
and AD LDS installation will be presented for Windows
operating systems, while on Linux you need to install the
LDAP PHP extension.

For ADAM you need to download the installation files.
The file used here was ADAMSP1_x86_English.exe,
which is available at the Microsoft downloads web page.

www.microsoft.com/downloads/en/details.aspx?familyid=96

88f8b9-1034-4ef6-a3e5-2a2a57b5c8e4&displaylang=en

The name may change in the future, but probably not
much. You can type Microsoft ADAM into Google, and
you should see a link to this page in the results. There is
additionally a multilingual add-on available with MUI
(Multilingual User Interface) in the name of the installer.
Notice that these installers are available for two processor
architectures: x86 and x64.

977

If you are using Windows 7, you should download AD
LDS, which you can find here:

http://www.microsoft.com/downloads/en/details.aspx?familyid=A45

059AF-47A8-4C96-AFE3-93DAB7B5B658&displaylang=en

You can access this web page easily by typing Microsoft

AD LDS download into Google. The proper installation
file is called Windows6.1-KB975541-x86.msu. The
.msu extension is a Windows Update extension, so this is
not just a separate application but also an extension of the
Windows operating system.

Before installing any LDAP implementations, please make
sure that you are not running any other implementation of
LDAP because ports can be blocked, which could be
troublesome. So before doing anything with LDAP in
PHP, you need to see whether PHP's LDAP extension is
installed. XAMPP delivers it out of the box. Under UNIX
systems, you usually need to install this extension
separately. Under Ubuntu, you need to run this command
with root privileges:

apt-get install php-ldap

Under RHEL, after downloading the proper RPM package
from one of the RPM repository sites, you need to use the
following command to install LDAP support in PHP:

rpm -i php-ldap-*.rpm

You must, of course, install PHP first, because it's a
prerequisite.

978

Under FreeBSD you need to go to /usr/ports/net/
php5-ldap/ and invoke the following command:

make

To make sure that the PHP LDAP extension is installed,
you need to find the php.ini file in the PHP extension
directory. If you use Windows and XAMPP, that directory
will be c: <XAMPP PATH> php ext , where <XAMPP

PATH> is the directory in which you have installed
XAMPP. In UNIX systems, the directory is almost always
/usr/lib/php/.

;extension=php_ldap.dll

You generally also need to enable the LDAP extension in
the php.ini config file, most often found in /etc/php5/
apache/. (To enable means to delete the comma or hash
before an extension library name.) Sometimes these config
entries are separate files for each module (in Ubuntu, for
example) placed in /etc/php5/apache/conf.d.

extension=ldap.so

In Windows, the extensions are stored in .dll files; under
UNIX, they are stored in .so files.

How Does LDAP Work?

LDAP stores data records just like ordinary relational
databases. The difference between these two is that
databases are flat and LDAP has a tree structure in which
each object can be subordinate to another one.
Additionally, in LDAP each object can have a different

979

structure. So LDAP is heterogeneous, unlike databases. In
databases, each record in a table has the same structure.
Each record is identified by its primary key. In LDAP,
each record is identified by its distinguished name (DN)
like cn=przystalski, ou=authors, o=wrox, c=us.
So a company like Wrox will have its global information
stored in o=wrox, c=us, but information on authors will
be available in ou=authors, o=wrox, c=us. Similarly,
when you want to see some information about an editor
you should ask about cn=dinse, ou=editors, o=wrox

,c=us; or to see all editors, just ou=editors, o=wrox,

c=us. In databases, you would do a SQL query like this
one: SELECT * from editors; or SELECT * FROM
editors WHERE surname=‘Dinse’;

Preparing LDAP

In the following sections, you install each LDAP engine
and you can decide which best suits your needs. First, we
describe the installation of ADAM. Next you move to
OpenLDAP installation and configuration.

ADAM Installation

After downloading the proper installer, run it and a
welcome dialog should be displayed (see Figure 16.7).

Figure 16.7 ADAM installation welcome page.

980

The next steps are very common to any other installations.
Just read the license, click Next a few times and Finish at
the end. That's all you do to install ADAM. In Windows 7,
it looks a little bit different (see Figure 16.8). Just answer
Yes and the installation moves on.

Figure 16.8 AD LDS installation welcome page.

This update installs AD LDS shortcuts in the Windows
Control Panel.

OpenLDAP Installation

981

With OpenLDAP, it's probably easier. You only need to
choose which distribution to use. Although each of them
can call OpenLDAP in a different way, in most cases it's
with openldap.

Ubuntu

Installation is very simple, but in Ubuntu the OpenLDAP
package is called slapd. This can be confusing.

apt-get install slapd

FreeBSD

Installation is nothing special; just make the openldap
package that belongs to the net-nds group.

cd /usr/ports/net-nds/openldap

make

Gentoo

Installation is accomplished as with FreeBSD, but by using
emerge.

emerge -av openldap

Other

With Linux distributions such as Red Hat, you need to
install .rpm packages. See Appendix b02 for a list of
websites in which you can find the .rpm packages.

LDAP Configuration

982

After completing the installation, you need to configure
OpenLDAP or ADAM/AD LDS for it to work properly.

ADAM Configuration

The following steps walk you through ADAM
configuration:

1. To start configuring ADAM, choose Create an
ADAM Instance from the Windows Start Menu (see
Figure 16.9).

Figure 16.9 Configuration shortcut.

As described earlier, AD LDS shortcuts are available
from the Administrative Tools in the Control Panel.
Two shortcuts are of interest to us for this example:
Active Directory Lightweight Directory Services and
ADSI Edit (see Figure 16.10). The first shortcut is an
equivalent of the Create an ADAM Instance shortcut.

Figure 16.10 AD LDS Control Panel shortcuts.

983

2. After clicking “Create an ADAM instance,” a
welcome page for the ADAM/AD LDS instance
creation wizard displays, as shown in Figure 16.11.

The steps are the same for ADAM and
for AD LDS from this point through
importing LDAP Data Interchange
Format (LDIF) files.

Figure 16.11 ADAM configuration
welcome page.

984

3. On the next page, you need to furnish an instance
name that will be visible in Windows Services. If you
want to use more than one instance, you should provide
meaningful names (see Figure 16.12).

Figure 16.12 ADAM instance name page.

4. The next screen, shown in Figure 16.13, asks about
instance ports. The default ports are commonly used:
389 for a plain connection and 636 for a secure
connection. These port numbers are also the default in
other LDAP implementations. Note that if you try to
create a second instance without deleting the previous
one, you will see some other ports as the defaults. This

985

is annoying in most cases because you cannot set 389/
636 ports.

Figure 16.13 ADAM instance port settings.

5. Next, you should set the main distinguished name. In
the example, it's o=wrox,c=us. The main DN should be
simple, but also meaningful. Figure 16.14 shows how to
set a DN.

Figure 16.14 ADAM instance main DN setting.

6. After setting the main distinguished name, you should
also specify which LDIF files should be imported into
the ADAM/AD LDS instance. LDIF files are commonly
used to modify any LDAP entry or setting. These files

986

have an .ldif or .ldf extension. To make it simple,
apart from modifying LDAP entries, these files are also
sometimes used to define kind of a model-like structure
of users that will be stored in LDAP. Generalizing, you
can compare it with defining a table with structures like
id, username, password, and so on. In this case, you
need only MS-User.LDF because you will define only
users. This LDIF adds Microsoft-specific attributes as
well, which are not commonly used except by Microsoft
solutions. In Figure 16.15, three LDIFs are selected to
be added.

Figure 16.15 ADAM LDIF importing.

Each instance exists as a service. These services have
their associated permissions. In the case of web
applications, it is easier to start an ADAM/AD LDS
instance with Windows default privileges, as shown in
Figure 16.16.

Figure 16.16 ADAM Instance port settings.

987

7. After clicking Next, an instance is created, as shown
in Figure 16.17.

Figure 16.17 ADAM instance creation.

The ADAM/AD LDS instance is now visible in Services.
To see it, go to Administrative Tools in the Control Panel.
There should be a shortcut to Services. The instance is
shown in Figure 16.18. You can start/stop and restart
particular instances.

Figure 16.18 ADAM instance service.

988

The preceding steps illustrate only the beginning of
ADAM/AD LDS configuration. For the example, you also
need to create a few user accounts, as shown in the
following steps, to make it possible to authenticate users.

1. To connect to an instance, you need to run the ADSI
Edit application and right-click the ADSI Edit root node.
There should be an option available called Connect To,
as shown in Figure 16.19.

Figure 16.19 ADAM browser.

2. There are two main connection types that you can use
to configure the instance. The first is to connect as a
user, and the second is to connect as an administrator
(super-user) to configure the LDAP server. The second
one is named Configuration. This example uses the
configuration context to connect to it, as shown in
Figure 16.20.

Figure 16.20 ADAM connection settings window.

989

3. This connection type allows you to change instance
configuration.

4. After filling in the connection settings and clicking
OK, you should see a new entry, as shown in Figure
16.21.

Figure 16.21 ADAM configuration browser.

Adding New Users

To add a user, you need to use the second connection type
mentioned in Step 2 and shown in Figure 16.20 in the
previous section.

990

1. A good idea is to start adding users to the root node.
Therefore, you should connect to the server using as the
connection point the main DN, which is o=wrox,c=us.
In Windows 7, the server name (or server IP) and port
number are in the bottom part of the window. The filled
form shown in Figure 16.22 allows you to connect to
LDAP.

Figure 16.22 ADAM connection settings window.

2. Now because you added MS-User.LDF (in Step 6 of
the ADAM configuration section), you can create users
as objects in the LDAP tree. To complicate it a little
more, you can add units like authors and editors to
separate users from their functions. These kinds of
objects are called organizationalUnits. To create
the authors object, you need to right-click the main
DN and invoke the New ⇒ Object option as shown in
Figure 16.23.

991

Figure 16.23 ADAM DN context menu.

3. Next, choose the proper object class from the list, as
shown in Figure 16.24.

Figure 16.24 ADAM object class list.

4. After you press Next you can enter the unit name, as
shown in Figure 16.25.

Figure 16.25 ADAM unit naming window.

992

5. This creates an authors unit. You can do the same
with other units. You should see these units in the tree
as new nodes.

6. Adding users should be done in the same way as
units, but instead of right-clicking o=wrox,c=us, just
add users by right-clicking the proper unit, which can be
ou=authors,o=wrox,c=us, for example. After that,
you should see a list of users as shown in Figure 16.26.

7. To finish the configuration, you need to reset
passwords for users that were just created. A password
dialog should display, as shown in Figure 16.27.

After password resetting, you can log in to ADAM/AD
LDS with this information. The login name is the DN of
each user. Now you can try to browse LDAP with your
favorite LDAP browser tool.

993

Figure 16.26 Password changing.

Figure 16.27 Password changing popup.

Uninstalling ADAM

While being created, each instance adds an entry within
the Add/Remove Programs section of the Control Panel in
Windows XP. To remove an instance, you need only to
remove it from this list (see Figure 16.28).

Figure 16.28 Uninstalling ADAM instance.

994

In Windows 7, instances are shown in Programs and
Features in the Control Panel. From there, you can remove
unneeded AD LDS instances.

OpenLDAP Configuration

The following steps walk you through configuration of
OpenLDAP, which is not as clickable as it is with ADAM/
AD LDS. Almost all steps are done from the command
line. OpenLDAP configuration differs a little bit from
ADAM/AD LDS because you don't need to create
instances.

1. Start by importing LDIFs delivered with OpenLDAP.
To import those files, you need root privileges and to go
to the /etc/ldap directory. Then you need to execute
these commands:

ldapadd -Y EXTERNAL -H ldapi:/// -f /etc/ldap/schema/cosine.ldif

ldapadd -Y EXTERNAL -H ldapi:/// -f /etc/ldap/schema/
inetorgperson.ldif

ldapadd -Y EXTERNAL -H ldapi:/// -f /etc/ldap/schema/nis.ldif

These commands add some basic schemas.

2. Next you need to configure LDAP's back end.
Configuring the back end is just setting the database that
will be behind the LDAP. To make it possible, you need
to create a LDIF file (call it database.ldif) and
execute it. Executing this file just adds entries within
LDAP. To configure the database, you need to fill in
database.ldif with this piece of code:

995

dn: cn=module{0},cn=config

objectClass: olcModuleList

cn: module

olcModulepath: /usr/lib/ldap

olcModuleload: {0}back_hdb

code snippet /ldap/config/database.ldif

These entries set just the most basic information. To
invoke these changes, you need to execute this
command:

ldapadd -Y EXTERNAL -H ldapi:/// -f database.ldif

3. Next, the database type needs to be set—and also the
suffix, root, and some additional database configuration
data. By default, OpenLDAP gives everyone privileges
to write and read, so you need to create a root user that
should have write permissions and give everyone else
only read permissions. Define the suffix, database
configuration, and root user as follows:

996

dn: olcDatabase={1}hdb,cn=config

objectClass: olcDatabaseConfig

objectClass: olcHdbConfig

olcDatabase: {1}hdb

olcDbDirectory: /var/lib/ldap

olcSuffix: o=wrox,c=us

olcRootDN: cn=admin,o=wrox,c=us

olcRootPW: secret

olcDbConfig: {0}set_cachesize 0 2097152 0

olcDbConfig: {1}set_lk_max_objects 1500

olcDbConfig: {2}set_lk_max_locks 1500

olcDbConfig: {3}set_lk_max_lockers 1500

olcLastMod: TRUE

olcDbCheckpoint: 512 30

olcDbIndex: uid pres,eq

olcDbIndex: cn,sn,mail pres,eq,approx,sub

olcDbIndex: objectClass eq

code snippet /ldap/config/root.ldif

Save the previous lines as root.ldif and execute this
command:

ldapadd -Y EXTERNAL -H ldapi:/// -f root.ldif

You should see something similar to this:

997

SASL/EXTERNAL authentication started

SASL username: gidNumber=0+uidNumber=0,cn=peercred,cn=external,cn=auth

SASL SSF: 0

adding new entry “cn=module{0},cn=config”

adding new entry “olcDatabase={1}hdb,cn=config”

4. If no error messages appear, you can add a user,
whose distinguished name is cn=admin,o=wrox,c=us,
and who was set as the root user before. This user
doesn't exist now. A good approach is to set a password
that is encrypted with a one-way hashing algorithm such
as MD5. To set an MD5 password, you need to generate
it. OpenLDAP delivers a tool that generates the proper
value that can be copied directly into LDIF files. To
generate a password hashed with the MD5 algorithm,
execute this command:

slappasswd -h {MD5}

For password secret, you get this output:

{MD5}Xr4ilOzQ4PCOq3aQ0qbuaQ==

5. This value should be set for the userPassword
attribute, which is a part of the user object structure.
Earlier you set only an assignation to the root node and
to the root user base structures, but not real objects.
Now it's time to create both as existing objects. To do
that, save the following lines within admin.ldif file:

998

dn: o=wrox,c=us

objectClass: dcObject

objectclass: organization

o: wrox.com

dc: wrox

description: LDAP Root

dn: cn=admin,o=wrox,c=us

objectClass: simpleSecurityObject

objectClass: organizationalRole

cn: admin

userPassword: {MD5}Xr4ilOzQ4PCOq3aQ0qbuaQ==

description: LDAP administrator

code snippet /ldap/config/admin.ldif

6. To create a root node and LDAP administrator
account using the above lines, execute the following
command:

ldapadd -Y EXTERNAL -H ldapi:/// -f admin.ldif

You should now see something similar to this:

SASL/EXTERNAL authentication started

999

SASL username: gidNumber=0+uidNumber=0,cn=peercred,cn=external,cn=auth

SASL SSF: 0

adding new entry “o=wrox,c=us”

adding new entry “cn=admin,o=wrox,c=us”

The output gives you information about added entries.
Note that each added entry has a type. Types are called
objectClass. Compared to relational databases such as
MySQL, objectClass is a kind of table structure.
objectClass says that this entry should consist of
specific columns. For example, an entry with
objectClass set to person should have at least sn and
userPassword attributes.

Securing OpenLDAP

OpenLDAP is available for everyone by default and allows
writing and reading within it. This is something you don't
want to allow, so let's allow only the LDAP administrator
to write to LDAP. This sounds fairly secure and still makes
LDAP usable.

1. Set a hashed password for the config admin user by
filling in admin-config.ldif with the following
lines:

dn: olcDatabase={0}config,cn=config

1000

changetype: modify

add: olcRootDN

olcRootDN: cn=admin,cn=config

dn: olcDatabase={0}config,cn=config

changetype: modify

add: olcRootPW

olcRootPW: {MD5}Xr4ilOzQ4PCOq3aQ0qbuaQ==

code snippet /ldap/config/admin-config.ldif

2. To make it easier, you can use the same hashed
password.

3. Now you need to modify these entries.

ldapadd -Y EXTERNAL -H ldapi:/// -f admin-config.ldif

4. Set some kind of ACL. Because LDAP enables you to
add more than one attribute within an object, you can
define more than one access rule. Let's see what changes
need to be made to allow only
cn=admin,o=wrox,c=us to write while allowing
everyone else to read. (All olcAccess: entries must be
single lines even if they had to be split for print.)

dn: olcDatabase={1}hdb,cn=config

1001

add: olcAccess

olcAccess: to attrs=userPassword,shadowLastChange by dn=”cn=admin,o=wrox,c=us”

write by anonymous auth by self write by * none

olcAccess: to dn.base=”” by * read

olcAccess: to * by dn=”cn=admin,o=ibm,c=us” write by * read

code snippet /ldap/config/acl.ldif

The last line makes the whole tree available for
cn=admin,o=ibm,c=us to write and for all to read. The
tree is also available for reading when the base
distinguished name is set to an empty string. The middle
entry allows users with a DN set to write
cn=admin,o=wrox,c=us. This entry also allows
authenticating by anonymous users and making changes
within the user node; that's why write permissions need to
be granted. To add these changes to LDAP, you need to
execute this command:

ldapmodify -x -D cn=admin,cn=config -W -f acl.ldif

Note that you log in with administrator permissions.

Adding New Users

Now it's time to add units and users that you will use in the
framework examples to authenticate.

1. To add an authors unit, you need to define a LDIF
file with the following lines:

1002

dn: ou=authors,o=wrox,c=us

objectClass: organizationalUnit

ou: authors

code snippet /ldap/config/authors.ldif

2. As you can see, it's very simple to add the authors
unit. It's an object of organizationalUnit class type,
the same as in the case of ADAM.

3. To add authors you need to execute following
command:

ldapadd -cvx -D cn=admin,o=wrox,c=us -W -f authors.ldif

Note that now you need to log in as the administrator to
make any changes. You will be asked for a password.
It's the same one that you added as a hashed MD5
password. You can also create other units like editors
in the same way.

4. Next you need to add a user. You can define this user
as more than one object class type. Add the following
lines within users.ldif:

1003

dn: cn=nowak,ou=authors,o=wrox,c=us

userPassword: {MD5}Xr4ilOzQ4PCOq3aQ0qbuaQ==

sn: Leszek Nowak

cn: nowak

objectClass: top

objectClass: person

objectClass: organizationalPerson

objectClass: inetOrgPerson

code snippet /ldap/config/users.ldif

5. As you did previously, you need to execute the
following command with a different LDIF file as the
parameter:

ldapadd -cvx -D cn=admin,o=wrox,c=us -W -f users.ldif

After executing this command, you should see output
similar to this:

Enter LDAP Password:

add userPassword:

{MD5}GJaRVPnFMt38q41QWE1CVQ==

add sn:

1004

Karol Przystalski

add cn:

przystalski

add objectClass:

top

person

organizationalPerson

inetOrgPerson

adding new entry “cn=przystalski,ou=authors,o=wrox,c=us”

modify complete

You can do the same with other users.

LDAP Browsers

To browse OpenLDAP, you can use free applications such
as Apache Directory Studio or phpLDAPadmin (which is
available in most Linux distributions' package managers).
You can install them just from sources or binary packages
available at the phpLDAPadmin homepage
(http://phpldapadmin.sourceforge.net/). After
downloading, you need to unpack sources. If you are using
Windows, use the context menu to unzip them. If you are
using Linux, the best way to unpack them is to execute the
following commands:

$ tar zxvf phpldapadmin-1.x.x.x.tgz

Note that you need to set your phpLDAPadmin version.
Unpack it to the Apache main /htdocs directory. (On

1005

Linux, it's usually the /var/www/ directory. XAMPP has
it in C: xampp htdocs .) After unpacking and copying it
to a proper directory (for example, /var/www/
phpldapadmin), create a config file, which is placed in
the/config directory. To do that, just change the name of
the config.php.example file to config.php. Now your
phpLDAPadmin tool is available through http://localhost/
phpldapadmin/ if you deploy it on your desktop. Log in as
cn=admin,o=wrox,c=us with the password chosen
earlier and you should be able to see phpLDAPadmin, as
shown in Figure 16.29.

Figure 16.29 Browsing entries with phpLDAPadmin.

You can easily browse available entries and create new
ones. It's an easy-to-use tool for beginners and doesn't need
additional packages except these, which are already
installed when you install all applications required to deal
with described frameworks (see Chapter 2).

1006

A different approach, but in fact with almost the same
functionalities, is presented in Apache Directory Studio
(ADS). This is a nice, free LDAP tool that can also be used
with Active Directory. It's based on Eclipse, which should
be a sufficient recommendation. To use it, download it
from http://directory.apache.org/studio/. For Linux
distributions, you need to unpack it with the same
commands as you use for phpLDAPadmin. For Windows,
the Apache Foundation delivers an ADS installer. The
installation procedure is obvious, so it will not be
explained here. After unpacking under Linux, execute
ApacheDirectoryStudio, which is within the unpacked
ADS directory.

$./ApacheDirectoryStudio

Note that to make ADS work properly, you need to install
the Java Runtime Environment before starting work. After
launching LDS, you need to choose LDAP ⇒ New
connection from the main menu in the top of the ADS
window. A wizard window appears. In the first page, you
need to fill in all needed network parameters, as shown in
Figure 16.30.

Figure 16.30 Apache Directory Studio network
parameters.

1007

Note that Figures 16.30, 16.31, and 16.32 present
connection properties that use the same values that you
enter in the wizard pages. After you fill in all Network
Parameter fields, you need to go to the Authentication tab.
In the example, the user is cn=admin,o=ibm,c=us (see
Figure 16.31).

Figure 16.31 Apache Directory Studio authentication
parameters.

Figure 16.32 Apache Directory Studio browser options.

1008

Finally you must set the base DN in the Browser Options
tab. Base DN is, in fact, the root DN that you set earlier.
You don't need to put it into the form, just click the Fetch
Base DNs button to get it directly from LDAP (see Figure
16.32).

This was the last step of this wizard and you can use
LDAP now. You should see something similar to Figure
16.33.

Figure 16.33 Apache Directory Studio.

1009

Using the context menu, you can do operations such as
adding users, units, and so on.

Solution

LDAP is commonly known to be a very fast and simple
solution. It's also usually a faster solution than relational
databases such as MySQL, PostgreSQL, or Oracle.
Probably you are wondering now what LDAP has to do
with security. In many big companies, LDAP (or
Microsoft's equivalent Active Directory) is used to
authenticate users because it's fast and it's a great solution
to represent users in companies' hierarchies. Sometimes
you will be constrained to integrate a new application that
you are developing with an existing solution based on

1010

LDAP. This is a frequent scenario because of LDAP's
popularity.

Frameworks deliver add-ons or libraries for directory
services to make developers' lives easier. By default, PHP
supports LDAP and delivers a lot of LDAP functions.
These functions stand behind any plug-in, add-on, or
library. As a solution we mean that you can authenticate
previously created users using frameworks features,
plug-ins, and so on. Additional steps may include
integration of described solutions with authentication
modules, actions, or libraries.

Symfony

Symfony provides a dedicated plug-in for LDAP called
upSimpleLdapPlugin. To install it, execute the following
command in your Symfony project directory:

$ symfony plugin:install upSimpleLdapPlugin

To configure the upSimpleLdapPlugin plug-in, just set
basic LDAP server information within the application's
app.yml. In this case, it should look like the following:

all:

ldap:

host: 127.0.0.1

1011

port: 389

user: cn=admin,o=wrox,c=us

pass: secret

baseuser: ou=authors,o=wrox,c=us

version: 3

code snippet /ldap/symfony/apps/frontend/config/app.yml

Note that you need to insert the password that you set
earlier. You point to ou=authors,o=wrox,c=us because
you want only to check authors. You can expand it to
include the whole tree in the future. Let's see how the
upSimpleLdapPlugin plug-in works by looking at the
authenticate() method:

$sr = ldap_search($this->ds, $this->base_user, “uid=$login”);

if (ldap_count_entries($this->ds, $sr) <= 0)

return false;

$entry = ldap_first_entry($this->ds, $sr);

$dn = ldap_get_dn($this->ds, $entry);

ldap_free_result($sr);

if (is_string($dn) && !empty($dn)) {

if (!@ldap_bind($this->ds, $dn, $password)) {

return false;

} else {

return true;

}

1012

}

return false;

As you can see in the first line, users are searched by a
unique ID. All users don't have this attribute set because
you didn't add it before. The easiest way to add unique IDs
for every user is by using ADS. Select one of the users and
on the right use the context menu to add a new attribute
(see Figure 16.34).

Figure 16.34 Apache Directory Studio's entry context
menu.

Set the attribute's type, which in this case is uid. ADS
delivers a list of available attributes that is very helpful for
beginning developers (see Figure 16.35). Choose uid and
press Next and Finish.

Figure 16.35 Apache Directory Studio: selecting the
attribute type.

1013

Now you can see the new attribute. By default, it's set to an
empty string, as shown in Figure 16.36.

Figure 16.36 Apache Directory Studio: new attribute.

Note that the uid attribute needs to be set to a unique
value. Let's assume that the user's surname is unique in the
scope of this example, so you can set it as the value for
uid. After setting the value, the user's attributes should
look like Figure 16.37.

Figure 16.37 Apache Directory Studio: setting a new
attribute.

In most cases, you have to set the attribute uid for many
users. This is not possible to do for a lot of users in the

1014

way you have done it in this example, but ADS has a great
feature that generates a proper LDIF section for every
change. If you scroll to the bottom, you should be able to
see something similar to what is shown in Figure 16.38.

Figure 16.38 Apache Directory Studio's LDIF section.

If you copy these lines to a separate LDIF file and execute
it with the ldapmodify command, you get the same result.
Unlike the preceding clickable method, the LDIF method
can be automated when you use one of your favorite
scripting languages. If you add the following lines, you get
a True value in the $result variable.

$login = “Nowak”;

$pass = “secret”;

1015

$result = $ldap->authenticate($login, $pass);

code snippet /ldap/symfony/apps/frontend/modules/

ldapexample/actions/actions.class.php

This can be used easily to authenticate users using LDAP
instead of a relational database. The following code
provides an example of user authentication:

$login = $request->getParameter(‘login’);

$pass = $request->getParameter(‘password’);

$user = $this->getUser();

if($ldap->authenticate($login, $pass)) {

$user->setAuthenticated(true);

$user->addCredential(‘user’);

}

code snippet /ldap/symfony/apps/frontend/modules/

ldapexample/actions/actions.class.php

The upSimpleLdapPlugin plug-in also enables you to
change the user's password by using the
updatePassword() method. This is possible because you
log in as cn=admin,o=wrox,c=us, and this user has write
permissions.

1016

$ldap->updatePassword($login, $oldpass, $newpass);

Active Directory

Symfony also delivers an equivalent plug-in for Active
Directory, which can be installed with the following
command:

$ symfony plugin:install bhLDAPAuthPlugin

You can also use a modified variant of the sfGuard plug-in
used for authentication with Active Directory:

$ symfony plugin:install vjGuardADPlugin

CakePHP

CakePHP doesn't deliver any additional LDAP or AD
add-ons/plug-ins. But this doesn't mean that it's impossible
to achieve LDAP integration in an easy manner. You need
to write a little bit more code than you do in Symfony,
however.

Model

There are a few ways to solve the problem of user
authentication through LDAP in CakePHP. One of the
solutions is to define a model that connects, disconnects,
and searches LDAP and also validates users. You need to
create a model within the /model directory. In the
example, you call this model Ldap. The Ldap model
should look like this:

1017

<?php

class Ldap extends AppModel {

var $name = ‘Ldap’;

var $useTable = false;

?>

code snippet /ldap/cakephp/app/models/ldap.php

Note that you don't want to use a database. By default, any
time you invoke this class, CakePHP will search for a table
named Ldap. In this case, it is an undesirable behavior. To
force a different behavior, you need to set the $useTable
model variable to false. Now CakePHP will not search
for any table for this model.

Next, you need to set some basic LDAP-specific data as
the main variables. Note that information like hostname,
base distinguished name, or administrator login and
password does not change very often. Therefore, you can
define the Ldap model as follows:

<?php

1018

class Ldap extends AppModel {

var $name = ‘Ldap’;

var $useTable = false;

var $hostname = ‘localhost’;

var $baseDn = ‘o=wrox,c=us’;

var $username = ‘cn=admin,o=wrox,c=us’;

var $password = ‘secret’;

var $ldapConn;

}

code snippet /ldap/cakephp/app/models/ldap.php

The $ldapConn variable handles the current connection to
the LDAP server. This variable will often be used in the
code because each time you want to get any information,
you will use a handle to a LDAP server on which you want
to do a search or any other actions. If you want to use the
Ldap model very often, it's a good idea to connect to
LDAP within the class constructor. Note that you inherit
the AppModel class, so you should first invoke its class
constructor and after that use the built-in PHP LDAP
functions. The code should look like the following:

function __construct() {

1019

parent::__construct();

$this->ldapConn = ldap_connect($this->hostname, 389);

ldap_set_option($this->ldapConn, LDAP_OPT_PROTOCOL_VERSION, 3);

ldap_bind($this->ldapConn, $this->username, $this->password);

}

function __destruct() {

ldap_close($this->ldapConn);

}

code snippet /ldap/cakephp/app/models/ldap.php

An LDAP connection is defined in the third line, and the
LDAP protocol is set in the following line. More options
can also be set. To see all available options, go to:
http://php.net/manual/en/function.ldap-set-option.php.
Finally, before the destructor method, you need to bind the
connection with a user. Then the class destructor closes the
current LDAP connection. Now when you create an
instance of the LDAP object type, you should be
connected anytime while invoking any object methods. So
let's find users so you can implement the authentication
method.

function findAuthor($attribute = ‘uid’, $value = ‘*’) {

$baseDn = ‘ou=authors,o=wrox,c=us’;

1020

$result =
ldap_search($this->ldapConn, $baseDn, $attribute . ‘=’ . $value);

return ldap_get_entries($this->ldapConn, $result);

}

}

code snippet /ldap/cakephp/app/models/ldap.php

In the preceding code, you find an author by searching
within the ou=authors,o=wrox,c=us subtree, as defined
earlier. To make this example as compatible as possible
with the other two framework examples, you use uid as
the attribute for the search. All entries that match the
search query are returned. As mentioned before, you use a
unique ID, so note that the result should be only one entry.

The final method, shown in the following code, is
responsible for user authentication. This method is based
on the previously implemented findAuthor() method. If
a user for given $uid and $password variables is found,
try to bind with the user's distinguished name. If this
method binds successfully, a true value is returned, which
means that a user with given parameters exists and can be
authenticated.

function authenticate($uid, $password) {

$result = $this->findAuthor(‘uid’, $uid);

1021

if($result[0]) {

if (ldap_bind($this->ldapConn, $result[0][‘dn’], $password)) {

return true;

} else {

return false;

}

} else {

return false;

}

}

code snippet /ldap/cakephp/app/models/ldap.php

Controller

To use the model described previously, you can create a
controller that will utilize it. Let's create
ldap_controller.php in CakePHP's /controllers
path. Note that CakePHP will automatically assign the
Ldap model to this controller, so you don't need to define
the $uses variable. As shown in the following code, you
create an object of the Ldap type, which is in fact the
model. Next, you need to invoke the authenticate()
method to make sure that the user with a uid set to Nowak
and a password of secret exists in LDAP. If it does,
authenticated is printed. Of course, in a real application
you should replace the printing action with the actions you
want to be done after the user is authenticated.

1022

<?php

class LdapsController extends AppController {

var $name = “Ldaps”;

function index(){

$a = new Ldap();

$result=$a->authenticate(“Nowak”,”secret”);

if($result){

echo “authenticated”;

} else {

echo “not authenticated”;

}

}

}

?>

code snippet /ldap/cakephp/app/controllers/

ldap_controller.php

To make LDAP authentication usable for production,
integration with CakePHP's Auth component should be
done as well.

1023

View

Don't forget to create a view template for this example as
view/ldaps/index.ctp.

Zend Framework

In Zend Framework, adapters are commonly used to
implement database authentication easily. ZF also delivers
other kinds of adapters out of the box, such as openID,
LDAP, digest, or HTTP. Each of them can be used to
implement a different method of user authentication.

Adapter

In this example you use the LDAP adapter to provide
LDAP authentication. To make it simpler and easier to
learn, use the IndexController as the authentication
code holder. First, you need to have a Zend_Auth instance
and define an example user that you want to authenticate.

$auth = Zend_Auth::getInstance();

$username= “cn=nowak,ou=authors,o=wrox,c=us”;

$password= “secret”;

$wrongUsername= “cn=unknown,ou=authors,o=wrox,c=us”;

$wrongPassword= “wrongPass”;

1024

code snippet /ldap/zf/application/controllers/

IndexController.php

The next step is to define LDAP connection options that
are provided to Zend_Auth_Adapter_Ldap. As in
previous examples, you connect as the administrator with
the base distinguished name set to o=wrox,c=us.

$options= array(array(‘host’=>‘localhost’,

‘username’=> ‘cn=admin,o=wrox,c=us’,

‘password’ =>‘secret’,

‘baseDn’ => ‘o=wrox,c=us’,

‚bindRequiresDn’=>1,

));

code snippet /ldap/zf/application/controllers/

IndexController.php

Now everything is ready to create an instance of the ZF
LDAP authentication adapter, as shown in the following
code:

$adapter = new Zend_Auth_Adapter_Ldap($options, $username, $password);

To make sure that the adapter is working properly, you
previously defined the $wrongUsername and
$wrongPassword variables. After you test the proper

1025

username and password, you can check how the
authentication works with the $wrongUsername and
$wrongPassword. The LDAP authentication process
works like database authentication. You need to send to
the Zend_Auth authenticate() method an adapter as
the parameter. Because all needed information to make the
authentication possible is assigned to the LDAP adapter,
$auth returns a Zend_Auth_Result object.

$result = $auth->authenticate($adapter);

if($result->isValid()) {

print “authenticated”;

}else {

print “not authenticated”;

}

code snippet /ldap/zf/application/controllers/

IndexController.php

The isValid() method owned by the $result returns a
true or false value, depending on whether
authentication succeeded or not.

Refactoring

1026

LDAP connection information is supposed to be used more
than once; that's why when refactoring the code it's a good
idea to export all this information to the ZF
application.ini configuration file. For example, the
LDAP connection entries in the configuration file might
look like the following:

[development]

ldap.server.host = 127.0.0.1

ldap.server.username = “cn=admin,o=wrox,c=us”

ldap.server.password = secret

ldap.server.baseDn = “ou=authors,o=wrox,c=us”

ldap.server.bindRequiresDn = true

code snippet /ldap/zf/application/configs/application.ini

You should also set LDAP connection configuration for
any other environment in which this information is used.
To load LDAP information from a configuration file, you
need to read it using the Zend_Config_Ini class:

1027

$config = new Zend_Config_Ini(

‘../application/configs/application.ini’,

‘development’

);

$options = $config->ldap->toArray();

code snippet /ldap/zf/application/controllers/

IndexController.php

Zend_Config_Ini inherits from Zend_Config and is
responsible for changing configuration parameters within
.ini configuration files. Note that the configuration
variables start with the ldap prefix. That's why you can
use $config->ldap to get only variables that start with
this prefix. The toArray() method returns an array that
looks almost the same as defined previously without using
the configuration file.

To make authentication easier, you can also define a suffix
that can be concatenated with a username.

$suffix=”,ou=authors,o=wrox,c=us”;

$username = “cn=”.$this->_request->getParam(‘username’).$suffix;

$password = $this->_request->getParam(‘password’);

1028

code snippet /ldap/zf/application/controllers/

IndexController.php

This way, you get only the username from the form; the
rest is added automatically.

Active Directory

To connect to Active Directory, you need only to set these
example variables:

[development]

ldap.server.host = 127.0.0.13

ldap.server.baseDn = “CN=authors,DC=wrox,DC=com”

code snippet /ldap/zf/application/configs/application.ini

1029

Chapter 17

Performance

There is no such thing as innocence, only degrees of guilt.

—Warhammer 40,000: Dawn of War

What's In This Chapter?

• Creating a performance test using JMeter.

• Benchmarks.

• Development speed comparison.

There are various benchmarks showing that some
frameworks are faster than others. There are two reasons
not to trust them too much. First, they depend heavily on
the configuration of the server and the framework itself, so
they may be biased, on purpose or not. Second, as a
general rule, the more a framework is stacked with
features, the slower it is. Pure PHP is always fastest in
benchmarks, but that doesn't mean it is the best way to
develop apps.

In this chapter we are going to introduce you to Apache
JMeter, a tool designed specifically to test server
performance. With JMeter, you can carry out your own
benchmarks and diagnose problems with server
performance. If you really can't wait for your own results,
in this chapter we perform two simple benchmarks for you.
Furthermore, you will see a comparison of development
speed, which is in many cases more important than server
throughput.

1030

Using JMeter for Stress, Load, and Performance Tests

Apache JMeter is a great tool for stress, load, and
performance tests of your application. It was developed
under the banner of Apache Jakarta. It can simulate
multiple user requests for server resources simultaneously.
You can use it to test any of the examples introduced in
this book or your own applications.

First of all, you need to download JMeter for your
environment at http://jakarta.apache.org/jmeter/. It is a
Java application, so it is OS-independent. Unpack it to a
directory of your choice. Inside the /bin folder is
ApacheJMeter.jar, a runnable Java archive, and shell
script launchers for various operating systems.

Run JMeter as a window application. It may not look very
impressive, but under this window, tremendous
capabilities are hidden. JMeter can create lots of threads to
simulate users, one user per thread. Suppose that you want
to run a simple test, in which 10 users simultaneously
request a web page, 100 times each. To do that, you need
first to define threads. Adding these is possible by
right-clicking Test Plan in the Apache JMeter window and
choosing Add ⇒ Threads (Users) ⇒ Thread Group, as
shown in Figure 17.1.

Figure 17.1 JMeter: Adding threads in the main window

1031

Thread Group configuration is very important. If you put
the wrong values here, you can make your desktop
unresponsive until the next reboot. If you do not believe
that, put 100000 into the Number of Threads and Loop
Count fields. A reasonable configuration is shown in
Figure 17.2. Of course, you can increase these values if
you wish.

Figure 17.2 JMeter: Thread Group configuration

1032

After defining a thread group, you should also specify
what kind of requests should be executed. You can use
JMeter's Sampler to specify this. Right-click the newly
created Thread Group and choose Add ⇒ Sampler ⇒
HTTP Request to simulate a website visit. As you can see,
JMeter allows different tests as well, such as LDAP, FTP,
SOAP, or MOM (JMS). JMeter is like an all-in-one
harvester.

To see your results, you need JMeter's Listeners. Listeners

are modules used to visualize the output. Just right-click
the Thread Group and choose Add Listeners to see the full
list of them. In this example, we recommend adding Graph
Results and View Results Tree. The first one draws the
throughput and other data as a graph; the second provides
page output and response information in the form of a tree.

When all needed components are added, you should see in
the left panel of JMeter a Test Plan structure like that
shown in Figure 17.3. Now you can configure each

1033

module. Start with the Graph Results, as shown in the right
panel of Figure 17.3. Here you can change the name of the
item, set a log file to write into, and use display options. In
this case, only Throughput is needed, but feel free to try
the other options.

Figure 17.3 JMeter: Graph Results configuration

Now you are ready to start a simple test. To make it
possible, you should first run the JMeter server. Under
Windows, you need to click the JMeter-server.bat
batch icon. Make sure that java.exe is added to the PATH
environment variable (this process is described in Chapter
2). Under Linux, you should run jmeter-server.sh
from the shell level as follows:

$./jmeter-server

In some cases, the server will not start, and it shows errors
that your hostname is a loopback interface. To solve this
problem, you need to edit the /etc/hosts file with root
privileges and change your hostname from 127.0.0.1 to
the real IP address. To check your IP, you can run this
command:

1034

$ ifconfig

You should set the IP address of the eth0 interface.

After starting the JMeter server successfully, you can run
the previously defined test. To do that, choose Run ⇒
Remote Start ⇒ 127.0.0.1 from the main menu, as shown
in Figure 17.4.

Figure 17.4 Running a test in JMeter

Now you can switch to the Graph Results and see a pretty
chart. It's generated on the fly, so you can observe how the
throughput is growing when more and more threads are
running (see Figure 17.5). Results are also shown on the
bottom, below the chart.

Figure 17.5 JMeter throughput chart

1035

When you switch to Results Tree, you can see the details
of each request (see Figure 17.6). As long as the tree is
green, everything is going well. When you choose one of
the items, you can see detailed information on the right.

Figure 17.6 JMeter: HTTP Requests results

1036

Now you know how to run benchmarks with JMeter. You
have a reliable tool to test the performance of any web
application on any framework.

You can also increase thread count and loop count and try
to crash your application with a stress test. When your
desktop freezes for a few seconds after the test has started,
you can be pleased because you have successfully crashed
your web application and now you know its performance
boundaries. By checking the Forever field in the Thread
Group's Loop Count field, you can easily test your
application in heavy load conditions. You should run these
tests on the target machine because hardware and
operating system configuration are decisive factors here.

Benchmarking

We have done benchmarks of two simple applications: a
pretty standard Hello World example and a CRUD
database access app. Both were explained in Chapters 2
through 4, so you can easily copy source code from there
or create your own custom set of benchmarks.

The benchmarks were carried out on Ubuntu 10.04 kernel
2.6.32-25. The hardware used was an i5-750 2.67-GHz
Intel processor with 8GB RAM. JMeter was used to
simulate 10 users making 1,000 requests each. The
numbers are amounts of page views per second handled by
the server. So the higher amount is better.

Hello World

1037

This is the simplest application without a database
connection; it just uses a controller to display a view.
While these results are far from benchmarking a
full-featured application, they can show the speed of the
frameworks' cores. The benchmarked frameworks are
Symfony 1.4, CakePHP 1.3, Zend Framework 1.11, and
(as a bonus) Symfony 2.0 beta.

As you can see, Symfony 2.0 is exceptionally good; it's
almost twice as fast as Symfony 1.4. Zend Framework
1.11 is second, being the fastest stable release of these
three frameworks. CakePHP 1.3 is the last one, being
slightly slower than Symfony 1.4. These results are
generally consistent with various other benchmarks found
in the web.

Simple CRUD Application

This example application was extended to database usage.
For every page request, 10 e-mail addresses were retrieved
from a MySQL database.

The results are not surprising: Zend Framework 1.11 is the
first, CakePHP 1.3 is the last, and Symfony 1.4 is in the
middle.

Development Speed

1038

As discussed before, don't attach too much attention to the
performance benchmarks. First of all, you gain more speed
by knowing how to optimize your single favorite
framework than switching to another. Second, the
differences demonstrated in our benchmarks are still small,
and if you really need a fast framework, try a lightweight
one like CodeIgniter or Yii. Or use plain PHP if you want
the app to work even faster. And finally, the server costs
are generally much lower than the programming costs.
That's why we feel the development speed benchmark in
this section is more important.

We have discussed how much work was needed to make
the previous CRUD application. These results do not scale
to bigger projects, in particular because the controllers and
views generated by Symfony are just stubs that need to be
expanded. But these numbers can give you a good idea of
relative development speeds. The fewer lines, the faster
you can start your project.

As you can see, CakePHP and Symfony are far ahead of
Zend Framework. Symfony needs the least hand-written
code in this example because it could easily take advantage
of its command-line tools that can generate simple CRUD
controllers and views. CakePHP allows even more rapid
development, because in general it needs the least overall
code for the same effects. Its schemas also are very short:

1039

only nine lines. Zend Framework, however, doesn't look
good here. This example shows the sensitive spot of
ZF—the model layer—so in general, the difference should
be less dramatic. But you'll see throughout this book that
ZF examples were usually the most time-consuming. So
the execution speed comes at the price of development
speed.

1040

Chapter 18

Summary

The more you know, the more you realize you know
nothing.

—Socrates

What's In This Chapter?

• Pros and cons of the three frameworks.

• Table of features.

• Final comparison.

First of all, we want to say thank you for reading such a
thick book and staying with us for so long! We hope you
found it helpful and informative.

This is the part many of you have been waiting for: the
final comparison of the three frameworks. It goes far
beyond listing their unique features; we will mercilessly
point out all their advantages and disadvantages here.

Features

We want to start with the big picture: this section presents
lists of features for each framework, both good and bad.
We've listed only unique traits; if all frameworks perform
similarly in an area, that area is not included here. These
lists are far from complete and exhaustive, and of course
they are affected by our personal experiences, including
those we gained while writing this book.

1041

Symfony

Symfony is a great tool for real professionals. It is
full-featured and strictly follows all good coding practices.

Advantages

Here is our list of Symfony's advantages:

• Doctrine object-relational mapping (ORM)–integrated; easy
to switch to Propel in a few steps (Chapter 3).

• Model classes can be generated based on schema or on
database tables using command-line interface (CLI) tools.
This accelerates the development process (Chapter 4).

• A lot of plug-ins are available in one place, most of which
are well documented, divided into categories. (Used in many
chapters; making a plug-in is covered in Chapter 11)

• Provides interesting plug-ins that introduce additional
widgets and validators, extending form-building capabilities
(Chapter 5).

• Form elements encapsulation allows for easy creation of
your own widgets and validators (Chapter 5).

• Provides plug-ins for Sphinx and Lucene search engines
(Chapter 7).

• CLI tools dedicated for testing (Chapter 15).
• PHPUnit plug-in available for Symfony 1.x; PHPUnit is

integrated with Symfony 2.0 (Chapter 15).
• Symfony 2.0 is integrated with the Twig template engine

that introduces its own template language and keeps high
performance (Chapter 9).

• Built-in mechanism that protects against cross-site request
forgery (CSRF) attacks (Chapter 8).

• Forms are filtered by the framework engine (Chapter 8).
• Some good content management systems (CMSs) are

available; many others are available also as plug-ins
(Chapter 13).

1042

• Very good debugging tools (debugging in general—Chapter
15).

• Version 2.0 upcoming as the first new version among the
featured frameworks.

Disadvantages

Here is our list of Symfony's disadvantages:

• The default testing framework of Symfony 1.x is the Lime
framework, which leaves much to be desired (Chapter 15).

• Some plug-ins are dedicated for old versions of Symfony or
are not documented at all, which greatly degrades their
quality.

• Symfony's documentation can be described only as good,
while there are many frameworks for which it is excellent.

• Symfony is great when you finally get to know it. But until
you learn how to use it properly, the “500 Internal Server
Error” screen (Figure 18.1) will be a common sight for you.
Symfony has a great debugger tool with detailed log files,
but you have to know how to use it, too. This can be very
annoying for beginners.

Figure 18.1 Symfony's 500 Internal Server Error

1043

CakePHP

CakePHP combines very rapid development and
friendliness. It is very intuitive and provides a great
tutorial base, which makes using it a real pleasure and
allows fast progress even for beginners.

Advantages

The advantages of CakePHP include the following:

• CakePHP offers its own ORM solution, and it is good
enough (Chapter 3).

• AppModel provides a few basic methods to realize create,
read, update, and delete (CRUD) operations, so AppModel is
a generic model class. It allows you to very easily create
your methods in models or extend inherited ones (Chapter
4).

• Great integration of models with forms without much coding
(Chapter 4).

• Although there is no official support, there are a few
community components and tutorials for Sphinx, Apache,
Lucene, and Google Search integration (Chapter 7).

• SimpleTest testing suite integrated (Chapter 15).
• Web interface for test execution—an awesome feature

(Chapter 15)!
• CLI tools for test execution (Chapter 15).
• Delivers the Sanitize class that allows you to filter or

clean user input (Chapter 8).
• Security salt defined in a config file, which helps to secure

your application against CSRF attacks (Chapter 8).
• A lot of tutorials and code snippets in the Bakery—the

official CakePHP resource site at http://bakery.cakephp.org/.
• Some nice CMS solutions—both simple and advanced

(Chapter 13).

1044

Disadvantages

The disadvantages of CakePHP include the following:

• Controller and model are connected very tightly. This is hard
to hack when you want a custom behavior. Also, every
controller has a $uses field enabled by default, which
means it expects to use a model.

• Does not support Lucene or Sphinx search engines out of the
box (Chapter 7).

• No Selenium test suite support by default (Chapter 15).
• Debug level for production is set to zero by default—error

hiding is not really a good practice.
• Sticks to PHP4 support for no apparent reason. Hopefully,

CakePHP 2.0 will abandon it.
• Slow performance (Chapter 17).

Zend Framework

Some people argue that ZF is not a framework at all, but a
library of useful classes. That makes some sense as ZF is
loosely coupled and not really into the ORM thing. It
means that it is flexible and easily extensible, but also
quite “neutral” (the lists of advantages and disadvantages
are both much shorter compared with other frameworks).

Advantages

• Encapsulates form elements as decorators (Chapter 5).
• Supports Apache Lucene out of the box (Chapter 7).
• PHPUnit is integrated with ZF, too (Chapter 15).
• Provides a few functions and filters to escape user input

(Chapter 8).
• Supports plug-ins through Zend_Plugin (Chapter 11).
• A few CMSs available, all trying to keep an enterprise

impression (Chapter 13).

1045

• Great high-quality documentation.
• Good performance speed (Chapter 17).

Disadvantages

• DbTable is not a real ORM. You have to write three
different files full of code to use one model (Chapters 3, 4,
and 17).

• There is no plug-in repository for Zend Framework.
• It's heavy: 25MB and thousands of files (Chapter 2).

Features

The following table summarizes and compares all the
features of the three frameworks that you have observed
while reading this book.

1046

1047

And the Winner Is…

And the winner is you! Now you know all three
frameworks with their features and weaknesses. We hope
that you have paid attention to code examples in this book,
and perhaps even executed most of them. So you should be
familiar with all frameworks and know which one best
fulfills your needs.

Well, if you really need our guidance, we can help you
make the decision. Just read the following summary and
decide which description fits you best. These are partially
our personal opinions, so you may not agree with them, of
course.

Symfony is a good all-purpose framework. It is very
configurable, has great features, and provides tons of
plug-ins, mostly useful. With the release of Symfony 2.0,
we have a feeling that this framework is generally a half
step ahead of the others, but this situation may change
soon. If we wanted to point out a decisive winner, we
would have said it explicitly.

The bad thing about Symfony is its very steep learning
curve. When you finally get to know it, it is great, but
many people spend significant time trying to learn it, only
to finally switch to another framework, and they are
successful at once. There are more intuitive and
better-documented frameworks, which in many cases is the
decisive factor in rapid web development. We have
observed, however, that many people who like Linux
operating systems feel good with Symfony and enjoy
configuring it to their liking.

1048

CakePHP is also full-featured, but in contrast to Symfony,
it is nearly configuration-less and much simpler to use.
Simpler is usually faster, and this is the main goal of web
frameworks: to speed up the development process! That's
why if you are new to PHP frameworks or web
development in general, CakePHP may be a much better
choice for you. It is also great if you want to make a
relatively simple website quickly—baking with Cake is
lightning fast!

The convention-over-configuration approach has its price,
however. You must know this convention and follow it in
your code, which makes the learning curve still rather
steep and decreases the framework's flexibility. To make
things worse, CakePHP cannot use object-oriented features
of PHP 5.0 due to its support for PHP 4.0. This is good
when your PHP hosting or PHP skills are five years
obsolete and not upgradeable, but in other cases it is a
drawback.

Zend Framework generally needs more coding than the
previous two solutions to achieve the same effects. On the
other hand, Zend Framework doesn't impose its own
conventions and it doesn't need much configuration. We
have also noticed that many Java programmers like ZF
with its library-like approach. It is the preferred solution in
these two situations:

• When you don't need a full framework, but rather a library of
components to support your work without taking control
over it

• If you want to buy the full Zend suite

1049

ZF is very popular among corporate users, because with
Zend Studio support it is a really great framework and we
would love to see it open-sourced (or at least free for use)
this way. However, without Zend Studio support ZF lacks
several important features, the greatest drawback being its
lack of an ORM mapper. Of course, you can install
Doctrine quite easily, but it's not supported by the
framework itself.

1050

Appendix A

Web Resources

We have gathered a few links to websites that were useful
for us, so we thought they could be useful for you as well.
This list includes some essential articles, but is by no
means exhaustive.

General

PHP: http://php.net/

IBM developerWorks: http://www.ibm.com/
developerworks/opensource/

Symfony

Symfony official forum: http://forum.symfony-project.org/

Symfony code snippets:
http://snippets.symfony-project.org/

Yet another Symfony community site:
http://symfonians.net/

CakePHP

Unofficial forum: http://www.cakephpforum.net/

Cakes tutorial bakery: http://bakery.cakephp.org/

CakePHP questions and answers: http://ask.cakephp.org/

1051

Nice CakePHP video tutorials by Andrew Perk:
http://www.youtube.com/user/andrewperk

Zend Framework

Zend Framework's API: http://framework.zend.com/
apidoc/1.11/

Zend video tutorials: http://www.zendcasts.com/

Zend Framework tutorials: http://www.zftutorials.com/

Zend developers zone—more tutorials:
http://devzone.zend.com/public/view

Design Patterns

Design patterns at SourceMaking:
http://sourcemaking.com/design_patterns

IBM developerWorks design patterns in PHP:
http://www.ibm.com/developerworks/library/
os-php-designptrns/

Martin Fowler's articles on design patterns and software
architecture: http://martinfowler.com/articles.html

ORM

Doctrine: http://www.doctrine-project.org/

Propel: http://www.propelorm.org/

1052

Graphvis, the library used by Propel to draw database
schema diagrams: http://www.graphviz.org/

DBDesigner—nice tool to export your database to a
picture: http://www.fabforce.net/dbdesigner4/

Databases

MySQL: http://www.mysql.com/

PostgreSQL: http://www.postgresql.org/

Oracle database: http://www.oracle.com/us/products/
database/index.html

IBM DB2: http://www-01.ibm.com/software/data/db2/

Microsoft SQL Server: http://www.microsoft.com/
sqlserver/en/us/default.aspx

SQLite: http://www.sqlite.org/

MongoDB—NoSQL database: http://www.mongodb.org/

LDAP

OpenLDAP: http://www.openldap.org/

Active Directory: http://www.microsoft.com/
windowsserver2008/en/us/ad-main.aspx

1053

Active Directory Lightweight Directory Services:
http://www.microsoft.com/downloads/en/
details.aspx?familyid=A45059AF-47A8-4C96-AFE3-93DAB7B5B658&displaylang=en

IBM Tivoli Directory Server: http://www-01.ibm.com/
software/tivoli/products/directory-server/

389 Directory Server—Red Hat's LDAP:
http://directory.fedoraproject.org/

Equivalent for phpMyAdmin for LDAP:
http://phpldapadmin.sourceforge.net/

Apache Directory Studio: http://directory.apache.org/
studio/

Searching

Sphinx search engine website: http://sphinxsearch.com/

Apache Lucene: http://lucene.apache.org/

Zend_Search_Lucene official documentation:
http://framework.zend.com/manual/en/
zend.search.lucene.html

Google Search API—REST-based:
http://code.google.com/apis/customsearch/

Google Search AJAX API—deprecated:
http://code.google.com/apis/loader/signup.html

Testing

1054

PHPUnit: http://www.phpunit.de/

SimpleTest: http://www.simpletest.org/

Selenium: http://seleniumhq.org/

Selenium integrated with Eclipse:
http://cubictest.seleniumhq.org/

Jmeter—performance-testing tool:
http://jakarta.apache.org/jmeter/

Security

Wireshark—sniffing tool: http://www.wireshark.org/

OWASP: http://www.owasp.org/index.php/Main_Page

ReCaptcha: http://www.google.com/recaptcha

OpenCaptcha: http://www.opencaptcha.com/

Zend Captcha library: http://framework.zend.com/manual/
en/zend.captcha.html

PDF

TCPDF library for PDF generation:
http://www.tecnick.com/public/code/
cp_dpage.php?aiocp_dp=tcpdf

FPDF—another PDF generation library:
http://www.fpdf.org/

1055

Web Services

SOAP UI—nice SOAP testing tool:
http://www.soapui.org/

cURL library—command-line services tool :
http://curl.haxx.se/

Mailing

Swift mailer: http://swiftmailer.org/

PHPMailer: http://phpmailer.worxware.com/

Templates

Smarty: http://www.smarty.net/

Dwoo: http://dwoo.org/

Twig: http://www.twig-project.org/

OPT template engine: http://www.invenzzia.org/en/
projects/open-power-libraries/open-power-template

Tiny But Strong template engine:
http://www.tinybutstrong.com/

Rain TPL: http://www.raintpl.com/

Savant3: http://phpsavant.com/

IDE

1056

Netbeans for PHP: http://netbeans.org/features/scripting/
index.html

Eclipse PHP IDE: http://www.eclipse.org/pdt/

Javascript

JQuery: http://jquery.com/

Dojo: http://www.dojotoolkit.org/

YUI: http://developer.yahoo.com/yui/

Mootools: http://mootools.net/

Ext: http://www.sencha.com/products/js/

Google Web Toolkit: http://code.google.com/webtoolkit/

AJAX

Ten autocomplete AJAX scripts: http://webtecker.com/
2008/03/10/10-auto-complete- ajax-scripts/

Nice library of ready-to-use AJAX solutions:
http://www.ajaxrain.com/

CMS

Apostrophe: http://www.apostrophenow.com/

Diem: http://diem-project.org/

Sympal: http://www.sympalphp.org/

1057

Croogo: http://www.croogo.org/

Wildflower: http://wf.klevo.sk/

TomatoCMS: http://www.tomatocms.com/

Pimcore: http://www.pimcore.org/

Digitalus CMS: http://digitaluscms.com/

CodeIgniter

Official CodeIgniter's video tutorials:
http://codeigniter.com/tutorials/

List of more than 40 CodeIgniter tutorials:
http://www.2expertsdesign.com/tutorials/
codeigniter-framework-tutorials-for-php-application

Lithium

Official Lithium blog tutorial using MongoDB:
http://rad-dev.org/lithium/wiki/drafts/blog-tutorial

Longer Lithium tutorial using MySQL:
http://www.sanisoft.com/blog/2010/04/12/
the-lithium-blog-tutorial-part-1/

Agavi

Agavi official documentation: http://www.agavi.org/
documentation/tutorial

1058

Agavi unofficial FAQ: http://www.mivesto.de/agavi/
agavi-faq.html

A tutorial showing how to build a sophisticated web
application with Agavi: http://www.ibm.com/
developerworks/views/xml/
libraryview.jsp?search_by=Introduction+to+MVC+
Programming+with+Agavi

1059

Appendix B

CodeIgniter, Lithium, and Agavi with Code Examples

What's In This Chapter?

• Installing and configuring CodeIgniter, Lithium, and Agavi.

• Building a simple news app in each of these frameworks.

The PHP world does not begin, nor end, with Symfony,
CakePHP, and Zend Framework. There is a multitude of
other frameworks and some of them are useful, brilliant,
and (most important) increasingly popular. In this
appendix we will take a closer look at three of them:
CodeIgniter (CI), Lithium, and Agavi.

The sample applications presented here will cover the first
two of the create, read, update, and delete (CRUD)
functionalities: creating and reading entries. We call them
news publishing applications, but with a little modification
they can be used for blogging, commenting, or as a guest
book. That should give you enough sense of what each
framework is up to.

We will use the two of the hosting environments presented
in Chapter 2: Windows 7 64-bit with XAMPP 1.7.3; and
Ubuntu Linux Desktop 10.04.1 64-bit with the standard
Linux, Apache, MySQL, and PHP (LAMP) environment.
If you need help with setting them up, Chapter 2 covers
that in detail.

CodeIgniter

1060

CodeIgniter had an explosion of popularity recently and if
the trend continues, it will become the leading framework
in 2011. So, what's so unique about it? It's incredibly
nimble:

• Lightweight—Less than 2MB.
• Fast—No performance tweaks needed.
• Easy—Single configuration file, great documentation, no

need to learn a templating language.
• Flexible—Loosely coupled architecture that does not need

much hacking to extend. Model layer is optional.
• Adaptable—No command-line tools. Not cool, but

facilitates deployment on hosts without a command line.
Runs on PHP 4 (also not cool, but makes it even more
adaptable).

Many people do not need the advanced features of
heavy-duty frameworks. CI has all the important things
that are sufficient for most projects. It is also popular
because it works in shared hosting environments, where
using a minimal framework without command-line tools is
often the only choice you have. Finally, CI is both simple
to learn and very well documented, which gets it the
approval of the community and often makes it the first
choice for beginners in PHP development. Let's check it
out now.

The installation couldn't be easier. The CodeIgniter version
used here is 1.7.2 but we encourage you to install the
newest version from this website:

http://codeigniter.com/downloads/

Uncompress the package to your web root folder.
Optionally, change the name to something short for your

1061

convenience. In this example, it was changed from
/CodeIgniter_1.7.2 to /ci. Go with your browser to
http://localhost/ci and you should see the welcome page
shown in Figure B.1.

Figure B.1 CodeIgniter's welcome page

The welcome page is clean and informative. The paths to
the default view and controller are displayed there. You
can start experimenting with CodeIgniter just by editing
those files. There is also a link to the included User Guide.
It is both good introduction material and a full
documentation of CI classes. This documentation is a big
advantage of this framework. Hint: if it's late at night and
you have a hard time looking for the table of contents,
there is a dark tab at the top of the User Guide to help you
locate it.

In this example, you need to create the news database and
entries table for the application. The single table will
hold an autoincremented id, short title of the news, full
description of it, and (optionally) the date when it was
added. You can do it conveniently with phpMyAdmin, or

1062

just by invoking the following commands from the
command line:

CREATE DATABASE news;

CREATE TABLE ‘news’.‘entries’ (

‘id’ INT NOT NULL AUTO_INCREMENT PRIMARY KEY ,

‘title’ VARCHAR(50) NOT NULL ,

‘description’ VARCHAR(1000) NULL DEFAULT NULL ,

‘date’ DATE NULL DEFAULT NULL

) ENGINE = MYISAM ;

Then configure the CodeIgniter to make it establish a
connection to this database:

$db[‘default’][‘hostname’] = “localhost”;

$db[‘default’][‘username’] = “root”;

$db[‘default’][‘password’] = “your password”;

$db[‘default’][‘database’] = “news”;

$db[‘default’][‘dbdriver’] = “mysql”;

code snippet /ci/system/application/config/database.php

Go to the autoload.php configuration file. Find the line
responsible for autoloading libraries. Insert into the array

1063

the ‘database’ string to enable automatic loading and
instantiation of the database on each page load:

$autoload[‘libraries’] = array(‘database’);

code snippet /ci/system/application/config/autoload.php

Unfortunately, no database connection check is made in
the default module, but soon you will be able to access this
database with your application.

Configuration

If you do not want to develop your app in the web root
folder, but in the home folder or anywhere else on the
system, you need to reconfigure Apache. This is optional
because you can store the folder in the web root and still
access the application with http://localhost/ci, but many
developers prefer it that way. Just supply the CI's main
folder path, and the rest is done with .htaccess files,
which is quite convenient:

Alias /ci /home/username/public_html/ci

1064

<Directory /home/username/public_html/ci>

Options Indexes FollowSymLinks MultiViews

AllowOverride All

Order allow,deny

allow from all

</Directory>

code snippet /apache/httpd.conf

Change the base URL in your CI configuration file to point
to the root of your application. Don't forget the trailing
slash.

$config[‘base_url’] = “http://localhost/ci/”;

$config[‘index_page’] = “index.php”;

code snippet /ci/system/application/config/config.php

Set the routing. Find the default welcome controller:

$route[‘default_controller’] = “welcome”;

1065

code snippet /ci/system/application/config/routes.php

And change it to the name of the controller you are about
to create:

$route[‘default_controller’] = “news”;

code snippet /ci/system/application/config/routes.php

Your first application

Now you can finally create the News controller. It extends
the standard Controller class and uses its constructor.
News provides one index() action that loads the single
model, gets a list of the freshest news, and passes them to
the view as the $data variable. At this point the database
is empty, so it's not anything spectacular.

<?php

class News extends Controller {

function News() {

parent::Controller();

1066

}

function index() {

$this->load->model(‘Newsmodel’);

$data[‘list’] = $this->Newsmodel->getList();

$this->load->view(‘newsview’, $data);

}

}

code snippet /ci/system/application/controllers/news.php

Please note one very important thing: the database query
result must be passed as a value of the ‘list’ key in the
$data array. Then this array is passed to the view. It may
seem tempting to pass just the variable like this:

$list = $this->Newsmodel->getList();

$this->load->view(‘newsview’, $list);

But don't try it; the $list variable will not be visible to
the view and it won't work.

Now create the model. It is not obligatory to create models
in CI, but we recommend it as a good practice. Another
point is that it is almost always very useful. The solution
used here is a modified Active Record pattern, which
means that database tables and properties are wrapped by a
database object $db inside the model. We are using the
database helper here. The get() method is a shortcut for
selecting all rows from the entries table:

1067

<?php

class Newsmodel extends Model {

var $title = ‘’;

var $description = ‘’;

var $date = ‘’;

function Newsmodel() {

parent::Model();

}

function getList() {

$query = $this->db->get(‘entries’);

return $query;

}

}

code snippet /ci/system/application/models/newsmodel.php

The view presented here is already fully functional and
does not need to be modified later.

1068

<html>

<head>

<title>The news application</title>

</head>

<body>

<h1>The latest news!</h1>

<?php

foreach ($list->result() as $row):

echo “<h3>”. $row->title .”</h3>”;

echo “<p>”. $row->description;

echo “<p><small>Added on: “. $row->date .”</small>”;

endforeach;

?>

<h1>Adding news:</h1>

<?php

$this->load->helper(‘form’);

echo form_open(‘news/add’);

echo form_label(‘Title’).”
”;

echo form_input(‘title’).”
”;

1069

echo form_label(‘The Contents’).”
”;

$params = array(

‘name’ => ‘description’,

‘id’ => ‘description’,

‘value’ => ‘’,

‘maxlength’ => ‘1000’,

‘rows’ => ‘5’,

‘style’ => ‘width:50%’,

);

echo form_textarea($params).”
”;

echo form_submit(‘submit’, ‘Add News’);

echo form_close(‘’);

?>

</body>

</html>

code snippet /ci/system/application/views/newsview.php

There are a few important things here. In the foreach
loop, individual rows are extracted with the
$list->result() method. Then the title and
description fields are accessed to print out the content.

The forms are created with CodeIgniter's form helper,
which is loaded manually in this example, unlike the
database utility class that was included for autoloading.
You can also autoload the form.

1070

The input form is opened with the following function:

echo form_open(‘news/add’);

It is shorthand for this line:

<form method=”post” action=”http://localhost/ci/index.php/news/add” />

Actually, it is a little more than shorthand because the full
link is constructed using the base_url configured earlier.
This adds to the portability of the application when you
have multiple forms.

Also, the form_input() and form_textarea() methods
are the helper's shorthand for well-known form creation
tags. The first method is created using only a name string
for simplicity, and the textarea is configured using an array
of parameters. All form creation methods accept arrays,
though. There are many other kinds of forms this helper
can create, such as form_hidden(), form_checkbox()
or form_password().

Finally, the form_submit() method creates a submit
button that sends the form to the add action of the News
controller. That's what the argument of
form_open(‘news/add’) was for. There is no add()
function in the controller yet, but it will be created in the
next section.

Adding Entries

To add some entries into the database, you must go back to
the Newsmodel and add a function that would insert the
data into the database. The following function reads the

1071

submitted form, sets the corresponding variables (defined
earlier in the model), gets the current time in ISO format,
and finally inserts the complete entry into the database:

function addNews() {

$this->title = $_POST[‘title’];

$this->description = $_POST[‘description’];

$this->date = date(‘c’);

$this->db->insert(‘entries’, $this);

}

code snippet /ci/system/application/models/newsmodel.php

With this tool you can create the action to handle the form
submission. It must load the model first; then it checks to
be sure the form is not empty. If it's not, it adds the news
item into the database. Finally, this action redirects to the
index action to display the new content. You can see a
sample of the outcome in Figure B.2.

Figure B.2 Simple news application in CodeIgniter

1072

Note that the url helper is loaded just before that. Helpers
need to be included just once and then they are globally
available, but we have loaded it in the add action just
before the redirect() method where it is needed.

function add() {

$this->load->model(‘Newsmodel’);

if($this->input->post(‘submit’)){

1073

if($_POST[‘title’] != NULL && $_POST[‘description’] != NULL)

$this->Newsmodel->addNews();

}

$this->load->helper(‘url’);

redirect(‘news/index’,‘refresh’);

}

code snippet /ci/system/application/controllers/news.php

Congratulations! You have created your first half-CRUD
application in CodeIgniter.

Lithium

Lithium is a young framework that has already caused
much excitement among the PHP crowd. A quick look at
Lithium's website, http://lithify.me/, shows that they really
want to be unique. Both an unusual visual style and a large
concentration of daring catchwords build up quite a lot of
tension and raise expectations for the upcoming stable
version. The Lithium version used here is 0.9.5. By the
time you read this book, the 1.x release will probably be
available. Will it meet all the expectations? The current
version may be a good forecast of that. We will create the
same simple app as in the CodeIgniter section to compare
them.

Installation

To install Lithium, go to its website and click the
download() link. That opens a page where you can grab the

1074

latest release. Alternatively, you can use Git version
control system (available from http://git-scm.com/).
Unpack the folder to your web root. We have renamed it
/lith, so do the same or adjust paths from our examples.
At http://localhost/lith, you will see Lithium's welcome
page (see Figure B.3):

Figure B.3 Lithium framework welcome page

Smells like Cake, doesn't it? Well, Lithium was started by
the people who previously developed CakePHP. They
were not happy with it, mainly because of its conformance
with PHP 4, so they first made a PHP 5.3 fork called
Cake3, and then turned that into a separate framework
called Lithium. Even if Lithium's core is completely
rewritten, when you look at the welcome page's graphic
style, the relation to CakePHP is evident.

CLI

1075

To get direct access to the /lith/libraries/lithium/
console/li3 (or li3.bat for Windows) application,
which is the all-in-one command-line tool of Lithium, you
must add its path to the PATH environment variable. The
process for adding this path was described in Chapter 2.
For UNIX-like systems, use this:

$ export PATH=${PATH}:/path_to_lithium/lith/libraries/lithium/console/

When the path is set, you can type the following command
in the console:

$ li3

You will see the following output:

COMMANDS

Create

The ‘create’ command allows you to rapidly develop your models, views,

controllers, and tests by generating the minimum code necessary to test

and run your application.

G11n

The ‘G11n’ set of commands deals with the extraction and merging of message

templates.

Help

Get information about a particular class including methods, properties, and

descriptions.

1076

Library

The Library command is used to archive and extract Phar::GZ archives. Requires

zlib extension. In addition, communicate with the a given server to add plugins

and extensions to the current application. Push archived plugins to the server.

Test

Runs a given set of tests and outputs the results.

See ‘li3 help COMMAND’ for more information on a specific command.

Notice that i18n has been renamed to G11n, meaning
globalization. The name is different, yet it works like all
other localization tools.

Setting Up the Database

Going back to our example, the application you are
working on here will be very similar to the news
application for CodeIgniter shown earlier in this chapter.
They can share the news database. If you have not created
the database for the CI example, you can do it with the
following command:

CREATE DATABASE news;

Now create the table for the Lithium application. Note that
this table is called news, while the CI table was called
entries. This is the only difference, as Lithium needs the

1077

tables to be named like the models (or rather models like
tables).

CREATE TABLE ‘news’.‘news’ (

‘id’ INT NOT NULL AUTO_INCREMENT PRIMARY KEY ,

‘title’ VARCHAR(50) NOT NULL ,

‘description’ VARCHAR(1000) NULL DEFAULT NULL ,

‘date’ DATE NULL DEFAULT NULL

) ENGINE = MYISAM ;

Then you need to establish a connection to your database.
Just as the welcome page suggests, go to the
bootstrap.php file and uncomment the following line:

/**

* Include this file if your application uses a database connection.

*/

require __DIR__ . ‘/connections.php’;

code snippet /lith/app/config/bootstrap.php

Uncommenting this line allows loading of the
connections.php file when the application is executed.

1078

Edit this file now. The ‘default’ in the following code
means that models will use this connection by default. In
the current version, you have to uncomment all database
lines first.

use lithium data Connections;

Connections::add(‘default’, array(

‘type’ => ‘database’,

‘adapter’ => ‘MySql’,

‘host’ => ‘localhost’,

‘login’ => ‘root’,

‘password’ => ‘’,

‘database’ => ‘news’

));

code snippet /lith/app/config/connections.php

Configuration

You need to set the routing to the news controller you are
about to create, instead of the default one. Also set the
default action to the index action.

1079

/**

* Here, we are connecting ‘/’ (base path) to the controller called ‘Pages’,

* its action called ‘view’, and we pass a param to select the view file

* to use (in this case, /app/views/pages/home.html.php)...

*/

Router::connect(‘/’, array(‘controller’ => ‘news’, ‘action’ => ‘index’));

code snippet /lith/app/config/routes.php

You may also reconfigure Apache to use a folder other
than the web root. This was shown in the CodeIgniter
configuration and is the same here with obvious path
changes.

Your First Application

So you probably want to see how rapid the development
with Lithium can be. Create a model as shown here:

<?php

namespace app models;

1080

use lithium data Connections;

class News extends lithium data Model {

}

?>

code snippet /lith/app/models/News.php

That's it. Nothing more is needed to make a working
model; you can just call it in your controller and then load
or save data into it. This file will not be modified in this
example app any more.

Prepare the stub of the NewsController with two empty
actions: index and add. Make it use the News model
created earlier in this chapter. Add the line use app
models News; just after the namespace declaration.

<?php

namespace app controllers;

use app models News;

class NewsController extends lithium action Controller {

public function index() {

}

1081

public function add() {

}

}

?>

code snippet /lith/app/controllers/NewsController.php

It's time to make a basic view. Look how easy it is in
Lithium to create forms: just open the form with the
create() method, add some fields with the field()
method, use submit() for the submit button, and close the
form with the end() method. All these methods belong to
the Form helper class. The create() method can be
bound to a data object to analyze column types, fill in
input form fields, and throw error messages. In this
example, it is not used, so the first parameter is null. The
second parameter is an array of options, of which the most
important is the action that can be used to direct the form
to a chosen action of the controller. If it is not set, the form
is directed by default to the action associated with this
view.

<html>

<head>

<title>The news application</title>

</head>

1082

<body>

<h1>Adding news:</h1>

<?=$this->form->create(NULL,array(‘action’ => ‘add’)); ?>

<?=$this->form->field(‘title’);?>

<?=$this->form->field(‘description’, array(‘type’ => ‘textarea’));?>

<?=$this->form->submit(‘Add News’); ?>

<?=$this->form->end(); ?>

</body>

</html>

code snippet /lith/app/views/news/index.html.php

When you enter the link to this application in your
browser, you should see the following output (shown in
Figure B.4). It is nicely styled with Lithium's default
layout.

Figure B.4 Adding a news form with the default Lithium
layout

1083

You may have noticed that Lithium has adopted a few
conventions:

• Uses auto-loading feature and namespaces introduced in
PHP 5.3.

• A full path with backslashes () is required when extending
base framework classes.

• There are strict naming conventions. Models must be named
the same as the corresponding database tables, and the
controllers' class names must have a suffix of Controller.
Both must be capitalized and stored in files named exactly
the same as the class names.

• Views must be named the same as the actions they are linked
to and must have .html.php extensions. They also must be
stored in additional folders named after their controllers. For
example, for the index action of the NewsController

1084

controller, the full path to the index view is /lith/app/
views/news/index.html.php.

Adding Entries

When you've got such a nice form, it would be a waste not
to use it. Locate the add() method of your controller and
fill it with following code:

public function add() {

if ($this->request->data) {

if($this->request->data[‘title’] != NULL &&

$this->request->data[‘description’] != NULL){

$news = News::create($this->request->data);

$news->date = date(‘c’);

$news->save();

}

}

$this->redirect(array(‘action’ => ‘index’));

}

code snippet /lith/app/controllers/NewsController.php

The form input data is accessed by
$this->request->data. It is an array, so the array

1085

operator is used to retrieve the values. If the post passes all
checks and is considered non-empty, a $news model
object is created. The current date is added to the object.
All you have to do then is to invoke the save() method of
the object. Finally, the control flow is redirected to the
index method to show the news list.

Showing the news list is also very simple, as presented in
the following code. Prepare a $data[] array and write
under the list key some entries associated with the News
model. Use the find(‘all’) method of this model class
to get all entries from the database table. If you pass an
integer instead of the ‘all’ string, only this amount will be
returned.

public function index() {

$data[‘list’] = News::find(‘all’);

return $data;

}

code snippet /lith/app/controllers/NewsController.php

Finally, add into your view a loop that goes through all
rows of the table and writes out their contents. The full file
is presented here:

1086

<html>

<head>

<title>The news application</title>

</head>

<body>

<h1>The latest news!</h1>

<?php foreach($list as $row):

echo “<h3>”. $row->title .”</h3>”;

echo “<p>”. $row->description;

echo “<p><small>Added on: “. $row->date .”</small>”;

endforeach; ?>

<h1>Adding news:</h1>

<?=$this->form->create(NULL,array(‘action’ => ‘add’)); ?>

<?=$this->form->field(‘title’);?>

<?=$this->form->field(‘description’, array(‘type’ => ‘textarea’));?>

<?=$this->form->submit(‘Add News’); ?>

<?=$this->form->end(); ?>

</body>

</html>

1087

code snippet /lith/app/views/news/index.html.php

Well, that's it! You've got your first app in Lithium. There
is just one small thing to do.

Changing Templates

The default template provided by Lithium is nice, but you
probably do not want the big Application header in your
new application. Go to the default layout, find the header
div, and shorten it to something modest:

<div id=”header”>

<h2>

Self - powered.

</h2>

</div>

code snippet /lith/app/views/layouts/default.html.php

You may also want to modify the default cascading style
sheet (CSS). It is stored in /lith/app/webroot/css/
lithium.css. First, decrease the vertical padding in the
container div from 60px to something like 10px:

1088

#container {

position: relative;

padding: 10px 10%;

}

code snippet /lith/app/webroot/css/lithium.css

And change some colors of your headers; for example,
make <h3> red:

h3, h6 { font-size: 1.7em; color: #ff0000; }

code snippet /lith/app/webroot/css/lithium.css

Time to see the result. The header should change to
Self-powered, your news titles should be blood-red, and
vertical distances greatly decreased, just as shown in
Figure B.5.

Figure B.5 Full Lithium application with modified layout

1089

As you have seen, Lithium allows very rapid development
indeed, and this little application is just the tip of the
iceberg. Now it seems a little bit overloaded with
conventions and authors' personal attitude, but these
should mitigate as it gains maturity. Also, the
documentation is missing now, as there are only two
tutorials on the Web, so it is more a curious experiment
than a maintainable solution. However, the hype is high
and it seems that the authors will stand up to the task, so
soon you will have a rapid, powerful, extensible, and
strictly PHP 5.3 framework to use.

Agavi

1090

The creators of Agavi want you to think about it as a
“serious framework for serious development” and not a
“website building kit.” This basically means two things:
first, it could be viewed as an excuse for quite scarce
documentation, compared with Symfony or CodeIgniter.
The authors admit that and suggest that many developers
feel comfortable just reading Agavi source code. By the
way, it is very well commented; that's a plus. On the other
hand, without a big base of working examples and friendly
tutorials, this framework will not reach as many developers
as it might have. And that's the second thing: the authors
explicitly address this framework to advanced
programmers who will be able to use and appreciate its
unique traits.

So what is so unique about Agavi? Well, most frameworks
strive for completeness—they provide as many features as
they can, and there's no way to avoid coupling of these
components. This means they enable really rapid
development, but at the cost of flexibility. Agavi's
uniqueness lies in the extendibility and quality of its code.
This allows using it for applications that will evolve for a
long time and are meant to be completely scalable from the
very beginning. Agavi prides itself on not restricting
developers' freedom to achieve any goal without hacking
the framework itself. So if you are a gifted mastermind
who wants to dominate the world, that's the tool for you!

Installation

Agavi provides a PHP Extension and Application
Repository (PEAR) channel that is the recommended way

1091

of installing it. (PEAR is discussed in Chapter 2.) First,
find this channel:

pear channel-discover pear.agavi.org

And then install Agavi using this command:

pear install -a agavi/agavi

There is a prerequirement: the Phing. What is Phing, then?
PHing Is Not Gnu make, yet it shares some similarities
with GNU make because it is a tool for PHP project
building. You can install it with PEAR as well:

pear channel-discover pear.phing.info

pear install phing/phing

Retry installing Agavi if it didn't succeed before installing
Phing.

You will need the following PHP modules, too (they are
enabled by default, so if you don't have them, you'll
probably know why):

• libxml
• dom
• SPL
• Reflection
• pcre
• xsl
• tokenizer
• session
• xmlrpc
• soap
• iconv

1092

• gettext

If you can't (or don't want to) use PEAR, you can use
direct download from the Agavi website:

http://www.agavi.org/download

Creating the Project

When PEAR is done with installing Agavi, you should
check if the installation is successful. Type the following
in your console:

$ agavi

You will see output similar to this:

Buildfile: /usr/share/php/agavi/build/build.xml

Agavi > status:

[echo] PHP:

[echo] Version: 5.3.2-1ubuntu4.5

[echo] Include path: .:/usr/share/php:/usr/share/pear

[echo]

[echo] Phing:

[echo] Version: Phing 2.4.2.1

[echo]

[echo] Agavi:

1093

[echo] Installation directory: /usr/share/php/agavi

[echo] Version: 1.0.3

[echo] URL: http://www.agavi.org

[echo]

[echo] Project:

[echo] (not found)

[echo]

[echo] For a list of possible build targets, call this script with the -l

argument.

BUILD FINISHED

Total time: 0.0032 seconds

The buildfile on Windows is located at C: xampp php
PEAR agavi build build.xml by default. This file is
responsible for the project build process described in the
next steps.

You can get the list of all available targets with this
command:

$ agavi -l

To build a project, you need to create an /agavi folder in
your web root directory, or somewhere else, and make an
Apache alias as shown in the “Configuration” section of

1094

the “CodeIgniter”section earlier in this chapter. Go to this
folder with your command line and execute this:

$ agavi project-wizard

Then you will be asked for the project base directory, as
shown in the following code snippet. Here the directory is
the default web root directory for Windows with XAMPP,
so we leave it this way. Then provide the project name and
project prefix. In this example, both will be News. All
other options can be left at the defaults.

Agavi > project-wizard:

Agavi > project-create:

Project base directory [C: xampp htdocs agavi]:

[property] Loading C: xampp htdocs agavi build.properties

[property] Unable to find property file: C: xampp htdocs agavi
build.properties...

skipped

Project name [New Agavi Project]: News

Project prefix (used, for example, in the project base action) [News]:

Default template extension [php]:

[property] Loading C: xampp htdocs agavi build.properties

[copy] Copying 1 file to C: xampp htdocs agavi

...

1095

The amount of configurable options is simply tremendous!
Go through all messages of the project wizard; when it's
done, you may skip to your browser and type
http://localhost/agavi/pub. If everything went well, you
will see a welcome page like the one shown in Figure B.6.

Figure B.6 Agavi welcome page

Configuration

The first thing you need to set is the routing scheme. Agavi
provides a sophisticated routing mechanism that even
includes regular expression matching. You will not need
that here, so your pattern will be terminated by ˆ at the left
side and $ at the right side, meaning that an exact match is
needed. Go to routing.xml, remove the default routing,
and write these two lines instead:

1096

<!-- default action for “/” -->

<route name=”index” pattern=”ˆ/$” module=”News” action=”Index” />

<route name=”add” pattern=”ˆ/add$” module=”News” action=”Add” />

code snippet /agavi/app/config/routing.xml

This includes setting the root directory for the index
action of the News module and the /add directory for the
add action of the same module.

Next you need to enable the database support. Find
settings.xml in application's configuration directory
and set use_database to true:

<settings>

<setting name=”app_name”>News</setting>

<setting name=”available”>true</setting>

<setting name=”debug”>false</setting>

<setting name=”use_database”>true</setting>

<setting name=”use_logging”>false</setting>

1097

<setting name=”use_security”>true</setting>

<setting name=”use_translation”>false</setting>

</settings>

code snippet /agavi/app/config/settings.xml

Now configure the database. The file is databases.xml
in the same directory. Have you noticed that all Agavi
configuration files are elegant XML files? You need to
specify the details needed to connect to the database server
as well as the database name:

<ae:configuration>

<databases default=”pdo_mysql_main”>

<database name=”pdo_mysql_main” class=”AgaviPdoDatabase”>

<ae:parameter name=”dsn”>mysql:host=localhost;dbname=news</ae:parameter>

<ae:parameter name=”username”>root</ae:parameter>

<ae:parameter name=”password”></ae:parameter>

</database>

</databases>

</ae:configuration>

code snippet /agavi/app/config/databases.xml

1098

In this example, we'll use the same news database that was
used in previous examples and the entries table created
for CodeIgniter. If you have not created that application,
go to the “Setting Up the Database” section of the
“CodeIgniter” section and run the SQL queries listed there.

There was a problem with the Propel database configured
by default in this file. We assumed in the previous listing
that this part is deleted. The exact lines are as follows
(don't hesitate to delete them if they cause errors):

<database name=”propelom” class=”AgaviPropelDatabase”>

<ae:parameter name=”config”>%core.app_dir%/config/
project-conf.php</ae:parameter>

</database>

First Application

The following code snippets provide complete listings of
all files needed to get the sample app running. It is much
easier to comprehend Agavi's principles this way, without
wandering off into its intricacies. If you want a complete
step-by-step tutorial, please refer to the official Agavi
documentation. It is extremely detailed and will keep you
amused for many hours.

Start by creating a module for your application and the two
basic actions with the command-line tool. Run the
following command in your console:

$ agavi module-wizard

1099

When the command-line wizard asks for the module name,
type News. In the next step, type Index Add (separated
only by a space) to create these two actions. Then the
wizard will ask you to provide names of views for the
Index action. The default Success view is all you need,
so agree by pressing Enter. Then do the same for the Add
action.

The first file discussed is IndexAction.class.php. It
holds the Index action of the News module. Why does
News appear twice in the name of the
NewsNewsBaseAction class? The first News comes from
the project name, and the second comes from the module's
name. The executeRead() method is invoked when this
action is called by the routing system. It first calls the data
model and then sets the data to be used by the view. When
the method returns a ‘Success’ string, it means that the
IndexSuccessView is called.

Now fill this file with the following code:

<?php

class News_IndexAction extends NewsNewsBaseAction {

public function getDefaultViewName() {

return ‘Success’;

}

1100

public function executeRead(AgaviRequestDataHolder $rd) {

$model = $this->getContext()->getModel(‘Entries’, ‘News’);

$this->setAttribute(‘posts’, $model->load());

return ‘Success’;

}

}

?>

code snippet /agavi/app/modules/News/actions/

IndexAction.class.php

The view, presented here, doesn't do anything important. It
sets up the HTML document, sets the title (visible as <h1>
header), and calls the template file:

<?php

class News_IndexSuccessView extends NewsNewsBaseView {

public function executeHtml(AgaviRequestDataHolder $rd) {

$this->setupHtml($rd);

$this->setAttribute(‘_title’, ‘Latest News!’);

}

}

?>

1101

code snippet /agavi/app/modules/News/views/

IndexSuccessView.class.php

In Agavi, each view must have its template file. The
IndexSuccess.php template consists of two parts. The
first part uses the $posts data set to display the table
contents. Note the htmlspecialchars() function that
escapes the output in a smart way. The second part is a
standard form for user input. See that the form action is set
as “index.php/add”. When you press the Add News
button, two values are sent: title and description.

<?php foreach ($t[‘posts’] as $post): ?>

<h3><?php echo htmlspecialchars($post[‘title’]); ?></h3>

<p> <?php echo htmlspecialchars($post[‘description’]); ?> </p>

<small><p> <?php echo htmlspecialchars($post[‘date’]); ?> </small></p>

<?php endforeach; ?>

<h1>Adding news</h1>

<form action=”index.php/add” method=”post”>

<fieldset>

<div class=”form_row”>

<label for=”title”>Title:</label>

</div>

1102

<div class=”form_row”>

<input type=”text” name=”title” id=”title” />

</div>

<div class=”form_row”>

<label for=”description”>Description:</label>

</div>

<div class=”form_row”>

<textarea name=”description” id=”description”></textarea>

</div>

<div class=”form_row form_row_submit”>

<button type=”submit” class=”submit”>Add News</button>

</div>

</fieldset>

</form>

code snippet /agavi/app/modules/News/templates/

IndexSuccess.php

Adding Entries

Creating a form is obviously not enough; you need to have
the Add action and data model as well. The source code for
the Add action is presented as follows. The
executeRead() method is used when somebody calls the
Add action through routing. He is then directed to the
Success view of the Add action immediately. The
executeWrite() method is much more important here. It

1103

first calls for the data model, sets the model object's fields
to corresponding form values, and finally calls the save()
method of the model. It also invokes the AddSuccessView
then.

<?php

class News_AddAction extends NewsNewsBaseAction {

public function getDefaultViewName() {

return ‘Success’;

}

public function executeRead(AgaviRequestDataHolder $rd) {

return ‘Success’;

}

public function executeWrite(AgaviRequestDataHolder $rd) {

$model = $this->getContext()->getModel(‘Entries’, ‘News’);

$model->title = $rd->getParameter(‘title’);

$model->description = $rd->getParameter(‘description’);

$model->save();

return ‘Success’;

}

}

1104

?>

code snippet /agavi/app/modules/News/actions/

AddAction.class.php

The Success view of the Add method differs little from
the Success view of the Index method. The only
difference is redirection to the root of the application. The
redirection uses a direct URL here. Agavi offers methods
for redirecting to specific actions as well.

<?php

class News_AddSuccessView extends NewsNewsBaseView {

public function executeHtml(AgaviRequestDataHolder $rd) {

$this->setupHtml($rd);

$this->setAttribute(‘_title’, ‘Add’);

$this->getContainer()->getResponse()->setRedirect(‘/agavi/pub’);

return;

}

}

?>

code snippet /agavi/app/modules/News/views/

AddSuccessView.class.php

1105

There are two very important things to say here:

• The only places where redirections work are views. You
cannot just redirect from one action to another.

• Each view needs its own template. Go to /agavi/app/
modules/News/templates and create an empty file called
AddSuccess.php.

After all actions and views are done, you can build the
model. You will probably be surprised that Agavi provides
no object-relational mapping (ORM) tool. Of course, you
can quite easily integrate Doctrine with it, but we want to
make this example as simple as possible, so SQL
statements will be used here.

The full News_EntriesModel class is presented in the
following listing. The load() method executes a pretty
simple SQL query and returns all contents of the Entries
table as the result. This method is invoked by the Index
action to list all the news. The save() method inserts the
form input into the table. Unlike the previous frameworks'
examples, here the MySQL's NOW() function is used to
determine the current time instead of the PHP equivalent.
The SQL query has two question marks instead of values.
They are placeholders for values and they are filled by the
bindValue() method. After the statement has been
prepared, it is executed to store the values into the
database.

Copy the contents of the following listing into
EntriesModel.class.php file in the /agavi/app/
modules/News/models directory:

1106

<?php

class News_EntriesModel extends NewsNewsBaseModel {

var $title;

var $description;

function load() {

$sql = ‘SELECT * FROM entries ORDER BY date’;

$stmt = $this->getContext()->getDatabaseManager()->getDatabase()->

getConnection()->prepare($sql);

$stmt->execute();

return $result = $stmt->fetchAll();

}

function save() {

$sql =
‘INSERT INTO entries (title, description, date) VALUES(?, ?, NOW())’;

$stmt = $this->getContext()->getDatabaseManager()->getDatabase()->

getConnection()->prepare($sql);

$stmt->bindValue(1, $this->title, PDO::PARAM_STR);

$stmt->bindValue(2, $this->description, PDO::PARAM_STR);

$stmt->execute();

}

1107

}

?>

code snippet /agavi/app/modules/News/models/

EntriesModel.class.php

You Should Be Going on a Date

But instead, you have to stay here and finish this sample
app. Guess what? Agavi discards all input that is not
validated. It doesn't matter that you made a nice form and
politely wanted to use the values sent by POST. Agavi
drops them without warning. Disgusting, isn't it?

When the CLI tool created the actions for you, it also
created validation files. That's where you need to validate
the two form input fields. Go to /agavi/app/modules/
News/validate and edit the Add.xml file to make it look
like this:

<?xml version=”1.0” encoding=”UTF-8”?>

<ae:configurations

xmlns=”http://agavi.org/agavi/config/parts/validators/1.0”

xmlns:ae=”http://agavi.org/agavi/config/global/envelope/1.0”

parent=”%core.module_dir%/News/config/validators.xml”>

<ae:configuration>

1108

<validators method=”write”>

<validator class=”string”>

<arguments>

<argument>title</argument>

<argument>description</argument>

</arguments>

<errors>

<error for=”required”>ERROR: Name is missing</error>

</errors>

<ae:parameters>

<ae:parameter name=”required”>true</ae:parameter>

</ae:parameters>

</validator>

</validators>

</ae:configuration>

</ae:configurations>

code snippet /agavi/app/modules/News/validate/Add.xml

The good thing is that you don't need to manually check
whether the values are not null, as you did in previous
examples.

You think that's all? No. You must have a special view for
error handling. Open up your command line and execute
the following command in the project root:

1109

$ agavi view-create

When you are asked for the module, answer News; for
action, answer Add; and call the new view Error. Go to
this new file and add redirection to the main page as shown
here:

<?php

class News_AddErrorView extends NewsNewsBaseView {

public function executeHtml(AgaviRequestDataHolder $rd) {

$this->setupHtml($rd);

$this->setAttribute(‘_title’, ‘Add’);

$this->getContainer()->getResponse()->setRedirect(‘/agavi/pub’);

}

}

?>

code snippet /agavi/app/modules/News/views/

AddErrorView.class.php

No, you are not finished yet because every view needs its
template. It doesn't matter that this template will be an
empty 0-kB file; it must be created anyway. Go to
/agavi/app/modules/News/templates and create an

1110

empty file called AddError.php. The sample app should
work now, finally. The output is shown in Figure B.7.

Figure B.7 News application made using Agavi

Agavi is certainly not a framework for everyone. The
development pace is sluggish, and the learning curve is
incredibly steep. The sample application at the Agavi
website, the only official guide to this framework, takes a
few hours to follow and a few days to understand (and
only slightly at best). If you do not really know exactly
how you will benefit from using Agavi, we recommend
trying CodeIgniter or Lithium instead.

On the other hand, if you are able to harness Agavi's
strength, you will get a strictly elegant, inherently
extensible, and architecturally powerful application. The
routing system is the best one among all major frameworks

1111

and the filter chain mechanism can do wonders as well.
The news application presented here doesn't even come
close to showing the full capabilities of this product. A
dish for connoisseurs, indeed.

1112

Glossary of Acronyms and Technical Terms

This is a quick reference for numerous acronyms and
technical terms you will come across while reading this
book. It is deliberately oversimplified, and if you need
fuller explanations, use the index to find the corresponding
pages in the book or check the appropriate Wikipedia
articles. This glossary is intended to just help refresh your
memory or to help you tell one acronym from another. We
hope you'll find it useful in case you got a little lost among
all these technologies.

access control list (ACL)

A security approach that involves creating a list of users
allowed to access a resource.

application programming interface (API)

An interface offered by a program that allows developers
to create other programs that can communicate with it.

Asynchronous JavaScript and XML (AJAX)

Enables changing page content without reloading. Chapter
10 is devoted to this technology.

cascading style sheet (CSS)

A markup language that defines the look of your web apps.
Usually saved as .css files imported into your views or
templates.

1113

command-line interface (CLI)

The console window used to interact with the operating
system or CLI tools.

create, read, update, and delete (CRUD)

Four basic database operations.

cross-site request forgery (CSRF)

An attack that exploits form vulnerability to hijack a user's
session after clicking a prepared link.

cross-site scripting (XSS)

A web attack that injects malicious code into a targeted
website.

Document Object Model (DOM)

Representation of objects in web pages, used to change
content dynamically.

Don't Repeat Yourself (DRY)

A programming principle that forbids pasting copies of
code in favor of elegant generalized solutions. Also known
as: Duplication is Evil (DIE). It is related to Keep It
Simple, Stupid (KISS).

Extensible HyperText Markup Language (XHTML)

1114

HTML presented using XML structure, not a successor to
HTML.

Extensible Markup Language (XML)

An open standard for structured document representation.

Git

Distributed revision control system designed by Linus
Torvalds; used by CakePHP and Lithium.

HyperText Markup Language (HTML)

The markup language read by browsers to display web
page contents.

Hypertext Preprocessor (PHP)

Everyone can see what PHP is, but many still don't know
the name is a recursive acronym. (It initially stood for
Personal Home Page.)

HyperText Transfer Protocol (HTTP)

Application layer networking protocol commonly used to
exchange web content. It defines nine request methods,
including GET and POST. Uses port 80.

HyperText Transfer Protocol Secure (HTTPS)

HTTP encrypted by TLS/SSL on the lower transport layer.
Uses port 443.

1115

integrated development environment (IDE)

The piece of software that makes programmers' lives easier
thanks to integration of a code editor with syntax
highlighting and autocomplete, a compiler (where
applicable), a debugger, or even a source code generator.

internationalization (i18n)

Shortened spelling made by counting the letters in this
word. Closely related to l10n (localization) and g11n
(globalization).

Inversion of Control (IoC)

A software design principle that promotes removing
dependencies between components for loose coupling.

Lightweight Directory Access Protocol (LDAP)

An application layer protocol used to query directory
services such as openLDAP, ADAM, or AD LDS.

Model-View-Controller (MVC)

The main structural design pattern behind most
frameworks.

object-relational mapping (ORM)

Making object-oriented software work with relational
databases.

1116

OS (Operating System)

Windows, Linux, Mac OS, FreeBSD, or any other system
you are currently using.

PATH

An environment variable, present in every discussed
operating system, but accessed in a different manner in
each one. It specifies which directories will be searched at
startup for executable files. You will be able to run these
executables in CLI globally with their names only instead
of the full file paths.

PHP Data Object (PDO)

A PHP extension that provides a unified interface for
accessing databases.

PHP Extension and Application Repository (PEAR)

A smart tool for PHP software installation.

relational database management system (RDBMS)

There is much theory to it, but basically this is what we
developers call “an SQL database.”

Representational State Transfer (REST)

A stateless web application architecture that is based on
HTTP requests. When something implements these
specifications, it is called RESTful.

1117

Role-Based Access Control (RBAC)

A security approach that defines roles and then assigns
users to these roles.

search engine optimization (SEO)

A set of techniques for promoting a website by increasing
its rank in the search engine's results page.

Simple Mail Transfer Protocol (SMTP)

Application layer protocol for sending e–mail.

Simple Object Access Protocol (SOAP)

Internet protocol based on XML format; often used for
web services development.

Structured Query Language (SQL)

The language used for database communication.

Subversion (SVN)

A revision control system, used by most community
projects.

test-driven development (TDD)

A programming technique that requires developers to write
tests first and develop functionalities later.

1118

Transport Layer Security/Secure Sockets Layer (TLS/SSL)

TLS is the successor of SSL. They are both cryptographic
protocols working on the transport layer. This means they
can be used to encrypt any application layer protocol (such
as HTTP or FTP).

Uniform Resource Locator (URL)

An identifier that specifies where a resource can be located
and how to retrieve it (for example, a web address with a
protocol).

web root

The main folder that is translated to http://localhost/ by
your web server. You usually develop and deploy your
applications there.

What You See Is What You Get (WYSIWYG)

A visual in-page editor that allows editing web content
without the need to use HTML.

X Apache, MySQL, PHP, and Perl (XAMPP)

The bundle of tools commonly used to develop and run
web apps on Windows and Mac OS. On Linux it is
referred to as LAMP.

YAML Ain't Markup Language (YAML)

1119

Data serialization language used by Symfony for
configuration and schemas.

1120

Index

A

abstraction layer, database

access control lists. See ACLs

access control objects (ACO)

access request objects (ARO)

ACLs (access control lists). See also RBAC

CakePHP

accessing resources

defining ACL entries

dynamic ACL creation

defined

RBAC v.

Zend Framework

authentication

authorization

ACO (access control objects)

1121

Active Directory

Active Directory Application Mode. See ADAM

Active Directory Lightweight Directory Services. See AD
LDS

ActiveRecord

AD LDS (Active Directory Lightweight Directory
Services)

configuration

download

installation

ADAM (Active Directory Application Mode)

configuration

download

installation

adapters, Zend Framework

add()

addAction()

addElement()

1122

add-ons. See plug-ins

address book application

address book table

CakePHP implementation

adding addresses

address list

controller

deleting addresses

editing addresses

forms added

model

project

routing directive

view

viewing addresses

CRUD functionality

design

1123

form validation

MySQL and

PDF report generation

requirements

Symfony implementation

adding/editing entries

address list

controller

deleting addresses

editing/updating addresses

model

project

view

UTF-8 encoding

Zend Framework implementation

adding addresses

address list

1124

controller

deleting entries

editing entries

entry page

forms

model

project

routing

view

addslashes()

addTranslation()

addValidators()

admin modules, Doctrine

ADS. See Apache Directory Studio

ADSI Edit application

Agavi

documentation

1125

installation

learning curve

news database

news publishing application

adding entries

form validation

module creation

view

project creation

routing mechanism

uniqueness

Agile development techniques

AJAX (Asynchronous JavaScript and XML)

autocomplete feature

CakePHP

Symfony

Zend Framework

1126

chat scripts

CakePHP

Most Simple Ajax Chat Script

Symfony

Zend Framework

Google Ajax Library content distribution network

Google AJAX Search API

mechanics of

modal windows

popup windows

CakePHP

Symfony

Zend Framework

Akelos

Aksyonoff, Andrew

alias, Apache

Apache

1127

alias

HTTPS and

installation

JMeter

Lucene

CakePHP

Symfony

Zend Framework

ports

Apache Directory Studio (ADS)

Apache Software Foundation

Apostrophe

features summary

logo

main page

WYSIWYG

appendFile()

1128

appendStylesheet()

“Applications Programming in Smalltalk-80: How to use
Model-View-Controller” (Reenskaug)

architecture

inversion of control

loosely coupled

archive, Zend Framework install from

ARO (access request objects)

ASP.NET

assigned bug status

asynchronous

Asynchronous JavaScript and XML. See AJAX

attachments

CakePHP mailing component

PHPMailer

SwiftMailer

CakePHP

Symfony

1129

Zend mailer

attacks. See cross-site request forgery; cross-site scripting;
injection attacks

Audio Captcha

authentication

adapters

mocks

test case example

Zend Framework

authorization, Zend Framework

autocomplete feature

CakePHP

Symfony

Zend Framework

automated testing. See also Selenium

automobiles example. See cars

B

back end. See also CMSs

1130

Bakery

BCC (blind carbon copy). See also carbon copy

behavioral design patterns

benchmarking

CRUD application

Hello World application

black-box registration form testing

CakePHP

problem

solution

Symfony

Zend Framework

black-box tests. See also Selenium

blind carbon copy (BCC). See also carbon copy

blocking bugs

boolean operators

bots

1131

brFormExtraPlugin

browsers

Firefox

Selenium installation

unknown certificate security page

OpenLDAP

SQL Server Browser

bugs

blocking

bug-tracking tools

life cycle

resolutions

resolved

status

undiscovered

Bugzilla

C

1132

CakePHP

ACLs

accessing resources

defining ACL entries

dynamic ACL creation

address book application

advantages

autocomplete feature

Bakery

benchmarking

CRUD application

Hello World

black-box registration form testing

Captcha solutions

chat script

CLI tools

CMSs

1133

Croogo

Wildflower

comparative interest in

configuration

CSRF protection

DB2 and

development speed

disadvantages

Dwoo for

Eclipse with

e-mail unit testing

features

features summary/comparison

fixtures and

FormHelper

functional testing

goals of

1134

Google Custom Search

Hello World application

HTTPS and

installation

internationalization

configuration

database for i18n

forms

templates

LDAP integration

Lightbox and

Lithium v.

Lucene integration

mailing component

mailing unit testing

MySQL and

naming conventions

1135

ODBC and

OpenCaptcha

Oracle and

ORM solution

overview

PDF files generation

PDOs and

PHP 4 and

PHPMailer

plug-ins

development of plug-in

plug-in structure

testing plug-in

popup windows

PostgreSQL and

ReCaptcha

REST and

1136

RESTful news reading

creating news

deleting news

getting list of news

updating news

Ruby on Rails and

sanitization

schemas and

security

Selenium testing

Smarty for

SOAP implementation

Sphinx integration

SQLite and

structure

summary appraisal

SwiftMailer

1137

ThickBox and

UTF-8 encoding in

website information

Captcha

CakePHP and

designing

OpenCaptcha

reasons for using

ReCaptcha

Symfony and

types of

Zend Framework and

carbon copy (CC)

BCC v.

CakePHP mailing component

PHPMailer

SwiftMailer

1138

CakePHP

Symfony

Zend mailer

cars (code examples)

Chain of Responsibility pattern

Decorator pattern

inheritance hierarchies

Prototype pattern

Singletons

cascading style sheets. See CSS

CC. See carbon copy

Chain of Responsibility pattern

chat scripts

CakePHP

Most Simple Ajax Chat Script

Symfony

Zend Framework

1139

cheap/fast/good testing triangle

checkCSRFProtection()

chess

child windows. See modal windows

Chrome

ckWebServicePlugin

clean()

clean machine

CLI (command-line interface) tools

CakePHP

Lithium

Symfony

Doctrine

Propel

Zend Framework

clone()

closed bug status

1140

closed source frameworks

CMFs (content management frameworks)

CMSs (content management systems)

Apostrophe

Croogo

Diem

Digitalus CMS

features summary/comparison

Lfcms

MVC and

Pimcore

Sympal

TomatoCMS

Wildflower

CodeIgniter

comparative interest in

configuration

1141

documentation

features

installation

Kohana v.

loosely coupled architecture

news database

news publishing application

adding entries

controller

model

view

overview

PHP 4 and

routing mechanism

welcome page

command-line interface tools. See CLI tools

command-line test execution

1142

communication with databases

Completely Automated Public Turing Test to Tell
Computers and Humans Apart. See also Captcha

composeAndSend()

configuration

AD LDS

ADAM

CakePHP

CodeIgniter

database configuration

for i18n

CakePHP

Symfony

Zend Framework

JMeter Thread Group configuration

LDAP

Lithium

OpenLDAP

1143

PHP, for mailers

php.ini configuration file

RBAC/Symfony

SMTP server

SQL Server Configuration Manager

Symfony

Zend Framework

constrains

construct()

content management frameworks (CMFs)

content management systems. See CMSs

controller

CakePHP address book

CodeIgniter news application

Lithium news application

controller (continued)

Symfony address book

1144

Zend Framework address book

Controller layer

create, read, update, delete. See CRUD functionality

Create a New Data Source to SQL Server window

creating news. See also RESTful news reading

CakePHP

Zend Framework

creational design patterns

credentials requirement information page, Symfony

Creole

Croogo

cross-site request forgery (CSRF)

CakePHP

Symfony

XSS v.

Zend Framework

cross-site scripting (XSS)

1145

CSRF v.

injection attacks v.

sanitization and

CRUD (create, read, update, delete) functionality. See also

address book application; news publishing applications

back-end applications for

benchmarking CRUD application

doctrine:generate-admin

doctrine:generate-module

REST v.

CSRF. See cross-site request forgery

CSS (cascading style sheets)

escaping

injection attacks

reducing

RLF and

cURL

curl

1146

Curry, Matt

Cutting, Dave

D

data sniffing

Data Source Administrator window, ODBC

data source names. See DSNs

data structures, RDBMS/OOP

data types

Doctrine

RDBMS/OOP

database abstraction layer

databases. See also DB2; MySQL; Oracle; PostgreSQL;
relational database management systems; SQL Server;
SQLite

communication with

configuration

for i18n

CakePHP

1147

Symfony

Zend Framework

news database

Agavi

CodeIgniter

Lithium

web applications and

DB2

dbAmazonS3Plugin

Db_Table model

declarative constrains

Decorator pattern

decorators

default credentials requirement information page, Symfony

default login requirement information page, Symfony

DELETE. See also CRUD functionality; RESTful news
reading

delete()

1148

deleteAction()

deleteOne()

deleting news

CakePHP

Symfony

Zend Framework

design patterns

behavioral

Chain of Responsibility pattern

creational

Decorator pattern

defined

Iterator pattern

Prototype pattern

Singletons

State pattern

Design Patterns: Elements of Reusable Object-Oriented

Software (Gamma, Helm, Johnson, and Vlissides)

1149

development speed

Dhaka, Lokesh

Diem

features summary

logo

website building tool

Digitalus CMS

distance_of_time_in_words()

distinguished name. See DN

distribution system. See also PEAR package manager

Django

DN (distinguished name)

Doctrine

admin modules

CLI commands

data types

features

1150

Hibernate v.

MySQL and

ODBC and

Oracle and

PostgreSQL and

Propel v.

schemas and

SQLite and

Symfony and

UTF-8 encoding in

Zend Framework and

Doctrine Query Language (DQL)

doctrine:build--all

doctrine:generate-admin

doctrine:generate-module

Document Object Model (DOM)

DOM (Document Object Model)

1151

Don't Repeat Yourself (DRY) principle

DQL (Doctrine Query Language)

Drivers tab

DRY (Don't Repeat Yourself) principle

DSNs (data source names)

duplicated resolution

Dwoo template engine

CakePHP

Symfony

Zend Framework

dynamic access algorithm

dynamic ACL creation

dynamic popup windows. See popup windows

E

Eclipse

edit()

Ellis Labs

1152

e-mail. See also attachments; carbon copy; mailers; remote
SMTP servers; secure connections; sending e-mail

problems, mailers and

schema of e-mail sending process

e-mail servers

Gmail

Postfix

qmail

remote

schema for e-mail sending process

Sendmail

e-mail unit testing

CakePHP

problem

Symfony

Zend Framework

encapsulation, RDBMSs and

enctype attribute

1153

entity extraction

Environmental Variables dialog

escape()

escaping. See also sanitization

executeEdit()

executeIndex()

executeNew()

exit()

experimental methods, in indexing

F

fast/good/cheap testing triangle

Fetch Base DNs

fetchAll()

field match

field validation. See form validation

file/folder structure

CakePHP

1154

Symfony

Zend Framework

filters. See also sanitization

find()

Firefox

Selenium installation

unknown certificate security page

fixed resolution

fixtures

CakePHP and

defined

Symfony and

Zend Framework and

folder/file structure

CakePHP

Symfony

Zend Framework

1155

forgery. See cross-site request forgery

forms

black-box registration form testing

CakePHP

problem

solution

Symfony

Zend Framework

CakePHP address book

Captcha solutions

customization

CakePHP

Symfony

Zend Framework

i18n

CakePHP

Symfony

1156

Zend Framework

spam

Zend Framework address book

form validation

address book application

Agavi news application

CakePHP

diagram

JavaScript

mechanics of

Symfony

Zend Framework

format_currency()

format_date()

format_daterange()

format_datetime()

format_number()

1157

FormHelper, CakePHP

forward404Unless()

404 Not Found error message

FPDF (Free PDF PHP) library

frameworks. See also Agavi; CakePHP; CodeIgniter;
Lithium; PEAR package manager; Ruby on Rails;
Symfony; test frameworks; Zend Framework

advantages

Akelos

architecture

inversion of control

loosely coupled

closed source

comparative interest in

defined

design patterns in. See design patterns

disadvantages

disorganized origin

1158

DRY principle

Kohana

libraries v.

Mojavi

number of

open source

PHP on Trax

Prado

Python

Qcodo

Ruby on Rails and

Seagull

security and

shift in interest

Solar

template engines in

when to use

1159

Yii

Free PDF PHP (FPDF) library

full-text searching

functional testing

CakePHP

Symfony

Zend Framework

fuzzy search

G

Gamma, Erich

Gang of Four. See also design patterns

generate-admin

generate:app frontend

generate-module

generate:project

German language. See also internationalization

GET

1160

get()

getAction()

getParam()

getPartial()

getTable()

getter/setter methods

getting list of news. See also RESTful news reading

CakePHP

Symfony

Zend Framework

Git online revision control tool

globalization. See also internationalization

Gmail

good/cheap/fast testing triangle

Google Ajax Library content distribution network

Google AJAX Search API

Google Chrome

1161

Google Custom Search

CakePHP

setting up

Symfony

Zend Framework

Google Insights for Search

Google SOAP search API

Graph Results

GreyBox JavaScript library

grey-box tests

Gutmans, Andi

H

Hay, Markus F.

Hello World application

benchmarking

CakePHP

Symfony

1162

Zend Framework

Helm, Richard

helpers

Hibernate for Java. See also Doctrine

Hibernate Query Language (HQL)

Hindi language. See also internationalization

Ho, Mike

The Hollywood Principle

hosting environment setup

HQL (Hibernate Query Language)

HTML

escaping

injection attacks

html()

HTML e-mail

CakePHP mailing component

PHPMailer

1163

SwiftMailer

Zend mailer

HTML5

htmlentities()

htmlspecialchars()

HTTPS

Apache and

CakePHP and

data sniffing example

Symfony and

Zend Framework and

I

i18n. See internationalization

i18n:extract

i18n:find

IBM_DB2

IDEs (integrated development environments)

1164

Eclipse

NetBeans

Selenium

Zend Studio

image galleries. See also Lightbox; Lytebox

include_partial()

Independent ODBC (iODBC)

index()

indexAction()

index.ctp file

indexing algorithms

inheritance

hierarchies

RDBMSs and

init()

_initRestRoute()

injection attacks

1165

CSS

HTML

JavaScript

mechanics of

sanitization and

SQL

XSS v.

input()

installation

AD LDS

ADAM

Agavi

Apache

CakePHP

CodeIgniter

Lithium

MySQL

1166

OpenLDAP

OpenSSL

PEAR

phpMyAdmin

Selenium

Sphinx

SQLite

Symfony

Wireshark

XAMPP

Zend Framework

integrated development environments. See IDEs

internationalization (i18n)

CakePHP

configuration

database for i18n

forms

1167

plug-ins

templates

defined

German language

Hindi language

issues of

Polish language

RTL

Symfony

configuration

database for i18n

forms

plug-ins

templates

Zend Framework

configuration

database for i18n

1168

forms

plug-ins

translation

zxI18nRoutingPlugin

Internet Relay Chat (IRC). See also chat scripts

invalid resolution

inversion of control

iODBC (Independent ODBC)

IRC (Internet Relay Chat). See also chat scripts

Iterator pattern

J

Java Database Connectivity (JDBC)

Java Hibernate. See also Doctrine

Java Runtime Environment (JRE)

JavaScript. See also AJAX

escaping

form-validation process

1169

GreyBox JavaScript library

injection attacks

JDBC (Java Database Connectivity)

JMeter

benchmarking

CRUD application

Hello World application

development speed

Graph Results

Listeners

Thread Group configuration

Johnson, Ralph

jQuery library

JRE (Java Runtime Environment)

K

Kohana. See also CodeIgniter

L

1170

LDAP (Lightweight Directory Application Mode)

AD LDS

configuration

download

installation

ADAM

configuration

download

installation

ADS

CakePHP

configuration

DN

mechanics of

OpenLDAP

adding new users

browsers

1171

configuration

installation

securing

phpLDAPadmin

preparing

relational databases v.

Symfony

Zend Framework

LDAP Data Interchange Format (LDIF) files

LDIF files. See LDAP Data Interchange Format files

Lerdorf, Rasmus

Lfcms

LibcURL

libraries. See also frameworks

FPDF

frameworks v.

Google Ajax Library

1172

GreyBox JavaScript library

jQuery

Zend Framework v.

ZendX

Lightbox

CakePHP and

image gallery

Lytebox v.

overview

Symfony and

Zend Framework and

Lightweight Directory Application Mode. See LDAP

Lime test framework

Lindley, Cody

link()

Linux

Apache installation

1173

PEAR installation

XAMPP installation

Listeners

Lithium. See also CakePHP

CakePHP v.

CLI

configuration

installation

naming conventions

news database

news publishing application

adding entries

controller

model

view

routing system

templates, changing

1174

welcome page

load tests. See also JMeter

localization. See also internationalization

login requirement information page, Symfony

loosely coupled architecture. See also CodeIgniter; Zend
Framework

Lucene

CakePHP

Symfony

Zend Framework

Lytebox. See also Lightbox

M

MAC OS

Apache installation

PEAR installation

XAMPP installation

magic functions

mail servers

1175

Gmail

Postfix

qmail

remote

schema for e-mail sending process

Sendmail

mailers. See also attachments; carbon copy; e-mail;
mailers; remote SMTP servers; secure connections;
sending e-mail

defined

e-mail problems and

PHP configuration

PHPMailer

schema of e-mail sending process

SMTP server configuration

SwiftMailer

Zend mailer

Mailing class

1176

mailing component, CakePHP

mailing unit testing

CakePHP

problem

Symfony

Zend Framework

manual testing

mapper class

Masters, Larry

Math Captcha

MD5

mgI18nPlugin

mocks

modal windows. See also AJAX; Lightbox; popup
windows

model

CakePHP address book

CodeIgniter news application

1177

Lithium news application

Symfony address book

Zend Framework address book

Model layer

Model-View-Controller (MVC). See also controller;
model; view

“Applications Programming in Smalltalk-80: How to use
Model-View-Controller” (Reenskaug)

CMSs and

Model-View-Controller (MVC) (continued)

Controller layer

diagram

Model layer

MVP v.

View layer

Model-View-Presenter (MVP)

Modified SimpleTest. See also SimpleTest

module, Agavi news application

1178

Mojavi framework

Most Simple Ajax Chat Script

moved resolution

Mozilla Firefox. See Firefox

multilingual websites. See internationalization

MVC. See Model-View-Controller

MVP. See Model-View-Presenter

MySQL

address book application and

CakePHP and

Doctrine and

installation

ORM solution

ports

Propel and

UTF-8 encoding in

XAMPP and

1179

Zend_Db and

mysql

mysqli

myValidation()

N

naming conventions

CakePHP

Lithium

.NET

NetBeans

new bug status

News controller

news database

news publishing applications

Agavi

CodeIgniter

CRUD functionality

1180

Lithium

news reading. See RESTful news reading

O

OASIS

object-oriented database management systems
(OODBMSs)

object-oriented programming. See OOP

object-relational databases

object-relational impedance mismatch

object-relational mapping. See ORM tools

OCI (Oracle Call Interface)

OCR (optical character recognition)

ODBC (Open Database Connectivity)

CakePHP and

Data Source Administrator window

DB2 and

Doctrine and

Oracle and

1181

Propel and

SQL Server and

Zend_Db and

OODBMSs (object-oriented database management
systems)

OOP (object-oriented programming)

constrains and

data structures

data types

encapsulation

inheritance

object-relational impedance mismatch

RDBMSs v.

references

transactions and

Open Database Connectivity. See ODBC

Open Power Library

Open Power Template (OPT)

1182

open source frameworks

OpenCaptcha

OpenLDAP. See also LDAP

adding new users

browsers

configuration

installation

securing

OpenSSL

OPT (Open Power Template)

optical character recognition (OCR)

Oracle

CakePHP and

Doctrine and

ODBC and

ORM and

Propel and

1183

Zend_Db and

Oracle Call Interface (OCI)

ORM (object-relational mapping) tools. See also Doctrine;
Propel; Zend_Db family

ActiveRecord

CakePHP

Django

Hibernate for Java

list

Oracle and

PDOs and

for PHP

php-activerecord

PostgreSQL and

Python framework

Qcodo

RDBMSs and

RedBean

1184

structure of applications

Zend Framework and

P

paranoid()

PATH environment variable

PDF files generation

CakePHP

Symfony

Zend Framework

pdo_dblib

PDO_IBM

PDO_MySQL

PDO_OCI

PDOs (PHP Data Objects)

CakePHP and

ORMs and

Zend_Db family and

1185

pdo_sql

PDT (PHP Development Tools) pack

PEAR package manager

Agavi installation

installation

Symfony installation

XAMPP and

Zend Framework installation

performance

benchmarking

CRUD application

Hello World application

development speed

Graph Results

Listeners

Thread Group configuration

performance tests

1186

Perl. See also XAMPP

Phing

PHP

configuration, for mailers

magic functions

ORMs for

programming languages v.

SOAP extension for

template engines and

PHP 4

CakePHP and

CodeIgniter and

PHP Data Objects. See PDOs

PHP Development Tools (PDT) pack

PHP frameworks. See frameworks

PHP on Trax

PHP Rapid Application Development Object-oriented. See

Prado

1187

php-activerecord

php.ini configuration file

phpLDAPadmin

PHPMailer

CakePHP

Symfony

Zend Framework

phpMyAdmin

description

installation

main page

XAMPP and

PHPUnit

Pimcore

plug-ins. See also specific plug-ins

benefits

CakePHP

1188

development of plug-in

plug-in structure

testing plug-in

i18n

CakePHP

Symfony

Zend Framework

PDF files generation

CakePHP

Symfony

Zend Framework

Symfony

development of plug-in

plug-in structure

testing plug-in

Zend Framework

creating plug-in

1189

uses for

Polish language. See also internationalization

popup windows

CakePHP

Symfony

Lytebox script

sfFlashMessagePlugin

Zend Framework

Port-Check button

ports

POST

postAction()

Postfix

PostgreSQL

CakePHP and

Doctrine

ORM solution

1190

Propel

UTF-8 encoding in

Zend_Db and

postponed resolution

Potencier, Fabien

Prado

precision, full-text searching and

presentation layer

presentation layer helpers

processForm()

programming languages, PHP v.. See also OOP

projects

Agavi project creation

CakePHP address book

Symfony address book

Zend Framework address book

Propel

1191

CLI commands

Doctrine v.

MySQL and

ODBC and

Oracle and

PostgreSQL and

schemas and

SQLite and

Symfony and

UTF-8 encoding in

Zend Framework and

Prototype pattern

PUT. See also RESTful news reading

Python framework

Q

Qcodo

Qcube

1192

Qforms

qmail

QuasIdea Development

Question Captcha

R

Rain TPL

random seed. See also salt

RBAC (role-based access control). See also ACLs

ACL v.

defined

Symfony

basic security

configuration features

dynamic access algorithm

RDBMSs. See relational database management systems

read, create, update, delete. See CRUD functionality

recall, full-text searching and

1193

ReCaptcha

Red Hat 389 Directory Server

RedBean

Reenskaug, Trygve

references, RDBMSs and

registration form testing. See black-box registration form
testing

regression tests

regular expressions

relational database management systems (RDBMSs). See

also databases; DB2; MySQL; Oracle; PostgreSQL; SQL
Server; SQLite

communication with

configuration

constrains

data structures

data types

encapsulation and

inheritance and

1194

LDAP v.

object-relational databases

object-relational impedance mismatch

OOP v.

ORM and

references and

transactions

web applications and

remote mail server

remote SMTP servers

CakePHP mailing component

PHPMailer

remote SMTP servers (continued)

SMTP server configuration

SwiftMailer

CakePHP

Symfony

1195

Zend mailer

reopened bug status

Representational State Transfer. See REST

requirements, testing and

reset()

resolutions. See also bugs

resolved bugs

REST (Representational State Transfer)

Akelos and

CakePHP and

CRUD v.

mechanics of

SOAP v.

Symfony and

Zend Framework and

RESTful

RESTful news reading

1196

CakePHP

creating news

deleting news

getting list of news

updating news

Symfony

adding news item

deleting news

getting list of news

updating news

Zend Framework

creating news

deleting news

getting list of news

updating news

right-to-left text orientation (RTL)

role-based access control. See RBAC

1197

roles

RBAC and

Symfony/RBAC

routing system

Agavi

CakePHP

CodeIgniter

Lithium

Zend Framework

RTL (right-to-left text orientation)

Ruby

Ruby on Rails

ActiveRecord

CakePHP and

frameworks and

limitations

PHP on Trax v.

1198

Symfony and

S

salt

Sandboxes

CakePHP installation

Symfony installation

sanitization

CakePHP

Symfony

Zend Framework

Sanitize class

Savant template engine

save()

schemas

CakePHP and

Doctrine and

Propel and

1199

Zend Framework and

schema.yml

Scrum methodology

Seagull

search engines

Google Custom Search

Lucene

Sphinx

search query techniques

searching

full-text searching

indexing algorithms

problem areas

search query techniques

secure connections

CakePHP mailing component

OpenSSL

1200

PHPMailer

SwiftMailer, Symfony

Zend mailer

Secure Socket Layer. See SSL

security. See also user management

CakePHP

Captcha

CSRF

frameworks

HTTPS

Apache and

CakePHP and

data sniffing example

Symfony and

Zend Framework and

injection attacks

SSL and

1201

Symfony

user management

XAMPP

XSS attacks

Zend Framework

Selenium

CakePHP

IDE

installation

Symfony

Zend Framework

sending e-mail

CakePHP mailing component

HTML e-mail

CakePHP mailing component

PHPMailer

SwiftMailer

1202

Zend mailer

PHPMailer

schema of e-mail sending process

SwiftMailer

CakePHP

Symfony

Zend Framework

Zend mailer

Sendmail

sendMail()

sendMailSubscription()

Sensio Labs

server software requirements

set()

setBody()

setDefaults()

setFilename()

1203

setLabel()

setLabels()

setMessage()

setMethod()

setOptions()

setTemplate()

setter/getter methods

setup()

setValidators()

setWidgets()

sfCaptchaGDPlugin

sfCryptoCaptchaPlugin

sfDoctrineCulture FlagsPlugin

sfDoctrineGuard Plugin

sfDoctrineRestGeneratorPlugin

sfFlashMessagePlugin

sfFlexymfonyPlugin

1204

sfForm

sfFormExtraPlugin

sfFormI18nNumberPlugin

sfGoogleLoginPlugin

sfGuardPlugin

sfHarmonyPlugin

sfHtml5FormPlugin

sfI18NGettextPluralPlugin

sfJqueryFormValidationPlugin

sfJQueryLightBoxPlugin

sfJqueryReloadedPlugin

sfLightboxPlugin

sfLinkedinProfilePlugin

sfMapFishPlugin

sfMediaBrowserPlugin

sfNuSoapPlugin

sfPHPCaptchaPlugin

1205

sfPicasaPlugin

sfReCaptchaPlugin

sfRestWebServicePlugin

sfSlovenianPlugin

sfTCPDFPlugin

sfValidatorI18nChoiceCountry

sfValidatorI18nChoiceLanguage

sfValidatorI18nChoiceTimezone

sfValidators

sfWebRequest

sfWidget

sfWidgetFormChoice

sfWidgetFormDate

sfWidgetFormDateRange

sfWidgetFormDateTime

sfWidgetFormI18nChoiceCountry

sfWidgetFormI18nChoiceCurrency

1206

sfWidgetFormI18nChoiceLanguage

sfWidgetFormI18nChoiceTimezone

sfWidgetFormI18nDate

sfWidgetFormI18nDateTime

sfWidgetFormI18nTime

sfWidgetFormInput

sfWidgetFormInputCheckbox

sfWidgetFormInputFile

sfWidgetFormInputHidden()

sfWidgetFormInputPassword

sfWidgetFormInputText()

sfWidgetFormJQueryAutocompleter

sfWidgetFormJQueryDate

sfWidgetFormReCaptcha

sfWidgetFormSelect()

sfWidgetFormSelectUSState

sfWidgetFormTextarea()

1207

sfWidgetFormTextareaTinyMCE

sfWidgetFormTime

SHA1

shoutbox. See also chat scripts

Simple Object Access Protocol. See SOAP

Simple Object Library and Application Repository (Solar)

SimpleTest

Singletons

Skype

Smarty template engine

CakePHP

Symfony

Zend Framework

Smith, Ryan

smoke tests

SMTP server configuration. See also remote SMTP servers

sniffing data

1208

SOAP (Simple Object Access Protocol)

Google SOAP search API

implementations

CakePHP

Symfony

Zend Framework

PHP SOAP extension

REST v.

soapUI

Solar (Simple Object Library and Application Repository)

Solaris

spam. See also Captcha

spam-bots

speed. See development speed

Sphinx

CakePHP

installation

1209

Symfony

Zend Framework

SQL injection attacks

SQL Server

Browser

Configuration Manager

SQLite

Doctrine and

installation

Propel and

XAMPP and

SSL (Secure Socket Layer). See also secure connections

OpenSSL

security and

State pattern

stemming

stop words

1210

stress tests. See also JMeter

structural design patterns

structure, folder/file

CakePHP

Symfony

Zend Framework

subclassing

Subversion (SVN)

download instructions

features

Suraski, Zeev

SVN. See Subversion

Swift_Attachment

SwiftMailer

CakePHP

Symfony

Zend Framework

1211

Symfony

address book application

advantages

autocomplete feature

benchmarking

CRUD application

Hello World

black-box registration form testing

Captcha solution

chat script

CMSs

Apostrophe

Diem

comparative interest in

configuration

credentials requirement information page

CSRF protection

1212

default credentials requirement information page

default login requirement information page

development speed

disadvantages

Doctrine and

Dwoo and

e-mail unit testing

features

features summary/comparison

filters

fixtures and

functional testing

Google Custom Search

Hello World application

installation

internationalization

configuration

1213

database for i18n

forms

Symfony (continued)

plug-ins

templates

LDAP

Lightbox and

Lime test framework

login requirement information page

Lucene integration

mailing unit testing

overview

PDF files generation

PHPMailer

PHPUnit

plug-ins

development of plug-in

1214

plug-in structure

testing plug-in

popup windows

Lytebox script

sfFlashMessagePlugin

Propel and

RBAC

basic security

configuration features

dynamic access algorithm

REST and

RESTful news reading

adding news

deleting news

getting list of news

updating news

Ruby on Rails and

1215

sanitization

security

Selenium testing

Smarty for

SOAP implementation

Sphinx integration

structure

summary appraisal

SwiftMailer

Twig and

validators

website information

Sympal

T

Tatarynowicz, Michal

TDD (test-driven development)

Template Blocks

1216

template engines. See also Lightbox

Dwoo

in frameworks

OPT

PHP and

presentation layer and

Rain TPL

Savant

Smarty

Template Blocks

TinyButStrong

Twig

usefulness of

templates

internationalization

CakePHP

Symfony

1217

Lithium

test cases

test coverage

test frameworks

Lime

PHPUnit

Simple Test

test suites

test-driven development (TDD)

testing. See also JMeter; performance

Agile development techniques

automated

black-box tests

Captcha

CakePHP and

designing

OpenCaptcha

1218

reasons for using

ReCaptcha

Symfony and

types of

Zend Framework and

categorization

cheap/fast/good testing triangle

command-line test execution

fixtures

CakePHP and

defined

Symfony and

Zend Framework and

functional

grey-box tests

how to begin

importance of

1219

load tests

mailing unit testing

CakePHP

problem

Symfony

Zend Framework

manual

mocks

performance tests

plug-ins

CakePHP

Symfony

regression tests

requirements and

Scrum methodology

smoke tests

stress tests

1220

TDD

test cases

test frameworks

Lime

PHPUnit

Simple Test

test suites

Turing test

unit

web-based test execution

when to finish

white-box tests

whole tests

text-based Captcha. See Captcha

ThickBox

Thread Group configuration

time_ago_in_words()

1221

timestamp fields

TinyButStrong

TinyMCE WYSIWYG editor

Tivoli Directory Server

tokenization

TomatoCMS

Torque

transactions, RDBMS

translation, Zend Framework and

Turing test. See also Captcha

Twig template engine

U

UAC (User Account Control)

undiscovered bugs

unit testing

unixODBC

updating news. See also CRUD functionality; RESTful
news reading

1222

CakePHP

Symfony

Zend Framework

upSimpleLdapPlugin

URL rewriting

User Account Control (UAC)

user chat. See chat scripts

User DSN tab

user management

ACLs

CakePHP

defined

RBAC v.

Zend Framework

RBAC

ACL v.

defined

1223

Symfony

UTF-8 encoding

V

validation. See form validation; sanitization

validators, Symfony

verified bug status

view

Agavi news application

CakePHP address book

CodeIgniter news application

Lithium news application

Symfony address book

Zend Framework address book

View layer

Vlissides, John

W

web application frameworks. See frameworks

1224

web applications, RDBMS and

web chat. See chat scripts

web forms. See forms

web services. See also RESTful news reading

reasons for using

REST

Akelos and

CakePHP and

CRUD v.

mechanics of

SOAP v.

Symfony and

Zend Framework and

SOAP

CakePHP

PHP SOAP extension

REST v.

1225

Symfony

Zend Framework

Web Services Description Language. See WSDL

web template systems. See template engines

web-based test execution

web-bots

WebPurifyPlugin

website building tool, Diem

welcome page

CodeIgniter

Lithium

What You See Is What You Get. See WYSIWYG

white-box tests. See also unit testing

whole tests

widgets

wildcards

Wildflower

1226

Windows

Apache installation

XAMPP installation

Wireshark

won't fix resolution

works for me resolution

wpLastFmPlugin

WSDL (Web Services Description Language)

WYSIWYG (What You See Is What You Get)

WYSIWYG editors

X

X.509 keys

XAMPP

components

Control Panel

installation

MySQL. See MySQL

1227

OpenSSL. See OpenSSL

PEAR. See PEAR package manager

PHP SOAP extension

phpMyAdmin. See phpMyAdmin

security

Sendmail

SQLite. See SQLite

XLIFF (XML Localization Interchange File Format)

XML Localization Interchange File Format. See XLIFF

XSS attacks. See cross-site scripting

Y

YAML serialization standard

Yii

Z

Zend Framework (ZF)

ACLs

authentication

1228

authorization

adapters

address book application

advantages

autocomplete feature

benchmarking

CRUD application

Hello World

black-box registration form testing

Captcha solution

chat script

CLI tools

CMSs

Digitalus CMS

Pimcore

TomatoCMS

comparative interest in

1229

configuration

CSRF protection

decorators

development speed

disadvantages

Doctrine and

Dwoo and

e-mail unit testing

features

features summary/comparison

fixtures and

functional testing

Google Custom Search

Hello World application

HTTPS and

installation

internationalization

1230

configuration

database for i18n

Zend Framework (ZF) (continued)

forms

plug-ins

translation

LDAP

libraries v.

Lightbox and

loosely coupled architecture

Lucene integration

mailing unit testing

Most Simple Ajax Chat Script

ORM solution

overview

PDF files generation

PHPMailer

1231

plug-ins

creating plug-in

uses for

popup windows

Propel and

REST and

RESTful news reading

creating news

deleting news

getting list of news

updating news

sanitization

schemas and

security

Selenium testing

Smarty for

SOAP implementation

1232

Solar v.

Sphinx integration

structure

summary appraisal

SwiftMailer

UTF-8 encoding in

website information

Zend mailer

Zend Studio

Zend Technologies Ltd.

Zend_Date

Zend_Db family

DB2 and

MySQL and

ODBC and

Oracle and

PostgreSQL and

1233

SQLite and

Zend_Db_Adapter

Zend_Db_Profiler

Zend_Db_Select

Zend_Db_Statement

Zend_Db_Table

Zend_Filter class

Zend_Form_Element_Button

Zend_Form_Element_Checkbox

Zend_Form_Element_File

Zend_Form_Element_Image

Zend_Form_Element_Multicheckbox

Zend_Form_Element_Multiselect

Zend_Form_Element_Password

Zend_Form_Element_Radio

Zend_Form_Element_Reset

Zend_Form_Elements

1234

Zend_Form_Element_Select

Zend_Form_Element_Submit

Zend_Form_Element_Text

Zend_Form_Element_Textarea

Zend_Form_Element_Transfer

Zend_Locale

Zend_Pdf

Zend_Rest_Controller

Zend_Translate

Zend_Validate

ZendX library

ZF. See Zend Framework

zf command

zxI18nRoutingPlugin

1235

	Cover
	Title Page
	Copyright
	Dedication
	Credits
	About the Authors
	Acknowledgments
	Introduction
	Who Should Read This Book?
	Comparative Approach
	Structure of This Book
	Source Code
	Conventions
	Contact Us
	Errata
	p2p.wrox.com

	Chapter 1: Introducing Symfony, CakePHP, and Zend Framework
	What are Web Application Frameworks and How are They Used?
	Open Source PHP Web Frameworks
	Design Patterns in Web Frameworks

	Chapter 2: Getting Started
	Requirements
	Installation
	Configuration
	Hello World!
	Structure
	IDE Support

	Chapter 3: Working with Databases
	Object-Relational Mapping
	Database Configuration
	Communication with a Database

	Chapter 4: Your First Application in the Three Frameworks
	Design
	Symfony
	CakePHP
	Zend Framework

	Chapter 5: Forms
	Field Validation
	Customizing Forms
	Using Captcha as Spam Protection

	Chapter 6: Mailing
	Creating Mailing Applications
	SwiftMailer
	CakePHP's Mailing Component
	Zend Mailer
	PHPMailer

	Chapter 7: Searching
	Problem
	Solutions

	Chapter 8: Security
	Setting Secure Connections
	Securing a Profile Form Against XSS and Injection Attacks
	CSRF

	Chapter 9: Templates
	Creating a Simple Image Gallery by Using Helpers and Lightbox
	Using Template Engines within Web Frameworks
	Overview of Other Add-on Template Engines

	Chapter 10: AJAX
	Introducing AJAX
	Autocomplete
	Dynamic Popup Windows
	AJAX User Chat

	Chapter 11: Making Plug-ins
	Symfony
	CakePHP
	Zend Framework

	Chapter 12: Web Services
	Restful News Reading
	Providing Soap Web Services in E-Commerce Applications

	Chapter 13: Back End
	Symfony
	CakePHP
	Zend Framework
	Feature Summary

	Chapter 14: Internationalization
	Internationalization Defined
	Symfony
	CakePHP
	Zend Framework

	Chapter 15: Testing
	Introducing Testing
	Black-Box Registration Form Testing Using Functional Tests
	CMS Tests Automation Using Selenium
	Mailing Unit Testing

	Chapter 16: User Management
	Basic User Management
	Identifying Users Using LDAP Implementation

	Chapter 17: Performance
	Using JMeter for Stress, Load, and Performance Tests
	Benchmarking
	Development Speed

	Chapter 18: Summary
	Features
	And the Winner Is…

	Appendix A: Web Resources
	General
	Symfony
	CakePHP
	Zend Framework
	Design Patterns
	ORM
	Databases
	LDAP
	Searching
	Testing
	Security
	PDF
	Web Services
	Mailing
	Templates
	IDE
	Javascript
	AJAX
	CMS
	CodeIgniter
	Lithium
	Agavi

	Appendix B: CodeIgniter, Lithium, and Agavi with Code Examples
	CodeIgniter
	Lithium
	Agavi

	Glossary of Acronyms and Technical Terms
	Index

