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Guest Editorial Preface

Special Issue on Pattern Recognition for
IT Security

Graphical data, such as images or video streams, are of growing importance
in several disciplines of IT security. Examples range from biometric authenti-
cation over digital image forensics to visual passwords and CAPTCHAs. Con-
sequently, methods of image analysis and pattern recognition are increasingly
used in security-critical applications. Still, there is a significant gap between the
methods developed by the pattern recognition community and their uptake by
security researchers.

In an attempt to close this gap, a workshop on Pattern Recognition for IT Secu-
rity was held on September 21, 2010, in Darmstadt, Germany, in conjunction with
the 32nd Annual Symposium of the German Association for Pattern Recognition
(DAGM 2010). The session was chaired by Jana Dittmann (Otto-von-Guericke
UniversitätMagdeburg),ClausVielhauer (FachhochschuleBrandenburg) andSte-
fan Katzenbeisser (Technische Universität Darmstadt).

This special issue contains five selected papers that were presented at the
workshop and that demonstrate the broad range of security-related topics that
utilize graphical data. Contributions explore the security and reliability of bio-
metric data, the power of machine learning methods to differentiate forged
images from originals, the effectiveness of modern watermark embedding schemes
and the use of information fusion in steganalysis.

We hope that the papers in this special issue are of interest and inspire future
interdisciplinary research between the security and graphics communities.

March 2012 Stefan Katzenbeisser
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Exploiting Relative Entropy and Quality Analysis  
in Cumulative Partial Biometric Fusion 

Hisham Al-Assam, Ali Abboud, Harin Sellahewa, and Sabah Jassim  

Department of Applied Computing, University of Buckingham, United Kingdom 
{hisham.al-assam,ali.abboud,harin.sellahewa, 

sabah.jassim}@buckingham.ac.uk 

Abstract. Relative Entropy (RE) of individual’s biometric features is the 
amount of information that distinguishes the individual from a given popula-
tion. This paper presents an analysis of RE measures for face biometric in rela-
tion to accuracy of face-based authentication, and proposes a RE-based partial 
face recognition scheme that fuses face regions according to their RE-ranks. We 
establish that different facial feature extraction techniques (FET) result in dif-
ferent RE values, and compare RE values in PCA features with those for a 
number of wavelet subband features at different levels of decomposition. We 
demonstrate that for each of the FETs there is a strong positive correlation be-
tween RE and authentication accuracy, and that increased image quality results 
in increased RE and increased authentication accuracy for all FETs. In fact, se-
vere image quality degradation may result in more than 75% drop in RE values. 
We also present a regional version of these investigations in order to determine 
the facial regions that have more influence on accuracy and RE values, and 
propose a partial face recognition that fuses in a cumulative manner horizontal 
face regions according to their RE-ranks. We argue that the proposed approach 
is not only useful when parts of facial images are unavailable but also it outper-
forms the use of the full face images. Our experiments show that the required 
percentage of facial images for achieving the optimal performance of face rec-
ognition varies from just over 1% to 45% of the face image depending on image 
quality whereas authentication accuracy improves significantly especially for 
low quality face images.   

1 Introduction 

Biometrics are physiological and behavioural characteristics that can be used to auto-
matically identify a person. Face is one of the most desired biometrics for uncon-
strained and unsupervised person identification. A vital process of a face biometric 
system is the extraction of discriminatory features from a given face image that can be 
used to identify the person in the given face image or verify a claimed identity. The 
most common approaches to face recognition consider the entire face image for fea-
ture extraction. Typical methods include Eigenfaces [1] and Fisherfaces [2] which use 
statistical techniques to find an optimal representation in a lower-dimensional face 
space for a given set of face images. However, the accuracy of these approaches is 
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affected by global phenomena such as varying lighting conditions in unconstrained 
environments. Local feature based approaches [3] aim to extract discriminating fea-
tures from regions/patches surrounding facial features such as eyes, nose and mouth. 
Local feature based approaches are invariant to global changes and leads to better 
recognition accuracy under varying conditions compared to global approaches, but 
they rely on the accurate location of the specified facial feature. For a variety of ap-
plications, interest is growing in expanding these local-feature based face recognition 
into cases where parts of the face could be occluded or of severely degraded quality. 
The term partial face recognition refers to such cases, and it is of great interest to 
forensics, when only parts of the face are available after some accidents such as fire 
or explosion, and in surveillance applications where only partial faces are recorded. 
Recently few approaches have been proposed for recognizing faces from partial face 
images. In [4], radial basis function networks were used to extract and recognize par-
tial face images while the authors in [5] proposed the use of heterogeneous face rec-
ognition in which near infrared face videos containing partial faces (probe images) are 
matched against the visual images of full faces (target images).  

Moreover, attention has been given recently to local window based approaches 
where the entire face image is first partitioned into a set of overlapping/non-
overlapping regions and features are extracted from each local region, which are then 
combined into a single feature representation. Local Binary Patterns [6] and Local 
Ternary Patterns [7] are two such examples. However, these techniques give equal 
consideration for each local region in terms of their contribution to the overall recog-
nition, irrespective of the amount of discriminative information in each region.  

In information theory, Shannon entropy measures the uncertainty of a random vari-
able. Biometric Entropy, as a special case, describes the inherent differences of popu-
lation biometric samples, and quantifies their information content [8]. Biometric data 
is typically represented by a feature vector extracted by one or more Feature Extrac-
tion Techniques (FETs). Two factors that should be taken into consideration when 
measuring biometric entropy are: 1) similarity of samples across different individuals 
e.g. all human faces have two eyes, a nose and a mouth and 2) the correlation among 
the biometric features of the same individual. Relative Entropy (RE) of a user’s bio-
metric features [9] quantifies the amount of information that distinguishes the user 
from a given population (discussed further in section 2.1). Quantifying biometric 
feature’s information content (randomness or uncertainty) can address several  
questions. For example, are fingerprints, faces, or irises really unique? What are the 
inherent limits of biometric template size requirements and biometric matcher’s per-
formance? In terms of biometric system security and cryptosystem evaluations, how 
much information does an imposter need to guess to fool the system?  

There are several factors that influence the performance of biometric systems, such 
as face sample’s image quality, FETs, pre-processing, and the underlying template 
protection schemes if used [10], [11]. In this paper, we shall confine our attention to 
the first two factors: biometric image quality and the underlying FET to investigate 
their influence on the relationship between face feature vector relative entropy and the 
authentication accuracy.  
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Factors affecting biometric sample quality can be classified into four groups [12] 
[13]: (1) user-related factors: these include physiological (e.g. age) and behavioural 
factors (e.g. pose) which are difficult to control, (2) user-sensor interaction factors: 
these include the environmental (e.g. lighting) and operational factors (e.g. user fami-
liarity) which are easier to control than user related factors, (3) acquisition sensor 
factors: these include the sensor characteristics that affect the biometric sample quali-
ty (e.g. resolution), and (4) processing system factors: these include factors related to 
the biometric processing system after the biometric sample is acquired by a sensor 
such as (e.g. processing algorithms, data format) and these are the easiest to control. 
The quality of biometric sample can be considered from three points of view: (1) 
character: an indicator of inherent physical features, (2) fidelity: a measure of the 
degree of similarity to reference biometric sample, (3) utility: a reference to the im-
pact on the biometric system performance [12]. 

Little or no work is reported in the literature on the relation between biometric 
sample quality and biometric entropy. Youmaran and Adler, [14], introduced a theo-
retical framework which is somewhat restricted to measure the loss of information 
due to sample quality degradation. It would be essential to extend such a framework 
to investigate the relationship between information content extracted by different 
FETs, accuracy rates, and biometric sample’s quality. Moreover, different regions of 
face images are of different structures but have great deal of similarities across indi-
viduals. Hence extending these investigations to include regional structures and dif-
ferent entropy concepts would be beneficial.  

In this paper, we investigate the use of relative entropy as a measure to rank blocks 
or patches of face images in terms of their relevance to authentication accuracy. We 
shall use different FETs and facial images of different qualities in our evaluation. We 
shall present a comparative analysis of Relative Entropy, illumination-based image 
quality and authentication accuracy. Existing partial face recognition schemes use the 
whole (available) part(s) of the images for recognition while our approach just uses 
the most discriminative blocks (or features) within each part of face images. Finally, 
we propose a partial face recognition scheme that fuses in a cumulative manner hori-
zontal face regions according to their RE-ranks. This paper is an extension of the 
work presented at the Pattern Recognition for IT Security workshop, Darmstadt, 
Germany. A detail analysis of RE, authentication accuracy and image quality and the 
RE-based partial face recognition scheme form the main extension of this paper.  

The rest of this paper is organized as follows: Section 2 provides is a brief review 
of background material. In Section 3, we analyse the relationships between REs, sam-
ple quality, and biometric authentication accuracy. Section 4 investigates the effect of 
regional variation of features on relative entropy. Section 5 proposes a new RE-based 
partial face recognition scheme that fuses face regions according to their RE-ranks 
and Section 6 is devoted for conclusions and future work. 

2 Background 

In this section, we briefly describe the three main concepts investigated in this paper 
(i.e. Relative Entropy, Face Recognition, and Image Quality measures), and review 
related work and techniques in each case.  
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2.1 Biometric Entropy Measures 

The level of randomness of biometric features is an important factor in determining 
the uniqueness of one’s biometric identity. Therefore, measuring information content 
of biometric systems has a significant impact on accuracy and security. Daugman in 
[15] proposed the concept of Discrimination entropy to quantify the correlation 
among the bits of iris templates (degrees of freedom). Given a specific setting, Daug-
man found that the randomness/uncertainty in the 2048-bit iris template is 249 uncor-
related bits.  Matching the bits of two iris codes of length m is equivalent to running 
m Bernoulli trials whose probability of success (two aligned bits being the same) is 
0.5. Hence the Hamming distance between iris codes is a random variable whose 
probability density function (PDF) has a binomial distribution. If the m Bernoulli 
trials are independent, then the PDF would be much sharper and the standard devia-
tion will be small. This is due to the correlation among iris’s bits [15]. Discrimination 
entropy of iris codes can be modeled in terms of the degrees of freedom calculated by 
the following formula:  
 

2

)1(

σ
ρρ −=N   (1) 

 
where  and are the mean and standard deviation of Binomial Distribution of 

IrisCode Hamming distances. 
Unfortunately, Discriminative Entropy does not account for the amount of infor-

mation needed to distinguish a user from a population, i.e. it gives no consideration 
for inter-class variations. To address this problem, a measure between the two distri-
butions i.e. the inter-class and intra-class variation is needed. In statistics, the distance 
between two distributions can be quantified using a number of different approaches. 
One interesting measure is the f-divergence, more specifically the Kullback–Leibler 
(KL) divergence [16] which is also known as relative entropy, or information for 
discrimination. KL divergence, D(U||P), is the distance between two distributions P 
and U which measures the inefficiency of assuming that the distribution is P when it 
should be U, [17], and is defined as follows: 
 

=
x
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Alder [9] has extended this definition to be applied to measure entropy of Biometric 
data. If the population distribution of a certain biometric trait is assumed to be P and a 
user distribution is U then D(U || P) is the amount of information that distinguishes 
the user U from the population. Unlike discriminative entropy, relative entropy can be 
calculated for each individual user.  

To estimate the relative entropy D(U||P), there is a need to estimate the two distri-
butions p(U) and p(P). In our experiments, we need to estimate the distribution of 
biometrics features across different samples of a user p(U) and across samples of the 

ρ σ



 Exploiting Relative Entropy and Quality Analysis 5 

population p(P). By approximating the two distributions by two Gaussian distribu-
tions, the relative entropy is given by [9]:   
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where, ),(),,( PPUU  μμ : The mean and the covariance matrix of p(U) and p(P) 
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2.2 Face Recognition 

Face recognition remains one of the most challenging tasks in comparison to other 
biometric-based recognition, and several face recognition schemes have been devel-
oped and their performances have been tested. An important part of face recognition 
is the feature extraction procedure. Here we briefly describe two commonly used 
feature extraction schemes: PCA and wavelet-based schemes.   

Typically, feature extraction schemes transform the face image into a “significant-
ly” lower dimensional subspace from which a feature vector is extracted. The most 
commonly used dimension reduction method is the Principal Component Analysis 
(PCA), In [1], Turk and Pentland used the PCA technique to develop the Eigenface 
recognition scheme, simply by using the “most significant” eigenvalues (i.e. of largest 
absolute values) of the covariance matrix corresponding to a training set of face  
images.  

Frequency transforms provide valuable tools for signal processing and analysis. 
Frequency information content conveys richer knowledge about features in sig-
nals/images that should be exploited to complement the spatial information. Fourier 
and wavelet transforms are two examples that have been used with significant success 
in image processing and analysis tasks including face recognition [18], [19], [20]. The 
discrete wavelet transform (DWT) is a multi-resolution signal analysis tool that  
hierarchically decomposes a signal into its low- and high-frequency components al-
lowing one to view the signal's regular patterns as well as its anomalies, [18]. At a 
resolution level of k, the pyramid scheme decomposes an image I into 3k + 1 sub-
bands (LLk;HLk;LHk;HHk; : : : ;HL1;LH1;HH1), with LLk, being the lowest-pass sub-
band. The subbands LH1 and HL1 contain finest scale wavelet coefficients that get 
coarser with LLk being the coarsest. The LLk subband is considered as the k-level 
approximation of I, while HLk, LHk, and HHk captures vertical, horizontal and di-
agonal features of the image. 

Different wavelet decomposition levels and/or wavelet filters yield different face 
feature vectors and FETs. Each subband of a wavelet transformed face image can be 
used individually as face feature descriptor. Throughout this paper, the Euclidean 
distance is used for matching, and the Haar wavelet filter is used for the DWT. 
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2.3 Universal Image Quality Index (UIQI) 

It is a well-known fact that face-biometric verification suffers from significant intra-
class variation as a result of variation in recording environment, pose, aging … etc. 
To understand the relationship between accuracy rates and relative entropy contents 
of face feature vectors, we need to evaluate accuracy and relative entropy in face 
biometric authentication under varying recording conditions. The extended Yale-B 
database provides an excellent testing platform for extreme variation in illumination.   

The universal image quality index (UIQI) proposed by Wang and Bovik [21] 
measures the distortion between original signal and reference image by modelling 
distortion as combination of three main components: correlation distortion, illumina-
tion distortion and contrast distortion. Let 
 

},...,2,1|{},.......,2,1|{ NiiyYandNiixX ====
 

 
be the original and the test images respectively. UIQI is defined as: 
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In fact, UIQI is the product of three quality measures reflecting these components, 

respectively as given in equation (5). 
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Here, we only consider the luminance distortion component as given in equation (6).   
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In practice, the LQI of an image with respect to another reference image is calculated 
for each window of size 8x8 pixels in the two images, and the average of these entire 
blocks defines the LQI of the entire image. Based on Extended Yale B face database 
[22] described below, the reference image used to calculate LQI index is the average 
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face image of all 38 individuals (i.e. the average of the frontal pose and in direct illu-
mination image (P00A+000E+00) of each subject) [23]. 

2.4 Experimental Dataset and Testing Protocol 

The Extended Yale B database, [22], has 38 subjects and each one, in frontal pose, 
has 64 images captured under different illumination conditions. The total number of 
images in the database is 2414 images. The images in the database are divided into 
five subsets according to the direction of the light-source from the camera axis. Sam-
ples of images taken from the database are shown in Figure 1. 

 

 

  

Set Subset 1 Subset 2 Subset 3 Subset 4 Subset 5 

Angle   

No. of 
Images

263 456 455 526 714 

Fig. 1. Sample of images for the same person in different illumination subset 

To test the proposed RE-based cumulative partial face recognition scheme, the 38 
users are divided into two separate portions (18 users each): one is used for develop-
ment (i.e. creating RE-based ranks), and the other is used for testing (i.e. authentica-
tion accuracy evaluation using the RE-based ranks from the development stage). In all 
experiments, the first three images per user from subset 1 (the extended Yale-B data-
base) were selected as reference images to form the gallery set and all the remaining 
images were used for matching which is based on the Euclidean distances. For a sub-
set i, if Ni is the number of testing images, then the number of client tests= Ni × 38, 
and the number of imposter tests= (Ni × 37 × 38) /2.  All face images were used with-
out pre-processing. 

3 Entropy, Accuracy, and Quality of Whole Face Samples 

In this section, facial feature vectors are extracted from the whole face image using 
five FETs: 4 wavelets subbands (LL4, LH4, HL4, and HH4) and PCA in the spatial 
domain. The output of applying each of the FETs is a feature vector of size (132), 
which makes the results of the five FETs comparable.  

12<θ 2520 << θ 5035 << θ 7760 << θ 13085 << θ
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Table 1 shows the relationship between the biometric Relative Entropies (REs), au-
thentication accuracy represented by the Equal Error Rates (EERs), and biometric 
sample quality (in terms of LQI). It provides a comparison of the performance of the 
five FETs for the different subsets of the database. 

Table 1. Comparison of authentication accuracy vs. relative entropy for different illumination 
quality levels 

S
ub

se
ts

 Quality Entropy & Authentication Accuracy 

Avg Std Min Max 
LL4(132) LH4(132) HL4(132) HH4(132) PCA(132) 

EER 
(%) 

RE 
(bits)

EER 
(%) 

RE 
(bits)

EER 
(%) 

RE 
(bits)

EER 
(%) 

RE 
(bits)

EER 
(%) 

RE 
(bits) 

S1 0.97 0.02 0.90 0.99 5.06 138.5 0.00 196.6 0.69 189.5 0.00 201.1 1.70 101.3 

S2 0.96 0.02 0.88 0.99 21.58 79.90 1.42 144.7 3.47 132.0 0.08 150.8 4.07 77.86 

S3 0.91 0.04 0.78 0.97 34.08 36.46 5.70 92.87 18.11 77.79 4.40 91.88 21.80 43.85 

S4 0.79 0.07 0.60 0.89 44.39 14.98 14.20 68.43 39.70 41.45 19.98 59.24 38.65 24.64 

S5 0.49 0.09 0.26 0.64 43.43 22.02 12.76 82.94 44.15 49.16 23.98 66.01 36.17 32.23 

 
This table reveals a number of clear patterns that confirm a strong correlation  

between image quality, verification accuracy and relative entropy. For each feature 
extraction scheme, except for subset 5, increased image quality results in higher  
accuracy and higher relative entropy. For subset 5, where the average quality is the 
lowest, the pattern is not a clear one.  All the wavelet-based schemes significantly 
outperform the PCA scheme in terms of both accuracy rate and relative entropy. 
Among the wavelet based schemes the HH4 has the best performance when the image 
quality average is > 0.6 which excludes most of subsets 4 and 5, otherwise the LH4 
has best performance if image quality < 0.6. The latter observation can be attributed 
to the fact that the most significant facial features (i.e. eyes and mouth) have elliptical 
shapes but predominantly in the horizontal direction, and worsening illumination 
indices have less effect on horizontal features. Note that, LH4 does highlight  
horizontal features. 

4 Entropy, Accuracy, and Quality of Regional Face Samples 

The fact that different facial features (i.e. eyes, nose, mouth, chin, cheeks, and eye-
brows) have different structures and are in relatively known locations within the face 
image, it is necessary to investigate the regional contribution to authentication  
accuracy and RE values.  Here we analyze the face sample quality and entropy across 
different regions of facial images, and discuss the relationship with authentication 
accuracy. Since facial features are mostly horizontal, we confine our investigation to 
vertical regions. Such analysis addresses the question: Is relative entropy distributed 
uniformly over all regions of the biometric data or do some face regions have higher 
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RE compared to others?  Understanding the distribution of REs across different face 
regions might help in a number of applications such as adaptive fusion, biometric key 
generation, and adaptive quality assessment. 

Overlapping horizontal windows of size is 8x168 are used for the regional RE 
analysis of the 192x168 pixel face images. The use of overlapping widows reduces 
the chance of cutting discriminating features and facilitates reasonable alignment of 
facial features for all person images. In order to use wavelet-based feature extraction 
schemes, individual window height must be at least 2k for kth level decomposition. 
We observed that most individual facial features are contained within 8 rows in the 
spatial domain, while windows of height 16 would certainly cover more parts or all of 
two facial features. Hence, the selected window size is (8x168) pixels and the overlap 
between two successive windows is (6x168) pixels. Hence, 93 overlapped horizontal 
windows cover the whole face image. This choice limits the level of wavelet decom-
position to 3.   

First we used LQI to measure the image quality of each window to get a better un-
derstanding of the distribution of quality across different regions of face images (i.e. 
illumination distribution for this database). Figure 2 shows the regional quality varia-
tions for each subset of the extended Yale B database. Remarkably this chart illu-
strates that the quality of each window is affected in the same way in the 5 different 
subsets of the database even though in each subset these qualities fluctuate across the 
regions. 

 

 

Fig. 2. Quality variations across different overlapped regions in the spatial domain 

Figure 3 illustrates the regional relative entropies and authentication accuracy (in 
terms of EER (%)). Figure 3A and 3B present regional RE and accuracy distributions 
of LH3 across the different five subsets. The average Equal Error Rates (EER) of all 
individuals is reported. The regional RE chart of the LH3 shows that the upper part 
features of the face image has the highest discriminative information (RE), the bottom 
part face features comes second, and the middle part face features has the lowest in-
formation content. This claim is supported by the general trend of authentication  
accuracy (in terms of EER %) where the upper windows tend to outperform other 
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regions. In other words, the upper part features of the face image contribute more in 
recognizing different individuals. Moreover, the regional REs decrease sharply as a 
result to image quality degradations. It can also be seen that detecting the most infor-
mative regions is dependent on the underlying FET. For example, (LL3, LH3, and 
PCA) include more information content in the upper region windows compared to 
(HL3 and HH4) whereas the latter two include more information content in the bot-
tom region windows as well as in the upper regions. This observation about the RE 
distribution can be used to improve adaptive fusion of FETs for enhanced accuracy. 
In adaptive fusion, different weights are given to different components of the fused 
system and here we should be having a strategy that exploits the regional variations 
and quality values to dynamically selecting the weights. For brevity of space, we 
chose to present one detailed regional RE chart of one FET only (i.e. LH3). The other 
four FETs exhibit a similar pattern. 

Figure 3C,3D, and 3E summarise the results by showing EER verses median, max-
imum, minimum of regional RE respectively of the five FETs (LL3, LH3, HL3, HH3, 
and PCA), across the five subsets. The median is used instead of the mean for exact 
mapping to the corresponding EER. The figures show how RE decreases and EER 
increases when biometric image quality decreases (i.e. moving from subset1 to sub-
set5). The figures also illustrate how different FETs capture different amount of in-
formation, and achieve different recognition accuracy at different regions of face 
biometric. 

5 Relative Entropy-Based Cumulative Fusion of Biometric 
Information 

The RE distributions and quality analysis in different quality conditions presented in 
the previous section are exploited to develop a novel adaptive fusion scheme to en-
hance the accuracy of biometric system. The proposed scheme investigates the optim-
al ratio of face regions required to recognize an individual accurately. It is important 
to mention that the proposed approach is not only useful when only parts of face im-
ages are available but also it can be applied to significantly enhance authentication 
accuracy when using full face images, especially for low quality biometric samples. 

In the proposed approach, face images are divided into a number of horizontal 
windows (regions) as mentioned in the previous section. These face windows are then 
ranked in descending order according to their information content (RE) to be used in 
cumulative way at the recognition stage. In other words, our approach first selects the 
region with the highest RE and then the region with the next highest RE is fused with 
first one at the feature level, and so on. 

Here, we investigate the use of the proposed RE-based fusion on wavelet subbands 
in two ways: within a subband fusion and among different multi-subbands fusion. The 
proposed method can be equally applied to facial feature vectors extracted by any 
other FETs. For simplicity, non-overlapped horizontal windows are used to avoid the 
possibility of having redundant representation when applying the feature level fusion. 
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             (A)                 (B) 

(C )     (D) 

 

 (E) 

Fig. 3. A and B present Regional RE and accuracy distributions for LH3 across different sub-
sets (win ID axis represents top-down overlapped windows), C, D, and E show EER verses 
median, maximum, minimum of regional RE respectively for the five FETs across the five 
subsets  

Figure 4(A) shows the horizontal non-overlapped windowing process. The original 
facial image size is (192x168) pixels and each window is (8x168) pixels which results 
in a total of 24 windows. Figure 4(B) presents an example of a top-down RE-based 
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Fig. 4. (A)Windowing of face images, (B) Example of top-down RE-based ranking 

ranking. It can be noticed that eyes regions have the highest discriminating informa-
tion compared to other facial regions. 

5.1 RE-Based within Subband Cumulative Fusion  

Here, we illustrate the use of RE-based fusion of the facial windows to determine the 
optimal partial face recognition for each wavelet subband. The 24 facial windows are 
ranked descending based on their RE values as shown in Figure 5. The RE ranking is 
based on the average REs for all individuals in the same subset. These windows are 
then incrementally fused according to their RE rank at the feature level. The fused 
features are used to evaluate authentication accuracy in terms of EER. The fusion 
process starts by fusing the highest RE-ranked facial widow with the second RE-
ranked window, and the process continues until fusing all the 24 facial windows. Let 
{W1, W2,.., W24} be the ordered set of RE- ranked windows, the cumulative feature 
vector Vi at stage i, i=2 to 24, is given by equation (7)  
 

Vi= [Vi-1 Wi] (7) 

 
Figure 5 shows authentication accuracy in terms of EER (%) of the proposed ap-
proach on each of the four subbands separately at the third level of wavelet decompo-
sition. One can notice that all EER curves have almost the same trend where EER 
drops sharply when fusing the first few windows (i.e. the accuracy enhances signifi-
cantly). Then the optimal performance (the lowest EER using less biometric informa-
tion) is achieved somewhere in middle i.e. when using half of the facial windows. It 
can also be noticed that the optimal performance is different among subbands and 
subsets. Moreover, once achieving the best performance, EER either stays the same, 
for example the LH3, HL3, and HH3 subands of first three subsets, or increases mo-
notonically (worse accuracy) in all other cases. In other words, fusing more regions of 
facial images does not help in improving accuracy, but it might impair recognition 
accuracy in some cases such as the LL3 suband of all subsets except subset1. 
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To highlight the benefits of the proposed scheme, the performance of the proposed 
approach is compared with the performance of the approach that uses whole face 
images. For brevity of space, Figure 6 only presents the results for LL3 suband across 
the five subsets. However, the same trend is observed for all other subbands. It can be 
seen that in all scenarios, using only the most informative regions of face images out-
perform the use of whole face image in terms of authentication accuracy. Apart from 
subset1, the optimal performance can be achieved using less than 7 windows out of 
the 24 (i.e. less than 30% of the whole face image). For subset1, with best image qual-
ity, more regions are required to obtain the best performance however RE-based fu-
sion approach still outperforms the whole face image-based scheme. 

 

 
        RE-based fusion using LL3                            RE-based fusion using LH3        

 
                  RE-based fusion using HL3                            RE-based fusion using HH3  

Fig. 5. Face recognition accuracy in terms of Equal Error Rates (EER %) of using RE-based 
cumulative fusion for the four subbands {LL3, LH3, HL3, and HH3} 

5.2 RE-Based Multi-subbands Cumulative Fusion 

Here, we propose another scheme for cumulative biometric information fusion which 
uses all four subbands of a specific wavelet decomposition level (level 3 in this pa-
per). The 96 windows from the four subbands (24x4) are ranked instead of the 24 
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             LL3-subset1                                 LL3-subset2 
 

 

         LL3-subset3               LL3-subset4 

Fig. 6. Accuracy comparison (EER %) between the RE-based within subband fusion and the 
whole face 

windows in each subband. Then these ranked windows are fused together at the fea-
ture level in the same way described earlier. In this ranking, consecutive windows 
may or may not be from different subbands, and also different individuals may have 
different ranking. 

Figure 7 depicts the EER (%) of the proposed RE-based multi-subbands approach 
for each of the five subsets. It can be seen that EER drops sharply after fusing the first 
few windows.  

To gain a better insight into the effectiveness of the proposed multi-subbands RE-
based fusion approach, we compare the authentication accuracy (in terms of EER) of 
the proposed approach with the authentication accuracy of the whole face images as 
illustrated in Figure 8. One can observe that in all subsets, using only the most infor-
mative regions outperform the use of whole face image in terms of authentication 
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accuracy. In fact, adopting the proposed approach may lead to significant improve-
ment in authentication accuracy in subset 3, subset 4, and subset 5 where the image 
quality is significantly poor. Table 2 summarizes the results of the multi-subbands 
RE-based fusion and whole face image schemes. 
 

 

Fig. 7. Multi-subband RE-based fusion 

Table 2. Comparing EERs of the proposed RE-based fusion with EERs of the whole face for 
different subsets of extended Yale-B 

 Subset1 Subset2 Subset3 Subset4 Subset5 Average 

EER(whole face) 0.00 0.15 1.46 17.79 19.17 7.71 

Optimal EER(multi-
subbands fusion) 

0.00 0.00 0.00 3.43 4.44 1.57 

Optimal Percentage 
of the face needed to 
recognize individuals 

1.04% 10.42% 44.79% 32.29% 20.83% 21.21% 

 
The table shows that the proposed approach significantly enhances the authenti-

caion accuracy in terms of EER. In fact, the proposed RE-based fusion scheme out-
performs the use of full facial image especiaally for low quality face images.The EER 
for drops from (1.46%) to (0%), from (17.79%) to (3.43%), and from (19.17%) to 
(4.44%) for subset 3, subset 4 and subset 5 respectively. The table also shows that the 
average percentage of the face regions required to recognize each individual is around 
21% (ranging from just over 1% to around 45% according to the quality of the under-
lying facial images) and the average EER might drop from (7.71%) to (1.57%) when 
adopting the proposed approach.  
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Fig. 8. Accuracy comparison (EER %) between the cumulative multi-subbands RE-based fu-
sion and the whole face 

6 Conclusions 

We have investigated the relationship between the level of randomness in face biome-
tric as represented by relative entropy (RE), and the accuracy rates for a number of 
face recognition schemes under variant illumination conditions. We have demonstrat-
ed a strong correlation between RE values and accuracy rates that holds for different 
image quality levels and different recognition schemes. The RE values are dependent 
on the recognition scheme with wavelet based ones all outperforming the PCA 
scheme. Except for the lowest quality level, the RE value increases as image quality 
improves. Similar patterns have been revealed when regional RE’s and accuracy rates 
were investigated, and the results demonstrate that the middle region of the face has 
less randomness than the upper or the lower part of the face. Furthermore, we pro-
posed a RE-based partial face recognition that fuses, in a cumulative manner, horizon-
tal face regions according to their RE-ranks. We have demonstrated that the proposed 
approach is not only useful when parts of facial images are available but also it  
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outperforms the use of the full face images. Our experiments show that the percentage 
of face area needed to achieve the optimal performance varies from just over 1% to 
45% of the face image depending on the quality of the underlying facial image. Also, 
the authentication accuracy significantly improves, especially for low quality images, 
e.g. EERs drop from 1.46 %, 17.79 %, and 19.17% based on the whole face images to 
0.0%, 3.43%, 4.44% for subset 3, subset4 and subset 5 respectively using the pro-
posed partial face recognition scheme when only the highest ranked face areas are 
used for authentication. This paper has focused on one type of quality factor, the illu-
mination factor. In our future work, we shall consider other biometric quality factors 
such as pose and resolution to create multiple ranking indices where the ranking index 
is adaptively selected at the authentication stage by assessing the quality vector of the 
presented biometric sample.  
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Abstract. The feature extraction, which is the most critical part of biometric 
recognition systems, is solely done based on expert knowledge or rather 
intuitively. Thus, no guaranty could be given that extracted features are suitable 
for biometric user authentication. Moreover, the expert knowledge could be 
only applied for a particular quality of raw data or only defined for a particular 
database. Therefore, the feature analysis is required to estimate the 
discrimination power of extracted features and automatically eliminate all 
irrelevant or redundant ones. In order to provide a feature ranking and 
consequent filtering, authors suggest several heuristics and compare these to 
each other and to several wrapper approaches. The experiments were done on 
features extracted from dynamic handwriting data. The comparison of feature 
subsets is provided based on hash generation performance of quantization based 
secure sketch algorithm. The experiments show a significant increase of 
reproduction rates (RR) and decrease of collision rates (CR). After feature 
selection the CR for the most appropriate written content ‘symbol’ reduced 
from 5.04% to 3.44% and the RR grows from 70.57% to 93.59%. Furthermore, 
the lower number of features ensures the reduction of computational complexity 
and, thus, classification speed-up.   

Keywords: Feature selection, handwriting, biometrics, biometric hashing, 
fuzzy extractor, secure sketch. 

1 Introduction 

Apart from the human voice the handwriting is the most commonly used behavioural 
biometric modality. Handwriting is widely used in forensic science, namely in court 
cases, to check if an individual is the author of a certain handwritten document. 
Another well known domain of handwriting-based applications is handwriting 
recognition, which could be designated as an automatic retrieval of the ground truth 
of a handwritten document and often associated with optical character recognition 
(OCR) systems. However, in this work the focus is laid on the third major group of 
handwriting-based applications – biometric user authentication. The main objective 
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here is to identify or to verify a person based on predefined handwritten content 
through comparison of reference and test samples.  

In a biometric context, the handwriting is usually associated with the signature 
recognition. However, the signature as a written content has several disadvantages. The 
names of the user are usually publicly known, and even an uninformed attacker can 
guess the signature’s shape. Moreover, once the personal signature is compromised, it 
cannot be changed in an easy way. It will be shown, that other written contents could be 
more appropriate for user verification.  

The most known practical applications, which make use of handwriting-based user 
verification, are signing of bank documents on digital tablets and signature based 
login scenarios on tablet PCs or for building entrance. 

In contrast to static handwriting data, which is either continuous trajectory of a pen 
movement on a paper or a digitalized set of points with x/y-coordinates, the dynamic 
handwriting data contains a time sequence of points. Each point has at least an order, 
a sampling time and relative x/y-coordinates on the writing surface. Depending on the 
digital sampling device, characteristics of points can be extended by pressure and pen 
angles, namely pen azimuth and pen altitude (see figure 1). There are other signals 
such as height of pen above digitizer, tilt along the x/y-axis, rotation around pen axis, 
which could be potentially captured, but the appropriate tablets are seldom used in 
academic research as well as in commercial applications. Practically, x/y-coordinates, 
pressure, altitude and azimuth are considered as functions of time (x(t), y(t), p(t), φ(t), 
θ(t)) and can be qualified as the basic input data for further processing.  
 

x(t)

y(t)

p(t)

Θ(t)

φ(t)

 

Fig. 1. Basic handwriting signals: x(t) – horizontal pen position, y(t) – vertical pen position, 
p(t) – pressure, φ(t) – altitude, θ(t) – azimuth (taken from [25])  

As well as every other behavioural biometric modality, the handwriting is 
characterized by very high variations of acquired signals in genuine samples. 
Pressure, writing angles and shape change under the influence of donor’s mood, 
physical condition and other factors, which are almost unpredictable. This leads to 
insufficient authentication rates. In order to reduce these variations, stable individual 
characteristics (further called features) should be derived from acquired signals. 
Moreover, the features need to be independent from environmental conditions. 

Unfortunately, there is no common methodology to define and extract features, 
which are surely suitable for user authentication. Usually the extraction is done based 
on formerly collected expert knowledge or rather intuitively. The expert knowledge is 
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usually valid for some domain specific features and could be incomplete or erroneous. 
In certain cases the resulting features will be completely unsuitable for user 
authentication. In this sense, the feature extraction could be denoted as a “blind” 
process and therefore a subsequent feature relevance analysis is essential. There are 
131 features considered in this work. The feature extraction is based on empirical 
research and intuition. Table 1 gives an overview of features and characterizes them 
depending on signals needed for meaningful extraction. 

Table 1. Handwriting features 

Feature type Description Number 
Time-based statistics: t total time 

number of (valid) sampling points 
1,  
2, 30 

Static spatial statistics: x, y (time 
and order independent) 

x/y aspect ratios, 
(normalized) centroid of horizontal/vertical pen position,  
 
(normalized) distance between centroid and origin, 
normalized average velocity in x/y-direction, 
path length, 
number of points in special regions (left/right half, top/middle/ 
  bottom third etc.), 
 
accumulated points’ offsets from the left bottom corner in 
  particular time slots, 
angle between linear regression line and baseline, 
ratio between area/perimeter of convex hull and area/perimeter  
  of bounding box,  
number of local x/y-minima/maxima, 
ratio between the numbers of local x/y-minima and local  
  x/y-maxima, 
total number of self crossings, and numbers of self crossings 
  sorted by angels, 
number of intersections with horizontal, vertical and diagonal 
  lines, 
ratio between the path length and start-end 
distance/width/height,  
ratio between the start-centroid distance and centroid-end 
  distance, 
linearly mapped and accumulated x/y-extremes, 
average/minimum/maximum number of points within the circle 
  around each sample point, 
number of the closed areas inside the path, 
x/y-coordinates of cluster centrionds of signature 
  points  

3, 18, 
11, 12, 
15, 16, 
13, 17 
26, 27, 
31, 
32-43, 
59-61, 
68, 69, 
 
44-55, 
58, 
 
62, 65, 
70-73, 
 
74, 75, 
76, 
98-103, 
 
77-85, 
86-88, 
 
89, 
90-92, 
 
95-97, 
107, 
 
108-119 

Dynamic spatial statistics: x(t), y(t) average/minimum/maximum velocity in x/y direction, 
 
linearly mapped and accumulated pen acceleration, 
speed at the inflection points 

4, 5,  
7-10, 
93, 
130 

Pressure-based statistics: p(t) number of segments, 
average/maximum pressure, 
pen up time,  
ratio between pen up and pen down time, 
ratio between accumulated pressure and maximum pressure in 
  pen up/down positions, 
ratio between area/perimeter of convex hulls around the path 
  segments and area/perimeter of global bounding box,  
average/minimum/maximum length of contact less movement, 
 
average pressure in different pressure clusters, 
pressure standard deviation  

6,  
14, 23, 
28, 
29, 
 
56, 57, 
63, 64, 
66, 67, 
94, 
104-106, 
120-125, 
131 

Angles-based statistics: φ(t), θ(t) average/minimum/maximum altitude/azimuth, 
 
average altitude in different pressure clusters 

19-22,  
24, 25, 
126-129 
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Obviously, not all features are appropriate in each situation. Taking into account 
digital sampling device and written content, it could be clearly seen that some features 
do not have any variation through the samples of all users. Therefore, the feature 
analysis and subsequent selection of the subset of relevant features is a central issue 
addressed here. It is shown that selection of the features with low intra-class variance 
and high inter-class variance results in lower user authentication errors.  

Another issue considered in this work is the comparison of written contents 
regarding the user authentication or more precisely hash generation performance. In 
contrast to physiological biometric traits, the behavioral traits can contain secret 
knowledge, which means that biometric information is presented in some secret way. 
Hence, unauthorized verification attempts can be split into random and intentional 
forgeries, according to the awareness of the attacker about the secret. In order to 
demonstrate how the secret knowledge and uniqueness of the written content 
influence verification performance, five different written contents are evaluated in this 
work. First, the public PIN is proposed. This is a combination of five predefined digits 
“77993”, which are written in a similar manner among people of all nationalities. In 
this regard, any sample could be considered as an intentional forgery. Next, the secret 
PIN is proposed. This is a combination of five arbitrary digits from zero to nine. Here, 
the variability of the written shape between users is evident. Nevertheless, the 
variance is not high enough, because most donors are used to write digits in a similar 
way and to provide a short pause and lift the pen after each digit. More variance and 
uniqueness are contained in the third written content – pseudonym. This one is very 
similar to the signature. People have been asked to train and to provide a new 
signature, different to the personal one. This can contain any fictional name. It has 
been intentionally refrained from capturing personal signatures due to privacy 
reasons. The amount of uniqueness increases in the fourth written content – symbol. It 
does not necessarily have to be a text symbol. It could be any kind of drawing. It is 
very hard for an attacker to reproduce this one correctly, even if the shape of the 
writing is presented on the tablet. The last written content is an answer to the question 
“Where are you from?” The text here is usually the name of a city or of a country and 
can be easily guessed. The variance of the samples is poor, because most donors 
descent from the same region. Obviously, any other personal question, even with the 
higher variability of possible answer, can be picked instead of the one mentioned 
before. Figure 2 shows examples of the considered written contents. Following the 
[25], the written contents will be referred to as semantics. 

 

(a) (b) (c) (d) (e) 
 

Fig. 2. Examples of semantics: (a) public PIN, (b) secret PIN, (c) pseudonym, (d) symbol,  
(e) answer to the question “Where are you from?” 
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The next important issue discussed in this paper is secure template preservation. A 
reference database consisting of personal biometric data is of very high interest for 
criminals. The stolen identity could be used by forgers in a crime scene to cover up 
the traces or to gain unauthorized access to a secret. From technical point of view, the 
biometric system designer should guarantee that the templates, stored in the reference 
database, are irreversible. This means that it is impossible to reconstruct original 
biometric data from biometric templates.  

In order to provide secure template preservation the biometric hashing procedure is 
proposed. The main idea of biometric hashing is a generation of the individual stable 
hash value for each user from varying biometric data. Furthermore, the concept of 
biometric hashing implies a robust hash generation, which means that the same hash 
should be produced for all biometric samples of a person and clearly dissimilar hashes 
should be produced for biometric samples of different persons. This fact offers the 
challenge of combining biometrics and cryptography, because the robust hash can be 
used as a seed for generation of a personal cryptographic key. As a practical 
realization of biometric hashing, a secure sketch algorithm for dynamic handwriting 
proposed in [21] is selected.  

To sum up, we would like to emphasize that the focus of this work is laid on 
improvement of biometric user authentication based on dynamic handwriting, through 
the selection of relevant handwriting features. The feature selection is examined in 
conjunction with the specific realization of secure sketch algorithm, proposed in the 
third section. The authors have investigated the influence of the intelligent feature 
reduction on the hash generation performance and found out that a reduced feature set 
leads not only to computational speed-up but also to lower collision and higher 
reproduction rates. 

2 Related Works 

The idea of secure preservation of biometric templates and combining of biometrics 
and cryptography has been one of the topics most discussed in biometric research 
society during the last years [10]. It is a very attractive perspective for a biometric 
system to be able to generate cryptographic keys from biometric characteristics. In 
fact, people do not need to memorize a password phrase or possess a dongle to obtain 
secured access to a system. However, it is a great challenge to stabilize fuzzy 
biometric signals providing high reproduction and low collision rates during the 
biometric hash generation and at the same time to guarantee the perfect secrecy of 
privacy sensitive data. The theoretical aspects of authentication reliability and secrecy 
warranty are addressed in [2, 24]. 

2.1 Biometric Hashing 

The general terminology in domain of cryptographic keys generation from noisy data 
is proposed by Dodis in [4]. The authors introduce the term fuzzy extractor as a 
primary primitive for the solving of the mentioned problem. The fuzzy extractor 
comprises two procedures: secure sketch algorithm and strong extractor. Secure 



24 A. Makrushin, T. Scheidat, and C. Vielhauer 

sketch algorithm is used for the generation of helper data (sketch) from reference 
samples in the enrollment stage and for the reconstruction of reference data from a 
test sample in the authentication stage, making use of helper data. Strong extractor 
creates the secret key from the original or reproduced reference data. Helper data is 
considered as public information and can be available for attackers. Strong extractor 
can be presented by any cryptographic one-way function. Following the notations 
from [4] the fuzzy extractor is schematically illustrated in figure 3. Here P is the 
helper data, w is the reference vector, w’ is the test vector similar to w in a certain 
degree and R is the secret key generated from the reference vector w or from the test 
vector w’.  
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Fig. 3. Fuzzy extractor: generation und reproduction procedures 

The secure sketch algorithm alone allows user authentication, but does not 
guarantee secure preservation of biometric templates.  

One of the practical implementation of this idea was given by Vielhauer in [25]. 
He introduced interval matrix as a helper information and interval mapping procedure 
as one-way transformation of a fuzzy feature vector to a stable hash vector. In fact, 
the interval matrix contains feature variances (interval lengths) and zero offset of the 
first interval for all users individually. The interval mapping comprises the zero offset 
subtraction and the integer division to the interval length. Thus, this concept can be 
designated as user-based quantization. Nevertheless, originally it was called biometric 
hashing. This term will be also used in our work as a general description of the 
addressed process.  

Juels and Wattenberg in [12] suggested error-correcting codes and linear shift of 
reference vectors to the codeword space for creation of helper data. The process was 
called “fuzzy commitment scheme”. The idea is shown in figure 4. Firstly, the set of 

 
c1 c2

ci -1 ci

w‘

w

w‘-s

s

s

c3

ci+1

c1 c2

ci -1 ci

w‘

w

w‘-s

s

s

c3

ci+1

 

Fig. 4. Codeword mapping in accordance with the fuzzy commitment scheme 
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codewords {c1, c2, …, cn} is selected based on distribution of biometric data. The 
helper data s is built as a difference between reference vector w and corresponding 
codeword ci. In order to reproduce the codeword ci from the test vector w’, the sketch 
value s is subtracted and the nearest neighbor in the codeword space is returned. The 
reference vector w can be reconstructed by addition of s. 

In order to show the direct conformity of the fuzzy extractor and the fuzzy 
commitment scheme, the generation procedure of the fuzzy extractor is given as 
following, whereby SS corresponds to the Secure Sketch Generation procedure, Ext is 
the Strong Extractor, Rec is the Reconstruction procedure and h refers to an arbitrary 
cryptographic hash function: 
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The Reproduction procedure can be presented as following: 
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The fuzzy extractor was originally introduced for discrete signals. The feature vectors 
extracted from biometric data usually contain continuous values. Sutcu et al. in [24] 
propose practical realization of the secure sketch algorithm, based on fuzzy 
commitment scheme with double quantization, which is applied to continuous feature 
vectors. The first quantization with the global quantization step transforms feature 
data from continuous to integer domain. During the second quantization the integer 
feature values are mapped to the individual hash values based on user-based 
quantization step. The difference between hash values and feature values is used as 
helper data. This scheme was applied to face modality and has shown impressive 
results regarding the improvement of authentication performance.  

Scheidat et al. in [21] adapted the scheme of Sutcu for handwriting features. They 
compared the authentication as well as hash generation results to the scheme of 
Vielhauer [25] and figured out that the scheme of Suztu has superior hash generation 
performance but inferior user authentication performance [21]. This research extends 
the aforementioned work through the selection of relevant handwriting features in 
order to enhance the performance of the secure sketch algorithm based on double 
quantization.  

2.2 Feature Selection in Biometrics 

Unfortunately, the feature selection problem has been neglected in many biometric 
studies. Developers probably rely on the ability of a classification algorithm to model 
user distribution independently from the quality of features. Indeed, some classifiers 
such as decision trees, adaptive boosting or support vector machine already contain a 
feature selection mechanism. In literature e.g. [20] this kind of feature selection is 
called embedded, because of its inherent relation to the classifier. However, the 
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selection of features based on the additional extrinsic analysis can lead to superior 
results. This was shown e.g. in work of Kira et al. [13]. The authors proposed the 
Relief algorithm to determine the relevance of each feature for the decision tree 
relying on instance-based learning. Another example is the FOCUS algorithm of 
Almuallim et al. [1]. Both algorithms were used together with the ID3 algorithm to 
induce a decision tree from the training data using only selected features. The 
resulting classification performance was significantly higher compared to the intrinsic 
ID3 feature selection, which is based on feature’s information gain. In later studies 
John et al. [11] formally defined the terms relevance and redundancy of features. 
They originally introduced the division of feature selection approaches to filters and 
wrappers. One of the main results of their work was the assertion that the feature 
selection should rely on the relation between features and targets as well as on the 
classification algorithm [14]. In other words, the wrapper model should be preferred. 

The truth is that the feature selection is a general problem of pattern recognition. 
Comprehensive studies and very detailed surveys can be found [3, 8, 16, 18, 20]. Our 
investigation relies on the work of Guyon et al. [7]. Both filter and wrapper 
approaches are studied. For filter-based selection, the feature ranking is done using 
the correlation coefficient or mutual information. The wrappers are represented by 
nested subset selection with forward or backward selection or with multiplicative 
updates and subsequent classification. 

Several works bring up a feature selection issue in biometric domain. For instance, 
Kumar et al. in [15] used the Correlation Based Feature Selection (CFS) swiped from 
Hall et al. [9] for the bimodal biometric system and investigated the classification 
performance. In addition, the feature level fusion used in combination with feature 
selection is studied.  

A selection of handwriting features was done in [6]. For feature ranking authors 
propose the heuristic, which is based on calculation of the scalar Mahalanobis 
distance between the mean feature value of user’s training signatures and the mean 
feature value of all training signatures. Finally, they suggest 40 features from 100 
proposed.  

Makrushin et al. in [17] investigated several heuristics-based as well as wrapper-
based subset selection approaches and applied them to the biometric hashing 
algorithm of Vielhauer [25]. Both user authentication and hash generation 
performances of the algorithm were significantly improved. 

3 Secure Sketch Algorithm 

The biometric hashing is a concept of the creation of an individual stable value from 
variable biometric data of a user. This concept is based on the assumption that the 
intra-class variations of biometric signals are significantly smaller than inter-class 
variations. Consequently, the variations in user’s samples can be reduced through an 
intelligent quantization or an error-correcting coding. At the same time samples of the 
different users, which are significantly different, can not be mapped to the same hash 
value through the quantization, nor properly corrected by error-correcting codes. 
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However, the error-correcting codes are capable of correcting only a limited number 
of bits. For instance, the BCH code tolerates errors of up to almost 17% of the 
component bits [12]. Due to this fact and the high alterability of feature values, it is 
hard to adapt any standard error-correcting scheme for handwriting features in order 
to exactly reproduce the reference vectors. Therefore, the smart employment of error-
correcting codes leads to sufficient user authentication rates, but reproduction rates 
remain deficient. Hence, in our experiments, the double quantization algorithm 
originally proposed in [23] and modified for handwriting features in [21] is used. This 
scheme seems to be more appropriate for the considered task. 

In the description of algorithm the following notations are used: M denotes the 
number of user, N denotes the number of features, index j defines a particular user, 
index i refers to a certain feature and fij is the feature value. The features are 
considered independently, so that the equations are presented for the fixed index i.  

The first quantization with a fixed uniform quantization step transforms continuous 
feature values to integer format and at the same time strongly reduces the variance of 
feature values. The global quantization step δi is calculated as follows, whereby Sj is 
the number of trainings samples of user j:  
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The value varij is used to provide the individual quantization step. Firstly, in order to 
generate the reference value, the average feature value for each user j is calculated: 
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Next, these values are quantized in accordance with global quantization step δi, 
whereby e is the expansion factor of the individual quantization interval σij: 
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By modifying the expansion factor, one can an achieve increase of RR and decrease 
of CR or vice versa. The expansion factor can be selected for each feature 
individually. Vector wj is stored as the user template. The value σij is called codebook 
condition. The scalar codeword cij is provided by quantization of wij in accordance 
with σij and back projection to templates space. 
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The helper data (sketch) s is the difference between the quantized average value and 
the corresponding codeword.  
 

ijijij cws −= (7) 
 
Since the sketch sij is available, the codeword cij can be reconstructed from any test 
vector tj of the user j, which is similar enough to the reference vector avgj. First, for 
each feature i, the quantization of the corresponding component of the test vector tj is 
done with the global quantization step δi: 
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Then the sketch is subtracted and the user-based quantization is provided: 
 

( )12
12

'
' +⋅











+
−

= ij
ij

ijij
ij

sw
roundc σ

σ
 

(9) 

 
Taking into account that vectors wj and w’j are similar to a certain degree, the vectors 
cj and c’j must be equal after this transformation. The template wj of the user j can be 
reproduced from the reconstructed codeword by addition of the sketch value. 
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Finally, the proposed process is illustrated in figure 5. 
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Fig. 5. General scheme of sketch generation and reconstruction processes 

How it can be seen in figure 5, no cryptographic hashing of the user’s template is 
provided. In spite of the fact that the strong extractor has to be used in practical 
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applications, the absence of it does not have any influence to the template 
reconstruction or more precisely to reproduction and collision rates. Indeed, the 
quantized codeword cj can be alternatively stored as the user template. This vector 
cannot be reproduced without an appropriate test sample of the same user and taken 
alone does not provide any information about wj. Thus, regarding the definition given 
in [25] this vector can be designated as the biometric hash vector. The reproduction as 
well as collision rates in both cases, the reconstruction of the reference vector and the 
reconstruction of the codeword, are equal. 

4 Feature Selection 

Kira in [13] gives the following definition of feature selection: “Feature selection is 
the problem of choosing a small subset of features that ideally is necessary and 
sufficient to describe the target concept.” Regarding this definition, the irrelevant and 
redundant features should be removed during the feature selection. Therefore a 
reasonable question arises: “How it could be possible to find out, which features are 
irrelevant or redundant and what is exactly ‘relevant’ in this scope?” John and Kohavi 
in [11, 14] give the strict definition of feature relevance. They also define a redundant 
feature as a feature, which linearly depends on another feature, or on a combination of 
other features.  

A further question to be considered is: “Why are irrelevant or redundant features 
disturbing for a classification?” Actually, a good classifier should automatically use 
only useful features and ignore any other ones. Indeed, only a small number of 
classification schemes comprise embedded feature selection. Kumar et al. in [15] point 
out some types of negative impact of irrelevant and redundant features to three 
classification schemes: nearest neighbor rule, naive Bayes classifier and decision trees. 
Another reason for feature reduction is that the high dimension of feature space leads to 
classification errors. Experts refer to it as “curse of dimensionality” [5]. Furthermore, 
the computational resources are always limited and therefore low-dimensional vectors 
are preferred. Hence, the need of a feature reduction becomes clear.  

However, the feature reduction can be done by classic subspace projection methods 
like principal component analysis [5]. These techniques are beyond the scope of this 
work, because after the subspace projection the new features do not possess any 
comprehensible semantic. 

4.1 Wrappers vs. Filters 

According to the common terminology originally provided by John et al. in [11] the 
feature selection approaches are divided into wrappers and filters. In order to 
emphasize the difference, the approaches are schematically illustrated in figure 6.  

Wrappers select the feature subset based on particular classifier performance. 
Hence, the feature selection is inherently connected to the applied classifier. On the 
one hand, the optimal feature subset can be found through the repetition of 
classification trials with different feature subsets. Optimality is the most notable 
advantage here. On the other hand, an exhaustive search is required to find out the 
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optimal subset. Given N features there are 2N feature subsets possible. This 
exponential relationship between the number of features and the number of possible 
subsets makes an exhaustive search applicable only for small number of features. 
Moreover, the single evaluation trial implies the classification of the whole test set 
and, therefore, the computational complexity depends from the number of test 
samples as well.  

Filters, on the contrary, select the feature subset based on the predefined ranking of 
features. The ranking is provided based on some quality criterion, which is 
completely independent of the classification method. Therefore, filters can be 
considered as a pre-processing step in signal processing workflow. The quality 
criteria are selected rather intuitively or based on extrinsic expert knowledge. 
Obviously, until the classification method is known, the feature selection process is 
never optimal. Anyhow, in particular cases a filter-based feature selection can lead to 
the optimal feature subset in terms of classification performance. According to Guyon 
in [7] “Fisher’s criterion to rank variables in a classification problem where the 
covariance matrix is diagonal is optimum for Fisher’s linear discriminant classifier”. 
Even though filters do not usually lead to optimal classification performance, they are 
preferred due to their computational efficiency. Clearly, the quality criterion choice 
(in other words the appropriate heuristic) is the most critical issue. 

In this work several heuristics for filter-based feature selection are evaluated, as 
well as three editions of wrapper-based feature selection. 
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Fig. 6. Comparison of wrappers (a) and filters (b), applied to feature selection 

4.2 Exemplary Selected Wrappers 

There are several strategies to avoid exhaustive search. In the simplest approach the 
feature ranking is provided by means of classification with each single feature. Then 
the best ranked features are included to the target optimal feature subset. Other 
famous approaches are sequential forward and backward selections (SFS, SBS). The 
forward selection starts with an empty set and adds the most relevant features one by 
one at each step. The most relevant feature, in combination with already selected 
features, has the highest classification error decrease. The iterative process stops when 
the addition of a new feature does not decrease the classification error. The backward 
selection starts with the whole feature set and removes the least relevant features one 
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by one at each step. The removal of the least relevant feature leads to the highest 
classification error decrease (or might even slightly increase it). The iterative process 
stops when the next removal increases the classification error significantly. 

In order to overcome the nesting problem of sequential forward and backward 
selection, more sophisticated search strategies such as sequential floating forward/ 
backward search [19] or fast branch and bound algorithm [22] can be applied. 
However, this research is not aimed at comparing all possible approaches. First and 
foremost, we aim at showing that feature selection can significantly improve the 
performance of biometric systems and that a time-consuming subset search often has 
superior results compared to heuristic-based feature ranking.     

4.3 Exemplary Selected Filters 

In order to avoid the computationally expensive exhaustive search and to be 
independent from classification algorithm, several heuristics are suggested to define 
the quality of features. First and foremost, this work aims at proposing quality 
measures, which reflect the discrimination power of features. The heuristics facilitate 
the ranking of features through the calculation of quality values. The actual filtering is 
done by low ranked features cut. 

Henceforth some formal notations and terms are provided to avoid any ambiguities 
and obscurities. The test set of feature vectors xj with corresponding labels yj (targets) 
is given. In biometric context, the labels refer to user identities. The index j refers to 
the number of test vector. Given that m features are extracted from the raw data, each 
feature vectors xj

 can be then introduced as xj = (x1
j, x2

j,…, xm
j). Considering all 

features independently, for each feature i the following notations are used: xi = (xi
1, 

xi
2,…, xi

n) is the vector of feature values and y = (y1, y2,…, yn) is the vector of targets, 
thereby n is the number of vectors in the test set. The aim of the filter is to provide the 
scalar rank R(i) based on the tuple xi, y. 

ANOVA. Analysis of variance (ANOVA) is a set of statistical models for evaluation 
of the relationship between within-class scatters and between-class scatter. In order to 
provide better user discrimination a feature variation σ inside of each user should be 
as small as possible. Nonetheless, a feature variation between different users should 
be high. The second value can be defined, for instance, by the difference between 
mean values μ  of users. Equation 11 gives feature quality defined by ANOVA test 
for the case of two users. Here N1 and N2 denote the numbers of test samples of first 
and second users correspondingly. 
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If more than two users are presented, there are two principal ways to calculate the 
feature quality (F-value). In the first case, we call it ANOVA-2class, for each user k 
all other users are considered as only one non-user class and the value Fk can be 
calculated through the application of equation 11. The final F-value is given by the 
sum of Fk values. 
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In the second case the multivariate ANOVA test is applied. The feature variation 
inside of a user is presented by the sum of deviations of user samples xkj from a user 
mean value μk. The feature variation between different users is presented by the sum 
of deviations of user mean values μk from the global mean value μ. The feature rank 
(F-value) is given by equation 12. Here K is the number of users and Nk is the number 
of test samples of the user k. 
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Correlation. The use of the correlation between feature values and labels, as the 
quality criterion of a feature, is described in [7]. Equation 13 provides the Pearson 
correlation coefficient R(i), whereby the μx and μy designate mean values of feature i 
and labels correspondingly. 
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R(i) becomes zero if no correlation between feature and labels is established. This 
means complete irrelevance of the feature i for user authentication. Contrariwise, 
R(i)=1 designates maximal correlation and therefore absolute relevance of the feature 
i for the user authentication. It should be noted that the correlation criterion detects 
only linear dependency between features and labels. 

Joint-Entropy. Alternatively, the information theoretic ranking criteria could be used 
instead of correlation coefficient. The empirical estimation of the mutual information 
between features and labels gives the quality of the particular feature. Given that the 
feature values are discrete, the mutual information is given by equation 14. 
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It is difficult to estimate the real values for the distribution P(X=xi) of the feature xi, 
the prior class probability P(Y=y) and the probability of the joint observation 
P(X=xi,Y=y). In case of discrete features, the frequencies calculated from the 
evaluation data can be used instead. 

Entropy-2Class. Another way to build an entropy-based quality criterion relies on 
the comparison of user and non-user distributions of the particular feature xi. In case 
of discrete features the probability distribution can be substituted by the histograms 
built from the evaluation data. The higher distance between user and non-user 
histograms designates better discrimination power of the feature. The final quality 
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coefficient is the sum over all users. Four histogram-based distance measures are 
discussed in this work. These are Kullback-Liebler divergence (KL), Jensen-Shannon 
distance (JS, also called Jeffrey divergence) and Bhattacharyya distance (Bha). 
Suppose H(A) = H1(A),H2(A),…,HN(A) is the histogram of feature values from the 
user A and H(⎯A) = H1(⎯A),H2(⎯A),…,HN(⎯A) is the histogram of feature values from 
the remaining users. N is the maximal feature value and K is the number of users. The 
aforementioned divergences are given by equations 15-17. 

Kullback-Liebler: 
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Jensen-Shannon: 


= = 











+

⋅
⋅+

+

⋅
⋅=

K

k

N

j jj

j
j

jj

j
j

kHkH

kH
kH

kHkH

kH
kHiR

1 1
22

)()(

)(2
log)(

)()(

)(2
log)()(

 
(16) 

Bhattacharyya: 
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Entropy. The same assumption as for the variances in ANOVA could be used for  
the entropies. The criterion contradistinguishes the inter-class entropy, which is the 
entropy of the user means μ = (μ1, μ2,…,μk) and the intra-class entropy, which is the 
sum of the entropies of the feature values xk. The assumption is that for a relevant 
feature the inter-class entropy is high and intra-class entropy is low. It could be 
formally given by equation 18. Here Nμ is the maximal value of the user means, Nk is 
the maximal feature value for user k, whereas K is the number of users. 
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5 Evaluation 

The experimental database was collected from 53 donors in laboratory conditions. 
The tablet PC Toshiba M200 Portege was applied for capturing of handwriting 
samples. This device is not able to acquire pen altitude and pen azimuth, thus only 
three signals x(t), y(t) and pressure(t) are exploited to extract the features.  

The acquisition was done in three sessions with the interval of at least one month 
between two sessions in a period of less than 6 months. For each of five written 
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contents, described in the introduction (public PIN, secret PIN, pseudonym, symbol 
and place), each donor provided 10 instances, which results in a total of 30 instances 
per user per semantic. 

Due to the low number of donors the separation into client and impostor groups 
was not done. All donors were considered as clients and the experiments were 
provided in a random attack mode. Any attempt of one client to be verified as another 
client is interpreted as an impostor trial. In order to be in conformity with a real-life 
scenario, the samples from the first session were used for enrollment. The samples 
from the second session were used for the tuning of the verification system and 
feature selection. The samples from the third session were used for verification test. 
Regarding the mentioned division of samples the verification test contains 530 
genuine trials, corresponding to 53 users times 10 test samples, and 27560 impostor 
trials, corresponding to 53 users times 52 user claims times 10 test samples.  

5.1 Performance Measures 

The hash generation scenario implies exact reconstruction of a biometric hash vector. 
The usual threshold based evaluation used in the user authentication scenario is not 
appropriate in this case. While a traditional methodology estimates false accept rate 
(FAR) and false reject rate (FRR) as functions of decision threshold T: FAR(T), FRR(T) 
the hash generation scenario requires the error estimation in zero point: T=0. In the hash 
generation scenario the reproduction rate (RR) and collision rate (CR) are used as 
performance indices [21]. These values are relative sums of identically reproduced 
hashes in genuine and impostor trials correspondingly. The identical hash reproduction in 
impostor trial means false acceptance with zero decision threshold and, thus, CR can be 
denoted as FAR(0). The identical hash reproduction in genuine trial means the correct 
acceptance with zero decision threshold and, thus, RR can be denoted as 1-FRR(0). 
Therefore CR and RR have the same nature as FAR and FRR values. In a user 
authentication scenario the equal error rate (EER) is usually used instead of both curves 
in order to represent the algorithm performance in an easier way. Similarly, the collision-
reproduction rate (CRR) is proposed as a performance index for the hash generation 
scenario. The CRR is given by equation 19 and can be interpreted as half total error rate 
in zero point HTER(0). In this consideration CR and RR are weighted equally. 

( )( )RRCRCRR −+= 1
2

1    (19) 

5.2 Expansion Level of Individual Quantization Interval 

The selection of expansion factor e, proposed in section 3 is a very important issue for 
managing the ratio between CR and RR. The selection of a relatively low value of e 
leads to compact user intervals and therefore to low CR and low RR. On the contrary, 
the selection of a high value of e leads to very wide user intervals and consequently to 
high CR and high RR. In marginal cases RR as well as CR is equal to zero or equal to 
one, resulting in CRR of 0.5. Figure 7 shows the dependency between performance 
indices and the expansion factor obtained in the tests with 131 features. 
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Fig. 7. Dynamics of performance indices (RR, CR, EER, CRR) depending on expansion factor 
for the complete feature set of 131 features 

It is not a good idea to look for the optimal CRR with all 131 features, because it is 
obvious that with reduction of features RR as well as CR will grow. Since the optimal 
CRR implies relatively high RR, the RR does not have space to grow. CR at the same 
time will grow rapidly. Hence, the significant improvement of CRR can not be 
achieved through feature elimination. We select the expansion factor so that RR is at 
least 50%. In this case the RR will probably grow faster than CR, so that CRR also 
grows. The following expansion factors are specified: 4.25 for public PIN and secret 
PIN, 5 for pseudonym, 5.5 for symbol and place. The corresponding CR values for 
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the complete feature set are 6.49%, 2.22%, 1.32%, 0.45% and 1.69% for public PIN, 
secret PIN, pseudonym, symbol and place correspondingly.   

5.3 Results 

In order to illustrate the ability of proposed feature selection approaches to determine 
the feature relevance, figure 8 illustrates the relationship between CRR and the 
number of selected features. The curves of all feature selection methods are firstly 
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Fig. 8. Collision-Reproduction Rate dynamics depending on feature subset size 
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falling and afterwards growing. However, global minima are attained in very different 
positions according to the number of selected features. The black solid curve, called 
‘raw’, is the random ranking of features based on the features’ implementation order. 
There are 13 features without any variance. They do not have any influence on CRR. 
All feature selection strategies rate these features with zero and therefore put at the 
end of the ranking list. Thus, the CRR values between 118 and 131 are equal, except 
the case of a random ranking. It can be clearly seen that not all curves have superior 
dynamics compared to the raw curve, which means that filter-based feature selection 
generally does not guarantee an improvement of CRR. However, the global minima 
of the ANOVA curve are in all cases significantly lower than the global minima of the 
raw curve. Consequently, it can be asserted that the ANOVA-based feature selection 
invariably improves the hash generation rates.   

Table 2 shows the best results provided by different feature selection methods 
with a corresponding number of selected features for each semantic class. The first 
row of the table contains the optimal CRR values, which can be achieved with the 
complete set of 131 features by modifying the expansion factor of an individual 
quantization step. Regarding the feature selection methods, these performance 
values can be considered as reference ones. Table 2 shows that ANOVA is clearly 
the best heuristic with 20.39%, 12.98%, 11.87%, 7.41% and 12.34% of CRR. 
Exceptionally, for the place semantic, the joint-entropy heuristic has superior 
performance, namely 12.29%, which is marginally lower than in the case of 
ANOVA. It is also interesting to observe that ANOVA has in most cases the better 
performance than simple wrapper. 

The CRR provided by SFS and SBS methods are significantly lower compared to 
heuristics, even though feature selection and evaluation were provided based on 
completely different sample sets. 

Table 2. The best achieved collision/reproduction rates (in %) with corresponding number of 
selected features 

public pin (77993) secret pin pseudonym symbol place
RR CR CRR n.feat. RR CR CRR n.feat. RR CR CRR n.feat. RR CR CRR n.feat. RR CR CRR n.feat.

all features 58.87 10.56 25.85 131 70.38 11.11 20.37 131 67.55 8.58 20.52 131 70.57 5.04 17.24 131 69.43 7.38 18.98 131
raw 76.23 20.53 22.15 39 79.06 9.04 14.99 42 83.59 9.23 12.83 38 90.19 8.92 9.37 27 77.93 8.04 15.06 39
anova 78.68 19.39 20.35 33 83.40 9.32 12.96 31 83.02 6.75 11.87 39 92.64 7.46 7.41 24 89.62 14.30 12.34 23
anova-2class 75.28 19.45 22.08 49 81.70 14.73 16.52 44 77.74 9.22 15.74 34 88.49 11.10 11.30 7 79.25 9.51 15.13 39
correlation 83.59 25.18 20.80 36 70.76 7.32 18.28 53 86.42 13.41 13.50 38 86.23 10.11 11.94 23 72.83 6.19 16.68 52
entropy 62.83 13.96 25.57 49 76.60 19.07 21.23 26 72.64 6.97 17.17 26 86.42 9.11 11.35 8 81.13 17.41 18.14 20
entropy-2class-kl 71.70 14.44 21.37 77 72.64 9.84 18.60 68 85.47 10.89 12.71 35 86.42 5.38 9.48 36 96.04 23.18 13.57 13
entropy-2class-js 71.70 14.74 21.52 74 72.64 9.84 18.60 68 85.28 10.64 12.68 36 85.09 5.24 10.07 39 87.17 15.41 14.12 21
entropy-2class-bha 71.70 14.70 21.50 72 70.19 8.20 19.01 83 81.13 7.38 13.12 52 88.87 6.77 8.95 23 76.42 6.32 14.95 63
joint-entropy 69.81 15.99 23.09 62 82.45 12.54 15.04 33 76.79 8.62 15.91 48 83.02 7.27 12.12 32 87.17 11.74 12.29 39
simple wrapper 73.02 16.28 21.63 32 85.47 16.76 15.64 14 86.42 10.40 11.99 18 89.43 6.06 8.31 17 89.25 11.60 11.18 20
sfs 74.91 12.64 18.87 66 81.70 7.57 12.94 27 86.60 7.07 10.23 26 93.59 3.44 4.93 13 88.30 5.62 8.66 45
sbs 86.42 19.28 16.43 43 90.38 10.45 10.03 34 89.81 8.44 9.32 48 93.77 4.76 5.49 15 91.89 8.32 8.22 33  

 
Comparing the best result from table 2, which is 4.93% CRR (CR 3.44%/RR 

93.59%) for the symbol, to the results from [17], in can be noticed that double 
quantization based biometric hashing has clearly higher performance according to the 
CRR. In [17], the best CRR, achieved for symbol with 60 features, was 6.32% (CR 
6.23%/RR 93.59%).  
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Table 3. The collision/reproduction rates (in %) obtained with subset of 30 features 

public pin (77993) secret pin pseudonym symbol place
RR CR CRR n.feat. RR CR CRR n.feat. RR CR CRR n.feat. RR CR CRR n.feat. RR CR CRR n.feat.

all features 58.87 10.56 25.85 131 70.38 11.11 20.37 131 67.55 8.58 20.52 131 70.57 5.04 17.24 131 69.43 7.38 18.98 131
raw 78.30 23.37 22.53 30 82.08 13.93 15.93 30 84.72 12.89 14.08 30 88.11 8.31 10.10 30 80.00 14.76 17.38 30
anova 78.87 20.91 21.02 30 83.40 9.70 13.15 30 83.77 8.16 12.19 30 89.43 5.72 8.14 30 80.00 10.15 15.07 30
anova-2class 79.62 31.26 25.82 30 83.40 19.53 18.06 30 77.93 10.19 16.13 30 74.53 1.84 13.65 30 80.94 12.80 15.93 30
correlation 83.77 26.97 21.60 30 81.51 20.52 19.50 30 87.93 18.07 15.07 30 81.89 8.87 13.49 30 76.60 14.28 18.84 30
entropy 68.87 23.19 27.16 30 73.40 16.29 21.45 30 67.55 5.22 18.84 30 68.11 2.61 17.25 30 68.49 7.89 19.70 30
entropy-2class-kl 76.60 23.04 23.22 30 75.47 17.23 20.88 30 85.66 12.37 13.36 30 86.42 8.87 11.23 30 77.93 11.49 16.78 30
entropy-2class-js 76.60 23.04 23.22 30 75.09 16.43 20.67 30 85.66 12.28 13.31 30 86.79 8.50 10.85 30 78.30 11.49 16.59 30
entropy-2class-bha 77.55 22.95 22.70 30 75.09 16.69 20.80 30 84.91 14.49 14.79 30 85.66 5.74 10.04 30 80.57 12.50 15.97 30
joint-entropy 81.51 35.43 26.96 30 83.96 26.76 21.40 30 87.93 23.22 17.65 30 83.02 7.88 12.43 30 90.00 23.71 16.85 30
simple wrapper 73.02 16.69 21.84 30 70.38 6.57 18.10 30 77.55 6.34 14.40 30 76.79 2.25 12.73 30 75.09 6.06 15.48 30
sfs 77.36 15.61 19.13 30 80.57 7.23 13.33 30 85.85 6.74 10.45 30 89.62 2.02 6.20 30 88.68 6.28 8.80 30
sbs 87.55 22.07 17.26 30 90.57 11.00 10.22 30 90.76 10.07 9.66 30 89.43 2.99 6.78 30 91.89 8.62 8.37 30  
 

The number of features in table 2 was defined a-posteriori for the best CRR 
obtained from the test. In a real-life scenario the number of features should be defined 
a-priori as a system parameter. The estimation of the optimal subset size can be done 
empirically, based on the results of preliminary tests or intuitively. The constant 
number of used features is also required for adequate generation of a cryptographic 
key, since the key size depends on the length of the biometric hash vector. In order to 
illustrate results, which can be obtained in real-life application, the number of features 
was limited to 30. The corresponding performance values are given in table 3. 

Finally, table 4 gives an overview of the most relevant features selected by the 
best feature selection approach for each semantic class and shows corresponding 
performance indices: CR, RR, CRR and EER. As it can be seen, the features were 
selected differently regarding the written content. However, the feature 27 
(normalized average velocity in y-direction) is presented in all five subsets. There 
are several features presented in four subsets. These are 26 (normalized average 
velocity in x-direction), 67 (ratio between accumulated perimeters of convex hulls 
around the path segments and the perimeter of the global bounding box), 68 
(normalized number of points in left half region), 86 (ratio between the path length 
and start-end distance), 122 (average pressure in the third points cluster) and 131 
(standard deviation of pressure). These features are considered to be invariably 
relevant. However, the vast majority of features is not presented in optimal subsets. 
These could be denoted as moderately irrelevant and should be very discreetly used 
in further works.  

Table 4. The subsets of most relevant features 

semantic RR CR CRR EER FS method no.feat. features

public pin (77993) 86,42% 19,28% 16,43% 18,24% SBS 43

2, 3, 5, 6, 12, 18, 23, 26, 27, 30, 32, 34, 41, 43, 44, 53, 61, 
62, 63, 64, 65, 66, 67, 68, 69, 72, 74, 76, 83, 86, 89, 90, 94, 
96, 99, 100, 104, 113, 119, 121, 122, 124, 131

secret pin 90,38% 10,45% 10,03% 10,36% SBS 34

1, 2, 5, 6, 10, 16, 18, 23, 26, 27, 30, 32, 36, 38, 39, 40, 54, 
60, 61, 65, 67, 68, 70, 76, 81, 85, 86, 89, 97, 104, 113, 122, 
125, 131

pseudonym 89,81% 8,44% 9,32% 9,61% SBS 48

3, 8, 14, 16, 17, 18, 26, 27, 31, 33, 34, 35, 37, 41, 44, 49, 
51, 52, 53, 55, 56, 59, 61, 64, 66, 67, 68, 69, 72, 73, 74, 76, 
87, 91, 94, 95, 96, 97, 98, 99, 105, 107, 111, 118, 121, 122, 
125, 131

symbol 93,59% 3,44% 4,93% 5,53% SFS 13 4, 6, 26, 27, 49, 50, 52, 54, 55, 78, 80, 82, 86

place 91,89% 8,32% 8,22% 8,30% SBS 33

3, 5, 13, 27, 30, 35, 36, 39, 42, 44, 46, 51, 59, 60, 63, 67, 
68, 69, 71, 73, 74, 79, 82, 83, 86, 87, 89, 91, 95, 97, 122, 
123, 131  
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6 Conclusion and Further Work 

The experimental results shown that the reduction of the feature set by elimination of 
less relevant features significantly improves the hash generation performance of the 
considered secure sketch based biometric system.  

The filter-based and wrapper-based approaches to feature selection were 
investigated and several examples of both were experimentally evaluated on 
handwriting features. It has been shown that filter-based feature selection does not 
guarantee the improvement of collision/reproduction rates, even though it can be very 
useful in some cases. Indeed, the ANOVA test is identified as the best heuristic and 
often demonstrates better performance than ranking based on the classification with 
each single feature. The greedy search approaches such as sequential forward or 
backward search invariably lead to improvement of collision/reproduction rates and 
generally show better results than filters. However, the wrapper-based feature subset 
selection is a time-consuming process, even if an exhaustive search is not carried out. 
Furthermore, wrappers are intrinsically associated with classifier performance. Thus, 
the selected feature subset should not be necessarily an optimal one for another 
classifier. Consequently, once the classifier is known and the test set is given, 
wrappers are preferable in any other cases we suggest to use ANOVA test for feature 
selection.   

It is rather difficult to point out features, which are universally suitable for all 
written contents. The optimal subsets for each semantic is presented individually and 
seven features (normalized average velocity in x/y-direction, ratio between 
accumulated perimeters of convex hulls around the path segments and the perimeter 
of the global bounding box, normalized number of points in left half region, ratio 
between the path length and start-end distance, average pressure in the third points 
cluster and standard deviation of pressure) are specified as suitable independently 
from written content.  

Before feature selection, the most appropriate handwriting content (symbol) has a 
CR of 5.04% and a RR of 70.57%. After sequential forward selection the optimal 
subset of 13 features is found. The CR is reduced to 3.44% and the RR is increased to 
93.59%. 

Future research will be dedicated to more sophisticated wrapper approaches such 
as sequential floating forward/backward search and branch and bound algorithm. 
Furthermore, we have been continuously working on enlargement of our handwriting 
database and development of evaluation protocols. The further crucial issue to be 
investigated is the hash entropy and security analysis of the resulting biometric 
system. 

 
Acknowledgement. This work is partly supported by the Deutsche 
Forschungsgemeinschaft (DFG, German Research Foundation) in framework of the 
project “Writing Print”. Our special thanks go to Prof. Jana Dittmann for fruitful 
discussions on biometric hashing and cryptography. 



40 A. Makrushin, T. Scheidat, and C. Vielhauer 

References 

1. Almuallim, H., Dietterich, T.G.: Learning With Many Irrelevant Features. In: Proc. of the 
Ninth National Conference on Artificial Intelligence, pp. 547–552 (1991) 

2. Balakirsky, V.B., Han Vinckin, A.J.: Biometric Authentication Based on Significant 
Parameters. In: Vielhauer, C., Dittmann, J., Drygajlo, A., Juul, N.C., Fairhurst, M.C. (eds.) 
BioID 2011. LNCS, vol. 6583, pp. 13–24. Springer, Heidelberg (2011) 

3. Dash, M., Liu, H.: Feature selection for classification. Journal of Intelligent Data 
Analysis 1(1-4), 131–156 (1997) 

4. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy Extractors: How to Generate 
Strong Keys from Biometrics and Other Noisy Data. SIAM J. Comput. 38(1), 97–139 
(2008) 

5. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley-Interscience 
(2000) 

6. Fiérrez-Aguilar, J., Nanni, L., Lopez-Peñalba, J., Ortega-Garcia, J., Maltoni, D.: An  
On-Line Signature Verification System Based on Fusion of Local and Global Information. 
In: Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 523–532. 
Springer, Heidelberg (2005) 

7. Guyon, I., Elisseeff, A.: An Introduction to Variable and Feature Selection. Journal of 
Machine Learning Research 3, 1157–1182 (2003) 

8. Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L.: Feature Extraction, Foundations and 
Applications. STUDFUZZ. Physica-Verlag, Springer (2006) 

9. Hall, M.A., Smith, L.A.: Practical feature subset selection for machine learning. In: Proc. 
of the 21st Australian Computer Science Conference, pp. 181–191 (1998) 

10. Jain, A.K., Nandakumar, K., Nagar, A.: Biometric Template Security. EURASIP Journal 
on Advances in Signal Processing, Article ID 579416 (2008) 

11. John, G.H., Kohavi, R., Pfleger, K.: Irrelevant Features and the Subset Selection Problem. 
In: Proc. of the International Conference on Machine Learning, pp. 121–129 (1994) 

12. Juels A., Wattenberg, M.: A Fuzzy Commitment Scheme. In: Proc. of the ACM 
Conference on Computer and Communications Security, pp. 28–36 (1999) 

13. Kira, K., Rendell, L.A.: The feature selection problem: Traditional methods and a new 
algorithm. In: Proc. 10th National Conference on Artificial Intelligence, pp. 129–134 
(1992) 

14. Kohavi, R., John, G.H.: Wrappers for Feature Subset Selection. Journal of Artificial 
Intelligence 97(1), 273–324 (1997) 

15. Kumar, A., Zhang, D.: Biometric Recognition Using Feature Selection and Combination. 
In: Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 813–822. 
Springer, Heidelberg (2005) 

16. Liu, H., Motoda, H. (eds.): Computational Methods of Feature Selection. Data Mining and 
Knowledge Discovery Series. Chapman & Hall/ CRC, Taylor & Francis Group, LLC 
(2008) 

17. Makrushin, A., Scheidat, T., Vielhauer, C.: Handwriting Biometrics: Feature Selection 
Based Improvements in Authentication and Hash Generation Accuracy. In: Vielhauer, C., 
Dittmann, J., Drygajlo, A., Juul, N.C., Fairhurst, M.C. (eds.) BioID 2011. LNCS, 
vol. 6583, pp. 37–48. Springer, Heidelberg (2011) 

18. Molina, L.C., Belanche, L., Nebot, A.: Feature Selection Algorithms: A survey and 
experimental evaluation. In: Proc. IEEE Int. Conf. on Data Mining, pp. 306–313 (2002) 

19. Pudil, P., Novovicová, J., Kittler, J.: Floating search methods in feature selection. Pattern 
Recognition Letters 15(11), 1119–1125 (1994) 



 Improving Reliability of Biometric Hash Generation 41 

20. Saeys, Y., Inza, I., Larrañaga, P.: A review of feature selection techniques in 
bioinformatics. Bioinformatics 23(19), 2507–2517 (2007) 

21. Scheidat, T., Vielhauer, C., Dittmann, J.: Biometric hash generation and user 
authentication based on handwriting using secure sketches. In: Proc. ISPA 2009, pp. 550–
555 (2009) 

22. Somol, P., Pudil, P., Kittler, J.: Fast Branch & Bound Algorithms For Optimal Feature 
Selection. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(7), 900–
912 (2004) 

23. Sutcu, Y., Li, Q., Memon, N.: Protecting Biometric Templates with Sketch: Theory and 
Practice. IEEE Trans. on Information Forensics and Security 2(3), 503–512 (2007) 

24. Verbitskiy, E., Tuyls, P., Denteneer, D., Linnartz, J.-P.: Reliable biometric authentication 
with privacy protection. In: Proc. 24th Benelux Symposium on Information Theory, pp. 
125–132 (2003) 

25. Vielhauer, C.: Biometric User Authentication for IT Security: From Fundamentals to 
Handwriting. Springer (2006) 

 



Feature-Based Forensic Camera Model

Identification

Thomas Gloe

Technische Universität Dresden,
Institute of Systems Architecture,

01062 Dresden, Germany
Thomas.Gloe@tu-dresden.de

Abstract. State-of-the-art digital forensic techniques for camera model
identification draw attention on different sets of features to assign an
image to the employed source model. This paper complements existing
work, by a comprehensive evaluation of known feature sets employing a
large set of 26 camera models with altogether 74 devices. We achieved
the highest accuracies using the extended colour feature set and present
several detail experiments to validate the ability of the features to sep-
arate between camera models and not between devices. Analysing more
than 16,000 images, we present a comprehensive evaluation on 1) the
number of required images and devices for training, 2) the influence of
the number of camera models and camera settings on the detection re-
sults and 3) possibilities to handle unknown camera models when not
all models coming into question are available or are even known. All
experiments in this paper suggest: feature-based forensic camera model
identification works in practice and provides reliable results even if only
one device for each camera model under investigation is available to the
forensic investigator.

1 Introduction

The abundance of digital photographs in everyday life and the trust placed into
them as pieces of evidence raises a need for reliable forensic techniques to test the
authenticity of digital images. The increasing number of available techniques can
be broadly divided into image source identification and manipulation detection
[1]. This paper concentrates on the former, and, more specifically, on camera
model identification. Camera model identification is relevant in practice if the
forensic investigator . . .

– knows that a given image has been taken with a digital camera (otherwise
she would use a scheme targeted to distinguish between types of acquisition
devices, e.g., scanner, digital camera, or computer-generated [2,3]),

– but does not have a set of independent images unequivocally shot with ex-
actly the same device as the suspect image (otherwise she would use a method
for camera device identification based on the intrinsic fingerprint embedded
in each sensors’ pattern noise [4,5,6,7,8]).

Y.Q. Shi (Ed.): Transactions on DHMS VIII, LNCS 7228, pp. 42–62, 2012.
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Forensic investigators typically have to find answers to the following questions
related to camera model identification: “which camera model was (most likely)
used to shoot this given image?”, for the identification scenario; or, if prior
beliefs prevail, “has this image been shot with a Canon Ixus 70 camera?”, for
the validation scenario.

Techniques trying to answer these questions require characteristics covering
differences between camera models, while occurring very similar between devices
of one model. Common ingredients are depicted in Fig. 1 in the simplified ac-
quisition pipeline of a digital camera. For example, aberrations introduced by
the lens, are specific to models sharing the same optical system, e.g. [9,10]. Es-
timating the configuration of the colour filter array (CFA) or determining the
employed method for colour interpolation allows a basic discrimination between
groups of camera models, e.g. [11,12]. Furthermore, compression parameters [13],
meta data [14] and the employed file structure can help to isolate questionable
models.

This paper belongs to feature-based camera model identification based on
characteristics covering coarse noise properties, colour reproduction and image
quality. This approach has been first proposed by Kharrazi, Sencar and Memon
[15] for the identification of digital camera models and was further investigated
by Çeliktutan, Avcibas and Sankur for low resolution mobile-phone cameras
[16,17]. Using small sets of digital cameras or mobile-phone cameras, reliable
results for both camera and mobile-phone model identification were reported.

In our previous work [18], we started to explore the influence of the cardinal-
ity and between-model variance of the training set on the overall classification
performance employing a subset of 12 camera models of the ‘Dresden Image
Database’ [19]. The reported results with average success rates above 90% are
promising and indicate the possibility to apply this scheme in practice. However,
the scalability in scenarios with even more camera models, the influence of the
different sets of features [15,17,18] as well as the handling of unknown camera
models require further attention.

Based on all natural images in the ‘Dresden Image Database’ including 26
camera models with altogether 74 devices, we compare different sets of features
and investigate the influence of feature selection under practical relevant condi-
tions. We extend our previous analysis in [18] on the determined best feature set
and evaluate the ability to separate between different models and not between
different devices. A discussion on the influence of the number of images, devices
and camera models on the detection results gives valuable clues for creating
appropriate training data sets. Finally, we draw attention to handle unknown
cameras in open sets of camera models and deepen our investigations presented
at DAGM 2011 [20]. We believe that this paper contains valuable information
for forensic investigators with typically limited resource and limited budgets to
correctly train a feature-based forensic camera model identification scheme.

The remainder of the paper is organised as follows: Section 2 introduces the
general scheme for camera model identification and discusses the different feature
sets. Section 3 describes the employed data set and basic test settings used in our
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Fig. 1. Simplified image acquisition pipeline of a digital camera and possible sources
of model-dependent characteristics

investigations. An detailed analysis of feature-based camera model identification
employing closed model sets, where all questioned camera models are considered
known, is presented in Sec. 4. Section 5 considers the problem of unknown camera
models and possible false accusation in so called open sets. Finally, the paper
concludes with a discussion in Sec. 6.

2 Camera Model Identification

Feature-based forensic camera model identification is motivated by differences in
the internal image acquisition pipeline of digital camera models [15]. To create
visually pleasant images, the manufacturers specifically fine-tune the components
and algorithms for each digital camera model. Details on this fine-tuning are
usually considered trade secrets. Nevertheless we can capture some variation with
specific features. These features are required to be stable for all devices of one
model to capture characteristics inherent in each image acquired with the same
model. For instance, we can try to characterise the camera model-dependent
combination of colour filter array and colour interpolation algorithm, or the
algorithms implemented in the internal signal processing pipeline including, for
example, the white-point correction.

The first step in feature-based forensic camera model identification is the
estimation of a set of features in images taken with all camera models coming
into question. Employing the estimated features, second, a machine learning
algorithm can be trained to, third, determine or to validate the probable source
of an image. In literature, a support vector machine (SVM) is used for machine
learning and the major difference between previously proposed schemes relies
in the set of employed features. The features are broadly classified into four
main groups: Colour characteristics (Fcol) [15] describing the colour reproduction
of a camera model, wavelet statistics (Fwav) [21] coarsely quantifying noise,
image quality metrics (Fiqm) [22] measuring noise and sharpness (quality of scene
reproduction by the optical system), and binary similarity measures (Fbsm) [23]
characterising relations between different bit planes of one colour channel as well
as between different colour channels.

Kharrazi, Sencar, and Memon introduced feature-based camera model identi-
fication employing a set of 34 features FKhar including Fcol, Fiqm and Fwav [15].
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Another set of features FÇeli was proposed by Çeliktutan et al. [17] containing a
similar group of wavelet statistics Fwav and image quality metrics Fiqm, comple-
mented with binary similarity measures Fbsm. Contrary to Kharrazi et al. , Fiqm

are analysed for each colour channel separately and an extended set of Fwav is
calculated for up to 4 wavelet sub bands. Altogether, the feature set consists of
592 characteristics.

In our earlier work [18], we used an extended version Fext of the original
Kharrazi et al. feature set, consisting of 46 features. We added some new colour
features and, motivated by the work of Farid and Lyu [21] as well as Çeliktutan
et al. , calculated an extended set of wavelet features. Furthermore, we inves-
tigated the combination of the 46 features with characteristics of lateral chro-
matic aberration [10,20] with little success. Lateral chromatic aberration as well
as aberrations in general are dependent on focal length and focus settings. The
resulting variance makes it very difficult to generate a comprehensive measure-
ment of all possible settings necessary for reliable feature-based camera model
identification.

Additionally to the three mentioned feature sets, within this paper, we in-
vestigate an extended colour feature set Fextc, including the features of our
extended set for each colour channel separately (82 features), and a complete
feature set Fcomp joining all features of the four basic feature groups: Fcol, Fwav,
Fiqm and Fbsm.

3 Test Setup

A key factor in designing and evaluating techniques for camera model identifi-
cation is in the composition of a suitable benchmark database. To assure that
arbitrary features capture characteristics of the model rather than of the device
or image contents, a database of images with comparable contents shot with
multiple models and multiple devices per model is required. Only recently, we
compiled the ‘Dresden Image Database’ for this very purpose [19].

Table 1 lists the 26 employed camera models, the number of corresponding
devices and images, as well as basic camera specifications. The database includes
both, typical consumer digital camera models and semi-professional digital SLR
cameras. In some investigations the computational complexity was quite de-
manding and a reduced set of camera models similar to our previous work was
employed [18]. We abbreviate the complete and reduced sets of camera models
with symbols Mall and Mred.

To provide images with similar content, all images in the database are created
employing a specific image acquisition procedure. A tripod was fixed for each
motif and using each device three or more scenes have been taken with different
focal length settings. For logistical reasons all camera models were split into set
A and B, both covering different motifs (cf. [19] for a more detailed description).
Identifiers of the employed model, device id, camera settings and the acquired
motif are stored together with each image and enable to analyse features under
selected constraints.
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Altogether, 16,958 original images stored in the JPEG format at full resolution
were analysed. Compared to previous work, where a small set of digital cameras
(5 camera models) [15] or a small set of low resolution mobile-phone cameras
(13 mobile-phone models with altogether 16 devices) [17] was investigated, the
employed data set allows the evaluation of feature-based camera model identifi-
cation under comprehensive settings. Another difference is the variation in focal
length and flash settings.

Analysing feature-based camera model identification requires a set Itrain ⊂ I
of images to train and a set Itest of images to optimise the detection performance
of the employed machine learning algorithm. An independent validation set Ival
is required to report practical relevant detection results. In real scenarios, we ex-
pect different devices employed for acquiring the image under investigation and
the images available for machine learning. Consequently, we partition the set of
available devices D(m) of each camera model m in a set of devices for machine
learning D(m)

train,test and a disjoint set of devices for validating the detection re-

sults D(m)
val = D(m)/D(m)

train,test. The expected difference of image content between
images available during machine learning and images provided for classification
makes a reasonable separation of the set of available motifs P necessary. To
report detection results independently of the image content, requires images of
the same motifs for each device. Ideally, a large number of different motifs for
training, testing and validating feature-based camera model identification ex-
ists. However, due to the limited number of images in our database, we decided
to separate P in a set of training Ptrain and a disjoint set of test and valida-
tion Ptest,val motifs. The stored device (d) and motif (p) identifiers enable the
assignment of each image i ∈ I to its corresponding set:

Itrain = {i|di ∈ Dtrain,test ∧ pi ∈ Ptrain} (1)

Itest = {i|di ∈ Dtrain,test ∧ pi ∈ Ptest,val} (2)

Ival = {i|di ∈ Dval ∧ pi ∈ Ptest,val} (3)

Experimental results in this paper are based on cross-validation using a fixed set
of 100 different partitionings of I unless otherwise stated. We assigned devices
and motifs to the corresponding training, test and validation sets randomly with

preset cardinalities (|D(m)
train,test| = 1, |Ptrain| = 26). All available camera models

are included to make the identification task challenging and realistic. For some
camera models only 1 device is available (e.g., models of make Agfa) and detec-
tion results are only computed for the test images. The fixed partitionings make
the experiments repeatable and we present average results balancing between
best and worst results.

Besides the public available set of images in the ‘Dresden Image Database’,
we employed an additional set of snapshot images created only for some selected
camera models. These images form another validation set with scene content and
camera settings independent to the structured design of the official database.
Due to the lack of a tripod during image acquisition, the quality is not always
convincing and also blurred images are included.
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All investigations in this paper make use of a support vector machine im-
plementation developed by Chang and Lin with a radial based kernel function
[24] provided through the interface of the R package e1071. More precisely, we
employed the multi-class classification scheme of LIBSVM to separate between
different camera models. The implementation of the library solves the multi-
class problem by creating single binary SVMs for all pairs of different classes
(one-versus-one) and a voting scheme determines the most probable class.

Table 1. List of digital camera models included in this study; number of devices
per model, basic camera specifications and number of available images. (*) indicates
models included in the reduced set Mred necessary to investigate the large feature sets
(FÇeli,Fcomp).

make model no. devices resolution sensor size focal length no. images (flash released)
[pixel] [inch or mm] [mm] set A set B

∑
snapshots

Agfa DC-504 1 4032×3024 - 7.1 78 (14) 91 (10) 169 (24)
Agfa DC-733s 1 3072×2304 - 6.2−18.6 150 (21) 128 (3) 278 (24)
Agfa DC-830i 1 3264×2448 - 6.2−18.6 176 (50) 187 (31) 363 (81)
Agfa Sensor505-X 1 2592×1944 - 7.5 87 (11) 85 (9) 172 (20)
Agfa Sensor530s 1 4032×3024 - 6.1−18.3 195 (50) 177 (35) 372 (85)
Canon Ixus55 1 2592×1944 1/2.5” 5.8−17.4 224 (52) 224 (52)
Canon Ixus70 (*) 3 3072×2304 1/2.5” 5.8−17.4 567 (119) 567 (119)
Canon PowerShot A640 1 3648×2736 1/1.8” 7.3−29.2 188 (23) 188 (23)
Casio EX-Z150 (*) 5 3264×2448 1/2.5” 4.65−18.6 924 (178) 924 (178)
FujiFilm FinePix J50 3 3264×2448 1/2.5” 6.2−31.0 630 (99) 630 (99) 503 (210)
Kodak M1063 (*) 5 2748×3664 1/2.33” 5.7−17.1 1070 (330) 1321 (289) 2391 (619)
Nikon CoolPix S710 (*) 5 4352×3264 1/1.72” 6.0−21.6 925 (173) 925 (173)
Nikon D200 (*) 2 3872×2592 23.6×15.8 mm 18− 135/17 − 55 752 (79) 752 (79)
Nikon D70/D70s 2/2 3008×2000 23.7×15.6 mm 18−200 736 (78) 736 (78)
Olympus μ1050SW (*) 5 3648×2736 1/2.33” 6.7−20.1 1040 (342) 1040 (342)
Panasonic DMC-FZ50 3 3648×2736 1/1.8” 7.4−88.8 931 (115) 931 (115) 832 (426)
Pentax Optio A40 4 4000×3000 1/1.7” 7.9−23.7 638 (90) 638 (90) 574 (445)
Pentax Optio W60 1 3648×2736 1/2.3” 5.0−25.0 192 (23) 192 (23) 308 (290)
Praktica DCZ5.9 (*) 5 2560×1920 1/2.5” 5.4−16.2 1019 (273) 1019 (273)
Ricoh GX100 5 3648×2736 1/1.75” 5.1−15.3 854 (112) 854 (112) 1794 (1106)
Rollei RCP-7325XS (*) 3 3072×2304 1/2.5” 5.8−17.4 589 (148) 589 (148)
Samsung L74wide (*) 3 3072×2304 1/2.5” 4.7−16.7 686 (144) 686 (144)
Samsung NV15 (*) 3 3648×2736 1/1.8” 7.3−21.9 645 (110) 645 (110)
Sony DSC-H50 2 3456×2592 1/2.3” 5.2−78.0 541 (57) 541 (57) 375 (45)
Sony DSC-T77 4 3648×2736 1/2.3” 6.18−24.7 725 (88) 725 (88) 863 (346)
Sony DSC-W170 2 3648×2736 1/2.3” 5.0−25.0 405 (52) 405 (52) 244 (38)
∑

74 9863 (2172) 7093 (1036) 16956 (3208) 5493 (2906)

4 Camera-Model Identification in Closed Sets

In the first part of our investigations, we assume that all camera models coming
into question are known. We call sets including only known camera models closed
sets. In practice, it might be difficult to consider all possibly employed camera
models during image acquisition and unknown camera models might cause false
accusations. This problem is an inherent property of multi-class SVMs, which
always assign a sample to one of the trained classes. We discuss this problem in
Sec. 5 and present first solutions to cover unknown models in open sets.

4.1 Benchmarking Feature Sets

Before we will take a closer look at the ability of the features to separate between
different camera models and not between different devices, we will first analyse
the performance of the five feature sets described in Sec. 2.
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Therefore, we optimised the basic parameters of a SVM with a radial based
kernel function using grid-search with γ in the range of 23,2,...,−15 and C in
the range of 2−5,−4,...,15. The optimisation was done separately for each of the
fixed 100 partitionings to report average and standard deviation of the accuracies
(i.e., the average detection rate over all camera models) under optimal parameter
settings in Tab. 2. The required computational time increased exceptionally when
we tried to optimise a SVM for Mall in combination with the large feature sets
(FÇeli,Fcomp) and we decided to calculate the results only for Mred.

Table 2. Average accuracies for five different feature sets over 100 fixed partitionings
(standard deviation is enclosed in brackets). Best accuracies are in bold for Mall,Mred

in combination with Itest, Ival.

feature set
model set FKhar Fext Fextc FÇeli Fcomp

te
st

d
a
ta

I t
e
st

Mred (wKhar,grey) 95.62% (1.60) 97.45% (1.27) 97.94% (1.10) 94.07% (1.61) 94.00% (1.61)
Mred (wKhar,col) - - 98.06% (1.02) 95.32% (1.55) 95.30% (1.49)
Mred (wDB8,grey) 95.57% (1.60) 97.13% (1.34) 97.73% (1.18) 94.29% (1.45) 94.29% (1.42)
Mred (wDB8,col) - - 97.83% (1.03) 95.23% (1.27) 95.24% (1.26)

Mall (wKhar,grey) 89.29% (2.46) 91.69% (2.33) 92.71% (2.25) - -
Mall (wKhar,col) - - 93.08% (1.95) - -
Mall (wDB8,grey) 89.26% (2.51) 91.51% (2.32) 92.85% (2.20) - -
Mall (wDB8,col) - - 93.12% (1.94) - -

va
li
d
a
ti
o
n
d
a
ta

I v
a
l

Mred (wKhar,grey) 93.14% (1.93) 95.27% (1.70) 96.12% (1.49) 91.50% (1.79) 91.47% (1.76)
Mred (wKhar,col) - - 96.36% (1.32) 92.80% (1.66) 92.70% (1.67)
Mred (wDB8,grey) 93.18% (1.94) 94.96% (1.80) 96.01% (1.56) 92.66% (1.73) 92.65% (1.74)
Mred (wDB8,col) - - 96.18% (1.40) 93.75% (1.58) 93.69% (1.63)

Mall (wKhar,grey) 85.62% (2.94) 88.60% (2.87) 89.98% (2.63) - -
Mall (wKhar,col) - - 90.67% (2.42) - -
Mall (wDB8,grey) 85.79% (2.86) 88.70% (2.85) 90.41% (2.59) - -
Mall (wDB8,col) - - 90.93% (2.48) - -

We also experimented with the influence of the selected wavelet filter to calcu-
late the wavelet statistics. Namely, we tested a wavelet filter originally employed
by Kharrazi et al. (wKhar) and a Daubechies 8 filter (wDB8) commonly used for
the estimation of sensor noise [4]. For the feature sets Fextc, FÇeli and Fcomp,
we included also tests with and without averaging the wavelet statistics of each
colour channel (wgrey, wcol).

It can be expected, that increasing the number of known camera models in-
creases also the chance, that different models share similar characteristics. The
decrease of accuracy in case of Mall compared to Mred demonstrates this effect
and might result in less accurate decisions when using sets with considerably
more than 26 models. Furthermore, the results employing Itest (images acquired
with the same device as the training data) are always better than the results for
Ival (images acquired with other devices). This indicates small variations in the
analysed characteristics between devices of one model.

We obtained the best results in this scenario employing Fextc for both sets
of camera models Mall and Mred. Differences in the results related to the two
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employed wavelet filters are negligible and depend on the employed feature set. In
contrast, using the wavelet statistics for each colour channel separately, increases
the accuracy slightly in all cases. Contrary to our expectations, adding binary
similarity measures Fbsm did not increase the identification performance for
camera models available in the ‘Dresden Image Database’. In fact, the larger
number of features seem to complicate the training of the SVM. Çeliktutan et
al. therefore applied feature selection to reduce the number of features and to
increase the identification performance.

4.2 Feature Selection

Based on the previous tests, we decided to try feature selection to investigate
the possibility to improve the accuracy. We employed sequential forward float-
ing search (SFFS) [25] on Fextc and Fcomp. Features in Fextc were analysed
using Mred and Mall and, again due to the computational constraints, Fcomp

was tested only with Mred resulting in altogether three test configurations. Fur-
thermore, we restricted all following experiments to wavelet statistics based on
wDB8,col. Knowing that the selection of motifs and devices employed for training
might influence feature selection, we applied SFFS to the first 10 of the 100 fixed
partitionings of I.

Figure 2 depicts the relation between accuracy and number of selected features
for two partitionings with the best and worst achieved maximum accuracy for
Itest. In this example, we used Fextc together with Mred and it was possible to
obtain an accuracy above 98% for Itest for all 10 partitionings of I. In contrast,
the results for Ival are worse and are only above 98% in the best case.

SFFS tries to select features according to their importance on the overall
classification accuracy and we would expect a similar order of selected features
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Fig. 2. Number of selected features of Fextc in relation to the achieved accuracy using
Mred. 2 partitionings with the best and worst accuracy for Itest after feature selection
are depicted (both above 98%). Symbols + mark the highest accuracy obtained in both
cases.
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for all 10 partitionings depending on the employed feature set. While there are
indeed some features always in the range of the first 30 most important features,
the concrete partitioning of devices and motifs employed for training made the
ordering of most features more variable than expected. Considering the worst
case in Fig. 2, the increase in accuracy is not always continuous and makes the
selection of an universal set of features even more difficult.

Therefore, we used all 30 sets of the best selected features (3 test configura-
tions × 10 partitionings of I) and calculated accuracies in combination with all
100 fixed partitionings. For each of the 3 test configurations we determined the
set of selected features maximising the average accuracies of Itest over all parti-
tionings and report the results in Table 3. Note that in case of Fcomp the feature
selection was computationally demanding and we aborted the calculation after
48h for each of the 10 partitionings. At that time the first 40 best features were
selected, explaining the slightly lower accuracies. Even if we directly compare
the accuracies between the best 40 features of Fextc and Fcomp, the results are
very similar. Furthermore, a comparison of the accuracies in Tab. 3 with the re-
sults in Tab. 2 shows only small differences and negligible changes in the overall
performance.

Table 3. Best average accuracies obtained after feature selection in Fextc and Fcomp.
The employed set of camera models during feature selection is indicated in brackets
after each feature set and the depicted accuracies are calculated in combination with
both sets of camera models.

SFFS on feature set
model set I Fextc (Mred) Fextc (Mall) Fcomp (Mred)

Mred (wDB8,col) Itest 97.72% (1.27) 97.79% (0.95) 97.05% (1.17)
Mall (wDB8,col) Itest 92.89% (1.93) 93.59% (1.96) 91.49% (2.13)

Mred (wDB8,col) Ival 96.08% (1.60) 95.97% (1.11) 96.16% (1.20)
Mall (wDB8,col) Ival 90.77% (2.50) 91.68% (2.31) 90.47% (2.08)

Feature selection might help to increase the overall performance in case of a
specific partitioning of I, but it is difficult to find a universally valid reduced
set of features. For the following tests only results employing Fextc are reported.
Table 4 gives an example of the average detection rate for each camera model
employing Ival (Itest is used in cases where only one camera model is available).
The concrete detection rate depends on the camera model and, for example,
images acquired with a Nikon S710 or a Ricoh GX 100 can be reliably identified
with low false acceptance rate. For cameras like the Sony T77 the accuracy drops
to 84.9% due to a higher similarity to camera models of the same manufacturer
W170 and H50 as well as as a higher similarity to the Panasonic DMC-FZ50.

The next Section presents a detailed analysis of the similarity between differ-
ent camera models and between devices of one camera model. Using Fextc we
determined γ = 2−9 and C = 28 as appropriate parameters for all 100 partition-
ings to decrease computational requirements.
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4.3 Intra- and Inter-camera Model Similarity

The ability to separate between different camera models and not between differ-
ent devices is a basic requirement for all camera model identification schemes.
Therefore, characteristics should be chosen in a way that the intra-camera model
similarity is high, i.e., feature values of devices of the same model are similar.
In contrast, the inter-camera model similarity between different camera models
should be minimised.

To give a visualisation of intra- and inter-camera model similarity between all
employed 74 devices for Fextc, we calculated for each device the centroid over all
corresponding feature values. Applying multi-dimensional scaling the centroids
mapped to 2D are depicted in Fig. 3. The visualisation clearly shows a spatial
grouping of devices of the same camera model and supports the assumption,
that the employed features are able to separate between camera models.

In a more detailed plot in Fig. 4, we illustrate the dissimilarity between feature
values of single images of different camera models together with the similarity be-
tween devices of the samemodel. In Figure 4a the separation between the two cam-
era models Nikon S710 and Sony T77 is clearly possible, while it is not possible to
separate between different devices. In contrast, the dissimilarity of images made
with cameramodels of the samemanufacturer is sometimes lower andmakes a sep-
aration more difficult. Figure 4b depicts an example for this case.

To investigate intra- and inter-camera model similarity in more detail, we
trained the feature-based camera model identification scheme for each device of
one camera model – contrary to its original purpose. We calculated average re-
sults iterating over the fixed set of 100 partitionings. Table 5 shows the results for
separating between all devices of Nikon S710, Sony T77 and Sony W170. Similar
to the observations in Fig. 4, a clear separation between Nikon and Sony camera
models is possible. Furthermore, discriminating between the camera models T77
and W170 both manufactured by Sony are slightly worse and indicate possible
manufacturer-specific dependencies. In all cases it is not possible to separate
between devices of the same camera model with acceptable accuracy.

The two devices of the SLR camera model Nikon D200 are a noteworthy
exception. In case of these two devices, device identification using feature-based
camera model identification is indeed possible with high accuracy (see Tab. 6). In
contrast, the four devices of the SLR model D70/D70s are indistinguishable from
each other. Reconsidering the detailed results in Tab. 4, the low intra-camera
model similarity between the D200 devices might explain the low detection rate
of 80% in detecting the correct camera model.

4.4 Influence of the Number of Images, Devices and Models

The available resources during a forensic investigation are limited in terms of
time and money. Consequently, it is important to know how many images and
devices have to be considered to train a feature-based camera model scheme for a
specific set of models reliably. Furthermore, it is important to consider relations
between the number of questioned camera models and the accuracy in detecting
the correct camera model.
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Agfa 505-X Agfa 530s

Agfa DC-504 Agfa DC-733s

Agfa DC-830i Canon A640

Canon Ixus 55 Canon Ixus 70

Casio Z150 Fuji J50

Kodak M1063 Nikon D200

Nikon D70/D70s Nikon S710

Olympus µ1050 Panasonic FZ50

Pentax A40 Pentax W60

Praktica DCZ5.9 Ricoh GX100

Rollei 7325XS Samsung L74

Samsung NV15 Sony H50

Sony T77 Sony W170

Fig. 3. Visualisation of intra- and inter-camera model similarity. The centroid of all
feature values of all images of each device is mapped to 2D using multi-dimensional
scaling and different devices of one camera model are depicted by the same symbol.
Devices of the same camera model are closer to each other whereas devices of different
models are farther apart.

Nikon S710 id 24 id 25 id 26 id 27 id 28
Sony T77 id 69 id 70 id 71 id 72

(a) Nikon S710 (5×) and Sony T77 (4×)

Sony T77 id 69 id 70 id 71 id 72
Sony W170 id 73 id 74

(b) Sony T77 (4×) and W170 (2×)

Fig. 4. Visualisation of the similarity of feature values between all images of pairs of
camera models using the two most distinctive principal components. Different symbols
of the same colour indicate different devices of one camera model. Camera models
are visually separable, but a differentiation between devices of the same model is not
possible.
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Table 5. Intra- and inter-camera similarity between devices of three different camera
models averaged over all 100 fixed partitionings (overall accuracy 43.76%, accuracy
S710 32.23%, accuracy T77 49.92%, accuracy W170 60.27%).

identified as
device id 24 id 25 id 26 id 27 id 28 id 69 id 70 id 71 id 72 id 73 id 74

S710 id 24 42.8 15.0 12.1 20.2 9.8 - - - - - -
S710 id 25 24.1 21.5 17.9 20.7 15.9 - - - - - -
S710 id 26 19.8 20.6 26.4 14.6 18.5 - - - - - -
S710 id 27 26.7 17.3 12.6 33.1 10.3 - - - - - -
S710 id 28 15.3 16.0 16.6 14.7 37.4 - - - - - -
T77 id 69 0.3 0.2 0.1 - 0.4 55.1 17.6 12.8 10.3 2.2 0.8
T77 id 70 0.4 - 0.3 - 0.3 23.6 50.9 14.9 7.7 1.0 0.8
T77 id 71 0.1 - 0.1 - 0.1 21.4 24.8 39.3 11.8 1.8 0.6
T77 id 72 0.2 - 0.1 - 0.4 16.4 10.5 11.6 54.4 3.8 2.6
W170 id 73 - - - - - 0.8 0.2 0.2 1.0 55.6 42.2
W170 id 74 - - - - - 1.0 0.1 0.3 1.4 32.2 64.9

Table 6. Intra- and inter-camera similarity between devices of camera models
D70/D70s and D200 averaged over all 100 fixed partitionings (overall accuracy 60.35%,
accuracy D200 95.82%, accuracy D70/D70s 42.61%).

identified as
device id 29 id 30 id 31 id 32 id 33 id 34

D200 id 29 95.4 4.5 - - - -
D200 id 30 3.8 96.2 - - - -
D70/D70s id 31 - 0.2 34.2 25.3 22.0 18.3
D70/D70s id 32 - 0.1 23.0 44.5 16.8 15.6
D70/D70s id 33 - 0.1 20.1 16.6 47.6 15.6
D70/D70s id 34 0.1 0.2 17.1 20.7 17.8 44.1

No. of Images and Devices for Training. Pictures taken from different mo-
tifs differ significantly in image content compared to images capturing different
scenes of the same motif with different focal length settings. Based on the stored
identifiers in the database, we investigate the number of images for training
each camera model under consideration of the number of motifs |Ptrain| and the

number of images |I(d,p)
train | per motif p and device d. More precisely, we created

a specific set of 225 fixed partitionings of I similar to the procedure in Sec. 3:

First, we selected randomly one device per model for training (|D(m)
train,test| = 1)

and, second, we varied the number of motifs for training |Ptrain| in the range
from 1 to 45. We repeated both steps 5 times resulting in 225 partitionings. To
investigate the influence of the number of images per motif p and device d, we

varied |I(d,p)
train | in the range from 1 to the maximum number available. Note that

there are 47 motifs for camera models in set A available, whereas set B only
holds 30 or 36 motifs, depending on the camera model. To keep distinct motifs
for training and testing, we left always a minimum of 3 testing motifs for each
camera model (|Ptest,val| ≥ 3).

Figure 5 illustrates the relation between the accuracy and the number of im-
ages for training for Mall and Mred. The depicted accuracy is averaged over all
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Fig. 5. Relation between the number of motifs available for training |Ptrain| and the
accuracy for Ival. Additionally, the influence of the number of images per motif p (and

per device d) |I(d,p)
train | is depicted.

5 fixed sets of training devices Dtrain,test. Employing the smaller set of camera
models Mred results in a faster increase of accuracy compared to Mall. The
influence of the number of different motifs is higher than the influence of the
number of images per motif. Nevertheless, adding images with different cam-
era settings is still important to achieve the maximum possible accuracy. After
adding 30 motifs in case of Mall and 20 motifs in case of Mred, we observe
only a minor increase in accuracy. Nonetheless, it is important to employ a no-
table number of images capturing different motifs to get best detection rates.
Depending on the number of camera models considered during an investigation,

we suggest |I(d,p)
train | ≥ 3 acquired with different camera settings for a minimum of

|Ptrain| ≥ 30 motifs to get reasonable accuracies. Whenever possible, the number
of motifs should be increased.

In another experiment, we investigated the relation between the number of

devices |D(m)
train,test| and motifs |Ptrain| for training. We used the previously intro-

duced set of 225 fixed partitionings and selected randomly 1 up to 4 devices for
training, where available. In case of camera models with more than one device
in the database, we always left a minimum of one distinct device for validation

(|D(m)
val | ≥ 1).
The average results are depicted in Fig. 6 for Mall and a set of 15 camera

models including 3 or more devices per model. Different to the previous results
on the influence of the number of motifs and images per motif, increasing the
number of devices has a negligible influence on the accuracy. Consequently, prac-
tical investigation should focus available resources on the acquisition of enough
images per camera model covering different motifs and camera settings. Bor-
rowing or purchasing more than one device per camera model is less important
regarding the average case. Reconsidering the results on intra- and inter-camera
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Fig. 6. Relation between number of motifs |Ptrain|, devices per model |D(m)
train,test| and

accuracy for Ival. Increasing the number of devices per camera model has a negligible
influence on the accuracy.

model similarity of the Nikon D200 in Sec. 4.3, it might be still necessary to
employ more than one device in some cases.

No. of Camera Models. Comparing the results depicted in Fig. 5a and b
clearly indicates a decrease in accuracy when a larger set of camera models is
considered. To investigate the influence of the number of camera models in more
detail, we conducted two experiments employing the 100 fixed partitionings in-
troduced in Sec. 3. Starting withMall, in the first experiment we removed models
one by one in order to maximise the accuracy on the reduced set. In the second
experiment we did the opposite and removed models in order to minimise the
accuracy. With both experiments we try to gauge the range of correct identifi-
cation results in relation to the number of employed camera models in a good
and bad scenario.

Figure 7 depicts the average accuracy for Itest and Ival in relation to the
number of removed camera models for the two experiments over 100 fixed par-
titionings. Furthermore, we determined the number of occurrences each camera
model was removed first, second and so on, and specified the camera models
with the highest count on the x-axis of the two plots. Reducing the number of
camera models considered during an investigation does not necessarily increase
the accuracy in detecting the correct camera model. In fact, an inconvenient
combination of camera models can even for small sets result in low detection
rates. It might be contradictory at first glance, that removing a camera model
results in a lower accuracy, but by doing this only worse separable camera models
remain and the average accuracy decreases.

We plotted also the accuracy of correctly identifying the set of snapshot im-
ages mentioned in Sec. 3. These images are photographed freehand employing
many different focal length settings, and were acquired in several cases in dark
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Fig. 7. Relation between number of camera models considered during an investiga-
tion and accuracy. Depending on the combination of camera models in question, the
accuracy can be also low for small sets of models.

environments with active flash. The depicted accuracy is considerably less com-
pared to Itest and Ival. To study the cause of this bad result, we trained the
feature-based camera model identification scheme for all 8 camera models where
snapshot images are available. We either employed the standard motifs or the
snapshot images of one device of each camera model for training. Similar to Fig. 7
the average accuracy for correctly identifying the employed model to acquire a
snapshot image is quite low (78.4%) when we employ our standard motifs for
training. However, if we flip training and validation data and use all snapshot
images of one device of each camera model for training, we get a high accuracy
(93.1%) for correctly assigning standard motifs to the corresponding camera
model. The results emphasise the importance of using different camera settings
during the preparation of images for training feature-based camera model iden-
tification.

5 Camera-Model Identification in Open Sets

Although forensic investigators may put considerable effort into the creation of
a large reference database for training, it is very unlikely that this database will
ever be comprehensive. Therefore a residual risk remains that the camera model
of a given image is not in the database. For critical forensic applications (i.e.,
in criminal court), this case should be detected with almost certainty to avoid
potential false accusations under all circumstances.
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We started to investigate two different approaches in [20] based on one-class
SVMs and binary SVMs to handle this task:

One-Class SVM. The idea of one-class classification is to transform the feature
vectors of one single class via a kernel to find a small region that captures most
vectors. The concept was proposed in the seminal work of Schölkopf, Platt,
Shawe-Taylor, Smola and Williamson [26]. In order to apply one-class SVMs to
camera model identification, we train one SVM for each known camera model
mknown using Itrain of the fixed 100 partitionings (cf., Sec. 3).

The absence of negative information (i.e., feature vectors of unknown camera
models) comes with a price, and one should not expect as good results as when
they are available. The average detection rates using Ival (and Itest for models
m with |D(m)| = 1) for unknown munknown (real) and known models mknown are
depicted in Fig. 8a in relation to the one-class SVM parameter ν. We iterated
ν in the range 0.01, 0.02, . . . , 0.6. Depending on the parameter setting we can
either obtain higher detection rates for unknown or for known camera models
and reach a trade-off between both with ν = 0.17 and 76% average accuracy.

An alternative approach is to optimise ν for each camera model separately.
Figure 8b visualises the performance for selected models using ROC curves.
Here, true and false positive rates indicate the percentage of images assigned to a
known model correctly or incorrectly. The results for models Casio EX-Z150 and
Agfa DC-830i show the best and worst case for our employed set of camera mod-
els (Mall) and ROC curves of all other camera models are in between. Ideally, we
want very low false positive rates (high probability to identify munknown (real))
and high true positive rates (high probability to identify mknown). However,
the figure indicates that not all observed results are convincing with respect to
practical scenarios in this regard.
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Binary SVM. In addition to one-class SVMs, also binary SVMs can be ex-
ploited in the open-set problem. In Section 4 the multi-class problem is solved
by creating single binary SVMs for all pairs of different classes (one-versus-one)
and a voting scheme determines the most probable class (cf. Sec. 3). The gen-
eral lack of training data for unknown camera models makes the application of
the standard multi-class classification scheme difficult. One solution to find an
approximation of unknown models could be to use known models as samples of
unknown models.

To experimentally investigate this approach, we iterate over all combinations
of each one known and one unknown camera model, mknown and munknown (real),
respectively. Depending on the combination, we sample training data for un-
known models from all remaining models munknown (train) ∈ Mall/{mknown,
munknown (real)} and employ the fixed set of 100 partitionings of I. Figure 9
summarises average detection rates for correctly identifying our two trained
classes mknown, munknown (train) and the ‘real’ unknown models munknown (real)

in relation to the selected known camera model mknown. Depending on the
known camera model, detecting trained models mknown, munknown (train) works
well. Compared to the results in Sec. 4, the detection rates for known camera
models are lower because of the differences in the implementation. On aver-
age also a reliable detection of munknown (real) is possible, but in practice espe-
cially worst cases need attention. Depending on the combination of mknown and
munknown (real) the correct identification of unknown models is sometimes much
more difficult and the detection results are not always convincing. For exam-
ple, detecting munknown (real) = Nikon S710 results in the lowest detection rate
(7.33%) in our test scenario when we trained a binary SVM with mknown =
Pentax A40. In the opposite combination the detection rate for the unknown
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model is considerably better (70.74%, munknown (real) = Pentax A40, mknown =
Nikon S710). Note, detection rates for known models remain stable even in the
worst case scenario and do not decrease by more than 3 percentage points.

Overall, the experiments considering open sets reveal the difficulties to han-
dle unknown camera models in practice. While average detection rates of binary
SVMs for known and unknown camera models are promising, detailed inves-
tigations illustrate that the approximation of unknown models with samples
of known models is prone to be incomplete. Hence, worst case detection rates
might be considerably lower. Similarly, the absence of training data for unknown
models in case of one-class SVMs results in unsatisfactory identification results.
In summary, we see both approaches as very first attempts to handle unknown
camera models. Further research is necessary to improve the prevention of false
accusations.

6 Concluding Remarks

This paper complements existing work on feature-based forensic camera model
identification by an experimental in-depth analysis on a large set of 26 cam-
era models and altogether 74 devices. We investigated different sets of features
known from the literature and achieved the best results using the 82 features of
the extended colour feature set Fextc. While the improvement by adding binary
similarity measures BSM was negligible in our test scenario, the computational
requirements increased considerably for the set of all 26 camera models. In prac-
tice, the optimal feature set depends on the employed set of models and maybe
also on the type of cameras (digital still camera or mobile phone camera). Fur-
thermore, our investigations on feature selection show, that finding a set of op-
timal features is difficult due to dependencies on the selected devices and motifs
for training. Hence, we decided to continue with all features in Fextc.

Our analysis of intra- and inter-camera model similarity gives empirical evi-
dence, that the employed features are appropriate to differentiate between cam-
era models and not between devices. The influence of the number of images,
devices and models on the correct identification was investigated and our results
emphasise the importance to employ many images of different motifs together
with different acquisition settings to train each considered model optimally. Em-
ploying more than one device per model is only necessary in exceptional cases
like the Nikon D200, where it was indeed possible to separate between devices.

The last part of the paper deals with the practically relevant case of incomplete
training data in open sets of camera models and presents results using one-class
and binary SVMs. The detection rates depend clearly on the combination of
known and unknown camera models. While binary SVMs enable to reliably
separate known and unknown models in most cases, finding a broad enough
training set for all cases is difficult and further investigations are necessary.

The presented results provide important clues for forensic investigators to
select appropriate parameters for training a specific set of camera models as
well as to assess detection results in a real case. A direction for future work
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is a detailed analysis of the influence of image processing on the identification
results. First investigations presented at DAGM 2010 [20] are worse compared
to the results known from previous literature [16,17] and need further attention
to identify robust subsets of features. Also different JPEG compression settings
implemented in digital cameras may obscure a correct model identification and
call for a careful investigation under controlled settings.

Calculating and analysing the features for all employed images required more
than 15,000 hours of computation time. Therefore, supplementary material is
made available via ‘Dresden Image Database’ website (https://forensics.inf.
tu-dresden.de/ddimgdb/publications/modelid ). We hope this not only saves
ressources in the development of new forensic techniques but als provides a good
starting point for introducing students to image forensics research.
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17. Çeliktutan, O., Sankur, B., Avcibas, İ.: Blind identification of source cell-phone
model. IEEE Transactions on Information Forensics and Security 3(3), 553–566
(2008)

18. Gloe, T., Borowka, K., Winkler, A.: Feature-Based Camera Model Identifica-
tion Works in Practice – Results of a Comprehensive Evaluation Study. In:
Katzenbeisser, S., Sadeghi, A.-R. (eds.) IH 2009. LNCS, vol. 5806, pp. 262–276.
Springer, Heidelberg (2009)
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Abstract. Digital watermarking is a common technique in multimedia security 
for copyright protection and data authentication. Embedding a digital 
watermark into a media file is often computationally demanding as multiple 
operations take place within the process to ensure a high level of perceived 
quality of the marked copy and a high robustness of the embedded watermark. 
State of the art watermarking algorithms require time consuming spectral 
transformation operations as well as windowing and perceptual models for 
masking the embedded watermark. Our new concept is to set up a collection of 
pre-computed watermarking signals and mix them with the cover signal for fast 
and simple embedding. To ensure that the watermark signal is well suited for 
the embedding position with respect to masking, we suggest using audio 
fingerprinting technology as matching mechanism. Test results show that our 
approach in able to watermark content using such proposed lookup collection. 

Keywords: Digital watermarking, audio fingerprinting, perceptual hashing. 

1 Motivation 

Digital watermarking has become a common procedure in commercial media 
applications, be it audio, video, single image or e-book. Some of these applications 
require the watermarking algorithm to work in real-time with minimal delay; many 
demand even faster embedding (e.g. in video-on-demand or mp3 download shops). 

This challenge can be addressed with different mechanisms depending on the use 
case. While least significant bit embedding algorithms are fast and simple to 
implement and require almost no computational power, their usability for most 
watermarking applications is minimal. Here the only way to speed up the embedding 
process is either to provide more computational power or to design more efficient 
watermarking strategies. The latter approach is not trivial, as watermarking often 
relies on computational demanding transformations and complex perceptual models. 

In this work, we describe a novel alternative path to watermark embedding, 
providing a hybrid approach between container pre-processing and efficient 
watermarking. The basic idea is to create a container with pre-calculated watermarked 
signals from content which can be expected to be similar to that found in the media 
stream to be watermarked and use this container as a lookup collection. 
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2 Background and State of the Art 

In this section we introduce the two main mechanisms utilized and combined in our 
work, namely digital watermarking and fingerprinting. For both, we provide a general 
overview as well as a more detailed discussion of challenges and known solutions 
relevant for our work. 

2.1   Digital Watermarking 

Digital watermarking is a technique for embedding information in multimedia 
data [CMB2002]. It is based on information hiding techniques similar to 
steganographic approaches with the overall goal to embed information into a cover 
signal, usually multimedia data. The term digital watermarking was used for the first 
time by Tirkel et al in [OST1994], actually written in two words: “water mark”. 

2.1.1    Basic Watermarking Principles  
A digital watermark is a perceptually transparent pattern inserted in digital data using 
an embedding algorithm and an embedding key. A detection algorithm using the 
appropriate detection key can retrieve the watermark information. In most approaches 
the embedding and detection keys are secret. 

Typical watermarking applications are copyright protection, data authentication, 
broadcast monitoring, or enabling innovative multimedia services. Dependent on the 
application, the embedded watermark represents information about 

- the protected media itself (e.g. “This mp3 contains song X”), or  
- its copyright owner (e.g. “Copyright owned by music label Y”), or  
- the recipient of an individual copy (e.g. “This mp3 file purchased and 

downloaded by user Z”), or  
- arbitrary data annotation (e.g. meta data, time codes, advertisement info or 

authentication codes). 

Digital watermarking algorithms use a number of assisting technologies for 
embedding information into media files, for example:  

- Perceptual models are used for ensuring the resulting quality of the marked 
cover by identifying areas in the cover where information can be hidden 
without degrading the perceived quality of the cover. Usage of a perceptual 
model enables transparent embedding for most covers, but may lead to a 
disability of embedding watermarks in certain material with problematic 
characteristics. 

- Signal transformations like Fourier transformation or Wavelet transformation 
are applied if the cover signal is not provided in a domain suitable for 
watermark embedding. Then, a transformation is needed to calculate the 
spectrum of the cover. This spectrum is then modified by the watermarking 
algorithm and re-transformed to the original domain. Signal transformations 
often have the highest computational cost within the different steps of a 
watermarking algorithm. 
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Both perceptual model and signal transformation lead to a high computational 
complexity of the watermarking algorithm. This can become problematic if on-the-fly 
embedding, for example during online sales or video conferencing, is required. 
Therefore a number of strategies for speeding up the embedding process have been 
introduced.  

2.1.2     Speeding up Watermarking Embedding  
In transaction watermarking at online stores, container strategies can be applied to 
speed up the embedding process [SZF2006]. Here, for every media, a slow one-time 
pre-processing step takes place, creating a so-called watermarking container. From 
the container individual copies can be rendered by assembling the pre-processed data 
in the container in a copy-and-paste-manner very quickly, e.g. 3,000 times faster than 
playback speed in the case of mp3.  

But if watermarking is applied at live content streams, watermarking based on pre-
processing may be the inappropriate strategy, especially if there is only need for one 
watermarking message to be embedded into the stream. This could be the case in 
telephone or video communication, in surveillance camera streams or in copyright 
watermarking for broadcast signals. In that case, one approach for improving the 
speed of watermark embedding are so-called “bit stream embedders” [KCLI +2007] 
where transformation operations are saved by working on already transformed 
compressed media data.  

Other known strategies are not based on speeding up the core embedder, but using 
an environment, for example a Grid or Cloud architecture, for distributing the 
computational cost on multiple computers or a Client-Server strategy where the 
embedding process is divided an a computational complex public stage at the Client 
and a computational simple stage at the Server [SHW2007].  

2.2   Fingerprinting 

Fingerprinting is a content-based retrieval method, often based on modeling human 
perception. For example, audio fingerprinting algorithms map an audio data segment 
of arbitrary length to a short message digest or content identifier. Similar approaches 
are known under the name robust hashing or perceptional hashing for audio (and 
video or image data, resp.). The term audio fingerprinting here shall not be confused 
with so-called fingerprint watermarking or collusion-secure fingerprint coding 
approaches that are resistant to security attacks on watermarking by a collusion of 
several attackers. 

Unlike cryptographic hashes, fingerprints show certain robustness to moderate 
transformations of the audio data. That is, two audio segments that are acoustically 
similar to a Human, should have identical or similar fingerprints, even if the audio 
segments are not binary identical.  

Content-based matching of audio data by fingerprinting can also be seen a pattern 
recognition challenge:  

- The audio data is first acquired using a recording device, e.g. microphone, 
analog-to-digital conversion. 
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- Then, pre-processing is applied to the data, e.g. windowing, spectral 
transformation (DCT, DFT), data reduction. 

- An appropriate feature extraction is done by extracting acoustically relevant 
features and pruning irrelevant features. Examples are statistical properties 
from the audio in the time or spectral domain. 

- The extracted features are subject to further post-processing, e.g. to obtain a 
binary fingerprint identifier from continuous feature values. 

- At a later point, one fingerprint is matched against a set of fingerprints 
derived from a set of audio files to test if the source of the fingerprint is an 
element of this set. This matching process is fuzzy and requires an estimation 
of similarity. 

Usually, these algorithms in use in commercial systems for broadcast 
monitoring, music recommendation and to prevent that copyright protected 
audio material is uploaded to websites or peer-to-peer networks. One application 
is identifying the title of an unknown music song that is recorded from a 
loudspeaker using a microphone or cell phone, e.g. provided by the Shazam1 or 
Gracenote/Sony2 service. For example, the fingerprint algorithm presented by 
Haitsma et al. [HaKa2001, HaOK2001] features a 256 bit fingerprint from every 
three second audio segment. That fingerprint can be used for matching a given 
audio segment against a fingerprint database from music songs for music 
recommendation.  

2.3   Fingerprinting-Based Support for Digital Watermarking 

Besides the application fields mentioned in the previous chapter, audio fingerprinting 
has a number of applications also in the context of digital watermarking for different 
purposes [FG2000]:  

- Indexing for informed/non-blind watermarking: When a watermarking 
algorithm requires the original medium to be available to detect the 
watermark from a marked copy, the audio fingerprint can help to identify the 
required original 

- Payload for integrity protection: Here the audio fingerprint is stored as the 
watermark information to provide a content-based description of the original 
content. 

- Key generator: The audio fingerprint of the original is used as the secret 
watermark key during embedding. If the original is changed, the audio 
fingerprint also changes and the watermark cannot be detected due to the 
wrong key given by the audio fingerprint. This can be used for integrity 
verification. 

- Synchronization: The audio fingerprint is used as an index to identify 
positions within the marked content where the watermark has been 

                                                           
1 www.shazam.com (URL verified January 2012). 
2 www.gracenote.com (URL verified January 2012). 
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embedded [HKM2005]. The audio fingerprints are often stored within a 
separate database. Approaches without the need of an external database are 
also known [SZN2006]. 

Beyond the applications listed before, we will show how fingerprinting can act as 
another supporting mechanism for watermarking. 

3 Concept for Watermark Embedding Controlled by 
Fingerprinting 

One can assume that watermark embedding and masking are controlled by perceptual 
models which provide a high degree of abstraction from the actual audio content. 
Thus, acoustically similar sections of a media signal will be marked with a similar 
watermark. Now our approach is to calculate a sufficient number of individual 
watermarks suited for a given media section which is then are matched and selected 
by an audio fingerprint.  

The embedding of the watermark with the help of the audio fingerprint is described 
in the following sections.  

3.1   Preprocessing the Lookup Collection 

This processing step features fingerprinting and watermark on the media data. 
It should be noted that the generic concept is independent from the actual 
watermarking algorithm involved. It can be applied with any watermarking algorithm 
that allows calculating a difference signal between the original cover and a marked 
audio segment in a suitable data domain in a meaningful way. A typical example for 
audio data would be the sample-wise difference in the PCM domain between cover 
and marked segment. We furthermore require that adding such difference signal to 
new media data other than the initial cover imprints the watermark in that data, too.  

The watermark lookup collection is created using an arbitrarily predefined set of 
cover audio content, as follows:  

a) At first, the audio content is divided into short sections (less than a second in 
practice) and each section will provide the payload for one bit of the 
watermark message. All audio sections are watermarked with both the “one” 
and the “zero” message symbol. Here, the embedding is controlled by an 
appropriate psycho-acoustic model and it is dependent on the predefined 
individual watermark key of the user.  

b) Then, the difference signal between the watermarked audio sections and the 
corresponding cover audio sections is calculated, sample-by-sample, in the 
time-domain and saved to the lookup collection. For later adjustment to the 
volume of the audio to be watermarked, also the power level ratio of this 
difference signal relative to the original cover is saved to the lookup collection.  

c) Finally, for each audio section, its audio fingerprint of the cover data is 
calculated and saved to the lookup collection serving as an index for later 
access.  
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Fig. 1. Embedding concept for audio data. The audio fingerprint (denoted as “Robust Audio 
Hash”) is derived from the audio data. It is matched within watermark lookup collection. 
Depending on the bit value to be embedded, the watermark signal “0” or “1” is added to the 
audio data at the position of the corresponding fingerprint. 

3.2   Embedding the Watermark Message 

Using the lookup collection, an arbitrary audio file is watermarked as follows  
(see Figure 1): 

a) Media parsing: When the user wants to embed a watermark in a media file, he 
needs the watermark lookup collection as explained before. He first calculates 
the audio fingerprint of the first section of the media file. The audio fingerprint 
can be seen as an index to find the best match in the lookup collection of 
difference signals with respect to similarity of the psycho-acoustic properties. 

b) Matching to lookup collection: The audio fingerprint is used to access the 
watermark lookup collection. The entry with the best match in terms of the 
Hamming distance is selected. Then, depending on the value of the current 
watermarking bit to be embedded at the current media file position, the 
algorithm accesses the pre-generated watermark difference signal for message 
symbol “1” or “0” in the collection. 

c) Watermark embedding: The difference signal retrieved from the watermark 
lookup collection is added sample-by-sample to the current media data section. 
As its audio fingerprint is related to the masking curve used to pre-generate the 
watermark, the transparency of the embedded watermark and therefore the 
quality of the marked cover is ensured. The volume of the difference signal is 
adjusted to the volume of the given audio cover based on the power level 
information which is available in the lookup collection. Although the level 
dependence in the psycho acoustic model is non-linear, this approach can be 
seen as a sufficient adaption to the sound pressure level. In fact, closer analysis 
showed that this volume adjustment could avoid audible distortions caused by 

[…]Audio Data
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Bit Value

0

1
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difference signals in the lookup collection that were obtained from audio 
segments with high volume. Additionally, the difference signal can be 
multiplied with a global factor to evaluate different levels of embedding 
strength. 

d) The addition of the watermark can be done with minimal computational effort, 
e.g. by adding the watermark directly in the time-domain to the media 
information, avoiding costly spectral transformation during the embedding 
process and several steps of overlap-adding including fading. 

e) Loop: The algorithm proceeds in the sequence of media data sections and 
embedded additional watermarking bits as described in steps a) to c) as long as 
there is media data to be marked. 

An alternative approach for volume adjustment in step c) could be to use a lookup 
collection from audio content which was specially prepared in the pre-processing 
stage (see section 3.1 above): Prior to embedding, one could apply compression of the 
dynamics (difference of volume between loud and silent segments) and amplification 
of the (now almost constant) volume to a defined value. Then, lookup collections for 
different volumes could be used to obtain an even better matching. 

It must be noted that the pre-processing is done only once for each user and media 
data type as long as the user’s secret key is not changed. The reason an individual 
collection needs to be generated only once lies within the security requirements. If no 
key-based security is needed, all users of the algorithm could use the same watermark 
lookup collection. In that case, pre-processing (step 1) would not be necessary for 
individual users, but they would access a global pre-generated collection provided 
together with the algorithm. 

4   Implementation of Fingerprint Extraction 

This chapter describes the fingerprint extraction we use for psychoacoustic-based 
matching and for the creation of the lookup-table. It features several content-based 
analysis methods from the literature, for example, psychoacoustic 
modeling [ISO1993], MPEG-7 low level audio features [AHHF+2001], audio 
fingerprinting [HaOK2001] and adaptive quantization as published by us in an earlier 
work [ZmSt2008].  

The calculation requires several processing steps as follows: 

- Segmentation of the audio stream: at first, the cover, a PCM audio file is 
divided in frames of appropriate length, e.g. 512, 1024 or 2048 samples and 
the FFT spectrum is calculated before further processing frame-by-frame. For 
synchronizing the watermark embedding and the audio feature extraction, as 
described in the following, the correspondent frames show no overlap. That is, 
the fingerprints are extracted from separate audio frames, independently. 

- Fingerprinting from psycho-acoustic modeling: Based on the MPEG 
psychoacoustic model, from the FFT spectrum the instantaneous masking 
threshold of each frame is calculated [ISO1993]. This is the curve of minimum 
sound pressure level that is required to add an additional sound sensation to the 
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present audio signal. Its calculation is based on models for human perception of 
sound, namely frequency and temporal masking. It provides an abstracted 
representation that is nevertheless significant with respect to Human perception 
of the sound in the audio fragment. Thus, analyzing the masking curve in each 
time-step is a promising approach to match audio content based on human 
perception. Here, the signal-to-mask ratio is analyzed and the psychoacoustic 
status fingerprint H1 of length N Bit is defined as follows: First, the cover FFT 
spectrum and the masking curve are divided into N subbands. Then, for each 
subband, the i-th bit in H1 is set to “1” (or “0”, respectively) if the mean of the 
given cover FFT spectrum is above (or below, respectively) the mean of the 
masking threshold in that subband. It should be noted that in practice, while 
creating the lookup collection, this requires no significant extra computational 
effort as the psycho acoustic modeling needs and the FFT spectrum need to be 
available for the embedding, anyway. 

- Fingerprinting from adaptively quantized spectrum: As an intermediate 
processing step, the FFT spectrum is quantized depending on H1: Inaudible 
areas, i.e. those parts in the spectrum which are below the masking threshold, 
are represented coarsely with 1-bit quantization. Audible areas above the 
masking threshold are represented up to 7-bit quantization. As shown 
in [ZmSt2008] this increases the robustness of the following fingerprint 
extraction because acoustically irrelevant signal changes will contribute less 
to the result or will be even ignored. Then we compare the spectral 
coefficients in two consecutive time-steps among the N subbands according 
to the audio fingerprinting approach presented in [HaOK2001]. We define 
the frequency frame fingerprint H2 as follows: we assign a “1” if the mean 
of the coefficients increases from first to second time step, and vice versa. 

- Fingerprinting from spectrum flatness analysis: Another feature used is the 
spectrum flatness calculated from the N subbands in two consecutive frames. 
The flatness measure is defined as the ratio between the geometric and 
arithmetic mean of the spectral coefficients [AHHF+2001]. Spectrum 
flatness is a measure that indicates if a spectrum or subband contains 
dominant peaks or if the spectrum is rather “flat”. Thus, it can identify, if a 
certain audio spectrum contains dominant single tones or not. Calculated 
among a number of subbands, it can be seen as another approach to identify 
similar audio content [AHHF+2001]. From the flatness measure, the 
spectrum flatness fingerprint H3 of length N Bit is defined similar to H1 by 
comparing the flatness values between two adjacent time steps among all 
subbands similar to [HaKa2001, HaOK2001]. 

5   Experimental Evaluation 

To evaluate the performance of the proposed scheme, we performed tests on synthetic 
and real-world audios of different genre. Here, the suitability of the proposed 
fingerprinting algorithms, the sound quality and the overall watermark detection 
success were of special interest. 
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5.1   Test Set and Creation of Lookup Collection 

We created a lookup collection using different fingerprinting schemes H1, H2 and H3 
and different combinations thereof, respectively. The fingerprints were of 12 bit 
length. The lookup collection was created from a 261 seconds rock music audio file. 
Here, a spread-spectrum Patchwork [BGML1996] watermarking approach from our 
earlier work [Stei2003] was used. That audio watermarking approach features an 
embedding and detection in the Fourier domain while the transparency is maintained 
by a psycho acoustic model similar to the model used in lossy encoding of mp2 and 
mp3 files [ISO1993]. The difference signals between the cover audio and the 
temporary watermarked copies with message symbols “0” and “1” were obtained 
from the PCM audio data in the time-domain. 

5.2   Comparison of Different Fingerprint Approaches 

To give a proof that suitable pre-watermarked audio segments can be recognized 
using fingerprinting, several audio files from several genre (pop, rock, movie score, 
synthetic white noise) of 773 seconds total length were used for later embedding. In 
total, 75 watermark messages of 8 bit net length (approx. ten seconds play time per 
message) were embedded using our proposed approach. A CRC-12 checksum was 
appended to every watermark message to be able to verify the integrity of arbitrary 
messages at detection time. That message of length 8+12=20 Bit was subject to 
forward error correction (FEC). We use a convolutional encoding / Viterbi decoding 
to improve the robustness and to cope with bit errors during transmission. The FEC 
encoding increases the message length, again, to a gross length of 2*20+4=44 Bit 
total. To increase the robustness, each bit was embedded several times in consecutive 
frames. 

Every message was prefixed by a synchronization template of 40 bit, 
i.e. approximately two seconds. That is, before the beginning of any arbitrary 
watermark message, a static watermark message pattern is embedded that is fixed and 
known for any message. This enables the watermark detector to synchronize to the 
precise embedding position and allows watermark detection even when the audio files 
were trimmed. 

Global factors of 1.0 and 2.0 were used for embedding. A factor greater that one 
means that the selected difference signal will be added to the new cover data with a 
higher volume than it was originally present when the lookup collection was created. 

For further analysis, the three fingerprints are combined with the XOR operation. 
That allows providing a combined fingerprint to which all three individual 
fingerprinting schemes contribute while maintaining its total bit length. Seven 
different combinations of hashes are performed, namely the three individual hashes 
and all XOR combinations thereof.  

We finally obtain an N Bit audio fingerprint which we will use for matching the 
audio content to the appropriate lookup collection entry. In practice, fingerprint 
lengths N from 10 to 12 are used in order to keep the size of the lookup collection 
compact. 
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The detection results are obtained without any attacks applied to the watermarked 
content. From the detection results given in Table 1 the following can be seen: 

- The overall detection success is rather moderate as 47% of the embedded 
messages can be retrieved at best (35 out of 75 for global factor of 2.0 when 
H1+H3 is used).  

- It can be seen that a global factor of 2.0 during embedding provides much 
more detected watermark messages compared to a global factor of 1.0 (total 
152 instead of 71), as can be expected. 

- It is obvious that fingerprint H3 outperforms the other two fingerprints when 
a single fingerprint is used: almost no message was detected when only H1 
or only H2 was used.  

- Surprisingly, an XOR combination H1 with H2 again provided a significant 
number of successful detections while they individually provide poor results. 

Closer analysis showed that many of the incorrectly retrieved messages were 
actually almost correct but one the eight bits. Closer look at the single message bits 
showed that the bit error rate was at best 0.192 for fingerprint H3 and global factor 
of 2x and detection threshold of 0.2. That explains why only 31 out of 75 messages 
could be successfully and completely decoded in the Viterbi decoder, in that  
best case. 

Table 1. Correctly detected watermark messages; the “+” symbol denotes XOR operation 

fingerprint combination used 

H1 H2 H3 H1+H2 H1+H3 H2+H3 H1+H2+H3 Total 

global 
factor 

1.0 0 0 23 6 12 21 9 71 

2.0 1 0 31 33 35 26 26 152 

 

Table 2. Correctly detected sync templates; the “+” symbol denotes XOR operation 

fingerprint combination used 

  
H
1 H2 H3 H1+H2 H1+H3 H2+H3 H1+H2+H3 Total 

global 
factor 

1.0 4 2 35 38 32 47 31 189 

2.0 0 0 59 66 58 55 48 286 

 
Thus, to verify if it is plausible to use even shorter message lengths, we also 

analyzed, how many of the synchronization templates (only two seconds each) can be 
detected correctly From Table 2 we can see that, indeed, the detection success for the 
sync templates is two to three times higher than for the full watermark message 
payload. That is, shorter watermark messages (or splitting the watermarking message, 
resp.) will be useful. Again, fingerprint H3 outperforms all other approaches by far, if 
single algorithms are compared. 
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5.3   Assessment of Sound Quality 

We also analyzed the sound quality of embedded audio. For this purpose, the 
embedded and original audios were compared using the OPERA 
Audio Quality Analysis3 system. In contrast to simple quality measures like PSNR, it 
simulates and considers Human perception of sound. It features an artificial neural 
network which simulates Human perception of quality degradation as perceived by an 
average listener. The artificial neural network was trained with large sets of listening 
tests during the development of the lossy mp3 audio compression. The OPERA 
system allows efficient and reproducible comparison of audio data before and after 
processing while avoiding elaborate listening tests.  

The sound quality is expressed in terms of the Objective Difference Grade (ODG) 
which ranges from 0.0 (“no audible difference”) to -4.0 (“very annoying”), see 
definition in Table 3. For example, closer analysis shows that the quality loss caused 
by mp3 encoding of typical music files at 128kBit/s, stereo, is assessed with 
approximately -1.0 on the ODG scale, which is according to common user 
acceptance. 

Table 3. Definition of Objective Difference Grades 

ODG Sound sensation 

0 no audible difference 

-1 slightly different, not annoying 

-2 little annoying 

-3 annoying 

-4 very annoying 

 
The plot of number of successful detections versus the sound quality loss under 

different global factor values is expressed in Figures 2a and 2b: For a low embedding 
strength (global factor 1.0) it can be see that the results on the sound quality are 
clearly divided: most of the marked files feature ODG values between -0.5 and 0.0 
which means that the distortions introduced by our embedding approach are almost 
inaudible. Unfortunately, only a few watermark messages could be detected in that 
case, no matter which fingerprinting strategy was used. On the opposite, there are a 
few samples that feature a large number of correct detections. But they suffer from an 
extremely low ODG near -4.0 which indicates very annoying distortions. 

The results look more promising if a higher embedding strength is selected 
(see Figure 2b). For global factor of 2.0 a number of test runs showed successful 
detections greater than zero while the ODG values remains greater than -1.0, i.e. the 
sound quality is not annoyingly distorted. 

The detailed results for a selection of individual files for fingerprint H3 are given 
in Table 4. There, it can be seen again, how the results are dependent on the different 
files. For example, the “Rock1” music song (“Black Ice” by AC/DC) could be 
                                                           
3 www.opticom.de (URL verified January 2012). 
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watermarked with 1 to 8 messages. But the sound quality was very poor, no matter 
which global factor (embedding strength) was used. For the “Rock2” song 
(“I’ll give you money (live)” by Peter Frampton), at least four messages could be 
detected correctly while the sound quality loss was “slightly annoying”. 

 

Fig. 2a. Detection success and quality loss for different audio files and different strategies of 
fingerprints (denoted as “hash”); global factor = 1.0 
 

 

Fig. 2b. Detection success and quality loss for different audio files and different strategies of 
fingerprints (“hash”); global factor = 2.0 
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Table 4. Results on detection and sound quality among different files 

File Name 
ODG Number of detections 

Global factor 1.0 Global factor 2.0 Global factor 1.0 Global factor 2.0 

Rock1 -3.60 -3.60 1 8 

Movie Score -3.98 -3.98 22 19 

Rock2 -0.27 -1.87 0 4 

Noise -0.06 -0.55 0 0 

5.4   Distribution of Fingerprints 

We further investigated, why the results were so different among different files. 
One reason might be that the lookup collection we used was created from only one 
music file (i.e. one musical genre) of a few minutes play length. From Figure 3 we 
can see that most of the possible 4096 values of the 12-bit fingerprint actually were 
not used. Closer analysis showed that during embedding, the best matches still  
have a Hamming distance significantly greater than zero, i.e. exact matches were 
very rare. 

 

Fig. 3. Distribution of the 212 possible fingerprint values; Lookup collection obtained from a 
261 second rock music song 

One solution is to create a larger lookup collection in the preparation stage. First 
test results from a 30 minute test file containing different kinds of musical genre and 
speech data showed a distribution that is much less sparse (see Figure 4). Closer 
analysis showed that only approximately 100 out of 4096 possible fingerprint values 
were missing in the lookup collection displayed in Figure 4. 
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Fig. 4. Distribution of the 212 possible fingerprint values; Lookup collection obtained from a 30 
minutes music compilation 

5.5   Discussion of Results 

With respect to robustness and transparency, it can be said that the proposed 
implementation shows good results for some audio files while moderate results for 
other files. The results showed that using a larger lookup collection in the preparation 
stage can be one promising approach to overcome these issues: Closer matching using 
a more completed lookup collection which will provide closer matches. In contrast, 
increasing the fingerprint length considerably beyond twelve bit will not be a suitable 
solution to improve the matching performance as this accordingly will increase the 
processing time for fingerprint matching and will rapidly increase the file size of the 
lookup table exponentially to unmanageable size. 

With respect to processing speed, it is obvious, that trading a FFT-based embedder 
with a FFT-based feature extraction and selection process will not remove the 
computational cost of the FFT from the embedding chain. Still, even with FFT-based 
fingerprints a certain gain in processing speed can be achieved in our approach 
because no inverted FFTs are required as the embedding is done in the time-domain. 
Furthermore, smaller FFT windows can be used for fingerprinting and less overlap-
adding is required.  

For example, given by the implementation that was used for the experimental 
section [Stei2006], the embedding of each message bit in a frame requires several 
internal steps of FFT and inverted FFT calculation (frame size 2048 samples), 
fading and overlap-adding to obtain optimal transparency. Instead, the proposed 
approach requires one FFT of frame size 1024 for fingerprinting-based matching 
plus adding in the time-domain the 2048 samples difference signal to the cover 
audio. 
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In summary, it must be said that the fingerprinting methods applied above are only 
current examples used to implement a proof of concept. Nevertheless, the above 
implementation, in which fingerprinting controls the embedding process, shows to be 
an alternative embedding strategy in principle. 

6   Summary and Outlook 

In this work we present a concept and its proof for efficient embedding of digital 
watermarks in audio data. It is based on creating a lookup collection of watermarking 
difference signals and corresponding audio fingerprints from an arbitrary set of audio 
files during a pre-processing step. Here, the Fingerprints are used as a supporting 
audio pattern recognition mechanism to increase the processing speed of digital 
watermarking. 

When a media file is to be watermarked, its audio frames are matched against the 
lookup collection. Here, an audio fingerprint is calculated for each frame and used for 
audio pattern recognition. Only the pre-processed watermark message bit with the 
best match with respect to perceptual properties is taken from the lookup collection. 
This watermark is then added to the signal by simply mixing both signals. Then, the 
algorithm proceeds to the next frame and so on. That is, the lookup collection can be 
used at any later date with arbitrary PCM files to create watermarked at very high 
processing speed and low computational effort.  

It should be noted that the concept is independent from the media type of audio 
data as discussed here. The concept of perceptual matching can be applied to image or 
video watermarking, for example, as visual models provide an assessment of 
perceptual similarity of visual content. 

In extension to our previous conceptual work, here, real-world test results proof 
that the concept is performing successfully in principle. Approximately one half of 
the embedded watermark can be retrieved under optimal conditions. Nevertheless, the 
results for sound quality show room for improvement before applying the approach 
for real-world applications. Using larger lookup collections or introducing different 
volume adjustment seems to be promising approaches for improving the transparency 
and/or robustness of the embedding.  

In our future work, further fingerprinting approaches shall be investigated that 
provide a better match in terms of acoustic similarity and watermark transparency. To 
improve the computational costs, one focus will be on extracting fingerprints in the 
time-domain for avoiding time-consuming spectral transformation in the future. 

We will also proof that this approach can enable a fast embedding. Therefore, the 
current MATLAB implementation will be ported to Java or C/C++ and compared to 
current audio watermarking solutions with respect to computational costs. 

 
Acknowledgement. This work has been supported by the Center of Advanced 
Security Research Darmstadt (CASED), funded by the German federal state of Hesse 
under the LOEWE programme (http://www.cased.de). 



78       S. Zmudzinski, M. Steinebach, and M. Butt 

 

References 

[AHHF+2001]  Allamanche, E., Herre, J., Helmuth, O., Frba, B., Kasten, T., Cremer, M.: 
Content-Based Identification of Audio Material Using MPEG-7 Low Level 
Description. In: Proc. of 2nd International Symposium of Music Information 
Retrieval (ISMIR 2001), Indiana University, Bloomington, Indiana, USA, 
October 15-17 (2001),  

 http://ismir2001.ismir.net/proceedings.html  
(URL verified: January 2012) 

[BGML1996] Bender, W., Gruhl, D., Morimoto, N., Lu, A.: Techniques for data hiding.  
IBM Systems Journal 35(3,4), 313–336 (1996) 

[CMB2002]  Cox, I.J., Miller, M.L., Bloom, J.A.: Digital Watermarking. Academic Press, 
San Diego (2002) ISBN 1-55860-714-5 

[FG2000] Fridrich, J., Goljan, M.: Robust Hash Functions for Digital Watermarking. In: 
International Symposium on Information Technology (ITCC 2000), March 
27-29. IEEE Computer Society, Las Vegas (2000) ISBN 0-7695-0540-6 

[HaKa2001] Haitsma, J.A., Kalker, T.: A highly robust audio fingerprinting system. In: 2nd 
International Symposium of Music Information Retrieval (ISMIR 2001), 
Bloomington, Indiana, USA (2001), Online proceeding,  

 http://ismir2001.ismir.net/proceedings.html  
(link verified: July 07, 2011) 

[HaOK2001] Haitsma, J., Oostveen, J., Kalker, T.: Robust Audio Hashing for Content 
Identification. In: Proc. of Content-based Multimedia Indexing (CBMI 2001), 
Brescia, Italy (2001) 

[HBS2007] Hauer, E., Bölke, T., Steinebach, M.: Framework for combined video frame 
synchronization and watermark detection. In: Delp III, E.J., Wong, P.W. 
(eds.) Security, Steganography, and Watermarking of Multimedia Contents 
IX. SPIE / IS&T, Bellingham (2007) ISBN: 9780819466181 

[HKM2005] Harmanci, O., Kucukgoz, M., Mihcak, M.: Temporal synchronization of 
watermarked video using image hashing. In: Proc. of IEEE Security, 
Steganography and Watermarking of Multimedia Contents VII, San Jose, 
USA, vol. 5681, pp. 370–380 (January 2005) 

[ISO1993] ISO/IEC 11172-3, MPEG-1: Coding of moving pictures and associated audio 
for digital storage media at up to about 1.5 MBit/s, Part 3:Audio (1993) 

[KCLI+2007] Kirbiz, S., Celik, M., Lemma, A., Katzenbeisser, S.: Decode-Time Forensic 
Watermarking of AAC Bit-Streams. IEEE Transactions on Information 
Forensics and Security 2(4), 683–696 (2007) 

[OST1994] Osborne, C.F., van Schyndel, R.G., Tirkel, A.Z.: A Digital Watermark.  
In: IEEE International Conference on Image Processing, Austin, Texas, pp. 
86–90 (November 1994) 

[SHW2007]  Steinebach, M., Hauer, E., Wolf, P.: Efficient Watermarking Strategies. In: 
Third International Conference on Automated Production of Cross Media 
Content for Multi-Channel Distribution (AXMEDIS 2007), pp. 65–71 (2007) 

[Stei2003]  Steinebach, M.: Digitale Wasserzeichen für Audiodaten. Shaker Verlag  
Aachen (2003) ISBN 3832225072 

[SZF2006]  Steinebach, M., Zmudzinski, S., Fan, C.: The digital watermarking container: 
Secure and efficient embedding. In: Proceedings of the ACM Multimedia and 
Security Workshop, Magdeburg, Germany, September 20-21 (2004) 



 Watermark Embedding Using Audio Fingerprinting 79 

 

[SZN2006]  Steinebach, M., Zmdzinski, S., Neichtadt, S.: Robust-audio-hash 
Synchronized Audio Watermarking. In: Paphos, C., Fernández-Medina, E., 
Yagüe, M.I. (eds.) 4th International Workshop on Security in 
Information Systems (WOSIS 2006), pp. S.58–S.66 (2006) 

[WHS2008]  Wolf, P., Hauer, E., Steinebach, M.: The video watermarking container: 
efficient realtime transaction watermarking. In: Delp, Wong, Dittmann, 
Memon (eds.) Proceeding of Electronic Imaging 2008: Security, 
Steganography, and Watermarking of Multimedia Contents X. SPIE IS&T, 
Bellingham (2008) ISBN: 978-08194-6995-3 

[ZmSt2008]   Zmudzinski, S., Steinebach, M.: Robust audio hashing for audio 
authentication watermarking. In: Delp, Wong, Dittmann, Memon (eds.) 
Proceeding of Electronic Imaging 2008: Security, Steganography, and 
Watermarking of Multimedia Contents X (2008) ISBN: 978-08194-6995-3 

 



Y.Q. Shi (Ed.): Transactions on DHMS VIII, LNCS 7228, pp. 80–101, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

Plausibility Considerations on Steganalysis  
as a Security Mechanism – Discussions on the Example  

of Audio Steganalysis  

Christian Kraetzer and Jana Dittmann  

Otto-von-Guericke-University Magdeburg, Dept. of Computer Science, 
Research Group Multimedia and Security  

P.O. Box 4120, 39016 Magdeburg, Germany 
{kraetzer,dittmann}@iti.cs.uni-magdeburg.de 

Abstract. Most publications on steganography and steganalysis trivialize the 
latter into a simple two-class decision problem: either a data object is an 
unmodified cover or a stego object. The normal way in literature to tackle this 
decision problem is to use supervised classification, first, to train classifiers 
and, second, to compute the classification accuracies on known good (cover) 
and known bad (stego) samples in artificially constructed evaluation sets with 
known classes for all objects. It is true that such statistical pattern recognition 
(SPR) based approaches might be efficient for solving the steganalysis problem, 
but in practical application it is less trivial and to achieve plausible results is 
much harder. The scientific contribution of this paper is to address the lack in 
investigation methodologies and metrics for steganalysis benchmarking and 
plausibility considerations. We consider the state-of-the-art in this field and 
enhance it by new considerations on steganalyser throughput and plausibility. 
The work presented here includes a recommendation for an advanced metric to 
measure the throughput of a steganalyser. 

Keywords: Steganalysis as a security service, audio steganalysis, throughput, 
plausibility. 

1 Motivation and Introduction  

Steganalysis, as the technique to detect hidden communication channels in media files 
or streams, is one of a number of important techniques to establish trust in media data. 
The most common solution used to implement steganalysis to detect steganography 
by cover modification is statistical pattern recognition (SPR).  

A first interesting point to be mentioned in the context of this paper is the 
mismatch between research and development/application in the field of steganalysis. 
For other communication based threat scenarios in IT-security, like viruses/malware 
or email spam, a large range of commercial detectors is available. But in steganalysis, 
it contrast to the hundreds or even thousands of research publications focussing on 
this topic, only few open source or research demonstrator steganalysers are found 
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together with an even smaller number of commercial steganalysis detectors. Also, for 
those few commercial tools available the focus of application is in many cases not 
statistical analysis of potential cover objects1. 

Most publications on steganography and steganalysis trivialize the latter into a 
simple two-class decision problem: either a data object is an unmodified cover or a 
stego object. The normal way in literature to tackle this decision problem is to use 
supervised classification, first, to train classifiers and, second, to compute the 
classification accuracies on known good (cover) and known bad (stego) samples in 
artificially constructed evaluation sets with known classes for all objects. It is true that 
such statistical pattern recognition (SPR) based approaches might be efficient for 
solving the steganalysis problem, but in practical application it is less trivial and to 
achieve plausible results is much harder.  

Kodovský and Fridrich conclude in [14] that there are three main factors that can 
negatively influence the performance of machine learning tools: small number of 
training samples, low class distinguishability and high dimensionality of the feature 
space. They declare that weak steganographic methods are easily detectable because 
they disturb some elementary cover properties that can be captured by a low-
dimensional feature vector with high distinguishability. A fairly small training dataset 
is then usually sufficient to train a classifier with an excellent performance. While on 
the other hand, more advanced steganographic methods require high-dimensional 
feature spaces capable of capturing more complex dependencies among individual 
cover elements, which in turn necessitates more training samples. A seemingly 
straightforward strategy to improve the performance of existing steganalysers may be 
to increase the size of the training set. This way we allow the machine learning tool to 
better utilise the given feature space and we may use feature spaces of higher 
dimensions without degradation of performance. However, sooner or later one will 
likely encounter technical problems with data or memory management, or the training 
would be unacceptably long. Furthermore, in many practical scenarios, the steganalyst 
lacks information about the cover source (only a limited number of cover examples 
are available). Here, training the classifier on a different cover source may result in a 
serious drop in testing performance (see e.g. [7], [8]).  

The main points of the statements from Kodovský and Fridrich can be restated as: 
statistical relevance (with an implicit threat of overfitting), class distinguishability, 
curse of high dimensionality (complexity) and missing context information problems. 
From a scientific point of view this list is identifying the major problems known in 
pattern recognition research since decades. Nevertheless, we want to show that those 
considerations in [14] are far from being complete – especially if it is intended to 
implement a steganalyser as a field-deployable security mechanism (like e.g. an anti-
malware scanner, an intrusion detection system or a firewall). 

This paper summarises and extends the considerations found in [14] as well as our 
previous considerations from [24], [3] and [27] on audio steganalysis, by addressing 
 
                                                           
1 The SARC steganalyser (see http://www.sarc-wv.com/products/stegalyzeras/learn_more.aspx) 

claims to detect the download and installation of over 925 steganography applications on MS 
Windows machines. 
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the following six important aspects on the plausibility of practically applied 
steganalysis:  

a) considering the detection performance (or classification accuracy) of the 
steganalysers as initial/naïve trust assumption 

b) the differentiation between the different error classes encountered (i.e. if 
steganalysis is considered a two-class classification problem then between 
the statistical Type I and Type II errors – false positives and false 
negatives) 

c) the statistical generalisability of the results at hand considering known 
problems from classification (like overfitting) and required evaluation set 
sizes – this includes considerations on the correlation between the training 
context and the application context (i.e. context dependent and 
independent training and testing) 

d) the influence of other (non-malicious) audio signal processing operations 
on the steganalyser has to be investigated 

e) the plausibility of the features used for classification actually being 
relevant for the classification problem at hand 

f) the possibilities for increasing and estimating the decision performance in 
case of information fusion by multiple steganalysers 

For a security mechanism that aims at the detection of malicious behaviour (here the 
construction of hidden communication channels) the question of the throughput 
and/or detector response time are imminent. In the field application of a steganalysis 
performing security mechanism, the preferred throughput would obviously be a real-
time system with a very short detector response time, which would allow for the 
implementation of detection and prevention systems. Nevertheless, it is hard to 
generalize the real-time requirements because the cover channels can be of different 
nature: they could be rather low data-rate audio-based communication channels (e.g. 
GSM, VoIP, radio broadcasts) or high data-rate audio material transmitted via data 
transfer protocols (e.g. MP3 files via file sharing networks). Furthermore, all publicly 
available / known audio steganalysis tools (which would form the core of a 
steganalysis security mechanism) are right now rather slow, due to the complex 
analysis task at hand (see section 2). Nevertheless, a methodology and designs for the 
throughput analysis for steganalysers are required in this field, for performance 
evaluations on single steganalysis algorithms as well as for complex fusion 
information systems combining multiple steganalysers. 

Next to the throughput, another important point is the plausibility of decisions 
made by a steganalysis performing security mechanism. The notion of plausibility 
used within this paper combines different aspects: first, the initial detection 
performance (or classification accuracy) of the steganalysers, second, the 
differentiation between the different error classes encountered (i.e. if steganalysis is 
considered a two-class classification problem then between the statistical Type I and 
Type II errors – false positives and false negatives), third, the statistical 
generalisability of the results at hand considering known problems from classification, 
required evaluation set sizes and the correlation between the training context and the 
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application context has to be considered (i.e. context dependent and independent 
training and testing), fourth, the influence of other (non-malicious) audio signal 
processing operations on the steganalyser has to be investigated, fifth, the plausibility 
of the features used for classification actually being relevant for the classification 
problem at hand, and sixth, the possibilities for increasing and estimating the decision 
performance in case of information fusion by multiple steganalysers.  

If a steganalysis performing security mechanism detects the presence of hidden 
channels in the cover data under observation, further information to characterize 
the steganographic channel might be derived from by the detector, including the 
used embedding domain and an algorithm identification, key scenario considerations 
as well as payload estimation. 

In some scenarios it might be possible to apply countermeasures in case a 
steganographic channel is detected. In the simplest case, the countermeasure might be 
a disruption of the cover channel. More sophisticated measures might be found in 
filtering operations on the cover data to eliminate the embedded steganographic 
information without disrupting the entire cover channel. 

The scientific contribution of this paper is to address the lack in investigation 
methodologies and metrics for steganalysis benchmarking. We consider the state-of-
the-art in this field and enhance it by new considerations on steganalyser throughput 
and plausibility. The work presented here includes a recommendation for an advanced 
metric to measure the throughput of a steganalyser. 

The rest of this paper is structured as follows: section 2 summarises briefly the 
state-of-the-art in the fields of plausibility considerations in steganalysis and on 
steganalyser benchmarking, section 3 introduces our methodologies, concepts and 
new metrics for practical steganalysis. In section 4 the benefit of the application of 
our methodology and concepts in practice is demonstrated briefly. Section 5 
summarises the paper and discusses perspectives for future work. 

2 State-of-the-Art in Plausibility Considerations for 
Steganalysis and in Steganalyser Benchmarking  

One of the rare examples where steganalysis is applied in large scale field evaluations 
is the work of Niels Provos and Peter Honeyman in [16]. In their paper, the authors 
criticise current state-of-the-art in steganalytical approaches at this point of time  
(like [18] and [19]) as being practically infeasible, due to faulty basic assumptions  
(two-class problem description and statistical overfitting to the training sets). In 
contrast to these publications Provos and Honeyman construct a multi-class SPR-
based image steganalysis detector called Stegdetect. Each candidate image is 
considered to be member of one of four classes, either it is an unmodified cover 
image or it is the result of the application of one out of three different steganographic 
tools (JSteg, JPHide and OutGuess 0.13b) which have been amongst the state-of-the-
art at this point of time. Stegdetect is then applied blindly (without knowledge about 
the true class) to two million images downloaded from eBay auctions and one million 
images obtained from USENET archives. As a result, Stegdetect implies that over 1% 
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of all images seem to have been steganographically altered (mostly by JPHide) and 
therefore contain hidden messages. Based on these findings, Provos and Honeyman 
describe in [16] also a second tool called Stegbreak for plausibility considerations, i.e. 
for verifying the existence of messages hidden by JPHide in the images identified by 
Stegdetect. Their verification approach is based on the assumption that at least some 
of the passwords used as embedding key for the steganographic embedding are weak 
passwords2. Based on this assumption, they implement for Stegbreak a dictionary 
attack using JPHide’s retrieval function and large (about 1,800,000 words) multi-
language dictionaries. This attack is applied to all images that have been flagged as 
stego-objects by the statistical analyses in Stegdetect.  

To verify the correctness of their tools, Provos and Honeyman insert tracer images 
into every Stegbreak job. As expected the dictionary attack finds the correct 
passwords for these tracer images. However, they do not find any single genuine 
hidden message. In their paper, they offer four possible interpretations of this result, 
either: a) there is no significant use of steganography on the internet, b) they have 
been analyzing images from sources that are not used to carry steganographic content, 
c) nobody uses steganographic systems that we can find, or d) all users of 
steganographic systems carefully choose passwords that are not susceptible to 
dictionary attacks. Even though the result of this large scale investigation is negative, 
the methodology and concepts behind the work in [16] are remarkable. Even more so, 
since they also perform throughput considerations (throughput for Stegdetect is given 
in Kilobit of images per seconds; the throughput for Stegbreak is given in words per 
second for the dictionary attack) for their analysis tool-chain, something that is also 
strongly amiss in most steganalysis publications. 

While, as mentioned above, most scientific publications trivialize steganalysis into 
a simple two-class decision problem and focus on reporting classification accuracies 
for supervised classification obtained under certain evaluation setups, some authors 
include considerations that aim directly or indirectly at the verification of the 
plausibility of the their detection approaches. A good example for this class of 
publications is [22]. In this paper the authors perform a feature selection in a SPR-
based steganalysis approach to reduce the complexity of the classification task. 

A completely different view on the plausibility of stenography and steganalysis is 
presented in [20]. In this document instructions are given for potential end-users how 
to evaluate the actual security of existing steganographic tools. Following the 
instructions it is simple to identify all tools that are not compliant with Kerckhoffs 
principle [21]. Furthermore, basic statistical techniques are explained that allow 
estimating the statistical impact of steganography by modification for steganographic 
tools. Also, the influence of strong encryption prior to embedding and other basic 
considerations are discussed. 

Summarising the state-of-the-art in plausibility considerations in steganalysis and 
steganalyser benchmarking, it has to be said that most of the work found in literature 
so far is limited to investigations on the performance against individual 
steganographic algorithms, not on considerations as a global security mechanism that 

                                                           
2 A study conducted by Klein found nearly 25% of all passwords are weak passwords [17]. 
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could be implemented and applied as a tool like e.g. a malware scanner. Especially 
the lack of appropriate metrics, as required for sophisticated performance evaluation 
and steganalysis benchmarking, is a strong problem for this domain. So far the most 
often found concept for classifier/detector comparison in this field is the usage of the 
classification accuracy as the one and only metric for performance estimations. Many 
publications consider a steganalysis algorithm to be better than another one simply if 
its classification accuracy on the same test set is higher. Such a statement is not taking 
the whole complexity of the steganalysis problem into account. Important further 
considerations, like the throughput of the detector, the distribution of error classes 
(Type I errors or False Positives vs. Type II error or False Negatives), etc are most 
often completely neglected.  

3 Methodologies, Concepts and Metrics for Practical 
Steganalysis  

The open research problem identified in section 2, the lack of appropriate metrics 
for the evaluation of the performance of a steganalysis detector to be implemented 
into real world application scenarios, is addressed in this section. Here, in  
section 3.1, first a metric for a throughput analysis for a steganographic detector is 
discussed because such a cost function would be a necessary condition or sine qua 
non for every possible field application. Second, trustworthy decisions in an SPR-
based steganalysis setup also have to fulfil the plausibility requirements identified 
in section 1 as sufficient conditions. These are discussed in detail in section 3.2. 
Sections 3.3 and 3.4 address, very briefly and just for the sake of completeness, two 
further topics that would have to be considered prior to field application of a 
steganalysis system. These two topics, which are outside the primary focus of this 
paper, are: Detector-based steganographic channel characterisation in section 3.3 
and the role of countermeasures (i.e. modifications on the cover channel) in  
section 3.4. 

3.1 Throughput Analysis – Runtime and Accuracy Considerations 

In the field-application of a steganalysis-performing security mechanism the 
preferred throughput would obviously be a reliable (in terms of detector accuracy) 
real-time system with a very short detector response time. This would allow, in the 
application domain chosen here, for the implementation of detection and prevention 
systems observing audio communication channels or audio file transfers. To our 
knowledge, all currently publicly available audio steganalysis tools (which would 
form the core of a steganalysis security mechanism) are far from being close to this 
preferred throughput, due to the complex analysis task at hand (see section 2.). 
Nevertheless, a methodology and concepts to allow for the throughput analysis for 
steganalysers are required in this field, for performance evaluations on single  
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steganalysis algorithms as well as for complex fusion information systems 
combining multiple steganalysers.  

We introduce an initial methodology for such a throughput analysis in [27] where 
we compare the performance of three selected information hiding (IH) algorithms. 
The introduced concept models this problem as the gain to cost ratio between 
detection performance (as gain) and run-time required (run-time complexity as cost). 
The initial design used in [27] expresses this ratio for a classical two-class 
consideration on the steganalysis problem as shown in equation 1.  
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If the accuracy (the ratio between true classifications and all classification attempts in 
a supervised classification) of the classifier used for steganalysis is better than 
guessing (i.e. 50% in this two-class problem), then its classifier throughput 
performance q is determined by the accuracy achieved on a fixed sized classification 
problem divided by the classifiers runtime (combined training and testing times) on 
this problem for a selected test computer. The measurement unit of this computation 
would be percentage of true (positive and negative) classifications per second, which 
is, for the standardised set sizes used here, a simplified version of the more intuitive 
“percentage of correctly classified files per second” ratio. The results presented in 
[27] for an analysis of 74 single classifiers show that this concept can indeed be used 
to distinguish between suitable and unsuitable classifiers based on the computed 
throughput performance.  

Nevertheless, it has to be admitted that this simple analysis concept is unfair and its 
result hard to interpret. From a scientific point it is unfair, because it does not 
compare the classification algorithms but instead compares their implementations. 
Therefore, a rather well suited algorithm implemented in an interpreted language 
might be ranked lower than a less suitable algorithm implemented directly in machine 
code, only because the latter can be executed much faster. For the same reason, results 
achieved on different computers would not be directly comparable. From the practical 
point of view these two points, which would be considered as unfair by scientists, 
would be a desired characteristic of the detection system. The person wanting to 
install a steganographic channel detector to observe communications or data 
exchanges would exactly look for the fastest implementation as well as the most 
suitable (in most cases the fastest) computer to run the detector.  

Another point, which makes this concept not exactly unfair but instead inept to 
handle certain benchmarking problems, is the fact that the accuracy, if used directly, 
is not suitable for comparisons between different classification problem classes. For 
example the direct comparison of the classification performance in a two-class 
classification problem (i.e. the classical hypothesis testing for a assumable 
steganographically modified channel) and a 4-class problem (e.g. steganographic 
algorithm identification on a set of three algorithms (plus unmodified covers) that 
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might have been applied, see e.g. the work of Provos and Honeyman summarised in 
section 2.) would lead to completely misleading results, because in the two-class 
problem the probability of guessing correctly is two times higher (i.e. 50%, while in 
the 4-class problem an accuracy of 50% would already be a rather good indicator, 
being 25% away from the probability of guessing correctly in this case). This point 
basically implies a strong need for normalization of results. 

For the interpretability of the results, the accuracy is expressed as a percentage 
between 0 and 100% and the runtime is given in seconds and is not bounded. 
Therefore the result is not normalized in any way so that the actual distance from an 
“optimal” performance is hard to figure out. Also, the notion of the runtime used here 
combines the training and the testing times (while in a field application the models 
would be in many cases assumed to have been trained in advance) of a classifier. 
Since the ratio between training and testing times varies strongly between individual 
classifiers, the usage of this combined time might be enormously unfair for 
application scenarios where the classifier can be trained in advance, i.e. where the 
characteristics of the expected cover objects and steganographic embedding 
techniques are known a priori and appropriate training material can be supplied for 
training. In other application scenarios, where the models could not be trained in 
advance (due to a lack of knowledge regarding the cover material and/or techniques to 
be expected or if appropriate training material is missing – see e.g. [4] where the 
“unmarked” version of an audio file is estimated/predicted by using de-noising on the 
assumed stego object), this modelling of the runtime would be the only suitable 
approach. 

The points mentioned above led to a redesign of our quality function for the 
throughput analysis. In the modified version we still use for the runtime the real time 
required for the classifier (because the ultimate goal would be the practical 
application in tools and in this case a faster implementation of an algorithm is better 
than a slower implementation) additionally we introduce a fixed timeout boundary, 
after which a classifier working on a problem is automatically considered unfit for 
this problem independent of the classification accuracy he might have achieved in the 
end. This timeout serves two purposes: first, it makes practical evaluations more 
feasible by faster removing candidates which would in any case unsuitable for 
practical application, and second, it allows to generate a normalised runtime 
description. 
 

timeout

runtime
time =  (2) 

 
Equation 2 shows the normalised runtime description used for an improvement of the 
quality function for the throughput analysis. The runtime is the execution time of the 
classifier on a given classification problem (training and testing) measured in seconds 
(using the UNIX time() command [31]). The timeout is the timeout-boundary 
predefined for this investigation. Since the execution of the classifier is terminated at 
timeout, the resulting time is a unit-less variable in the range [0,1].  
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For the accuracy investigations on a classifier, we assume for the further 
considerations that the accuracy (the ratio between the number of all true 
classifications and all classifications in an test) is expressed in the range of [0,1] 
instead of a percentage. For n equally distributed classes the probability of guessing 
correctly is: probGuess = 1/n. For not equally distributed classes the probability of 
guessing correctly has to reflect the ratios between the classes’ individual 
probabilities. To simplify the considerations here, we assume that all training sets for 
the evaluations are build with equally distributed classes. With the accuracy and 
probGuess we can construct for classification-based investigations a degree of 
closeness of measurements of a quantity to its actual (true) value that is exempt from 
the influence of the probability of guessing correctly. Such a metric would allow for 
direct comparison between the classification performances of classifiers on problems 
of different classes (e.g. a two-class classification problem like the classical 
hypothesis testing for an assumable steganographically modified channel and a four-
class problem like steganographic algorithm identification on a set of three algorithms 
(plus unmarked covers) that might have been applied). 
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Equation 3 gives the metric cg to be used within this paper for the closeness of 
measurements of a quantity to its true value. It is basically a single-rater version of 
Cohen’s Kappa (see [33], [34] for multi-rater considerations and [35] for single-rater 
considerations derived from Cohen’s Kappa) in the range [0,1]. To construct our new 
quality metric for the throughput analysis qnew we compute the (normalised) Euclidean 
distance between time and an inverted cg. This inversion has to be performed since 
the time, as introduced in equation 2, is a “the-bigger-the-worse” metric and the cg 
would be a “the-bigger-the-better” metric. The metric qnew would therefore be 
computed as:  
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Since time and cg are bounded in the range [0,1] the Euclidean distance has to be 
normalised with the square root of 2. The result of this computation qnew is, like time, 
a “bigger-the-worse” metric in the range [0,1]. It describes the distance of a current 
performance from the “optimal” point, which would be a decision machine that gives 
a perfect classification (cg=1) in an extremely short time-span (time=0). Therefore a 
classification result which is very bad (equal to the probability of guessing, cg=0) and 
finishes only shortly before the timeout-boundary (time=1) would be as far as possible 
from this optimal point with qnew = 1 in this case.  

The threshold for suitable classifiers is moved by the normalisation performed to 

the value of 21 , i.e. classifiers that only guess at the result but do so very fast are 

located exactly at this boundary. 
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Summarising the benefits of this our new performance metric qnew we can say that:  

• It takes the runtimes of the classifier/detector implementations into account, 
which is closer to the practical requirements for such a system (i.e. faster 
implementations would be preferred over slower implementations with the 
same detection power). 

• It efficiently removes classifiers that are per definition unsuitable from the list 
of candidates by defining a timeout boundary for the execution time. Therefore 
evaluations are speed up. 

• It allows for an intuitive performance description by using as a metric a 
normalised distance from an easy to understand “optimal” operation point. 

• It allows for a direct comparison between classifications of different class-sizes 
(e.g. two-class problems and 4-class problems). 

The drawbacks of this metric can be summarised as follows: 

• It is dependent of the machine it is run on. This drawback could easily be 
compensated by computing a time correction factor between different 
machines to make their runtime results directly comparable. 

• For the selection of methods for the implementation of a security mechanism, it 
would have to be accompanied by another value or set of values for precise 
throughput description (e.g. the processing speed in feature vectors per second 
– which could be given separately for training and testing in case the training 
can be performed a priori). 

• It assumes (in the modelling of probGuess) that the classes in training are 
equally distributed. 

All considerations have so far been made under the assumption that a single classifier 
is used to perform the steganalysis. For complex fusion information systems 
combining multiple classifiers into one steganalyser the considerations have to be 
extended. For the runtime consideration here the question arises whether the 
classifications are run in parallel or in sequence. In the first case, obviously the 
runtime of the slowest classifier in the fusion set defines the runtimes for the whole 
system. In the latter case the runtimes add up to the overall figure. Regarding the 
confidence/reliability of the fused decision the considerations are more complex. An 
accuracy of 100% in supervised classification does not tell much about the 
applicability of fused classifiers in real world investigations. Here, not only the 
accuracy of the involved classifiers have to be considered, but also a confidence has 
to be determined as a measure how far the fusion decision is away from the complex 
decision boundary of the overall fusion-based decision. In [29] some preliminary 
considerations on the modelling of such confidence estimation in a different context 
are made but in general this topic is still an open question for future research. 

3.2 Plausibility of Decisions in an SPR-Based Steganalysis Setup 

The throughput analysis introduced in section 3.1. acts as sine qua non for all further 
plausibility considerations. If no suitable classifier (or more precisely feature extractor 
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and classifier combination) can be found – and suitable here implies a qnew 

significantly larger than 21  – all further considerations are pointless. But if at least 

one such a suitable classifier is found, further questions have to answered to establish 
trust in the decisions of this/these classifier(s). Here six of these further questions are 
considered, as already summarised in section 1.: 

The initial (or naïve) trust assumption in our work is based on the detection 
performance of a classifier that fulfils the sine qua non – the requirement of a 
classification accuracy significantly larger than zero. In many publications (like e.g. 
[18] or [14]) this is done by (implicitly) using classification accuracies established in 
controlled evaluations as a means to specify the trust in the steganalyser. In  
section 3.1. of this paper we express our concerns against using the accuracy as a 
metric and introduce with the cg and qnew two new metrics that seem to be more 
appropriate to model an initial (or naïve) trust assumption. Actually, we would prefer 
using the qnew over the cg, due to the fact that it also considers the response time of the 
mechanism.  

In many practical application fields, the different error classes that might be 
encountered have different consequences. For example, a biometric user 
authentication system run in verification mode has two distinct error cases: a false 
rejection rate (FRR) and a false acceptance rate (FAR). The significances for these 
two error classes are completely different: the false rejections are of concern for the 
usability of the system while the false acceptations are a security issue. Since 
biometric authentication systems are in the majority distance based template 
matching engines, here the decision threshold is directly influencing both error 
classes. If it is set very low (which is the case for high-security application 
scenarios), then the system shows a high false rejection rate but also a low false 
acceptance rate. If the decision threshold is very high, then we usually see a low 
false rejection rate but a high false acceptance rate. A typical system requirement 
specification in this field gives a relationship between these two error rates, like 
“must be better than 10-5 FAR at 10-3 FRR” (see e.g. the so called horizontal and 
vertical averaging in [32]).  

The statistical pattern recognition based approaches used for most steganalysis 
approaches are to some extend similar to the biometric verification example used 
above. They are also a pattern recognition based security mechanism and they are also 
(in most cases) considered to be a two-class problem. Nevertheless, they lack such a 
parameterisable decision threshold that directly influences both error classes. Instead 
both error classes (statistical Type I and Type II errors – false positives and false 
negatives) have to be considered here as being independent. One trained classifier 
model is therefore assumed to display a fixed error ratio regarding the two possible 
classes. If multiple steganalysers (i.e. feature extractor, classifier and classifier model 
combinations) are considered for field application, it depends of the requirements for 
the application scenario which of these alternative steganalysers would be chosen. 
These requirements would include considerations on the throughput but also on the 
allowed false positives and false negatives – with high security scenarios strongly 
trying to minimise the number of false negatives.  
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In case the steganalysis problem at hand is not formulated as the typical two-class 
problem but instead aims at algorithm identification in an n-class problem the 
situation might become even more complex. In this case different levels of severity 
might be assigned to the different classes, e.g. based on the capacity that a different 
steganographic algorithms offer.  

Another important question to be addressed here is the question about the 
statistical generalisability of the results at hand, considering known problems from 
classification (like overfitting) and required evaluation set sizes. The property of 
performing well on real-world data – which can be considered in this context to be 
equivalent to statistical generalisability – is commonly referred in the machine 
learning field as generalization [10]. A classifier which performs well on data outside 
of its training set is said to “generalize” well. This ability is an important goal to 
accomplish when designing a classifier.  

It is important to supply the classifier with training data that is representative for 
the total possible space of inputs which it could encounter in real world situations. If 
the training data has been chosen poorly, it is likely that the classifiers will rely on 
features that only occur frequently in the training set and which are not useful in real 
world applications. Poorly chosen material can be distinguished into two classes: 
either the training samples are chosen from the range of values to be expected in real 
world application but there are not enough samples chosen to describe this domain 
completely (i.e. the training set size is not statistically significant), or, the training 
samples come (completely or partially) from outside the range of values to be 
expected in the real world application or do not present the representation of the target 
classes in this range appropriately.  

It has to be understood that the complexity for training and application of classifier 
models is strongly dependent on the number of training samples used. Therefore it 
would be beneficial to keep the number of training samples as low as possible, which 
leads to the risk of choosing a too small set of training candidates in this optimisation 
problem. Here, investigations have to be made for each SPR-based security 
mechanism wow large the training set sizes have to be to allow for a suitable 
description of the problem domain while on the other hand preventing the model to 
become to large (high complexity in training and field application). 

The other class of poorly chosen training material is describing the over-fitting 
problem. In over-fitting situations (which are the exact opposite of generalisation) the 
classifier is trained wrongly and is in practice only able to correctly recognise data 
from its training set [11]. The most important considerations to be performed here 
should focus between the correlation between the training context and the 
application context. The question behind these considerations is trying to address 
whether the steganalyser will only perform properly on material identical in its 
statistics to the statistics of the training context or whether the mechanism is capable 
of making successful decisions in a wider range of application contexts. In [9] we 
introduced the concepts of context dependent and content independent training and 
testing. In the cover signal specific steganalysis performed in [9] the classification 
results achieved for nine different information hiding algorithms show a rather strong 
impact of the correlation between the training and test set material for the considered 
SPR-based steganalyser.  
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In case signal operations of non-malicious nature have to be allowed for on the 
digital media objects under evaluation (which is a rather likely scenario in media-based 
communication, where much of the data undergoes a post processing prior to 
distribution) the generalisability considerations are made even more complicated. In the 
case where the influence of non-malicious audio signal processing operations on the 
steganalyser has to be considered, the range of the values representing “harmless” (non-
stego objects) becomes statistically more complex by every additional allowed 
operation and also the distance between non-stego and stego objects assumably 
decreases, which makes the classification problem harder. The only option seems to be 
here to include such non-malicious signal processing operations into the evaluation of 
the steganalyser prior of its roll-out as a security mechanism. 

One further point to consider is the relevance of the features used for the 
classification problem at hand. A classifier tends to learn the easiest features it can. A 
rather renowned story in the data mining community to illustrate this fact tells of 
scientists in a military project trying to train a neural network to classify images as 
containing either tanks or trees. Sometimes this possibly apocryphal story is told 
claiming to aim at the distinction between American and Russian tanks. The story is 
summarised in [12] as follows: scientists present pictures of trees and pictures of 
tanks to the neural network to train it. After sophisticated pre-processing of the 
images, these are fed in the neural network and, after considerable training, the 
network is able to classify each image correctly. However, when it is tested on other 
images, the network seems to classify every image as trees, even when it contains a 
tank. After careful study, the scientists finally resolve the mystery: in all the images 
used in the training, those containing trees were always taken in broad daylight, while 
those containing trees were always taken in a darker setting! Thus, the network had 
learned to distinguish the (trivial matter of) differences in overall light intensity rather 
than recognising the presence of tanks. Therefore the relevance of features looks for 
exactly these features that as precisely as possible divide the individual classes in the 
classification problem. Also, an optimal set of features would contain no redundancy, 
so the correlation between the features in such a set would be zero, to reduce the 
dimensionality of the classification problem and thereby enhance the throughput. 

Relevance considerations on the features should also look into different feature 
types, which have a strong impact on the throughput. The two general types that are 
most commonly considered in this context in literature (e.g. [13]) are local and global 
features. Local as well as global features are either determined content based or 
without higher-level content analysis. A good example for content based local 
features is the determination of minutiae in fingerprint images; an example for local 
features computed without higher-level content analysis could be the colour-value 
distance between one pixel and the next in a row in an image. For content based 
global features an example could be the existence of a specific object (e.g. a tank) in 
an image; an example for global features computed without higher-level content 
analysis could be the entropy of a complete signal. It is obvious that the global 
features perform the strongest information reduction, while especially the local 
features computed without higher-level content analysis provide very little 
information reduction.  



 Plausibility Considerations on Steganalysis as a Security Mechanism 93 

As an in-between for local and global features a third class, the segment-wise 
computed features (also known as segmental features or intra-window features) can 
be determined. They could be considered as being a global feature (e.g. entropy) 
applied only to a segment of the whole signal or as the evaluation of local features for 
a whole segment (e.g. the number of colour-value changes in and image block). Also 
this segmental approach to feature computation is often employed when features are 
extracted in a transform domain representation of the original signal (e.g. in frequency 
domain representations of audio or image signals) since many established domain 
transforms are working segment-wise (a.k.a. window-wise). Local features might be 
of use in media formats with a small number of data points (e.g. digital images, which 
are usually not larger than 10,000,000 data points or pixels) but their usage in high 
data rate media formats like audio or video is unfeasible, therefore they are removed 
from considerations within this paper focussed on audio steganalysis, although it has 
to be acknowledged here that local features are successfully used in image 
steganalysis [14]. 

Information fusion (sometimes also called ensemble methods) is trying to increase 
the decision performance of pattern recognitions mechanisms. The fusion or 
combination of experts can be done in two general ways: either by combining experts 
of different types (e.g. [1], [3]) or by using the same expert on different subsets of the 
feature space (e.g. [14]). While the first approach assumes that the classification 
problem can be represented and solved in low-dimensional feature spaces, the second 
approach assumes that the repeated, random dimensionality reduction and application 
of a base learner on different subspaces of the original space together with a decision 
based on the aggregation of the base learner outputs can solve an high dimensional 
classification problem efficiently [15]. The literature mentioned above (and further 
publications) have shown that information fusion can improve the detection accuracy 
of (ensemble) steganalysers, given suitable fusion operators and individual experts (or 
a suitable base learner in an appropriate high-dimensional feature space). 
Nevertheless, current research is still lacking an answer to the question how to model 
the trust in a decision generated by such an ensemble steganalyser.  

3.3 Detector-Based Steganographic Channel Characterisation  

If a steganalysis performing security mechanism would detect the presence of hidden 
channels in the data under observation, the statistical characteristics that lead to the 
detection could be used to characterise the steganographic channel. Information like 
the used embedding domain (e.g. [24]) and -strategy might be deduced and an 
algorithm identification (e.g. [16]) as well as key scenario considerations (e.g. [3]) 
and payload estimation (e.g. [23]) operations might be performed. 

3.4 Countermeasures (i.e. Modifications on the Cover Channel) 

Assuming a suitable steganalysis performing security mechanism could be 
implemented for a given cover channel, the next question to be addressed would be: 
How to react if the usage of steganography is detected?  
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In some application scenarios we might only have the possibility to disrupt the 
complete cover channel (passive warden scenario). In an active warden scenario more 
sophisticated measures might be found in filtering operations on the cover data to 
eliminate the embedded steganographic information (e.g. [26]).  

Nevertheless, since steganography and steganalysis can be considered to constitute 
an each other influencing set of counter-sciences, it has to be assumed that 
steganographers are aware of possible countermeasures (see e.g. [25] on this topic). 

4 Application of the Methodology and Concepts 

This section briefly demonstrates the benefit of the application of our methodology 
and concepts in practice. The first part of the presented results shows in section 4.1 
how the throughput of different supervised classifiers used for steganalysis can be 
compared using the qnew metric introduced in section 3.1. In section 4.2 selected 
considerations on the plausibility of our work on audio steganalysis are discussed. 

4.1 Applied throughput Analysis 

If we use our own evaluation results from [27] as input for the throughput analysis 
described in section 3.1., the performance of 74 different supervised classifiers (from 
the WEKA data mining suite [6]) on three different audio data hiding algorithms 
(called AS1, AW1 and AW3 – see [27] for details) can be visualised as shown in 
figures 1 and 2. 
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Fig. 1. Throughput analysis: training and testing with all 74 supervised classifiers in WEKA 
v.3.6.1 and three data hiding algorithms; classification gain over time - linear scale for the x-
axis (diagram based on the classifier benchmarking results presented in [27]) 
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Fig. 2. Throughput analysis: training and testing with all 74 supervised classifiers in WEKA 
v.3.6.1 and three data hiding algorithms; classification gain over time - logarithmic scaling for 
the x-axis (diagram based on the classifier benchmarking results presented in [27]) 

In figure 1 the throughput is shown in a classification gain over time diagram. The 
“optimal” point, which would be a decision machine that gives a perfect classification 
(cg=1) in an extremely short time-span (time=0), is here the upper left corner of this 
diagram. Therefore the metric qnew introduced within this paper would be the absolute 
distance from this optimal point. As can be seen in figure 1 the three data hiding 
algorithms evaluated in [27] achieve extremely different throughput performances. 
The best results (with a smallest qnew of 0.1488 (accuracy=89.48% and 
runtime=230.1s) achieved by weka.classifiers.functions.Logistic) the best result is 
achieved for AW1.  

The worst result in this diagram is achieved by a classifier that takes 19695s 
seconds for the training and classification for AS1 with weka.classifiers.rules.NNge to 
come up with a classification accuracy of 50% in this 2-class problem (cg=0). 

Since figure 1 does not allow for an easy comparison of the distribution of the 
results within the clusters representing the three evaluated data hiding algorithms, a 
logarithmically scaled version of this diagram is presented in figure 2. 

4.2 Applied Plausibility Investigations 

The six different aspects of the plausibility of steganalysis identified in section 1. 
for practical investigations are considered here and illustrated using our own 
research work in audio steganalysis. 
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The first of these aspects are the basic considerations on the detection 
performance (or classification accuracy) of the steganalysers as initial/naïve trust 
assumption. As stated in section 3.2., a classification accuracy significantly better 
then the probability of guessing correctly is the necessary condition for steganalysers. 
This necessary condition is fulfilled for audio steganalysis, as shown with our results 
presented in section 0 or the results achieved by others (e.g. [4] or [5]) on that matter. 

Regarding the differentiation between the different error classes encountered 
(i.e. here between the statistical Type I and Type II errors – false positives and false 
negatives for a consideration of steganalysis as a two-class classification problem) we 
show in [28] that a specific setup for a steganalyser might lead to an unbalanced 
distribution of false positives and false negatives. Furthermore in this paper it is 
shown that the choice of features used to implement the steganalyser has a strong 
influence on the error rates and their distribution. 

The question about the statistical generalisability of steganalysis results is a tough 
problem. This is very good illustrated in [16] (see section 2 of this paper where a short 
summary of the work of Provos and Honeyman is given). In general it requires 
answers to such questions like: “Is the chosen cover material for an investigation 
typical/representative in composition for an application scenario?” and “Is enough 
training and test material available/used?” 

To answer the question about the representative context, we try to model the 
application context as closely as possible in the training of the classifiers as well as in 
the composition of the evaluation test sets. E.g. for analyses on VoIP steganalysis, 
where the typical cover data is human speech, we use speech data for training and 
evaluation. For general purpose audio steganalysis we generated a large multi-genre 
audio training set and a test set of similar composure (see e.g. [27] for details). To 
investigate whether the classifier shows overfitting tendencies, we compare in [27] 
results for 10-fold stratified cross-validation and training and testing on completely 
different sets of audio files, with the result that the discrepancies between the 
classification accuracies achieved imply how much overfitting takes place. 

Regarding the question whether enough training and test material was used, our 
solution so far has been to increase the training set sizes until a stable level for the 
classification accuracy is reached.  

The plausibility of steganalysis also has to look into the influence of other (non-
malicious) audio signal processing operations on the classification behaviour of the 
steganalyser. The motivation for this consideration in found in the fact that especially 
pieces of music undergo rather dramatic modifications between their recording and 
the roll-out on a CD. One example for such modification is the custom to ‘improve’ 
singers voices with artificial reverberation. Table 1 shows the results of an experiment 
from [27] where we train classifiers for three different data hiding algorithms (AS1, 
AW1 and AW3) and then apply these classifiers onto a completely unmarked audio 
material after non-malicious signal modifications (MP3 conversion and de-noising). 
For a complete description of the used evaluation setup we refer to [27].  
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Table 1. Classification accuracies (in %) for the global- (left column) and segmental features 
(right) and the best 5 classifiers from the classifier benchmarking in [27] for each algorithm (for 
a description of the used evaluation setup we refer to [27]) 

Mod. Class. AS1 AW1 AW3 
MP3 
encoding 
  
  

best 56.82 53.64 77.27 51.14 63.64 16.82 
2nd 56.82 9.09 70.45 76.93 95.45 71.14 
3rd 100 46.48 63.64 56.48 0 0 
4th 95.45 6.93 77.27 76.14 56.82 0 
5th 100 0 20.45 75.57 72.73 0 

de-
noising  
  
  
  

best 29.55 53.97 100 99.88 79.55 96.14 
2nd 29.55 10.51 95.45 83.76 100 43.34 
3rd 100 50 84.09 65.07 100 0 
4th 100 1.75 90.91 71.03 100 0 
5th 100 0 100 77.57 100 0 

 
A value of 100% in table 1 indicates that the complete test material was rightfully 

classified as unmarked by the corresponding feature extractor and classifier 
combination. A value of 0% means that the classifier produced false alarms on every 
input sample. Summarising these evaluation results it can be stated the de-noising 
operation output is in nine out of 15 test cases with the global features found 100% 
correct to be “not marked”, in four other cases this value is above 80%, while for two 
cases are down to 29.55% equal to a rate of false alarms of 70.45%. For the MP3 
encoding the picture is worse, with only two classifiers achieving 100% preciseness 
while all others show less than perfect results. One of the classifiers (the 3rd best for 
AW3) even shows a 100% false alarm rate.   

It has to be stated that the segmental features perform significantly worse in these 
tests if it comes to plausibility against common signal modification operations. None 
of the 30 segmental test cases summarized in table 5 shows 100% preciseness, while 
eight cases show a false alarm rate of 100%. 

In this investigation two different types of features are compared: global and 
segmental audio features. The choice which features to use influences, besides the 
classification accuracy achieved and the computational complexities of the feature 
extraction as well as the classification, also other questions, e.g. the localisation of 
modification/embeddings. While global features (which can be computed faster and 
which allow for faster classifications - see e.g. [27]), can only give an indication 
whether an audio signal is a stego object or not, segmental features could be used to 
identify which part of the file was modified and which was kept unchanged in case a 
low embedding strength (and a sequential embedding strategy) was used.  

In general such considerations on features can be extended to investigations on 
whether the features used for classification actually being relevant for the 
classification problem at hand. Considering once more the work of Provos and 
Honeyman in [16], they notice from their investigations that Stegdetect shows a 
general tendency to classify unmarked drawings as stego objects generated with JSteg 
and images showing oil paints as output of Outguess 0.13b. To eliminate such 
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wrongful global tendencies in our work we perform feature selection analyses under 
the assumption that these, if applied on the output of different steganographic tools, 
will allow us to estimate whether they are significant for steganographic embedding 
by certain algorithms or whether they are representing other content influences. For 
details see [24]. As additional benefits these feature selection investigations also 
allow us to group ‘similar’ algorithms, e.g. by their working domain, and decrease the 
dimensionality of the feature space used for classification and therefore increase the 
throughput. 

Regarding investigations on the possibilities for increasing and estimating the 
decision performance by usage of information fusion by multiple steganalysers, it 
has to be stated that the few publications in this field for steganalysis show uniformly 
a rather non-satisfying picture. If the fusion considerations are only focussed on the 
feature spaces (e.g. [2] or [14]) then in nearly all cases a increase of the classification 
accuracies achieved is reported. If also other fusion levels are considered, like in the 
initial paper on this matter ([30]) or in our work on different fusion levels (e.g. [27]), 
then examples for increased as well as decreased classification accuracies are 
reported. A further remark for this topic has to be made on the increase in the 
computational complexity of the steganalysis task imposed by information fusion. 
Depending on the fusion level and fusion operator used, the increase in complexity 
can be either linear (on the number of fused steganalysers and observed material) or 
higher. 

5 Summary and Conclusion 

In this paper we on one hand introduce a throughput benchmarking scheme for 
steganalyser benchmarking and on the other hand we discuss plausibility 
considerations for steganalysers that aim to establish the trust that would be required 
in such a mechanism if it should ever be deployed for the detection of hidden 
communication channels in real world communication scenarios. The theoretical 
considerations presented here are accompanied with a brief practical demonstration 
on the applicability of our new benchmarking metric and the plausibility 
considerations in audio steganalysis research. 

The next steps that will be considered in future work are extension of the 
considerations on benchmarking metrics into a fully developed and fair benchmarking 
scheme for practical steganalysis. We think that such benchmarking would be a 
necessity basis for large-scale usage in communication security. Similar fields of 
research on communication security already have benchmarking methods in place. 
Two examples for such initiatives to be mentioned here are the National Institute of 
Standards and Technology’s (NIST, see http://www.nist.gov/itl/biometrics/index.cfm) 
work on Biometrics as well as the European Institute for Computer Antivirus 
Research (EICAR, see e.g. www.eicar.org/) with its work on malware detection.  

Furthermore, additional plausibility related issues in this context have to be 
identified and considered in future work to further complete the picture considered. 
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