Learning
Spring Boot 2.0

Second Edition

Simplify the development of lightning fast applications
based on microservices and reactive programming

L]

Learning Spring Boot 2.0

Second Edition

Simplify the development of lightning fast applications based on microservices and
reactive programming

Greg L. Turnquist

Packt)

BIRMINGHAM - MUMBALI

Learning Spring Boot 2.0

Second Edition

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case of
brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for
any damages caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

First published: November 2014

Second edition: November 2017

Production reference: 1311017

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78646-378-4

www . packtpub.com

http://www.packtpub.com

Credits

Author

Greg L. Turnquist

Copy Editor

Sonia Mathur

Reviewer Project Coordinator
Zoltan Altfatter Prajakta Naik
Commissioning Editor Proofreader

Aaron Lazar Safis Editing
Acquisition Editor Indexer

Chaitanya Nair Francy Puthiry

Content Development Editor Graphics

Siddhi Chavan Abhinash Sahu
Technical Editor Production Coordinator

Abhishek Sharma

Nilesh Mohite

About the Author

Greg L. Turnquist has been a software professional since 1997. In 2002, he joined the senior software
team that worked on Harris' $3.5 billion FAA telco program, architecting mission-critical enterprise
apps while managing a software team. He provided after-hours support to a nation-wide system and is
no stranger to midnight failures and software triages. In 2010, he joined the SpringSource division of
VMware, which was spun off into Pivotal in 2013.

As a test-bitten script junky, Java geek, and JavaScript Padawan, he is a member of the Spring Data
team and the lead for Spring Session MongoDB. He has made key contributions to Spring Boot, Spring
HATEOAS, and Spring Data REST while also serving as editor-at-large for Spring's Getting Started
Guides.

Greg wrote technical best sellers Python Testing Cookbook and Learning Spring Boot, First Edition, for
Packt. When he isn't slinging code, Greg enters the world of magic and cross swords, having written the
speculative fiction action and adventure novel, Darklight.

He completed his master's degree in computer engineering at Auburn University and lives in the United
States with his family.

About the Reviewer

Zoltan Altfatter (eaitratterz) is a software engineer, passionate about the JVM and Spring ecosystem.
He has several years of industry experience working at small startups and big consultancy firms.

You can find more about him on his blOgI http://zoltanaltfatter.com.

http://zoltanaltfatter.com

www.PacktPub.com

For support files and downloads related to your book, please visit www.packtpub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.packtpub.con and as a print book customer, you are
entitled to a discount on the eBook copy. Get in touch with us at service@packtpub.com for more details.

At www.Packtpub.com, you can also read a collection of free technical articles, sign up for a range of free
newsletters and receive exclusive discounts and offers on Packt books and eBooks.

. Mapt

www . packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt books and
video courses, as well as industry-leading tools to help you plan your personal development and
advance your career.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
e On demand and accessible via a web browser

Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial process. To help
us improve, please leave us an honest review on this book's Amazon page at nttps://www.amazon.com/dp/1786

463784.

If you'd like to join our team of regular reviewers, you can e-mail us at customerreviews@packtpub.com. We
award our regular reviewers with free eBooks and videos in exchange for their valuable feedback. Help
us be relentless in improving our products!

https://www.amazon.com/dp/1786463784

Table of Contents

Preface
What this book covers
What you need for this book
Who this book is for
Conventions

Reader feedback
Customer support

Downloading the example code
Downloading the color images of this book
Errata
Piracy
Questions
l. Quick Start with Java
Getting started
Spring Boot starters
Running a Spring Boot application
Delving into Spring Boot's property support
Bundling up the application as a runnable JAR file

Deploying to Cloud Foundry
Adding production-ready support

Pinging our app for general health
Metrics
Summary
2. Reactive Web with Spring Boot
Creating a reactive web application with Spring Initializr
Learning the tenets of reactive programming
Introducing Reactor types

Switching from Embedded Netty to Apache Tomcat
Comparing reactive Spring WebFlux against classic Spring MVC

Why is Spring doing this?
Showing some Mono/Flux-based endpoints
Creating a reactive ImageService
Creating a reactive file controller
Why use reactive programming?
Interacting with a Thymeleaf template
Illustrating how going from async to sync can be easy, but the opposite is not
Summary
3. Reactive Data Access with Spring Boot

Getting underway with a reactive data store
Solving a problem

Wiring up Spring Data repositories with Spring Boot
Creating a reactive repository
Pulling data through a Mono/Flux and chain of operations

Creating custom finders

Querying by example
Querying with MongoOperations
Logging reactive operations
Summary

4. Testing with Spring Boot
Test dependencies

Unit testing
Slice-based testing

Testing with embedded MongoDB
Testing with a real MongoDB database
Testing WebFlux controllers
Fully embedded Spring Boot app tests
Testing your custom Spring Boot autoconfiguration
Summary
5. Developer Tools for Spring Boot Apps
Using Spring Boot's DevTools for hot code reloading
Using Spring Boot's autoconfiguration report
Making local changes and seeing them on the target system
Writing a custom health check
Adding build data to /application/info
Creating custom metrics
Working with additional Actuator endpoints
Summary

6. AMQP Messaging with Spring Boot
Getting started with RabbitMQ

Installing RabbitMQ broker
Launching the RabbitMQ broker

Adding messaging as a new component to an existing application
Creating a message producer/message consumer

Displaying comments
Producing comments
AMQP fundamentals

Adding customized metrics to track message flow
Peeking at Spring Cloud Stream (with RabbitMQ)

Introduction to Spring Cloud
Logging with Spring Cloud Stream
Summary
7. Microservices with Spring Boot
A quick primer on microservices
Dynamically registering and finding services with Eureka
Introducing @SpringCloudApplication
Calling one microservice from another with client-side load balancing
Implementing microservice circuit breakers
Monitoring circuits
0ffloading microservice settings to a configuration server
Summary

8. websockets with Spring Boot

Publishing saved comments to a chat service
Creating a chat service to handle WebSocket traffic

Brokering WebSocket messages

Broadcasting saved comments

Configuring WebSocket handlers
Consuming WebSocket messages from the web page
Moving to a fully asynchronous web client
Handling AJAX calls on the server

Introducing user chatting
Sending user-specific messages

Registering users without authentication
Linking a user to a session
Sending user-to-user messages
Checking out the final product
JSR 356 versus Spring WebFlux messaging
Summary
9. Securing Your App with Spring Boot

Securing a Spring Boot application
Using Spring Session

Creating a Gateway API
Securing the chat microservice

Authentication versus authorization
Sharing session details with other microservices

Securing the images microservice
Wiring in image ownership

Authorizing methods
Tailoring the UI with authorization checks
Securing WebSockets
Tracing calls
Securing the Config Server
Securing the Eureka Server
Summary
10. Taking Your App to Production with Spring Boot
Profile-based sets of beans

Creating configuration property beans
Overriding property settings in production

@ConfigurationProperties versus @Value
Pushing app to Cloud Foundry and adjusting the settings

Summary

Preface

@springboot allows me to focus on developing my app, not reinventing the wheel
@bananmuffins #VelocityConf @pivotal
— Faiz Parker @ _CloudNinja

When Learning Spring Boot, First Edition, by Packt, made its debut, it was the first Spring Boot book
to hit the international market. The user community ate it up, which is evidence of the popularity of
Spring Boot. And today, Spring Boot is driven by the same, core principal stated in that book's preface,
"How can we make Spring more accessible to new developers?"

By focusing on developers, community, and customers, Spring Boot has alleviated untold hours of time
normally spent plumbing infrastructure. Andrew Clay Shafer, Pivotal's Senior Directory of Technology,
has presented a most famous conference slide, "'Great job configuring servers this year'—No CEO
Ever." We don't get bonus points for wasting time configuring web containers, database connectors,
template view resolvers, and other mind-numbing infrastructure. However, we've done it for so long, we
all assume it's a part and parcel of our trade.

Spring Boot has upset that apple cart and shown that we can, in fact, focus on building features our
customers want on day one. As James Watters, Senior Vice President at Pivotal, has stated in countless
presentations, when you focus on things above the value line, you build real confidence with your
customers. This is demonstrated by the latest Zero Turnaround whitepaper showing that 46%, or almost
one of every two Java developers, is using some part of the Spring portfolio. Spring Boot is solving
problems for legions of customers, and this book can help you close the gap in your understanding.

What this book covers

chapter 1, Quick Start with Java, explains how to rapidly craft a web application running on an
embedded web container, access some data, and then deploy it into the cloud using minimal amounts of
code and build settings.

chapter 2, Reactive Web with Spring Boot, shows how to start building a social media service to upload
pictures using Spring WebFlux, Project Reactor, and the Thymeleaf template engine.

chapter 3, Reactive Data Access with Spring Boot, explains how we can pick up Spring Data MongoDB
as a reactive-power data store and hook it to our social media platform. You'll find out how Spring Boot
autoconfigures our app to persist data.

chapter 4, Testing with Spring Boot, explains how we can write unit tests with JUnit, slice tests where
small parts of our app uses real components, and full-blown embedded container testing. Also, you will
see how to write an autoconfiguration policy for a browser-driving test toolkit and test that as well.

chapter 5, Developer Tools for Spring Boot Apps, puts several tools in our hands to enhance developer
experience, such as DevTools, LiveReload, and connecting our IDE to the cloud.

chapter 6, AMQP Messaging with Spring Boot, explains how to use RabbitMQ as our message broker
and reactively build up a reliable, streaming message service between components.

chapter 7, Microservices with Spring Boot, introduces Spring Cloud and the ability to break up our social
media platform into smaller, more manageable apps, dynamically talking to each other.

chapter 8, WebSockets with Spring Boot, shows how to enhance the user experience by sending updates
to all interested parties from various microservices. You will also see how to route all WebSocket
messages through a RabbitMQ broker.

chapter 9, Securing Your App with Spring Boot, lets us secure the social media platform for production
with both URL-based and method-based tactics, so only registered users can get online, and only
authorized admins and owners can actually delete uploaded pictures.

chapter 10, Taking Your App to Production with Spring Boot, shows us how to bundle up our application
and deploy to production without breaking the bank by using profile-based configurations to distinguish
between local and cloud-based situations and creating custom properties to tailor application settings
without rewriting code for every environment.

What you need for this book

e Spring Boot 2.0 requires Java Developer Kit (JDK) 8 or higher

e A modern IDE (IntelliJ IDEA or Spring Tool Suite) is recommended

4 RabbltMQ 3.6 or hlgher must be installed (check Out https://www.rabbitmg.com/download.html, OF, when
using Mac Homebrew, brew install RabbitMQ)

4 MOl’lgODB 3.0 or hlgher must be installed (ChGCk out https://www.mongodb.com/download-center, OT, when
using Mac Homebrew, brew install MongoDB)

https://www.rabbitmq.com/download.html
https://www.mongodb.com/download-center

Who this book is for

This book is designed for both novices and experienced Spring developers. It will teach you how to
override Spring Boot's opinions and frees you from the need to define complicated configurations.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy
URLSs, user input, and Twitter handles are shown as follows:

"The epata annotation from Lombok generates getters, setters, a tostring() method, an equais() method, a
hashcode () method, and a constructor for all required (that is, fina1) fields."

A block of code is set as follows:

public interface MyRepository {
List<Image> findAll();
3

Any command-line input or output is written as follows:

| $ java -jar build/libs/learning-spring-boot-0.0.1-SNAPSHOT.jar

New terms and important words are shown in bold. Words that you see on the screen, for example, in
menus or dialog boxes, appear in the text like this: "When the first user clicks on Submit, the message
automatically appears on the second user's window."

0 Warnings or important notes appear like this.

8 Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book--what you
liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really get
the most out of.

To send us general feedback, simply email feedbackapacktpub.com, and mention the book's title in the
subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or contributing to a
bOOk, see our author guide at www.packtpub.com/authors.

http://www.packtpub.com/authors

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to get the
most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at nttp://www.packtpub.com. If
you purchased this book elsewhere, you can visit http://www.packtpub.con/support and register to have the
files emailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your email address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

A

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest
version of:

e WinRAR / 7-Zip for Windows
e Zipeg/iZip / UnRarX for macOS
e 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Learning-Spring-
Boot-2.0-Second-Edition. We also have other code bundles from our rich catalog of books and videos
available at https://github.com/PacktPublishing/. Check them out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Learning-Spring-Boot-2.0-Second-Edition
https://github.com/PacktPublishing/

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/diagrams used in this
book. The color images will help you better understand the changes in the output. You can download
this file from https://www.packtpub.com/sites/default/files/downloads/LearningSpringBoot2.0_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/LearningSpringBoot2.0_ColorImages.pdf

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you
find a mistake in one of our books--maybe a mistake in the text or the code--we would be grateful if you
could report this to us. By doing so, you can save other readers from frustration and help us improve
subsequent versions of this book. If you find any errata, please report them by visiting http://www. packtpub
.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of that title.

To view the pI'GViOLlSIY submitted errata, g0 tO https://www.packtpub.com/books/content/support and enter the
name of the book in the search field. The required information will appear under the Errata section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy

Piracy of copyrighted material on the internet is an ongoing problem across all media. At Packt, we take
the protection of our copyright and licenses very seriously. If you come across any illegal copies of our
works in any form on the internet, please provide us with the location address or website name
immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com With a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at questions@packtpub.con, and we
will do our best to address the problem.

Quick Start with Java

Working with Spring Boot is like pair-programming with the Spring developers.
— Josh Long (@starbuxman

Perhaps you've heard about Spring Boot? It's cultivated the most popular explosion in software
development in years. Clocking millions of downloads per month, the community has exploded since its
debut in 2013.

I hope you're ready for some fun, because we are going to take things to the next level as we use Spring
Boot to build a social media platform. We'll explore its many valuable features, all the way from the
tools designed to speed up development efforts to production-ready support as well as cloud-native
features.

Despite some rapid fire demos you might have caught on YouTube, Spring Boot isn't just for quick
demos. Built atop the de facto standard toolkit for Java, the Spring Framework, Spring Boot will help us
build this social media platform with lightning speed and stability.

Also, this book will explore a new paradigm introduced in Spring Framework 5, reactive
programming. In this day and age, as we build bigger systems, iterate faster, and host fleets of
distributed microservices, it has become critical that we switch from a classic blocking programming
style. As Josh Long would point out, this is nothing new. The network stacks of today's OSs are
inherently asynchronous, but the JVM is not. Only in recent years have people realized the need to chop
up tasks in a asynchronous, non-blocking fashion. However, the programming paradigm to handle
potentially unlimited streams of data coming at fluctuating times requires a new programming model,
which we will explore carefully alongside the power of Spring Boot itself.

In this chapter, we'll get a quick kick off with Spring Boot using the Java programming language.
Maybe that makes you chuckle? People have been dissing Java for years as being slow, bulky, and not a
good language for agile shops. In this chapter, we'll see how that is not the case.

In this chapter, we will cover the following topics:

e Creating a bare project using the Spring Initializr found at http://start.spring.io

e Exploring Spring Boot's management of third-party libraries

e Seeing how to run our app straight inside our Integrated Development Environment (IDE) with
no standalone containers

Using Spring Boot's property support to make external adjustments

Packaging our app into a self-contained, runnable JAR file

Deploying our app into the cloud

Adding out-of-the-box production-grade support tools

At any time, if you're interested in a more visual medium, feel free to check out my

A

http://start.spring.io

“ Learning Spring Boot [Video] at nttps://www.packtpub.com/application-development/learning-spring

-boot-video.

https://www.packtpub.com/application-development/learning-spring-boot-video

Getting started

What is step one when we get underway with a project? We visit Stack Overflow and look for an
example project to help us build our project!

Seriously, the amount of time spent adapting another project's build file, picking dependencies, and
filling in other details adds up to a lot of wasted time.

No more.

At the Spring Initializr (https://start.spring.io), we can enter minimal details about our app, pick our
favorite build system and the version of Spring Boot we wish to use, and then choose our dependencies
off a menu. Click the Generate Project button, and we have a free-standing, ready-to-run application.

In this chapter, we'll take a quick test drive, and build a small web app. We can start by picking Gradle
from the drop-down menu. Then select 2.0.0.M5 as the version of Spring Boot we wish to use.

Next, we need to pick our application's coordinates, as follows:

L GI’OU.p - com.greglturnquist.learningspringboot
e Artifact - learning-spring-boot

Now comes the fun part. We pick the ingredients for our application, like picking off a delicious menu.
If we start typing, say, web, into the Dependencies box, we'll see several options appear. To see all the
available options, click on the Switch to the full version link toward the bottom.

There are lots of overrides, such as switching from JAR to WAR, or using an older version
of Java. You can also pick Kotlin or Groovy as the primary language for your application.

o For starters, in this day and age, there is no reason to use anything older than Java 8. JAR
files are the way to go. WAR files are only needed when applying Spring Boot to an old
container.

To build our social media platform, we need these few ingredients:

e Reactive Web (embedded Netty + Spring WebFlux)
e Reactive MongoDB (Spring Data MongoDB)

e Thymeleaf template engine

e Lombok (to simplify writing POJOs)

The following screenshot shows us picking these options:

https://start.spring.io

SPRING INITIALIZR

Generate a crderoiec: With 2= ¢ and Spring Boot zoows :
Project Metadata Dependencies
Artifact coordinates Add Spring Boot Starters and dependencies to your applicatior
Group Search for dependencies
com.greglturnquist.learningspringboot Web, Security, JPA, Actuator, Devtools...
Artifact Selected Dependencies

learning-spring-boot Reactive Web - | Reactive MongoDB - | Thymeleaf -

Generate Project % + «

With these items selected, click on Generate Project.

There are lots of other tools that leverage this site. For example, IntelliJ IDEA lets you
create a new project inside the IDE, giving you the same options shown here. It invokes the
website's REST API, and imports your new project. You can also interact with the site via
curl or any other REST-based tool.

Now, let's unpack that ZIP file, and see what we've got. You will find the following:

® A build.gradle build file

A Gradle wrapper, so there's no need to install Gradle
A LearningSpringBootApplication.java application class
An application.properties file

A LearningSpringBootApplicationTests.java teSt class

We built an empty Spring Boot project. Now what? Before we sink our teeth into writing code, let's take
a peek at the build file. It's quite terse, but carries some key bits.

Let's take a look, starting from the top:

buildscript {
ext {
springBootVersion = '2.0.0.M5"'
}
repositories {
mavenCentral()
maven { url "https://repo.spring.io/snapshot" }
maven { url "https://repo.spring.io/milestone" }
}
dependencies {
classpath(
"org.springframework.boot:spring-boot-gradle-
plugin:${springBootVersion}")

This preceding build file contains the basis for our project:

springBootVersion shows us we are using Sprlng Boot 2.0.0.M5

e The Maven repositories it will pull from are listed next (Maven central plus Spring's snapshot and
milestone repositories)

¢ Finally, we see the spring-boot-gradie-plugin, a critical tool for any Spring Boot project

The first piece, the version of Spring Boot, is important. That's because Spring Boot comes with a
curated list of 140 third-party library versions, extending well beyond the Spring portfolio and into
some of the most commonly used libraries in the Java ecosystem. By simply changing the version of
Spring Boot, we can upgrade all these libraries to newer versions known to work together. (See nttps://g
ithub.com/spring-projects/spring-boot/blob/master/spring-boot-project/spring-boot-dependencies/pom.xml fOI‘ a
complete list.)

! There is an extra project, the Sprmg 10 Platform (http://platform.spring.io/platform/), which
includes an additional 134 curated versions, bringing the total to 274.

The repositories aren't as critical, but it's important to add milestones and snapshots if fetching a library
that hasn't been released to Maven central, or 1s hosted on some vendor's local repository. Thankfully,
Spring Initializr does this for us based on the version of Spring Boot selected on the site.

Finally, we have spring-boot-gradle-plugin (and there 1s a corresponding spring-boot-maven-plugin for Maven
users). This plugin is responsible for linking Spring Boot's curated list of versions with the libraries we
select in the build file. That way, we don't have to specify the version number.

Additionally, this plugin hooks into the build phase and bundles our application into a runnable {iber
JAR, also known as a shaded or fat JAR.

Java doesn't provide a standardized way of loading nested JAR files into the classpath.
Spring Boot provides the means to bundle up third-party JARs inside an enclosing JAR

TIP ﬁle, andproperly load them at runtime. Read more at http://docs.spring.io/spring-boot/docs/2.
0.0.M5/reference/htmlsingle/#executable-jar.

With an liber JAR in hand, we only need put it on a thumb drive. We can carry it to another machine, to
a hundred virtual machines in the cloud, our data center, or anywhere else. It runs anywhere we can find
aJVM.

Peeking a little further down in build.gradle, we can see the plugins that are enabled by default:

apply plugin: 'java'

apply plugin: 'eclipse'

apply plugin: 'org.springframework.boot'

apply plugin: 'io.spring.dependency-management'

e The java plugin indicates the various tasks expected for a Java project
e The eclipse plugin helps generate project metadata for Eclipse users
e The org.springframework.boot plugln 1s where the actual spring-boot-gradle-plugin 1s activated

https://github.com/spring-projects/spring-boot/blob/master/spring-boot-project/spring-boot-dependencies/pom.xml
http://platform.spring.io/platform/
http://docs.spring.io/spring-boot/docs/2.0.0.M5/reference/htmlsingle/#executable-jar

The io.spring.dependency-management plugin supports Maven Bill of Materials (BOM) manifests,
allowing usage of libraries that manage the sets of library versions in our Gradle build. (Because
Maven supports this natively, there is no Maven equivalent plugin.)

An up-to-date copy of IntelliJ IDEA can read a plain old Gradle-build file just fine without
0 extra plugins.

This brings us to the final ingredient used to build our application--Dependencies.

Spring Boot starters

No application is complete without specifying dependencies. A valuable feature of Spring Boot is its
virtual packages. These are published packages that don't contain any code, but simply list other
dependencies instead.

The following code shows all the dependencies we selected on the Spring Initializr site:

dependencies {
compile('org.springframework.boot:spring-boot-starter-data-
mongodb-reactive')
compile('org.springframework.boot:spring-boot-starter-thymeleaf"')
compile('org.springframework.boot:spring-boot-starter-webflux')

compile('org.projectlombok:lombok")
compile('de.flapdoodle.embed:de.flapdoodle.embed.mongo')
testCompile('org.springframework.boot:spring-boot-starter-test"')

3

You might have noticed that most of these packages are Spring Boot starters:

® spring-boot-starter-data-mongodb-reactive pulls n Sprlng Data MOIlgODB with the reactive bits enabled
® spring-boot-starter-thymeleaf pulls in the Thymeleaf template engine
® spring-boot-starter-webflux pulls n SpI’ll’lg WebFlux, Jackson JSON support, and embedded Netty

These starter packages allow us to quickly grab the bits we need to get up and running. Spring Boot
starters have become so popular that many other third-party library developers are crafting their own.

In addition to starters, we have the following three extra libraries:

e Project Lombok (https://projectiombok.org) makes it dead simple to define POJOs without getting
bogged down in getters, setters, and other details.

e Flapdoodle is an embedded MongoDB database that allows us to write tests, tinker with a solution,
and get things moving before getting involved with an external database.

At the time of writing, Flapdoodle isn't listed on the website. We must add it manually, as
o shown previously.

® spring-boot-starter-test pulls in Sprmg Boot Test, JSONPath, JUnit, ASSGﬂJ, MOCkitO, Hamcrest,
JSONassert, and Spring Test, all within test scope.

The value of this last starter, spring-boot-starter-test, cannot be overstated. With a single line, the most
powerful test utilities are at our fingertips, allowing us to write unit tests, slice tests, and full-blown our-
app-inside-embedded-Netty tests. It's why this starter is included in all projects without checking a box
on the Spring Initializr site.

Now, to get things off the ground, we need to shift focus to the tiny bit of code written for us by the
Spring Initializr.

https://projectlombok.org

Running a Spring Boot application

The fabulous https://start.spring.io website created a til’ly class, LearningSpringBootApplication, dS shown
here:

package com.greglturnquist.learningspringboot;

import org.springframework.boot.SpringApplication;
import
org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class LearningSpringBootApplication {

public static void main(String[] args) {
SpringApplication.run(
LearningSpringBootApplication.class, args);

This preceding tiny class is actually a fully operational web application!

e The espringsootapplication annotation tells Spring Boot, when launched, to scan recursively for
Spring components inside this package and register them. It also tells Spring Boot to enable
autoconfiguration, a process where beans are automatically created based on classpath settings,

property settings, and other factors. We'll see more of this throughout the book. Finally, it indicates

that this class itself can be a source for Spring bean definitions.
e It holds public static void main(), a simple method to run the application. There is no need to drop
this code into an application server or servlet container. We can just run it straight up, inside our
IDE. The amount of time saved by this feature, over the long haul, adds up fast.
® springApplication.run() points Spring Boot at the leap-off point--in this case, this very class. But it's
possible to run other classes.

This little class is runnable. Right now! In fact, let's give it a shot:

AN\ / ' () — _— _ NN\
CON— 1 "' 7 VNN
Nttt crro))))
RN NN D, N (N U R W A
-1 | /=/_/_/_/
:: Spring Boot :: (v2.0.0.M5)

2017-08-02 15:34:22.374: Starting LearningSpringBootApplication
on ret...

2017-08-02 15:34:22.377: Running with Spring Boot
Vv2.0.0.BUILD-SNAPSHO. ..

2017-08-02 15:34:22.378: No active profile set, falling back

to defaul...

2017-08-02 15:34:22.433: Refreshing
org.springframework.boot.web.react...

2017-08-02 15:34:23.717: HVO00184: ParameterMessageInterpolator
has be...

2017-08-02 15:34:23.815: HV000184: ParameterMessageInterpolator
has be...

2017-08-02 15:34:23.953: Cannot find template location:
classpath:/tem...

2017-08-02 15:34:24.094: Mapped URL path [/webjars/**] onto
handler of...

2017-08-02 15:34:24.094: Mapped URL path [/**] onto handler of

https://start.spring.io

type [c...
2017-08-02 15:34:24.125: Looking for @ControllerAdvice:
org.springfram...
2017-08-02 15:34:24.501: note: noprealloc may hurt performance
in many...
2017-08-02 15:34:24.858: 2017-08-02T15:34:24.858-0500 I
NETWORK [init...
2017-08-02 15:34:24.858: start
de.flapdoodle.embed.mongo.config.Mongod. ..
2017-08-02 15:34:24.908: Cluster created with settings
{hosts=[1localho...
2017-08-02 15:34:24.908: Adding discovered server
localhost:65485 to c...
2017-08-02 15:34:25.007: 2017-08-02T15:34:25.006-0500 I
NETWORK [init...
2017-08-02 15:34:25.038: Opened connection
[connectionId{localvalue:1,...
2017-08-02 15:34:25.040: Monitor thread successfully
connected to serv...
2017-08-02 15:34:25.041: Discovered cluster type of STANDALONE
2017-08-02 15:34:25.145: Cluster created with settings
{hosts=[1localho...
2017-08-02 15:34:25.145: Adding discovered server
localhost:65485 to c...
2017-08-02 15:34:25.153: Opened connection
[connectionId{localvalue:2, ...
2017-08-02 15:34:25.153: Monitor thread successfully connected
to serv...
2017-08-02 15:34:25.153: Discovered cluster type of STANDALONE
2017-08-02 15:34:25.486: Registering beans for JMX exposure
on startup
2017-08-02 15:34:25.556: Started HttpServer on
/0:0:0:0:0:0:0:0:8080
2017-08-02 15:34:25.558: Netty started on port(s): 8080
2017-08-02 15:34:25.607: Started in 3.617 seconds (JVM
running for 4.0...

Scrolling through the preceding output, we can see these several things:

e The banner at the top gives us a read-out of the version of Spring Boot. (By the way, you can create
your own ASCII art banner by creating either banner.txt Or banner.png and putting it in the
src/main/resources/ fblderJ

e Embedded Netty is initialized on port sese, indicating that it's ready for web requests.

e [t's slightly cut off, but there are signs that Flapdoodle, our embedded MongoDB data store, has
come up.

e And the wonderful Started LearningSpringBootApplication in 3.617 seconds message can be seen
too.

Spring Boot uses embedded Netty, so there's no need to install a container on our target machine. Non-
web apps don't even require that. The JAR itself is the new container that allows us to stop thinking in
terms of old-fashioned servlet containers. Instead, we think in terms of apps. All these factors add up to
maximum flexibility in application deployment.

How does Spring Boot use embedded Netty among other things? As mentioned earlier, it has
autoconfiguration, which means that it defines Spring beans based on different conditions. When Spring
Boot sees Netty on the classpath, it creates an embedded Netty instance along with several beans to
support it.

When it spots Spring WebFlux on the classpath, it creates view resolution engines, handler mappers,
and a whole host of other beans needed to help us write a web application. This lets us focus writing
routes, not doddling around configuring infrastructure.

With Flapdoodle on the classpath as well as the Reactive MongoDB drivers, it spins up an in-memory,
embedded MongoDB data store and connects to it with its state-of-the-art drivers.

Spring Data MongoDB will cause Spring Boot to craft a mongooperations bean along with everything else
needed to start speaking Mongo Query Language and make it available if we ask for it, letting us focus
on defining repositories.

At this stage, we have a running web application, albeit an empty one. There are no custom routes, and
no means to handle data. But we can add some real fast.

Let's start by drafting a simple REST controller as follows:

package com.greglturnquist.learningspringboot;

import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;

@RestController
public class HomeController {

@GetMapping
public String greeting(@RequestParam(required = false,
defaultvalue = "") String name) {

return name.equals("") ? "Hey!" : "Hey, " + name + "!";

b
b

Let's examine this tiny REST controller in detail:

The @restcontroller annotation indicates that we don't want to render views, but write the results
straight into the response body instead.

® @GetMapping 1S SpI‘il’lg'S shorthand annotation for @RequestMapping(method = RequestMethod.GET). In this case,
it defaults the route to /.

e QOur greeting() method has one argumel’lt--@RequestParam(required=false, defaultvalue="") String name. It
indicates that this value can be requested via an HTTP query (2name=6reg)--the query isn't required,
and in case it's missing, it will supply an empty string.

¢ Finally, we return one of two messages depending on whether or not the name 1s an empty string,
using Java's ternary operator.

If we relaunch Learningspringsootapplication in our IDE, we'll see this new entry in the console:

2017-08-02 15:40:00.741: Mapped "{[],methods=[GET]}" onto
public java....

We can then pll’lg our new route in the browser at http://localhost:8080 and http://localhost:8080?name=Greg.
Try it out!

(By the way, it sure would be handy if the system could detect this change and relaunch automatically,
right? Check out chapter 5, Developer Tools for Spring Boot Apps to find out how.)

That's nice, but since we picked Spring Data MongoDB, how hard would it be to load some sample data
and retrieve it from another route? (Spoiler alert--Not hard at all.)

We can start out by defining a simple chapter entity to capture book details, as follows:

package com.greglturnquist.learningspringboot;
import lombok.Data;

import org.springframework.data.annotation.Id;
import org.springframework.data.mongodb.core.mapping.Document;

@Data
@Document
public class Chapter {

@1d
private String id;
private String name;

public Chapter(String name) {
this.name = name;

3

This preceding little POJO lets us look at the details about the chapter of a book as follows:

The epata annotation from Lombok generates getters, setters, a tostring() method, an equais()
method, a hashcode() method, and a constructor for all required (that is, fina1) fields

e The epocument annotation flags this class as suitable for storing in a MongoDB data store

e The id field is marked with Spring Data's erd annotation, indicating this is the primary key of our
Mongo document

e Spring Data MongoDB will, by default, create a collection named chapters with two fields, id and
name

e Our field of interest is name, SO let's create a constructor call to help insert some test data

To interact with this entity and its corresponding collection in MongoDB, we could dig in and start
using the autoconfigured mongooperations supplied by Spring Boot. But why do that when we can declare a
repository-based solution?

To do this, we'll create an interface defining the operations we need. Check out this simple interface:

package com.greglturnquist.learningspringboot;

import org.springframework.data.repository
.reactive.ReactiveCrudRepository;

public interface ChapterRepository
extends ReactiveCrudRepository<Chapter, String> {

}

This last declarative interface creates a Spring Data repository as follows:

® ReactiveCrudrepository e€Xtends repository, @ Spring Data Commons marker interface that signals
Spring Data to create a concrete implementation based on the reactive paradigm while also
capturing domain information. It also comes with some predefined CRUD operations (save, delete,
deleteById,deleteAll,findById,findAll,ZUld,nlorC).

e It specifies the entity type (chapter) and the type of the primary key (string).

e We could also add custom finders, but we'll save that for chapter 3, Reactive Data Access with

Spring Boot.
Spring Data MongoDB will automatically wire up a concrete implementation of this interface.

Spring Data doesn't engage in code generation. Code generation has a sordid history of
being out of date at some of the worst times. Instead, Spring Data uses proxies and other
mechanisms to support these operations. Never forget--the code you don't write has no
bugs.

With chapter and chapterrepository defined, we can now preload the database, as shown in the following
code:

package com.greglturnquist.learningspringboot;
import reactor.core.publisher.Flux;

import org.springframework.boot.CommandLineRunner;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration
public class LoadDatabase {

@Bean
CommandLineRunner init(ChapterRepository repository) {
return args -> {
Flux.just(
new Chapter("Quick Start with Java"),
new Chapter("Reactive Web with Spring Boot"),
new Chapter("...and more!"))
.flatMap(repository::save)
.subscribe(System.out: :println);
3
3

This preceding class will be automatically scanned by Spring Boot and run in the following way:

aconfiguration marks this class as a source of beans.

e g@sean indicates that the return value of init() is a Spring Bean--in this case, a commandLinerunner (utility
class from Spring Boot).

e Spring Boot runs all commandLinerunner beans after the entire application is up and running. This bean
definition requests a copy of ChapterRepository.

e Using Java 8's ability to coerce the args - {3 lambda function into commandtinerunner, we are able to
gather a set of chapter data, save all of them and then print them out, preloading our data.

We aren't going to delve into the intricacies of Flux, flatmap, and subscribe yet. We'll save that
for chapter 2, Reactive Web with Spring Boot and chapter 3, Reactive Data Access with
Spring Boot.

With all this in place, the only thing left is to write a REST controller to serve up the data!

package com.greglturnquist.learningspringboot;
import reactor.core.publisher.Flux;

import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;

@RestController
public class ChapterController {

private final ChapterRepository repository;

public ChapterController(ChapterRepository repository) {
this.repository = repository;

3

@GetMapping("/chapters")
public Flux<Chapter> listing() {
return repository.findAll();

b
b

This preceding controller is able to serve up our data as follows:

@restcontroller indicates that this is another REST controller.

e Constructor injection is used to automatically load it with a copy of chapterrepository. With Spring, if
there is only one constructor call, there is no need to include an eautowired annotation.

® @cetmapping tells Spring that this is the place to route /chapters calls. In this case, it returns the results
of the findAll() call found in ReactiveCrudRepository. Again, ifYOU'I'C curious what Flux<Chapter> iS, we'll
tackle that at the top of the next chapter. For now, think of it being like a stream<chapters.

If we relaunch our application and visit http://1localhost:8e80/chapters, We can see our preloaded data
served up as a nicely formatted JSON document, as seen in this screenshot:

id: 1,
name: "Quick start with Java"

id: 2,
name: "Reactive Web with Spring Boot"

id: 3,

name: "...and more!"

This may not be very elaborate, but this small collection of classes has helped us quickly define a slice
of functionality. And, if you'll notice, we spent zero effort configuring JSON converters, route handlers,
embedded settings, or any other infrastructure.

Spring Boot is designed to let us focus on functional needs, not low-level plumbing.

Delving into Spring Boot's property support

We just got things off the ground with an operational application, but that isn't the only killer feature of
Spring Boot.

Spring Boot comes with a fistful of prebuilt properties. In fact, just about every autoconfigured
component has some pTOPGI'ty setting (http://docs .spring.io/spring-boot/docs/2.0.0.M5/reference/htmlsingle/#com
mon-application-properties) allowing you to override jUSt the parts you like.

Many of these autoconfigured beans will back off if Boot spots us creating our own. For example, when
Spring Boot spots reactive MongoDB drivers on the classpath, it automatically creates a reactive
mongoclient. However, if we define our own mongociient bean, then Spring Boot will back off and accept
ours.

This can lead to other components switching off. But sometimes, we don't need to swap out an entire
bean. Instead, we may wish to merely tweak a single property of one of these autoconfigured beans.

Let's try to make some adjustments tO src/main/resources/application.properties as follows:

Override the port Tomcat listens on
server.port=9000

Customize log levels

logging.level.com.greglturnquist=DEBUG

This preceding changes will cause Spring Boot to launch Netty on port seee, as shown here:

| 2017-08-02 15:40:02.489: Netty started on port(s): 9000
It will also bump up the log level for package com.gregiturnquist to pesu.

9 Many modern IDEs include code completion to find various properties.

While it's handy to externalize configuration settings into property files, it wouldn't be a big advantage
if they were only embeddable inside our app's JAR file.

That's why, Spring Boot comes with property override support. The following list shows all the
locations from which we can override properties, the first being the highest priority:

e The @TestPropertySource annotation on test classes

¢ Command-line arguments

e The properties found inside spring_appLicatION_3son (inline JSON embedded in an env variable or
system property)

e The servietconfig init parameters

e The servietcontext init parameters

http://docs.spring.io/spring-boot/docs/2.0.0.M5/reference/htmlsingle/#common-application-properties

The JNDI attributes from java:comp/env

The Java System properties (System.getProperties())

The OS environment variables

A RandomValuePropertySource that only has pI'OpGI'tiCS 1N random. *

Proﬁle-speciﬁc properties outside the packaged JAR file (application-{profile} .properties and YAML
variants)

Proﬁle-speciﬁc pI'OpGI’tiCS inside the packaged JAR file (application-{profile} .properties and YAML
variants)

Application properties outside the package JAR file (appiication.properties and YAML variants)
Application properties inside the packaged JAR file (appiication.properties and YAML variants)
The @PropertySource annotation on any @configuration classes

Default pI'OpGI'tiGS (SpGCiﬁCd USil’lg SpringApplication. setDefaultProperties)

For an example of the same overrides in YAML format as our application.properties file, we could put the
fOHOWil’lg n application.yml 1N src/main/resources:

server:
port: 9000

logging:

level:

com:
greglturnquist: DEBUG

This would do the exact same thing that we already saw with application.properties. The only difference
is the formatting.

What are the benefits of YAML over properties? If we need to override lots of settings, it avoids
duplication of various keys.

Spring properties can also reference other properties, as shown in this fragment:

app.name=MyApp
app.description=${app.name} is a Spring Boot application

In this preceding example, the second property, app.description, references the first property, app.name.

This isn't the end of options with property overrides. It's just the beginning. Throughout this book, we'll
expand on the options provided by Spring Boot's property support.

For now, let's focus on getting our app to production!

Bundling up the application as a runnable
JAR file

We've hacked out a suitable application. Now it's time to take it to production. As Spring Developer
Advocate Josh Long likes to say, production is the happiest place on earth.

The good ol' spring-boot-gradie-plugin has built-in hooks to handle that for us. By invoking Gradle's buiid
task, it will insert itself into the build process, and create a JAR file.

$./gradlew clean build
:clean
:compileJava
:processResources
:classes
:findMainClass
1jar
:bootRepackage
:assemble
:compileTestJava
:processTestResources UP-TO-DATE
:testClasses
:test

. test output ...
:check
tbuild

BUILD SUCCESSFUL

Total time: 10.946 secs

If we peek at the output, we'll find the original JAR file (non-FAT) along with the rebundled one
containing our application code as well as the third-party dependencies, as shown here:
$ 1s build/libs

learning-spring-boot-0.0.1-SNAPSHOT. jar
learning-spring-boot-0.0.1-SNAPSHOT.jar.original

If you wish to check out the newly minted JAR's contents, type jar tvf build/libs/learning-
spring-boot-0.0.1-SNAPSHOT. jar. We won't show it here because of space constraints.

The iiber JAR is nicely loaded up with our custom code, all of our third-party dependencies, and a little
Spring Boot code to allow us to run it. Why not try that out right here?

Let's type the following command:

| $ java -jar build/libs/learning-spring-boot-0.0.1-SNAPSHOT.jar

We can expect the same output as before, which is as seen in this image:

AN/ ' () NN\
[G QD)\ W D I I I VAR I R MR
NNt earro)y)))
ol e N NS

I_| _J=/ I I

: Spring Boot :: (v2.0.0.M5)

2017-09-19 20:41:20.036: Starting LearningSpringBootApplication
on ret...

. the rest has been cut for space ...

By invoking the JAR using Java's -jar option, we can launch the application with nothing more than the
JVM on our machine.

With our JAR file in hand, we can take our application anywhere. If we need to override any settings,
we can do it without cracking it open and making alterations.

Suppose we alter our command slightly, like this:

$ SERVER_PORT=8000 java
-jar build/libs/learning-spring-boot-0.0.1-SNAPSHOT. jar

We can now expect the results to be a little different, as seen in this image:

AN\ / ' () — _— _ NN\
CON— 1 """ 7 VNN
Nttt crro))))
RN NN D, N (N U R W A
I_1I | /=/_/_/_/
:: Spring Boot :: (v2.0.0.M5)

2017-08-03 15:40:02.489: Netty started on port(s): 8000

From the command line, we override server.port using an alternative notation (server_port) and run it on
port sece.

This lends us the ability to deploy it into the cloud.

Deploying to Cloud Foundry

Cloud-native applications are becoming the norm, as companies accelerate their rate of releasing to
pI'OdLlCtiOI’l (https://pivotal.io/cloud-native).

Cloud Native describes the patterns of high performing organizations delivering software faster,
consistently and reliably at scale. Continuous delivery, DevOps, and microservices label the why, how
and what of the cloud natives. In the the most advanced expression of these concepts they are
intertwined to the point of being inseparable. Leveraging automation to improve human performance in
a high trust culture, moving faster and safer with confidence and operational excellence.

Many cloud platforms thrive under releasing self-contained applications. The open source Cloud
Foundry platform, with its support for many technologies and runnable JAR files, is one of the most
popular ones.

To get started, we need either a copy of Cloud Foundry installed in our data center, or an account at
Pivotal Web Services (PWS), a Cloud Foundry hosting provider (nttps://run.pivotal.io/). Assuming we
have a PWS account (pronounced p-dubs), let's install the tools and deploy our app.

On macOS X, we can type this:

$ brew tap cloudfoundry/tap

$ brew install cf-cli

=> Installing cf-cli from cloudfoundry/tap

==> Downloading
https://cli.run.pivotal.io/stable?release=macosx64-bin...

==> Downloading from
https://s3-us-west-1.amazonaws.com/cf-cli-release...
BHBHBHBHAHHHHBHBHBHBHBHBH BB HBHBHBHBHBHBH AR
BHBHBHBHAHHHHBHBHBHE . | .

==> Caveats
Bash completion has been installed to:
/usr/local/etc/bash_completion.d

==> Summary
/usr/local/Cellar/cf-cli/6.32.0: 6 files, 16.7MB,
built in 10 seco...

For Linux, we can fetch a tarball like this:

$ wget -0 cf-linux.tgz "https://cli.run.pivotal.io/stable?
release=1inux64-binary&source=github"

$ tar xvfz cf-linux.tgz

$ chmod 755 ./cf

This preceding code will download and enable a Linux-based cr tool.

Before using the cr tool, you must register for an account at PWS.

For more installation details, visit https://docs.run.pivotal.io/cf-cli/install-go-cli.html.

https://pivotal.io/cloud-native
https://run.pivotal.io/
https://docs.run.pivotal.io/cf-cli/install-go-cli.html

Using the cf tool, let's deploy our application. To kick things off, we need to log into PWS, as follows:

$ cf login
API endpoint: https://api.run.pivotal.io

Email> gturnquist@pivotal.io

Password>

Authenticating. ..

OK

Select an org (or press enter to skip):

. your organizations will be listed here ...

org> 2
Targeted org FrameworksAndRuntimes

Select a space (or press enter to skip):
. your spaces will be listed here ...

Space> 1
Targeted space development

API endpoint: https://api.run.pivotal.io (API version: 2.62.0)

User: gturnquist@pivotal.io
org: FrameworksAndRuntimes
Space: development

We are logged in and targeting a logical space inside an organization.

Your org and space will certainly be different.

Time to deploy! We can do so with the cf push command. At a minimum, we specify the name of our
application and the artifact with the -p option (and use a different name than 1earning-spring-boot, since it's
been taken by this book!):

$ cf push learning-spring-boot -p build/libs/learning-spring-boot-
0.0.1-SNAPSHOT. jar

Creating app learning-spring-boot in org FrameworksAndRuntimes

/ space development as gturnquist@pivotal.io...

0K

Creating route learning-spring-boot.cfapps.io...
OK

Binding learning-spring-boot.cfapps.io to learning-spring-boot...
OK

Uploading learning-spring-boot...

Staging complete

Uploading droplet, build artifacts cache...
Uploading build artifacts cache...
Uploading droplet...

Uploaded build artifacts cache (108B)
Uploaded droplet (76.7M)

Uploading complete

Destroying container

Successfully destroyed container

of 1 instances running, 1 starting
of 1 instances running, 1 starting
of 1 instances running, 1 starting
of 1 instances running

oo Oo

App started

OK

requested state: started

instances: 1/1

usage: 16 x 1 instances

urls: learning-spring-boot.cfapps.io

last uploaded: Tue Sep 20 02:01:13 UTC 2017

stack: cflinuxfs2

buildpack: java-buildpack=v3.9-offline-
https://github.com/cloudfoundry/java-buildpack.git#b050954 java-main
open-jdk-like-jre=1.8.0_101 open-jdk-like-memory-
calculator=2.0.2_RELEASE spring-auto-reconfiguration=1.10.0_RELEASE

state since cpu memory disk
#0 running 2017-09-19 09:01:59 PM 243.7% 503.5M of 16 158.1M of 16

details

We have pushed our JAR file to PWS, let the Java buildpack (automatically selected) register it with a
URL, and start it up. NOW, we can visit its registered URL at http://learning-spring-boot.cfapps.io:

$ curl http://learning-spring-boot.cfapps.io?name=6reg
Hey, Greg!

We've taken our application to production.

The next step is to handle what are sometimes referred to as Day 2 situations. This is where we must
now monitor and maintain our application, and Spring Boot is ready to provide us just what we need.

Adding production-ready support

We've created a Spring web app with minimal code and released it to production. This is the perfect
time to introduce production-grade support features.

There are some questions that often arise in production, and these are as follows:

e What do we do when the system administrator wants to configure his or her monitoring software to
ping our app to see if it's up?

e What happens when our manager wants to know the metrics of people hitting our app?

e What are we going to do when the ops center supervisor calls us at 2:00 a.m. and we have to figure
out what went wrong?

The last feature we are going to introduce in this chapter is Spring Boot's Actuator module. This
module provides some super slick Ops-oriented features that are incredibly valuable in a production
environment.

We start by adding this dependency to our build.gradie as follows:

| compile('org.springframework.boot:spring-boot-starter-actuator')

When you run this version of our app, the same business functionality is available that we saw earlier,
but there are additional HTTP endpoints; these are listed in the following table:

Actuator Endpoint Description

/application/autoconfig | This reports what Spring Boot did and didn't autoconfigure, and why

This reports all the beans configured in the application context (including ours as well

/appplication/beans
as the ones autoconfigured by Boot)

/application/configprops | This exposes all configuration properties

/application/dump This creates thread dump report

/application/env This reports on the current system environment

/application/health This is a simple endpoint to check the life of the app

/application/info This serves up custom content from the app

/application/metrics This shows counters and gauges on web usage
/application/mappings This gives us details about all Spring WebFlux routes
/application/trace This shows the details about past requests

Endpoints, by default, are disabled. We have to opt in. This is accomplished by setting endpoints.
{endpoint}.enabled=true hlSidf:src/main/resources/application.properties,1ﬂ§€ this:

| endpoints.health.enabled=true

This line added to application.properties mentions the endpoint, health, and enables it. If we restart the
application, we can ping for its health, as shown in the next section.

Pinging our app for general health

Each of these endpoints can be visited using our browser or using other tools like curi:

$ curl localhost:9000/application/health
{
"status": "UP",
"details": {
"mongo": {
"status": "UP",
"details": {
"version": "3.2.2"
}
3
"diskSpace": {
"status": "UP",
"details": {
"total": 498937626624,
"free": 66036432896,
"threshold": 10485760
}
}
}
}

This preceding health status gives us the following:

e An overall v status
e The status of MongoDB
e The status of the diskspace

When other components are added, they may, optionally, add their own health checks.

This immediately solves our first need listed previously. We can inform the system administrator that he
or she can write a management script to interrogate our app's health.

Be warned that each of these endpoints serve up a compact JSON document. Generally speaking,
command-line cur1 probably isn't the best option. While it's convenient on *nix and Mac systems, the
content is dense and hard to read. It's more practical to have the following:

e aJSON plugln installed in our browser (SLICh as JSON Viewer at https://github.Com/tulios/json-viewer)

e a script that uses a JSON parsing library if we're writing a management script (such as Groovy's
JsonSlurper at http://docs.groovy-lang.org/latest/html/gapi/groovy/json/JsonSlurper.html O JsonPath at http
s://Code.google.com/p/json-path)

https://github.com/tulios/json-viewer
http://docs.groovy-lang.org/latest/html/gapi/groovy/json/JsonSlurper.html
https://code.google.com/p/json-path

Metrics

To really get operational, we need metrics. Most production systems have metrics in one form or
another. Thankfully, we don't have to start from scratch. There is a metric endpoint in Spring Boot
Actuator. If we add this following setting tO application.properties:

| endpoints.metrics.enabled=true
With this property setting, if we restart the application, we can get a quick read out on thing.

Assuming we have JSON Viewer installed, it's casy to surf to http://localhost:9000/application/metrics and
get a listing on all sorts of metrics. We even have counters for every good/bad web hit, broken down on
a per-page basis, as shown here:

{

"names": [
"jvm.buffer.memory.used",
"jvm.memory.used",
"jvm.buffer.count",
"logback.events",
"process.uptime",
"jvm.memory.committed",
"jvm.buffer.total.capacity",
"jvm.memory.max",
"process.starttime",
"http.server.requests"

We can visit any one of these metrics by appending it's name to the metrics URL. For example, to view
the http.server.requests,\dSithttp://localhost:9000/application/metrics/http.server.requestsI

{

"name": "http.server.requests",
"measurements": [
{
"statistic": "TotalTime",
"value": 3.53531643E8
H
{
"statistic": "Count",
"value": 57.0

}
1
"availableTags": [
{
"tag": "exception",
"values": [
"none" ,
"none" ,
"none" ,
Ilnonell

]
3
{
"tag": "method",
"values": [
IIGETII ,
IIGETII ,

"GET",
IIGETII

iy

IItagll: IIuriII,

"values": [
"/application/metrics/{requiredMetricName}",
"/application/metrics/{requiredMetricName}",
"/application/metrics",

"/favicon.ico"

]

+
{

"tag": "status",

"values": [
"200",

II404II,
"200",
"200"

This provides a basic framework of metrics to satisfy our manager's needs. It's important to understand
that metrics gathered by Spring Boot Actuator aren't persistent across application restarts. To gather
long-term data, we have to write them elsewhere (http://docs .spring.io/spring-boot/docs/2.0.0.M5/reference/ht

mlsingle/#production-ready-metrics).

If you have used Spring Boot 1.x, then this may look very different. That's because a newer,
more sophisticated version of metrics has arrived--Micrometer. It's currently in
development, and may change quite a bit, so stay tuned at http://micrometer.io/, and be sure
to follow @micrometerio on Twitter, as the ability to craft highly detailed and advanced
metrics comes to Spring Boot.

http://docs.spring.io/spring-boot/docs/2.0.0.M5/reference/htmlsingle/#production-ready-metrics
http://micrometer.io/

Summary

In this chapter, we rapidly crafted a Spring Web application using the Spring stack on top of Netty with
little configuration from our end. We plugged in Spring Boot's Actuator module, configuring it with
metrics, health, and management features so that we can monitor it in production by merely adding two
lines of extra code.

In the next chapter, we'll get underway building our social media platform using these scalable APIs
built on top of Reactive Streams.

Reactive Web with Spring Boot

The more and more I use #SpringBoot the more I like it.

— Derek Stainer (@dstainer

In the previous chapter, we saw how quickly an application can be created with just a few lines of code.
In this chapter, we are going to embark upon a journey. We will build a social media application where
users can upload pictures and write comments.

In this chapter, we will build the web layer for our social media application doing the following:

Creating a reactive web application with Spring Initializr

Learning the tenets of reactive programming

Introducing Reactor types

Switching from Apache Tomcat to Embedded Netty

Comparing reactive Spring WebFlux against classic Spring MVC

Showing some Mono/Flux-based endpoints

Creating a reactive ImageService

Creating a reactive file controller

Showing how to interact with a Thymeleaf template

[lustrating how going from async to sync can be easy, but the opposite is not

Creating a reactive web application with
Spring Initializr

In the last chapter, we took a quick tour through the Spring Initializr site at http://start.spring.io. Let's go
back there and pick some basic ingredients to start building our social media site by picking the options
needed as shown in the following screenshot:

o ® @v Spring Initializr X (") Greg.L.Turnqui...

& C O @ start.spring.io ¥ | Of A OO0 5] =@

SPRING INITIALIZR

Generate a craderroject . With Spnng Boot 20.0(snaPsHoT) &

Project Metadata

Artifact coordinates
Group

com.greglturnquist.learningspringboot

Artifact

learning-spring-boot

Dependencies

Add Spring Boot Starters and dependencies to your application

Search for dependencies

I f eb, Security, JPA, Actuator, Devtools...

Selected Dependencies

Generate Project % + «

As shown in the preceding screenshot, we've picked the following options:

Build system: Gradle
Spring Boot Version: 2.0

GI‘OllpI com.greglturnquist.learningspringboot
Artifact: learning-spring-boot

For dependencies, we are going to use these:

e Reactive Web: This pulls in Reactive Spring, something we'll explore here and through the rest of
this book

e Lombok: This is a tiny library that keeps Java interesting by handling getters, setters, tostring,
equals, hashCode, and more

http://start.spring.io

e Thymeleaf: This is not Boot's only supported template library, but a powerful one that includes
reactive support as well as strict HTML compliance.

From here, we merely need to click on the Generate Project button and a zipped up project will be
downloaded. Import it into our IDE, and we're ready to get rolling.

(We will add more dependencies to our project in later chapters.)

We won't list the entire Gradle build file generated by the site, but the dependencies are listed as
follows:
dependencies {
compile('org.springframework.boot:spring-boot-starter-webflux')
compile("org.springframework.boot:spring-boot-starter-thymeleaf")
compile('org.synchronoss.cloud:nio-multipart-parser:1.1.0")

compile('org.projectlombok:lombok")
testCompile('org.springframework.boot:spring-boot-starter-test')

3

The following dependencies are included in the build file:

® spring-boot-starter-webflux: This is the foundation for a Reactive Spring web applications

® spring-boot-starter-thymeleaf: This bI'il’lgS in Thymeleafs template engine

® nio-multipart-parser. This is a third-party hbrary from Synchronoss, which supports reactive multipart
file uploads

e 1lombok: This is a convenient library to create mutable and immutable value objects among other
things

® spring-boot-starter-test: This is a collection of test libraries including JUnit, Spring Boot Test,
Mockito, Assert], JSONassert, and Hamcrest

What version of Spring Boot are we using? That can be spotted toward the top of build.gradie inside the
buildscript fragment, as seen here:

ext {
springBootVersion = '2.0.0.M5'

}

The version is specified at the top to feed both spring-boot-gradie-piugin as well as in the dependencies.

The Gradle build additionally uses the Spring team's Dependency Management Gradle plugin (available

here: https://github.com/spring-gradle-plugins/dependency-management-plugin), which includes several Maven-

like dependency management features. It includes the ability to consume any Maven Bills of Materials

(BOMs) while also handling direct and transitive dependencies.

With our build file in place, we can now dive into reactive programming.

https://github.com/spring-gradle-plugins/dependency-management-plugin

Learning the tenets of reactive
programming

To launch things, we are going to take advantage of one of Spring Boot's hottest new features--Spring
Framework 5's reactive support. The entire Spring portfolio is embracing the paradigm of reactive
applications, and we'll focus on what this means and how we can cash in without breaking the bank.

Before we can do that, the question arises--what is a reactive application?

In simplest terms, reactive applications engage in the concept of non-blocking, asynchronous
operations. Asynchronous means that the answer comes later, whether by polling or by an event pushed
backed to us. Non-blocking means not waiting for a response, implying we may have to poll for the
results. Either way, while the result is being formed, we don't hold up the thread, allowing it to service
other calls.

The side effect of these two characteristics is that applications are able to accomplish more with existing
resources.

There are several flavors of reactive applications going back to the 1970s, but the current one gaining
resonance is Reactive Streams due its introduction of backpressure.

Backpressure is another way of saying volume control. The consumer controls how much data is sent by
using a pull-based mechanism instead of a traditional push-based solution. For example, imagine
requesting a collection of images from the system. You could receive one or a hundred thousand. To
prevent the risk of running out of memory in the latter case, people often code page-based solutions.
This ripples across the code base, causing a change in the API. And it introduces another layer of
handling.

To expand on this example, the following solution would depict that risky collection:

List<Image> findAll();

‘ public interface MyRepository {
3

This preceding repository could indeed return one image or a hundred thousand. There's no way to tell.
The most common solution, as mentioned, would be to switch to something like this instead:

Page<Image> findAll(Pageable p);

‘ public interface MyRepository {
3

The first solution is simple. We know how to iterate over it. The second solution is also iterable (Spring
Data Commons's page type implements Java's 1terable interface), but requires passing in a parameter to
our API, specifying how big a page is and which page we want. While not hard, it introduces a
fundamental change in our API.

Reactive Streams is much simpler--return a container that lets the client choose how many items to take.
Whether there is one or thousands, the client can use the exact same mechanism and take however many
it's ready for. To do this, we would use the following method signature:

public interface MyRepository {
Flux<Image> findAll();

3

A r1ux, which we'll explore in greater detail in the next section, is very similar to a Java 8 strean. We can
take as many as we want and it lazily waits until we subscribe to it to yield anything. There is no need to
put together a pagerequest, making it seamless to chain together controllers, services, and even remote
calls.

Introducing Reactor types

We've mentioned Reactive Streams with little detail. There is a spec for Reactive Streams (http://www. reac
tive-streams.org/), but it's important to understand that it is quite primitive. In fact, it's so primitive that
it's not very effective for building applications. That may sound counterintuitive, but it wasn't written so
much for end users as it was for framework developers. To build reactive applications, we'll use Project
Reactor (nttp://projectreactor.io/), the core library that Spring Framework 5 uses for its reactive
programming model.

To introduce Reactor's core types, we'll begin with the one we just saw in the previous section, riux, and
some code like this:

| Flux.just("alpha", "bravo", "charlie");
This simple creation of a Reactor r1ux can be detailed as follows:

e r1ux is Reactor's base type, a container holding 0..N items, none of which will be reached until the
client calls the reactive stream's subscribe() method. In this case, the container holds a set of strings.

e just() is a static helper method to construct a fixed collection. Other static helpers are also
available, like fromarray(), fromiterable(), and fromstream(). This makes it easy to bridge existing Java
collections.

There are additional methods to convert a riux to a Java stream and an 1terable. But since
o these types are generally blocking, it's best to avoid them if possible.

Exactly what does a r1ux embody? How is it different from a Java rist or stream? A r1ux keenly represents
multiple values coming, in the future, asynchronously. When those values are coming is not specified
nor can it be assumed they are all arriving on the same thread.

In the past, Java has made it possible to represent either a single value or a collection of values that are
coming right now in synchronous, blocking APIs. We've also had single value types for asynchronous
values (ruture and completableruture). But Java has yet to create a value type for multiple, asynchronous
values. That is what Project Reactor and Reactive Streams is all about--processing multiple,
asynchronous, non-blocking values in a cohesive fashion.

To consume a r1ux, we have to either subscrive or let the framework do it for us. Here's an example of
subscribing for the results:

Flux.just("alpha", "bravo", "charlie")
.subscribe(System.out: :println);

This last code creates a r1ux with three items, subscribes for the results, and prints each value out to the
screen as follows:

alpha
bravo

http://www.reactive-streams.org/
http://projectreactor.io/

| charlie

This may not appear impressive, especially when compared to the existing Java collection builders like
Arrays.asList("alpha", "bravo", "charlie"). Looks the Same, r1ght‘7

A difference can be seen when we start leveraging Java 8 lambdas and function types. That's when we
can chain together a series of function calls, all of which are delayed until that exact element is
extracted. Look at the following fragment:
Flux.just(
(Supplier<String>) () -> "alpha",
(Supplier<String>) () -> "bravo",

(Supplier<String>) () -> "charlie")
.subscribe(supplier -> System.out.println(supplier.get()));

This r1ux contains the equivalent in values of our earlier riux.just() except that each one is wrapped
inside a Java 8 suppiier. This means that, actually, retrieving each value is delayed until subscription and
only when each individual value is fetched through Reactor's onnext () method. This is also known as
lazy.

Sure this example is contrived, but we'll see more of this paradigm as we explore reactive programming
throughout this book.

Another facet of Project Reactor is over 160 operations rooted in functional programming including
some of the most well known ones such as map, f1atmap, filter, and then.

To wrap up this section, let's pick an example a little more complex in nature. What if we took the
sample data that we have been poking at and count up how many of each letter we have. Check it out:

Flux.just("alpha", "bravo", "charlie")
.map(String: :toUpperCase)
.flatMap(s -> Flux.fromArray(s.split("")))
.groupBy(String::toString)
.sort((ol, 02) -> ol.key().compareTo(o2.key()))
.flatMap(group -> Mono.just(group.key()).and(group.count()))
.map(keyAndCount ->
keyAndCount.getT1() + " => " + keyAndCount.getT2())
.subscribe(System.out: :println);

We can take apart this preceding flow as follows:

e This flow starts with the same values as shown earlier in this chapter, aipha, bravo, and charlie
bundled into a Reactor riux.

e Each entry is converted to uppercase using string: : touppercase ensuring we'll count lowers and
uppers together.

e The entries are then flatMapped into individual letters. To visualize flatMapping, look at this
example--["alpha", "bravo"] 1S mapped by s.sp1it("") into a collection of collections, [["a", "1", "p",
"hv, "a"], ["b", "r", "a", "v", "0"]], and then flattened into a single collection, [*a", 1", "p", "h", "a",
"b", "r", "a", "V", "O"].

e Then we group by the string value, which will combine all the a" entries into one subgroup, and so
on and so forth.

e Next, we sort by the key value, because the group type doesn't implement comparable.

The underlying type of groupsy() iS a croupedrlux, a Flux with a key value that doesn't
0 implement Comparable.

We flatMap the group's key and count value into a pair of mono objects. (More on mono further in this
chapter.)

e We unpack the tuple, and convert it into a string showing key and count.

e We subscribe to the entire flow, printing out the results.

The output can be seen as follows:

A =>4
B=>1
cC =1
E=>1
H=> 2
I=>1
L =>2
0=>1
P=>1
R => 2
V=1

Now that's a lot to take in all at once. Reactor flows, much like Java 8 streams, can pack a
! lot of functionality. But that is their key benefit. By spending little time on language
Wl ceremony, we, instead, focus on strong functional definitions. If needed, it can be handy to
read each step in that flow again, using the bullet points to help decode it.

After chatting about r1ux and all of its operations, something else has leaked into our code--mono. What is
that? It's a Reactor container for ../ items, a subset of riux. It implements the same Reactive Streams
interface, pubiisher, which means that we only get its results when we invoke subscribe(). It has a few API
differences from riux like fiatmap() versus fiatmapmany(), but apart from that, it is not hard to grok.

It turns out, a lot of use cases involve handling single values, making it worthwhile capturing this type.
In the flow we just walked through, it turns out that the count() of a group is stored in a mono<tong>,
indicating that we can't know the value until the subscribe is applied at the end. So we have to bundle it
up along with the key and map over it to effectively unpack it.

Given that we just walked through a chain of Reactor operations, it's handy to review some of the most
commonly used ones. Look at this quick guide:

Operation | Description

map () Converts one r1ux into another riux of identical size using a function applied to each element

Converts one r1ux into another r1ux of a different size by first mapping, and then removing any

flatMap() .
nesting

flter() Converts one r1ux into a smaller F1ux with elements removed based on a filtering function

groupBy() Converts the riux into a bundled set of subgroups based on the grouping function

sort() Converts one r1ux into a sorted riux based on the sorting function

Several of these operations listed in the previous table also exist for mono. There are others, but these are
the big ones.

What's the big picture in all this? Essentially, every step of this flow could be an asynchronous, non-
blocking, remote call to another service. With Reactor, we don't have to worry about thread
management unless we really want to get into it. It's handled for us. And soon, we'll start doing just that.

There's a myth that is possibly as old as Java itself: To make things run faster, we must
use threads. And the corollary would be: The more threads, the faster. But this is not
born out of empirical research. In fact, using threads can lead to concurrent faults and
using too many threads can introduce context switching overhead. JavaScript developers,
in an environment where there is but one thread, have developed many reactive solutions
that are very efficient at handling things. That is because using queues and event loops
combined with asynchronous, non-blocking APIs that don't hold up the thread, actually
results in accomplishing a lot with few resources.

If this introductory taste of Project Reactor, r1ux, and mono is still confusing, please read the following
blog articles for more detailed information on reactive programming:

http://bit.ly/reactive-part-1
® http://bit.ly/reactive-part-2
® http://bit.ly/reactive-part-3
® http://bit.ly/reactive-types

http://bit.ly/reactive-part-1
http://bit.ly/reactive-part-2
http://bit.ly/reactive-part-3
http://bit.ly/reactive-types

Switching from Embedded Netty to Apache
Tomcat

By default, Spring Boot is geared up to use embedded Netty (http://netty.io). Why? Because it's one of
the most popular solutions for reactive applications. And when it comes to reactive applications, it's
critical that the entire stack be reactive.

However, it's possible to switch to another embedded container. We can experiment with using Apache

Tomcat and its asynchronous Servlet 3.1 API. All we have to do is to make some tweaks to the

dependency settings in build.gradle, as follows:
compile('org.springframework.boot:spring-boot-starter-webflux') {

exclude group: 'org.springframework.boot',
module: 'spring-boot-starter-reactor-netty'

}

compile('org.springframework.boot:spring-boot-starter-tomcat')
What's happening in the preceding code? This can be explained as follows:

® spring-boot-starter-webflux excludes spring-boot-starter-reactor-netty, taking it off the classpath
® spring-boot-starter-tomcat 1s added to the classpath
e Spring Boot's Tomcatautoconfiguration kicks in, and configures the container to work using

TomcatReactiveWebServerFactory
It's important to point out that there are these other containers available:

o Jetty
e Undertow

For the rest of this title, we'll stick with Spring Boot's default, Netty.

It's interesting to refer to these as containers given that they are contained inside our
application. It used to be standard practice to install Apache Tomcat (or whatever
container we picked) and install the application into it. But Spring Boot has made
embedded containers a core feature, inverting this concept of apps inside containers and
putting the container inside the app instead. For an entertaining presentation on how this
change has swept the Java community, check out Eberhard Wolff's Java Application
Servers Are Dead (http://www. slideshare. net/ewolff/java-application-servers-are—dead)
presentation.

http://netty.io
http://www.slideshare.net/ewolff/java-application-servers-are-dead

Comparing reactive Spring WebFlux
against classic Spring MVC

Ever heard of Spring MVC? It's one of the most popular web frameworks used by the Java community.
Since Spring Framework 3, it has utilized an annotation-driven programming style, sometimes known
as @mvc.

But we aren't going to use that in this book. Instead, we are going to use something new, Spring
WebFlux. WebFlux is an alternative module in the Spring Framework focused on reactive handling of
web requests. A huge benefit is that it uses the same annotations as emvc, along with many of the same
paradigms while also supporting Reactor types (mono and riux) on the inputs and outputs. This is NOT
available in Spring MVC. The big thing to understand is that it's just a module name--spring-webf1ux
VETSUS spring-webmvc.

Why is Spring doing this?

Spring MVC is built on top of Java EE's Servlet spec. This specification is inherently blocking and
synchronous. Asynchronous support has been added in later versions, but servlets can still hold up
threads in the pool while waiting for responses, defying our need for non-blocking. To build a reactive
stack, things need to be reactive from top to bottom, and this requires new contracts and expectations.

Certain things, like HTTP status codes, a responsegody, and the
@GetMapping/@PostMapping/@DeleteMapping/@PutMapping annotations are used by both modules. But other things
under the hood must be rewritten from scratch. The important point is that this doesn't impact the end
developer.

By switching to Reactive Spring, we can immediately start coding with riux and mono, and don't have to
stop and learn a totally new web stack. Instead, we can use the popular annotation-based programming
model while we invest our effort in learning how to make things reactive. It's also important to know
that Spring MVC isn't going away or slated for end of life. Both Spring WebFlux and Spring MVC will
stay as actively supported options inside the Spring portfolio.

Showing some Mono/Flux-based endpoints

Let's start with a simple HTTP cer. Similar to Spring MVC endpoints, Spring WebFlux supports Flux
operations as shown here:

@GetMapping(API_BASE_PATH + "/images")
Flux<Image> images() {
return Flux.just(
new Image("1", "learning-spring-boot-cover.jpg"),
new Image("2", "learning-spring-boot-2nd-edition-cover.jpg"),
new Image("3", "bazinga.png")
);
}

This preceding controller can be described as follows:

e Using the same riux.just() helper, we return a rather contrived list
e The Spring controller returns a riux<mmage> Reactor type, leaving Spring in charge of properly
subscribing to this flow when the time is right

Before we can move forward, we need to define this mmage data type like this:

@Data
@NoArgsConstructor
public class Image {

private String id;
private String name;

public Image(String id, String name) {
this.id = id;
this.name = name;
3
3

The preceding POJO class can be described as follows:

e gpata is @ Lombok annotation that generates getters, tostring, hashcode, equals as well as setters for all
non-final fields

® @noargsconstructor 1S @ Lombok annotation to generate a no-argument constructor

e It has id and name fields for storing data

e We have crafted a custom constructor to load up fields of data

With this simple data type, we can now focus on reactively interacting with them.

Nothing is simple without creating new data. To do that, we can write an HTTP rost operation as
follows:

@PostMapping(API_BASE_PATH + "/images")
Mono<Void> create(@RequestBody Flux<Image> images) {
return images
.map(image -> {
log.info("We will save " + image +
" to a Reactive database soon!");
return image;

})

.then();

The last code can be described as follows:

® @rostmapping indicates this method will respond to HTTP rost calls. The route is listed in the
annotation.

® @requestBody instructs Spring to fetch data from the HTTP request body.

e The container for our incoming data is another riux of image objects.

¢ To consume the data, we map over it. In this case, we simply log it and pass the original mage onto
the next step of our flow.

e To wrap this logging operation with a promise, we invoke riux.then(), Which gives us mono<void>.
Spring WebFlux will make good on this promise, subscribing to the results when the client makes a
request.

If we run this code and submit some JSON, we can check out the results.

FiI’St, let's use HTTPie (https://httpie.org)Z

| http --json -v POST localhost:8080/api/images id=10 name=foo

The verbose results are easy to read and are as follows:

POST /api/images HTTP/1.1
Accept: application/json, */*
Accept-Encoding: gzip, deflate
Connection: keep-alive
Content-Length: 27
Content-Type: application/json
Host: localhost:8080
User-Agent: HTTPie/0.9.8

{
Ilid" : ll10|l,
"name": "foo"

}

HTTP/1.1 200
Content-Length: 0
Date: Sat, 28 Jan 2017 20:14:35 GMT

In this case, HTTPie nicely sent a single item and our Spring WebFlux controller parsed it perfectly, like
this:

. c.g.learningspringboot.ApiController ... We will save
Image(id=10, name=foo) to a Reactive database soon!

Single entry r1iux has been nicely handled.

If we want to send a JSON array, we can either embed the JSON array in a file or just send it directly
with cur1, as follows:

curl -v -H 'Content-Type:application/json' -X POST -d '[{"id":10,
"name": "foo"}, {"id":11, "name":"bar"}]' localhost:8080/api/images

Ta-dah!

|c.g.learningspringboot.ApiController ... We will save Image(id=10,

https://httpie.org

name=foo) to a Reactive database soon!

c.g.learningspringboot.ApiController ... We will save Image(id=11,

name=bar) to a Reactive database soon!
Whether we send a single JSON item or an array of JSON items, Spring WebFlux maps
both onto Reactor's riux with no issue. In classic Spring MVC, we'd have to choose either

Image OF List<Image> and encode things properly or write two handlers.

Want to dial up the log levels? With Spring Boot, adjusting logging levels is a snap. Rename the
application.properties file supplied by start.spring.io aS application.yml, and edit it to look like this:
logging:
level:
io:

netty: DEBUG
reactor: DEBUG

The preceding code will punch up Netty and Project Reactor to spit out oesue level messages.

If we fetch the list of images again (http localhost:sese/api/images), we can see stuff like this in the server
logs:

2017-01-28 15:46:23.470 DEBUG 28432 --- [ctor-http-nio-4] r.i.n.http.server.HttpServerOperations : New httg
2017-01-28 15:46:23.471 DEBUG 28432 --- [ctor-http-nio-4] r.ipc.netty.http.server.HttpServer : [id: oxe
S T NS +
| 6 1 2 3 4 5 6 7 8 9 a b c d e f|
- T TS . +

00000000	47 45 54 20 2f 61 70 69 2f 69 6d 61 67 65 73 20	GET /api/images
00000010	48 54 54 50 2f 31 2e 31 0d 0a 48 6f 73 74 3a 20	HTTP/1.1..Host:
00000020	6¢c 6f 63 61 6¢c 68 6 73 74 3a 38 30 38 30 0d Oa	localhost:8080..
00000030	55 73 65 72 2d 41 67 65 6e 74 3a 20 48 54 54 50	User-Agent: HTTP
00000040	69 65 2f 30 2e 39 2e 38 0d 0a 41 63 63 65 70 74	ie/0.9.8..Accept]
00000050	2d 45 6e 63 6T 64 69 6e 67 3a 20 67 7a 69 70 2c	-Encoding: gzip,
00000060	20 64 65 66 6¢c 61 74 65 0d 0a 41 63 63 65 70 74	deflate..Accept]
00000070	3a 20 2a 2f 2a 0d 0a 43 6f 6e 6e 65 63 74 69 6f	: */*..Connectio]
00000080	6e 3a 20 6b 65 65 70 2d 61 6¢c 69 76 65 0d 0a 0d	n: keep-alive...
00000090	Oa	

-+

2017-01-28 15:46:23.471 DEBUG 28432 --- [ctor-http-nio-4] r.ipc.netty.channel.ChannelOperations : [HttpSer

This shows the incoming web request to cer /apisimages, headers and all. The output can also be read, but
given the volume of data from Netty, its verbose output is not shown. Nevertheless, these log levels
provide a handy means to debug traffic on the wire.

DON'T DO THIS if the request or the results are HUGE! I once switched this on when [
was uploading a 300 MB JAR file. The logging broke the application.

Creating a reactive ImageService

The first rule of thumb when building web apps is to keep Spring controllers as light as possible. We
can think of them as converters between HTTP traffic and our system.

To do that, we need to create a separate 1mageservice, as shown here, and let it do all the work:

@Service
public class ImageService {

private static String UPLOAD_ROOT = "upload-dir";
private final ResourcelLoader resourcelLoader;

public ImageService(ResourceLoader resourcelLoader) {
this.resourceLoader = resourcelLoader;

3

This last Spring service can be described as follows:

e gservice: This indicates this is a Spring bean used as a service. Spring Boot will automatically scan
this class and create an instance.

e upLoap_root: This is the base folder where images will be stored.

® RresourceLoader: This is a Spring utility class used to manage files. It is created automatically by
Spring Boot and injected to our service via constructor injection. This ensures our service starts
off with a consistent state.

Now we can start creating various utility methods needed to service our application.

Let's kick things off by loading up some mock image files loaded with test data. To do that, we can add
the following method to the bottom of our newly minted mageservice class:

/**
* Pre-load some test images

*

*

@return Spring Boot {@link CommandLineRunner} automatically
* run after app context is loaded.
*/
@Bean
CommandLineRunner setUp() throws IOException {
return (args) -> {
FileSystemUtils.deleteRecursively(new File(UPLOAD_ROOT));

Files.createDirectory(Paths.get (UPLOAD_ROOT));

FileCopyUtils.copy("Test file",

new FileWriter (UPLOAD_ROOT +
"/learning-spring-boot-cover.jpg"));

FileCopyUtils.copy("Test file2",

new FileWriter (UPLOAD_ROOT +

"/learning-spring-boot-2nd-edition-cover.jpg"));

FileCopyUtils.copy("Test file3",
new FileWriter (UPLOAD_ROOT + "/bazinga.png"));
3

3

The preceding little nugget of initializing code is described as follows:

e @sean indicates that this method will return back an object to be registered as a Spring bean at the
time that ImageService 1s created.

e The bean returned is a commandLinerunner. Spring Boot runs ALL commandLinerunners after the application
context is fully realized (but not in any particular order).

e This method uses a Java 8 lambda, which gets automatically converted into a commandLinerunner via
Java 8 SAM (Single Abstract Method) rules.

e The method deletes the upLoap_root directory, creates a new one, then creates three new files with a
little bit of text.

With test data in place, we can start interacting with it by fetching all the existing files in upLoap_roor
reactively by adding the following method to our mageservice:

public Flux<Image> findAllImages() {
try {
return Flux.fromIterable(
Files.newDirectoryStream(Paths.get (UPLOAD_ROOT)))
.map(path ->
new Image(path.hashCode(),
path.getFileName().toString()));
} catch (IOException e) {
return Flux.empty();
3

3

Let's explore the preceding code:

e This method returns riux<image>, a container of images that only gets created when the consumer
subscribes.

e The Java NIO APIs are used to create a path from upLoap_root, Which is used to open a lazy
DirectoryStream COUI"[GSY of Files. newDirectoryStream(). DirectoryStream 1S a lazy iterable, which means
that nothing is fetched until next() is called, making it a perfect fit for our Reactor riux.

® Flux.fromiterable 1S used to wrap this lazy iterable, allowing us to only pull each item as demanded
by a reactive streams client.

e The r1ux maps over the paths, converting each one to an mage.

¢ In the event of an exception, an empty riux is returned.

It's important to repeat that the stream of directory paths is lazy as well as the riux itself. This means that
nothing happens until the client subscribes, that is, starts pulling for images. At that point, the flow we
just wrote will react, and start performing our data transformation. And it will only process each entry
as each entry is pulled.

The next piece we need in our 1mageservice 1s the ability to fetch a single image so it can be displayed,
and we can use this to do so:

public Mono<Resource> findOneImage(String filename) {
return Mono.fromSupplier(() ->
resourcelLoader.getResource(
"file:" + UPLOAD_ROOT + "/" + filename));

3

This last code can easily be described as follows:

Since this method only handles one image, it returns a mono<resource>. Remember, mono is a container
of one. resource 1s Spring's abstract type for files.

® resourcelLoader.getResource() fetches the file based on filename and UPLOAD_ROOT.

¢ To delay fetching the file until the client subscribes, we wrap it with mono. fromsupplier(), and put
getResource() inside a lambda.

Until now, we've seen mono. just () used to illustrate Reactor's way of initializing single items. However, if
W€ WIOte Mono. just (resourceLoader.getResource(. . .)), the resource fetching would happen immediately when
the method is called. By putting it inside a Java 8 supplier, that won't happen until the lambda is invoked.
And because it's wrapped by a mono, invocation won't happen until the client subscribes.

is that wono.defer() is invoked individually by every downstream subscriber. It's best used

0 There is another mono operation that is very similar to rromsupplier()--defer(). The difference
not for fetching resources like our situation but for something like polling status instead.

Having written code to fetch all images and a single image, it's time we introduce the ability to create
new ones. The following code shows a reactive way to handle this:

return files.flatMap(file -> file.transferTo(

public Mono<Void> createImage(Flux<FilePart> files) {
Paths.get (UPLOAD_ROOT, file.filename()).toFile())).then();

}

The last code can be described as follows:

e This method returns a mono<void> indicating that it has no resulting value, but we still need a handle
in order to subscribe for this operation to take place

e The incoming riux of Filerart objects are flatMapped over, so we can process each one

e Each file is tested to ensure it's not empty

o At the heart of our chunk of code, Spring Framework 5's riierart transfers the content into a new
file stored in upLoap_rooT

e then() lets us wait for the entire riux to finish, yielding a mono<void>

Our last image-based operation to add to 1mageservice 1S to implement the means to delete images, as
shown here:

public Mono<Void> deleteImage(String filename) {
return Mono.fromRunnable(() -> {
try {
Files.deleteIfExists(Paths.get(UPLOAD_ROOT, filename));
} catch (IOException e) {
throw new RuntimeException(e);
}

13K
}

The preceding code can be described as follows:

e Because this method doesn't care about return values, its return type is Mono<voids>.

e To hold off until subscribe, we need to wrap our code with mono. fromrunnable(), and use a lambda
expression to coerce a runnable. This lets us put our code off to the side until we're ready to run it.

¢ Inside all of that, we can use Java NIO's handy riles.deleterfexists().

If wrapping every return type in either a riux or a mono is starting to bend your brain, you
are not alone. This style of programming may take a little getting used to but it's not that
8 big of a leap. Once you get comfortable with it, I guarantee you'll spot blocking code all

over the place. Then you can set out to make it reactive without descending into callback
hell.

Creating a reactive file controller

With our reactive image service in place, we can start to work on the reactive file controller.

For starters, let's create a Homecontroller as shown here:

@Controller
public class HomeController {

private static final String BASE_PATH = "/images";
private static final String FILENAME = "{filename:.+}";

private final ImageService imageService;
public HomeController(ImageService imageService) {

this.imageService = imageService;

3

The preceding code can be described as follows:

e acontroller: This indicates that it is a web controller, and will be registered by Spring Boot to handle
web requests.
e sase_patH: This is a static string used to define the base of many routes.

nn

e rrenave: This is a pattern for filenames where the "." is included. Otherwise, Spring WebFlux will
use the suffix as part of content negotiation (for example, .json would try to fetch a JSON response,
while .xm1 would try to fetch an XML response).

® 1mageservice: This is injected via constructor injection so that we can tap our reactive image handling
code we just wrote.

With this in place, we can code the handler for displaying a single image on the web page like this:

@GetMapping(value = BASE_PATH + "/" + FILENAME + "/raw",
produces = MediaType.IMAGE_JPEG_VALUE)
@ResponseBody
public Mono<ResponseEntity<?>> oneRawImage (
@Pathvariable String filename) {
return imageService.findOneImage(filename)
.map(resource -> {
try {
return ResponseEntity.ok()
.contentLength(resource.contentLength())
.body(new InputStreamResource(
resource.getInputStream()));
} catch (IOException e) {
return ResponseEntity.badRequest()
.body("Couldn't find " + filename +
" =>" + e.getMessage());
b
1)

The last code can be explained as follows:

® @cetmapping defines a route mapping for cer sase_path + "/" + FILENAME + "/raw". It also sets the content-
Type header to properly render it as an image.
® @responsesody indicates that this method's response will be written directly into the HTTP response

body.

® grathvariable flags that the input riilename Will be extracted from the route's {filename} attribute.

® Mono<ResponseEntity<?>> Shows that we are returning a single response, reactively. responseentity<?>
describes a generic HTTP response.

e The code taps our image service's findoneImage() USING filename.

Since this argument comes from the route and not the request body, there is nothing gained

0 It's possible to have incoming arguments wrapped in Reactor types such as mono<string>.
in this situation.

e Since findoneImage returns a mono<resource>, We map over it, transforming this Spring resource into a
Responseentity Including a content-Length response header as well as the data embedded in the body.
¢ In the event of an exception, it will return an HTTP Bad Response.

This one controller handler method demonstrates many features provided by Reactive Spring. We see
route handling, delegating to a separate service, converting the response into a suitable format for
clients, and error handling.

This code also shows it being done reactively. Generating the HTTP OK / HTTP BAD REQUEST
response doesn't happen until map() 1s executed. This is chained to the image service fetching the file
from disk. And none of that happens until the client subscribes. In this case, subscribing is handled by
the framework when a request comes in.

1 thought you said to keep controllers light! That is true. Maybe this looks not so light? To
take the responseentity wrapping and move it into the imageservice would be wrong, because

Wl that service doesn't know anything about the web layer. This controller's focus is to make
the data presentable to web clients, which is exactly what we've coded.

The next controller method we can add to Homecontrolier is the handler for uploading new files, as shown
here:
@PostMapping(value = BASE_PATH)
public Mono<String> createFile(@RequestPart(name = "file")
Flux<FilePart> files) {

return imageService.createImage(files)
.then(Mono. just("redirect:/"));
}

The preceding method is described as follows:

e A collection of incoming rilepart Objects is represented as a rFiux

e The flux of files is handed directly to the image service to be processed

e .then() Indicates that once the method is complete, it will then return a redirect:/ directive (wrapped
in a mono), issuing an HTML redirect to /

It's important to remember that we aren't issuing .then() against the flux of files. Instead, the image
service hands us back a mono<void> that signals when it has completed processing all the files. It is that
mono Which we are chaining an additional call to return back the redirect.

The next thing we need to add to our Homecontroiier is the ability to handle requests for deleting images.
This is done as follows:

@DeleteMapping(BASE_PATH + "/" + FILENAME)

public Mono<String> deleteFile(@PathVariable String filename) {

return imageService.deleteImage(filename)
.then(Mono.just("redirect:/"));
}

The previous code can be described like this:

Using Spring's epeletemMapping annotation, this method is ready for HTTP oeLete operations

e [t's keyed to the same sase_patH + "/" + FILENAME pattern

e [t taps the image service's deletermage() method

e [t uses then() to wait until the delete is done before returning back a mono-wrapped redirect:/
directive

The last bit to add to our Homecontroiler is the call to serve up a list of images in a template. For that, we
need this general et handler for the root:

@GetMapping("/")

public Mono<String> index(Model model) {

model.addAttribute("images", imageService.findAllImages());
return Mono.just("index");

}

The preceding handler can be described as follows:

® @cetMapping 1s used to explicitly map the "/ route.

e It accepts a mode1 Object, giving us a place to load data reactively.

® addattribute() lets us assign the image service's findallimages() Flux to the template model's images
attribute.

e The method returns "index" wrapped in a mono, ensuring the whole thing is chained together, top to
bottom, to kick off when Spring WebFlux subscribes to render the template.

It's important to understand that we don't assign a list of images to the template model's images attribute.
We assign a lazy r1ux of images, which means that the model won't be populated with real data until
Reactive Spring subscribes for the data. Only then will the code actually start fetching image data.

Perhaps, at this stage, you're wondering amidst all the lambdas, Fluxes, Monos, and
subscriptions, exactly what is happening from a threading perspective. Project Reactor is
concurrency agnostic. It doesn't enforce a certain concurrency model, but leaves you in
command instead. Reactor has several schedulers that support a multitude of options. This
includes running in the current thread, running in a single worker thread, running on a
per-call dedicated thread, an elastic pool of threads, a fixed pool of worker threads tuned
for parallel work, and a time-aware scheduler capable of scheduling tasks in the future.
Additionally, Reactor allows creating a scheduler out of any executorservice. We aren't
going to delve into that in this work, but it's definitely something to investigate when you
build a real application and want to govern how things scale.

Why use reactive programming?

At this stage, you've gotten a good taste of how to whip up a file-handling controller, and hitch it to a
service that reads and writes files to disk. But the question that often arises is why do I need to do this
reactively?

With imperative programming, the process of taking inputs, building intermediate collections and other
steps often leaves us with lots of intermediate states--some of it potentially blocking in bad places.

Using the functional style as we've explored so far moves away from the risk of inefficiently building
up this state, and switches to building a stream of data instead. And Reactor's operations let us have one
stream feed another in lots of different ways. We can merge streams, filter streams, and transform
streams.

When we engage in reactive programming, the level of abstraction moves up a level. We find ourselves
focusing on creating tiny functions to perform various operations, and chaining them together. We think
more along integration of the items in our streams rather than the lower-level implementation details.

By building up these flows of chained operations, tying inputs to outputs, Reactor is able to do the
heavy lifting of invoking code when needed, and requesting/releasing resources as effectively as
possible.

Additionally, by having an inherently asynchronous, non-blocking nature, our framework of choice
(Reactor) is able to manage talking to the scheduler for us. We can focus on what happens during the
flow while the framework handles when it happens.

For yet another metaphor to describe reactive operations chained together, imagine a train with lots of
cars. Each car is a different operation to be applied to our data, and we can easily see the order in which
things must happen. We can carefully lay out each car with its defined purpose, but nothing moves until
the locomotive moves. And then, the whole chain of cars moves as expected.
Adding/removing/inserting cars is the nature of building a reactive data flow.

To summarize, reactive programming helps us in the following:

Avoid inefficient, intermediate state

Focus on building streams of data

Gives us ability to merge, filter, and transform streams of data
Focus on what happens at each step while Reactor decides when

Interacting with a Thymeleaf template

Having put Thymeleaf on the classpath, an entire reactive view resolver has already been configured for
us. The last step in putting together the web layer for our social media platform is to create the
Thymeleaf template itself. We can do that by putting the following content into index.htm1 underneath

/src/main/resources/templates:

<!DOCTYPE html>

<html xmlns:th="http://www.thymeleaf.org">

<head>
<meta charset="UTF-8" />
<title>Learning Spring Boot: Spring-a-Gram</title>
<link rel="stylesheet" href="/main.css" />

</head>

<body>

<hi>Learning Spring Boot - 2nd Edition</hi1>

<div>
<table>
<thead>
<tr>
<th>Id</th><th>Name</th><th>Image</th><th></th>
</tr>
</thead>
<tbody>
<tr th:each="image : ${images}">
<td th:text="${image.id}" />
<td th:text="${image.name}" />
<td>
<a th:href="@{'/images/' + ${image.name} + '/raw'}">
<img th:src="@{'/images/'+${image.name}+"'/raw'}"
class="thumbnail" />

</td>
<td>
<form th:method="delete"
th:action="@{'/images/' + ${image.name}}">
<input type="submit" value="Delete" />
</form>
</td>
</tr>
</tbody>
</table>

<form method="post" enctype="multipart/form-data"
action="/images">
<p><input type="file" name="file" /></p>
<p><input type="submit" value="Upload" /></p>
</form>
</div>

</body>
</html>

Key parts of the preceding template are described here:

o All of the Thymeleaf directives are tagged with a tn prefix, making the entire template HTML
compliant

® <tr th:each="image : ${images}" /> 18 Thymeleaf‘s for-each directive, where we read images from the
template model and iterate over it, forming one table row element per image

® <a th:href="@{'/images/' + ${image.name} + '/raw'}"> shows how to create a link by SpliCil’lg together
strings with the image.name attribute

e The whole thing builds a table with a row for each image, showing ID, name, image, and a delete
button
e At the bottom is a single upload form for creating new images

A critical thing to remember is that the name of the template must be index.htm1, matching our
controller's return of mono.just("index") combined with the default configuration settings of Spring Boot
for Thymeleaf.

Spring Boot autoconfigures view resolvers based on the templating solution we pick.
Spring Boot supports many including Thymeleaf, Mustache, Groovy Templates, and even
Apache FreeMarker. By default, they all come with a conventional location to put
templates, in this case, src/main/resources/templates/<template name>.html.

Since we want a bare amount of CSS, w¢E can dI‘Op the following INtO src/main/resources/static/main.css:

table {
border-collapse: collapse;

3

td, th {
border: 1px solid #999;
padding: 0.5rem;
text-align: left;

3

.thumbnail {
max-width: 75px;
max-height: 75px;

3

Let's tear the preceding small bit of CSS apart:

e The borders of the table are collapsed
o A little spacing is defined for the table entries
e A special class is created to render images with a small thumbnail size

Of course, this is primitive CSS, but our focus is to learn about Spring Boot not CSS3. The important
thing to observe here is that Spring Boot will automatically serve up all content underneath
src/main/resources/static as web resources. We can put CSS, JavaScript, favicons, and images for our site.
Anything that needs to be statically served can be put here, and will be available from the root of the
web application's context path.

Throughout this book, we'll add to this web page, enhancing the user experience. But for now, we
should have enough to get off the ground.

The only thing remaining is to code a public static void main(); however, we don't have to! The Spring
Initializr site has already created one for us, which is as follows:

@SpringBootApplication
public class LearningSpringBootApplication {

public static void main(String[] args) {
SpringApplication.run(
LearningSpringBootApplication.class, args);

@Bean
HiddenHttpMethodFilter hiddenHttpMethodFilter() {
return new HiddenHttpMethodFilter();

b
b

This last code is almost identical to the application class we created in chapter 1, Quick Start with Java.
But there is one difference--we must add a Hiddentttpmethodrilter Spring bean to make the HTTP oeLete
methods work properly.

peLeTE is not a valid action for an HTMLS5 FORM, so Thymeleaf creates a hidden input field
containing our desired verb while the enclosing form uses an HTMLYS rost. This gets
transformed by Spring during the web call, resulting in the epeietemapping method being
properly invoked with no effort on our end.

lllustrating how going from async to sync
can be easy, but the opposite is not

Invariably, the question comes along--Do [need a synchronous or asynchronous API?

It's important to understand that reactive programming is not very effective unless the entire stack is
reactive. Otherwise, we're simply blocking at some point, which causes the backpressure to not achieve
much. That's a long-winded way of saying there is little value in making the web layer reactive if the
underlying services are not.

However, it is very likely that we may produce a chunk of code that must be tapped by a non-reactive
layer, hence, we have to wrap our asynchronous, non-blocking code with the means to block.

Let's explore async-to-sync by creating a slockingimageservice. This service will, basically, leverage the
already written 1mageservice, but not include any of Reactor's riux or mono types in its method signatures.

We can start with a class definition as follows:

public class BlockingImageService {
private final ImageService imageService;

public BlockingImageService(ImageService imageService) {
this.imageService = imageService;

3

This preceding class definition can be described as follows:

e The class has no annotation, hence, it won't be automatically scanned and activated by Spring
Boot. However, it can appear in a configuration class somewhere via a gsean-annotated method.
¢ It will contain a constructor injected mageservice.

With this in place, we can look at wrapping the findal1mmages() method with blocking semantics, like this:

public List<Image> findAllImages() {
return imageService.findAllImages()
.collectList()
.block(Duration.ofSeconds(10));

3

Let's dig into the details of the last code:

® TImageService.findAllImages() has no arguments, and returns a Flux<Image>. The simplest mechanism is
collectList(), Which transforms it into a mono<List<image>>. This means that instead of signaling the
arrival of each image, there is one single (vono) for a list of ALL images.

e To ask for the result, we use biock(). Reactor's biock() can either wait forever for the next signal, or
we can supply it with a timeout limit. In this case, we have selected ten seconds as the longest that
we'll wait.

Reactor's biock() API is what we do when we want to transform a mono<t> into just 1. It's a simple one-to-
one concept. Inside the method, it invokes the reactive streams' subscribe() API, meaning it will cause
any chain of operations to take effect.

Flux has no block() because it represents multiple values. riux does come with biockrirst() and blockLast() if
we wanted the first or the last item. But to get the whole collection entails a bigger semantic scope.
Hence, the need to collectList() into a mono followed by blocking for it.

It's usually a good idea to set a timeout limit for any async call to avoid deadlock
8 situations or waiting for a response that may never come.

Fetching a single image is a bit simpler and can be done using the following code:

return imageService.findOneImage(filename)

public Resource findOneImage(String filename) {
.block(Duration.ofSeconds(30));

}

ImageService.findoneImage() has one argument, the filename, but it isn't wrapped with any Reactor types.
The return type is Mono<resource>, SO @ simple biock() 1s all we need to transform it into a resource. In this
case, we've picked thirty seconds as the maximum time to wait for an answer.

When it comes to uploading new images, that is a little more complicated.

imageService.createImage(Flux.fromIterable(files))

public void createImage(List<FilePart> files) {
.block(Duration.ofMinutes(1));

3

The last code can be described as follows:

e The image service's input is rlux<rilepart> and the return type is mono<void>. This makes things doubly
interesting, having to massage both the input and the output.

e The preceding code assumes we are uploading multiple files. To transform it into a riux, we use
Flux.fromIterable(files). If the input had been a single riierart, we could have used riux.just(file).

e The return type is void, meaning we don't have to return anything. Simply invoking image service's
create() method may seem hunky dory. But remember--nothing happens with Reactor types until
we subscribe, so it's critical that we invoke block() even if we aren't going to return it.

We'll leave it as an exercise for the reader to implement a blocking version of deletermage().

Summary

We're off to a good start by building the web layer of our social media platform. We used the Spring
Initializr to create a bare bones Reactive Spring application with Gradle support. Then we explored the
basics of reactive programming by creating a reactive image handling service and wrapping it with a
reactive web layer. And we drafted a Thymeleaf template to show thumbnails, allow deleting of images
and uploading of new images.

In the next chapter, we will see how to build a data layer and make it reactive as well.

Reactive Data Access with Spring Boot

Very impressed with @springboot so far, 10 mins to get a REST service up and running, now to add
MongoDB. No black magic under the covers!

— Graham Rivers-Brown @grahamrb

In the previous chapter, we started putting together the frontend bits of our social media platform using
Spring WebFlux. The missing critical ingredient was a data store. Few applications exist that don't touch
a database. In fact, data storage is arguably one of the most critical components we encounter with app
development. In this chapter, we'll learn how to persist information in a reactive data store (MongoDB),
and learn how to interact with it.

In this chapter, we will be doing the following:

Getting underway with a reactive data store

Wiring up Spring Data repositories with Spring Boot
Creating a reactive repository

Pulling data through a Mono/Flux and chain of operations
Creating custom finders

Querying by example

Querying with MongoOperations

Logging reactive operations

Getting underway with a reactive data store

Since this book is aimed at the cutting edge of Spring Boot 2.0 and its Reactive Streams support, we
have to pick something a little more up to date than JPA. The JPA spec doesn't cover reactive
programming. Hence, its APIs are not reactive. However, MongoDB has reactive drivers, and will be
perfect.

To get going, we need to install the latest version of MongoDB 3.4 (for reactive support).

If you're using macOS X, installing MongoDB is as simple as this:

$ brew install mongodb

==> Installing mongodb

==> Downloading https://homebrew.bintray.com/bottles/mongodb-
3.4.6.el capitan.bottle.tar.gz
BHBHBHBHAHHHHBHBHBHBHBHBHHHHHHBHBHBHBHBHAH A HBHBHBHBHBHAHE 100.0%
==> Pouring mongodb-3.4.6.el_capitan.bottle.tar.gz

==> Summary

/usr/local/Cellar/mongodb/3.4.6: 18 files, 267.5MB

With MongoDB installed, we can launch it as a service, like this:

$ brew services start mongodb
==> Successfully started “mongodb™ (label: homebrew.mxcl.mongodb)

-center. For more details about installing MOﬂgODB, Visit https://docs.mongodb.com/manual/insta
llation/.

0 For other operating systems, check out the download links at https://wm.mongodb. com/download

Assuming that we have MongoDB installed and running, we can now delve into writing a little code.

To write any MongoDB code, we need to add Spring Data MongoDB to our classpath. We can do so by
updating our build file with the following:

compile('org.springframework.boot:spring-boot-starter-
data-mongodb-reactive')

The preceding, new compile-time dependency pulls in the following:

e Spring Data MongoDB
e MongoDB's core components + Reactive Stream drivers

mongodb-reactive transitively bring in Project Reactor. Spring Boot's dependency-management

8 It's important to pOii’lt out that both spring-boot-starter-webflux and spring-boot-starter-data-
plugin is responsible for ensuring they both pull in the same version.

With all these things on the classpath, Spring Boot will get busy configuring things for us. But first,
what is the problem we are trying to solve?

https://www.mongodb.com/download-center
https://docs.mongodb.com/manual/installation/

Solving a problem

In this day and age, why are we still writing queries like this:

FROM PERSON

SELECT *
WHERE FIRST_NAME = %1

That type of query must be thirty years old! The ANSI spec for SQL was released in 1986, and its
effects can be seen in countless languages.

So, is it any better to write something more like this:

SELECT e
FROM Employee e
WHERE e.firstName = :name

The last bit of code is JPA (Java Persistence API), based upon the open source Hibernate project
(which has become JPA's reference implementation). Is this Java's improvement over writing pure SQL?

Maybe this fragment below is an enhancement?

create
.select()
. from(EMPLOYEE)
.where(EMPLOYEE.FIRST_NAME.equal(name))
.fetch()

That last code snippet is jJOOQ, and can help with code completion, but it seems that we are, basically,
doing the same thing we've been doing for decades.

Especially, considering that we could do the same thing by merely creating this:

interface EmployeeRepository
extends ReactiveCrudRepository<Employee, Long> {

Flux<Employee> findByFirstName(Mono<String> name);

3

This preceding declarative interface does the exact same thing, but without writing a single query in any
language.

By extending Spring Data's reactivecrudrepository, we are granted an out-of-the-box set of CRUD
OpGI’EI'[iOl’lS (save, findById, findAll, delete, deleteById, count, exists, and more). We also have the ablllty to add
custom finders purely by method signature (findsyrirstname in this example).

When Spring Data sees an interface extending its repository marker interface (which reactivecrudrepository
does), it creates a concrete implementation. It scans every method, and parses their method signatures.
Seeing findey, it knows to look at the rest of the method name, and start extracting property names based
on the domain type (empioyee). Because it can see that employee has firstname, it has enough information to
fashion a query. This also tips it off about expected criteria in the arguments (name). Finally, Spring Data

looks at the return type to decide what result set to assemble--in this case, a Reactor riux that we started
to explore in the previous chapter. The entire query (not the query results), once assembled, is cached,
so, there is no overhead in using the query multiple times.

In a nutshell, by following a very simple convention, there is no need to handwrite a query at all. And
while this book is focused on MongoDB and its corresponding Mongo Query Language, this concept
applies to SQL, JPA, Cassandra Query Language, or any other supported data store.

Spring Data does not engage in code generation of any code. Code generation has had a
flaky history. Instead, it uses various tactics to pick a base class that handles the minimum
set of operations while wrapping it with a proxy that implements the declared interface,
bringing onboard the dynamic query handler.

This mechanism of managing data is revolutionary, making Spring Data one of the most popular Spring
portfolio projects, second only to the Spring Framework itself and Spring Security (and of course
Spring Boot).

Wait a second, didn't we just mention using MongoDB earlier?

Yup. That's why Spring Data's query-neutral approach is even better. Changing data stores doesn't
require throwing away absolutely everything and starting over. The interface declared previously

extends Spring Data Commons, not Spring Data MongoDB. The only data store details are in the

domain object itself.

Instead of employee being some JPA-based entity definition, we can work on a MongoDB document-
based one instead, like this:
@Data
@Document(collection="employees")
public class Employee {
@Id String id;

String firstName;
String lastName;

3

This preceding MongoDB POJO can be described as follows:

e The epata Lombok annotation takes care of getters, setters, tostring, equals, and hashcode functions.

® @pocument 1s an optional annotation that lets us spell out the MongoDB collection that this domain
ObjCCt will be stored under ("employees").

e o1d is a Spring Data Commons annotation that flags which field is the key. (NOTE: When using
Spring Data JPA, the required annotation is javax.persistence.1d, Whereas, all other Spring-Data-
SlﬂDp(HTC(lStOTCS‘UIﬂjZG org.springframework.data.annotation.Id)

What is Spring Data Commons? It's the parent project for all Spring Data
implementations. It defines several concepts implemented by every solution. For example,
the concept of parsing finder signatures to put together a query request is defined here.
But the bits where this is transformed into a native query is supplied by the data store
solution itself. Spring Data Commons also provides various interfaces, allowing us to

reduce coupling in our code to the data store, such as reactivecrudrepository, and others that
we'll soon see.

Nothing else is needed to start writing employee Objects into the employees collection of our MongoDB
database.

Wiring up Spring Data repositories with
Spring Boot

Normally, wiring up a repository requires not only defining a domain object and a repository, but also
activating Spring Data. Each data store comes with an annotation to activate it for repository support. In
our case, that would be genablereactivemongorepositories, since we are using MongoDB's reactive drivers.

However, with Spring Boot, we don't have to lift a finger!
Why?

Because the following code, lifted from Spring Boot itself, shows how MongoDB reactive repository
support is enabled:

@Configuration
@ConditionalonClass({ MongoClient.class,
ReactiveMongoRepository.class })
@ConditionalOnMissingBean({
ReactiveMongoRepositoryFactoryBean.class,
ReactiveMongoRepositoryConfigurationExtension.class })

@ConditionalOnProperty(prefix = "spring.data.mongodb.reactive-
repositories", name = "enabled",
havingvalue = "true", matchIfMissing = true)

@Import(MongoReactiveRepositoriesAutoConfigureRegistrar.class)
@AutoConfigureAfter (MongoReactiveDataAutoConfiguration.class)
public class MongoReactiveRepositoriesAutoConfiguration {

3

The preceding autoconfiguration policy can be described as follows:

® g@configuration: This indicates that this class is a source of bean definitions.

® @conditionalonclass: This lists ALL the classes that must be on the classpath for this to kick in--in this
case, MongoDB’s reactive MongoClient (Reactive Streams VeI'SiOI’l) and ReactiveMongoRepository, which
means that it only applies if Reactive MongoDB and Spring Data MongoDB 2.0 are on the
classpath.

® gconditionalonMissinggean: This indicates that it only applies if there isn't already a
ReactiveMongoRepositoryFactoryBean and a ReactiveMongoRepositoryConfigurationExtension bean.

® @ConditionalOnProperty: This means that it requires that the spring.data.mongodb.reactive-repositories
property must be set to true for this to apply (which is the default setting if no such property is
provided).

e emport: This delegates all bean creation for reactive repositories to
MongoReactiveRepositoriesAutoConfigureRegistrar.

® @autoconfigureafter: This ensures that this autoconfiguration policy is only applied after
MongoReactiveDataAutoConfiguration has been apphed That way, we can count on certain infrastructure
being configured.

When we added spring-boot -starter-data-mongodb-reactive to the classpath, this policy kicked in, and created
critical beans for interacting reactively with a MongoDB database.

It's left as an exercise for the reader to pull UP MongoReactiveRepositoriesAutoConfigureRegistrar, and see how it
works. What's important to note is that nestled at the bottom of that class is the following:
@EnableReactiveMongoRepositories

private static class EnableReactiveMongoRepositoriesConfiguration {

3

This aforementioned little class means that we don't have to enable reactive MongoDB repositories.
Spring Boot will do it for us automatically when Reactive MongoDB and Spring Data MongoDB 2.0+
are on the classpath.

Creating a reactive repository

So far, we have been dabbling with Spring Data using our sample domain of employees. We need to
shift our focus back to the social media platform that we started building in the previous chapter.

Before we can work on a reactive repository, we need to revisit the mmage domain object we defined in
the last chapter. Let's adjust it so that it works nicely with MongoDB:
@Data

@Document
public class Image {

@Id final private String id;
final private String name;

3

This preceding definition is almost identical to what we saw in the previous chapter, with the following
differences:

e We use aebocument to identify this is a MongoDB domain object, but we accept Spring Data
MongoDB's decision about what to name the collection (it's the short name of the class, lowercase,
that iS, image)

® @pata creates a constructor for all final fields by default, hence, we've marked both id and name as
final

e We have also marked both fields private for proper encapsulation

With that in place, we are ready to declare our social media platform's reactive repository as follows:

public interface ImageRepository
extends ReactiveCrudRepository<Image, String> {

Mono<Image> findByName(String name);

3

This code for the reactive repository can be described as follows:

e Our interface extends reactivecrudrepository, which, as stated before, comes with a prepackaged set
of reactive operations including save, findById, exists, findAll, count, delete, and deleteAll, all
supporting Reactor types

e It includes a custom finder named rindsyname that matches on tmage.name based on parsing the name
of the method (not the input argument)

Each of the operations inherited from reactivecrudrepository accepts direct arguments or a Reactor-
friendly variant. This means, we can invoke either save(1mage) OT saveAll(Publisher<image>). Since mono and
r1lux both implement pubiisher, saveal1() can be used to store either.

ReactivecCrudrepository has ALL of its methods returning either a mono or a r1ux based on the situation.
Some, like delete, Simply return mono<void>, meaning, there is no data to return, but we need the
operation's handle in order to issue the Reactive Streams' subscribe call. findsy1d returns a mono<image>,

because there can be only one. And findal1 returns a rlux<image>.

Before we can get our feet wet in using this reactive repository, we need to preload our MongoDB data
store. For such operations, it's recommended to actually use the blocking API. That's because when
launching an application, there is a certain risk of a thread lock issue when both the web container as
well as our hand-written loader are starting up. Since Spring Boot also creates a mongooperations object,
we can simply grab hold of that, as follows:

@Component
public class InitDatabase {
@Bean
CommandLineRunner init(MongoOperations operations) {
return args -> {
operations.dropCollection(Image.class);

operations.insert(new Image("1",
"learning-spring-boot-cover.jpg"));

operations.insert(new Image("2",
"learning-spring-boot-2nd-edition-cover.jpg"));

operations.insert(new Image("3",
"bazinga.png"));

operations.findAll(Image.class).forEach(image -> {
System.out.println(image.toString());
1)
}i

The preceding code is detailed as follows:

e acomponent ensures that this class will be picked up automatically by Spring Boot, and scanned for
bean definitions.

e @sean marks the init method as a bean definition requiring a mongooperations. In turn, it returns a
Spring Boot commandLinerunner, of which all are run after the application context is fully formed
(though in no particular order).

e When invoked, the command-line runner will use mongooperations, and request that all entries be
deleted (dropcoiiection). Then it will insert three new 1mage records. Finally, it will fetch with (finda11)
and iterate over them, printing each out.

With sample data loaded, let's hook things into our reactive imageservice in the next section.

Pulling data through a Mono/Flux and chain
of operations

We have wired up a repository to interface with MongoDB through Spring Data. Now we can start
hOOkil’lg it into our ImageService.

The first thing we need to do is inject our repository into the service, like this:

@Service
public class ImageService {

private final ResourcelLoader resourcelLoader;
private final ImageRepository imageRepository;

public ImageService(ResourcelLoader resourcelLoader,

ImageRepository imageRepository) {
this.resourceLoader = resourcelLoader;
this.imageRepository = imageRepository;

3

In the previous chapter, we loaded Spring's resourceLoader. In this chapter, we are adding imagerepository to
our constructor.

Previously, we looked up the names of the existing uploaded files, and constructed a riux of mage
objects. That required coming up with a contrived id value.

Now that we have a real data store, we can simply fetch them all, and return them to the client, like this:

public Flux<Image> findAllImages() {
return imageRepository.findAll();

3

In this last bit of code, we leverage imagerepository to do all the work with its finda11() method.
Remember--finda11 was defined inside reactivecrudrepository. We didn't have to write it ourselves. And
since it already gives us a Flux<image>, there is no need to do anything else.

It's good to remember that the riux of images being returned is /azy. That means that only the number of
images requested by the client is pulled from the database into memory and through the rest of the
system at any given time. In essence, the client can ask for one or as many as possible, and the database,
thanks to reactive drivers, will comply.

Let's move on to something a little more complex--storing a r1ux of images as follows:

public Mono<Void> createImage(Flux<FilePart> files) {
return files
.flatMap(file -> {
Mono<Image> saveDatabaseImage = imageRepository.save(
new Image(
UUID.randomUUID().toString(),
file.filename()));

Mono<Void> copyFile = Mono.just(
Paths.get(UPLOAD_ROOT, file.filename())
.toFile())
.log("createImage-picktarget")
.map(destFile -> {
try {
destFile.createNewFile();
return destFile;
} catch (IOException e) {
throw new RuntimeException(e);
3

1)

.log("createImage-newfile")
.flatMap(file::transferTo)
.log("createImage-copy");

return Mono.when(saveDatabaseImage, copyFile);

1)
.then();

3

The preceding code can be described as follows:

e With a r1ux of multipart files, fiatmap €ach one into two independent actions: saving the image and
copying the file to the server.

e Using imagerepository, put together a mono that stores the image in MongoDB, using uuio to create a
unique key and the filename.

o Using rilerart, WebFlux's reactive multipart API, build another mono that copies the file to the
server.

e To ensure both of these operations are completed, join them together using mono.when(). This means
that each file won't be completed until the record is written to MongoDB and the file is copied to
the server.

e The entire flow is terminated with then() so we can signal when all the files have been processed.

Ever worked with promises? They are quite popular in the JavaScript world. Project
Reactor's mono.when() is akin to the A+ Promise spec's promise.a11() API, that waits until all
sub-promises are completed before moving forward. Project Reactor can be thought of as
promises on steroids with many more operations available. In this case, by stringing
several operations together using then(), you can avoid callback hell while ensuring the
flow of how things unfold.

On a fundamental level, we need creating an image to involve two things--copying the file's contents
to the server, and writing a record of it in MongoDB. That is on par with what we've declared in the
code by using mono.when() to combine two separate actions.

imageRepository.save() 1S already a reactive operation, so we can capture it straight up as a mono. Because
multipartrile 1S, inherently, tied to the blocking servlet paradigm, WebFlux has a new interface, rilepart,
meant to handle file uploads reactively. Its transferto() API returns a mono<void> letting us signal when to
carry out the transfer.

Is this a transaction? Certainly not an ACID-style one (Atomic, Consistent, Isolated, Durable)
traditionally found with relational data stores. Those types of transactions have a long history of not
scaling well. When more clients try to alter the same rows of data, traditional transactions block with
increasing frequency. And blocking in, and of itself, is not congruent with reactive programming.

However, semantically, perhaps we are engaged in a transaction. After all, we are saying that both of
these actions must complete from a Reactive Streams perspective before the given rilepart is considered
to be processed in the middle of the riux. Given the long history of assumptions made regarding
transactions, it might be best to leave that term behind, and refer to this as a reactive promise.

While it's possible to inline both the savepatabasermage operation and the copyrile operation
inside the mono.when(), they were pulled out as separate variables for readability. The more
flows you write, the more you may be tempted to streamline things in a single, chained
statement. If you're feeling lucky, go for it!

When it comes to order of processing, which goes first? Saving the document in MongoDB, or storing
the file on the server? It's actually not specified in the API. All that is declared is that both of these
operations must be completed to move on, and Reactor guarantees that if any asynchronous threading is
being used, the framework will handle any and all coordination.

This is why mono.when() 1s the perfect construct when two or more tasks need to be completed, and the
order doesn't matter. The first time the code is run, perhaps, MongoDB is able to store the record first.
It's quite possible that the next time this code is exercised, MongoDB may be slightly delayed due to
external factors such as responding to another operation, hence allowing the file to be copied first. And
the time after that, other factors may cause the order to swap. But the key point of this construct is to
ensure that we use resources with maximum efficiency while still having a consistent result--both are
completed before moving on.

Notice how we used riatmap to turn each file into a promise to both copy the file and save a
MongoDB record? fiatmap is kind of like map and then, but on steroids. map has a signature of

0 map(T - V) :V, while flatMap has flatMap(T - Publisher<vVv>) : V, meaning, it can unwrap the mono
and produce the contained value. If you're writing a reactive flow that isn't clicking, check
if one of your map or then calls needs to be replaced with a riatmap.

If we wanted a certain order to happen, the best construct would be mono. then(). We can chain multiple
then calls together, ensuring that a certain uniform state is achieved at each step before moving forward.

Let's wrap up this section by making adjustments to deletermage as follows:

public Mono<Void> deleteImage(String filename) {
Mono<Void> deleteDatabaseImage = imageRepository
.findByName(filename)
.flatMap(imageRepository: :delete);

Mono<Void> deleteFile = Mono.fromRunnable(() -> {
try {
Files.deleteIfExists(
Paths.get (UPLOAD_ROOT, filename));
} catch (IOException e) {
throw new RuntimeException(e);
}

13K

return Mono.when(deleteDatabaseImage, deleteFile)
.then();

}

The previous code can be explained as follows:

First we create a mono to delete the MongoDB image record. It uses imagerepository to first findsyname,
and then it uses a Java 8 method handle to invoke imageRepository.delete.

e Next, we create a mono USINg Mono. fromrunnable to delete the file using riles.deleterfexists. This delays
deletion until mono 1s invoked.

e To have both of these operations completed together, we join them with mono.when().

¢ Since we're not interested in the results, we append a then(), which will be completed when the
combined mono 1s done.

We repeat the same coding pattern as creatermage() Where we collect operations into multiple mono
definitions, and wrap them with a mono.when(). This is the promise pattern, and when coding reactively,
we'll use it often.

Traditionally, runnabie objects are started in some multithreaded fashion, and are meant to
run in the background. In this situation, Reactor is in full control of how it gets started
through the use of its scheduler. Reactor is also able to ensure that the reactive streams
complete signal is issued when the runnabie object is done with its work.

At the end of the day, that is the whole point of these various operations from Project Reactor. We
declare the desired state, and offload all the work scheduling and thread management to the framework.
We use a toolkit that is designed from the ground up to support asynchronous, non-blocking operations
for maximum resource usage. This gives us a consistent, cohesive way to define expected results while
getting maximum efficiency.

Creating custom finders

With Spring Data repositories, we are able to create queries to suit any situation. Earlier in this chapter,
we saw findsyname, Which merely queries based on the domain object's name attribute.

The following table shows a more comprehensive collection of finders we can write with Spring Data
MongoDB. To illustrate the breadth of these keywords, it presumes a domain model bigger than the

Image class we defined earlier:

Finder Method

Description

findByLastName(...)

Query based on 1astname

findByFirstNameAndLastName(...)

Query based on firstname and 1astName

findByFirstNameAndManagerLastName(...)

Query based on firstname and by a related manager's
lastName

findToplOByFirstName(...) O findFirst10ByFirstName(...)

Query based on firstname, but only return the first ten
entries

findByFirstNameIgnoreCase(...)

Query by firstname, but ignore the case of the text

findByFirstNameAndLastNameAllIgnoreCase(...)

Query by firstname and 1astname, but ignore the case of the
text in ALL fields

findByFirstNameOrderByLastNameAsc(...)

Query by firstname, but order the results based on 1astname
in ascending order (or use pesc for descending order)

findByBirthdateAfter(Date date)

Query based on birthdate being after the date

findByAgeGreaterThan(int age)

Query based on age attribute being greater than age
parameter.

findByAgeGreaterThanEqual(int age)

Query based on age attribute being greater than or equal to

age parameter.

findByBirthdateBefore(Date date)

Query based on birthdate being before the date

findByAgeLessThan(int age)

Query based on age attribute being less than age parameter.

findByAgeLessThanEqual(int age)

Query based on age attribute being less than or equal to
age parameter.

findByAgeBetween(int from, int to)

Query based on age being between from and to

findByAgeIn(Collection ages)

Query based on age being found in the supplied collection

findByAgeNotIn(Collection ages)

Query based on age NOT being found in the supplied
collection

findByFirstNameNotNull() OT findByFirstNameIsNotNull()

Query based on firstname not being null

findByFirstNameNull() OT findByFirstNameIsNull()

Query based on firstname being null

findByFirstNameLike(String f) OT

findByFirstNameStartingWith(String f) OI
findByFirstNameEndingWith(String f)

Query based on input being a regular expression

findByFirstNameNotLike(String f) OI
findByFirstNameIsNotLike(String f)

Query based on input being a regex, with a MongoDB
snot applied

findByFirstnameContaining(String f)

For a string input, query just like Like; for a collection,
query testing membership in the collection

findByFirstnameNotContaining(String f)

For a string input, query like like notLike; for a collection,
query testing lack of membership in the collection

findByFirstnameRegex(String pattern)

Query using pattern as a regular expression

findByLocationNear (Point p)

Query by geospatial relation using MongoDB's snear

findByLocationNear (Point p, Distance max)

Query by geospatial relation using MongoDB's snear and

$maxDistance

findByLocationNear (Point p, Distance min, Distance max)

Query by geospatial relation using MongoDB's snear,

$minDistance,2ﬂ1d.$maxDistance

findByLocationWithin(Circle c)

Query by geospatial relation using MongoDB's sgeowithin,
scircle, and distance

findByLocationWithin(Box b)

Query by geospatial relation using MongoDB's sgeowithin,
shox, and square coordinates

findByActiveIsTrue()

Query by active being true

findByActiveIsFalse()

Query by active being false

findByLocationExists(boolean e)

Query by 1ocation having the same Boolean value as the
input

All of these aforementioned keywords can also be used to construct deletesy methods.

Many of these operators also work with other supported data stores including JPA, Apache
Cassandra, Apache Geode, and GemFire to name a few. However, be sure to check the

specific reference guide.

While the previous table shows all the keywords supported for MongoDB repository queries, the
following list shows the various supported return types:

mage (or Java primitive types)
Iterable<Image>

Iterator<Image>

Collection<Image>

List<Image>

Optional<Image> (Java 8 or Guava)
Option<Image> (Scala or Vavr)

Stream<Image>

Future<Image>

CompletableFuture<Image>
ListenableFuture<Image>

@Async Future<Image>

@Async CompletableFuture<Image>
@Async ListenableFuture<Image>
Slice<Image>

Page<Image>

GeoResult<Image>
GeoResults<Image>
GeoPage<Image>

Mono<Image>

Flux<Image>

Spring Data blocking APIs support void return types as well. In Reactor-based
programming, the equivalent is mono<void>, because the caller needs the ability to invoke

subscribe().

In a nutshell, just about every container type is covered by Spring Data, which means that we can pick
the right solution to suit our needs. Since this book's focus is reactive programming, we'll stick with mono
and r1ux, considering they encapsulate asynchronous + non-blocking + lazy, without impacting the
client, and regardless of quantity.

Querying by example

So far, we've built up several reactive queries using property navigation. And we've updated mageservice
to reactively transform our queried results into operations needed to support our social media platform.

But something that may not be apparent in the design of our data API is the fact that our method
signatures are tied to the properties directly. This means that if a domain field changes, we would have
to update the queries, or they will break.

There are other issues we might run into, such as offering the ability to put a filter on our web page, and
letting the user fetch a subset of images based on their needs.

What if we had a system that listed information about employees. If we imagined writing a finder that
lets a user enter firstname, lastname, and age range, it would probably look like this:

interface PersonRepository
extends ReactiveCrudRepository<Person, Long> {

List<Person> findByFirstNameAndLastNameAndAgeBetween (
String firstName, String lastName, int from, int to);
3

Yikes! That's ugly. (Even worse, imagine making all the strings case insensitive!)
All of these things lead us toward an alternative Spring Data solution--Query by Example.

Query by Example, simply stated, has us assemble a domain object with the criteria provided, and
submit them to a query. Let's look at an example. Assume we were storing employee records like this:

@Data
@Document
public class Employee {

@Id private String id;
private String firstName;
private String lastName;
private String role;

3

This preceding example is a very simple domain object, and can be explained as follows:

Lombok's epata annotation provides getters, setters, equals, hashcode, and tostring methods
Spring Data MongoDB's ebocument annotation indicates this POJO is a target for storage in
MongoDB

Spring Data Commons' ezd annotation indicates that the id field is the identifier

The rest of the fields are simple strings

Next, we need to define a repository as we did earlier, but we must also mix in another interface that
gives us a standard complement of Query by Example operations. We can do that with the following
definition:

public interface EmployeeRepository extends
ReactiveCrudRepository<Employee, String>,
ReactiveQueryByExampleExecutor<Employee> {

}

This last repository definition can be explained as follows:

¢ It's an interface declaration, meaning, we don't write any implementation code

® Reactivecrudrepository provides the standard CRUD operations with reactive options (Mono and riux
return types, and more)

® ReactiveQueryByExampleExecutor 1S @ mix-in interface that introduces the Query by Example operations
which we'll poke at shortly

Once again, with just a domain object and a Spring Data repository defined, we have all the tools to go
forth and query MongoDB!

First things first, we should again use blocking mongooperations to preload some data like this:

mongoOperations.dropCollection(Employee.class);

Employee el = new Employee();
el.setId(UUID.randomUUID().toString());
el.setFirstName("Bilbo");
el.setLastName("Baggins");
el.setRole("burglar");

mongoOperations.insert(el);

Employee e2 = new Employee();
e2.setId(UUID.randomUUID().toString());
e2.setFirstName("Frodo");
e2.setLastName("Baggins");
e2.setRole("ring bearer");

mongoOperations.insert(e2);
The preceding setup can be described as follows:

e Start by using dropcollection to clean things out
e Next, create a new employee, and insert it into MongoDB
e (Create a second employee and insert it as well

Only use mongooperations to preload test data. Do NOT use it for production code, or your
efforts at building reactive apps will be for nothing.

With our data preloaded, let's take a closer look at that reactivequerysyexampleexecutor interface used to
define our repository (provided by Spring Data Commons). Digging in, we can find a couple of key
query signatures like this:

<S extends T> Mono<S> findOne(Example<S> example);
<S extends T> Flux<S> findAll(Example<S> example);

Neither of these aforementioned methods have any properties whatsoever in their names compared to
finders like findeyLastname. The big difference is the usage of exampie as an argument. example 1S a container
provided by Spring Data Commons to define the parameters of a query.

What does such an examp1e object look like? Let's construct one right now!

Employee e = new Employee();
e.setFirstName("Bilbo");
Example<Employee> example = Example.of(e);

This construction of an examp1e 1s described as follows:

We create an employee probe named e
e We set the probe's firstName 1O Bilbo
e Then we leverage the exampie.of static helper to turn the probe into an exampie

the request whether it was part of a REST route, the body of a web request, or somewhere

8 In this example, the probe is hard coded, but in production, the value would be pulled from
else.

Before we actually use the exampie to conduct a query, it pays to understand what an example object is.
Simply put, an examp1e consists of a probe and a matcher. The probe is the POJO object containing all the
values we wish to use as criteria. The matcher is an examplematcher that governs how the probe is used.
We'll see different types of matching in the following various usages.

Proceeding with our examp1e in hand, we can now solicit a response from the repository as follows:

| Mono<Employee> singleEmployee = repository.findOne(example);

We no longer have to put rirstname in the query's method signature. Instead, it has become a parameter
fed to the query through the exampie input.

Examples, by default, only query against non-null fields. That's a fancy way of saying that only the
fields populated in the probe are considered. Also, the values supplied must match the stored records
exactly. This is the default matcher used in the exampie Objects.

Since an exact match isn't always what's needed, let's see how we can adjust things, and come up with a
different match criteria, as shown in this code:

Employee e = new Employee();
e.setLastName("baggins"); // Lowercase lastName

ExampleMatcher matcher = ExampleMatcher.matching()
.withIgnoreCase()

.withMatcher("lastName", startswith())
.withIncludeNullvValues();

Example<Employee> example = Example.of(e, matcher);
This preceding example can be described as follows:

We create another employee probe

We deliberately set the 1astname value as lowercase

Then we create a custom ExampleMatcher USil’lg matching()

withIgnorecase says to ignore the case of the values being checked

withMatcher lets us indicate that a given document's 1astname starts with the probe's value

withIncludeNullvalues Will also match any entries that have nulled-out values
¢ Finally, we create an example using our probe, but with this custom matcher

With this highly customized example, we can query for ALL employees matching these criteria:

| Flux<Employee> multipleEmployees = repository.findAll(example);
This last code simply uses the rinda11 query, that returns a riux using the same example criteria.

Remember how we briefly mentioned that Query by Example can lend itself to a form on a

web page where various fields are filled out? Based on the fields, the user can decide what
9 to fetch. Notice how we used withignorecase? By default, that flag flips to true, but it's

possible to feed it a Boolean. It means we can put a checkbox on the web page allowing
the user to decide whether or not to ignore case in their search.

Simple or complex, Query by Example provides flexible options to query for results. And using Reactor
types, we can get just about anything we need with the two queries provided: findone Or findall.

Querying with MongoOperations

So far, we have delved into the repository solution using both query by property and Query by Example.
There is another angle we can use, MongoTemp1ate.

MongoTemplate mimics the Spring Framework's sdbctempiate, the first data access mechanism implemented
by Spring. sdbcTemplate allows us to focus on writing queries while delegating connection management
and error handling to the framework.

mongoTemplate brings the same power to bear on crafting MongoDB operations. It's very powerful, but
there is a critical tradeoff. All code written using mongotemp1ate 1S MongoDB-specific. Porting solutions to
another data store is very difficult. Hence, it's not recommended as the first solution, but as a tool to
keep in our back pocket for critical operations that require highly tuned MongoDB statements.

To perform reactive mongoTemplate Operations, there is a corresponding reactiveMongoTemplate that supports
Reactor types. The recommended way to interact with reactivemongotemplate 1s through its interface,

ReactiveMongoOperations.

The tool that actually conducts MongoDB repository operations under the hood is, in fact,
0 d MongoTemplate (07" d ReactiveMongoTemplate depena’zng on the nature ofthe repository).

Additionally, Spring Boot will automatically scan the classpath, and if it spots Spring Data MongoDB
2.0 on the classpath along with MongoDB itself, it will create a reactivemMongotempiate. We can simply
request a copy autowired into our class, whether by constructor injection or field injection, as follows:

@Autowired
ReactiveMongoOperations operations;

eautowired 1n the last code snippet indicates this field will be injected when the class is loaded, and we'll
get a Copy of the bean that implements ReactiveMongoOperations.

For test cases, field injection is fine. But for actual running components, the Spring team
! recommends constructor injection, as will be shown throughout this book. For more
Wz details about the benefits of constructor injection, read Spring Data lead Oliver Gierke's
blogpost at http://olivergierke.de/2013/11/why-field-injection-is-evil/.

USil’lg ReactiveMongoOperations along with Query byExample, W€ Can S€¢€ the pI'CViOLlS qucry rewritten as
follows:

Employee e = new Employee();
e.setFirstName("Bilbo");
Example<Employee> example = Example.of(e);

Mono<Employee> singleEmployee = operations.findOne(
new Query(byExample(example)), Employee.class);

We can tear apart this latest wrinkle in MongoDB querying as follows:

http://olivergierke.de/2013/11/why-field-injection-is-evil/

e The declaration of the probe and its example is the same as shown earlier

e To create a qucry for one GIltI'y, Wwe use findone from ReactiveMongoOperations

e For the first parameter, we create a new query, and use the byexample static helper to feed it the
example

e For the second parameter, we tell it to return an employee

Because this is reactiveMongooperations, the value is returned wrapped inside a mono.

A similar tune-up can be made to fetch multiple entries with custom criteria, as follows:

Employee e = new Employee();
e.setLastName("baggins"); // Lowercase lastName

ExampleMatcher matcher = ExampleMatcher.matching()
.withIgnoreCase()
.withMatcher("lastName", startswith())
.withIncludeNullvValues();

Example<Employee> example = Example.of(e, matcher);

Flux<Employee> multipleEmployees = operations.find(
new Query(byExample(example)), Employee.class);

Now let's check out the details of this preceding query:

e The example is the same as the previous findal1 query
e This time we use find, Which accepts the same parameters as findone, but returns a riux

ReactiveMongoOperations and its Query input opens up a world of powerful operations, like this:

reactiveMongoOperations
.findOne(

query(
where("firstName").is("Frodo")), Employee.class)

Beyond that, there is support for updating documents, finding-then-updating, and upserting, all
supporting the rich, native MongoDB operators through a fluent API.

Delving into more MongoDB operations is beyond the scope of this book, but it's within your grasp
should the need arise.

Logging reactive operations

So far, we have crafted a domain object for MongoDB, defined a reactive repository, and updated our
mageservice to use it. If we fire things up, though, how can we see what's happening? Apart from viewing
the web page, what can we expect to see in the console logs?

So far, this appears to be the most we get:

: Cluster created with settings {hosts=[localhost:27@17], mode=SINGLE, requiredCluste
: Opened connection [connectionId{localvValue:1l, serverValue:202}] to localhost:27017
: Monitor thread successfully connected to server with description ServerDescription{
: Cluster created with settings {hosts=[localhost:27017], mode=SINGLE, requiredCluste
: Opened connection. [connectionId{localValue:2, serverValue:203}] to localhost:27017
: Monitor thread successfully connected to server with description ServerDescription{
: Registering beans for JMX exposure on startup

: Started HttpServer on /0:0:0:0:0:0:0:0:8080

: Netty started on port(s): 8080

: Opened connection [connectionId{localValue:3, serverValue:204}] to localhost:27017

We see some log messages about connecting to an instance of MongoDB, but that's it! Not much there
to debug things, ehh? Never fear, Spring Boot to the rescue.

Spring Boot comes with extensive logging support. Off the cuff, we can create a 1ogpback.xm1 file, and add
it to our configuration in src/main/resources. Spring Boot will read it, and override its default logging
policy. That's nice if we want to totally overhaul the log settings.

But often times, we just want to adjust some logging levels for specific packages. Spring Boot grants us
a more fine-grained way to alter what gets logged.

Sll’l’lply add this to src/main/resources/application.properties:

logging.level.com.greglturnquist=DEBUG
logging.level.org.springframework.data=TRACE
logging.level.reactor.core=TRACE
logging.level.reactor.util=TRACE

These adjustments can be described as follows:

® 1ogging.level tells Spring Boot to adjust log levels with the name of the package tacked on followed
by a level

The application code, com.greglturnquist, 1S set to besuc

Spring Data, org.springframework.data, 1S set to TRAcE

Project Reactor, reactor.core and reactor.util, are set to TrRACE

With these adjustments, if we launch our application, this is part of the output we get:

: Cluster created with settings {hosts=|localhost:27017], mode=SINGLE, requiredClust
: Opened connection [connectionId{localvalue:1, serverValue:205}] to localhost:27017
: Monitor thread successfully connected to server with description ServerDescription
: Cluster created with settings {hosts=[localhost:27017], mode=SINGLE, requiredClust
: Opened connection [connectionId{localvalue:2, serverValue:206}] to localhost:27017
: Monitor thread successfully connected to server with description ServerDescription
: Analyzing class class com.greglturnquist.learningspringboot.Image for index inform
: Analyzing class class com.greglturnquist.learningspringboot.Image for index inform
: Registering beans for IMX exposure on startup

: Started HttpServer on /0:0:0:0:0:0:0:0:8080

: Netty started on port(s): 8080

: Opened connection [connectionId{localvalue:3, serverValue:207}] to localhost:27017
: Dropped collection [imagel

: Inserting Document containing fields: [_id, name, _class] in collection: image
: Inserting Document containing fields: [_id, name, _class] in collection: image
: Inserting Document containing fields: [_id, name, _class] in collection: image

This preceding output shows some MongoDB activity including cluster configuration, connections, and
domain analysis. Toward the end, the effects of 1nitpatabase preloading our data can be seen to some
degree, and can be explained as follows:

® Dropped collection [image]: This indicates all the entries being deleted by OUr dropCollection
® TInserting Document containing fields...: This indicates entries being saved USil'lg OUTI insert

This is definitely an improvement, but something that's missing is the role that Reactor plays in
handling all of this. While we've dialed up the log levels for Reactor, nothing has been output.

If we look at tmageservice, the question arises, where can we add more logging? In traditional imperative
programming, we would, typically, write 10g.debug("blah blah") at several spots along the way. But in this
reactive flow, there are no "stops" to put them.

Project Reactor comes with a declarative log statement we can add along the way. Here is how we can
decorate findAllImages:

public Flux<Image> findAllImages() {
return imageRepository.findAll()
.log("findAll");
3

This preceding service operation has but one reactive step, so we can only slip in a single 10g statement.
ImageService.findOneImage has the same story, so no need to show that.

However, createmage has several steps, which are seen in this code:

public Mono<Void> createImage(Flux<FilePart> files) {
return files
.log("createImage-files")
.flatMap(file -> {
Mono<Image> saveDatabaseImage = imageRepository.save(
new Image(

UUID.randomUUID().toString(),
file.filename()))
.log("createImage-save");

Mono<Void> copyFile = Mono.just(
Paths.get(UPLOAD_ROOT, file.filename())
.toFile())
.log("createImage-picktarget")
.map(destFile -> {

try {
destFile.createNewFile();
return destFile;
} catch (IOException e) {
throw new RuntimeException(e);
3

1)

.log("createImage-newfile")
.flatMap(file::transferTo)
.log("createImage-copy");

.log("createImage-when");

1)
.log("createImage-flatMap")

.then()
.log("createImage-done");

return Mono.when(saveDatabaseImage,

copyFile)

This last code is identical to what we had before except that each Reactor operation is tagged with a 109
statement. And each one has a unique tag appended, so, we can tell exactly what is happening and

where.

If we exercise this code from a unit test that uploads two mock multipart files (a test we'll look closer at
in the next chapter, chapter 4, Testing with Spring Boot), we can spot each tag in the console output as

follows:

createlmage-files
createImage-flatMap
createlmage-done
createlmage-done
createlmage-TlatMap
createlmage-files
createlmage-files
createlmage-when
createlmage-when
o.s.d.m.core.ReactiveMongoTemplate
createlmage-save
createImage-save
createImage-copy
createImage-copy
createlmage-picktarget
createlmage-newfile
createlmage-newfile
createlmage-picktarget
createlmage-picktarget
createlmage-newfile
createImage-copy
createlmage-picktarget
createlmage-newfile
createlmage-Tiles
createlmage-when
createlmage-when
0.5.d.m.core.ReactiveMongoTemplate
createImage-save
createImage-save
createImage-copy
createImage-copy
createlmage-picktarget
createlmage-newfile
createlmage-newfile
createlmage-picktarget
createlmage-picktarget
org.mongodb. driver. connection
createlmage-newfile
createImage-copy
createlmage-picktarget
createlmage-newfile
createlmage-Tiles
org.mongodb. driver. connection
createImage-save
createImage-save
createlmage-when
createlmage-when
createImage-save
createlmage-TlatMap
createlmage-done

SO PR L O SR

: | onSubscribe{ [Synchronous Fuseable] FluxArray.ArraySubscription)
: onSubscribe(FluxFlatMap. FlatMapMain)

i onSubscribe(MonoIgnoreElements. IgnoreElementsSubscriber)

v request{unbounded)

¢ request{unbounded)

: | reguest{256)

i | onMext{Mock for FilePart, hashCode: 154449199)

¢ onSubscribe([Fuseable] MonoWhen.WhenCoordinator)

: request(32)

: Saving Document containing fields:
¢ onSubscribe(FluxOnErrorResume. ResumeSubscriber)
¢ request{unbounded)

[_id, name, _class]

onSubscribe([Fuseable] MonoFlatMap.FlatMapMain)

request (unbounded)

onSubscribe([Synchronous Fuseable] Operators.ScalarSubscription)
onSubscribe([Fuseable] FluxMapFuseable.MapFuseableSubscriber)
request (unbounded)

request (unbounded)

onNext (upload-dir/alpha. jpg)

onNext (upload-dir/alpha. jpg)

onComplete()

onComplete()

onComplete()

onNext(Mock for FilePart, hashCode: 43@329518)

: onSubscribe([Fuseable] MonoWhen.WhenCoordinator)
¢ request(32)

: Saving Document containing Tields:
¢ onSubscribe(FluxOnErrorResume.ResumeSubscriber)
: request(unbounded)

[_id, name, _class]

onSubscribe([Fuseable] MonoFlatMap.FlatMapMain)

request (unbounded)

onSubscribe([Synchronous Fuseable] Operators.ScalarSubscription)
onSubscribe([Fuseable] FluxMapFuseable.MapFuseableSubscriber)
request (unbounded)

request (unbounded)

onNext (upload-dir/brave. ipg)
pened connection [connectionId{localValue:4, serverValue:228}] to lo
onNext (upload-dir/brave. ipg)

onComplete()

onComplete()

onComplete()

onComplete()

: Opened connection [connectionId{localValue:5, serverValue:221}] to lo
: onNext(Image{id=85c62cBB-c315-4abb-914b-059e1820ee6k, name=bravo.jpg)
: onNext(Image{id=7f4fb639-8b8d-4791-b88a-366b2cceBbs5, name=alpha.jpg)
: onComplete()
: onComplete()
: onComplete()
: onComplete()
: onComplete()

This preceding output shows each of the steps, and how they play together in the reactive streams' dance
of subscribe, request, next, and complete. Most notably, the outer operations (files, flatmap, and done) are
shown at the top when subscriptions are made. Each file causes a filter operation to occur followed by a
save and a copy. And at the bottom, the same outer operations (again files, flatmap, and done) issue a

reactive streams complete.

To mark up deletermage with logs, let's make these changes:

public Mono<Void> deleteImage(String filename) {
Mono<Void> deleteDatabaseImage = imageRepository
.findByName(filename)
.log("deleteImage-find")
.flatMap(imageRepository: :delete)
.log("deleteImage-record");

Mono<Object> deleteFile = Mono.fromRunnable(() -> {

try {
Files.deleteIfExists(

Paths.get (UPLOAD_ROOT, filename));
} catch (IOException e) {

throw new RuntimeException(e);
}

1)
. lOg(-'deleteImage_filen) ;

return Mono.when(deleteDatabaseImage, deleteFile)
.log("deleteImage-when")
.then()
.log("deleteImage-done");

}

This is the same deletermage code we wrote earlier, only, we've sprinkled in log statements everywhere to
indicate exactly what is happening.

With everything set up, we should be able to test things out. For starters, we can launch the code by
either running the LearningSpringBootApplication class's public static void main() method, or we can run it
from the command line using Gradle like this:

| $./gradlew clean bootRun

If we launch the application and navigate to http://1ocalhost:8ese, We can see our preloaded images, as
seen in this screenshot:

Learning Spring Boot - 2nd Edition

Id Name Image

1 learning-spring-boot-cover.jpg P Delete
3 bazinga.png A Delete
2 learning-spring-boot-2nd-edition-cover.jpg |e. Delete

Choose File No file chosen

Upload

We can click on a single image, and see some comparable log messages like this:

findOneImage : | onSubscribe([Fuseable] Operators.MonoSubscriber)
findOneImage : | request(unbounded)

findOneImage : | onNext(URL [file:upload-dir/learning-spring-boot-
cover.jpgl)

findOneImage : | onComplete()

This very simple flow illustrates the Reactive Streams pattern. We subscribe for an image. A request is
sent--in this case, unbounded (even though we know in advance there is only one result). onnext is the
answer, and it's a file-based URL (a Spring resource) being returned. Then the compiete is issued.

This logging is confined to tmageservice, which means we don't see it transformed into an
HTTP response. If you wish to explore this further, feel free to add extra 109 statements to

HomeController.oneRawImage.

If we click on the Delete button, it deletes the image and refreshes the page, as follows:

Id Name Image
3 bazinga.png > Delete
2 learning-spring-boot-2nd-edition-cover.jpg ». Delete

After completing the deletion, if we look at the console logs and focus on what happened, we will see
something like this:

: Created query Query: { "name" : "learning-spring-booti-cover.jpg"}, Fields:
» findOne using query: { "name" : "learning-spring-boot-cover.jpg”} fields:
:» onSubscribe([Fuseable] MonoWhen.WhenCoordinator)

. onSubscribe{MonoIgnoreElements. IgnoreElementsSubscriber)

» request (unbounded)

: request{unbounded)

: | onSubscribe{ [Fuseable] MonoFlatMap.FlatMapMain)

v | request{unbounded)

: findOne using guery: { “name" : "learning-spring-boot-cover.jpg"} fields:
: onSubscribe({FluxOnErrorResume. ResumeSubscriber)

v request (unbounded)

: onSubscribe([Fuseable] Operators.EmptySubscription)

: request (unbounded)

: onComplete()

: onNext{Image{id=1, name=learning-spring-boot-cover.jpgl)

» Remowve using query: { "_id" : "1"} in collection: image.

: onComplete()

: | onComplete()

» onComplete()

: onComplete()

At the very top, we can see a MongoDB query issued to find the desired image with the findone using
query output. A Mono.when 1S set up, and then, Ad Remove using query 1s 1ssued to delete the record. The actual
deletion of the file is logged with little details except the complete signal. The whole thing is wrapped
up when we see deletermage-done issue a complete.

We haven't begun to mark up the Homecontrolier with log messages, but we don't need to at
this stage. If you wish to explore that area, feel free to do so. Using these log statements,
you can get a real feel for how Reactor arranges tasks, and even spot cases where the
order of operations fluctuates at different times. The key thing is we have a real tool for
debugging reactive flows.

With this, we have successfully coded a reactive mmageservice that both copies files to the server and
writes records in MongoDB; and we did it letting Spring Boot autoconfigure all the beans needed to
make Spring Data MongoDB work seamlessly with Spring WebFlux and MongoDB.

Summary

In this chapter, we wrote several data access operations using a repository-based solution. We explored
alternative querying options. Then we showed how to wire that into our controller, and store live data.
We wrapped things up by exploring logging options in a functional, reactive nature.

In the next chapter, we will discover all the various ways Spring Boot makes testing super easy,
combined with the utilities provided by Project Reactor to test async, non-blocking flows.

Testing with Spring Boot

Most innovative contribution to the java ecosystem: spring Boot #jaxlondon

— @JAXenter

If we go back more than 10 years, we would find testing a process mostly conducted by legions of test
engineers. But with the rise of JUnit, the adoption of continuous integration (CI) servers, a plethora of
test assertion libraries, and integrated test coverage services, we can see widespread adoption of
automated testing.

In this chapter, we will see how critical Spring Boot views automated testing by providing multiple
levels of support. We shall do the following:

Write some basic unit tests

Introduce slice testing

Embark upon WebFlux testing

Leverage complete embedded container testing
Draft some autoconfiguration tests

Test dependencies

So far, we have used the Spring Initializr (http://start.spring.io) to create our social media platform. We
picked several dependencies and added others along the way. But we haven't investigated test libraries.

It turns out, Spring Boot takes testing so seriously that it's not an option on the website. All projects
created automatically have this test-scoped dependency:

| testCompile('org.springframework.boot:spring-boot-starter-test')
So what's included with that single line?

JUnit: De-facto standard for testing Java apps

JSON Path: XPath for JSON

AssertJ: Fluent assertion library

Mockito: Java mocking library

Hamcrest: Library of matcher objects

JSONassert: Assertion library for JSON

Spring Test and Spring Boot Test: Test libraries provided by the Spring Framework and Spring
Boot

In addition to these various testing libraries being automatically supplied, many optional dependencies
are also included. This means that they can be added to our project's list of dependencies without
specifying the version. The optional dependencies are listed as follows:

HTMLUnit: Testing toolkit for HTML outputs

Selenium: Browser automation for Ul testing

Flapdoodle: Embedded MongoDB database for testing

H2: Embedded SQL database for testing

Spring REST Docs: Generates REST documentation using automated tests

Before we dig any deeper, it's important to understand that entire books have been written
about testing applications. We'll attempt to get a good cross-section of testing and look at
how Spring Boot makes certain types of tests even easier, but don't consider this chapter to
be the end-all of what's possible.

http://start.spring.io

Unit testing

The smallest scoped tests we can write are referred to as unit tests. In fact, people have been writing tiny
tests for years. A common paradigm is to try and test just one class in a given unit test.

To get going, let's test the smallest unit of code we have: our Lombok-enabled image domain object.

As a reminder, here is what that code looks like:

@Data

@Document

public class Image {
@Id final private String id;
final private String name;

3

This tiny little POJO is flagged with Spring Data MongoDB annotations as well as Lombok's @pata
annotation providing getters and setters.

A unit test shouldn't be too hard. We can start by creating imageTests.java In /src/test/java, and in the same
M ,
package as the original class (com.greglturnquist.learningspringboot), as follows:

public class ImageTests {

@Test
public void imagesManagedByLombokShouldWork() {
Image image = new Image("id", "file-name.jpg");

assertThat(image.getId()).isEqualTo("id");
assertThat(image.getName()).isEqualTo("file-name.jpg");

b
b

This preceding unit test can easily be explained, as follows:

e grest indicates that imagesmanagedsyLombokshouldwork 18 @ JUnit test case, ensuring it is automatically
picked up and run either from our IDE when we choose or from Gradle when we build the system

e The test creates a new mage object

e Then it uses Assert]'s assertthat() method to prove the values are as expected

Let's run it!

1magelests

H/euul
package com.greglturnquist.learningspringboot;

+import ...
g Copy Reference {3C
E=3 =
* @author Greg .| [Paste *V
*/ Paste from History... T8V
// tag:i:icode[] | pagte Simple N8V
» public class Imal .
Column Selection Mode 388
@Test
v public void | Find Usages R
Image im Refactor >
assertThi .
assertth, Folding Balk:
} Analyze
Iy Go To 2
grensetei] Generate... ~N
Recompile 'ImageTests.java' {43F9
Run 'ImageTests' ~£+F10
4« Debug 'ImageTests' ~{F9

¥ Run 'ImageTests' with Coverage

As shown in the preceding screenshot, we merely right-click on the class magetests, select Run
'ITmageTests', and watch for the output (shown next):

Run ImageTests

p@E 2[E i+ ID@E R

» @ ImageTests (com.greglturnquist.learningspringboot) 49ms
@) imagesManagedByLombokShouldWork 49ms

Hooray! There is always a little happiness when our automated tests go green.

I know that in print, the color green turns to grey. But we can also see the OK text in the
bubble next to the test case, indicating that it passed.

So far, so good. With our first test written, we have gotten off the ground with a test-based approach to
things. But testing can get more complicated, quickly.

Slice-based testing

Across the industry, many express an interest in testing. Yet, when push comes to shove and we run into
tricky situations, it's quite easy to throw up our hands and shout, This is too hard!

Spring Boot aims to help!

JUnit, all by itself, gives us the power to declare tests and assert pass/fail scenarios. But in reality, not
everything works straight out of the box. For example, parts of our code will easily come to rely upon
Boot autoconfiguring various beans as well as having that powerful property support.

A keen example is the need to do some MongoDB operations. It would be quite handy if we could ask
Spring Boot to autoconfigure just enough beans to support MongoDB for our tests but nothing else.

Well, today's our lucky day.

Spring Boot 1.5 introduced slice testing. This is where a subset of Spring Boot's autoconfiguration
power can be switched on, while also having full access to its property support. The following list of
test annotations each enable a different slice of code:

® @DataMongoTest
® @DatalpaTest

® @JdbcTest

® @JsonTest

® (@RestClientTest
® @webFluxTest

® @WebMvcTest

Each of these annotations enables a different slice of beans to be configured. For example, @patapatest
will:

Enable transactions by applying Spring's erransactional annotation to the test class

Enable caching on the test class, defaulting to a noop cache instance

Autoconfigure an embedded test database in place of a real one

Create a TestentitymManager bean and add it to the application context

Disable the general Spring Boot autoconfiguration, confining things to the autoconfiguration
pOliCiCS found in spring-boot-test-autoconfigure

@RunWith(SpringRunner.class).

0 All of these annotations require additionally annotating our test class with

An important point to understand is that tests work best when confined to a relatively narrow scope.
Hence, using more than one of these e. . .Test annotations is not recommended. Instead, break things up

into multiple test classes.

Testing with embedded MongoDB

The first annotation listed above for slice testing is @patamongotest. In this section, we want to write some
test methods that involve our MongoDB-specific code.

When it comes to testing MongoDB code, we have the following two options provided by Spring Boot:

e Testing against an embedded MongoDB instance
e Testing against a live MongoDB instance

Spring Boot, by default, will check if Flapdoodle, the embedded MongoDB database, is on the
classpath. If so, it will attempt to run the test using it. If Flapdoodle is NOT on our classpath, it will
attempt to connect to a real MongoDB instance.

So let's get started by adding fiapdoodie to our project's list of dependencies as follows:

| testCompile("de.flapdoodle.embed:de.flapdoodle.embed.mongo")

Since we are going to test our Reactor-based APIs, we also want to leverage Reactor Test, a library of
utilities provided by Project Reactor. Let's add the following test dependency:

| testCompile("io.projectreactor:reactor-test")

With this last dependency added to our pI’OjCCt, we can now start Wl‘itil’lg EmbeddedImageRepositoryTests.java
inside src/test/java, in the com.greglturnquist.learningspringboot package, like this:
@RunWith(SpringRunner.class)

@DataMongoTest
public class EmbeddedImageRepositoryTests {

@Autowired
ImageRepository repository;

@Autowired
MongoOperations operations;

The preceding code for the first part of this test class can be described as follows:

® @runwith(Springrunner.java) 1S needed to ensure that Spring Boot test annotations run properly within
JUnit

e g@patamMongoTest Will disable the general Spring Boot autoconfiguration, and instead, use Spring Boot's
test-based autoconfigurations to create a mongotemplate, a MongoDB connection, MongoDB property
settings, a reactiveMongoTemplate and an embedded MongoDB instance; it will also enable the
MongoDB repositories

e With the Spring Data MongoDB repositories enabled, Spring Boot will automatically instantiate an
ImageRepository, and inject 1t into our autowired repository field

' In general, it's recommended to use constructor injection for production code. But for test
code where constructors are limited due to JUnit, autowiring as we've just done is fine.

With access to a clean MongoDB instance (embedded), we can now perform a little setup work as
follows:

/**
* To avoid {@code block()} calls, use blocking
* {@1link MongoOperations} during setup.
*/
@Before
public void setUp() {
operations.dropCollection(Image.class);
operations.insert(new Image("1",
"learning-spring-boot-cover.jpg"));
operations.insert(new Image("2",
"learning-spring-boot-2nd-edition-cover.jpg"));
operations.insert(new Image("3",
"bazinga.png"));
operations.findAll(Image.class).forEach(image -> {
System.out.println(image.toString());

13K

This preceding setup method can be described as follows:

e The esefore flags this method to be run before every single etest method in this class
e The operations 1S used to dropcollection and then insert three new entries in the database, turn around
and fetch them all, and print them to the console

With things preloaded properly, we can start writing our first test case, as shown next:

@Test
public void findAllShouldwork() {
Flux<Image> images = repository.findAll();
StepVerifier.create(images)
.recordWith(ArrayList: :new)
.expectNextCount(3)
.consumeRecordedwith(results -> {
assertThat(results).hasSize(3);
assertThat(results)

.extracting(Image: :getName)

.contains(
"learning-spring-boot-cover.jpg",
"learning-spring-boot-2nd-edition-cover.jpg",
"bazinga.png");

1)

.expectComplete()
.verify();

This preceding test case can be described as follows:

e grest indicates this is a test method and the method name describes our overall goal.

e We use Reactor Test's stepverifier to subscribe to the riux from the repository and then assert against
it.

e Because we want to assert against the whole collection, we need to pipe it through Reactor Test's
recordwith method, which fetches the entire Fiux and converts it into an arrayList via a method handle.

e We verify that there were indeed three entries.

e We write a lambda to peek inside the recorded arrayrist. In it, we can use AssertJ to verify the size
of arrayList as well as extract each image's name with mage: : getname and verify them.

¢ Finally, we can verify that r1ux emitted a Reactive Streams complete signal, meaning that it

finished correctly.

stepverifier speaks Reactive Streams and will execute all the various signals to talk to the enclosed
publisher. In this case, we interrogated a riux but this can also be used on a mono.

To wrap things up, we are going to test our custom finder, findsyname, as shown here:

@Test

public void findByNameShouldWork() {
Mono<Image> image = repository.findByName("bazinga.png");
StepVerifier.create(image)

.expectNextMatches(results -> {
assertThat(results.getName()).isEqualTo("bazinga.png");
assertThat(results.getId()).isEqualTo("3");
return true;

13K
}

This last test case can be described as follows:

repository.findByName() 1s used to fetch one record
e We again use stepverifier to create a subscriber for our mono and then expect the next signal to come

through, indicating that it was fetched
¢ Inside the lambda, we perform a couple of Assert] assertions to verify the state of this 1mage

Due to the functional nature of stepverifier, we need to return a Boolean representing
0 pass/fail.

By the way, exactly how many CRUD methods do we need to test? We covered findai1 and findsyname. In
principle, we could sidestep finda11 since that can be considered a part of Spring Data MongoDB. But it
makes a good example in this book for testing a Reactor riux result.

In general, we shouldn't bite off testing framework code. But verifying our custom finder makes perfect
sense. And there's always room for end-to-end testing, which we'll explore further in this chapter.

Testing with a real MongoDB database

Testing against an embedded MongoDB instance is quite handy. But there are times when we need to
work with a real instance, and for multiple reasons: security settings, a batch of live data, a customized
configuration. Whatever the reason, there is no need for that to derail our testing efforts.

We can write another test class, LiveImagerepositoryTests, and make it look like this:

@RunWith(SpringRunner.class)
@DbataMongoTest (excludeAutoConfiguration =
EmbeddedMongoAutoConfiguration.class)
public class LiveImageRepositoryTests {

@Autowired
ImageRepository repository;
@Autowired
MongoOperations operations;

The details for this preceding live test are as follows:

® @runwith(SpringRunner.class) 1S our familiar annotation to integrate Spring with JUnit.
® @patamongoTest (and the other e...Test annotations) lets us exclude explicit autoconfiguration classes.
To switch off Flapdoodle, all we need to do is exclude EmbeddedMongoAutoConfiguration

The rest of the code in this class is the same as embeddedImagerepositoryTests, SO there's no need to show it
here. (In fact, it would be quite nice if the exact same tests ran on both embedded as well as a live
MongoDB instance.)

Let's run our latest batch of both embedded and live MongoDB tests:

Run LivelmageRepositoryTests and 1 more

» @B E T = O @ %
o0 <default package> 401ms
"""" 29 LivelmageRepositoryTests 259ms
29 findAllShouldWork 225ms
o) findByNameShouldWork 34ms
29 EmbeddedimageRepositoryTests 142ms
________ o findAllIShouldWork 130ms
=i o) findByNameShouldWork 12ms

All green (along with the OK icon)!

Keeping identical test code in two different classes violates the DRY (Don't Repeat
Yourself) principle. If we altered one test class, we should presumably alter the matching
test case in the other class. But a new teammate may not be aware of this. It's left as an
exercise for the reader to extract an abstract set of test methods to be used by both
LiveImageRepositoryTests Cl}’ld EmbeddedImageRepositoryTests.

Testing WebFlux controllers

So far, we've looked at unit testing as well as slice testing for MongoDB. These are good for covering
services and backend logic. The last part we need to ensure is whether the web controllers are working

properly.

Spring Boot comes with automated support to help us pick the exact type of test that we want to run.
Let's start with an example:

@RunWith(SpringRunner.class)
@webFluxTest(controllers = HomeController.class)
@Import({ThymeleafAutoConfiguration.class})
public class HomeControllerTests {

@Autowired

WebTestClient webClient;

@MockBean

ImageService imageService;

This preceding beginning of a controller test case can be described as follows:

® @runwith(SpringRunner.class) ensures all of our Spring Framework and Spring Boot test annotations
integrate properly with JUnit.

® @webFluxTest(controllers = HomeController.class) 1s another slice of tCStil’lg which focuses on SpI'll’lg
WebFlux. The default configuration enables all acontroi1er beans and @restcontroiier beans as well as
a mock web environment, but with the rest of the autoconfiguration disabled. However, by using
the controllers argument, we have confined this test case to ONLY enable Homecontroller.

e @mport(...) specifies what additional bits we want configured outside of any Spring WebFlux
controllers. In this case, the Thymeleaf autoconfiguration is needed.

e A webTestclient bean is autowired into our test case, giving us the means to make mock web calls.

® @vocksean signals that the 1mageservice collaborator bean needed by our Homecontroiier will be replaced
by a mock, which we'll configure shortly.

Even though ewebriuxtest is another slice similar to @atamongotest, we broke it out of the
previous section, Slice Testing, because WebFlux testing comes with an extensive range of
configuration options, which we will explore later in more detail.

Let's look at a test case where we get the base URL /:

@Test

public void baseRouteShouldListAllImages() {
// given
Image alphaImage = new Image("1", "alpha.png");
Image bravoImage = new Image("2", "bravo.png");

given(imageService.findAllImages())
.willReturn(Flux.just(alphaImage, bravoImage));

// when

EntityExchangeResult<String> result = webClient
.get().uri("/")
.exchange()
.expectStatus().1is0k()
.expectBody(String.class).returnResult();

// then
verify(imageService).findAllImages();
verifyNoMoreInteractions(imageService);
assertThat(result.getResponseBody())
.contains(
"<title>Learning Spring Boot: Spring-a-Gram</title>")
.contains(""
.contains("");

3

We can cover the details of this last test case as follows:

e grest marks this method as a JUnit test case.

e The method name, baserouteshouldListAllImages, gives us a quick summary of what this method should
verify.

e The first three lines mock up the imageservice bean to return a riux of two images when findallimages

gets called.

webclient 18 then used to perform a cer / using its fluent API.

We verify the HTTP status to be a 200 OK, and extract the body of the result into a string.

We use Mockito's verify to prove that our imageservice bean's findaliimages was indeed called.

We use Mockito's verifyNomoreinteractions to prove that no other calls are made to our mock

ImageService.

¢ Finally, we use AssertJ to inspect some key parts of the HTML page that was rendered.

This test method gives us a pretty good shake out of cer /. We are able to verify that the web page was
rendered with the right content. We can also verify that our 1mageservice bean was called as expected.
And both were done without involving a real MongoDB engine and without a fully running web
container.

Spring's WebFlux machinery is verified since it still includes the bits that take an incoming request for /
and routes it to Homecontroller.index(), yielding a Thymeleaf-generated HTML page. This way, we know
our controller has been wired properly. And oftentimes, this is enough to prove the web call works.

A key scenario to explore is actually fetching a file, mockingly. It's what our app does when requesting
a single image. Check out the following test case:

@Test
public void fetchingImageShouldWork() {
given(imageService.findOneImage(any()))
.willReturn(Mono.just(
new ByteArrayResource("data".getBytes())));

webClient
.get().uri("/images/alpha.png/raw")
.exchange()
.expectStatus().1is0k()
.expectBody(String.class).isEqualTo("data");
verify(imageService).findOneImage("alpha.png");
verifyNoMoreInteractions(imageService);

3

This preceding test case can be described as follows:

e grest flags this method as a JUnit test case.
e The method name, fetchingrmageshouldwork, hints that this tests successful file fetching.

The ImageService.findOneImage method returns a Mono<Resource>, SO W€ need to assemble a mock
resource. That can be achieved using Spring's sytearrayresource, Which takes a byte[]. Since all Java
strings can be turned into byte arrays, it's a piece of cake to plug it in.

webclient calls GeT /images/alpha.png/raw.

After the exchange() method, we verify the HTTP status is ok.

We can even check the data content in the body of the HTTP response given that the bytes can be
curried back into a Java string.

Lastly, we use Mockito's verify to make sure our mock was called once and in no other way.

Since we're coding against a very simple interface, resource, we don't have to go through any
complicated ceremony of staging a fake test file and having it served up. While that's possible, Mockito
makes it easy to stand up stubs and mocks. Additionally, Spring's assortment of resource
implementations lets us pick the right one. This reinforces the benefit of coding services against
interfaces and not implementations when possible.

The other side of the coin when testing file retrieval is to verify that we properly handle file errors.
What if we attempted to fetch an image but for some reason the file on the server was corrupted? Check
it out in the following test code:

@Test
public void fetchingNullImageShouldFail() throws IOException {
Resource resource = mock(Resource.class);
given(resource.getInputStream())
.willThrow(new IOException("Bad file"));
given(imageService.findOneImage(any()))
.willReturn(Mono.just(resource));

webClient
.get().uri("/images/alpha.png/raw")
.exchange()
.expectStatus().isBadRequest()
.expectBody(String.class)
.isEqualTo("Couldn't find alpha.png => Bad file");

verify(imageService).findOneImage("alpha.png");
verifyNoMoreInteractions(imageService);

}

This preceding test of a failure can be described as follows:

etest flags this method as a JUnit test case.

The method name, fetchingnullImageshouldrail, hints that this test is aimed at a failure scenario.

We need to mock out the file on the server, which is represented as a Spring resource. That way, we
can force it to throw an 1oexception when getinputstream 1S invoked.

That mock is returned when 1mageservice.findoneImage 1S called. Notice how we use Mockito's any() to
simplify inputs?

webclient 1§ again used to make the call.

After the exchange() method 1s made, we verify that the HTTP status is a 4ee sad Request.

We also check the response body and ensure it matches the expected body from our controller's
exception handler.

Finally, we use Mockito to verify that our mock 1mageservice.findonermage() was called once (and only
once!) and that no other calls were made to this mock bean.

This test case shows a critical skill we all need to polish: verifying that the path of failure is handled
properly. When a manager asks what if the file isn't there?, we can show them a test case indicating that
we have covered it. Say we write a try...catch clause in the our code, like this one in

HomeController.oneRawImage().

return imageService.findOneImage(filename)
.map(resource -> {
try {
return ResponseEntity.ok()
.contentLength(resource.contentLength())
.body(new InputStreamResource(
resource.getInputStream()));
} catch (IOException e) {
return ResponseEntity.badRequest()
.body("Couldn't find " + filename +
" =>" + e.getMessage());
3

13K

We should immediately start thinking of two test cases: one test case for the try part when we can find
the file and return an OK, and another test case for the catch part when 1oexception gets thrown and we
return a Bad Request.

While it's not hard to think up all the successful scenarios, capturing the failure scenarios and testing
them is important. And Mockito makes it quite easy to mock failing behavior. In fact, it's a common
pattern to have one mock return another, as we did in this test case.

Mockito makes it easy to mock things left and right. Just keep sight of what you're really
trying to test. One can get so caught up in mocking so that all that gets tested are the
mocks. We must be sure to verify the actual behavior of the code, or the test will be
meaningless.

Another webish behavior that happens all the time is processing a call and then redirecting the client to
another web location. This is exactly the behavior when we issue an HTTP pecete to our site. The URL is
expected to carry the resource that must be deleted. Once completed, we need to instruct the browser to
go back to the home page.

Check out the following test case:

@Test

public void deleteImageShouldwork() {
Image alphaImage = new Image("1", "alpha.png");
given(imageService.deleteImage(any())).willReturn(Mono.empty());

webClient
.delete().uri("/images/alpha.png")
.exchange()
.expectStatus().1isSeeOther()
.expectHeader().valueEquals(HttpHeaders.LOCATION, "/");

verify(imageService).deleteImage("alpha.png");
verifyNoMoreInteractions(imageService);

}

We can describe this preceding redirecting web call as follows:

The erest flags this method as a JUnit test case.
e We prep our 1mageservice mock bean to handle a deletermage by returning mono.empty(). This is the way

to construct a mono<void> object, which represents the promise that our service hands us when
deletion of the file and its corresponding MongoDB record are both completed.
webClient performs Ad DELETE /images/alpha.png.

o After the exchange() is complete, we verify the HTTP status is ses see other, the outcome of a Spring
WebFlux redirect:/ directive.

e As part of the HTTP redirect, there should also be a Location header containing the new URL, /.

¢ Finally, we confirm that our 1mageservice mock bean's deletermage method was called and nothing
else.

This proves that we have properly invoked our service and then followed it up with a redirect back to
the home page. It's actually possible to grab that Location header and issue another webciient call, but
there is no point in this test case. We have already verified that behavior.

However, imagine that the redirect included some contextual thing like redirect:/?msg=peleted showing a
desire to bounce back to the home page but with extra data to be shown. That would be a great time to
issue a second call and prove that this special message was rendered properly.

Now we can run the entire test case and see green bubbles all the way down:

Run HomeControllerTests

> @ 2 = =! O ® %
2 HomeControllerTests (com.greglturnquist.learningspringboot) 834ms
"""" 29 baseRouteShouldListAlllmages 527ms
o) deletelmageShouldWork 161ms
o0 fetchingNulllmageShouldFail 78ms
o) fetchinglmageShouldWork 68ms

We have used Mockito quite a bit but we aren't going to delve into all its features. For that,
0 1 recommend reading Mockito Cookbook written by Spring teammate Marcin Grzejszczak

(@MGrzejszczak).

Fully embedded Spring Boot app tests

We did some nice testing of the web controller and verified that it behaves properly. But that was just
another slice. At some point, it's good to test the whole thing, end-to-end. And with today's modern
suite of test tools, it's totally doable.

Spring Boot doesn't always support every tool. For example, Selenium WebDriver, a popular browser
automation toolkit, is not yet supported outside of servlets.

No problem! What we really need is for Spring Boot to launch our application, preferably on an
unoccupied port, and get out of the way while we do some testing. So let's do just that.

We can start by crafting a new test case like this:

@RunWith(SpringRunner.class)

@SpringBootTest (
webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT)
public class EndToEndTests {

This preceding test class can be described as follows:

® @runwith(SpringRunner.class) ensures the Spring Boot annotations integrate with JUnit.

® @springsootTest 1S the test annotation where we can activate all of Spring Boot in a controlled
fashion. With webenvironment switched from the default setting of a mocked web environment to
springBootTest .WebEnvironment . RANDOM_PorT, & Teal embedded version of the app will launch on a random
available port.

This configuration will spin up a copy of our application on an open port, with a full-blown
autoconfiguration, and all of our commandLinerunners will run. That means our 1nitpatabase class that pre-
loads MongoDB will kick in.

By the way, Flapdoodle will also run an embedded MongoDB instance because we are in
o the test scope.

First of all, we need a handful of test objects declared as fields of our test class. These are obtained as
follows:

static ChromeDriver driver;
@LocalServerPort

static ChromeDriverService service;
int port;

These attributes of endToendTests can be described as follows:

® chromebriverservice: This gives us a handle on the bridge between Selenium and the Chrome handling
library
e chromepriver: This is an implementation of the weboriver interface, giving us all the operations to drive

a test browser
® gLocalserverport: This is a Spring Boot annotation that instructs Boot to autowire the port number of
the web container into port

1o use chromepriver, not only do we need the browser Chrome downloaded and installed in
its default location, we also need a separate executable: chromedriver. Assuming you have
visited https://sites.google.com/a/chromium.org/chromedriver/downloads, downloaded the bundle
(macOS in my case), unzipped it, and put the executable in a folder named ext, you can
proceed.

With chromedriver installed in ext, we can configure it to start and stop as follows:

@BeforeClass
public static void setUp() throws IOException {
System.setProperty("webdriver.chrome.driver",
"ext/chromedriver");
service = createDefaultService();
driver = new ChromeDriver(service);
Path testResults = Paths.get("build", "test-results");
if (!Files.exists(testResults)) {
Files.createDirectory(testResults);
3
3

@AfterClass
public static void tearDown() {
service.stop();

3

This setup/teardown behavior can be described as follows:

® @seforeclass directs JUnit to run this method before any test method inside this class runs and to
only run this method once

e Inside the setUp method, it sets the webdriver.chrome.driver property to the relative path of chromedriver

e Next, it creates a default service

e Then it creates a new chromeoriver to be used by all the test methods

e Finally, it creates a test directory to capture screenshots (as we'll soon see)

e @afterclass directs JUnit to run the tearpown method after ALL tests have run in this class

e [t commands chromebriverservice to shut down. Otherwise, the server process will stay up and
running

Is this starting to sound a bit convoluted? We'll explore options to simplify this later on in this chapter.

For now, let's focus on writing this test case:

@Test
public void homePageShouldWork() throws IOException {
driver.get("http://localhost:" + port);

takeScreenshot ("homePageShouldwork-1");

assertThat(driver.getTitle())
.isEqualTo("Learning Spring Boot: Spring-a-Gram");

String pageContent = driver.getPageSource();
assertThat(pageContent)

.contains("");
WebElement element = driver.findElement(

By.cssSelector("a[href*=\"bazinga.png\"]"));
Actions actions = new Actions(driver);
actions.moveToElement(element).click().perform();

takeScreenshot ("homePageShouldwork-2");
driver.navigate().back();

}

This preceding test case can be detailed as follows:

etest indicates this is a JUnit test case

driver navigates to the home page using the injected port

It takes a screenshot so we can inspect things after the fact

We verify the title of the page is as expected

Next, we grab the entire page's HTML content and verify one of the links

Then we hunt down that link using a W3C CSS selector (there are other options as well), move to
it, and click on it

e We grab another snapshot and then click on the back button

This is a pretty basic test. It doesn't do a lot apart from verifying the home page and checking out one
link. However, it demonstrates that we can automatically test the entire system. Remember, we have the
whole system up, including a live MongoDB database (if you count an embedded one as being real).
This verifies not only our own code, but our assumptions regarding what gets autoconfigured,
autowired, and initialized.

As a culmination of testing nirvana, we can even grab screen snapshots to prove we were here. Or at
least that our test case was here. That code i1s shown here:
private void takeScreenshot(String name) throws IOException {
FileCopyUtils.copy(

driver.getScreenshotAs(OutputType.FILE),
new File("build/test-results/TEST-" + name + ".png"));

}

Snapping a screenshot can be explained as follows:

® driver.getScreenshotAs(OutputType.FILE) taps the Takesscreenshot subinterface to grab a snapshot of the
screen and put it into a temp file

e Spring's rilecopyutils utility method is used to copy that temp file into the project's build/test-results
folder using the input argument to give it a custom name

Taking screenshots is a key reason to use either chromepriver, Firefoxoriver, Or safarioriver. All of these real-
world browser integrations support this feature. And thanks to that, we have the following snapshot
results:

Learning Spring Boot - 2nd Edition

Id Name Image

1 learning-spring-boot-cover.jpg P Delete
2 learning-spring-boot-2nd-edition-cover.jpg ls. Delete
3 bazinga.png A Delete

Choose File No file chosen

Upload

That first shot shows the whole web page. The following screenshot shows a single image after being
clicked:

The screenshot of this image may look a little awkward, but remember; these images aren't real JPGs.
Instead, they are strings stuffed into the filesystem.

If we run our entire suite of test cases, we can see the whole thing takes just shy of 2.5 seconds:

Run Allin 4_partl_test

r»@sizEiz = O ® &
"""" o) EndToEndTests 1s 657ms
29 homePageShouldWork 1s 657ms
""" o) EmbeddedlmageRepositoryTests 433ms
29 findAllShouldWork 400ms
........ o) findByNameShouldWork 33ms
2o o) HomeControllerTests 251ms
-------- o fetchingNulllmageShouldFail 84ms
» o) deletelmageShouldWork 79ms
X o fetchinglmageShouldWork 45ms
- 29 baseRouteShouldListAlllmages 43ms
: 29 LivelmageRepositoryTests 51ms
2 findAllShouldWork 40ms
o) findByNameShouldWork 11ms
o) ImageServiceTests 35ms
o createlmageShouldWork 13ms
o9 deletelmageShouldWork 8ms
29 findOneShouldReturnNotYetFetchedUrl 8ms
o findAllShouldJustReturnTheFlux 6ms
%) ImageTests 1ms

29 imagesManagedByLombokShouldWork 1ms
Impressive, huh?

How good a test suite is that? Using the IDE, we can run the same test suite but with coverage analysis

turned on:

1 partl_test~ | P @ pé%’ ¢ = Evg \ﬁs
1 Run'Allin 4_part1_test' with Coverage

o [P e | . A e~

After running the same test suite but with the IDE's coverage tools enabled, we can get a read out in the
source code listing, as seen in this screenshot:

src
main
java
com.greglturnquist.learningspringboot
© & ApiController
HomeController
Image
ImageRepository
ImageService
InitDatabase
LearningSpringBootApplication
ReactiveThymeleafConfig

PEOOOOE

That's quite handy. We can even drill into each class and see what's missing. As deft as this is, we aren't
going to delve any more into test coverage. That's something best left to a more test-oriented book.

Don't let test coverage consume you. As mentioned in my other book, Python Testing

Cookbook, in Chapter 9 under the Coverage isn't everything section, the test coverage

should be used to identify new, reasonable scenarios that should be checked out, not
8 gaming the system to squeeze out another percentage point or two. And coverage reports

should never be used to compare one system or test regimen against another, let alone be
used as a gate for release. We should all seek to increase test coverage over time as the
means to increase confidence and reduce risk, not as a gate to make releases.

We just mentioned all the ceremony invested into getting Chrome to operate. Why did we do that?
Because the one webpriver implementation that requires no such effort to bring online doesn't support
taking screenshots. There is also no way of knowing if the person checking out your code has the same
browser installed.

If we coded everything around Chrome because we don't like Firefox but another teammate doesn't
have Chrome, we've got a problem.

On one hand, if screenshots aren't important, then ntmiunitoriver 1s the way to go. It comes out of the box,
works as good as any other weboriver, and doesn't require any third-party executables or drivers. But that
is the penalty of going by the least common denominator.

Wouldn't it be preferable to have whatever webpriver we can get based on whatever we have installed on
our system and automatically load that into our test case? After all, Spring Boot is about reducing Java
complexity when building apps.

If you sense a slow walk toward a Spring Boot-oriented solution to this craziness, you're right. In the
next section, we'll explore how to autoconfigure a weboriver based on what's available and then we'll unit
test that autoconfiguration policy.

Testing your custom Spring Boot
autoconfiguration

If picking between several weboriver implementations sounds hokey and unnecessarily complicated, then
let's do what Spring Boot does best: autoconfigure it!

Okay, if we're going to autoconfigure something, we sure as heck want to test what we're doing. That
way, we can make sure it performs as expected. To do so requires a little bit of test setup. Check it out:

public class WebDriverAutoConfigurationTests {

private AnnotationConfigApplicationContext context;
@After
public void close() {

if (this.context != null) {

this.context.close();

}

3

private void load(Class<?>[] configs, String... environment) {

AnnotationConfigApplicationContext applicationContext =
new AnnotationConfigApplicationContext();

applicationContext
.register(WebDriverAutoConfiguration.class);

if (configs.length > 0) {
applicationContext.register(configs);

}

EnvironmentTestUtils
.addEnvironment (applicationContext, environment);

applicationContext.refresh();

this.context = applicationContext;

3

...more coming later...

3

This preceding test case is set up as follows:

e [t starts off very different from what we've seen up until now. Instead of using various Spring Boot
test annotations, this one starts with nothing. That way, we can add only the bits of Boot that we
want in a very fine-grained fashion.

o We'll use Spring's annotationconfigapplicationcontext as the DI container of choice to programmatically
register beans.

e The earter annotation flags the ciose() method to run after every test case and close the application
context, ensuring the next test case has a clean start.

e 10ad() Will be invoked by each test method as part of its setup, accepting a list of Spring
configuration classes as well as optional property settings, as it creates a new application context.

® 1oad() then registers a webpriverautoconfiguration class (which we haven't written yet).

o After that, it registers any additional test configuration classes we wish.

e [t then uses Spring Boot's environmentTestutils to add any configuration property settings we need to
the application context. This is a convenient way to programmatically set properties without
mucking around with files or system settings.

e [t then uses the application context's refresh() function to create all the beans.

e Lastly, it assigns the application context to the test class's context field.

In this bit of code, we programmatically build up a Spring application context from scratch. In this test
class, we register our brand new webpriverautoconfiguration class to be at the heart of all of our tests. Then
we are free to run all kinds of test cases, ensuring it acts properly. We can even register different
configuration classes to override any of the autoconfiguration beans.

Now let's noodle out our first test case. What's a good place to start? What if we were to disable all the
browser-based webpriver instances (like Firefox and Chrome), and instead, expect the thing to fall back to
the universal wemiunitoriver? Let's try it:

@Test
public void fallbackToNonGuiModeWhenAllBrowsersDisabled() {
load(new Class[]{},
"com.greglturnquist.webdriver.firefox.enabled:false",
"com.greglturnquist.webdriver.safari.enabled:false",
"com.greglturnquist.webdriver.chrome.enabled:false");

WebDriver driver = context.getBean(WebDriver.class);

assertThat(ClassUtils.isAssignable(TakesScreenshot.class,
driver.getClass())).isFalse();

assertThat(ClassUtils.isAssignable(HtmlUnitDriver.class,
driver.getClass())).isTrue();

This test case can be explained as follows:

® @Test marks fallbackToNonGuiModewWhenAllBrowsersDisabled dS A JUIlit test method.

e To start things, it uses the 10ad() method. Since we don't have any custom overrides, we supply it
with an empty array of configuration classes. We also include a slew of properties, the first one
being com.greglturnquist.webdriver.firefox.enabled:false. From a design perspective, it's nice to
optionally exclude certain types, so having a well-qualified property (using a domain we own) and
setting them all to false sounds like a good start.

e Now we can ask the application context to give us a webbriver bean.

e Ifit bypassed all those browser-specific ones and landed on wtmiunitoriver, then it shouldn't support
the Takesscreenshot interface. We can verify that with the AssertJ assertthat() check, using Spring's
ClassUtils.isAssignable check.

e To make it crystal clear that we're getting an wtmiunitoriver, we can also write another check
verifying that.

Since we aren't actually testing the guts of Selenium WebDriver, there is no need to examine the object
anymore. We have what we want, an autoconfigured weboriver that should operate well.

Having captured our first expected set of conditions, it's time to roll up our sleeves and get to work.
We'll start by creating WebDriverAutoConfiguration.java aS follows:

@Configuration

@ConditionalOnClass(WebDriver.class)

@EnableConfigurationProperties(
WebDriverConfigurationProperties.class)

@Import({ChromeDriverFactory.class,
FirefoxDriverFactory.class, SafariDriverFactory.class})

public class WebDriverAutoConfiguration {

)

This preceding Spring Boot autoconfiguration class can be described as follows:

@configuration: This indicates that this class is a source of beans' definitions. After all, that's what
autoconfiguration classes do--create beans.

® @conditionalonclass(webdriver.class): This indicates that this configuration class will only be evaluated
by Spring Boot if it detects webpriver on the classpath, a telltale sign of Selenium WebDriver being
part of the project.

® @EnableConfigurationProperties(WebDriverConfigurationProperties.class): This activates a set ofproperties to
support what we put into our test case. We'll soon see how to easily define a set of properties that
get the rich support Spring Boot provides of overriding through multiple means.

® @mport(...): This is used to pull in extra bean definition classes.

This class 1s now geared up for us to actually define some beans pursuant to creating a webpriver instance.
To get an instance, we can imagine going down a list and trying one such as Firefox. If it fails, move on
to the next. If they all fail, resort to using ntmiunitoriver.

The following class shows this perfectly:

@Primary
@Bean(destroyMethod = "quit")
@ConditionalOnMissingBean(WebDriver.class)
public WebDriver webDriver (
FirefoxDriverFactory firefoxDriverFactory,
SafaribDriverFactory safariDriverFactory,
ChromeDriverFactory chromeDriverFactory) {
WebDriver driver = firefoxDriverFactory.getObject();

if (driver == null) {
driver = safaribDriverFactory.getObject();

}

if (driver == null) {
driver = chromeDriverFactory.getObject();

}

if (driver == null) {
driver = new HtmlUnitDriver();

}

return driver;

This weboriver creating code can be described as follows:

e errimary: This indicates that this method should be given priority when someone is trying to
autowire a weboriver bean over any other method (as we'll soon see).

® @Bean(destroymethod = "quit"): This flags the method as a Spring bean definition, but with the extra
feature of invoking webbriver.quit() when the application context shuts down.

® @ConditionalOnMissingBean(WebDriver.class): This is a classic Sprlng Boot technique. It says to Sklp this
method if there is already a defined weboriver bean. HINT: There should be a test case to verify that
Boot backs off properly!

® weboriver(): This expects three input arguments to be supplied by the application context--a
FirefoxDriver factory, a SafariDriver factory, and a chromedriver factory. What is this for? It allows us to
swap out rirefoxoriver With a mock for various test purposes. Since this doesn't affect the end user,
this form of indirection is suitable.

e The code starts by invoking firefoxoriver using the rirefoxoriver factory. If null, it will try the next
one. It will continue doing so until it reaches the bottom, with ntmiunitoriver as the last choice. If it

got a hit, these if clauses will be skipped and the weboriver instance returned.

This laundry list of browsers to try out makes it easy to add new ones down the road should we wish to
do so. But before we investigate, Say firefoxDriver(), let's first look at FirefoxDriverFactory, the input
parameter to that method:

class FirefoxDriverFactory implements ObjectFactory<FirefoxDriver>

{

private WebDriverConfigurationProperties properties;

FirefoxDriverFactory(WebDriverConfigurationProperties properties)
{
this.properties = properties;

3

@Override
public FirefoxDriver getObject() throws BeansException {
if (properties.getFirefox().isEnabled()) {
try {
return new FirefoxDriver();
} catch (WebDriverException e) {
e.printStackTrace();
// swallow the exception

}
}
return null;
}
}

This preceding driver factory can be described as follows:

This class implements Spring's objectractory for the type of rirefoxoriver. It provides the means to
create the named type.

e With constructor ianCtiOI’l, we load a copy of WebDriverConfigurationProperties.

e It implements the single method, getobject(), yielding a new rirefoxoriver.

o Ifthe rirefox property is enabled, it attempts to create a rirefoxoriver. If not, it skips the whole thing
and returns null.

This factory uses the old trick of try to create the object to see if it exists. If successful, it returns it. If
not, it swallows the exception and returns a null. This same tactic is used to implement a safarioriver
bean and a chromenriver bean. Since the code is almost identical, it's not shown here.

Why do we need this factory again? Because later in this chapter when we wish to prove it will create
such an item, we don't want the test case to require installing Firefox to work properly. Thus, we'll
supply a mocked solution. Since this doesn't impact the end user receiving the autoconfigured weboriver,
it's perfectly fine to use such machinery.

Notice how we used properties.getrirefox().isenabled() to decide whether or not we would try? That was
provided by our com.greglturnquist.webdriver.firefox.enabled property setting. To create a set of properties
that Spring Boot will let consumers override as needed, we need to create a
WebDriverConfigurationProperties class like this:

@Data

@ConfigurationProperties("com.greglturnquist.webdriver")
public class WebDriverConfigurationProperties {

private Firefox firefox = new Firefox();
private Safari safari = new Safari();

private Chrome chrome = new Chrome();

@Data
static class Firefox {
private boolean enabled = true;

3

@Data
static class Safari {
private boolean enabled = true;

3

@Data
static class Chrome {
private boolean enabled = true;

b
b

This last property-based class can be described as follows:

epata 1s the Lombok annotation that saves us from creating getters and setters.

® @configurationProperties("com.greglturnquist.webdriver") marks this class as a source for property values
with com.greglturnquist.webdriver aS the preﬁx.

e Every field (firefox, safari, and chrome) is turned into a separately named property.

e Because we want to nest subproperties, we have rirefox, safari, and chrome, €ach with an enabied
Boolean property defaulted to true.

e Each of these subproperty classes again uses Lombok's epata annotation to simplify their definition.

It's important to point out that the name of the property class,

! webDriverconfigurationProperties, and the names of the subclasses such as rirefox are not

Wy important. The prefix is set by aconfigurationproperties, and the individual properties use the
field's name to define themselves.

With this class, it's easy to inject this strongly typed POJO into any Spring-managed bean and access the
settings.

At this stage, our first test case, fallbackToNonGuiModewhenAllBrowsersbisabled, should be operational. We can
test it out.

Assuming we verified it, we can now code another test, verifying that rirefoxoriver is created under the
right circumstances. Let's start by defining our test case. We can start by deliberately disabling the other
choices:

@Test
public void testWithMockedFirefox() {
load(new Class[]{MockFirefoxConfiguration.class},
"com.greglturnquist.webdriver.safari.enabled:false",
"com.greglturnquist.webdriver.chrome.enabled:false");
WebDriver driver = context.getBean(WebDriver.class);
assertThat(ClassUtils.isAssignable(TakesScreenshot.class,
driver.getClass())).isTrue();
assertThat(ClassUtils.isAssignable(FirefoxDriver.class,
driver.getClass())).isTrue();

This preceding test case is easily described as follows:

e grest marks testwithMmockedrirefox as a JUnit test method

load 18 used to add mockrirefoxconfiguration, @ configuration class we'll soon write to help us mock out
the creation of a real Firefoxbriver

e We also disable Chrome and Safari using the property settings

e Fetching a weboriver from the application context, we verify that it implements the takesscreenshot
interface and is actually a rirefoxoriver class

As one can imagine, this is tricky. We can't assume the developer has the Firefox browser installed.
Hence, we can never create a real rirefoxoriver. To make this possible, we need to introduce a little
indirection. When Spring encounters multiple bean definition methods, the last one wins. So, by adding
another config class, mockrirefoxconfiguration, We can sneak in and change how our default factory works.

The following class shows how to do this:

@Configuration
protected static class MockFirefoxConfiguration {
@Bean
FirefoxDriverFactory firefoxDriverFactory() {
FirefoxDriverFactory factory =
mock (FirefoxDriverFactory.class);
given(factory.getObject())
.willReturn(mock(FirefoxDriver.class));
return factory;

b
b

The previous class can be described as follows:

® aconfiguration marks this class as a source of bean definitions.

e @sean shows that we are creating a rirefoxoriverractory bean, the same type pulled into the top of our
webDriverAutoConfiguration class via the ermport annotation. This means that this bean definition will
overrule the one we saw earlier.

e We use Mockito to create a mock FirefoxDriverFactory.

e We instruct this mock factory to create a mock rirefoxoriver when it's factory method is invoked.

e We return the factory, so it can be used to run the actual test case.

With this code, we are able to verify things work pretty well. There is a slight bit of hand waving. The
alternative would be to figure out the means to ensure every browser was installed. Including the
executables in our test code for every platform and running them all, may yield a little more confidence.
But at what price? It could possibly violate the browser's license. Ensuring that every platform is
covered, just for a test case, is a bit extreme. So, all in all, this test case hedges such a risk adequately by
avoiding all that extra ceremony.

It's left as an exercise for the reader to explore creating Safari and Chrome factories along with their
corresponding test cases.

If we run all the test cases in webbriverautoconfigurationTests, What can we hope to find?

Run WebDriverAutoConfigurationTests

P @@= 12 I F O X =
= WebDriverAutoConfigurationTests (com.greglturnqui 5s 274ms
"""" =i testWithMockedFirefox 25 544ms
os testWithMockedChrome 1s 454ms
I =i fallback ToNonGuiModeWhenAllBrowsersDisabled 15 18ms
=i testWithMockedSafari 258ms

Using Spring Boot and Spring Framework test modules along with JUnit and Flapdoodle, we have
managed to craft an autoconfiguration policy for Selenium WebDriver with a complete suite of test
methods. This makes it possible for us to release our own third-party autoconfiguration module that
autoconfigures Selenium WebDriver.

So what have we covered? Unit tests, MongoDB-oriented slice tests, WebFlux-oriented slice tests, full
container end-to-end tests, and even autoconfiguration tests.

This is a nice collection of tests that should deliver confidence to any team. And Spring Boot made it
quite easy to execute.

Summary

In this chapter, we crafted unit tests using JUnit and Assert]. Then we performed slice-based tests
against MongoDB using Spring Boot's @patamongotest annotation, with and without embedded MongoDB.
We tested WebFlux controllers, ensuring they operated correctly. We also wrote end-to-end tests with
Spring Boot spinning up an entire embedded web container so that Selenium WebDriver could drive it
from the browser. Finally, we put together an autoconfiguration policy for Selenium WebDriver using
test-first practices to verify that it worked.

In the next chapter, we will explore the developer tools provided by Spring Boot to ease the tasks we all
must deal with.

Developer Tools for Spring Boot Apps

1 owe @springboot a lot. #productivity #engineering #sota #minimalist #microservices #performance
#quality #bestpractises

— Amir Sedighi @amirsedighi

In the previous chapter, you learned how to use Spring Boot's various testing features. We saw how to
craft simple unit tests, slice tests, mock WebFlux tests, and even fully spun-up embedded Netty
integration tests.

When we get into the swing of things, anything that can bend the curve of time spent building an app is
appreciated. We will explore the various tools Spring Boot brings to the table to help us hack away at
our applications.

In this chapter, we will do the following:

Using Spring Boot's DevTools for hot code reloading and decaching
Glean what Spring Boot did with its autoconfiguration report

Make local changes and see them on the target system

Write a custom health check

Add build data to the /appiication/info endpoint

Create custom metrics

Using Spring Boot's DevTools for hot code
reloading

Developers are always looking for ways to speed things up. Long ago, one of the biggest speedups was
incremental compilers and having them run every time we saved a file. Now that it's permeated modern
tools, no one thinks twice about such a feature.

Something critically needed when it comes to building Spring Boot apps is the ability to detect a change
in our code and relaunch the embedded container.

Thankfully, we just need one addition to our code we built in the previous chapter:
| compile("org.springframework.boot:spring-boot-devtools")

0 If you happen to be using Maven, you would want to include the optional flag.

So, this tiny module performs the following activities:

e Disables cache settings for autoconfigured components

e When it detects a change in code, it restarts the application, holding onto third-party classes and
simply throwing away and reloading custom classes

e Activates an embedded LiveReload (http://1ivereload.con/) server that can trigger the browser to
refresh the page automatically

For a listing of all the disabled components, look at the following code snippet:

properties.put("spring.thymeleaf.cache", "false");
properties.put("spring.freemarker.cache", "false");
properties.put("spring.groovy.template.cache", "false");
properties.put("spring.mustache.cache", "false");
properties.put("server.session.persistent", "true");
properties.put("spring.h2.console.enabled", "true");
properties.put("spring.resources.cache-period", "0");
properties.put("spring.resources.chain.cache", "false");
properties.put("spring.template.provider.cache", "false");
properties.put("spring.mvc.log-resolved-exception", "true");
properties.put("server.servlet.jsp.init-parameters.development",
"true");
properties.put("spring.reactor.stacktrace-mode.enabled", "true");

Many IDEs also come with additional reloading support when apps are run in the debug
8 mode, a highly recommended option to use in conjunction with Spring Boot DevIools.

What is the net benefit, you ask?

When we make a change to our code and either issue a Save or a Make Project, DevTools will throw
away the class loader holding our custom code and launch a new application context. This makes for a

http://livereload.com/

relatively speedy restart.

such as Eclipse, 3-S is used to perform a Save operation. IntelliJ IDEA autosaves, so an

8 Save or Make Project? Spring Boot DevTools listens for file updates. For certain IDEs,
alternative signal is Make Project, 38-F9, which refreshes the environment.

With the LiveReload server running and a LiveReload plugin (http://livereload.com/extensions/) installed
in our browser, we can enable LiveReloading upon visiting the site. Anytime we update the code, the
plugin will essentially click the browser's refresh button for us.

Restarting versus reloading: DevIools provides the ability to restart the application
quickly, but it is limited in various ways. For example, updating the classpath by adding
new dependencies is not picked up. Adding new classes isn't supported. For more
sophisticated tools that handle these complex use cases, you may wish to investigate
Somez‘hing such as Sprmg Loaded (https://github.com/spring-projects/spring-loaded) or JRebel (
http://zeroturnaround.com/software/j rebel/).

With all these caches cleared out, we can see changes propagate much faster. Let's test it out by
launching LearningSpringBootApplication in the debug mode. If we visit the site, thil’lgS look as CXpCCtGdI

< C (@ @ localhost:8080

Learning Spring Boot - 2nd Edition

Id Name | Image
57f16c0883a5d2446f27602¢ | test . Delete
57f16c0883a5d2446f27602f | test2 | . Delete

57f16c0883a5d2446£276030 | test3 . Delete

Choose File = No file chosen

Upload

The site starts off with our pre-loaded test data. To have the browser listen for updates, we need to click
the LiveReload icon:

®

At first, the dot in the center is hollow. When enabled, the dot turns solid, as shown in the preceding
screenshot.

Let's make some edits to our template:

<hl>Learning Spring Boot - 2nd Edition</hl>
<h3>Using the LiveReload plugin in your browser will speed up effor‘ts.|</h3>

http://livereload.com/extensions/
https://github.com/spring-projects/spring-loaded
http://zeroturnaround.com/software/jrebel/

With this extra sub-header, we just need to hit Save or Make Project in our IDE. Switching to the
browser will show the results instantly:

Learning Spring Boot - 2nd Edition

Using the LiveReload plugin in your browser will speed up efforts.

Let's make some tweaks to Homecontroller as shown here:

@GetMapping("/")
public Mono<String> index(Model model) {
model.addAttribute("images",
imageService.findAllImages());
model.addAttribute("extra",
"DevTools can also detect code changes too");
return Mono.just("index");

}

This is the same as the previous chapter, except that we have added a new attribute, extra, to the model.
We can display it with an adjustment to our template:

| <h4 th:text="${extra}"></h4>

This displays the new extra model attribute as an H4 header, all without clicking a thing in our browser:

Learning Spring Boot - 2nd Edition

Using the LiveReload plugin in your browser will speed up efforts.

DevTools can also detect code changes too

There is one key side effect when using Spring Boot DevTools for restarts-- any in-memory data or state
will be lost.

That can be good or bad. It certainly encourages you to create a pre-loader, perhaps with a eprofile("dev")
annotation such that it only runs when spring.profiles.active=dev 1S switched on.

This can become an issue if our use case takes a lot of steps to set up, and restarting the app makes us
repeat these steps again and again. This is amplified by in-memory database solutions such as H2. In
our situation, the start-up code that cleans out the uploaded files will cause a similar refresh of data.

Another reason to consider NOT switching on LiveReload in the browser (yet let the app restart) is if
we are working on a JavaScript-heavy frontend and don't want every change to force a reload. For
example, we might have a page with a lot of fields filled out. A triggered restart may clean out our form
and force us to re-enter the data.

Nevertheless, this is a good problem to have. Having the option to refresh the browser and stay in sync
with code changes is a powerful tool.

Using Spring Boot's autoconfiguration
report

As we've seen in this book so far, Spring Boot autoconfigures beans to help us avoid configuring
infrastructure and instead focus on coding business requirements. However, sometimes, we may want to
know what Spring Boot did (or didn't) do for us.

That's why it has an autoconfiguration report. Essentially, every time a bean is selected based on some
conditional check, Spring Boot logs the decision (yea or nay) and offers it to us in many different ways.

The simplest approach is to add --debug to the run configuration. In the following screenshot, we can see
how to set it in IntelliJ:

Run/Debug Configurations

me: |LearningSpringBootApplication Share
(Configuration| Code Coverage Logs

Main class: com.greglturnquist.learningspringboot.LearningSpringBootApplication

VM options:

Program arguments: --debug

Working directory:

If we launch our app with --debug as a program argument, an autoconfiguration report is printed out to
the console:

' 2016-09-30 14:57:52.106 DEBUG 50763 —— [restartedMain]
Sl | 2016-09-30 14:57:52.128 DEBUG 50763 ——— [restartedMain]
a

%

. AUTO-CONFIGURATION REPORT

Y

g

»

s Positive matches:

AuditAutoConfiguration#auditListener matched
- @ConditionalOnMissingBean (types: org.springframework.boot.actuate.au

AuditAutoConfiguration.AuditEventRepositoryConfiguration matched
— @ConditionalOnMissingBean (types: org.springframework.boot.actuate.au

That's nice, and during certain failure scenarios, the report will print out automatically to help with
postmortem analysis. However, scraping the console for a report isn't very effective.

If we use Spring Boot Actuator, we can consume this report in a nicer JSON structure. If you'll recall,
we included Actuator in our list of dependencies back in chapter 1, Quick Start with Java:

| compile('org.springframework.boot:spring-boot-starter-actuator')

n If you're building a new application and didn't pick it on nttp://start.spring.io, this

http://start.spring.io

W dependency is quite valuable.

In addition to adding Spring Boot's Actuator module, we have to opt in or rather enable its features. In
Spring Boot 2.0, Actuator supports many technologies including Spring MVC, Spring WebFlux, and
JMX. We have to signal what platforms we wish to enable instead of expecting Spring Boot to guess. To
do SO, W€ need to add the fOllOWil’lg line of code to our application.properties file:

| endpoints.default.web.enabled=true

This will make Actuator's endpoints active from an HTTP perspective; (to enable Actuator for IMX, we
would want to set endpoints.default.jmx.enabled tO true).

When we launch our application, several Spring WebFlux endpoints are added, providing additional
information. To get a quick glance at all the available endpoints, we can visit
http://localhost:8080/application, A4S shown in the fOHOWil’lg screenshot:

] ® . localhost:8080/application X

& C' 7 @ localhost:8080/application @ ¢ A B
i Apps [1 VMware Intranet £ VMware [Jenkins] ¢ (£) [JSON Pretty |

// 20170912231024
// http://localhost:8080/application

"_links"
"self"
"href": "http://localhost:8080/application”
"templated": false

"auditevents"
"href": "http://localhost:8080/application/auditevents"
"templated": false

"beans"
"href": "http://localhost:8080/application/beans”
"templated": false

"autoconfig"
"href": "http://localhost:8080/application/autoconfig"
"templated": false

"configprops"

"href": "http://localhost:8080/application/configprops"
"templated": false

ey
"href": "http://localhost:8080/application/env"
"templated": false

"env-toMatch"
"href": "http://localhost:8080/application/env/{toMatcht"
"templated": true

"health"
"href": "http://localhost:8080/application/health”
"templated": false

"status"
"href": "http://localhost:8080/application/status"
"templated": false

his screenshot doesn't capture them all, but there is a long list of endpoints serving up detailed
information about our application. (By the way, earlier in the book, we enabled just one actuator
endpoint, /application/nhealth. This flag lets us switch on all the default endpoints.)

From there, w¢e can easily find the autoconﬁguration report at http://localhost:8080/application/autoconfig,
click on it, and thanks to JSON Viewer (https://github.con/tulios/json-viewer), see this nicely formatted

https://github.com/tulios/json-viewer

report:

— St “ation/z . () Greg.L. Turnqui...
_'Iocalhost:BOSO,n'appIication{autoconfig sationfau’ X 9 o
i C 1} | @ localhost:8080/application/autoconfig a v & AR ® O &+ 5] = &
it Apps [} VMware Intranet (3 VMware [Jenkins] #s (2) [] JSON Pretty Print [§f] JSON Editor Online... » [Other Bookmarks

/4 20178912220059
£/ http://localhost: 8888/ opplicotion/autoconfig

"positiveMatches”
"suditAutoConfigurationfauditlistener”

"condition™: "OnmBeanCondition”
"messoge”: "8ConditionalOnMissingBean (types: org.springframework.boot.actuate.oudit.listener.AbstractAuditlistener;
SearchStrategy: all) did not find any beans"”

"AuditAutoConfiguration. AuditEventRepositoryConfiguration”
"conditien”: "OnBeanCondition™
"messoge”: "EConditionalOnMissingBean (types: org.springframework.boot.actuate.audit.AuditEventRepository;
SearchStrategy: all) did not find any beans"”
"suditEventsEndpointAutoConfigurationfauditEventsEndpoint”
"condition™: "OnBeanCondition"
"messoge”: "@ConditionalOnBeon (types: org.springfromework.boot.actuote.oudit.AuditEventRepository; SearchStrategy:

all) found bean 'ouditEventRepository'; @ConditionalOnMissingBean (types:
org.springframework.boot.actuate.audit.AuditEventsEndpoint; SearchStrategy: all) did not find any beans"”

Okay, so we've seen a couple ways to generate this report. But what does it say?

If we zoom into one fragment, we can figure something out:

"ReactiveWebServerConfiguration.ReactorNettyAutoConfiguration": [

"condition": "OnClassCondition",

"message": "@ConditionalOnClass found required class
'reactor.ipc.netty.http.server.HttpServer';
@ConditionalOnMissingClass did not find unwanted class"

3
{
"condition": "OnBeanCondition",
"message": "@ConditionalOnMissingBean (types:
org.springframework.boot.web.reactive
.server .ReactiveWebServerFactory; SearchStrategy: all) did
not find any beans"
3
]

This fragment of JSON in the autoconfiguration report can be described as follows:

ReactiveWebServerConfiguration.ReactorNettyAutoConfiguration 1S a Spl’ll’lg Boot autoconﬁguration pOllCY

that was evaluated, specifically on the subject of Netty.

® gconditionalonclass matched on spotting Reactor's netpserver class, glue code used by Reactor to

embed the Netty container. This shows that Netty was on the classpath.

® gconditionalonMissinggean 1S the second condition, and was negative, indicating there is no overriding,
user-defined reactivewebserverractory defined. Therefore, Spring Boot is activating its default policy

for Reactor Netty.

To divine exactly what this autoconfiguration policy was, we can open the code and inspect it ourselves.

Using our IDE, we merely need to look for the parent class, reactivewebserverconfiguration:

| abstract class ReactiveWebServerConfiguration {

@ConditionalOnMissingBean(ReactiveWebServerFactory.class)
@ConditionalOnClass({ HttpServer.class })
static class ReactorNettyAutoConfiguration {

@Bean
public NettyReactiveWebServerFactory
NettyReactiveWebServerFactory() {
return new NettyReactiveWebServerFactory();
}

}

This fragment from Spring Boot's Reactive web server configuration code can be explained as follows:

ReactivewebServerConfiguration 1S an abstract class that is merely used as a container for other policies

® @ConditionalOnMissingBean(ReactiveWebServerFactory.class) tells Spl‘ll’lg Boot to back off and not use this if
the user has declared such a bean elsewhere

® @conditionalonclass({Httpserver.class}) tells Spring Boot to only consider this if Reactor Netty is on the
classpath

® static class ReactorNettyAutoConfiguration NAaMeES this rule used to autoconﬁgure Reactor Netty

e @sean flags the code as a Spring bean

® return new NettyReactiveWebServerFactory() actually creates the SpI’ll’lg bean for Reactor Netty

All this comes together to allow Reactor Netty to be configured automatically when put on the
classpath. And we spotted it in the autoconfiguration report.

There are other bean definitions in reactivewebserverconfiguration, including support for Jetty,
0 Apache Tomcat, and Undertow, but aren't shown due to space constraints.

What is this good for?

If we are attempting to use some feature of Spring Boot and it's not going as desired, one thing to debug
is whether or not the expected beans are being created. Another usage is if we are working on our own
autoconfiguration module for a given project and need to see if the right beans are being created.

You see, the autoconfiguration report isn't confined to what is released by the Spring team. It looks at
everything.

Speaking of making a change, notice how we have Netty running under the hood. We can tell both from
the console output as well as the autoconfiguration report we just looked at.

What if we wanted to change containers? It's quite easy with Spring Boot. We simply have to tweak the
build file.

By default, Spring Boot uses Netty for Reactive apps, but it's not hard to switch:

compile('org.springframework.boot:spring-boot-starter-webflux') {
exclude module: 'spring-boot-starter-reactor-netty'

}

compile('org.springframework.boot:spring-boot-starter-undertow')

The changes to build.gradie are as follows:

Excludes spring-boot-starter-reactor-netty from the reactive web dependency
e Introduces spring-boot-starter-undertow as an alternative container

If we relaunch our application and look at the autoconfiguration report again and look for the
ReactorNettyAutoConfiguration entry, we will find this:

"ReactiveWebServerConfiguration.ReactorNettyAutoConfiguration": {
"notMatched": [

"condition": "OnClassCondition",
"message": "@ConditionalOnClass did not find required class
'reactor.ipc.netty.http.server.HttpServer'"

3

1

"matched": [

]
b

The new fragment of JSON from the autoconfiguration report shows that the same policy we just
looked at has now switched to notmatched. In the details, it failed because econditionalonciass didn't spot
HttpServer ON the classpath.

In light of switching from Reactor Netty to Undertow, searching for undertow in the autoconfiguration
report will lead us to this:

"ReactiveWebServerConfiguration.UndertowAutoConfiguration": [
{
"condition": "OnClassCondition",
"message": "@ConditionalOnClass found required class
'io.undertow.Undertow'; @ConditionalOnMissingClass did not
find unwanted class"

"condition": "OnBeanCondition",

"message": "@ConditionalOnMissingBean (types:
org.springframework.boot.web.reactive.server
.ReactiveWebServerFactory; SearchStrategy: all) did not
find any beans"

3
]
This fragment of JSON reveals that undertowautoconfiguration 1s now in effect as follows:

® @conditionalOnClass has fOLll’ld Undertow ON the classpath
® @conditionalOnMissingBean has not found a user-defined ReactiveWebServerFactory bean; hence, SpI’ll’lg
Boot did not back off with its autoconfiguration of Undertow.

On further dlggll’lg into UndertowReactiveWebServerFactory, W€ will find all the details needed to run
Undertow for a Reactor-based application.

Making local changes and seeing them on
the target system

So far, we've seen how to speed up developer time by using automatic restarts, and we have gathered
information on what Spring Boot is up to, courtesy of its autoconfiguration report.

The next step for developers is often using the debugger of their IDE. We won't go into profuse detail
about that because it's highly specific to which IDE you use. However, something of extended value
offered by Spring Boot is the opportunity to remotely connect to an application and make changes.

Imagine we have built up our application and pushed it to the cloud. We test a key feature in this
environment because it's the only way to tie it to a particular resource or in a certain configuration. Well,
the process for making changes is much more expensive. We would have to bundle things up, redeploy,
restart, and re-navigate. All for a few lines of code!

Spring Boot's DevTools provide the means to connect our IDE to our remotely running application and
push code changes over the wire, allowing us to automatically make mods and test them immediately.

To get geared up, we must execute the following steps:

1. Add spring.devtools.remote.secret=learning-spring-boot to application.properties.

2. Build the application using ./gradlew build.

3. Push the application to the cloud (Pivotal Web Services in this case with cr push learning-spring-boot
-p build/libs/learning-spring-boot-0.0.1-SNAPSHOT.jar).

4. Instead of running the app locally in our IDE, run Spring Boot's remotespringapplication class instead.

5. Add https://learning-spring-boot.cfapps.io (OI' whatever the app's remote URL IS) as a program
argument.

6. Launch the remotespringapplication configured runner.

The following screenshot shows how to configure it in IntelliJ IDEA:

Run/Debug Configurations

Name: | Learning Spring Boot - Remote| Share Single instance only

WConfigurationyy Code Coverage Logs

Main class: org.springframework.boot.devtools.RemoteSpringApplication

VM options:

Program arguments: https://learning-spring-boot.cfapps.io

Working directory: /Users/gturnquist/Dropbox/Greg/learning-spring-boot-2nd-edition

Environment variables:

Use classpath of module: 5_part2_main [T
JRE: Default (1.8 - SDK of '5_part2_main' module) [T

After it launches, the console in our IDE shows a remote banner:

Run E Learning Spring Boot - Remote

o /Library/Java/JavaVirtualMachines/jdk1.8.0 51.jdk/Contents/Home/bin/java ...
] PR R Y B I _ VA

= OO\ R I IR [N VAR | [VY I [W W WY
LU= \\/ WA L Oeezzeell /-2 N/ 2N /=)))))
ollls (SR PRSI) [O O U R R N O VY N N P A 4

/ /_/_/_/

%] & Spring Boot Remote v2.0.0.BUILD-SNAPSHOT)

=l I 2016-10-02 12:56:57.030 INFO 80824 ——— [main] o.s.b.devtools.RemoteSpringApplicatii

........ 2016-10-02 12:56:57.035 INFO 80824 -— [main] o.s.b.devtools.RemoteSpringApplicatis

j g 2016-10-02 12:56:57.308 INFO 80824 -— [main] s.c.a.AnnotationConfigApplicationCon
2016-10-02 12:56:57.824 INFO 80824 -— [main] o0.s.b.d.a.OptionallLiveReloadServer

X 2016-10-02 12:56:57.868 INFO 80824 —— [main] o.s.b.devtools.RemoteSpringApplicati

Now, we are free to make changes in our IDE, Save/Make Project, and watch them propagate to our
cloud-based app running at https://learning-spring-boot.cfapps.io.

First of all, let's tweak our template at src/main/resources/templates/index.html. We can add a sub-header
below the main header similar to what we did earlier in this chapter:

<hl>Learning Spring Boot - 2nd Edition</h1>

<h2>It's really handy to make local edits and watch them go out
to the cloud automatically</h2>

<h4 th:text="${extral}"></h4>

Hitting Save or Make Project, the code change will be uploaded to the cloud and trigger a restart (this 1s
a great opportunity to use the LiveReload server and automatically refresh the page):

& - C ¢ @ learning-spring-boot.cfapps.io

Learning Spring Boot - 2nd Edition
It's really handy to make local edits and watch them go out to the cloud automatically.

xa [

With this flow, we can make all sorts of changes. When ready, we can commit them locally, build a
newer JAR file, push to the cloud, and continue forward.

It's always recommended to use nttps:// when connecting to a remote application. It
prevents other users from snooping the network for secrets.

Enabling Spring Boot Deviools on a remote application is a risk. The only thing
protecting the application from code updates is the simple secret the two share. You should
never enable this on a production deployment.

Writing a custom health check

Another critical feature needed when we take our application to production is monitoring it. In the olden
days, people would set up a CRON job to ping a server and see if it was up. More intricate systems
would track disk usage, memory usage, and ideally page someone when the database was at 95%, so it
could be saved before falling over.

Spring Boot provides a new era in health check monitoring. To kick things off, launch the application
and visit /application/health:

{
status: "UP",
diskSpace: {
status: "UP",
total: 498937626624,
free: 96519303168,
threshold: 10485760
1
mongo: {
status: "UP",
version: "3.4.6"
}
}

Out of the box, this provides us with an endpoint we can ping and additionally, gives us some
information regarding disk space. It also includes an automatically included MongoDB health check.

But what if we needed to write our own health check? Perhaps, there is a system we are dependent
upon. Knowing if this upstream service is unavailable could prove valuable.

To write our own health check, we merely need to write a Spring component that implements Spring
Boot's Healthindicator interface:

@Component
public class LearningSpringBootHealthIndicator
implements HealthIndicator {

@override
public Health health() {
try {
URL url =
new URL("http://greglturnquist.com/books/learning-spring-
boot");
HttpURLConnection conn =
(HttpURLConnection) url.openConnection();
int statusCode = conn.getResponseCode();
if (statusCode >= 200 && statusCode < 300) {
return Health.up().build();
} else {
return Health.down()
.withDetail ("HTTP Status Code", statusCode)
.build();
3
} catch (IOException e) {
return Health.down(e).build();
}

b
b

Let's dissect this custom health indicator:

® acomponent marks this class so that Spring Boot picks it up and registers it automatically.

e By implementing the nealthindicator interface, Spring Boot will include it along with the pre-built
health checks when we hit /application/health.

e The name LearningSpringBootHealthIndicatoriS'USG(ltO create the indicator. Healthindicator Will be
trimmed off, and the remaining text will be formatted with lazy camel style.

e There is but one method in this interface (meaning you could implement it using a Java 8 lambda),
health(). It uses some plain old Java APIs to open a connection to a remote URL and fetch a status
code. If the status code is good, it will build a nea1th status code of ur. Otherwise, it will build a
Health status code of own while also giving us the failed HTTP status code.

¢ Finally, if any other exceptions occur, we will also get a nea1th status code of bown but with the
information from the exception instead of a commonly coded error path.

Let's relaunch the application and see what our /application/health endpoint reports:

{
"status": "UP",
"details": {
"mongo": {
"status": "UP",
"details": {
"version": "3.4.6"
}
}
"diskSpace": {
"status": "UP",
"details": {
"total": 498937626624,
"free": 43632435200,
"threshold": 10485760
}
1
"learningSpringBoot": {
"status": "UP"
}
}
}

We can see our new health indicator, 1earningspringsoot, listed with its status of ue.

To simulate a failure, let's alter the URL by switching the domain in the code to gregiturnquist.io and see
what happens:

URL url = new URL("http://greglturnquist.io/books/learning-spring-
boot");

When we restart and ping /application/health, this is the outcome:

{
"status": "DOWN",

"details": {
"mongo": {
"status": "UP",
"details": {
"version": "3.4.6"
}
1
"diskSpace": {
"status": "UP",
"details": {
"total": 498937626624,
"free": 43629961216,
"threshold": 10485760

}

3

"learningSpringBoot": {
"status": "DOWN",
"details": {

"error": "java.net.UnknownHostException: greglturnquist.io"

}

}

}
}

A few things have happened:

Our 1earningspringsoot indicator now reports pown. It's not due to some HTTP status code, but
instead connectionexception caused by not being able to form a connection.

e While diskspace and mongo are up, the pown status of this indicator percolates to the top-level status,
switching it to pown.

If we change the URL to simply nttp://gregiturnquist.com/foo and restart, we can see a different status:

O ® _ localhost:8080/application/he X

& C 10 @ localhost:8080/application/health
i Apps [VMware Intranet £ VMware [Jenkins] = (%

// 20170912234318
// http://localhost:8080/application/health

"status": "DOWN"
"details"
"mongo”
"status": "UP"
"details"
"version": "3.4.6"

"diskSpace"
"status": "UP"
"details"
"total": 498937626624
"free": 43624402944
"threshold": 10485760

"learningSpringBoot"
"status": "DOWN"
"details"

"HTTP Status Code": 404

In this situation, we still have a oown status, but the HTTP status code 404 is reported. Both of these
indicators can be quite informative for the DevOps team watching our application.

Adding build data to /application/info

One of the biggest issues in getting to the heart of problems is knowing what version is running! Have
you ever gotten a 3:00 a.m. call from a customer reporting that the system is broken? In a half-awake
state, it's easy to start trying to solve the problem only to discover two hours later, the customer is
running an older version and that their issue was patched last week.

The solution i1s embedding precise versions in every release so that the customer can relay this over the
phone. Then, we can quickly figure out if this issue is new, fixed, or a regression. Interested?

Just add this to the build.gradie file, right below the buildscripts section:

| id "com.gorylenko.gradle-git-properties" version "1.4.17"

This will add a new task, generatecitproperties, to our system. Anytime we engage Gradle to build the
app, whether it's to package up a runnable JAR or simply to bootRun it, a new
build/resources/main/git.properties file will be generated and served up via Sprlng Boot Actuator's
/application/info enfhpoinrz

{
git: {
commit: {
time: 1474434957000,
id: "3ac9cic"
}
branch: "master"
}
}

This report gives us the timestamp, git commit hash, and branch. That tiny nugget of knowledge has the
potential to save us hours of effort over the long haul.

Using Maven? There is a similar plugin:

<build>
<plugins>
<plugin>
<groupId>pl.projectl3.maven</groupId>
<artifactId>git-commit-id-plugin</artifactId>
</plugin>
</plugins>
</build>

It works the same.

One extra tidbit--Spring Boot has two different modes of git information. The format shown is the
SIMPLE mode. To get more details, add this to application.properties:

| management.info.git.mode=full

This will produce a much more detailed report:

{
git: {

commit: {

message: {
full: "Move images back to 1/image",
short: "Move images back to 1/image"

}

time: 1474434957000,

id: "3ac9c1c7875d7378d6fhd607doaf5ef206e21ede",

id.abbrev: "3ac9cic",

user: {
email: "gturnquist@pivotal.io",
name: "Greg Turnquist"

}
}

branch: "master"

It's up to each team to decide which version is the most useful and which version doesn't leak out
unnecessary details.

Additionally, we can grab more details about the build by adding this to our build.gradie file:

springBoot {
buildInfo()
3

This little addition, when we run Gradle's build task, will add a build-info.properties file to our JAR file,
showing content like this:

#Properties

#Tue Sep 12 23:53:05 CDT 2017
build.time=2017-09-12T23\:53\:05-0500
build.artifact=5/part2
build.group=learning-spring-boot
build.name=5/part2
build.version=unspecified

Both of these reports (a simple git report + build info details) would give us this nice bit of information
useful to start debugglng an issue by ViSitil’lg localhost:8080/application/info.

Creating custom metrics

Every program manager loves metrics. In fact, a popular company (Netflix) is so well known in this
arena that people describe it as a metrics-gathering company that happens to stream video.

When it comes to Spring Boot, metrics are a prime piece of Spring Boot Actuator functionality. If we
visit /application/metrics, W€ Can S€€ a list of metrics:

{

"names": [
"jvm.buffer.memory.used",
"jvm.memory.used",
"jvm.buffer.count",
"logback.events",
"process.uptime",
"jvm.memory.committed",
"http.server.requests",
"jvm.buffer.total.capacity",
"jvm.memory.max",
"process.starttime"

This lists all sorts of stuff--memory, garbage collection, heap versus nonheap, threads, and more. That's
nice, but what's usually needed is the ability to create our own metrics.

Spring Boot provides an interface to register our own metrics and have them appear on the same page.
Supplied immediately is the ability to grab a meterregistry.

To make use of this three meter registry, we need to inject it into 1mageservice we built in chapter 3,
Reactive Data Access with Spring Boot:

@Service
public class ImageService {

private final MeterRegistry meterRegistry;

public ImageService(ResourcelLoader resourceloader,
ImageRepository imageRepository,
MeterRegistry meterRegistry) {

this.resourceLoader = resourcelLoader;
this.imageRepository = imageRepository;
this.meterRegistry = meterRegistry;

3

This code shows the following:

e Three metric SGI’ViCGS, CounterService, GaugeService, and InMemoryMetricRepository declared as final
attributes

e These three fields are populated by constructor injection, ensuring they are supplied when the
service is created

With that in place, further down inside creatermage, we can define custom metrics:

public Mono<Void> createImage(Flux<FilePart> files) {
return files
.log("createImage-files")
.flatMap(file -> {
Mono<Image> saveDatabaseImage = imageRepository.save(
new Image(

UUID.randomUUID().toString(),
file.filename()))
.log("createImage-save");

Mono<Void> copyFile = Mono.just(Paths.get(UPLOAD_ROOT,
file.filename()).toFile())
.log("createImage-picktarget")
.map(destFile -> {
try {
destFile.createNewFile();
return destFile;
} catch (IOException e) {
throw new RuntimeException(e);
}

1)

.log("createImage-newfile")
.flatMap(file::transferTo)
.log("createImage-copy");

Mono<Void> countFile = Mono.fromRunnable(() -> {
meterRegistry
.summary("files.uploaded.bytes")
.record(Paths.get (UPLOAD_ROOT,
file.filename()).toFile().length())

1.

return Mono.when(saveDatabaseImage, copyFile, countFile)
.log("createImage-when");
})
.log("createImage-flatMap")
.then()
.log("createImage-done");

3

The first part of the code where a new image is created is the same, but following that is
meterRegistry.summary("files.uploaded.bytes").record(..), which creates a new distribution summary named
files.uploaded.bytes. A distribution summary includes both a name, optional tags, and a value. What is
registered is both a value and an occurrence. Each time a meter is added, it counts it, and the running
total is tabulated.

With these adjustments, we can refresh the application, wait for it to reload, and then upload a few
images, as shown here:

Learning Spring Boot - 2nd Edition

Id Name Image

57f07b6c8dd1b00alc3ceed4a | BO5771_MockupCover_Normal.jpg

Delete

57f07b788dd1b00alc3ceedb | spring-boot-project-logo.png | ’ Delete

57f07ba48dd1b00alc3cee4d | bazinga.png ’%/E'///;y ; ‘ Delete

Choose File No file chosen

Upload

After uploading these images, if we revisit /application/metrics, W€ can see our new metric at the bottom
of the list:

{

"names": [
"jvm.buffer.memory.used",
"jvm.memory.used",
"jvm.buffer.count",
"logback.events",
"process.uptime",
"jvm.memory.committed",
"http.server.requests",
"jvm.buffer.total.capacity",
"jvm.memory.max",
"process.starttime",
"files.uploaded.bytes"

If we navigate tO http://localhost:8080/application/metrics/files.uploaded.bytes, W€ can view it:

{
"name": "files.uploaded.bytes",
"measurements": [
{
"statistic": "Count",
"value": 3.0
3
{
"statistic": "Total",
"value": 208020.0
}
1

"availableTags": [

]
b

This JSON shows that three measurements have been registered with files.uploaded.bytes, totaling 2ese2e
bytes. What's not immediately shown is also the time when these metrics were posted. It's possible to
calculate upload trends using the new Micrometer module (http://micrometer.io).

Micrometer is a new project at Pivotal. It's a facade for metrics gathering. Think SLF4J,
but for metrics instead. It is designed to integrate with lots of metric-gathering systems,
including Atlas, Prometheus, Datadog, Influx, Graphite, and more. In this case, it's using a
memory-based solution. Since it's currently under development and could warrant its own
book, we will not delve too deep.

This is but a sampling of the possible metrics that can be defined. Feel free to dig in and experiment
with the data.

http://micrometer.io

Working with additional Actuator endpoints

Spring Boot Actuator provides lots of extra data. The following table is a quick summary:

Actuatf) r Description

Endpoint

auditevents Exposes audit events for the current application

autoconfig Reports what Spring Boot did and didn't autoconfigure and why

beans Reports all the beans configured in the application context (including ours as well as the
ones autoconfigured by Boot)

configprops Exposes all configuration properties

env Reports on the current system environment

health A simple endpoint to check the life of the app

heapdump Returns a GZip-compressed hprof heap dump file (hprof is a tool by every JDK)

info Serves up custom content from the app

logfile Returns the contents of the logfile (assuming 1o0gging.file OT logging.path has been set)

loggers Lists all cqnﬁgured loggers and their levels. Also supports updating log levels through
posT Ooperations.

metrics Shows counters and gauges on web usage

mappings Gives us details about all Spring WebFlux routes

status threaddump

Creates thread

trace
dump report

Every one of these is prefixed (by default) with sappiications. For example, neaitn is found at
sapplication/health. 10 override this preﬁx, just add management . context-path toO
application.properties and swap out your preferred prefix (such as /manager). Also,

management .context-path is relative to server.context-path.

It's possible to adjust the port that Actuator endpoints are served on. Setting the management .port property
to ses1 will change the port for all these endpoints to ses1. We can even adjust the network address used
by setting management.address=127.0.0.1. This setting would make these information-rich endpoints only
visible to the local box and curtail visibility to outside connections.

Summary

In this chapter, we hooked up Spring Boot's DevTools module. This made it possible to use an
embedded LiveReload server as well as decache the templates. We used Spring Boot's autoconfiguration
report to glean information about the embedded container. Then, we swapped out Netty with Undertow
and verified it through the same report. We dabbled with writing a custom health check and a custom
metric. Then, we buttoned things up by embedding our build information into the application to spot the
version in operations should we get a late night phone call from our Ops center.

In the next chapter, we'll learn how to communicate between processes using fault-tolerant Advanced
Message Queuing Protocol (AMQP) messaging.

AMQP Messaging with Spring Boot

I should add that we are @springboot / @SpringCloudOSS from top to bottom.

— DaShaun Carter @dashaun

In the previous chapter, we added some tools to our social media application to speed up developer time
as well as to provide basic operational support features.

But nothing stands still. In various social media platforms, there is some form of messaging between the
users. Why not create one for ours?

In this chapter, we will learn the following topics:

Getting started with RabbitMQ, an AMQP broker

Creating a message-based module for our social media app
Adding customized metrics to track message flow

Creating dynamically routed messages

Taking a peek at Spring Cloud Stream and its RabbitMQ bindings

Getting started with RabbitMQ

RabbitMQ is an open source AMQP broker. Advanced Message Queuing Protocol (AMQP) is an
open protocol that includes the format of messages sent over the wire. This has risen in popularity
compared to other messaging solutions like JMS. Why?

JMS is an API, whereas AMQP is a protocol. JIMS defines how to talk to the broker but not the format
of its messages. And it's confined to Java apps. AMQP doesn't speak about how to talk to a broker but
about how messages are put on the wire and how they are pulled down.

To illustrate this point, imagine two different applications. If they were both Java, they could
communicate via JMS. But if one of them were Ruby, JMS would be off the table.

To further demonstrate the differences between JMS and AMQP, a JMS-speaking broker can actually
use AMQP under the hood to transport the messages.

In fact, I have contributed to the RabbitMQ JMS Client developed by Pivotal Software

found at https://github.com/rabbitmq/rabbitmqg-jms-client.

For this chapter, we will explore using RabbitMQ in the spirit of maximum options.

https://github.com/rabbitmq/rabbitmq-jms-client

Installing RabbitMQ broker

To do this, we need to install the RabbitMQ broker.

On a macOS, if we are using Homebrew (http://brew.sh/), it's as simple as this:

$ brew install rabbitmq

==> Installing dependencies for rabbitmq: openssl, libpng, libtiff,
WX. ..

==> Pouring openssl-1.0.2j.el_capitan.bottle.tar.gz
/usr/local/Cellar/openssl/1.0.2j: 1,695 files, 12M

==> Pouring libpng-1.6.25.el_capitan.bottle.tar.gz
/usr/local/Cellar/libpng/1.6.25: 25 files, 1.2M

==> Pouring libtiff-4.0.6_2.el_capitan.bottle.tar.gz
/usr/local/Cellar/libtiff/4.0.6_2: 261 files, 3.4M

==> Pouring wxmac-3.0.2_3.el_capitan.bottle.tar.gz
/usr/local/Cellar/wxmac/3.0.2_3: 809 files, 23.6M

==> Pouring erlang-19.1.el capitan.bottle.tar.gz
/usr/local/Cellar/erlang/19.1: 7,297 files, 279.8M

==> Installing rabbitmq
/usr/local/Cellar/rabbitmq/3.6.4: 187 files, 5.8M, built in 6
seco. ..

On Debian Linux, you can use the following command:

| $ sudo apt-get install rabbitmq-server

On any of the Red Hat Linux systems, the following command can be run:

$ yum install erlang
$ yum install rabbitmq-server-<version>.rpm

On various cloud solutions, including Cloud Foundry, RabbitMQ can be found as a service (including
Pivotal's RabbltMQ for PCF at https://network.pivotal.io/products/p-rabbitmq), SOl’l’lCthil’lg we'll GXplOI’G 1n ch
apter 10, laking Your App to Production with Spring Boot.

For more details on downloading and installing, visit https://www.rabbitmg.com/download.html.

http://brew.sh/
https://network.pivotal.io/products/p-rabbitmq
https://www.rabbitmq.com/download.html

Launching the RabbitMQ broker

With the RabbitMQ broker installed, we just need to launch it. There are these two approaches to doing
that:

e Starting it in our current shell
e Having it start when the machine boots

To start in our current shell, we can execute the following command:

$ rabbitmq-server

RabbitMQ 3.6.4. Copyright (C) 2007-2016 Pivotal Software...

#t #H# Licensed under the MPL. See http://www.rabbitmq.com/

##

#e#######H Logs: /usr/local/var/log/rabbitmq/rabbit@localhost.log
He#HHHE #H /usr/local/var/log/rabbitmq/rabbit@localhost-sasl....
HHBHBHBHAH

Starting broker...

completed with 10 plugins.

On a macOS with Homebrew, use the following to launch as a daemon process and relaunch when we
reboot:

$ brew services start rabbitmq

==> Tapping homebrew/services

Cloning into '/usr/local/Homebrew/Library/Taps/homebrew/homebrew-services'...
remote: Counting objects: 10, done.

remote: Compressing objects: 100% (7/7), done.

remote: Total 10 (delta 0), reused 6 (delta 0), pack-reused 0

Unpacking objects: 100% (10/10), done.

Checking connectivity... done.

Tapped 0 formulae (36 files, 46K)

==> Successfully started “rabbitmq® (label: homebrew.mxcl.rabbitmq)

If you are using Homebrew, there is a feature to manage various services. Type homebrew services to see
the commands available. For example, brew services 1ist will list all services and their state:

$ brew services list
Name Status User Plist
activemq stopped
mongodb started gturnquist
/Users/gturnquist/Library/LaunchAgents/hom. ..
mysql stopped
neo4j stopped
rabbitmq started gturnquist
/Users/gturnquist/Library/LaunchAgents/hom. ..
redis stopped
tor stopped

Now we can see that RabbitMQ has joined MongoDB (which we installed in chapter 3, Reactive Data
Access with Spring Boot).

This, essentially, leverages macOS X's 1aunchct1 system with a Homebrew-supplied daemon control file.

For Windows, check out https://www.rabbitmg.com/install-windows.html. It has links to download the broker.
Upon installation, it will configure it with various defaults and also start it up.

https://www.rabbitmq.com/install-windows.html

To control the broker, check out the rabbitmget1.pat script found in the sbin folder (as administrator). Use
the following commands:

® rabbitmgctl start
® rabbitmqctl stop

® rabbitmgctl status

enable rabbitmg_managment, and visit http://localhost:15672. The default username/passwordfor

0 Want to poke around with the RabbitMQ broker in a more visual way? Run rabbitmq-plugins
RabbitMQ is guest/guest. I suggest looking at Exchanges and Queues first.

With the RabbitMQ broker up and running, we can now shift focus to our application efforts.

Adding messaging as a new component to
an existing application

What have we built so far for our social media platform? We have the ability to upload and delete
pictures. However, a key piece of any social media platform is to allow users to interact with each other.
This is commonly done by either commenting on the social media content or chatting directly with each
other.

Let's start by adding the ability to comment on images. But before we get going, let's stop and discuss
the architecture.

For years, people have used the layer approach to split up applications. Fundamentally, we don't want a
big application with all the classes in one package because it's too hard to keep up with everything.

So far, we have everything located in com.gregiturnquist.learningspringboot. Historically, the pattern has
been to split things up in a domain layer, a services layer, and a controllers layer, as shown in the
following screenshot:

src
main
java

com.greglturnquist.learningspringboot
controllers
domain
services

@ & MyCoolApplication

In this structure, we would put every service into the services subpackage and create further sub-
subpackages if need be. We'd put all the domain objects in domain and all the controllers would go into

controllers.

The idea was that controllers call services and services return domain objects. It prevented
entanglements such as services invoking controllers, which made sense at the time.

But with the rise of microservices (something we'll dig into in Chapter 7, Microservices with Spring
Boot), these layer-based approaches become an issue when the application gets really big. When
refactoring is in order, services found in the same package that are functionally unrelated can get tricky
due to needless coupling we may have created.

A more slim and trim approach is to break things up using vertical slices instead of horizontal layers:

src
main
java
com.greglturnguist.learningspringboot
comments
images
i = MyCoolApplication

With the structure shown in the preceding screenshot, we have split things up into images and comments, a
more function-based nature.

We would put everything related to handling images in the former and everything related to comments
in the latter. If the need arises, either of these packages can be further split up into subpackages, as
follows:

src
main
java
com.greglturnguist.learningspringboot
Comments
controllers
domain
services
images
controllers
domain
services
m = MyCoolApplication

Worried that this will cause an explosion of the domain/services/controiiers trio all over our code? Don't
panic! We only do this as needed, and given that each domain subpackage will be relatively small in scope
as compared to the old layer approach, the functionality should be highly cohesive, that is, have much in
common with each other.

Since we are about to create a separate piece of functionality (comments), it would make sense to go
ahead and break up our application into images and comments. So let's do that!

First, let's create the images and comments subpackages. With that in place, the most obvious change is to
MOVE Image, ImageRepository, and ImageService into the image subpackage. Easy enough.

That leaves us with the following:

® | earningSpringBootApplication
® HomeController

® | earningSpringBootHealthIndicator

LearningSpringBootApplication embodies the entire app, so it should stay at the top level. This isn't just a
semantic statement. That class contains our springsootapplication annotation, which enables the
application's autoconfigured behaviors like component scanning. Component scanning should start at
the top level and search all subpackages.

HomeController represents an interesting concept. Even though it calls into 1mageservice, since it serves the
application's top-level view, let's leave it at the top level as well.

As for LearningSpringBootHealthIndicator, d similar case could be made to keep 1t at the root. Since we are
shooting to keep things light at the top, why don't we create a separate module to encompass all Ops-
based features that aren't specific to any one module, ops.

Given all these decisions, our new structure now looks like this:

sro
main
java

com.greglturnguist.learningspringboot
comments
images
€ = Image
I ImageRepository
c ImageService
ops
c LearningSpringBootHealthindicator

C HomeController

| 4

@ = LearningSpringBootApplication

Is spending this amount of time debating package structure worth it? In any agile
environment, it's okay to try something if it doesn't cost two weeks of effort. Stopping to
spend ten minutes thinking about a maintainable structure is an acceptable investment,
especially if we're willing to change it later should the need arise.

Creating a message producer/message
consumer

Having restructured our application to make room for comments, let's get to it!

First of all, we need to add a new dependency to our build file, which is done with the following code:

| compile('org.springframework.boot:spring-boot-starter-amgp')
That will give us access to Spring AMQP, which includes RabbitMQ support.

Adding messaging technology to our application may make us clamor to, well, write some code that
talks to RabbitMQ. But that isn't really a good flow. Instead, we should start from one of two
perspectives--writing a unit test or writing some UI.

Either approach is aimed at figuring out the use case we are trying to solve. Before so/ving the problem
at hand, we need to noodle out what our exact problem is. In this case, let's start from the Ul
perspective.

To do that, we can take advantage of Spring Boot DevTools from the last chapter and launch our
application in the Debug mode with the LiveReload feature enabled. That way, as we make changes, we
can see them right away:

: LiveReload server is running on port 35729

: Registering beans for JMX exposure on startup

: Bean with name 'rabbitConnectionFactory' has been a
: Located managed bean 'rabbitConnectionFactory': reg
: Starting beans in phase -2147482648

: Starting beans in phase @

: Starting beans in phase 2147483647

: Created new connection: rabbitConnectionFactory#168
: Auto-declaring a non-durable, auto-delete, or exclu
: Started HttpServer on /0:0:0:0:0:0:0:0:8080

: Netty started on port(s): 8080

1 : Opened connection [connectionId{localValue:3, serve
poot-cover.jpg)

poot-2nd—edition—cover.jpg)

| : Started LearningSpringBootApplication in 6.655 seco

With this preceding screenshot, we can see our application up and running with the LiveReload server
enabled (and some sample data preloaded).

Displaying comments

Now we can make edits to our Thymeleaf template and create input fields for people to write
comments:

<td>

<li th:each="comment : ${image.comments}"
th:text="${comment.comment}"></1i>

</td>
<td>
<form th:method="post" th:action="@{'/comments'}">
<input name="comment" value="" type="text" />
<input name="imageId" th:value="${image.id}"
type="hidden" />
<input type="submit" />
</form>
</td>

The section of our preceding template where each row is rendered can be explained as follows:

e There is a new column containing an HTML unordered list to display each comment

e The unordered list consists of an HTML line item for each comment via Thymeleaf's th:each
construct

e There is also a new column containing an HTML form to post a new comment

e The form contains an HTML text input for the comment itself

e The form also contains a hidden HTML element specifying the ID of the image that the comment
will be associated with

To support this, we need to update Homecontroller as follows:

private final ImageService imageService;
private final CommentReaderRepository repository;

public HomeController(ImageService imageService,

CommentReaderRepository repository) {
this.imageService = imageService;
this.repository = repository;

3

We have updated the class definition as follows:

o Anew repository field is created for CommentReaderRepository (Wthh we'll define further ahead in the
chapter)
e This field is initialized by constructor injection

We need to look up the comments. To do that, we need a Spring Data repository that can read
comments. And reading comments is ALL this repository needs to do at this stage of our social media

app.
Let's take this new repository and use it inside the Spring WebFlux handler for cer /, like this:

| @GetMapping("/")

public Mono<String> index(Model model) {
model.addAttribute("images",

imageService

.findAllImages()

.flatMap(image ->

Mono. just(image)
.zipWith(repository.findByImageId (
image.getId()).collectList()))

.map (imageAndComments -> new HashMap<String, Object>(){{
put("id", imageAndComments.getT1().getId());
put("name", imageAndComments.getT1().getName());
put("comments",

imageAndComments.getT2());
13)]

);

model.addAttribute("extra",
"DevTools can also detect code changes too");
return Mono.just("index");

3

This last code contains a slight adjustment to the model's images attribute:

e The code takes the riux returned from our mageservice.finda11() method and flatMaps each entry
from an Image into a call to find related comments.

® repository.findByImageId(image.getId()).collectList() actually fetches all comment objects related to a given
Image, but turns it into mono<List<comment>>. This waits for all of the entries to arrive and bundles them
into a single object.

e The collection of comments and it's related image are bundled together via mono. zipwith(mono),
creating a tuple-2 or a pair. (This is the way to gather multiple bits of data and pass them on to the
next step of any Reactor flow. Reactor has additional tuple types all the way up to tupies.)

o After flatMapping rlux<image> INtO Flux<Tuple2<Image, List<comment>>>, W€ then map each entry into a
classic Java map to service our Thymeleaf template.

e Reactor's tuplez has a strongly typed gett1() and gett2(), with 11 being the image and 12 being the list
of comments, which is suitable for our needs since it's just a temporary construct used to assemble
details for the web template.

e The image's id and name attributes are copied into the target map from 1.

e The comments attribute of our map is populated with the complete List<comment> extracted from 2.

Since Thymeleaf templates operate on key-value semantics, there is no need to define a
8 new domain object to capture this construct. A Java map will work just fine.

As we continue working with Reactor types, these sorts of flows are, hopefully, becoming familiar.
Having an IDE that offers code completion is a key asset when putting flows like this. And the more we
work with these types of transformations the easier they become.

If you'll notice, 1mageservice is fully reactive given that we use MongoDB's reactive drivers.

The operation to retrieve comments is also reactive. Chaining reactive calls together, using
0 Reactor's operators and hitching them to Thymeleaf's reactive solution, ensures that

everything is being fetched as efficiently as possible and only when necessary. Writing
reactive apps hinges on having a fully reactive stack.

To round out our feature of reading comments, we need to define commentreaderrepository as follows:

public interface CommentReaderRepository
extends Repository<Comment, String> {

Flux<Comment> findByImageId(String imageId);
3

The preceding code can be described as follows:

It's a declarative interface, similar to how we created magerepository earlier in this book.

e [t extends Spring Data Commons' repository interface, which contains no operations. We are left to
define them all. This lets us create a read-only repository.

e Jthasa findByImageId(String imageld) method that returns a r1ux of comment ObjCCtS.

This repository gives us a read-only readout on comments. This is handy because it lets us fetch
comments and does not accidentally let people write through it. Instead, we intend to implement
something different further in this chapter.

Our CommentReaderRepository needs one thil’lg: a comment domain ObjCCt:

package com.greglturnquist.learningspringboot.images;
import lombok.Data;
import org.springframework.data.annotation.Id;

@Data
public class Comment {

@Id private String id;
private String imageId;
private String comment;

This preceding domain object contains the following:

e The epata annotation tells Lombok to generate getters, setters, tostring(), equals(), and hashcode()
methods

e The id field is marked with Spring Data Commons' ezd annotation so we know it's the key for
mapping objects

e The imagerd field is meant to hold an 1mage.id field, linking comments to images

e The comment field is the place to store an actual comment

For both commentreaderrepository and comment, the entire class is shown including the package.
That's to show that it's located in the images subpackage we defined earlier in this chapter.
This domain object provides the comment information pertinent to images. And this
information is read-only, which means that this is not where updates regarding comments
are made.

\

TIP

Producing comments

Having written the code to display comments, it's now time to craft the bits to create them.

We've already seen the changes to our template adding an HTML form to write a comment. Let's code
the corresponding controller in the comments subpackage, as follows:

@Controller
public class CommentController {

private final RabbitTemplate rabbitTemplate;

public CommentController(RabbitTemplate rabbitTemplate) {
this.rabbitTemplate = rabbitTemplate;

3

@PostMapping("/comments")
public Mono<String> addComment(Mono<Comment> newComment) {
return newComment.flatMap(comment ->
Mono.fromRunnable(() -> rabbitTemplate
.convertAndSend(
"learning-spring-boot",
"comments.new",
comment)))
.log("commentService-publish")
.then(Mono.just("redirect:/"));

3

The code can be explained as follows:

e It's the first class we have put in the new comments subpackage.

e The acontroiier annotation marks this as another Spring controller.

e [t contains a rabbitTemplate initialized by constructor injection. This rabbitTemplate 1S created
automatically by Spring Boot when it spots spring-amgp on the classpath.

e The erostmapping("/comments") annotation registers this method to respond to the form submissions
that we added earlier in the template with th:action="@{'/comments'}".

e Spring will automatically convert the body of the POST into a comment domain object. Additionally,
since we are using WebFlux, deserializing the request body is wrapped in a mono, hence that process
will only occur once the framework subscribes to the flow.

¢ The incoming mono<comment> 1S unpacked using fiatmap and then turned into a
rabbitTemplate.convertAndSend() operation, which itself is Wrapped 1N Mono. fromRunnable.

e The comment is published to RabbitMQ's 1earning-spring-boot €xchange with a routing key of
comments.new.

e We wait for this to complete with then(), and when done, return a Spring WebFlux redirect to send
the webpage back to the home page.

Time out. That bullet point about the RabbitMQ exchange and routing key may have sounded a bit
complex.

“ The comment is published to RabbitMQ's 1earning-spring-boot exchange with a routing key

Ofcommen ts.new.

=

We need to take this apart to understand the basics of AMQP a little better.

AMQP fundamentals

If you've already used JMS, then you're aware that it has queues and topics. AMQP has queues as well
but the semantics are different.

Each message sent by a JMS-based producer is consumed by just one of the clients of that queue.
AMQP-based producers don't publish directly to queues but to exchanges instead. When queues are
declared, they must be bound to an exchange. Multiple queues can be bound to the same exchange,
emulating the concept of topics.

JMS has message selectors which allow consumers to be selective about the messages they receive from
either queues or topics. AMQP has routing keys that behave differently based on the type of the
exchange, as listed next.

A direct exchange routes messages based on a fixed routing key, often the name of the queue. For
example, the last code that we just looked at mentioned 1earning-spring-boot as the name of exchange and
comments.new as the routing key. Any consumer that binds their own queue to that exchange with a routing
key of comments.new Will receive a copy of each message posted earlier.

A topic exchange allows routing keys to have wildcards like comments.*. This situation best suits clients
where the actual routing key isn't known until a user provides the criteria. For example, imagine a stock-
trading application where the user must provide a list of ticker symbols he or she is interested in
monitoring.

A fanout exchange blindly broadcasts every message to every queue that is bound to it, regardless of
the routing key.

Regarding the semantics of AMQP, let's explore that further by looking at the commentservice (also in
comments subpackage) in chunks:

@Service
public class CommentService {

private CommentWriterRepository repository;

public CommentService(CommentWriterRepository repository) {
this.repository = repository;
3

. more to come below...

This preceding code can be described as follows:

e The eservice annotation marks it as a Spring service to be registered with the application context on
startup

® commentwriterRepository 1S @ Spring Data repository used to write new comments and is initialized by
the constructor injection

Which brings us to the meat of this service, which is as follows:

@RabbitListener (bindings = @QueueBinding(
value = @Queue,
exchange = @Exchange(value = "learning-spring-boot"),
key = "comments.new"
)
public void save(Comment newComment) {
repository
.save(newComment)
.log("commentService-save")
.subscribe();

3

This last little function packs a punch, so let's take it apart:

e The erabbitListener annotation is the easiest way to register methods to consume messages.

e The equeuesinding annotation is the easiest way to declare the queue and the exchange it's bound to
on-the-fly. In this case, it creates an anonymous queue for this method and binds to the 1earning-
spring-boot exchange.

e The routing key for this method is comments.new, meaning any message posted to the 1earning-spring-
boot €xchange with that exact routing key will cause this method to be invoked.

e It's possible for the erabbitiistener methods to receive a Spring AMQP wessage, a Spring Messaging
message, various message headers, as well as a plain old Java object (which is what we have here).

e The method itself invokes our commentwriterrepository to actually save the comment in the data store.

To use RabbitMQ, we would normally need eenabierabbit, but thanks to Spring Boot, it's automatically
activated when spring-boot-starter-amgp 1S on the classpath. Once again, Boot knows what we want and
just does it.

An important thing to understand is that erabbitListener makes it possible to dynamically create all the
exchanges and queues needed to operate. However, it only works if an instance of amgpadmin is in the
application context. Without it, ALL exchanges and queues must be declared as separate Spring beans.
But Spring Boot's RabbitMQ autoconfiguration policy provides one, so no sweat!

There is one slight issue with this method that will cause it to not operate--object serialization. If we had
declared the method signature to provide us with a Spring AMQP wessage object, we would pull down a
byte array. However, out of the box, Spring AMQP has limited functionality in serializing custom
domain objects. With no effort, it can handle simple strings and serializables.

But for custom domain objects, there is a more preferred solution--a Spring AMQP message converter,
as shown next:
@Bean

Jackson2JsonMessageConverter jackson2JsonMessageConverter() {
return new Jackson2JsonMessageConverter();

3

This preceding bean, listed right below the save(comment newcomment) method, can be described as follows:

® gsean registers this as a bean definition.
e [t creates Jackson2JsonMessageConverter, dll implementation of Sprlng AMQP'S MessageConverter, used to
serialize and deserialize Spring AMQP wessage objects. In this case, is uses Jackson to convert

POJOs to/from JSON strings.

Spring Boot's RabbitMQ autoconfiguration policy will look for any implementation of Spring AMQP's
messageconverter instances and register them with both the rabbittempiate we used earlier as well as the
SimpleMessagelListenerContainer that it creates when it SpOtS @RabbitListener in our code.

To start our application with a clean slate, we have this code at the bottom of commentservice:

@Bean

CommandLineRunner setUp(MongoOperations operations) {
return args -> {

operations.dropCollection(Comment.class);

Y
3

The last code can be described as follows:

The esean annotation will register this chunk of code automatically

e By implementing Spring Boot's commandLinerunner interface, the Java 8 lambda expression will run
itself when all beans have been created

e [t receives a copy of mongooperations, the blocking MongoDB object we can use to drop the entire
collection based on comment

wrapped in a eprofile("dev") annotation such that it ONLY runs when
spring.profiles.active=dev i?]?réSEﬁlﬁ

0 This code is handy for development, but should be either removed in production or

To persist comments in our data store, we have the following Spring Data repository:

public interface CommentWriterRepository
extends Repository<Comment, String> {

Mono<Comment> save(Comment newComment);

// Needed to support save()
Mono<Comment> findById(String id);

}

This preceding repository isn't too difficult to dissect, and that can be done as follows:

e It's an interface, which means that we don't have to write any code. We just declare the semantics
and Spring Data does the rest.

¢ By extending Spring Data Commons' repository interface, it will be picked up as a repository. Being
an empty interface, it comes with no predefined operations.

e [t contains a save() operation to store a new comment (and return it after it gets saved). If the ID
value is null, Spring Data MongoDB will automatically generate a unique string value for us.

e Spring Data requires a rindone() operation in order to perform saves because that's what it uses to
fetch what we just saved in order to return it.

e All of these method signatures use Reactor mono types.

This repository is focused on writing data into MongoDB and nothing more. Even though it has a
findone(), it's not built for reading data. That has been kept over in the images subpackage.

To finish things up in our comments subpackage, let's look at the core domain object:

package com.greglturnquist.learningspringboot.comments;
import lombok.Data;

import org.springframework.data.annotation.Id;
import org.springframework.data.mongodb.core.mapping.Document;

@Data
@Document
public class Comment {

@Id private String id;
private String imageId;
private String comment;

}

This previous domain object contains the following:

The epata annotation tells Lombok to generate getters, setters, tostring(), equals(), and hashcode()
methods

e The id field is marked with Spring Data Common's exd annotation so we know it's the key for
mapping objects

e The imagerd field is meant to hold an 1mage.id field linking comments to images

e The comment field is the place to store an actual comment

Wait a second! Isn't this the exact same code found in
com.greglturnquist.learningspringboot.images.Comment? It is I”ig]’lf now. But it's important fo
' recognize that different slices may need different attributes in the future. By keeping a
. slice-specific domain object, we can change one without the risk of changing the other. In
uls fact, it's possible that we can (spoiler alert!), later in this book, move this entire comments
system into a separate microservice. By keeping things in nicely divided slices, the risk of
tight coupling can be reduced.

Another factor is that RabbitMQ is not reactive. Invoking rabbitTemplate.convertandsend() 18 blocking. That
may sound awkward given AMQP is a pub/sub technology. But the whole process of publishing the
message to the RabbitMQ broker holds up our thread, and is, by definition, blocking.

So our code wraps that inside a Java runnable and converts it into a mono via Reactor's mono. fromrunnable.
That makes it possible to invoke this blocking task only when we're ready at the right time. It's
important to know that a Mono-wrapped-Runnable doesn't act like a traditional Java runnable and doesn't
get launched in a separate thread. Instead, the runnabie interface provides a convenient wrapper where
Reactor controls precisely when the run() method is invoked inside its scheduler.

If we refresh our code in the IDE and let it restart, we can now start creating comments. Check out the
following screenshot:

Learning Spring Boot - 2nd Edition
1of1

20 item(s) per page

Id Name

e Ilove the cover!
Delete Submit
e CanI order a copy yet?

57f8641e83a5d272b18d4cel | B05771_MockupCover_Normal.jpg

57f8643b83a5d272b18d4ce3 | bazinga.png 7 e | elete Submit

57£8645883a5d272b18d4ceS | spring-boot-project-logo.png Delete 3pring Boot is awesome! | Submit

Choose File No file chosen

Upload

The preceding screenshot shows a couple of comments added to the first image and a third being
written. Cool, ehh?

But perhaps, you're wondering why we spent all that effort splitting up reading and writing comments?
After all, Spring Data appears to make it easy enough to define a single repository that could handle
both. That may cven 1rnply we didn't need RabbltMQ and could let Homecontroller and commentcontroller USE
the repository directly instead.

The reason to use messaging is to provide a reliable way to offload work to another system. A real
system that grows to thousands, if not millions, of users will see a huge flow of traffic. Think about it.
Are there any other social media platforms where people write comments constantly but only view a
handful at a time?

This facet of our application is designed with scalability in mind. If we had one million users, they may
be writing tens of millions of messages a day. Hitching our controller directly to MongoDB may cause it
to keel over. But if we push all the writes to a separate service, we can tune suitably.

The number of reads 1s much smaller.

Adding customized metrics to track
message flow

Having added the ability to comment on other people's posted images, it would be nice to start gathering
metrics.

To do so, we can introduce metrics similar to those shown in chapter s, Developer Tools for Spring Boot
Apps, as follows:

@Controller
public class CommentController {

private final RabbitTemplate rabbitTemplate;
private final MeterRegistry meterRegistry;

public CommentController(RabbitTemplate rabbitTemplate,
MeterRegistry meterRegistry) {
this.rabbitTemplate = rabbitTemplate;
this.meterRegistry = meterRegistry;

3

@PostMapping("/comments")
public Mono<String> addComment(Mono<Comment> newComment) {
return newComment.flatMap(comment ->
Mono.fromRunnable(() ->
rabbitTemplate
.convertAndSend(
"learning-spring-boot",
"comments.new",
comment))
.then(Mono.just(comment)))
.log("commentService-publish")
.flatMap(comment -> {
meterRegistry
.counter("comments.produced", "imageId", comment.getImageId())
.increment();
return Mono.just("redirect:/");

1

This last code has these few changes compared to what we wrote earlier in this chapter:

® A veterregistry 1S injected through the constructor and captured as a field.

e It's used to increment a comments.produced metric with every comment.

e Each metric is also "tagged" with the related imageld.

e We have to tune the mono Wrapping our rabbitTemplate.convertandsend(), and ensure that the comment is
passed via then(). Then it must be unpacked via fiatmap in the part of the flow that writes metrics.

Should the code talking to the meterregistry also be wrapped in mono. fromrunnable()? Perhaps.
The code blocks when writing, but in this incarnation, the metrics are stored in memory, o
the cost is low. Nevertheless, the cost could rise, meaning it should be properly managed.
If the service became external, the odds would increase quickly in favor of wrapping with
a Sepamte Mono.

In a similar vein, if we inject Meterregistry INt0 commentservice, we can then use it there as well:

@RabbitListener(bindings = @QueueBinding(
value = @Queue,
exchange = @Exchange(value = "learning-spring-boot"),
key = "comments.new"
)
public void save(Comment newComment) {
repository
.save(newComment)
.log("commentService-save")
.subscribe(comment -> {
meterRegistry
.counter ("comments.consumed", "imageId", comment.getImageId())
.increment();

1

}
This lines up with what we added to commentcontrolier. The preceding code can be explained as follows:

e Using the injected meterregistry, we increment a comments.consumed metric with every comment.

e It's also tagged with the comment's related imageld.

e The metrics are handled after the save is completed inside the subscribe method. This method grants
us the ability to execute some code once the flow is complete.

Spring AMQP doesn't yet support Reactive Streams. That is why
rabbitTemplate.convertAndSend() MUSt be wrapped IN Mono. fromRunnable. BZOCkiI’Zg calls such as
this subscribe() method should be red flags, but in this situation, it's a necessary evil until
Spring AMQP is able to add support. There is no other way to signal for this Reactor flow
to execute without it.

The thought of relaunching our app and manually entering a slew of comments doesn't sound very
exciting. So why not write a simulator to do it for us!

@Profile("simulator™")
@Component
public class CommentSimulator {

private final CommentController controller;
private final ImageRepository repository;

private final AtomicInteger counter;

public CommentSimulator(CommentController controller,
ImageRepository repository) {
this.controller = controller;
this.repository = repository;
this.counter = new AtomicInteger(1);

}

@EventListener
public void onApplicationReadyEvent(ApplicationReadyEvent event) {
Flux
.interval(Duration.ofMillis(1000))
.flatMap(tick -> repository.findAll())
.map(image -> {
Comment comment = new Comment();
comment.setImageId(image.getId());
comment . setComment (
"Comment #" + counter.getAndIncrement());
return Mono.just(comment);
1)
.flatMap(newComment ->
Mono.defer(() ->
controller.addComment (newComment)))

.subscribe();

Let's take this simulator apart:

The errofile annotation indicates that this only operates if spring.profiles.active=simulator 1S present
when the app starts

The aecomponent annotation will allow this class to get picked up by Spring Boot automatically and
activated

The class itself is located in the root package, com.greglturnquist.learningspring, given that it pulls bits
from both subpackages

The eeventListener annotation signals Spring to pipe application events issued to the app context. In
this case, the method is interested in applicationreadyevents, fired when the application is up and
operational

Flux.interval(buration.ofMillis(1000)) causes a stream of lazy ticks to get fired every 1000 ms, lazily
By flatMapping over this r1ux, each tick is transformed into all images using the 1magerepository
Each image is used to generate a new, related comment

Using the injected commentcontroller, it simulates the newly minted comment being sent in from the
web

If we reconfigure our runner with spring.profiles.active=simulator, We can see it run. IntelliJ IDEA
provides the means to set Spring profiles easily:

Name: | LearningSpringBootApplication

tn

M Code Coverage Logs

Main class: com.greglturnquist.learningspringboot.LearningSpringBootApplication
VM options:

Program arguments:

Working directory:

Environment variables:

Use classpath of module: 6_part2_main

JRE: Default (1.8 - SDK of '6_part2_main' module)

Spring Boot Settings

Enable debug output Hide Banner

Active Profiles:

You can see the entry highlighted at the bottom of the previous screenshot.

If we kick things off after hearing our machine's fan move into high gear, we can check the metrics at

http://localhost:8080/application/metrics/comments.consumed and

http://localhost:8080/application/metrics/comments.produced, and GXpCCt to see tallies.

In this last SCI’GGl’lShOt, w¢€ can clearly S€€ counter.comments.produced and counter.comments.consumed, and they

happen to be the same, which means that none were lost.

We can also see the unique image IDs with an equal number of messages spread between them (as
expected with our simulator).

Peeking at Spring Cloud Stream (with
RabbitMQ)

Linking lots of small services together via messaging is a very common pattern. It increases in
popularity with the rise of microservices. Coding the same pattern over and over using rabbitTemplate OF
some other transport template (karkatemplate and others) is another level of complexity we shouldn't be
saddled with.

Spring Cloud Stream (http://cloud.spring.io/spring-cloud-stream/) to the rescue!

Spring Cloud Stream takes the concept of inputs, outputs, and transformers from Spring Integration
and makes it super easy to chain them together.

To alter our social media platform to do this, we can remove spring-boot-starter-amgp from our build file
and add this instead:
compile(
'org.springframework.cloud:spring-cloud-starter-stream-rabbit"')

compile(
'org.springframework.cloud:spring-cloud-stream-reactive')

This preceding dependency brings in the following:

spring-cloud-stream-binder-rabbit-core
spring-cloud-stream-codec

spring-cloud-stream

spring-cloud-stream-reactive

spring-boot-starter-amqp

® spring-integration-amgp

Spring Cloud Stream has many starters. In essence, we must pick the underlying transport
o technology, but we don't have to interact with the transport technology directly.

http://cloud.spring.io/spring-cloud-stream/

Introduction to Spring Cloud

Spring Cloud? What is that?

Spring Cloud is an extension of Spring Boot provided through various libraries and aimed at addressing
different cloud-native patterns. In this case, Spring Cloud Stream aims to simplify the chaining together
of services via messaging.

To use any Spring Cloud library, we need to add the following chunk to the bottom of our build.gradie
file:

dependencyManagement {
imports {
mavenBom "org.springframework.cloud:spring-cloud-
dependencies:${springCloudVersion}"

b
b

This preceding fragment of code is part of Spring's Dependency Management gradle plugin, pulling in
Spring Cloud BOM (Bill of Materials). In this case, it has a variable, springcloudversion, which we need
to select.

Spring Cloud has release trains, which means that each library has a version but all the versions are
coordinated. By picking one train, we get a fleet of tools to pick from (and we will throughout the rest
of this book!).

The Spring Cloud release train tied to Spring Boot 2.0 is rinchley, so let's put that right next to our
version of Boot at the top:

buildscript {
ext {
springBootVersion = '2.0.0.M5'
springCloudVersion = 'Finchley.M3'

3
,

page at http://projects.spring.io/spring-cloud/.

0 If you're curious about the various release trains of Spring Cloud, check out its project

With Spring Cloud's BOM and Spring Cloud Stream added to our build, let's return to configuring
messaging using Spring Cloud Stream's core interfaces, as follows:

@Controller
@EnableBinding(Source.class)
public class CommentController {

private final CounterService counterService;
private FluxSink<Message<Comment>> commentSink;
private Flux<Message<Comment>> flux;

public CommentController(CounterService counterService) {
this.counterService = counterService;
this.flux = Flux.<Message<Comment>>create(

http://projects.spring.io/spring-cloud/

emitter -> this.commentSink = emitter,
FluxSink.OverflowStrategy.IGNORE)
.publish()

.autoConnect();

3

@PostMapping("/comments")
public Mono<String> addComment(Mono<Comment> newComment) {
if (commentSink != null) {
return newComment
.map(comment -> commentSink.next(MessageBuilder
.withPayload(comment)
.build()))
.then(Mono.just("redirect:/"));
} else {
return Mono.just("redirect:/");
}

3

@StreamEmitter
public void emit(@Output(Source.OUTPUT) FluxSender output) {
output.send(this.flux);

b
b

This last code 1s very similar to the commentcontroiler that we created earlier in this chapter, but with the
following differences:

® @enableBinding(Source.class) flags this app as a source for new events. Spring Cloud Stream uses this
annotation to signal the creation of channels, which, in RabbitMQ), translates to exchanges and
queues.

e The constructor proceeds to set up a rluxsink, the mechanism to emit new messages into a
downstream r1ux. This sink is configured to ignore downstream backpressure events. It starts
publishing right away, autoconnecting to its upstream source upon subscription.

e The objects being emitted are message<comment>, which is Spring's abstraction for a POJO wrapped as
a transportable message. This includes the ability to add headers and other information.

e Inside addComments, if the sink has been established, it maps newComment into a Message<Comment> using
Spring Messaging APIs. Finally, it transmits the message into the sink.

e When the message is successfully emitted to riux, a redirect is issued.

e To transmit Flux Of Message<comment> Objects, a separate method, enit, is wired up with an estreamemitter
annotation. This method is fed a riuxsender, which provides us with a Reactor-friendly means to
transmit messages into a channel. It lets us hook up the riux tied to our riuxsink.

e The @output (source.output) annotation marks up which channel it gets piped to (visiting source.output
reveals the channel name as output).

That's a lot of stuff packed into this controller. To better understand it, there are some fundamental
concepts to realize.

First of all, it's not common practice to create a riux and then add to it. The paradigm is to wrap it
around something else. To drive this point home, riux itself is an abstract class. You can't instantiate it.
Instead, you must use its various static helper methods to craft one. So, when we want to take a
behavior that is tied to users clicking on a site and link it to a r1ux that was created when the application
started, we need something like riuxsink to bridge these two things together.

Spring Cloud Stream focuses on chaining together streams of messages with source/sink semantics.

When it comes to Reactor, this means adapting a r1iux of messages onto a channel, a concept curated for
several years by Spring Integration. Given that the concrete nature of the channel is abstracted away;, it
doesn't matter what transport technology we use. Thanks to the power of Spring Boot, this is defined by
dependencies on the classpath. Nevertheless, we'll continue using RabbitMQ because it's darn simple
and powerful at the same time.

By the way, we'll see this concept of connecting a sink to riux again when we visit chapter 8, WebSockets
with Spring Boot. It's a common Reactor pattern when connecting one-off objects to established flows.

To declare a Spring Cloud Stream consumer, we merely need to update our commentservice as follows:

@Service
@EnableBinding(CustomProcessor.class)
public class CommentService {

At the tOp of CommentService, W€ need to add @EnableBinding(CustomProcessor.class). If this was the Ol’lly Sprlng
Cloud Stream component, we could have used @enablesinding(Processor.class), however, we can't share the
same channel, output, with the commentcontrolier. So we need to code a custom set of channels,
customProcessor as Shown below:

public interface CustomProcessor {

String INPUT = "input";
String OUTPUT = "emptyOutput";

@Input(CustomProcessor.INPUT)
SubscribableChannel input();

@Ooutput(CustomProcessor.OUTPUT)
MessageChannel output();

This custom processor is quite similar to Spring Cloud Stream's processor:

It's a declarative interface.

e [t has two channel names, veut and output. The neut channel uses the same as processor. To avoid
colliding with the output channel of source, we create a different channel name, emptyoutput. (Why call
it emptyOutput? We'll see in a moment!)

e The 1S a subscribablechannel for inputs and a MessageChannel for outputs.

This flags our application as both a sink as well as a source for events. Remember how we had to subscribe
earlier when consuming with rabbitTemplate?

Thankfully, Spring Cloud Stream is Reactor-friendly. When dealing with Reactive Streams, our code
shouldn't be the termination point for processing. So, receiving an incoming riux of comment Objects must
result in an outgoing riux that the framework can invoke as we'll soon see.

Further down in commentservice, we need to update our save method as follows:

@StreamListener
@Output(CustomProcessor.OUTPUT)
public Flux<Void> save(@Input(CustomProcessor.INPUT)
Flux<Comment> newComments) {
return repository

.saveAll(newComments)
.flatMap(comment -> {
meterRegistry
.counter("comments.consumed", "imageId", comment.getImageId())
.increment();
return Mono.empty();

3

}

Let's tear apart this preceding updated version of save:

The erabbitListener annotation has been replaced with estreanListener, indicating that it's transport-
agnostic.

e The argument newcomments 1s tied to the input channel via the ernput() annotation.

e Since we've marked it as Fiux, we can immediately consume it with our MongoDB repository.

e Since we have to hand a stream back to the framework, we have marked up the whole method with
@output.

e From there, we can flatMap it to generate metrics and then transform it into a riux of mono<void> S
with mono.empty(). This ensures that no more processing is done by the framework.

This method has the same concept as all Spring e*Listener annotations--invoke the method with optional
domain objects. But this time, it receives them from whatever underlying technology we have
configured Spring Cloud Stream to use. The benefit is that this is slim and easy to manage and our code
is no longer bound to RabbitMQ directly.

That being said, we need to express to Spring Cloud Stream that our source and sink need to
communicate through the same RabbitMQ exchange. To do so, we need to provide settings in

application.yml:

spring:
cloud:
stream:
bindings:
input:
destination: learning-spring-boot-comments
group: learning-spring-boot
output:
destination: learning-spring-boot-comments
group: learning-spring-boot

This last application configuration contains the following details:

® spring.cloud.stream.bindings 1S conﬁgured for both the input and the output channel's destination to be
learning-spring-boot. When using RabbitMQ bindings, this is the name of the exchange and Spring
Cloud Stream uses topic exchanges by default.

e We take advantage of Spring Cloud Streams' support for consumer groups by also setting the group
property. This ensures that even if there are multiple stream listeners to a given channel, only one
listener will consume any one message. This type of guarantee is required in cloud-native
environments when we can expect to run multiple instances.

! As stated early in this bOOk, you can use either application.properties OV application.yml.]fyOLI
find yourself configuring many settings with the same prefix, use YAML to make it easier to

uls read and avoid repetition.

By the way, remember having to define a sackson2isonmessageconverter bean earlier in this chapter to handle
serialization? No longer needed. Spring Cloud Stream uses Esoteric Software's Kryo library for
serialization/deserialization (https://github.com/Esotericsoftware/kryo). That means, we can chuck that bean
definition. Talk about thinning out the code!

If we run the simulator again (spring.profiles.active=simulator) and check
http://localhost:8086/application/metrics, W€ can S€€ our custom metrics tabulating everything.

With this, we have managed to change the comments solution and yet retain the same set of metrics.

However, by switching to Spring Cloud Stream, we have gathered a whole new fleet of metrics, as seen
in this screenshot:

integration.channel.output.errorRate.mean: 0,
integration.channel.output.errorRate.max: 0,
integration.channel.output.errorRate.min: 0,
integration.channel.output.errorRate.stdev: 0,
integration.channel.output.errorRate.count: 0,
integration.channel.output.sendCount: 1080,
integration.channel.output.sendRate.mean: 33.2953175275134,
integration.channel.output.sendRate.max: 0.10356745398044587,
integration.channel.output.sendRate.min: 0.00007268595695495606,
integration.channel.output.sendRate.stdev: 127.44592804513556,
integration.channel.output.sendRate.count: 1080,
integration.channel.output.receiveCount: -1,
integration.channel.input.errorRate.mean: 0,
integration.channel.input.errorRate.max: 0,
integration.channel.input.errorRate.min: 0,
integration.channel.input.errorRate.stdev: 0,
integration.channel.input.errorRate.count: 0,
integration.channel.input.sendCount: 1080,
integration.channel.input.sendRate.mean: 30.60592083415993,
integration.channel.input.sendRate.max: 0.10221006900072098,
integration.channel.input.sendRate.min: 0.000672169029712677,
integration.channel.input.sendRate.stdev: 20.733646866079425,
integration.channel.input.sendRate.count: 1080,
integration.channel.input.receiveCount: -1,

This is a subset (too many to fill a book) covering the input and output channels.

Remember how we wrote a custom health check in the last chapter? It would be handy to have one for
RabbitMQ and its bindings. Guess what? It's already done. Check it out:

https://github.com/EsotericSoftware/kryo

status: "UP",
- learningSpringBoot: {
status: "UP"
}r
- diskSpace: {
status: "UP",
total: 498937626624,
free: 89344151552,
threshold: 10485760

e
- rabbit: {
status: "UP",
version: "3.6.4"
Yo
- mongo: {
status: "UP",
version: "3.2.6"
e

- binders: {
status: "UP",
- rabbit: {
status: "UP",
- binderHealthIndicator: {
status: "UP",
version: "3.6.4"

In this last screenshot, we can see the following:

The RabbitMQ broker is up and operational
e Our RabbitMQ binders are operational as well

With this in place, we have a nicely working comment system.

Logging with Spring Cloud Stream

To wrap things up, it would be nice to actually see how Spring Cloud Stream is handling things. To do
so, we can dial up the log levels in application.ymi like this:

logging:
level:
org:
springframework:
cloud: DEBUG
integration: DEBUG

This last code dials up the log levels for both Spring Cloud Stream and its underlying technology,
Spring Integration. It's left as an exercise for the reader to change rabbittemplate log levels by setting
org.springframework.amqp=DEBUG and see what happens.

With these levels dialed up, if we run our application, we can see a little of this:

: Created new connection: rabbitConnectionFactory#1470a7b3:0/SimpleConnection@31792az
: Channel 'unknown.channel.name' has 1 subscriber(s).
: Binding outputs for :interface org.springframework.cloud.stream.messaging.Processor
: Binding :interface org.springframework.cloud.stream.messaging.Processor:output
: Channel 'application.output' has 1 subscriber(s).
: Starting beans in phase @
: Adding {logging-channel-adapter:_org.springframework.integration.errorLogger} as a
: Channel ‘'application.errorChannel' has 1 subscriber(s).
: started _org.springframework.integration.errorLogger
: Starting beans in phase 2147482647
: Binding inputs for :interface org.springframework.cloud.stream.messaging.Source
: Binding inputs for :interface org.springframework.cloud.stream.messaging.Processor
: Binding :interface org.springframework.cloud.stream.messaging.Processor:input

r : declaring queue for inbound: learning-spring-boot—comments.learning-spring-boot, bc
: autoBindDLQ=false for: learning-spring-boot-comments.learning-spring-boot
: started inbound.learning-spring-boot
: Adding {message-handler:inbound.learning-spring-boot-comments. learning-spring-boot]
: started inbound.learning-spring-boot-comments.learning-spring-boot

This previous screenshot shows a clear separation between Spring Cloud Stream involved in binding
compared to Spring Integration dealing with channel settings as well as setting up AMQP exchanges
and queues.

It's also nice to observe that the logglng preﬁx o.s.c.s 18 short for org.springframework.cloud.stream OT Spl‘ll’lg
Cloud Stream.

If we add a new comment on the web page, we can see the outcome, as seen here:

: preSend on channel 'output', message: GenericMessage [payload=Comment(id=null, imar
: org.springframework.cloud.stream.binder.AbstractMessageChannelBinder$SendingHandle
: registering [40, java.io.File]l with serializer org.springframework.integration.cod
: org.springframework.integration.amqp.outbound.AmgpOutboundEndpoint@52038bac receiv:
: headerName=[contentType]l WILL be mapped, matched pattern=x
: handler 'org.springframework.integration.amqp.outbound.AmgpOutboundEndpoint@52038b:
: postSend (sent=true) on channel 'output', message: GenericMessage [payload=Comment
-t headerName=[amqp_receivedDeliveryMode] WILL be mapped, matched pattern=x
: headerName=[amgp_receivedRoutingKey] WILL be mapped, matched pattern=x
-t headerName=[amqp_receivedExchange] WILL be mapped, matched pattern=x
- : headerName=[amgp_deliveryTag] WILL be mapped, matched pattern=x
r : headerName=[amqp_correlationId] WILL be mapped, matched pattern=x
r : headerName=[amqp_redelivered] WILL be mapped, matched pattern=x
: headerName=[contentType] WILL be mapped, matched pattern=x
-t headerName=[contentType] WILL be mapped, matched pattern=x
: org.springframework.cloud.stream.binder.AbstractMessageChannelBinder$ReceivingHand
| onSubscribe([Fuseable] FluxOnAssembly.OnAssemblySubscriber)
| request(256)
: preSend on channel 'input', message: GenericMessage [payload=Comment(id=null, imag
onNext (Image (1d=59894898c4d956e34025dacc, name=learning-spring-boot-cover.jpg))
| request(1)
| onNext (Image(id=59894898c4d956e34025dacd, name=learning-spring-boot-2nd-edition-
| request(1)
: | onNext(Image(id=59894899c4d956e34025dace, name=bazinga.png))
: | onComplete()
postSend (sent=true) on channel 'input', message: GenericMessage [payload=Comment (

This screenshot nicely shows Comment being transmitted to the output channel and then received on
the input channel later.

Also notice that the logging prefix o.s.i indicates Spring Integration, with s.i.m being Spring
Integration's Message API.

Summary

In this chapter, we created a message-based solution for users to comment on images. We first used
Spring AMQP and rabbittemplate to dispatch writes to a separate slice. Then we replaced that with Spring
Cloud Stream with RabbitMQ bindings. That let us solve the comments situation with messaging, but
without our code being bound to a specific transport technology.

In the next chapter, we'll break up our quickly growing, monolithic application into smaller
microservices and use Spring Cloud to simplify integration between these distributed components.

Microservices with Spring Boot

@SpringBoot and @SpringCloudOSS are making it way too easy to build advanced distributed systems.
Shame on you! #ComplimentarySarcasm

— InSource Software @InSourceOmaha

In the previous chapter, we learned how to communicate between different systems using AMQP
messaging with RabbitMQ as our broker.

In this day and age, teams around the world are discovering that constantly tacking on more and more
functionality is no longer effective after a certain point. Domains become blurred, coupling between
various systems makes things resistant to change, and different teams are forced to hold more and more
meetings to avoid breaking various parts of the system, sometimes, for the tiniest of changes.

Emerging from all this malaise are microservices. The term microservice is meant to connote a piece of
software that doesn't attempt to solve too many problems, but a targeted situation instead. Its scope is
microscopic when compared with the existing behemoth monoliths that litter the horizon.

And that's where Spring Cloud steps in. By continuing the paradigm of autoconfiguration, Spring Cloud
extends Spring Boot into the realm of cloud-native microservices, making the development of
distributed microservices quite practical.

In this chapter, we will cover the following topics:

A quick primer on microservices

Dynamically registering and finding services with Eureka
Introducing @SpringCloudApplication

Calling one microservice from another with client-side load balancing
Implementing microservice circuit breakers

Monitoring circuits

e Offloading microservice settings to a configuration server

A quick primer on microservices

As we said, a microservice focuses on solving a problem and solving it right, much like the UNIX
philosophy of make each program do one thing well [Doug Mcllroy].

That said, too many people describe microservices as being less than a certain number of lines of code,
or less than a certain number of megabytes in total size. Nothing could be further from the truth. In fact,
microservices are more closely tied to bounded contexts as defined by Eric Evans in Domain Driven
Design, a worthwhile read despite having been written in 2003.

In essence, a microservice should focus on solving a particular problem, and only use enough domain
knowledge to tackle that specific problem. If other parts of the system wish to interact with the same
domain, their own context might be different.

In case you missed it, we introduced Spring Cloud (http://projects.spring.io/spring-cloud/) in
the previous chapter using Spring Cloud Stream. Spring Cloud is a collection of Spring
projects that are aimed at solving cloud-native problems. These are problems observed
time and again when systems grow in size and scope, and are often relegated to cloud
platforms. Solving cloud-native problems with microservices has seen a high rate of
success, hence making many of their tools a perfect fit for this chapter.

Suffice it to say, entire books have been written on the subject of microservices, so, to further explore
this realm, feel free to look about. For the rest of this chapter, we'll see how Spring Boot and Spring
Cloud make it super simple to engage in microservice development without paying a huge cost.

There are hundreds of books written on the subject of microservices. For more details,
check out the free book, Migrating to Cloud Native Application Architectures by cloud
native polymath Matt Stine (http://mattstine.com). It covers many concepts that underpin
microservices.

http://projects.spring.io/spring-cloud/
http://mattstine.com

Dynamically registering and finding
services with Eureka

At a fundamental level, taking one big application (like we've built so far) and splitting it up into two or
more microservices requires that the two systems communicate with each other. And to communicate,
these systems need to find each other. This is known as service discovery.

The Netflix engineering team built a tool for this called Eureka, and open sourced it. Eureka provides
the means for microservices to power up, advertise their existence, and shutdown as well. It supports
multiple copies of the same service registering themselves, and allows multiple instances of Eureka to
register with each other to develop a highly available service registry.

Standing up a Eureka Server is quite simple. We simply have to create a new application at http://start.s

pring.io.

Generatea Gradle Project % With Java 4

and Spl’lng BooOt 20.0(snapsHoT) 4

Project Metadata

Artifact coordinates
Group

com.greglturnquist.learningspringboot m

Artifact /
learning-spring-boot-eureka-server

Dependencies

Add Spring Boot Starters and dependencies to your application

Search for dependencies
Selected Dependencies
S —. /
Generate Project % + «

Yes, that's correct. We create an entirely separate Spring Boot application using the Spring Initializr,
apart from our functional application. And in the preceding screenshot, the arrows point out that we are
calling 1t learning-spring-boot-eureka-server while also addmg a single dependency, Eureka Server. This
application will be dedicated to providing our microservices with a service registry.

If we peek at our Eureka Server's build file, we'll find a slim list of dependencies toward the bottom:

dependencies {
compile('org.springframework.cloud:spring-cloud-starter-eureka-
server')

3

dependencyManagement {

http://start.spring.io

imports {
mavenBom "org.springframework.cloud:spring-cloud-
dependencies:${springCloudVersion}"

3

}

This short list has but one dependency--spring-cloud-starter-eureka-server. Following it is the same Spring
Cloud Bill of Materials (BOM) used to provide the proper versions of the Spring Cloud components.

Toward the top of the build file, we can see the exact versions of both Spring Boot and Spring Cloud:

buildscript {
ext {
springBootVersion = '2.0.0.M5'
springCloudVersion = 'Finchley.M3'

3

Spring Cloud's rinchiey release train, also mentioned in the previous chapter, is the version
compatible with Spring Boot 2.0.

With that in place, the only code we must write is shown here:

@SpringBootApplication
@EnableEurekaServer
public class LearningSpringBootEurekaServerApplication {

public static void main(String[] args) {
SpringApplication.run(
LearningSpringBootEurekaServerApplication.class);

This preceding simple application can be described as follows:

® @springBootApplication marks this app as a Spring Boot application, which means that it will
autoconfigure beans based on the classpath, and load properties as well.

® @enableturekaserver tells Spring Cloud Eureka that we want to run a Eureka Server. It proceeds to
configure all the necessary beans to host a service registry.

e The code inside public static void main 1S the same as the previous chapters, simply loading the
surrounding class.

Before we can launch our Eureka service registry, there are some key settings that must be plugged in.
To do SO, w€ need to create a src/main/resources/application.yml file as follows:

server:
port: 8761

eureka:
instance:
hostname: localhost
client:
registerWithEureka: false
fetchRegistry: false
serviceUrl:
defaultZone:
http://${eureka.instance.hostname}:${server.port}/eureka/

The previous configuration file can be explained in detail as follows:

server.port lets us run it on Eureka's standard port of s7ea.

e For a standalone Eureka Server, we have to conﬁgure 1t with a eureka.instance.hostname and a
eureka.client.serviceUrl.defaultZone setting. This resolves to http://localhost:8761/eureka, the URI for this
standalone version of Eureka. For a multi-node Eureka Server configuration, we would alter this
configuration.

Eureka servers are also clients, which means that with multiple instances running, they will send
heartbeats to each other, and also registry data. With a standalone instance, we would get bombarded
with log messages about failing to reach peers unless we disable the Eureka server from being a client
Via eureka.client. registerwWithEureka=false and eureka.client. fetchRegistry=false (as w¢E just dld)

To run things in a more resilient mode, we could run two instances, each with a different Spring profile
(peer1 and peer2) with the following configuration:

spring:
profiles: peerl
eureka:
instance:
hostname: peeril
client:
serviceUrl:
defaultZone: http://peer2/eureka/

spring:
profiles: peer2
eureka:
instance:
hostname: peer2
client:
serviceUrl:
defaultZone: http://peerl/eureka/

spring.profiles, in @ YAML file with the triple-dash separators, lets us put multiple profiles in the same
application.yml configuration file. To launch an application with a given profile, we merely need to run it
Wwith spring.profiles.active=peer1 OT SPRING_PROFILES_ACTIVE=peeri. As stated, this configuration file has two
pI’OﬁlGS, peerl and peer2.

Assuming we launched two separate copies of our Eureka Server, each on a different port running each
profile, they would seek each other out, register as clients to each other, send heartbeats, and
synchronize their registry data. It's left as an exercise for the reader to spin up a pair of Eureka Servers.

Going back to the original configuration file we wrote, we can now run
LearningSpringBootEurekaServerApplication. With this service running in the background, we can now embark
on converting our previous monolith into a set of microservices.

Introducing @SpringCloudApplication

If you haven't caught on by now, we plan to split up the system we've built so far so that one
microservice focuses on images, and the other on comments. That way, in the future, we can scale each
service with the appropriate number of instances based on traffic.

To make this break, let's basically grab all the code from the comments subpackage, and move it into an
entirely different project. We'll call one project images and the other one comments.

Before we can copy all that code, we need a project for each. To do so, simply create two new folders,
learning-spring-boot-comments and learning-spring-boot-images. We could g0 back to Sprlng Initializr to create
them from scratch, but that's unnecessary. It's much easier to simply copy the existing build file of our
monolith into both of our new microservices, and customize the name of the artifact. Since the
build.gradle file is almost identical to the monolith, there's no need to inspect it here.

The new comments microservice file layout should look something like this:

comments
build
gradle
src
main
java
com.greglturnguist.learningspringboot.comments
© Comment
(& CommentController
1 CommentRepository
¢ = CommentService
@ = LearningSpringBootCommentsApplication
resources
#3 application.yml
& build.gradle

And the new images microservice file layout should appear something like this:

images

build

gradle

src

main
java
com.greglturnquist.learningspringboot
images
¢ = Comment

CommentController
Config
Image
ImageRepository
ImageService
InitDatabase
UploadController

DO 666 6 @

o
il
"

CustomMetrics
LearningSpringBootHealthindicator
¢ = CommentSimulator
c HomeController
@ = LearningSpringBootimagesApplication
resources
static
templates
4w index.html
g application.yml
test
upload-dir
) build.gradle

o @

With that completed, we now need to tweak the launcher for our comments microservice like this:

@SpringCloudApplication
public class LearningSpringBootCommentsApplication {

public static void main(String[] args) {
SpringApplication.run(
LearningSpringBootCommentsApplication.class);

This last bit of code is, virtually, identical to what we have seen in previous chapters except for the
following:

® @springCloudapplication replaces the previous espringsootapplication. This new annotation extends
@springBootApplication, glving us the same autoconfiguration, component scanning, and property
support (among other things) that we have come to love. Additionally, it adds eenablepiscoveryclient
to register with Eureka and @enabiecircuitsreaker s0 we can create fallback commands if a remote
service is down (something we'll see explored later in this chapter).

e The name of the class has been changed to better describe its job.

There are both @enablecurekaclient and @enablepiscoveryclient annotations available.
piscoveryclient iS the abstract interface that Spring Cloud Netflix puts above eurekaclient in
the event that future service registry tools are built. At this point in time, there is little
difference in our code, except the convenient usage of a single
annotation,@springcloudApplication, 10 tUrn our component into a microservice.

Having split up images and comments, we should make a similar adjustment to the top-level class for images:

@SpringCloudApplication
public class LearningSpringBootImagesApplication {

public static void main(String[] args) {
SpringApplication.run(

LearningSpringBootImagesApplication.class, args);

In the preceding code, we have applied the same type to the images microservice as we did to the comments
microservice (@SpringBootApplication — @SpringCloudApplication).

For each of our microservices to talk to Eureka, we need to add the following code to
src/main/resources/application.yml (11’1 both images and comments)Z

eureka:
client:
serviceUrl:
defaultZone: http://localhost:8761/eureka/

This single-property configuration file can be described as follows:

eureka.client.serviceUrl.defaultzone INStructs our DiscoveryClient-pOWGI'Cd application to look for
Eureka at http://localhost:8761/eureka.

There are many more options for configuring Eureka and its clients. See nttp://cloud. spring.
io/spring-cloud-netflix/spring-cloud-net_‘flix.htmlfOl" more details.

We can now move forward with splitting up our system.

http://cloud.spring.io/spring-cloud-netflix/spring-cloud-netflix.html

Calling one microservice from another with
client-side load balancing

Remember how we configured our Eureka Server earlier to run on a separate port? Every microservice
has to run on a distinct port. If we assume the images service is our frontend (it has the Thymeleaf
template, and is closest to consumers for serving up image data), then we can let it continue to run on
Netty's default port of sese.

That leaves one decision: what port to run the comments service on? Let's add this to the comments service's
application.yml:

server:
port: 9000

This setting instructs Spring Boot to run comments on port seee. With that in place, let's go back to images,
and make some adjustments.

For starters (Spring Boot starters), we need to add some extra things to the images build.gradie file:

compile('org.springframework.cloud:spring-cloud-starter-eureka')
compile('org.springframework.cloud:spring-cloud-starter-hystrix"')

These changes include the following:

® spring-cloud-starter-eureka 1S the dependency needed to register our microservice as a Eureka client.
It brings in several transitive dependencies, the most important one for this section being Ribbon.

® spring-cloud-starter-hystrix 1S the dependency for the circuit-breaker pattern, which we will dig into
later in this chapter.

The Spring Framework has had, for a long time, the powerful resttemp1ate utility. To make a remote call,
we just do something like this:
List<Comment> comments = restTemplate.exchange(
"http://localhost:9000/comments/{imageId}",
HttpMethod.GET,
null,

new ParameterizedTypeReference<List<Comment>>() {3},
image.getId()).getBody();

There's a lot going on here, so let's take it apart:

® restTemplate.exchange() 1S the generic method for making remote calls. There are shortcuts such as
getForobject() and getrorentity(), but when dealing with generics (such as List<comment>), we need to
switch to exchange().

e The first argument is the URL to the comments service that we just picked. It has the port number we
selected along with the route (/comments/{image1d}, a template) where we can serve up a list of
comments based on the image's ID.

e The second argument is the HTTP verb we wish to use--cer.

e The third argument is for headers and any body. Since this is a cer, there are none.

e The fourth argument is the return type of the data. Due to limitations of Java's generics and type
erasure, we have created a dedicated anonymous class to capture the type details for List<comment>,
which Spring can use to interact with Jackson to properly deserialize.

e The final argument is the parameter (image.get1d()) that will be used to expand our URI template's
{imageId} field.

® Since exchange() returns a Spring responseentity<r>, we need to invoke the body() method to extract the
response body.

There is a big limitation in this code when dealing with microservices--the URL of our target service
can change.

Getting locked into a fixed location is never good. What if the comments service changes ports? What if
we need to scale up multiple copies in the future?

Frankly, that's unacceptable.

The solution? We should tie in with Netflix's Ribbon service, a software load balancer that also
integrates with Eureka. To do so, we only need some small additions to our images service.

First, we should create a resttemp1ate object. To do so, let's add a config class as follows:

@Configuration
public class Config {

@Bean

@LoadBalanced

RestTemplate restTemplate() {
return new RestTemplate();

3

3

We can describe the preceding code as follows:

® aconfiguration marks this as a configuration class containing bean definitions. Since it's located
underneath LearningSpringBootImagesApplication, it will be automatically plcked up by component
scanning.

e @eean marks the resttemplate() method as a bean definition.

e The resttempiate() method returns a plain old Spring restTemplate instance.

® @LoadBalanced instructs Netflix Ribbon to wrap this resttempiate bean with load balancing advice.

We can next inject our restTemplate bean into the Homecontroller like this:

private final RestTemplate restTemplate;

public HomeController(ImageService imageService,
RestTemplate restTemplate) {
this.imageService = imageService;
this.restTemplate = restTemplate;

3

This uses constructor injection to set the controller's final copy of resttemplate.

With a load-balanced, Eureka-aware resttemplate, we can now update our index() method to populate

the comments model attribute like this:

restTemplate.exchange(
"http://COMMENTS/comments/{imageId}",
HttpMethod.GET,
null,
new ParameterizedTypeReference<List<Comment>>() {3},
image.getId()).getBody());

This code is almost identical to what we typed out earlier except for one difference--the URL has been
revamped Into http://COMMENTS/comments/{imageId}. commenTs 1S the logical name that our comments microservice
registered itself with in Eureka.

The logical name for a microservice used by Eureka and Ribbon is set using spring.application.name inside
1ts src/main/resources/application.yml file:

comments: spring.application.name: comments

® images:. spring.application.name: images

' The logical name is case insensitive, so you can use either http://COMMENTS/comments/{imageId}
TP OF http://comments/comments/{image1d}. Uppercase helps make it clear that this is a logical
hostname, not a physical one.

With this in place, it doesn't matter where we deploy our system nor how many instances are running.
Eureka will dynamically update things, and also support multiple copies registered under the same
name. Ribbon will handle routing between all instances.

That's nice except that we still need to move the commentreadrepository we built in the previous chapter to
the comments microservice!

In the previous chapter, we differentiated between reading comments with a commentreadrepository and
writing comments with a commentwriterepository. Since we are concentrating all MongoDB operations in
one microservice, it makes sense to merge both of these into one commentrepository like this:

public interface CommentRepository
extends Repository<Comment, String> {

Flux<Comment> findByImageId(String imageId);
Flux<Comment> saveAll(Flux<Comment> newComment);

// Required to support save()
Mono<Comment> findById(String id);

Mono<Void> deleteAll();

Our newly built repository can be described as follows:

e We've renamed it as CommentRepository

o [t still extends repository<comment, string>, indicating it only has the methods we need

e The findsyImage1d(), save(), findone(), and deleteall() methods are all simply copied into this one
interface

It's generally recommended to avoid sharing databases between microservices, or at least
avoid sharing the same tables. The temptation to couple in the database is strong, and can
even lead to integrating through the database. Hence, the reason to move ALL MongoDB
comment operations to one place nicely isolates things.

Using this repository, we need to build a REST controller to serve up lists of comments from

/comments/{imageId}.

@RestController
public class CommentController {

private final CommentRepository repository;

public CommentController(CommentRepository repository) {
this.repository = repository;

3

@GetMapping("/comments/{imageId}")
public Flux<Comment> comments(@PathVariable String imageId) {
return repository.findByImageId(imageld);
3
3

This previous tiny controller can be easily described as follows:

@restcontroller indicates this is a Spring WebFlux controller where all results are written directly
into the HTTP response body

commentRepository 18 injected into a field using constructor injection

@cetMapping() configures this method to respond to Get /comments/{image1d} requests.

@Pathvariable String imageId giVCS us access to the {imageId} piece of the route

The method returns a riux of comments by invoking our repository's findsyimage() using the imagerd

Having coded things all the way from populating the UI with comments in our images service, going
through Ribbon and Eureka, to our comments service, we are fetching comments from the system
responsible for managing them.

RestTemplate doesn't speak Reactive Streams. It's a bit too old for that. But there is a new
remote calling library in Spring Framework 5 called webciient. Why aren't we using it?
Because it doesn't (vet) support Eureka logical hostname resolution. Hence, the part of our
application making resttemplate calls is blocking. In the future, when that becomes
available, I highly recommend migrating to it, based on its fluent API and support for
Reactor types.

In addition to linking two microservices together with remote calls, we have decoupled comment
management from image management, allowing us to scale things for efficiency and without the two
systems being bound together too tightly.

With all these changes in place, let's test things out. First of all, we must ensure our Eureka Server is
running:

/N7 O NANEY
(GG) N L I I I VAR I W W W
NN/) rrrrrrerro))))

QU SN R N R I N G
/=/
(v2

11 Spring Boot ::

2017-08-12 09:48:47.966: Setting initial instance status as:
STARTING
2017-08-12 09:48:47.993: Initializing Eureka in region us-east-1
2017-08-12 09:48:47.993: Client configured to neither register nor
que...
2017-08-12 09:48:47.998: Discovery Client initialized at timestamp
150...
2017-08-12 09:48:48.042: Initializing ...
2017-08-12 09:48:48.044: The replica size seems to be empty.

Check the...
2017-08-12 09:48:48.051: Finished initializing remote region
registrie...
2017-08-12 09:48:48.051: Initialized
2017-08-12 09:48:48.261: Registering application unknown with
eureka w...
2017-08-12 09:48:48.294: Setting the eureka configuration..
2017-08-12 09:48:48.294: Eureka data center value eureka.datacenter
is...
2017-08-12 09:48:48.294: Eureka environment value
eureka.environment 1i...
2017-08-12 09:48:48.302: isAws returned false
2017-08-12 09:48:48.303: Initialized server context
2017-08-12 09:48:48.303: Got 1 instances from neighboring DS node
2017-08-12 09:48:48.303: Renew threshold is: 1
2017-08-12 09:48:48.303: Changing status to UP
2017-08-12 09:48:48.307: Started Eureka Server
2017-08-12 09:48:48.343: Tomcat started on port(s): 8761 (http)
2017-08-12 09:48:48.343: Updating port to 8761
2017-08-12 09:48:48.347: Started
LearningSpringBootEurekaServerApplica...

In this preceding subset of console output, bits of Eureka can be seen as it starts up on port s7e1 and
switches to a state of ur. It may seem quirky to see messages about Amazon Web Services (AWS), but
that's not surprising given Eureka's creators (Netflix) run all their systems there. However, isaws returned
false clearly shows the system knows it is NOT running on AWS.

If you look closely, you can spot that the Eureka Server is running on Apache Tomcat. So
far, we've run everything on Netty, right? Since Eureka is a separate process not involved
in direct operations, it's okay for it not to be a Reactive Streams-based application.

Next, we can fire up the images service:

/\\ / o (W) — NN\
CON— 1" "' 7 VNN
\\/ e rrrr e erro)y)))
RN NN D, N (N U R S A
_ | /=/_/_/_/
:: Spring Boot :: (v2.0.0.M5)

2017-10-20 22:29:34.319: Registering application images with eureka
wi...

2017-10-20 22:29:34.320: Saw local status change event
StatusChangeEve. ..

2017-10-20 22:29:34.321: DiscoveryClient_ IMAGES/retina:images:
registe...

2017-10-20 22:29:34.515: DiscoveryClient_ IMAGES/retina:images -
regist...

2017-10-20 22:29:34.522: Netty started on port(s): 8080 (http)

2017-10-20 22:29:34.523: Updating port to 8080

2017-10-20 22:29:34.906: Opened connection
[connectionId{localVvalue:2, ...

2017-10-20 22:29:34.977: Started

| LearningSpringBootImagesApplication i...

This preceding subsection of console output shows it registering itself with the Eureka service through
DiscoveryClient under the name 1maces.

At the same time, the following tidbit is logged on the Eureka Server:

Registered instance IMAGES/retina:images with status UP
(replication=false)

We can easily see that the images service has registered itself with the name maces, and it's running on
retina (My machine name).

Finally, let's launch the comments microservice:

AN\ / ' _ _(_) _ NN\
CON— 1" "' 7 VAN
Nt crro))))
RN NN D, N (N U R S A
-1 | /=/_/_/_/
: Spring Boot :: (v2.0.0.M5)

2016-10-20 22:37:31.477: Registering application comments with
eureka ...

2016-10-20 22:37:31.478: Saw local status change event
StatusChangeEve. ..

2016-10-20 22:37:31.480:
DiscoveryClient_COMMENTS/retina:comments:9000. ..

2016-10-20 22:37:31.523:
DiscoveryClient_COMMENTS/retina:comments:9000. ..

2016-10-20 22:37:32.154: Netty started on port(s): 9000 (http)

2016-10-20 22:37:32.155: Updating port to 9000

2016-10-20 22:37:32.188: Opened connection
[connectionId{localvalue:2, ...

2016-10-20 22:37:32.209: Started
LearningSpringBootCommentsApplication...

In this last output, our comment handling microservice has registered itself with Eureka under the
logical name commenTs.

And again, in the Eureka Server logs, we can see a corresponding event:

Registered instance COMMENTS/retina:comments:9000 with status UP
(replication=false)

The comments service can be found at retina:9eee (author alert--that's my laptop's hostname, yours will be
different), which matches the port we configured that service to run on.

To see all this from a visual perspective, let's navigate to nttp://1ocalhost:8761, and see Eureka's webpage:

@ o Eureka X Greg.L.Tumnqui...

-

— C 0 O locahost:8761 vr A Oo®O0 3 5]
= € spring £

System Status

Environment test

Data center default

Current time 2016-10-20T22:42:53 -0500

Uptime 00:19

Lease expiration enabled false

Renews threshold 5

Renews (last min) 4

This preceding web page is not provided by Netflix Eureka, but is crafted by the Spring Cloud Netflix
project (hence Spring Eureka at the top) instead. It has some basic details about the environment
including uptime, refresh policies, and others.

Further down on the page is some more interesting information:

DS Replicas

Instances currently registered with Eureka

Application AMls Availability Zones Status
COMMENTS n/a (1) (1) UP (1) - retina:comments:9000
IMAGES n/a (1) (1) UP (1) - retina:images

DS (Discovery Service) Replica details are listed on the web page. Specifically, we can see the logical
applications on the left (comments and maces), their status on the right (both up), and hyperlinks to every
instance (retina:comments:QOOO and retina:images).

If we actually click on the retina:comments:9e00 hyperlink, it takes us to the Spring Boot info endpoint:

@ ® retina:9000/info x
C 0 @ retina:9000/info

{1}

In this case, there is no custom info provided. But it also proves that the service is up and operational.

We may have verified everything is up, but let's prove that our new and improved microservice solution
1s in operation by visiting http://localhost :808e.

If we load up a couple of new images and submit some comments, things can now look like this:

Learning Spring Boot - 2nd Edition

Id Name Image

5809914283a5d2ac3e0ealf6 | platform-spring-boot.png Delete Submit

5809916283a5d2ac3e0ealf7 | BO5771_MockupCover_Normal.jpg Delete Submit

o Can't wait to get my copy

E ¥ ” « Cool cover!

Choose File No file chosen

Upload

What's happening under the hood? If we look at the images microservice's console, we can see a little
action:

2016-10-20 22:53:07.260 Flipping property:

COMMENTS. ribbon.ActiveConn. ..

2016-10-20 22:53:07.286 Shutdown hook installed for:

NFLoadBalancer-P. ..

2016-10-20 22:53:07.305 Client:COMMENTS instantiated a

LoadBalancer:D...

2016-10-20 22:53:07.308 Using serverListUpdater

PollingServerListUpda. ..

2016-10-20 22:53:07.325 Flipping property:

COMMENTS. ribbon.ActiveConn. ..

2016-10-20 22:53:07.326 DynamicServerListLoadBalancer for client

COMM. ..
DynamicServerListLoadBalancer: {

NFLoadBalancer : name=COMMENTS,
current list of Servers=[retina:9000],

}ServerList:org.springframework.cloud.netflix
.ribbon.eureka.DomainExt. ..

2016-10-20 22:53:08.313 Flipping property:

COMMENTS. ribbon.ActiveConn. ..

2016-10-20 22:54:33.870 Resolving eureka endpoints via

configuration

There's a lot of detail in the preceding output, but we can see Netflix Ribbon at work handling software
load balancing. We can also see pynamicserverListLoadBalancer With a current list of servers containing

[retina:9000].

So, what would happen if we launched a second copy of the comments service using server_porT=9001 t0
ensure it didn't clash with the current one?

In the console output, we can spot the new instance registering itself with Eureka:

DiscoveryClient_COMMENTS/retina:comments:9001 - registration
status: 204

If we go back and visit the Spring Eureka web page again at nttp://localhost:8761, we can see this updated
listing of replicas:

DS Replicas

Instances currently registered with Eureka

Application AMIs Availability Zones Status

COMMENTS n/a(2) (2) UP (2) - retina:comments:9001 , retina:comments:9000

IMAGES n/a(1) (1) UP (1) - retina:images

If we start posting comments on the site, they will rotate, going between each comments microservice.

Normally, when using RabbitMQ, each instance of comments will register its own queue, and
hence, receive its own copy of newly posted comments. This would result in double posting
in this scenario. However, Spring Cloud Stream has a solution--consumer groups. By
having spring.cloud.stream.bindings. input.group=comments INn comments microservice's
application.yml, we declare that only one such queue should receive each individual
message. This ensures that only one of the microservices actually processes a given event.
See http://docs.spring.io/spring-cloud-stream/docs/Elmhurst.M1/reference/htmlsingle/index.html#consu
mer-groupstl" more details.

With microservice-to-microservice remote calls tackled (and supported for scaling up), it's time to
pursue another problem often seen in microservice-based solutions.

http://docs.spring.io/spring-cloud-stream/docs/Elmhurst.M1/reference/htmlsingle/index.html#consumer-groups

Implementing microservice circuit breakers

The ability to invoke a remote microservice comes with an implicit risk--there is always a chance that
the remote service is down.

Remember using espringcloudapplication? As a reminder, that annotation contains:

@SpringBootApplication
@EnableDiscoveryClient
@EnableCircuitBreaker
public @interface SpringCloudApplication {

3

The last annotation, genablecircuitereaker, €nables Netflix Hystrix, the circuit breaker solution (http://mart

infowler.com/bliki/CircuitBreaker.html).

In short, a circuit breaker is something that, when it detects a certain threshold of failure, will open the
circuit and prevent any future remote calls for a certain amount of time. The purpose is to prevent
cascade failures while giving the remote service an opportunity to heal itself and come back online.
Slamming a service in the middle of startup might be detrimental.

For example, if the images microservice's Homecontroiler makes a call to comments, and the system is down,
it's possible for the calling thread to get hung up waiting for the request to timeout properly. In the
meantime, incoming requests are served by a slightly reduced threadpool. If the problem is bad enough,
it can hamper calls coming into the frontend controller, effectively spreading the remote service outage
to users.

A side effect when operating multiple instances of such a service is that it can also speed up the failover
to an alternate instance of the service.

In exchange for opening the circuit on a service (and failing a call), we can provide a fallback
command. For example, if Netflix's recommendation engine happens to be down when a user finishes a
show, it will fallback to showing a list of newly released shows. This is definitely better than a blank
screen, or, worse, a cryptic stack trace on the website or someone's TV.

In the previous section, we had this fragment of code inside Homecontrolier.index():

restTemplate.exchange(
"http://COMMENTS/comments/{imageId}",
HttpMethod.GET,
null,
new ParameterizedTypeReference<List<Comment>>() {3},
image.getId()).getBody());

We want to wrap this remote call to the comments system with a circuit breaker/fallback command.

First, we need to move the code into a separate method as follows:

@HystrixCommand(fallbackMethod = "defaultComments")
public List<Comment> getComments(Image image) {

http://martinfowler.com/bliki/CircuitBreaker.html

return restTemplate.exchange(
"http://COMMENTS/comments/{imageId}",
HttpMethod.GET,
null,
new ParameterizedTypeReference<List<Comment>>() {3},
image.getId()).getBody();

3

This tiny Hystrix command can be described as follows:

e This shows the exact same resttemplate call we wrote using Ribbon and Eureka earlier in this
chapter
® (@HystrixCommand(fallback="defaultcomments") Wraps the method with an aspect that hooks into a Hystrix

proxy
¢ In the event the remote call fails, Hystrix will call defauitcomments

What would make a good fallback command? Since we're talking about user comments, there is nothing
better than an empty list, so a separate method with the same signature would be perfect:

public List<Comment> defaultComments(Image image) {
return Collections.emptyList();

3

In this scenario, we return an empty list. But what makes a suitable fallback situation will invariably
depend on the business context.

Hystrix commands operate using Spring AOP (Aspect Oriented Programming). The standard
approach is through Java proxies (as opposed to Aspect] weaving, which requires extra setup). A well-
known issue with proxies is that in-class invocations don't trigger the enclosing advice. Hence, the
Hystrix command method must be put inside another Spring bean, and injected into our controller.

There is some classic advice to offer when talking about Hystrix's AOP advice--be careful

about using thread locals. However, the recommendation against thread locals is even

stronger when we are talking about Reactor-powered applications, the basis for this entire

book. That's because Project Reactor uses work stealing, a well-documented concept that

involves different threads pulling work down when idle. Reactor's scheduler is thread

agnostic, which means that we don't know where the work is actually being carried out. So
don't use thread locals when writing Reactor applications. This impacts other areas too
such as Spring Security, which uses thread locals to maintain contextual security status
With securitycontextHolder. We'll visit this subject in chapter 9, Securing Your App with Spring
Boot.

The following shows our method pulled into a separate class:

@Component
public class CommentHelper {

private final RestTemplate restTemplate;

CommentHelper (RestTemplate restTemplate) {
this.restTemplate = restTemplate;

3

// @HystrixCommand code shown earlier

// fallback method
3

We've already seen the enystrixcommand code as well as the fallback. The other parts we wrote include:

The commenthelper class is flagged with an ecomponent annotation, so, it's picked up and registered as a
separate Spring bean
e This component is injected with the resttemp1ate we defined earlier via constructor injection

To update our Homecontroller to use this instead, we need to adjust its injection point:

private final CommentHelper commentHelper;

public HomeController(ImageService imageService,

CommentHelper commentHelper) {
this.imageService = imageService;
this.commentHelper = commentHelper;

}

The code in Homecontroiler 1S almost the same, except that instead of injecting a restTemplate, it injects

commentHelper.

Finally, the call to populate comments in the index() method can be updated to use the new commentHelper:

| put("comments", commentHelper.getComments(image));

At this point, instead of calling resttemplate to make a remote call, we are invoking commentte1per, which is
wrapped with Hystrix advice to handle failures, and, potentially, open a circuit.

Notice earlier that I said, "In the event the remote call fails, Hystrix will call
defaultComments.", but didn't mention anything about opening the circuit? Perhaps that's
confusing, since this whole section has been about the circuit breaker pattern. Hystrix
tabulates every failure, and only opens the circuit when a certain threshold has been
breached. One missed remote call isn't enough to switch to an offline state.

Monitoring circuits

Okay, we've coded up a command with a circuit breaker, and given it a fallback command in the event
the remote service is down. But how can we monitor it? Simply put--how can we detect if the circuit is
open or closed?

Introducing the Hystrix Dashboard. With just a smidgeon of code, we can have another Spring Boot
application provide us with a graphical view of things. And from there, we can test out what happens if
we put the system under load, and then break the system.

To build the app, we first need to visit http://start.spring.io, and select Hystrix Dashboard and turbine. If
we also select cradie and spring Boot 2.0.0, and enter in our similar artifact details, we can produce another
app. (Notice how handy it is to simply let everything be a Spring Boot app?)

The build file is the same except for these dependency settings:

buildscript {
ext {
springBootVersion = '2.0.0.M5'
springCloudVersion = 'Finchley.M3'

3
,

dependencies {
compile('org.springframework.cloud:spring-cloud-starter-
hystrix-dashboard')

3

dependencyManagement {
imports {
mavenBom "org.springframework.cloud:spring-cloud-
dependencies:${springCloudVersion}"
3

3

We can explain this preceding build file as follows:

o We ple Up spring-cloud-starter-hystrix-dashboard to build a UI for monitoring circuits
e Again, we select Spring Cloud's Finchley BOM release with the dependencymanagement settings

To display the Hystrix dashboard, this is all we need:

@SpringBootApplication
@EnableHystrixDashboard
public class LearningSpringBootHystrixDashboard {

public static void main(String[] args) {
SpringApplication.run(
LearningSpringBootHystrixDashboard.class);

This previous tiny application can be described as such:

® @springBootApplication declares this to be a Spring Boot application. We don't need

http://start.spring.io

@springCloudApplication, because we don't intend to hook into Eureka, nor institute any circuit
breakers.

® @enableHystrixbashboard Will start up a Ul that we'll explore further in this section.
e The class public static void main 1s used to launch this class.

To configure this service, we need the following settings:

server:
port: 7979

Hystrix Dashboard is usually run on port 7979.

With this in place, let's launch the application and take a peek. To see the dashboard, we must navigate
tO http://localhost:7979/hystrix:

@ @ . Hystrix Dashboard X Greg.L. Tumqui...

& 3 C O @ localhost:7979/hystrix ¥ A g ® 0 + 5]

Ml iy,
i

A

W

2
=
=
£
'3
s

Hystrix Dashboard

http:/flocalhost: 8080/ hystrix.stream

Cluster via Turbine (default cluster): http://turbine-hostname:port/turbine stream
Cluster via Turbine (custom cluster): hitp://turbine-hostname:port/turbine stream?cluster=[clusterName]
Single Hystrix App: http://hystrix-app:port/hystrix.stream

Delay: ms Title: images

Monitor Stream

Here we have a pretty simple interface, as seen in the preceding screenshot. It tells us we have options
regarding what we want to view. The simplest variant is to have the dashboard look at one

microservice's collection of circuits. This preceding screenshot shows the URL for the images service, the
one we wrote a @Hystrixcommand for.

Since each microservice that has @EnableCircuitBreaker (pulled 1n via @SpringCloudApplication) has a
/hystrix.strean endpoint outputting circuit metrics, we can enter that service's URL.

After clicking monitor stream, we can see this nice visual display of our single circuit:

® @ Hystrix Monitor X Greg.L.Turnqui...

= C ¢ @ localhost:7979/hystrix/mo... 3¢ A PRONe] 3]

Hystrix Stream: http://localhost:8080/hystrix.stream HYSTRIX

- DEFEND YOUR APP

Circuit Sort: Error then Volume | Alphabetical | Volume | Error | Mean | Median | 90 | 99 | 99.5
Success | Short-Circuited | | Rejected | Failure | Error %

getComments
0

00

0
0.0/s
- 0.0/s
Circuit Closed
Hosts 1 a0th Oms

Median Oms 8Gth Oms
Maan Oms ©95th Oms

Thread Pools Sort: Alphabetical | Volume |

CommentHelper

0.0/s

0.0/s

Active 0 Max Active 0
Queued 0 Executions 0
Pool Size 3 Cueus Size 5

There's a lot on the preceding screen, so let's break it down:

Across the top is the ability to sort various circuits based on different criteria. We only have one
circuit, so it's not that important.

® getcomments 1S sShown underneath circuit. The color coding of the numbers runs across the top, from
success tO Failure, With everything currently showing e.

e There is an overall failure percentage (also at 0%).

e There is a rate of activity for the host and for the cluster (also at 0/second).

¢ [t may be hard to spot, but there's a flat horizontal line just left of Cluster. This will actually update
based on traffic, showing spikes.

e Finally, it tracks the cost of making remote calls, and includes some statistics such as Mean,
Median, 90 percentile, 95 percentile, and 99.5 percentile.

e The Thread Pools section can show how taxed the system is from a threading perspective. This can
help us tune eHystrixcommand if we need to adjust thread-pool settings.

With circuit monitoring set up, why don't we institute a failure, and watch the whole thing go down and
then recover?

To do that, we need to update our simulator that we created earlier in this book:

@Profile("simulator")
@Component
public class CommentSimulator {

private final HomeController homeController;
private final CommentController commentController;
private final ImageRepository repository;

private final AtomicInteger counter;

public CommentSimulator(HomeController homeController,
CommentController commentController,
ImageRepository repository) {
this.homeController = homeController;
this.commentController = commentController;
this.repository = repository;
this.counter = new AtomicInteger(1);

3

@EventListener
public void simulateComments(ApplicationReadyEvent event) {
Flux
.interval(Duration.ofMillis(1000))
.flatMap(tick -> repository.findAll())
.map(image -> {
Comment comment = new Comment();
comment.setImageId(image.getId());
comment .setComment (
"Comment #" + counter.getAndIncrement());
return Mono.just(comment);
1)

.flatMap(newComment ->

Mono.defer(() ->
commentController.addComment (newComment)))
.subscribe();

3

@EventListener
public void simulateUsersClicking(ApplicationReadyEvent event) {
Flux
.interval(Duration.ofMillis(500))
.flatMap(tick ->
Mono.defer(() ->
homeController.index(new BindingAwareModelMap())))
.subscribe();

The following are some key points to note about this preceding code:

The errorile annotation indicates that this component is only active when
spring.profiles.active=simulator 1s set in the environment variables.

L By constructor injection, it gets COpiCS of bOth, commentController and Homecontroller.

® simulateActivity() 1S triggered when Spring Boot generates an applicationreadyevent.

e The r1ux generates a tick every 1000 ms. This tick is transformed into a request for all images, and
then a new comment is created against each one, simulating user activity.

® simulateUsersClicking() 1s also triggered by the same ApplicationReadyEvent. It has a different r1ux that
simulates a user loading the home page every 500 ms.

In both of these simulation flows, the downstream activity needs to be wrapped in a mono.defer in order to
provide a target mono for the downstream provider to subscribe to.

Finally, both of these Reactor flows must be subscribed to, or they will never run.

If we relaunch the images service, and watch the Hystrix Dashboard, we get a nice, rosy picture:

getComments
60| 0]/0.0%
00

| 0

Host: 6.0/s
— Cluster: 6.0/s
Circuit Closed

Hosts 1 90th 14ms
Median 12ms 98th 32ms
Mean 13ms 99.5th 32ms

The bubble on the left of the preceding screenshot is green, and the green 60 at the top indicates that the
volume of traffic for its window of monitoring shows 60 successful hits. Looking at the rate (6.0/s), we

can deduce this is a 10-second window.
I realize that in print, the bubble along with all the numbers are gray, but you can tell
8 success/failure by noting that the circuit is Closed, meaning, traffic is flowing through it.

Let's switch over to our IDE, and kill the comments microservice:

Stop process |

|
‘ #% LearningSpringBootEurekaServerApplication *
% LearningSpringBootimagesApplication

|~ LearningSpringBootCommentsApplication i

This preceding screenshot shows IntelliJ IDEA. Your IDE's kill switch may appear
0 different.

If we jump back to the dashboard, things look very different:

getComments

6 | | 83.0 %
4| 0

30
Host: 3.6/s
Cluster: 3.6/s
Circuit Open

Hosts 1 90th 16ms
Median 12ms 99th 26ms
Mean 13ms 99.5th 26ms

The 10 second window shows 6 successful calls, 30 failed calls, and 24 short circuited calls. The
horizontal status line takes a precipitous drop, and the green bubble has now turned red. Additionally,
the circuit is now Open.

Again, you may not be able to discern the bubble is red in print, but the circuit is now
8 Open, indicating the failures are being replaced with short-circuited calls.

If we follow this outage a little longer, things migrate all the way to 100% failure:

getComments

0 100.0 %
58 | 0
2

0.2/s

0.2/s

Circuit Open

Hosts 1 90th 18ms
Median 13ms 99th 20ms
Mean 10ms 99.5th 20ms

Now there are only two failures with 58 short-circuited calls. In essence, with the circuit Open, there is
no point in trying to make remote calls and wasting resources. Instead, we use the fallback method
without question. We can also see the graph has flatlined at the bottom.

We can simulate our ops team rushing in and fixing things by restarting the comments service:
ootCommentsApplication » v &k % B g S
| Run 'LearningSpringBootCommentsAppl..."' ({+F10)

With a little bit of time, this service will come back up and re-register with Eureka, making it available.
After that, the circuit breaker must wait a minimum amount of time before a remote call will even be
attempted.

Hystrix's default setting is 50% failure or higher to open the circuit. Another subtle property is that a
minimum number of requests must be made to possibly open the circuit. The default is 20, meaning that
19 failures in a row would not open it. When the circuit is opened, Hystrix keeps the circuit open a
minimum amount of time before looking at the rolling window (default: 5000 ms). Hystrix maintains a
rolling window, by default, 10 seconds split up into 10 buckets. As a new bucket of metrics is gathered,
the oldest is dropped. This collection of buckets is what is examined when deciding whether or not to
open the circuit.

defaults here. But if you're interested in adjusting Hystrix's various settings, Visit https://git
y j g 11y g

8 As you can see, there is a lot of sophistication to Hystrix's metrics. We'll just use the
hub. com/Net flix/Hystrix/wiki/configuration Where all its parameters are documented.

When we make a remote call, the circuit is immediately closed:

getComments

57
o0
0

6.0/s
6.0/s

Circuit Closed

Hosts 1 90th 24ms
Median 15ms 99th 338ms
Mean 21ims 99.5th 338ms

Successful calls climbs to 57, and the number of short-circuited and failed calls clears out in a few
seconds time. The graph turns around and climbs back up, showing a nice recovery.

The circuit breaker we have in place watches REST calls from images to comments. The means
a

https://github.com/Netflix/Hystrix/wiki/configuration

% the mechanism by which new comments are sent over the wire via RabbitMQ is, inherently,
fault tolerant. While comments was down, the new comments pile up in RabbitMQ's exchange
until the queue restored itself, and the system caught up.

This nice little scenario shows how we can keep a visual eye on microservice-to-microservice
operations.

Offloading microservice settings to a
configuration server

One thing that quickly adds up when building a microservice-based solution are all the properties that
must be managed. It's one thing to manage a single application's application.ymi file, and make tweaks
and adjustments. But working with all these services, and having to jump to the correct file underneath
each application's src/main/resources folder quickly becomes daunting. On top of that, when trying to
make changes or adjustments, it is easy to overlook the settings of one microservice.

A key piece of the twelve-factor app (nttps://12factor.net/) 1s externalizing configuration. We already
took a big step using Spring Boot's powerful property support. But Spring Cloud brings another key
technology to the table that takes property support to the next level--Spring Cloud Config Server.

The Config Server let's us put all the properties into a centralized location, and feed them via an
application to our existing microservices.

To see how, let's dive into creating one. First, go to nttp://start.spring.io and select config server (along
with our other favorite settings).

When we do that, we get a familiar Gradle build file containing the following dependencies:

buildscript {
ext {
springBootVersion = '2.0.0.M5'
springCloudVersion = 'Finchley.M3'

3
,

dependencies {
compile('org.springframework.cloud:spring-cloud-config-server')

3

dependencyManagement {
imports {
mavenBom "org.springframework.cloud:spring-cloud-
dependencies:${springCloudVersion}"

b
b

We can explain this preceding build file as follows:

® spring-cloud-starter-config-server 1S Ol’lly needed to run a COl’lﬁg Server, not a COl’lﬁg server client
e The dependencymanagement Shows us the release train of Spring Cloud we are using

In a way very analogous to the Hystrix Dashboard, we will create a Config Server:

@SpringBootApplication
@EnableConfigServer
public class LearningSpringBootConfigServer {

public static void main(String[] args) {
SpringApplication.run(
LearningSpringBootConfigServer.class, args);

https://12factor.net/
http://start.spring.io

This preceding app isn't hard to unravel:

® @springBootApplication marks this as a Spring Boot application. Since this is the cornerstone of the
rest of our microservices (including Eureka), it doesn't use Eureka.

® g@enableconfigserver launches an embedded Spring Cloud Config Server, full of options. We'll use the
defaults as much as possible.

e Jthasa public static void main tO launch itself.

With that, we just need a couple of property settings in application.yml:

server:
port: 8888

spring:
cloud:
config:
server:
git:
uri: https://github.com/gregturn/learning-spring-boot-
config-repo

e Let's set its port to ssss, since that is the default port for Spring Cloud Config clients
L EBY'SGtthlg spring.cloud.config.server.git.uri tO https://github.com/gregturn/learning-spring-boot-config-repo,
we tell the Config Server where to get its property settings for all the other services

That's it! That's all we need to build a Config Server. We can launch it right now, but there is one thing
missing--all the other properties of the application!

To configure properties for our Eureka Server, we need to add a eureka.ym1 that looks like this:

server:
port: 8761

eureka:
instance:
hostname: localhost
client:
registerwWithEureka: false
fetchRegistry: false
serviceUrl:
defaultZone:
http://${eureka.instance.hostname}:${server.port}/eureka/

If you'll notice, this is the exact same setting we put into the Eureka Server's application.ymi earlier in this
chapter. We are simply moving it into our config repo.

To make our Eureka Server talk to a Config Server, we need to add this to its build file:

| compile('org.springframework.cloud:spring-cloud-starter-config')
What does this single dependency do?

® spring-cloud-starter-config empowers the Eureka Server to talk to the Config Server for property
settings

https://github.com/gregturn/learning-spring-boot-config-repo

It's important to note that spring-cloud-starter-config is for clients to the Config Server. The
dependency that was added to the Config Server itself was spring-cloud-starter-config-server,
which is only needed to create a Config Server.

There is a certain order by which Spring Boot launches things. Suffice it to say, property sources must
be read early in the Spring lifecycle in order to work properly. For this reason, Spring Cloud Config
clients must have a bootstrap.ym1 file. The one for the Eureka Server must look like this:

spring:

application:
name: eureka

Not a whole lot needs to be in here, but at a minimum, spring.application.name needs to be set so that the
Config Server knows which property file to fetch from its config repo. By default, Spring Cloud Config
clients will seek {spring.application.name}.yml, SO in this Ccase, eureka.yml.

Assuming we have committed eureka.ym1 to our GitHub-based config repo and launched the config
server, we can actually see what is served up:

& i _ localhost:8888/eurekajdefault x

L C ¢ @ localhost:8888/eureka/default
i Apps [) VMware Intranet £ VMware [Jenkins] #=) [] JSON Pretty Print [§] JSON Editor Online... 4 Progran

// 20170813194344

// http://localhost:8888/eureka/default

"name": "eureka"
"profiles”
"default”

"label”: null

"version": "a69475c00e47bc91949e76c79d2df39720967a21"
"state": null

"propertySources”

"name”: "https://github.com/gregturn/learning-spring-boot-config-repo/eureka,yml"”
"source"”
"server.port": 876l
"eureka.instance.hostname": "localhost”
"eureka.client.registerWithEureka": false
"eureka.client.fetchRegistry": false
"eureka.client.servicelrl.defoultZone": "http://${eureka.instance.hostname}:${server.port}/eureka/"

Let's tear apart the details of this preceding screenshot:

http://localhost:8888/eureka/default looks Up spring.application.name=eureka, and finds the default state of
things

e The name eureka 1s at the top along with information like its label and SHA version

e The config server entry lists the available Spring property sources (eureka.yn1) along with each
property found in that property source

& 1t's possible to retrieve different versions of configuration settings. All we have to do is set

w spring.cloud.config.label=foo in bootstrap.yml tofetch an alternative label. When we use Git as
the repository, a label can refer to either a branch or a tag.

In essence, the Spring Cloud Config Server is Yet Another Way™ to craft a property source that the
Spring Framework can intrinsically consume.

Next, let's move all the properties for images from its application.ymi file into the config repo's images.ym1
like this:

eureka:
client:
serviceUrl:
defaultZone: http://localhost:8761/eureka/

spring:
cloud:
stream:
bindings:
output:
destination: learning-spring-boot-comments
group: comments-service
content-type: application/json

With all these settings moved to the Config Server's images.ym1 file, we can replace the application.ym1 with
the fOHOWil’lg src/main/resources/bootstrap.yml file:
spring:

application:
name: images

Earlier in this chapter, spring.application.name=images, along with all the other settings, were combined in
application.yml. To work with Sprlng Cloud COl’lﬁg SGI’VGI‘, w¢e Split out spring.application. name, and put it
inside bootstrap.yml.

We can do the same for comments by moving all of its property settings into comments.ym1. You can see it at n
ttps://github.com/gregturn/learning-spring-boot-config-repo/blob/master/comments.yml, ifyou WiSh, along with
hystrix-dashboard.yml.

Instead, we'll giVC comments the following src/main/resources/bootstrap.yml file:

application:

spring:
name: comments

And do the same for our Hystrix Dashboard app:

application:

spring:
name: hystrix-dashboard

You know what's truly amazing about all this? We don't have to touch the services. At all.

Is running lots of microservices inside your IDE driving you nuts? Constantly starting and
stopping can get old, real fast. IntelliJ IDEA has the Multirun (https://plugins.jetbrains.com/p
1lugin/7248) plugin that lets you group together several launch configurations into a single
command. If you use Eclipse, the CDT (C/C++ Development Tooling) module provides a

https://github.com/gregturn/learning-spring-boot-config-repo/blob/master/comments.yml
https://plugins.jetbrains.com/plugin/7248

component called Launch Groups that lets you do the same. The following screenshot
shows the IntelliJ IDEA Multirun plugin configured for our microservices.

Name: | Learning Spring Boot ch7-part3 Share Single instance only

Choose configurations to run:

#% Run 'LearningSpringBootConfigServer'

% Run 'LearningSpringBootEurekaServerApplication'
#% Run 'LearningSpringBootimagesApplication’

@5 Run 'LearningSpringBootCommentsApplication’
#% Run 'LearningSpringBootHystrixDashboard'

4+ — a ¥

Start configurations one by one with delay | 10 3

Notice the little 10 second delay in the bottom-right corner of the preceding screenshot? The Config
Server needs to be up and operational before any other services start, or they'll fall on default settings.

Using the Multirun plugin, if we launch everything, we should have a nice little system up:

~ ' ~

i% PP Learning Spring Boot ch7-part3 « } io
Each service, when it launches, should show something like this:

: Fetching config from server at: http://localhost:8888
: Located environment: name=comments, profiles=[default], label=master, wi
L : Located property source: CompositePropertySource [name='configService',
n : No active profile set, falling back to default profiles: default

Without touching a line of code, and simply moving most of what we've already written into another
location (or into bootstrap.ym1), we have extracted the entire configuration of our social media site to a
remote location, making configuration a snap to maintain.

So, is our little snap-a-picture social media platform ready for IPO? Heh, maybe not yet. But we've
made a major enhancement that will make us more stable and ready for growth by breaking things up
into microservices without breaking the bank.

There are lots of options in the Spring Cloud Config Server. You can register it with
Eureka, direct clients to fail fast if it's not up, have clients retry if its down at startup, and
more. Security options include the ability to secure the Config Server so that not just
anyone can access it (something we'll visit in chapter 9, Securing Your App with Spring
BOOZ’. For more details, Seée http://cloud.spring.io/spring-cloud-config.

Spring Cloud Config Server currently supports GitHub, GitLab, and Bitbucket out of the
box. This means that you can quickly put your configuration on a publicly hosted GitHub
repository, but you can also install GitLab inside your data center, and point there,
instead, to reduce the risk of public repository outages.

http://cloud.spring.io/spring-cloud-config

Summary

In this chapter, we took a quick tour of building a microservice-based solution using several Spring
Cloud projects combined with their Netflix OSS counterparts. This lets us make each component
smaller, easier to maintain, and more scalable in the long run.

With little effort, we made it possible to run multiple copies of services, and not have other
microservices be impacted by such changes. Services could call other services, we were able to
introduce some resiliency, and we could offload the configuration of this system to an externalized,
centralized repository.

In the next chapter, we will shift our focus back to user experience, and introduce Spring's WebSocket
support to help make the UX more dynamic.

WebSockets with Spring Boot

Hell yeah @springboot rocks! (after winning JAX Innovation Award 2016)

— Andrew Rubalcaba @Han_Cholo

In the previous chapter, we learned how to split our application into microservices driven by bounded
contexts. Yet, we still linked things together in an efficient manner using Spring Cloud.

When it comes to building a social media platform, the standard has been set very high. We all expect
dynamic updates to whatever content we view. If someone comments on a topic that we are also
viewing, we expect to be alerted to the update immediately. Such fluid changes are made possible
through the power of WebSockets.

In this chapter, we will cover the following topics:

Publishing saved comments to a chat service

Broadcasting saved comments to web subscribers

Configuring a WebSocket broker

Consuming messages from the web asynchronously

Introducing user chatting with channel-wide and user-specific messages

We will use Spring's reactive WebSocket API found in WebFlux while also using a little JavaScript in
our template.

Publishing saved comments to a chat
service

In the previous chapter, we connected our images service to the comments service via Spring Cloud Stream.
This let us transmit new comments over the wire to a service dedicated to storing them in a MongoDB
data store.

The following screenshot shows us entering a new comment:

Delete 1en can | get my t-shirt?| Submit

-

Learning Spring Boot
Secena Earmen

To carry on this use case to its natural conclusion, it's expected that after storing a message, we'd want
to share it with everyone, right? To do so, let's pick up with the comment microservice's commentservice.

In the previous chapter, the comments service transformed an incoming stream of Flux<comment> into a
Flux<void>, a stream of voids. This had the effect of, essentially, dropping the stream at this point. In this
chapter, we want to take that incoming stream of comments and forward them.

This is accomplished by altering the comment.save() operation as follows:

@StreamListener
@Output(Processor.OUTPUT)
public Flux<Comment> save(@Input(Processor.INPUT) Flux<Comment>
newComment) {
return repository
.saveAll(newComment)
.map(comment -> {
log.info("Saving new comment " + comment);
meterRegistry
.counter("comments.consumed", "imageId", comment.getImageId())
.increment();
return comment;

1)

This previous code is almost identical to what we had before except for the following changes:

e The last step of the map operation now returns comment instead of mono.empty()
e The method now has a return type of Fiux<comment>

With this tweak, the return results from save() are transmitted over the source.output channel.

Processor. INPUT ANd Processor.ouTpuT are just channel names. They don't say where anything
goes. That's why we need to configure bindings.

T

Our comments.ym1 properties file stored on the Config Server needs to be upgraded as follows:

server:
port: 9000

spring:
cloud:
stream:
bindings:
input:
destination: learning-spring-boot-comments
group: comments-service
content-type: application/json
output:
destination: learning-spring-boot-chat
group: comments-chat
content-type: application/json

The preceding code is mostly the same as the previous chapter, but with the following:

® spring.cloud.stream.bindings.input and its pI‘OpCl’tiGS are the same as before

® spring.cloud.stream.bindings.output.destination pOil’ltS to a different exchange to avoid COllldlng with
the one feeding messages into this service

® spring.cloud.stream.bindings.output.group pI‘OVidGS a logical gI'Ol,lpil’lg to ensure proper handling if we
ever scale up to more than one instance of comments service

® spring.cloud.stream.bindings.output.content-type 1s marked application/json, indicating we don't GXPGC'[
the consumer to use the same domain class, but will probably deserialize into their own POJO
instead

With these changes, we can expect an output as follows:

2017-07-05 00:00:36.769 INFO 92207 --- [ments-service-1]
c.g.l.comments.CommentService : Saving new comment Comment(id=null,
imageId=581d6669596aec65dc9e6c05, comment=Nice cover!)

With all these changes, our comments microservice is geared up to transmit saved comments to someone
else able to broadcast to users. It may be tempting to send them back to the images service. But let's
continue with the concept of keeping a narrow scope, and send this traffic to a different, chat-focused
microservice instead. We can even call it the chat service!

Creating a chat service to handle
WebSocket traffic

If we visit nttp://start.spring.io, select Gradle, Spring Boot 2.0, Eureka Discovery, Config Client,
Stream Rabbit, Lombok, and Reactive Web, we'll have a nice little service ready to chat:

compile('org.springframework.boot:spring-boot-starter-webflux')
compile('org.projectlombok:lombok"')
compile('org.springframework.cloud:spring-cloud-starter-stream-
rabbit')
compile('org.springframework.cloud:spring-cloud-stream-reactive')
compile('org.springframework.cloud:spring-cloud-starter-eureka')
compile('org.springframework.cloud:spring-cloud-starter-config')

These aforementioned dependencies in our new chat service can be described as follows:

® spring-boot-starter-webflux: This comes with a Reactive Streams capable WebSocket API

e 1ombok: This is the library that gets us out of the business of coding getters, setters, and other
boilerplate Java code

® spring-cloud-starter-stream-rabbit: This is the Sprlng Cloud Stream hbrary that uses RabbltMQ as the
underlying technology

® spring-cloud-stream-reactive. This layers on Reactive Streams support

® spring-cloud-starter-eureka: 1his makes the microservice capable of registering itself with our Eureka
Server and of consuming other Eureka-based services

® spring-cloud-starter-config: This lets the microservice get its configuration details from the Config
Server

There is little value in looking at the rest of the build file, since it's the same as our other microservices.

With these dependencies, the only thing needed to make this Yet Another Microservice™ is to fashion
our Sprlng Boot public static void main like this:

@SpringCloudApplication
@EnableEurekaClient
public class LearningSpringBootChatApplication {

public static void main(String[] args) {
SpringApplication.run(
LearningSpringBootChatApplication.class, args);

The last code can be described quite simply:

® @SpringCloudAppplication 1S a @SpringBootApplication combined with a Eureka DiSCOVGI’y, and with circuit
breaker enabled

We're close. Early in this book, we would put the needed settings in application.yml (Or
application.properties), but since we have adopted Spring Cloud Config Server, we, instead, need to create
the fOHOWil’lg bootstrap.yml file:

http://start.spring.io

spring:
application:
name: chat

This bootstrap.ym1 file now identifies our application as the chat microservice to Eureka, and will cause it
to ask the Config Server for chat.ym1 on startup.

To support that, we need to add the following to our Config Server's Git repository:

server:
port: 8200

spring:
cloud:
stream:
bindings:
input:
destination: learning-spring-boot-chat
group: comments-chat
content-type: application/json
newComments:
destination: learning-spring-boot-chat
group: comments-chat
content-type: application/json
clientToBroker:
destination: learning-spring-boot-chat-user-messages
group: app-chatMessages
brokerToClient:
destination: learning-spring-boot-chat-user-messages
group: topic-chatMessages

Wow! That's a lot of settings. Let's take them apart:

® server.port Shows this service will listen on port s2ee. (Why not?)

® spring.cloud.stream.bindings.input contains the exact same settings we saw earlier in the comments
spring.cloud.stream.bindings.output settings. This ensures that the two are talking to each other.

e We also have spring.cloud.stream.bindings.newComments, .clientToBroker, and .brokerToclient. This part 1sa
little complex, so let's discuss what happens.

Before we dig into moving WebSocket messages around, don't forget to commit this
change, and push to origin!

Brokering WebSocket messages

Something that's important to understand is the flow of messages. So far, we have seen messages sent
from the website into the comments service, stored into a MongoDB database, and then forwarded to our
chat service.

At this point, we are trying to onramp these messages to WebSockets. But what does that mean? A
WebSocket is a very lightweight, two-way channel between a web page and the server. WebSockets, on
their own, don't dictate much about what travels over this thin pipe, but one thing is for certain--each
web page, when connected to a server, has a separate session.

Spring WebFlux provides an API that lets us hook into this WebSocket-oriented session, whether to
transmit or receive. But no WebSocket session is immediately linked to another WebSocket session. If
we were using Spring Framework 4's WebSocket API, we would be leveraging its most sophisticated
Messaging API. This API was born in Spring Integration, and is the same concept found in Spring
Cloud Streams. Spring MVC comes with a built-in broker to help bridge messages between different
sessions. In essence, a message that originates in one WebSocket session must be transmitted to the
broker where it can then be forwarded to any other WebSocket session that might be interested.

With Spring WebFlux, we have no such Messaging API, no such broker, and no higher level constructs
such as user-based messaging. But it's no big deal! We can fashion it ourselves--using the Spring Cloud
Stream tools we are already familiar with.

Through the rest of this chapter, we will chain together these streams of messages, and it will be most
elegant.

Broadcasting saved comments

To consume messages sent via Spring Cloud Stream, the chat application needs its own commentservice:

@Service
@EnableBinding(Sink.class)
public class CommentService implements WebSocketHandler {

private final static Logger log =
LoggerFactory.getLogger (CommentService.class);

The preceding code can be described as follows:

e gservice marks this as a Spring bean, picked up automatically when the chat microservice starts

® @EnableBinding(sink.class) Shows this to be a receiver for Spring Cloud Stream messages

¢ Our service implements websocketHandler, 2 WebFlux interface that comes with a
handle(WebSocketSession) method (Wthh we'll use ShOI'ﬂY)

e An Slf4j Logger is used to print out traffic passing through

This service needs to consume the messages sent from Spring Cloud Stream. However, the destination
for these messages is not another Spring Cloud Stream destination. Instead, we want to pipe them into a
WebSocket session.

To do that, we need to pull messages down from a RabbitMQ-based riux, and forward them to a riux
connected to a WebSocket session. This is where we need another one of those riuxsink objects:

private ObjectMapper mapper;
private Flux<Comment> flux;
private FluxSink<Comment> webSocketCommentSink;

CommentService(ObjectMapper mapper) {
this.mapper = mapper;
this.flux = Flux.<Comment>create(
emitter -> this.webSocketCommentSink = emitter,
FluxSink.OverflowStrategy.IGNORE)
.publish()
.autoConnect();

This last bit of code can easily be described as follows:

e We need a Jackson objectmapper, and will get it from Spring's container through constructor
injection.

e To create a riuxsink that lets us put comments one by one onto a rilux, We US€ Flux.create(), and let it
initialize our Sil’lk, webSocketCommentSink.

e When it comes to backpressure policy, it's wired to ignore backpressure signals for simplicity's
sake. There may be other scenarios where we would select differently.

® publish() and autoconnect() Kick our riux into action so that it's ready to start transmitting once hooked
into the WebSocket session.

The idea we are shooting for is to put events directly onto websocketcommentsink, and then hitch the
corresponding fiux into the WebSocket API. Think of it like websocketcommentsink as the object we can
append comments to, and fiux being the consumer pulling them off on the other end (after the consumer
subscribes).

With our websocketcommentsink configured, we can now hook it into our Spring Cloud Stream sink, as
follows:

@StreamListener (Sink.INPUT)
public void broadcast(Comment comment) {
if (webSocketCommentSink != null) {
log.info("Publishing " + comment.toString() +
" to websocket...");
webSocketCommentSink.next(comment);
3
3

The preceding code can be described as follows:

® The broadcast() method is marked as a estreanListener for sink.1neut. Messages get deserialized as
Comment objects thanks to the application/json setting.

e The code checks if our websocketcommentsink 1s null, indicating whether or not it's been created.

¢ A log message is printed.

e The comment is dropped into our websocketsink, which means that it will become available to our
corresponding fiux automatically.

With this service in place, we can expect to see the following in the chat service's logs when a new
comment arrives:

2017-08-05 : Publishing Comment(id=581d6774596aec682ffd07be,
imageId=581d6669596aec65dc9e6c05, comment=Nice cover!) to websocket...

The last step is to push this rF1ux of comments out over a WebSocket session. Remember the
websocketHandler interface at the top of our class? Let's implement it:

@Override
public Mono<Void> handle(WebSocketSession session) {
return session.send(this.flux
.map(comment -> {
try {
return mapper.writeValueAsString(comment);
} catch (JsonProcessingException e) {
throw new RuntimeException(e);
}

1)

.log("encode-as-json")

.map(session::textMessage)

.log("wrap-as-websocket-message"))
.log("publish-to-websocket");

3

This websocketHandler can be described as follows:

e We are handed a websocketsession which has a very simple API

e The comment-based riux is piped into the WebSocket via its send() method

e This r1ux itself is transformed from a series of comment Objects into a series of JSON objects courtesy
of Jackson, and then, finally, into a series of websocketmessage objects

It's important to point out that in Spring Framework 4, much of this was handled by the inner working
of Spring's WebSocket API as well as its Messaging API. There was no need to serialize and deserialize
Java POJOs into JSON representations. That was provided out of the box by Spring's converter services.

In Spring Framework 5, in the WebFlux module, the WebSocket API is very simple. Think of it as
streams of messages coming and going. So, the duty of transforming a chain of comment Objects into one
of JSON-encoded text messages is paramount. As we've just seen, with the functional paradigm of
Reactor, this is no bother.

Getting bogged down in POJO overload? Seeing comment domain objects in every
microservice? Don't panic! While we could write some common module that was used by
every microservice to hold this domain object, that may not be the best idea. By letting

8 each microservice manage their own domain objects, we reduce coupling. For example,
only the coments service actually marks the id field with Spring Data Commons's e1d
annotation, since it's the only one talking to MongoDB. What may appear identical in code
actually carries slightly semantic differences that can arise down the road.

Configuring WebSocket handlers

We've coded our commentservice to implement Spring's websocketHandler interface, meaning, it's ready to
transmit traffic over a WebSocket. The next step is to hook this service into the machinery.

We can start by creating a Spring configuration class:

@Configuration
public class WebSocketConfig {

)

This Spring configuration class is devoted to configuring WebSocket support, and is marked up with the
@configuration annotation, indicating it's a source of Spring bean definitions.

With that in place, we now come to the core piece of registering WebSocket functionality:

@Bean

HandlerMapping webSocketMapping(CommentService commentService) {
Map<String, WebSocketHandler> urlMap = new HashMap<>();
urlMap.put("/topic/comments.new", commentService);

Map<String, CorsConfiguration> corsConfigurationMap =

new HashMap<>();
CorsConfiguration corsConfiguration = new CorsConfiguration();
corsConfiguration.addAllowedOrigin("http://localhost:8080");
corsConfigurationMap.put(

"/topic/comments.new", corsConfiguration);

SimpleUrlHandlerMapping mapping = new SimpleUrlHandlerMapping();
mapping.setOrder(10);

mapping.setUrlMap(urlMap);
mapping.setCorsConfigurations(corsConfigurationMap);

return mapping;

This preceding little chunk of code can be taken apart as follows:

e @sean indicates this entire method is used to construct a Spring bean.

e It's a nand1lermapping bean, Spring's interface for linking routes with handler methods.

e The name of the method, websocketmapping, indicates this method is about wiring routes for
WebSocket message handling.

e [t asks for a copy of the commentservice bean we defined earlier. Since Spring Boot activates
component scanning, an instance of that service will be created automatically, thanks to the eservice
annotation we put on it earlier.

e We create a Java wap, designed for mapping string-based routes onto websockettandler objects, and
dubita urlMap.

e We load the map with /topic/comments.new, and link it with our commentservice, a class that implements
the websocketHandler interface.

e There's the sticky issue of microservices, whereby, our chat service runs on a different port from the
frontend image service. Any modern web browser will deny a web page calling a different port from
the original port it was served. To satisfy security restrictions (for now), we must implement a

custom Cross-origin Resource Sharing or CORS policy. In this case, we add an Allowed Origin
of http://1ocalhost:sese, the address where the frontend image service resides.

e With both the urlMap and the corsConfiguration pOliCY, We construct simpleurlHandlerMapping. It also needs
an order level of 10 to get viewed ahead of certain other route handlers provided automatically by
Spring Boot.

Essentially, this bean is responsible for mapping WebSocket routes to handlers, whether that is to target
client-to-server, or server-to-client messaging. The message route we've designed so far is a WebSocket
message that originates on the server when a new comment is created, and is pushed out to all clients so
they can be alerted to the new comment.

In Spring Framework 4, there is an annotation-based mechanism that lets us configure these routes
directly on the handlers themselves. But for Spring Framework 5 (WebFlux), we must configure things
by hand. CORS is also critical to handle given the way we split things up across multiple microservices.

Another critical component in the same configuration class is listed next:

WebSocketHandlerAdapter handlerAdapter() {

@Bean
return new WebSocketHandlerAdapter();

3

This preceding, somewhat boring looking, Spring bean is critical to the infrastructure of WebSocket
messaging. It connects Spring's pispatchertandler tO @ websocketHandler, allowing URIs to be mapped onto
handler methods.

Don't confuse pispatchernandler, a Reactive Spring component responsible for handling
Reactor-based web requests with the venerable pispatcherserviet, a serviet-based component
that performs an analogous function. This WebSocket handling is purely Reactive Streams-
oriented.

Consuming WebSocket messages from the
web page

With everything configured on the server, it's time to wire things up in the client. Because JavaScript
has a WebSocket API, and we aren't using subprotocols such as Simple (or Streaming) Text Oriented
Message Protocol (STOMP), we don't need any extra libraries.

So we can augment our Thymeleaf template, index.ntm1. It's important to point out that our template is in
the images microservice, not the chat microservice we just created. Add the following chunk of code
toward the bottom of the HTML.:

<script th:inline="javascript">
/*<1[CDATA[*/

(function() {

... custom JavaScript code here...
O
/*11>*/

</script>

This preceding chunk of code can be explained as follows:

e The HTML <script> tag combined with th:inline="javascript" allows Thymeleaf to process 1t.

e To avoid HTML parsing in various browsers as well as our IDE, the entire code is wrapped with
cpATA tags.

¢ To ensure our JavaScript code doesn't litter the global namespace, we have enclosed it in an
immediately-invoked function expression (IIFE) (function() { /* code */ })();. The code inside
this block cannot be reached from anywhere outside, and this is a Good Thing™. There is no
chance we'll run into anyone else's variables without deliberate action.

To repeat this point--we write any JavaScript used to send and receive messages over the WebSocket in
the images microservice. That's because it's where our Thymeleaf template is served from. To actually
send and receive WebSocket messages, it will connect to the chat microservice.

To subscribe to WebSocket messages, we need to subscribe as follows:

var socket = new WebSocket(
'ws://localhost:8200/topic/comments.new');
socket.onopen = function(event) {
console.log('Connected to chat service!');
console.log(event);
}
socket.onmessage = function(event) {
console.log('Received ' + event.data + '!');
var parsedMessage = JSON.parse(event.data);
var ul = document.getElementById(
'comments-' + parsedMessage.imageld);
var 1i = document.createElement('1li'");
1i.appendChild(
document.createTextNode(parsedMessage.comment));
ul.appendChild(1li);

3

The last code can be described as follows:

o We start by creating a WebSocket connection at ws://localhost:8200/topic/comments.new.

e With a JavaScript websocket object assigned to our socket variable, we then assign event handlers to
onopen and onmessage.

e The onopen handler is processed when a connection is first opened on the server. In this case, it
merely logs that we have connected.

e The onmessage handler is processed everytime a message is issued from the server. In this case, we
log the event's data, parse it (assuming it's JSON), construct an HTML LI, and append it to the
page's already existing UL based on the comment's imagerd.

This code uses native JavaScript, but if you're using React.js, jQuery, or some other
8 JavaScript toolkit, feel free to use its APls to generate new DOM elements.

Moving to a fully asynchronous web client

Now we are geared up to receive asynchronous messages from the server as comments are created, and
display them dynamically on the site. However, there is something else that warrants attention.

Remember how, in the previous chapter, we had an HTML form for the user to fill out comments? The
previous chapter's controller responded to such POSTs like this:

@PostMapping("/comments")
public Mono<String> addComment(Mono<Comment> newComment) {

/* stream comments to COMMENTS service */

return Mono.just("redirect:/");

3

redirect:/ 18 @ Spring Web signal to re-render the page at / via an HTTP redirect. Since we are shifting
into dynamically updating the page based on asynchronous WebSocket messages, this is no longer the
best way.

What are the issues? A few can be listed as follows:

¢ [f the comment hasn't been saved (yet), the redirect would re-render the page with no change at all.

¢ The redirect may cause an update in the midst of handling the new comment's WebSocket message.
Based on the race conditions, the comment may not yet be saved, causing it to not appear, and the
refresh may miss the asynchronous message, causing the entire comment to not be displayed unless
the page is manually refreshed.

e Setting up a WebSocket handler with every new comment isn't efficient.

Either way, this isn't a good use of resources, and could introduce timing issues. Instead, it's best if we
convert this into an AJAX call.

To do so, we need to alter the HTML like this:

<td>
<input th:id="'comment-' + ${image.id}" type="text" value="" />
<button th:id="${image.id}" class="comment">Submit</button>
</td>

Instead of a form with a text input and a submit input, we remove the HTML form and replace it with a
button:

e The <input> contains an id attribute unique to its corresponding image
e The <button> has a similar id attribute

The <button> also has c1ass="comment", Which we'll use to find, and decorate it with an event handler to
process clicks as follows:

// Register a handler for each button to make an AJAX call
document.querySelectorAll('button.comment"')

.forEach(function(button) {
button.addEventListener('click', function() {
var comment = document.getElementById(
'comment-' + button.id);

var xhr = new XMLHttpRequest();
xhr.open('POST', /*[[@{'/comments'}]]*/'"', true);

var formData = new FormData();
formData.append('comment', comment.value);
formData.append('imageId', button.id);

xhr.send(formbData);
comment.value = '';

IOF
13K

This last block of JavaScript, contained inside our tidy little (function(){3})(), has the following:

® document.querySelectorAll('button.comment') USES a native JavaScript qucery selector to find all the HTML
buttons that have the class comment.

e [terating over each button, an event listener is added, responding to the c1ick events.

e When a click is received, it fetches the corresponding comment input.

e Then it fashions an xmiHttprequest Object, opening a rost operation set for asynchronous
communications.

e With Thymeleaf's JavaScript support, it will plug in the URL for e{'/comments'} upon rendering.

e Then it constructs a rormpata, and loads the same fields as the previous chapter as if we had filled
out an HTML form on the page.

¢ [t transmits the form data over the wire. Since we don't depend on the results, they are ignored.

¢ Finally, it clears out the comment input's entry box.

In this example, we're using JavaScript's native APIs. But if you're using Rest.js, jQuery,
Restangular, lodash, or any other toolkit, feel free to assemble your AJAX call using that
instead. The point is to asynchronously transmit the data instead of navigating to another

page.

Handling AJAX calls on the server

To support the fact that we are now making an AJAX call, and not expecting a redirect, we need to
make alterations on the server side.

For one thing, we need to change the image microservice's commentcontroller from being view-based to
being a REST controller. Earlier in this book, it looked like this:

@Controller
@EnableBinding(Source.class)
public class CommentController {

)

acontroller marked it as a Spring WebFlux controller that was expected to return the HTTP redirect.

To tweak things for AJAX calls, update it to look like this:

@RestController
@EnableBinding(Source.class)
public class CommentController {

)

By replacing econtroiier with @restcontroiler, we have marked this class as a Spring WebFlux controller
with results written directly into the HTTP response body.

With that in place, we can now rewrite addcomment as shown here:

@PostMapping("/comments")
public Mono<ResponseEntity<?>> addComment(Mono<Comment> newComment)
{
if (commentSink != null) {
return newComment
.map(comment -> {
commentSink.next(MessageBuilder
.withPayload(comment)
.setHeader (MessageHeaders.CONTENT_TYPE,
MediaType.APPLICATION_JSON_VALUE)
.build());
return comment;
1
.flatMap(comment -> {
meterRegistry
.counter("comments.produced", "imageId", comment.getImageId())
.increment();
return Mono.just(ResponseEntity.noContent().build());
1)
} else {
return Mono.just(ResponseEntity.noContent().build());
}

3

What did we change? The following:

e The return type has switched from Mono<String> tO Mono<ResponseEntity<?>>. ResponseEntity<?> 1S a Sprmg
Web container that holds HTTP response headers, body, and status code.
e The logic for forwarding messages to the comments service over a riuxsink to Spring Cloud Stream is

the same as the previous chapter.

e The last line of both the if and the e1se clauses uses the static builder methods of responseentity to
generate an HTTP 204 (No content) response. It indicates success, but no response body is included.
Considering the client isn't interested in any content, that's good enough!

Let's check our handiwork. If we start up everything (remember to launch the Config Server before the
others), and open two separate browser tabs, we can see the effects.

In the following screenshot, one user enters a new comment (nice cover!):
Name Image

B05771_MockupCover_Normal_.jpg

Nice cover! Submit I

bazinga.png

Submit I

Another user with their own browser is looking at the same images. When the first user clicks on
Submit, the message automatically appears on the second user's window, as follows:

Name Image

B05771_MockupCover_Normal_.jpg E Delete | « Nice cover! Submit |

bazinga.png

Delete I Submit I

No page reloads, and no need to refresh the data and pull it from the comments service.

We can also see the message activity in the second user's browser console:

Received {"id":"599b9@cec4d95697c2beal8b","imageld" :"@aB4bee9-f441-48bf-9cba-558dab29c9d2" ," comment":"Nice cover!"}!

Introducing user chatting

What social media platform doesn't provide a means for users to communicate with each other? In this
section, we'll enhance our application to allow chatting between users. This is another way to use
asynchronous WebSocket messaging between clients and servers.

To start, let's add a new HTML element at the bottom of our template like this:

<div id="chatBox">
Greetings!

<textarea id="chatDisplay" rows="10" cols="80"
disabled="true"></textarea>

<input id="chatInput" type="text" style="width: 500px"
value="" />

<button id="chatButton">Send</button>

</div>

This preceding HTML code is placed right underneath the Upload widget for sending new pictures. It
contains:

¢ A simple greeting.

e An HTML textarea for displaying messages, se columns wide and 1e rows tall. It is disabled to make
it a read-only message output.

e A text input for entering new messages.

¢ A button to submit new messages.

It's true that any and all styling should be done through CSS, but we are trying to keep
things simple, and not turn this into a UX-based book.

To post new messages from the text input box, we need to add another bit of code inside our piece of
JavaScript:

var outboundChatMessages = new

WebSocket ('ws://localhost:8200/app/chatMessage.new');

// Post new chat messages

outboundChatMessages.onopen = function(event) {

document.getElementById('chatButton')
.addEventListener('click', function () {

var chatInput = document.getElementById('chatInput');
console.log('Publishing "' + chatInput.value + '"');
outboundChatMessages.send(chatInput.value);
chatInput.value = '';
chatInput.focus();

1)

3

This last bit of code does the following:

e [t creates another WebSocket COl’ll’lGCtiOl’l, this time to ws://localhost:8200/app/chatMessage.new (Wthh
we'll code further down).

Registers a handler function to be invoked when the onopen event of the WebSocket is triggered.
Finds the chatsutton, and registers an event handler for the ciick events.

When clicked, fetches the chatnput text input.

Using the WebSocket variable, it sends the value of the chatinput text input. NOTE: This is pure
text. No JSON encoding needed.

e C(lears out chatinput, and switches focus back to it.

This will transport raw strings to the server. How these messages are received will be defined shortly,
but while we're here, why not go ahead and code up the other side, that is, when these messages are
transmitted from server to client?

Are you getting nervous about seeing http://localhost:82007 It's appeared in a couple places
so far (and will again as we write more code). It's a bit arbitrary, and also doesn't lend
itself to scaling in production, right? We could stuff this value into the Config Server Git
repo, and then write some JavaScript to scarf it out, but that sounds a little complicated.
And it still wouldn't solve the scaling issue. The truth is that there is a much simpler
solution in chapter 9, Securing Your App with Spring Boot. So we'll stick with hard-coded
URLs for now.

To display chat messages as they arrive, add the following:

var inboundChatMessages =

new WebSocket('ws://localhost:8200/topic/chatMessage.new');
// Listen for new chat messages
inboundChatMessages.onmessage = function (event) {
console.log('Received ' + event.data);
var chatDisplay = document.getElementById('chatDisplay');
chatDisplay.value = chatDisplay.value + event.data + '\n';

3

The preceding code does the following:

Creates a third WebSocket connection to ws://localhost:8200/topic/chatMessage.new

On the WebSocket's onmessage handler, registers a function handler to be invoked with every new
message

When an event arrives, grabs hold of the chatpispiay

Appends the message's data to the chatpisplay, and adds a newline character

Confused by thepaths /app/chatMessage.new ANd /topic/chatMessage.new? Theﬁrst iSfOI" sending
messages from the client to our server-side application, while the latter is for sending
messages from server to client. There is no requirement that they be prefixed by /app or
stopic. It's just a convention to help denote where the messages are traveling.

We just defined a route to send user messages to the server as well as a route to receive messages from
the server. The next step is to register these routes in our server-side code. We do so by updating our
WebSocketConfig class's webSocketMapping like this:

@Bean
HandlerMapping webSocketMapping(CommentService commentService,
InboundChatService inboundChatService,
OutboundChatService outboundChatService) {
Map<String, WebSocketHandler> urlMap = new HashMap<>();

urlMap.put("/topic/comments.new", commentService);
urlMap.put("/app/chatMessage.new", inboundChatService);
urlMap.put("/topic/chatMessage.new", outboundChatService);

Map<String, CorsConfiguration> corsConfigurationMap =
new HashMap<>();
CorsConfiguration corsConfiguration = new CorsConfiguration();
corsConfiguration.addAllowedOrigin("http://localhost:8080");
corsConfigurationMap.put(

"/topic/comments.new", corsConfiguration);
corsConfigurationMap.put(

"/app/chatMessage.new", corsConfiguration);
corsConfigurationMap.put(

"/topic/chatMessage.new", corsConfiguration);

SimpleUrlHandlerMapping mapping = new
SimpleUrlHandlerMapping();

mapping.setOrder(10);

mapping.setUrlMap(urlMap);
mapping.setCorsConfigurations(corsConfigurationMap);

return mapping;

This last code contains many changes, so let's take them apart one by one:

Previously, this method only injected commentservice. Now we also inject 1nboundchatservice as well as
outboundchatservice. These are two services we must define based on the need to broker WebSocket
messages between sessions. (Don't panic! We'll get to that real soon).

e We have two new routes added to the urlMap--/app/chatMessage.new and /topic/chatMessage.new--WhiCh we
just saw used in the web layer.

e These same routes must also be added to our CORS policy.

Are you a little nervous about the CORS policy? Worried about managing hard-coded
ports in your code when we just showed how that's not necessary in the previous chapter?
Concerned about what this means when it comes time to secure everything? Don't worry,
we'll show how this can be handled in chapter o, Securing Your App with Spring Boot.

With this adjustment to our chat microservice's websocketconfig, we must now configure how incoming
WebSocket messages are handled. It's important to realize that if we receive the r1ux of messages, and
turn around and broadcast them on the same websocketsession, the only person receiving the messages will
be the person that sent them--an echo server if you will.

This is why we need a broker if we want to broadcast such messages. Incoming messages must be
received, relayed to a broker, and then picked up on the other side by a/l clients.

Now, where can we find a broker? We already have one! We've been using Spring Cloud Stream to
transport messages over RabbitMQ on our behalf. We can do the same for these messages as well.

It's important to remember that Spring Cloud Stream operates on the channel paradigm. Everything is
sent and received over channels. Up until now, we've gotten by using source, sink, and processor, three
interfaces that work with output and input. To handle new comment-based messages, client-to-server user
messages, and server-to-client user messages, those two channels aren't enough.

So, we need to define a new set of streams. We can do that by creating our own interface,
ChatServicestreams 1N the chat microservice, as shown here:

public interface ChatServiceStreams {

String NEW_COMMENTS = "newComments";
String CLIENT_TO_BROKER = "clientToBroker";
String BROKER_TO_CLIENT = "brokerToClient";

@Input (NEW_COMMENTS)
SubscribableChannel newComments();

@Ooutput (CLIENT_TO_BROKER)
MessageChannel clientToBroker();

@Input (BROKER_TO_CLIENT)
SubscribableChannel brokerToClient();

This preceding declarative cornerstone of our chat service can be described as follows:

Three channel names are defined at the top--new_comments, cLIENT_To_BRokER, and sroker_To_cL1ent. They
each map onto a channel name of newComments, clientToBroker, and brokerToclient.

® newcomments() 18 defined as an input linked to the new_comvents channel via the ernput annotation, and
has a return type of subscribablechannel, meaning, it can be used to consume messages.

e clientTosroker() 1S defined as an output linked to the cLient_to_sroker channel via the eoutput
annotation, and has a return type of messagechanne1, which means that it can be used to transmit
messages.

® pbrokerToclient() 1S defined as an input linked to the sroker_to_cLient channel via the ernput annotation,
and also has a return type of subscribablechannel, which means it, too, can be used to consume
messages.

We need this interface in place so we can then dive into creating that 1nboundchatservice we promised to
build earlier:

@Service
@EnableBinding(ChatServiceStreams.class)
public class InboundChatService implements WebSocketHandler {

private final ChatServiceStreams chatServiceStreams;

public InboundChatService(ChatServiceStreams chatServiceStreams)

{

this.chatServiceStreams = chatServiceStreams;

3

@Override
public Mono<Void> handle(WebSocketSession session) {
return session

.receive()
.log("inbound-incoming-chat-message")
.map (WebSocketMessage: :getPayloadAsText)
.log("inbound-convert-to-text")
.map(s -> session.getId() + ": " + s)
.log("inbound-mark-with-session-id")
.flatMap(this: :broadcast)
.log("inbound-broadcast-to-broker")
.then();

3

public Mono<?> broadcast(String message) {
return Mono.fromRunnable(() -> {
chatServiceStreams.clientToBroker().send(
MessageBuilder
.withPayload(message)
.build());
1)
3
}

This preceding service code, registered to handle messages coming in on /app/chatmessage.new can be
described as follows:

eservice marks it as a Spring service that should launch automatically thanks to Spring Boot's
component scanning.

® @EnableBinding(ChatServiceStreams.class) signals Sprmg Cloud Stream to connect this component to its
broker-handling machinery.

e [t implements the websocketHandler interface--when a client connects, the handie(websocketsession)
method will be invoked.

¢ Instead of using the estreamListener annotation as in the previous code, this class injects a
chatservicestreans bean (same as the binding annotation) via constructor injection.

e To handle a new websocketsession, we grab it and invoke its receive() method. This hands us a riux of
potentially endless websocketmessage Objects. These would be the incoming messages sent in by the
client that just connected. NOTE: Every client that connects will invoke this method
independently.

e We map the Flux<webSocketMessage> ObjGCt'S stream of payload data into a Flux<String> via
getPayloadAsText().

e From there, we transform each raw message into a formatted message with the WebSocket's
session ID prefixing each message.

e Satisfied with our formatting of the message, we fiatmap it ONto our broadcast() message in order to
broadcast it to RabbitMQ.

e To hand control to the framework, we put a then() on the tail of this Reactor flow so Spring can
subscribe to this Fiux.

e The broadcast method, invoked as every message is pulled down, marshals and transmits the
message by first building a Spring Cloud Streams message<string> object. It is pushed out over the
ChatServiceStreams.clientToBroker () ObjGCt'S MessageChannel via the send() API. To reactorize it, WC wrap
1t with Mono. fromrRunnable.

Whew! That's a lot of code! Such is the effect of functional reactive programming (FRP). Not a lot of
effort is spent on imperative constructs and intermediate results. Instead, each step is chained to the next
step, forming a transforming flow, pulling data from one input (the websocketsession in this case), and
steering it into a channel for the broker (chatservicestreams.clientToBroker()).

Remember earlier when we created a chat.ym1 file in our Config Server's Git repo? Here's the key
fragment:
spring:
cloud:
stream:
bindings:
clientToBroker:

destination: learning-spring-boot-chat-user-messages
group: app-chatMessages

It contains an entry for spring.cloud.stream.bindings.clientToBroker, where c1ientToBroker matches the channel
name we set in chatservicestreans. [t indicates that messages transmitted over the clientTosroker channel
will be put on RabbitMQ's learning-spring-boot-chat-user-messages exchange, and gI‘OLlpCd with other
messSages marked app-chatMessages.

This sets things up to broadcast any user-based chat message to everyone. We just need to have every
user listen for them!

To do so, we need to create that other service we promised to build earlier, outboundchatservice:

@Service
@EnableBinding(ChatServiceStreams.class)
public class OutboundChatService implements WebSocketHandler {

private final static Logger log =
LoggerFactory.getLogger (CommentService.class);

private Flux<String> flux;
private FluxSink<String> chatMessageSink;

public OutboundChatService() {
this.flux = Flux.<String>create(
emitter -> this.chatMessageSink = emitter,
FluxSink.OverflowStrategy.IGNORE)
.publish()
.autoConnect();

3

@StreamListener (ChatServiceStreams.BROKER_TO_CLIENT)
public void listen(String message) {
if (chatMessageSink != null) {
log.info("Publishing " + message +
" to websocket...");
chatMessageSink.next(message);
}
3

@override
public Mono<Void> handle(WebSocketSession session) {
return session
.send(this.flux
.map(session::textMessage)
.log("outbound-wrap-as-websocket-message"))
.log("outbound-publish-to-websocket");

The code can be described as follows:

Again, the eservice annotation marks this as an automatically wired Spring service.

e It has the same enablesinding(chatservicesstreans.class) as the inbound service, indicating that this, too,
will participate with Spring Cloud Streams.

e The constructor call wires up another one of those riuxsink objects, this time for a riux or strings.

® @streamListener(ChatServiceStreanms.BROKER_To_cLIENT) indicates that this service will be listening for
incoming messages on the brokertoclient channel. When it receives one, it will forward it to
chatMessageSink.

e This class also implements websocketHandler, and each client attaches via the handie(websocketsession)
method. It is there that we connect the fiux of incoming messages to the websocketsession via its send()
method.

e Because WebSocketSession.send() requires Flux<webSocketMessage>, WC IMap the Flux<String> into it USil’lg
session::textMessage. Nothing to serialize.

e There is a custom log flag when the r1ux finished, and another for when the entire riux is handled.

That's it!

With 1nboundchatservice routing individual messages from client to server to broker, we are able to take
individual messages and broadcast them to ALL users. Then, with outboundchatservice pulling down
copies of the message for each WebSocket session, each user is able to receive a copy.

Don't forget, we also added a binding to chat.ym1 on the Config Server to outboundchatservice as well:

spring:
cloud:
stream:
bindings:
brokerToClient:
destination: learning-spring-boot-chat-user-messages
group: topic-chatMessages

And remember that little bit of JavaScript we wrote to subscribe to
ws://localhost:8200/topic/chatMessage.new? It will receive the broadcast mcessages.

Flux and Fluxsink--if you haven't caught on, linking async operations with pre-established
Flux objects is easily handled by this pattern. We've seen it several times now. If both sides
of an async service use a riux, it's not necessary. But if something bars hooking them
directly, this mechanism easily bridges the gap.

The names 1nboundchatservice and outboundchatservice are somewhat arbitrary. The important point to note is
that one is responsible for transporting WebSocket messages from the client to the broker through the
server. Those are incoming. After crossing the broker, we describe them at this stage as being outgoing.
The naming convention is meant to help remember what does what. Neither Spring Boot nor Spring
Cloud Stream care about what these classes are named.

With this enhancement, we can fire things up and see what it looks like.

In the following screenshot of our new chat box there is a conversation involving two users:

Upload

Choose File | No file chosen

Greetings!

2f05fa8e: Do you like the new cover?

298b3bcf: You bet! Wish | could get it in a t-shirt
2f05faBe: Me too. Did you get e-book, or print?
298b3bcf: Both

298b3bcf: | always get both

Send |

The prefix values (2resrage and 298b3bef) are pure WebSocket session IDs. Kind of tricky to connect with
a human user, ehh? Nevertheless, this interchange is what is seen by all parties. (Since both sides see the
same exchange, no need to show both browser tabs.)

However, if we peek inside the browser's JavaScript console, we get a new insight. The following is a

screenshot from the user with 2resfase as their session ID:

Publishing "Do you like the new cover?"
Received 2f@5fa8e: Do you like the new cover?
Received 298b3bcf: You bet! Wish I could get it in a t-shirt
Publishing "Me too. Did you get e-book, or print?"
Received 2f@5faBe: Me too. Did you get e-book, or print?
Received 298b3bcf: Both
Received 298b3bcf: I always get both
> |

We can immediately see the first message (po you like the new cover?) being published, and received right
back. Following that, the other user sends a separate message (You bet! wish I could get a t-shirt).

If we inspect the other user's JavaScript console, we can see the other side of the conversation:

Received 2f@5faBe: Do you like the new cover?

Publishing "You bet! Wish I could get it in a t-shirt"
Received 298b3bcf: You bet! Wish I could get it in a t-shirt
Received 2f@5faBe: Me too. Did you get e-book, or print?
Publishing "Both"

Received 298b3bcf: Both

Publishing "I always get both"

Received 298b3bcf: I always get both

The first message was from the first user (oo you like the new cover?) followed by the second user's
response (you bet!...), and so forth.

Simple. Elegant. Asynchronous. That's what WebSockets are for. And here we have a simple usage.

Sending user-specific messages

So far, we have crafted a relatively rich application using different types of broadcast messages.

For example, when a new comment is written, it's sent to every client. Only the clients actually
displaying the relevant image will update anything. But the message was sent nonetheless. Also, when a
user enters a new chat message, it's sent to everybody. For these use cases, this solution is fine.
WebSockets make the process quite efficient.

But there are definitely scenarios when we want to send a message to just one subscriber. A perfect
example we'll pursue in this section is adding the ability to "e" a user with a chat message. We only want
such a message sent to that specific user. What would be even better? If we could do this without
ripping up everything we've done so far.

We can start with the chatcontroiier inside the chat microservice. We should be able to look at the
incoming message, and sniff out anything starting with e. If we find it, then we should be able to extract
the username, and send the message to that user and that user alone. If a message does NOT start with e,
simply broadcast the message to everyone as before.

Registering users without authentication

In this chapter, we haven't yet picked up security. That will be covered in chapter 9, Securing Your App
with Spring Boot. For now, we need something to take its place.

As a workaround, we can introduce the concept of the user entering his or her own username and
sending it with the HTTP-based request used to create the WebSocket.

To offer the user a place to enter their username, we can put this at the top of the Thymeleaf template:

<input id="username" type="text" />
<button id="connect">Connect</button>
<button id="disconnect" style="display: none">Disconnect</button>

There is a both a connect and a pisconnect button to analogously log in/log out of the WebSocket session.

Now we can wire it so that clicking the connect button, actually creates the WebSocket connection:

document.getElementById('connect')
.addEventListener('click', function () {
document.getElementById('connect').style.display = 'none';
document.getElementById('disconnect').style.display = 'inline';

var usernameInput = document.getElementById('username');

document.getElementById('chatBox').style.display = 'inline';

This is what happens when connect s clicked:

e The connect button 1s hidden while the disconnect button is shown
e We g@t hOld Of the username input
e The chatsox is switched from hidden to displayed

From here, the rest of the flow of creating a WebSocket is followed, including the extra user parameter
supplied by the userInput input as we subscribe for /topic/chatMessage.new.

inboundChatMessages =
new WebSocket (
'ws://localhost:8200/topic/chatMessage.new?user="
+ usernameInput.value);
inboundChatMessages.onmessage = function (event) {
console.log('Received ' + event.data);
var chatDisplay = document.getElementById('chatDisplay');
chatDisplay.value = chatDisplay.value + event.data + '\n';

3

This preceding subscription code for incoming chat messages works as follows:

e We again create a JavaScript websocket, but it has an extra query argument, user, populated with the
usernameInput value

e The route we subscribe to is /topic/chatmessage.new, the same one that outboundchatservice publishes to

e The onmessage handler is assigned a function that updates the chatpispiay textarea with the new event's
data

To wrap things up, we add the following event listener in case pisconnect is clicked:

document.getElementById('disconnect')

.addEventListener('click', function () {
document.getElementById('connect').style.display = 'inline';
document.getElementById('disconnect').style.display = 'none';
document.getElementById('chatBox').style.display = 'none';

if (newComments != null) {
newComments.close();

if (outboundChatMessages != null) {
outboundChatMessages.close();

if (inboundChatMessages != null) {
inboundChatMessages.close();
3
1)

This last code nicely does the following things:

e It hides the pisconnect button and the chat box while showing the connect button
e It closes all the WebSockets

Linking a user to a session

We are still missing a critical ingredient--linking the username entered to the user's WebSocket session.

Since every one of our websocketHandler services we built may need access to this user data, we should
build a shim called UserParsingHandshakeHandler tO Sllp in like this:

abstract class UserParsingHandshakeHandler
implements WebSocketHandler {

private final Map<String, String> userMap;

UserParsingHandshakeHandler () {
this.userMap = new HashMap<>();

3

@Override
public final Mono<Void> handle(WebSocketSession session) {

this.userMap.put(session.getId(),

Stream.of (session.getHandshakeInfo().getUri()
.getQuery().split("&"))
.map(s -> s.split("="))
.filter(strings -> strings[0].equals("user"))
.findFirst()
.map(strings -> strings[1])
.OrElse(""));

return handleInternal(session);

3

abstract protected Mono<Void> handleInternal(
WebSocketSession session);

String getUser(String id) {
return userMap.get(id);

3

The previous code can be described as follows:

e This abstract class implements websocketHandler; it will be invoked when a new websocketsession 1S
created

¢ [t contains a mapping between session ID and username, called usermap, initialized in the
constructor

e The implementation of handie(websocketsession) takes the usermap and puts a new entry keyed off the
session's ID

e The value stored under that session ID is extracted from the session's handshake, granting access to
the original URI

e With some Java 8 stream magic, we can extract the query string from this URI, and find the user
argument

e findrirst() produces an optional, SO we can either map over the answer or fall back to an empty
string (no user)

e Having loaded the usermap, we then invoke the concrete subclass through a custom abstract method,
handleInternal(WebSocketMessage)

e To facilitate looking up the current username, getuser(string) 1s provided to look up user based on

session ID

This chunk of code will handle user details, allowing each concrete websockethandier to do its thing while
also having access to the current session's username.

To use this new handshake handler, we need to update the 1nboundchatservice like this:

@Service
@EnableBinding(ChatServiceStreams.class)
public class InboundChatService extends UserParsingHandshakeHandler

{

private final ChatServiceStreams chatServiceStreams;

public InboundChatService(ChatServiceStreams chatServiceStreams){
this.chatServiceStreams = chatServiceStreams;

3

@Override
protected Mono<Void> handleInternal(WebSocketSession session) {
return session
.receive()
.log(getUser(session.getId())
+ "-inbound-incoming-chat-message")
.map (WebSocketMessage: :getPayloadAsText)
.log(getUser(session.getId())
+ "-inbound-convert-to-text")
.flatMap(message ->
broadcast(message, getUser(session.getId())))
.log(getUser(session.getId())
+ "-inbound-broadcast-to-broker")
.then();

3

public Mono<?> broadcast(String message, String user) {
return Mono.fromRunnable(() -> {
chatServiceStreams.clientToBroker().send(
MessageBuilder
.withPayload(message)
.setHeader (ChatServiceStreams.USER_HEADER, user)
.build());
1)
3

It's almost the same as what we coded earlier in this chapter, with a few key differences:

e [t now extends UserParsingHandshakeHandler instead of websocketHandler.

e Instead of implementing handle(WebSocketSession), W& must now write handleInternal(WebSocketSession).
This is a classic pattern of using a parent abstract class to intercept and then delegate.

® proadcast() takes two arguments--message and user. The user field is populated using
getUser(session.getId()).

® pbroadcast() builds a message like it did earlier in this chapter, but also adds a custom header containing
the user of the creator of the message.

Part of the power of the Message API are headers. You can use standard headers as well
as make up your own to suit your needs. In this case, we mark up every message with the
originator. Other useful details could include the timestamp of creation and origin
address. Really, anything.

\

TIP

Sending user-to-user messages

The last step in implementing user-to-user messages is to apply a filter to outboundchatservice. Since we
coded Up UserpParsingHandshakeHandler, WC have to adjust the service to handle this:

@Service

@EnableBinding(ChatServiceStreams.class)
public class OutboundChatService
extends UserParsingHandshakeHandler {

3

For starters, we need to change this class to extend UserParsingHandshakeHandler instead of websocketHandler.

There's no need to alter the constructor call where our riuxsink 1s configured. However, the handler itself
must be adjusted as follows:

@Override
protected Mono<Void> handleInternal(WebSocketSession session) {
return session
.send(this.flux
.filter(s -> validate(s, getUser(session.getId())))
.map(this::transform)
.map(session::textMessage)
.log(getUser(session.getId()) +
"-outbound-wrap-as-websocket-message"))
.log(getUser(session.getId()) +
"-outbound-publish-to-websocket");

The details can be explained as follows:

e Just like InboundChatService, W€ must now implement handleInternal(WebSocketSession).

e It has the same session.send(F1ux) call, but that r1ux has a couple of extra steps added, including a
filter and an extra map.

e The riiter call validates each message, deciding whether or not t4is user should get it. (We'll write
that validate() method in a moment).

¢ Assuming the message is valid for this user, it uses a local transformn method to tweak it.

e The rest of the machinery used to convert this string message into a websocketMessage<string> and pipe
it over the WebSocket is the same as before.

When dealing with streams of messages, layering in a filter is no biggie. See how in the following code:

private boolean validate(Message<String> message, String user) {
if (message.getPayload().startswith("@")) {
String targetUser = message.getPayload()
.substring(1, message.getPayload().index0f(" "));

String sender = message.getHeaders()
.get(ChatServiceStreams.USER_HEADER, String.class);

return user.equals(sender) || user.equals(targetUser);
} else {
return true;
3
}

This last code can be described as follows:

® validate accepts a message<string> and the name of the current user (not the user that sent the
message).

o [t first checks the payload, and if it starts with e, it looks deeper. If the message does NOT start
with e, it just lets it on through.

o [f the message starts with @, it proceeds to extract the target user by parsing the text between e and
the first space. It also extracts the original sender of the message using the user header.

e If the current user is either the sender or the receiver, the message is allowed through. Otherwise, it
is dropped.

A filtering function like this makes it easy to layer various options. We used it to target user-specific
messages. But imagine putting things like security checks, regional messages, time-based messages, and
more!

To wrap this up, we need to also code a little transformation to make the user-to-user experience top
notch:

private String transform(Message<String> message) {
String user = message.getHeaders()
.get(ChatServiceStreams.USER_HEADER, String.class);
if (message.getPayload().startswith("@")) {

return "(" + user + "): " + message.getPayload();
} else {
return "(" + user + ")(all): " + message.getPayload();

b
b

This preceding nice little transformation can be described as follows:

® transform aCCEPLS a Message<string>, and converts it into a plain old string message

It extracts the user header to find who wrote the message

If the message starts with e, then it assumes the message is targeted, and prefixes it with the author
wrapped in parentheses

If the message does NOT start with e, then it prefixes it with the author wrapped in parentheses
plus (a11), to make it clear that this is a broadcast message

With this change in place, we have coded a sophisticated user-to-user chat service, running on top of
RabbitMQ, using Reactive Streams.

Checking out the final product

By hooking up a username with a WebSocket ID, let's see how all this runs. Restart everything, and visit
the site.

First, we login as shown in this screenshot:

Learning Spring Boot - 2nd Edition

greg & Connect

As seen in the last screenshot, the user logs in as greg. After that, the chat box will display itself at the
bottom of the page. If we assume that o1iver and pni1 have also logged in, we can see an exchange of
messages as follows:

Greg asks how everyone likes the cover:

Greetings!
(greg)(all): Do you like the cover?

Send I

This preceding message is seen by everyone. Again, no reason to display all three users' views, since it
is identical at this stage.

Oliver gives his so.02:

Greetings!

(greg)(all): Do you like the cover?
(oliver)(all): | sure do

Send |

So far, the conversation is wide open, as depicted by the (a11) tag on each message. By the way, isn't this
user-based interaction easier to follow the conversation than the earlier version where we used session

IDs?
Phil writes a direct question to Greg:

Greetings!

(greg)(all): Do you like the cover?
(oliver)(all): | sure do

@greg Are you going to offer it in a t-shirt?

Send |

After Phil clicks on Send, the following appears in Greg's browser:

Greetings!

(greg)(all): Do you like the cover?
(oliver)(all): | sure do
(phil): @greg Are you going to offer it in a t-shirt?

Send |

Notice how this message does NOT have (a11)? We know this message is direct, which is further
verified by looking at Oliver's browser:

Greetings!

(greg)(all): Do you like the cover?
(oliver)(all): | sure do

Send |

No sign of a followup question about t-shirt availability.
And if we look at Greg's JavaScript console, we can see all of this:

Publishing "Do you like the new cover?"

Received (greg)(all): Do you like the new cover?

Received (oliver)(all): I sure do.

Received (phil): @greg Are you going to offer it in a t-shirt?
>

This preceding interchange shows the following:

One message is sent from Greg's session to the server
e Two broadcast messages are received via the broker from Greg and Oliver
¢ One direct message is received from Phil

In conclusion, it's nice to see that by chaining together streams of messages across the system with
Spring Cloud Stream, we were able to pipe exactly the messages we wanted to whom we wanted to
receive them. We were able to leverage a sturdy transport broker, RabbitMQ, without getting caught up
in messy details.

We took advantage of things like headers to mark up our messages, and filtered things as needed to
implement business requirements. And we didn't spend all our time configuring brokers, servlet
containers, or anything else. Instead, we logically defined channels and what was posted/consumed
from those channels.

JSR 356 versus Spring WebFlux messaging

Perhaps, you're wondering why this chapter doesn't delve into Java's standard WebSocket API? In truth,
the standard API is a good piece of technology, but due to several limitations, it doesn't suit our needs.

A big limitation of JSR 356 is that it's based on the Servlet 3.1 spec. If we were running Apache
Tomcat, we'd have access to that. But being a Reactive Streams application, we are using Netty, putting
it off limits.

Even if we did switch to Apache Tomcat, there is no support for Reactor types. This is partly due to its
blocking API, despite being hitched to an asynchronous programming model.

Summary

In this chapter, we made our social media platform asynchronous, front to back, through the usage of
WebSocket messages. We published new comments to all users. We introduced a way for our users to
chat amongst themselves, whether that was by broadcasting to everyone, or by sending individual
messages directly to each other.

In the next chapter, we will apply one of the most critical components needed for production, security.

Securing Your App with Spring Boot

It's not real until it's secured.
— Greg L. Turnquist (@gregturn

In the previous chapter, you learned how to turn our application into a fully asynchronous, message-
based app using WebSockets.

Security is hard. Even among the experts. Rob Winch, the lead for Spring Security, has stated in
multiple forums, "Do not implement security on your own." A classic example is when someone wrote a
utility to crack password-protected Microsoft Word documents. It had an intentional delay so that it
didn't operate in subsecond time. Get it? The author of the tool didn't want to show how easy it was to
break a Word document.

Suffice it to say, there are lots of attack vectors. Especially on the web. The fact that our applications
partially run in a remote location (the browser) on someone else's machine leaves little in guarantees. In
fact, whole books have been written on Spring Security. We can't cover everything, but we will cover
Just Enough™ to secure our microservice-based social media platform.

In this chapter, we will cover the following topics:

e Using Spring Session to share state between services
Creating a Gateway API

Securing the chat microservice

Securing the images microservice

Authorizing methods

Securing WebSockets

Securing the Config Server

Securing the Eureka Server

Securing a Spring Boot application

In this chapter, we will secure our microservice-based social media platform. This will introduce some
interesting use cases, ones that Spring Security can easily handle. However, it's important to know that
almost every situation is slightly different. Spring Security can handle them, but it requires
understanding how it operates so that you can adapt what you learn in this chapter to our unique
situation.

To kick things off, we just need one dependency added to our project:

compile('org.springframework.boot:spring-boot-starter-security-
reactive')

In addition to adding Spring Security, we will need to define a policy, and also include authorization
rules. As we move through this chapter, you'll learn what all this means.

By the way, remember the microservice-based solution we've developed in the previous chapters? What
is the side effect of splitting our app into multiple services? We have to secure each and every one. This
means, we have to add these dependencies to each module. Yikes! Can you imagine logging in to the
user interface (UI), clicking on a link, and logging in again?

Yech!

Using Spring Session
Before we can dig into those nice security policies and authorization rules we just talked about, we need

a solution to secure multiple microservices.

What is the exact problem? When we log in to the first piece of our social media platform, we want that
status to be carried through to the other components with ease.

The solution is Sprlng Session (http://projects.spring.io/spring-session/), which supports multiple third-
party data stores to offload session state including Redis, MongoDB, GemFire, Hazelcast, and others.
Instead of the session data being stored in memory, it is externalized to a separate data store.

This provides multiple benefits such as the following:

Provides scalability when running multiple instances of various services

Avoids the need for session affinity (sticky sessions) by not requiring load balancers to route
clients to the same instance

Leverages a data store's built-in expiration options (if desired)

Multi-user profiles

There is one other, hidden benefit that we will take immediate advantage of in this chapter--sharing
session state between different microservices. Log in to the user-facing microservice, create a session
with that security state, and share the session with all microservices. Bam! Automatic access.

Since we are already using MongoDB, let's use that to also store our session.

The first thing we need to do in getting Spring Session off the ground is to update each microservice
with the following dependencies:
compile('org.springframework.boot:spring-boot-starter-security-

reactive')
compile('org.springframework.session:spring-session-data-mongodb"')

These preceding dependencies can be described as follows:

® spring-boot-starter-security-reactive bI’il’lgS in all the conﬁguration support we need to define a
security policy, including some critical annotations, as well as Spring WebFlux-based security
components to implement our policy, including various filters

® spring-session-data-mongodb Will bring in Spring Session MongoDB and Spring Data MongoDB,
making it possible to write session data to our MongoDB service reactively

leverage each other. We can use one or the other for different purposes. However, when

0 It's important to understand that sessions and security are orthogonal concepts that nicely
used in concert, the effect is most elegant.

To configure Spring Session to use MongoDB, we need the following added to each microservice:

http://projects.spring.io/spring-session/

@EnableMongoWebSession
public class SessionConfig {

3

This new sessionconfig class does the following:

® @EnableMongowebsession activates Spring Session MongoDB, signaling to use MongoDB as the place to
read and write any session data

This is all it takes to enable using MongoDB for session data. However, there are some lingering issues
we have to sort out due to the structure of our microservice-based application that bars us from moving
forward.

We used this code in the previous chapter:

Map<String, CorsConfiguration> corsConfigurationMap =

new HashMap<>();
CorsConfiguration corsConfiguration = new CorsConfiguration();
corsConfiguration.addAllowedOrigin("http://localhost:8080");
corsConfigurationMap.put(

"/topic/comments.new", corsConfiguration);
corsConfigurationMap.put(

"/app/chatMessage.new", corsConfiguration);
corsConfigurationMap.put(

"/topic/chatMessage.new", corsConfiguration);

To make our WebSocket chat microservice integrate with the images-based web page, we needed
addAllowedorigin("http://localhost:sese"). That way, a web request from a service on port sese was permitted
to cross over to a service on port szee.

When it comes to security and sessions, stitching together two different services on two different ports
in the browser isn't the best way to approach things. Not only is it technically daunting, it is really a
code smell--a hint that our application is leaking too much of its structure to the outside world.

The solution is to create a Gateway APIL.

Creating a Gateway API

What is a Gateway API? It's a one-stop facade where we can make all our various web requests. The
facade then dispatches the requests to the proper backend service based on the configuration settings.

In our case, we don't want the browser talking to two different ports. Instead, we'd rather serve up a
single, unified service with different URL paths.

In chapter 7, Microservices with Spring Boot, we used Spring Cloud for several microservice tasks,
including service discovery, circuit breaker, and load balancing. Another microservice-based tool we
will make use of is Spring Cloud Gateway, a tool for building just such a proxy service.

Let's start by adding this to our chat microservice:

| compile('org.springframework.cloud:spring-cloud-starter-gateway')

With Spring Cloud Gateway on the classpath, we don't have to do a single thing to activate it in our chat
microservice. Out of the box, Spring Cloud Gateway makes the chat microservice our front door for all
client calls. What does that mean?

Spring Cloud Gateway forwards various web calls based on patterns to its respective backend service.
This allows us to split up the backend into various services with some simple settings, yet offer a
seamless API to any client.

Spring Cloud Gateway also allows us to pull together legacy services into one unified
service. Older clients can continue talking to the old system, while newer clients adopt the
new gateway. This is known as API strangling (http://www.kennybastani.com/2016/@8/strangling-l

egacy-microservices-spring-cloud.html).

To configure which URL patterns are forwarded where, we need to add this to our chat.ym1 stored in the
Config Server:

spring:
cloud:
gateway:

routes:
#
- 1id: imagesService

uri: lb://IMAGES

predicates:

- Path=/imagesService/**

filters:

- RewritePath=/imagesService/(?<segment>.*), /$\{segment}

- RewritePath=/imagesService, /

- SaveSession
- id: images

uri: lb://IMAGES

predicates:

- Path=/images/**

filters:

- SaveSession
- id: mainCss

uri: lb://IMAGES

predicates:

http://www.kennybastani.com/2016/08/strangling-legacy-microservices-spring-cloud.html

- Path=/main.css
filters:
- SaveSession

- id: commentsService
uri: 1lb://IMAGES
predicates:
- Path=/comments/**
filters:
- SaveSession

Looking at the preceding code, we can discern the following:

e FEach entry has an id, a uri, an optional collection of predicates, and an optional list of fiiters.

e Looking at the first entry, we can see that requests to /imagesservice are routed to the load-balanced
(1b: prefix), Eureka-registered mmaces service. There are filters to strip the imagesservice prefix.

e All requests to /images Will also be sent to the images microservice. However, compared to
/imagesservices, the full path of the request will be sent. For example, a request to /images/abci2z will
be forwarded to the images service as /images/abci23, and not as /abc123. We'll soon see why this is
important.

e Asking for /main.css will get routed to images as well.

e All requests to /comments Will get sent to images, full path intact. (Remember that images uses Ribbon to
remotely invoke comments, and we don't want to change that right now).

e All of these rules include the savesession filter, a custom Spring Cloud Gateway filter we'll write
shortly to ensure our session data is saved before making any remote call.

! Don't forget to restart the Config Server after committing changes!

What's going on?

First and foremost, we create a Gateway API, because we want to keep image management and chatting
as separate, nicely defined services. At one point in time, there was only HTTP support. WebSocket
support is newly added to Spring Cloud Gateway, so we don't use it yet, but keep all of our WebSocket
handling code in the gateway instead. In essence, the chat microservice moves to the front, and the images
microservice moves to the back.

Additionally, with WebSocket handling kept in the gateway, we can eliminate the latency of
forwarding WebSocket messages to another service. It's left as an exercise for you to move
WebSocket messaging into another service, configure Spring Cloud Gateway to forward
them and measure the effects.

This suggests that we should have chat serve up the main Thymeleaf template, but have it fetch image-
specific bits of HTML from the images service.

To go along with this adjustment to our social media platform, let's create a Thymeleaf template at
src/main/resources/templates/index.html in chat like this:

<!DOCTYPE html>
<html xmlns:th="http://www.thymeleaf.org">
<head>
<meta charset="UTF-8" />

<title>Learning Spring Boot: Spring-a-Gram</title>
<link rel="stylesheet" href="/main.css" />
</head>
<body>
<div>

</div>
<hr />

<hl>Learning Spring Boot - 2nd Edition</h1>
<div id="images"></div>

<div id="chatBox">
Greetings!

<textarea id="chatDisplay"
rows="10" cols="80"
disabled="true" ></textarea>

<input id="chatInput" type="text"
style="width: 500px" value="" />

<button id="chatButton">Send</button>

</div>

</body>
</html>

This preceding template can be described as follows:

It's the same header as we saw in the previous chapter, including the main.css stylesheet.

e The <n1> header has been pulled in from the image service.

e For images, we have a tiny <div> identified as images. We need to write a little code to populate that
from our images microservice.

e Finally, we have the same chat box shown in the earlier chapter.

e By the way, we remove the connect/disconnect buttons, since we will soon leverage Spring
Security's user information for WebSocket messaging!

To populate the images <div>, we need to write a tiny piece of JavaScript and stick it at the bottom of the
page:

<script th:inline="javascript">
/*<1[CDATA[*/
(function() {
var xhr = new XMLHttpRequest();
xhr.open('GET', /*[[@{'/imagesService'}]]*/'', true);
xhr.onload = function(e) {
if (xhr.readyState === 4) {
if (xhr.status === 200) {
document.getElementById('images').innerHTML =
Xhr.responseText;

// Register a handler for each button
document.querySelectorAll('button.comment"')
.forEach(function(button) {
button.addEventListener('click',
function() {
e.preventDefault();
var comment =
document.getElementById(
'comment-' + button.id);

var xhr = new XMLHttpRequest();
xhr.open('POST',
/*[[@{'/Commentsl}]]*/..,

true);

var formData = new FormData();
formData.append('comment',
comment.value);
formData.append('imageId',
button.id);

xhr.send(formbata);

comment.value = ;

iOF
1K

document.querySelectorAll('button.delete')
.forEach(function(button) {
button.addEventListener('click',
function() {
e.preventDefault();
var xhr = new XMLHttpRequest();
xhr.open('DELETE', button.id, true);
xhr.withCredentials = true;
xhr.send(null);
3);
1)

document.getElementById('upload')
.addEventListener('click', function() {
e.preventDefault();
var xhr = new XMLHttpRequest();
xhr.open('POST',
/*[[@{'/images'}]]*/"",
true);

var files = document
.getElementById('file').files;

var formData = new FormData();
formData.append('file', files[0],
files[0].name);

xhr.send(formbData);

i3]
3
}
3
xhr.send(null);
1O
/*11>*/
</script>

This code can be explained as follows:

The whole thing is an immediately invoked function expression (IIFE), meaning no risk of
global variable collisions.

e [t creates an xmiHttprequest Named xhr to do the legwork, opening an asynchronous cet request to
/imagesService.

e A callback is defined with the onioad function. When it completes with a successful response status,
the images <div> will have its innerntve replaced by the response, ensuring that the DOM content is
U{Kj&t@(illShlg document.getElementById('images').innerHTML = xhr.responseText.

o After that, it will register handlers for each of the image's comment buttons (something we've
already seen). The delete buttons and one upload button will also be wired up.

e With the callback defined, the request is sent.

Don't get confused by the fact that there are four xnr objects. One is used to fetch the
n image-based HTML content, the other three are used to handle new comments, delete

\ § 4 images, and upload new images, when the corresponding button is clicked. They are in
separate scopes and have no chance of bumping into each other.

Since we only need the image-specific bits of HTML from the images microservice, we should tweak that
template to serve up a subset of what it did in the previous chapter, like this:

<!DOCTYPE html>
<div xmlns:th="http://www.thymeleaf.org">

<table>

<!-- ...the rest of the image stuff we've already seen... -->
This last fragment of HTML can be explained as follows:

This is no longer a complete page of HTML, hence, no <nhtm1>, <head>, and <body> tags. Instead, it's
jllSt a <div>.

e Despite being just a <div>, we need the Thymeleaf namespace th to give the IDE the right
information to help us with code completion.

e From there, it goes into the table structure used to display images. The rest is commented out, since
it hasn't changed.

With these changes to chat and images, along with the Spring Cloud Gateway settings, we have been able
to merge what appeared as two different services into one. Now that these requests will be forwarded by
Spring Cloud Gateway, there is no longer any need for CORS settings. Yeah!

This means we can slim down our WebSocket configuration as follows:

@Bean
HandlerMapping webSocketMapping(CommentService commentService,
InboundChatService inboundChatService,

OutboundChatService outboundChatService) {
Map<String, WebSocketHandler> urlMap = new HashMap<>();
urlMap.put("/topic/comments.new", commentService);
urlMap.put("/app/chatMessage.new", inboundChatService);
urlMap.put("/topic/chatMessage.new", outboundChatService);

SimpleUrlHandlerMapping mapping = new SimpleUrlHandlerMapping();
mapping.setOrder(10);
mapping.setUrlMap(urlMap);

return mapping;

}

The preceding code is the same as shown earlier in this chapter, but with the CORS settings, which we
briefly saw earlier, removed.

As a reminder, we are focusing on writing Java code. However, in this day and age, writing JavaScript
is unavoidable when we talk about dynamic updates over WebSockets. For a full-blown social media
platform with a frontend team, something like webpack (https://webpack.github.io/) and babel.js (https://ba
beljs.io/) Would be more suitable than embedding all this JavaScript at the bottom of the page.
Nevertheless, this book isn't about writing JavaScript-based apps. Let's leave it as an exercise to pull out
all this JavaScript from the Thymeleaf template and move it into a suitable module-loading solution.

https://webpack.github.io/
https://babeljs.io/

Securing the chat microservice

Okay, this chapter is titled Securing Your App with Spring Boot, yet we have spent a fair amount of
time... NOT securing our app! That is about to change. Thanks to this little bit of restructuring, we can
move forward with locking things down as desired.

Let's take a crack at writing some security policies, starting with the chat microservice:

@EnableWebFluxSecurity
public class SecurityConfiguration {

@Bean
SecurityWebFilterChain springwWebFilterChain(HttpSecurity http) {
return http
.authorizeExchange()
.pathMatchers("/**").authenticated()
.and()
.build();
3
3

The preceding security policy can be defined as follows:

@EnablewebFluxsecurity activates the Spring WebFlux security filters needed to secure our application
esean marks the one method as a bean definition

Httpsecurity.http() lets us define a simple set of authentication and authorization rules

In this case, every Spring WebFlux exchange (denoted by /+*) must be authenticated

The .pathmatchers("/**").authenticated() rule is the first rule based upon URLs. It's also
0 possible to put additional requirements at the method level, which we'll explore later in
this chapter.

This is a nice beginning to define a security policy, but we need some way to track user data to
authenticate against. To do so, we need a user domain object and a way to store such data. To minimize
our effort at storing user information in a database, let's leverage Spring Data again.

First, we'll create a user domain object like this:

@Data

@AllArgsConstructor
@NoArgsConstructor
public class User {

@Id private String id;

private String username;
private String password;
private String[] roles;

3

This preceding user class can easily be described as follows:

e @pata uses the Lombok annotation to mark this for getters, setters, equals, tostring, and hashcode
functions

@AllArgsconstructor creates a constructor call for all of the attributes

@NoArgsConstructor creates an empty constructor call

exd marks this id field as the key in MongoDB

username, password, and roles are critical fields required to properly integrate with Spring Security, as
shown further in the chapter

The names of these fields don't matter when it comes to integrating with Spring Security,
g g pring

'IgP as we'll soon see.

To interact with MongoDB, we need to create a Spring Data repository as follows:

public interface UserRepository
extends Repository<User, String> {

Mono<User> findByUsername(String username);

3

This is similar to the other repositories we have built so far in the following ways:

e [t extends Spring Data Commons' repository, indicating that the domain type is user and the ID type
1S String

e It has one finder needed for security lookups, findeyusername, which is returned as a reactive
Mmono<user>, signaling Spring Data MongoDB to use reactive MongoDB operations

With this handy repository defined, let's preload some user data into our system by creating an 1nitusers
class, as shown here:

@Configuration
public class InitUsers {

@Bean
CommandLineRunner initializeUsers(MongoOperations operations) {
return args -> {
operations.dropCollection(User.class);

operations.insert(
new User (
null,
"greg", "turnquist",
new String[]{"ROLE_USER", "ROLE_ADMIN"}));
operations.insert(
new User (
null,
IlphilH, "Webb",
new String[]{"ROLE_USER"}));

operations.findAll(User.class).forEach(user -> {
System.out.println("Loaded " + user);
1)
}i

This preceding user-loading class can be described as follows:

® aconfiguration indicates this class contains bean definitions
® @Bean marks the initializeUsers method as a Sprlng bean
® initializeusers requires a copy of the blocking mongooperations bean defined by Spring Boot's

MongoDB autoconfiguration code
The return type 1S commandiinerunner, which we'll supply with a lambda function

¢ Inside our lambda function, we drop the user based collection, insert two new users, and then print
out the collection

Now, let's see how to put that to good use! To hook into Reactive Spring Security, we must implement
its userpetailsrepository interface. This interface is designed to look up a user record through any means
necessary and bridge it to Spring Security as a mono<userpetails> return type. The solution can be found
here:

@Component
public class SpringDataUserDetailsRepository implements
UserDetailsRepository {

private final UserRepository repository;

public SpringDataUserDetailsRepository(UserRepository
repository)

this.repository = repository;

}

@override
public Mono<UserDetails> findByUsername(String username) {
return repository.findByUsername(username)
.map(user -> new User(
user.getUsername(),
user.getPassword(),
AuthorityUtils.createAuthorityList(user.getRoles())
));
3
}

The previous code can be described as follows:

e It injects a userrepository we just defined through constructor injection

e [t implements the interface's one method, findeyusername, by invoking our repository's findsyusername
method and then mapping it onto a Spring Security user object (which implements the userpetails
interface)

® AuthorityUtils.createAuthorityList 1S @ convenient utility to translate a string[] of roles into a
List<GrantedAuthority>

¢ [f no such user exists in MongoDB, it will return a mono.empty(), which is the Reactor equivalent of
null

We map our MongoDB user domain object onto Spring Security's
org.springframework.security.core.userdetails.User object to SCll‘iSfy the userpetails requirement.
However, that doesn't mean we can't implement a custom version of this interface. Imagine
we were building a medical tracking system and needed each patient record to contain a
detailed profile. A custom implementation would allow us to fill in the critical fields while
also adding all the other data needed to track a person.

By hooking MongoDB-stored users into Spring Security, we can now attempt to access the system.

When we try to access 1ocalhost:sese, we can expect a login prompt, as shown in this screenshot:

@ ®® |ncalhost:8080 =

& C O @ localhost:8080 Y
[VMware Intranet » [F Other Bookmarks

Authentication Required

http://localhost:8080 requires a username and password.

User Name: greg

Password: ---------|

Cancel Login

This popup (run from an incognito window to ensure there are no cookies or lingering session data) lets
us nicely log in to the gateway.

Authentication versus authorization

Spring Security operates on two fundamental concepts--authentication and authorization.
These two concepts can be described as follows:

e Authentication: This defines who you are
e Authorization: This defines what you are allowed to do

The first step in any security system is to confirm the user's identify. This often involves a username and
a password, but these credentialed bits can be stored in many different systems, including relational
databases, directory servers, certificates, and other things. However, these are implementation details
that surround verifying someone's identity. Until we know who you are, we can't make any
determination.

HTTP Basic, HTTP FORM, and other forms of authentication are supported by Spring Security. Right
now, we are using HTTP Basic on the frontend as well as the cross-service calls, given that it's the only
version currently supported with Reactive Spring Security.

The second step in any security system is to decide what the user is authorized to do. Both a teller and
a vice president at a bank can be authenticated, but they will certainly have differing permissions on
what they are each allowed to do. The teller may be granted permission to open his assigned cash
drawer, while the vice president may be authorized to open her customer's account.

With the securityconfig code given earlier, our chat microservice has instituted authentication, which is
linked to the session. However, it also chose a very simple authorization strategy: anyone that is
authenticated can do anything. Since the chat microservice does little more than communicate via a
WebSocket, that is fine. In the next section, we'll see a different policy, where certain operations are
restricted to a subset of users.

Sharing session details with other
microservices

Something that's critical to our microservice-based social media platform is sharing the session details
when putting things together. When we load the main page, it may have to pull together bits of data
from multiple places. This means that after logging in to the system, the session ID that is generated has
to be passed along seamlessly.

Spring Cloud Gateway can forward various requests, but Spring Session has a lazy approach to things.
This means, we need to step up and save the session immediately; otherwise, the first few remote calls
might fail.

To do so, we need to create a custom Spring Cloud Gateway filter as follows:

@Configuration
public class GatewayConfig {

private static final Logger log =
LoggerFactory.getLogger (GatewayConfig.class);

/**
* Force the current WebSession to get saved
*/
static class SaveSessionGatewayFilterFactory
implements GatewayFilterFactory {
@Override
public GatewayFilter apply(Tuple args) {
return (exchange, chain) -> exchange.getSession()
.map(webSession -> {
log.debug("Session id: " + webSession.getId());
webSession.getAttributes().entrySet()
.forEach(entry ->
log.debug(entry.getkKey() + " => " +
entry.getvalue()));
return webSession;
1)
.map(WebSession: :save)
.then(chain.filter (exchange));
}
3

@Bean
SaveSessionGatewayFilterFactory saveSessionGatewayFilterFactory() {
return new SaveSessionGatewayFilterFactory();

b
b

This preceding filter can be described as follows:

e The aconfiguration annotation indicates that this class contains beans to be picked up by Boot's
component scanning

e There is an SIf4j Logger to print out debug statements

® static class SaveSessionGatewayFilterFactory implements the Sprlng Cloud Gateway's GatewayFilterFactory
interface, allowing us to write a custom filter, which is, essentially, a function call where the inputs
are transformed into a catewayFilter

e To implement this functional interface, we write a lambda, accepting a WebFlux webserverexchange

and catewayrilterchain, Which gives us access to the request as well as the chain of filters to hand it
off to

We grab the exchange's websession and map over it in order to print out all its details

Next, we map over the same websession and invoke its save function through a method reference

We wrap things up with a then() call to invoke the filter chain on the exchange

With gsean, we define a bean in the application context that implements savesessioncatewayFilterfactory

Spring Cloud Gateway's default policy is to use the classname of the filter with catewayrilterractory
removed as the name of the filter itself. HGI’ICG, SaveSessionGatewayFilterFactory becomes s1mply SaveSession
for purposes of inserting into our configuration file, as we saw earlier.

spring:
cloud:
gateway:
routes:
- id: imagesService
uri: 1lb://IMAGES
predicates:
- Path=/imagesService/**
filters:
- RewritePath=/imagesService/(?<segment>.*), /${segment}
- RewritePath=/imagesService, /
- SaveSession

With the preceding little filter in place, we can guarantee that all the forwarded calls made by Spring
Cloud Gateway will first ensure that the current websession has been saved.

The default Spring WebFlux behavior for a web call with a websession is to issue a set-cookie
directive (with the sess1on entry configured with the ID) back to the client in its response.
Subsequent calls into WebFlux will automatically parse this cookie entry and load
0 websession details. Spring Cloud Gateway itself forwards cookies unless explicitly
configured not to. Hence, the session entry gets propagated. All that we do is ensure the
security details automatically linked to the session are properly stored before a forwarded
call is made.

Securing the images microservice

Having secured the frontend and also embedded a session ID in every gateway call to the backend, we
can shift our focus to securing those backend services.

Let's start with the images service. First of all, we need to configure session management by creating
SessionConfig dS follows:

@EnableMongoWebSession
public class SessionConfig {

3

This preceding code can be described as follows:
® @EnableMongowebsession activates the Reactor-based Spring Session MongoDB

Next, we can lock things down by creating a securityconfiguration class like this:

@EnableWebFluxSecurity
@EnableReactiveMethodSecurity
public class SecurityConfiguration {

@Bean
SecurityWebFilterChain springWebFilterChain() {
return HttpSecurity.http()
.securityContextRepository(
new WebSessionSecurityContextRepository())
.authorizeExchange()
.anyExchange().authenticated()
.and()
.build();

b
b

The preceding class definition can be described as follows:

® @EnablewebFluxsecurity activates a collection of filters and components needed to secure Spring
WebFlux endpoints.

® @enablereactiveMethodsecurity adds additional support for putting annotations on methods and classes
where we can plug in sophisticated security expressions (as we'll soon see).

e Next, we create a securitywebrilterchain. This is, actually, a collection of filters defined in a very
specific order using Spring Security's fluent APIL. This API nicely lets us define what we need
while leaving Spring Security to put it together in the right order.

e In this case, we want HTTP support, but with a websession-based SecurityContextRepository. This
activates a filter that will load the exchange with a principal object from our session store.

¢ As a minimum for authorization, all exchanges must be authenticated.

Some of this is the same as earlier, and some of it is different.

What's different? The images service has method security, meaning, it can annotate individual methods
with additional authorization rules, which we'll see shortly. We are no longer confined to securing

things based on URLs and HTTP verbs. There are also no account definitions. That's because the images
service is not creating new sessions, but riding on the one created in the gateway by the chat
microservice instead; (do we really want to create a separate user domain object in every microservice?).

Both services respond to authorization headers as well as sesston headers, which means that once logged
in, the two can easily share information. Both, essentially, route all URLs into the same authorization
rule, .anyExchange().authenticated(). (That's the same net effect as that of .pathMatchers("/**").authenticated()).

Wiring in image ownership

Spring WebFlux's serverwebexchange comes prepared for security by providing a getprincipal() API that
returns mono<principal>. While the default version, straight out of Spring Framework, supplies mono.empty(),
Spring Security automatically hooks in a filter to supply a real value via

WebSessionSecurityContextRepository.

With Spring Security and Spring Session hooked into all our web calls, we can leverage this information
every time a new image is uploaded.

First of all, we can adjust our image domain object as follows:

@Data
@AllArgsConstructor
public class Image {

@Id private String id;
private String name;
private String owner;

3

This last code is the same POJO that we've used throughout this book with one change:

e It now has a string owner property. This lets us associate an image with whoever uploaded it (which
we'll see shortly).

Spring Security makes it possible to inject any Spring WebFlux controller with an authentication object
as follows:
@PostMapping(value = BASE_PATH)
public Mono<String> createFile(
@RequestPart("file") Flux<FilePart> files,
@AuthenticationPrincipal Principal principal) {

return imageService.createImage(files, principal)
.then(Mono. just("redirect:/"));

This change to our image service's uploadcontroller.createrile, as shown in the preceding code, can be
described as follows:

e Using Spring Security's @authenticationprincipal annotation, the second parameter allows us to find
out the security context of the caller.

e The actual type can be flexible, whether we want a Java principal, a Spring Security subinterface
Authentication, OI @ concrete instance (UsernamePasswordAuthenticationToken by default). This parameter
can also be wrapped as a mono<7> 0f this type.

e For simplicity, we grab it unwrapped and pass it along to mmageservice as a new argument.

SO, let's g0 update ImageService.createImage(), where Image objects are actually created:

public Mono<Void> createImage(Flux<FilePart> files,
Principal auth) {
return files

.log("createImage-files")
.flatMap(file -> {
Mono<Image> saveDatabaseImage = imageRepository.save(
new Image(
UUID.randomUUID().toString(),
file.filename(),
auth.getName()))
.log("createImage-save");

...the rest that hasn't changed...

3
b

The parts that have changed in the preceding code can be described as follows:

e This method now accepts a second argument, principal. This is a Java standard token.

e The code where we actually create a new 1mage is populated in the same as done earlier for the first
two fields, with a random ID and the name of the file.

e The owner field is now populated with auth.getname(), supplied to us by Spring Security's context-
enabling advice.

The last link in the chain of ownership is to display it on the page. To do this, we can update the model
fed to that HTML fragment in Homecontro1ler, as follows:

model.addAttribute("images",
imageService

.findAllImages()

.map(image -> new HashMap<String, Object>() {{
put("id", image.getId());
put("name", image.getName());
put("owner", image.getOwner());
put("comments",

commentHelper.getComments(image,
webSession.getId()));

1)

);

This preceding fragment from public string index() has been updated to include the new owner attribute.

With that added to the template's model, we can display it by adding the following bit of HTML to our
Thymeleaf template, like this:

| <td th:text="${image.owner}" />

This attribute can now be seen when we log in and check things out, as seen in this screenshot:

Name Image Owner | C

bazinga.png 747 / y Delete | greg

B05771_MockupCover_Normal.png Delete | phil

In the preceding screenshot, we see one image loaded by greg and one image loaded by phil.

Authorizing methods

For a security framework to be of value, it needs flexibility. Security rules are never confined to simple
use cases. We have all dealt with customers needing very complex settings for certain operations.
Spring Security makes this possible through its special dialect of SpEL or Spring Expression
Language.

To get a taste of it, let's augment the images microservice's imageservice.delete() method with an
authorization rule:
@PreAuthorize("hasRole('ADMIN') or " +
"@imageRepository.findByName (#filename).owner " +

"== authentication.name")
public Mono<Void> deleteImage(String filename) {

. rest of the method unchanged ...

3

This preceding code for deleting images is only different in the new annotation in the following manner:

e The method is flagged with a epreauthorize annotation, indicating that the SpEL expression must
evaluate to true in order for the method to get called
® hasRole('apMIN') Indicates that a user with roLe_aomin 1S allowed access
® or @imageRepository.findByName(#filename).owner == authentication.name") indicates that access 1s also
granted if the user's name matches the image's owner property
Why do we need this authorization rule again? Because without it, any authenticated user
o can delete any image. Probably not a good idea.

This authorization rule is just one example of the types of rules we can write. The following table lists
the prebuilt rules provided by Spring Security:

SpEL function Description

hasAuthority('ROLE_USER") Access is granted if user has roLe_user

hasAnyAuthorit '"ROLE_USER',
 ROLE. ADMIN') YUIROLE- Access is granted if user has any of the listed authorities

hasRole('USER') Shorthand for hasauthority('ROLE_USER')

hasAnyRole('USER', 'ADMIN') Shorthand for hasanyauthority('ROLE_USER', 'ROLE_ADMIN')

principal Direct access to the principal object representing the user

uthentication Direct access to the authentication object obtained from the security
context

permitAll Evaluates to true

denyAll Evaluates to faise

isAnonymous() Returns true if user is an anonymous user

isRememberMe () Returns true if user is a remember-me user

isAuthenticated() Returns true if user is not anonymous

isFullyAuthenticated() Returns true if user is neither anonymous nor a remember-me user

It's possible to combine these SpEL functions with and and or.

As we saw demonstrated earlier, we can also write security checks like this:

@PreAuthorize("#contact.name == authentication.name")
public void doSomething(Contact contact);

This preceding security check will grab the method's contact argument and compare its name field against
the current authentication object's name field, looking for a match.

By the way, these types of parameter-specific rules are great when we want to restrict operations to the
owner of the record, a common use case. In essence, if you are logged in and operating on your data,
then you can do something.

In addition to all these functions and comparators, we can also invoke beans (another thing shown
earlier). Look at the following code, for example:

@PreAuthorize("@imageRepository.findByName(#filename).owner ==
authentication.name")

This last security check will invoke the bean named imagerepository and use its findsyname function to look

up an image's owner and then compare it against the current authentication object.

i

@rreauthorize rules can be applied to any Spring bean, but it's recommended you apply them
to your service layer methods. In essence, any code that invokes the service layer, whether
it was from a web call or somewhere else, should be secured. Wrapping higher up at the
web handler can leave your service layer susceptible to unauthorized access. To guard
against improper web calls, it's recommended that you use route-based rules (as shown
earlier in the chat microservice's securityconfiguration policy).

Tailoring the Ul with authorization checks

With the REST endpoints locked down, it's nice to know things are secure. However, it doesn't make
sense to display options in the Ul that will get cut off. Instead, it's better to simply not show them. For
that, we can leverage a custom Thymeleaf security rule.

Normally, we would make use of Thymeleaf's Spring Security extension. Unfortunately, the Thymeleaf
team has yet to write such support for Spring Framework 5's WebFlux module. No problem! We can
craft our own and register it inside the Thymeleaf engine.

For starters, we want to define an authorization scoped operation that could be embedded inside a
Thymeleaf th:if="s${3" expression, conditionally displaying HTML elements. We can start by adding
SecurityExpressionobjectFactory tO the images microservice, since that fragment of HTML is where we wish
to apply it:

public class SecurityExpressionObjectFactory
implements IExpressionObjectFactory {

private final
SecurityExpressionHandler<MethodInvocation> handler;

public SecurityExpressionObjectFactory(
SecurityExpressionHandler<MethodInvocation> handler) {
this.handler = handler;

}

@Override
public Set<String> getAllExpressionObjectNames() {
return Collections.unmodifiableSet(
new HashSet<>(Arrays.asList(
"authorization"

)));
3

@Override
public boolean isCacheable(String expressionObjectName) {
return true;

}

@Override
public Object buildObject(IExpressionContext context,
String expressionObjectName) {
if (expressionObjectName.equals("authorization")) {
if (context instanceof ISpringWebFluxContext) {
return new Authorization(
(ISpringWebFluxContext) context, handler);
3
3

return null;

}

The preceding Thymeleaf expression object factory can be described as follows:

e This class implements Thymeleaf's texpressionobjectractory, the key toward writing custom
expressions.

e To do its thing, this factory requires a copy of Spring Security's securityexpressionHandler, aimed at
method invocations. It's injected into this factory through constructor injection.

e To advertize the expression objects provided in this class, we implement getaliexpressionobjectNames,
which returns an unmodifiable set containing authorization, the token of our custom expression.

e We implement the interface's iscacheable and point blank say that all expressions may be cached by
the Thymeleaf engine.

® puildobject 1S Where we create objects based on the token name. When we see authorization, we
narrow the template's context down to a WebFlux-based context and then create an authorization
object with the context, Spring Security's expression handler, and a copy of the current
ServerWebExchange, g1V1ng us all the details we need.

e Anything else, and we return nu11, indicating this factory doesn't apply.

Our expression object, authorization, 1s defined as follows:

public class Authorization {

private static final Logger log =
LoggerFactory.getLogger (Authorization.class);

private ISpringWebFluxContext context;
private SecurityExpressionHandler<MethodInvocation> handler;

public Authorization(ISpringWebFluxContext context,
SecurityExpressionHandler<MethodInvocation> handler) {
this.context context;
this.handler handler;

3

The code can be described as follows:

¢ It has an SIf4j 109 so that we can print access checks to the console, giving developers the ability to
debug their authorization expressions

e Through constructor injection, we load a copy of the Thymeleaf springwebriuxcontext and the Spring
Security SecurityExpressionHandler

With this setup, we can now code the actual function we wish to use, authorization.expr(), as follows:

public boolean expr(String accessExpression) {
Authentication authentication =
(Authentication) this.context.getExchange()
.getPrincipal().block();

log.debug("Checking if user \"{}\" meets expr \"{}\".",
new Object[] {
(authentication == null ?
null : authentication.getName()),
accessExpression});

/*
* In case this expression is specified as a standard
* variable expression (${...}), clean it.

*/
String expr =
((accessExpression != null
&&
accessExpression.startswith("${")
&&

accessExpression.endswith("}")) ?

accessExpression.substring(2,
accesseExpression.length()-1) :
accessExpression);

try {
if (ExpressionUtils.evaluateAsBoolean(

handler.getExpressionParser().parseExpression(expr),
handler.createEvaluationContext(authentication,
new SimpleMethodInvocation()))) {

log.debug("Checked \"{}\" for user \"{}\". " +
"Access GRANTED",
new Object[] {
accessExpression,
(authentication == null ?
null : authentication.getName())});

return true;
} else {
log.debug("Checked \"{}\" for user \"{}\". " +
"Access DENIED",
new Object[] {
accessExpression,
(authentication == null ?
null : authentication.getName())});

return false;
} catch (ParseException e) {

throw new TemplateProcessingException(
"An error happened parsing \"" + expr + "\"", e);

This last Thymeleaf custom function can be described as follows:

Our custom expr() function is named in the first line, is publicly visible, and returns a Boolean,
making it suitable for th:if={} expressions.

e The first thing we need is to grab the authentication object from the context's serverwebexchange.
Because we are inside an inherently blocking API, we must use biock() and cast it to a Spring
Security Authentication.

e To help developers, we log the current user's authentication details along with the authorization
expression.

¢ In the event the whole expression is wrapped with s{3, we need to strip that off.

e We tap into Sprlng SGCUTitY'S SpEL support by invoking ExpressionUtils.evaluateAsBoolean().

e That method requires that we parse the expression via
handler.getExpressionParser().parseExpression(expr).

e We must also supply the SpEL evaluator with a context, including the current authentication as
well as simplemethodinvocation, since we are focused on method-level security expressions.

e If the results are true, it means access has been granted. We log it and return true.

e If the results are raise, it means access has been denied. We log that and return faise.

e In the event of a badly written SpEL expression, we catch it with an exception handler and throw a
Thymeleaf TemplateProcessingException.

The preceding code defines the expr() function, while the enclosing SecurityExpressionObjectFactory SCOPCS
the function inside authorization, setting us up to embed #authorization.expr(/* my Spring Security SpEL
expression*/) inside Thymeleaf templates.

The next step in extending Thymeleaf is to define a Dialect with our expression object factory, as
follows:

public class SecurityDialect extends AbstractDialect
implements IExpressionObjectDialect {

private final
SecurityExpressionHandler<MethodInvocation> handler;

public SecurityDialect(
SecurityExpressionHandler<MethodInvocation> handler) {
super("Security Dialect");
this.handler = handler;

}

@override
public IExpressionObjectFactory getExpressionObjectFactory()

{
b

return new SecurityExpressionObjectFactory(handler);

3

This previous code can be described as follows:

SecurityDialect extends Abstractbialect and implements IExpressionObjectDialect

e We need a copy of Spring Security's securityexpressiontandler in order to parse Spring Security SpEL
expression, and it's provided by constructor injection

e To support IExpressionObjectDialect, W€ supply a copy of our custom SecurityExpressionObjectFactory
factory inside the getExpressionObjectFactory() method

With our tiny extension dialect defined, we must register it with Thymeleaf's template engine. To do so,
the easiest thing is to write a custom Spring post processor, like this:

@Component
public class SecurityDialectPostProcessor
implements BeanPostProcessor, ApplicationContextAware {

private ApplicationContext applicationContext;

@override
public void setApplicationContext(
ApplicationContext applicationContext)
throws BeansException {
this.applicationContext = applicationContext;
3

@override
public Object postProcessBeforeInitialization(
Object bean, String beanName) throws BeansException {
if (bean instanceof SpringTemplateEngine) {
SpringTemplateEngine engine =
(SpringTemplateEngine) bean;
SecurityExpressionHandler<MethodInvocation> handler =
applicationContext.getBean(
SecurityExpressionHandler.class);
SecuritybDialect dialect =
new SecurityDialect(handler);
engine.addDialect(dialect);
b

return bean;

}

@override
public Object postProcessAfterInitialization(
Object bean, String beanName) throws BeansException {
return bean;

The preceding code can be defined as follows:

e acomponent signals Spring Boot to register this class.

By implementing the seanpostrrocessor interface, Spring will run every bean in the application
context through it, giving our securitypialectpostprocessor the opportunity to find Thymeleaf's engine
and register our custom dialect.

e Since our custom dialect needs a handle on the securityexpressiontandier bean, we also implement the
ApplicationContextAware interface, giving it a handle on the application context.

e [t all comes together in postprocessBeforernitialization, Which is invoked against every bean in the
application context. When we spot one that implements Thymeleaf's springtempiateengine, we grab
that bean, fetch securityexpressiontandier from the app context, create a new securitypialect, and add
that dialect to the engine. Every bean, modified or not, is returned back to the app context.

e Because we don't need any processing before initialization, postprocessafterInitialization Just passes
through every bean.

With all this in place, we are ready to make some security-specific tweaks to our templates.

In the main page (chat microservice's index.html template), it would be handy to put some user-specific
information. To display the username and their roles, we can update the Homecontroiier like this:
@GetMapping("/")
public String index(@AuthenticationPrincipal Authentication auth,
Model model) {

model.addAttribute("authentication", auth);
return "index";

}

This preceding adjustment to the home controller can be described as follows:

® @AuthenticationPrincipal Authentication auth grants us a copy Of the current USCI"S Authentication ObjCCt

® wModel model gives us a model object to add data to the template

¢ By simply sticking the authentication object into the model, we can use it to display security details
on the web page

Now, we can display the username and their roles, as follows:

<div>

</div>
<hr />

This little DIV element that we just defined includes the following:

¢ Displays the authentication's name property, which is the username
¢ Displays the authentication's authorities properties, which are the user's roles
e Draws a horizontal line, setting this bit of user specifics apart from the rest of the page

screen. You have to shut down the browser (or close the incognito tab) to clear out security

0 Since we are using HTTP Basic security, there is no value in putting a logout button on the
credentials and start afresh.

We can now expect to see the following when we log in as greg:

& C ¢ @ localhost:3080

[VMware Intranet !' VMware [Jenkins]

greg has [ROLE_ADMIN, ROLE_USER]

Learning Spring Boot -

We mentioned limiting things that the user can't do. The big one in our social media platform is
restricted access to deleting images. To enforce this in the Ul, we need to parallel the authorization rule
we wrote earlier in the images microservice's index.htm1, as shown here:

<td>
<button th:if="${#authorization.expr('hasRole(''ROLE_ADMIN'"')")
or #authorization.expr('''_${image.owner}__'' ==

authentication.name')}"
th:id=""'/images/' + ${image.name}"
class="delete">Delete</button>
</td>

This last code looks a bit more complex than the epreauthorize rule wrapping imageservice.deletemage(), SO
let's take it apart:

We use Thymeleaf's th:if="... " expression along with s{3 to construct a complex expression
consisting of two #authorization.expr() functions chained by or.

® uauthorization.expr('hasRole(''ROLE_ADMIN'')') grants access if the user has roie_apmin.

® #authorization.expr('''__${image.owner}__'' == authentication.name') grants access if the image.owner
attribute matches the current authentication.name.

¢ By the way, the double underscore before and after s{image.owner} is Thymeleaf's preprocessor. It
indicates that this is done before any other part of the expression is evaluated. In essence, we need
the image's owner attribute parsed first, stuffed into the authorization expression, and finally run
through our custom tie-in to Spring Security's SpEL parser.

The expressions inside #authorization.expr() are supposed to be wrapped in single quotes.
Literal values themselves have to be wrapped in single quotes. 1o escape a single quote in
this context requires a double single quote. Confused yet? Thymeleaf's rules for
concatenation, preprocessing, and nesting expressions can, at times, be daunting. To help
debug an expression, pull up the authorization class coded earlier inside your IDE and set
breakpoints inside the proper security expression. This will pause code execution, allowing
you to see the final expression before it gets passed, hopefully making it easier to craft a
suitable authorization rule.

With our nice tweaks to the U, let's see what things look like if we have two different images uploaded,
one from an admin and one from a regular user.

If greg is logged in, we can see the following screenshot:

Owner | (

Delete greg

ng Delete | phil

In the preceding screenshot, both images have a Delete button, since greg has roLe_apmin.

If phil is logged in, we can see the following screenshot:

Image Owner | (

greg

Delete | | phil

In the earlier screenshot, only the second image has the Delete button, since phil owns it.

With these nice details in place, we can easily check out the headers relayed to the backend using the
browser's debug tools, as seen in this screenshot:

X | Headers Preview Response Cookies Timing

¥ General
Request URL: http://localhost:8080/images/bazinga.png/raw
Request Method: GET
Status Code: @ 200
Remote Address: [::1]:8080

¥ Response Headers view source
Content-Type: image/jpeg
Date: Thu, 24 Nov 2016 06:18:44 GMT
Transfer-Encoding: chunked
X-Application-Context: chat: 8080

¥ Request Headers view source
Accept: image/webp, image/x,*/x;q=0.8
Accept-Encoding: gzip, deflate, sdch, br
Accept-Language: en-US,en;g=0.8
Authorization: Basic Z3J1ZzpBdXJucXVpc3Q=
Cache-Control: no-cache
Connection: keep-alive
Cookie: SESSION=8ab12c94-dd78-438e-a483-b75e8737629f
Host: localhost:8080
Pragma: no-cache
Referer: http://localhost: 8080/
User-Agent: Mozilla/5.@ (Macintosh; Intel Mac 0S X 10_11_5) Ap

This collection of request and response headers shown in the last image lets us see the following things:

The session ID, sabi2c9a-dd7s-43se-a483-b75e8f37629f, 18 captured in sesston in the cookie and sent over

the wire.
e There is an authorization header that is transmitted once we have been authenticated.

e More security-based headers are used to further protect us from other attack vectors. See nttp://docs
.spring.io/spring-security/site/docs/current/reference/html/headers.html for more details.

When we started building this social media platform early in this book, we had several
operations tied into our Thymeleaf template. This type of tight interaction between
controllers and views is of classic design. However, the more things shift to piecing
together bits of HTML and leveraging JavaScript, the more it becomes useful to have
REST-based services. Writing AJAX calls decouples the HTML from the server-side
controls, which can be further leveraged if we use tools such as React.js (https://facebook.gi
thub.io/react/). This gets us out of the business of assembling DOM elements and lets us

focus on the state of the frontend instead.

http://docs.spring.io/spring-security/site/docs/current/reference/html/headers.html
https://facebook.github.io/react/

Securing WebSockets

So far, we have secured the chat service and the images service.
Or have we?

Well, we configured chat as the Gateway API for our microservices using Spring Cloud Gateway. To do
that, we made it the sole source of HTTP session creation. Given that the session details were also
included in forwarded web requests, our Gateway API is nicely buttoned up.

However, the chat microservice's critical function is brokering WebSocket messages. And we haven't
lifted a finger to secure that component. Time to roll up our sleeves and get to work.

Since our WebSocket handlers are stream oriented, we merely need to slip in a parent class that
authorizes things when the WebSocket session is configured, as follows:

abstract class AuthorizedwWebSocketHandler
implements WebSocketHandler {

@override
public final Mono<Void> handle(WebSocketSession session) {
return session.getHandshakeInfo().getPrincipal()
.filter(this::isAuthorized)
.then(doHandle(session));

}

private boolean isAuthorized(Principal principal) {
Authentication authentication = (Authentication) principal;
return authentication.isAuthenticated() &&
authentication.getAuthorities().contains("ROLE_USER");

}

abstract protected Mono<Void> doHandle(
WebSocketSession session);

The preceding code can be described as follows:

e This abstract class implements the websocketHandler interface with a Reactor-based handie() function

® The handie method looks up handshakeinfo, finding the principal that will be populated by Spring
Security, and filters against a custom isauthorized function

e [f the session is indeed authorized, an abstract donandie 1s invoked, handing over websocketsession to
the actual handlers

e The isauthorized function takes the session's principal, casts it to a Spring Security Authentication, and
verifies that the user is both authenticated and also contains roLe_user

With this in place, we can update our 1nboundchatservice like this:

@Service
@EnableBinding(ChatServiceStreams.class)
public class InboundChatService extends AuthorizedwebSocketHandler

{

private final ChatServiceStreams chatServiceStreams;

public InboundChatService(ChatServiceStreams chatServiceStreams){
this.chatServiceStreams = chatServiceStreams;

3

@Override
protected Mono<Void> doHandle(WebSocketSession session) {

The changes in the previous code can be described as follows:

® InboundchatService NOW extends AuthorizedwebSocketHandler, fOI‘Cil’lg it to accept those upstream checks
e We have replaced handle(WebSocketSession) with doHandle(WebSocketSession)
e The rest of the code is the same, so there's no reason to show it

If we apply the same changes to outboundchatservice and commentservice, we can ensure that all of our
WebSocket services are locked down.

Admittedly, our policy is quite simple. However, we can easily scale based on requirements. For
example, if the Admins wanted their own channel, it wouldn't be hard to add /topic/admin/** and require
ROLE_ADMIN.

It's also important to recognize that this level of security is aimed at the whole channel. Adding per-
message security checks could also be layered in by going to each concrete service, and, essentially,
embedding .fiiter(), based on the details of the message.

And that's all it takes! Our WebSocket channels are now secured such that only proper incoming
messages are allowed through, and only HTML served from our site will have the means to connect and
send such messages.

Tracing calls

Earlier, we saw a screenshot from Chrome's debug tools, showing request and response headers. There
is another tool we can use as well--Spring Boot Actuator's trace endpoint.

By visiting nttp://1localhost :8086/application/trace, W€ can see all the web calls, going back in time. For
example, look at this request to negotiate the WebSocket:

{
"timestamp": 1480805242289,
"info": {
"method": "GET",
"path": "/learning-spring-boot/160/9ge@0bkmu/websocket",
"headers": {
"request": {

"host": "localhost:8080",

"connection": "Upgrade",

"pragma": '"no-cache",

"cache-control": "no-cache",

"authorization": "Basic Z3J1Zzp@dXJucXVpc3Q=",

"upgrade": "websocket",

"origin": "http://localhost:8080",

"sec-websocket-version": "13",

"user-agent": "Mozilla/5.0 (Macintosh; Intel Mac 0S X
10_11 5) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/54.0.2840.98 Safari/537.36",

"accept-encoding": "gzip, deflate, sdch, br",

"accept-language": "en-US,en;q=0.8",

"cookie": "SESSION=3f0668ec-d528-43d8-a6e8-87a369571745",

"sec-websocket-key": "L8fKEK8VtxXfxx4jBz0C9Q==",

"sec-websocket-extensions": "permessage-deflate;

client_max_window_bits"
3
"response": {

"X-Application-Context": "chat:8080",

"Upgrade": "websocket",

"Connection": "upgrade",

"Sec-WebSocket-Accept": "m8xyQSUtHR/gMEUp1xog4wwUSOE=",

"Sec-WebSocket-Extensions": "permessage-
deflate;client_max_window_bits=15",
"status": "101"
}
}
3
}

The following are some key bits that can be pointed out in the preceding code:

e The authorization header has a sasic token value, us having logged in

e The cookie is loaded with our sesszon ID

e The upgrade protocol to go from HTTP to WebSocket is evident in the response headers and the 1e1
status code

Let's look at one more, the request to view our bazinga.png image:

{
"timestamp": 1480805242286,
"info": {
"method": "GET",
"path": "/images/bazinga.png/raw",

"headers": {
"request": {

"host": "localhost:8080",
"connection": "keep-alive",
"authorization": "Basic Z3J1ZzpOdXJucXVpc3Q=",
"user-agent": "Mozilla/5.0 (Macintosh; Intel Mac 0S X
10_11 5) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/54.0.2840.98 Safari/537.36",
"accept": "image/webp, image/*,*/*;q=0.8",
"referer": "http://localhost:8080/",
"accept-encoding": "gzip, deflate, sdch, br",
"accept-language": "en-US,en;q=0.8",
"cookie": "SESSION=3f0668ec-d528-43d8-a6e8-87a369571745"
3
"response": {
"X-Application-Context": "chat:8080",
"Date": "Sat, 03 Dec 2016 22:47:21 GMT",
"Content-Type": "image/jpeg",
"Transfer-Encoding": "chunked",
"status": "200"

Some interesting fields in the last code include the following:

The cookie header contains our sesston ID.

The authorization header includes the same token.

The referer header shows the origin of the request as nttp://1ocalhost:8eso/.

The accept-encoding header indicates the formats that the browser will accept, including zipped
images and deflated ones.

e The content-type response header has JPEG, a value we hard-coded into our controller. Since all
images get handled by the same part of the browser, it doesn't matter if it's not PNG.

Spring Boot Actuator's trace endpoint will track the last one hundred requests. It's a handy way to peek
at past web calls in case you don't have the browser's development tools open at the time.

You can inject tracerepository into your code and use add(map) on any structure you want,
with it getting serialized into JSON.

Securing the Config Server

So, we've locked down chat, images, and comments. But what about the Config Server itself? Seeing how
critical it is with each microservice's configuration details, we need to insulate ourselves from a
malevolent Config Server being stood up in its place.

The simplest thing to do is to add Spring Security to our Config Server. So, let's do it!

| compile('org.springframework.boot:spring-boot-starter-security')

By default, Spring Security will set username to user and password to something random. Since we can't
be updating the other services every time we restart, let's override that with a fixed password, as
follows:

@Bean
UserDetailsService userDetailsService() {
return new InMemoryUserDetailsManager (
User
.withUsername("user")
.password("password")
.roles("USER").build());

In Spring Boot 1.x, there was a security.password property to override. In the spirit of simplification, this
property has been removed in Spring Boot 2.x. The new approach is to inject a userpetailsservice bean, as
shown in the previous code fragment (which can be added to Learningspringsootconfigserver). This code
shows a single user, user/password, defined.

That's all it takes to secure our Config Server!

To signal the other services, we need to adjust their bootstrap.ym1 files. Let's start with the Eureka Server,
like this:

spring:
application:
name: eureka
cloud:
config:
label: session
password: password

This change shown in the last code adds spring.cloud.config.password set to the same password we just
chose.

Let's continue with chat:

spring:
application:
name: chat
cloud:
config:
label: session
password: password

In the preceding COdG, we have spring.cloud.config.password and spring.cloud.config.label properly set.

We can make the same changes to images, as follows:

spring:
application:
name: images
cloud:
config:
label: session
password: password

This will secure things with the exact same settings.

And finally, let's make the following changes to comments:

spring:
application:
name: comments
cloud:
config:
label: session
password: password

This will lock things down, preventing others from getting access to our settings. If someone attempted
to stand up a bogus Config Server, they would have to somehow secure it with the same password on
the same network address. (Not likely!).

Securing the Eureka Server

The last bastion to secure is our Eureka Server. To do so, we need to adopt similar steps to what we did
with the Config Server.

First, add Spring Security to the Eureka Server, as follows:

| compile('org.springframework.boot:spring-boot-starter-security')

This preceding dependency will enable Spring Security automatically. However, just like Config Server,
it will generate a random password every time it launches. To pin the password, we need to add the
same userbetailsservice bean as follows:

@Bean
UserDetailsService userDetailsService() {
return new InMemoryUserDetailsManager (
User
.withUsername("user")
.password("password")
.roles("USER").build());

}

The recommended way to plug in the username/password settings for a Eureka client is by using the
URL notation. For the chat service, we need to update the Config Server with this:

client:
serviceUrl:

eureka:
defaultZone: http://user:password@localhost:8761/eureka

This preceding adjustment will have the chat microservice signing into the Eureka Server with a
username, password, hostname, port, and path--all standard options with URLs.

These options can be applied to the Config Server's images.ym1 file, like this:

client:
serviceUrl:

eureka:
defaultZone: http://user:password@localhost:8761/eureka/

This can also be applied to the Config Server's comments.ym1 file, as follows:

client:
serviceUrl:

eureka:
defaultZone: http://user:password@localhost:8761/eureka/

Are you unsure that this is working? Enable security in the Eureka Server as described,
' but do not make these changes to the Eureka clients. When they are launched, they'll
Y report inability to connect to Eureka. Make the changes to the Config Server, restart it,
then make the changes to the clients. They will then connect. Ta dah!

We now have every component secured. We also have session state shared between the services, making
it easy to expand and add new services or to refine the existing roles. Pretty much anything we can think

of.

So... does it smell like too many hard-coded values? Getting nervous about this system being able to roll
with the punches of the network changing underneath it? Your concern is justified. We'll soon see in chap
ter 10, Taking Your App to Production with Spring Boot, how we can take our social media platform to
the cloud, scale its components, and with minimal adjustments, overcome what may appear as brittle
settings.

Summary

In this chapter, we applied Spring Security to each of our microservices. We then configured our chat
service as a Gateway API using Spring Cloud Gateway. Finally, we brought on board Spring Session
MongoDB and had it share session details with the other backend microservices.

After ensuring that sesston IDs were propagated by Spring Cloud Gateway to all the backend services,
we wrote authorization rules, both for REST endpoints as well as for WebSocket messages.

To wrap things up, we also secured our Config Server and our Eureka Server so that only our system
can talk to them.

In the next chapter, we will take our social media platform to production. We'll deploy our
microservices-based application to the cloud, and see how to scale and adjust various things. We'll also
discover how Spring Boot makes adjusting things a breeze.

Taking Your App to Production with Spring
Boot

Here is my source code
Run it on the cloud for me
I do not care how
— Cloud Foundry haiku (Onsi Fakhouri @onsijoe)

In the previous chapter, we learned how to secure our microservice-based social media platform.

In this chapter, we will cover the following topics:

Configuring profile-specific beans

Creating configuration property beans
Overriding property settings in production
Deploying our social media platform to the cloud

So, today is the day. We worked for weeks to build this system. And now we want to take it to
production. What could happen? What could go wrong?

Answer: A lot. And...a lot.

Spring Boot comes with powerful features to make it easy to tune and adjust things in production,
allowing us to minimize the code. Some of the concepts presented here are rooted in The Tiwelve-Factor
App (https://12factor.net/) and the ability to externalize configuration settings. We've already seen parts
of that through the Config Server. However, now we'll dig in and apply more as we go to production.

https://12factor.net/

Profile-based sets of beans

Many cloud-based platforms use proxies wrapped around applications. This enables the platform to
support many features, including caching, content delivery networks (CDN), load balancing, and SSL
termination. After all, why put such common infrastructure requirements on developers?

However, the side effect can break security protocols designed to protect us in the web. For example,
our application may be running on a private IP address, while original requests come in on a public-
facing URL. When our application sees a forwarded web request, how are we to distinguish it between a
proper request versus some nefarious cross site scripting attack leveraging our service?

The first place this can affect our application is the chat service's WebSocket handling. It requires
explicit configuration to handle such a hop. However, we only want such an adjustment in our code to
apply when we are in production, not when running things in development on our workstation.

The solution is profile-based beans. Spring lets us configure beans to only be created if certain profiles
are enabled.

In the previous chapter, we had our entire WebSocket configuration in a top-level class. We need to
change that configuration class and turn it into a container class with different options based on whether
or not we are in production.

The first step is to move the existing bean definitions into a new, static inner class as shown here:

@Configuration
public class WebSocketConfig {

@Profile("!cloud")
@Configuration
static class LocalWebSocketConfig {

,
3

So far, we haven't changed a lot. What we have, can be described as follows:

e The outer class, websocketconfig, looks the same

e This new inner class, Localwebsocketconfig, 1S annotated eprofile("tcloud"), meaning it only runs if there
1S 10 cloud profile

e The new class is called Locaiwebsocketconfig to clarify that it only operates when we run things locally

What is a cloud profile? Spring allows settings various profiles through the
spring.profiles.active application property. We can create all the profiles we want, even
overlapping ones. However, any application deployed to Cloud Foundry automatically
has an extra profile, that is, cloud, applied.

Since we plan to have both a local as well as a cloud-based configuration, it's important to distinguish
what is the same and what is different. Something that will be the same are the WebSocket route

mappings.

To support thiS, we need a single configureUrlMappings() method to conﬁgure this SimpleUrlHandlerMapping.

private static SimpleUrlHandlerMapping configureUrlMappings(

CommentService commentService,

InboundChatService inboundChatService,

OutboundChatService outboundChatService) {
Map<String, WebSocketHandler> urlMap = new HashMap<>();
urlMap.put("/topic/comments.new", commentService);
urlMap.put("/app/chatMessage.new", inboundChatService);
urlMap.put("/topic/chatMessage.new", outboundChatService);

SimpleUrlHandlerMapping mapping = new
SimpleUrlHandlerMapping();
mapping.setOrder(10);
mapping.setUrlMap(urlMap);

return mapping;

This is the same code we saw in the last chapter, just moved around a little:

e The three endpoints are tied to their respective services in map of routes-to-websocketHandlers

e A SimpleUrlHandlerMapping 1s defined with this map of handlers

e The order is set to 10

e The method is static since it will be placed outside our new Localwebsocketconfig (but inside
WebSocketConfig)

To tap this, we simply need to write a bean definition inside Localwebsocketconfig like this:

@Bean HandlerMapping webSocketMapping(CommentService
commentService, InboundChatService inboundChatService,
OutboundChatService outboundChatService) {

return configureUrlMappings(commentService,
InboundChatService, outboundChatService);

This method does nothing more than invoke our WebSocket configuring method.

With the local configuration set up, we can now turn our attention towards configuring the WebSocket

broker to work in the cloud. To do so, we need another inner static class inside websocketconfig, as
follows:

@Profile("cloud")

@Configuration
@EnableConfigurationProperties(ChatConfigProperties.class)
static class CloudBasedWebSocketConfig {

It can be explained as follows:

o It's marked as eprofile("cloud"), meaning this only applies if the cioud profile is in force, the opposite

Of‘LocalWebSocketCOnfig

e [t contains @EnableConfigurationProperties(ChatConfigProperties.class), used to provide an extra set of

properties
e [t's named cioudsasedwebsocketconfig to point out its role

If you're wondering what genableconfigurationproperties means, it leads us into the next section.

Creating configuration property beans

@Enableconfigurationproperties, applied anywhere in our application, will cause a bean of the named type,
chatconfigProperties, to get added to the application context. A configuration property bean is meant to
hold various settings that can be configured with optional defaults and can be overridden through
various means.

Remember properties like server.port where we adjusted the default port our Netty web container
listened for web requests? All the properties we've seen through this book are all configuration property
beans. This annotation simply gives us the means to define our own property settings specific to our
application.

In this case, chatconfigproperties 1s aimed at configuring the WebSocket broker.

It's not critical that the annotation be applied to this specific class. It's just convenient
since it's the place where we intend to use it.

Despite enabling such property settings, we still have to inject the bean into our cioudsasedwebsocketconfig
configuration class, as shown here:

private final ChatConfigProperties chatConfigProperties;

CloudBasedWebSocketConfig(ChatConfigProperties
chatConfigProperties) {
this.chatConfigProperties = chatConfigProperties;

3

Using constructor injection, we now have access to whatever property settings are provided by this
configuration property bean.

Configuration property beans are simply Spring beans with the added ability to override.
It means they can be injected just like any other Spring bean.

Digging into the WebSocket broker configuration, what we need is the remote host we are willing to
accept WebSocket connection requests from. Essentially, the public-facing URL of our chat
microservice. To do that, we'll define a property called origin and use it as shown here:

@Bean HandlerMapping webSocketMapping(CommentService
commentService, InboundChatService inboundChatService,
OutboundChatService outboundChatService) {

SimpleUrlHandlerMapping mapping =
configureUrlMappings(commentService,
InboundChatService, outboundChatService);

Map<String, CorsConfiguration> corsConfigurationMap =
new HashMap<>();
CorsConfiguration corsConfiguration = new CorsConfiguration();
corsConfiguration
.addAllowedOrigin(chatConfigProperties.getOrigin());

mapping.getUrlMap().keySet().forEach(route ->
corsConfigurationMap.put(route, corsConfiguration)

)i
mapping.setCorsConfigurations(corsConfigurationMap);

return mapping;

3

This code has the same GIldeil’ltS aS LocalwebSocketConfig, thanks to the configureUrlMappings method. It
additionally creates a CORS map, like we did in chapter s, WebSockets with Spring Boot. Only, this time,
it uses the injected getorigin() to plug in the public-facing URL of the chat service (hold tight--we'll see
how shortly).

What's missing is the definition of this configuration property bean. It's shown here:

@Data
@ConfigurationProperties(prefix = "1lsb")
public class ChatConfigProperties {

@value("https://${vcap.application.uris[0]}")
private String origin;

3

The code can be explained as follows:

¢ Once again, we use Project Lombok's epata annotation to avoid writing getters and setters. This is
ideal for configuration property beans.

® @configurationProperty(prefix="1sh") ﬂags this bean as a candidate for Sprlng Boot's pI'OpCI'ty reading
rules, starting with the 1sb prefix.

e There is a single property named origin that is initialized using Spring's evalue() annotation.

e On Cloud Foundry, vcap.application.uris 1s a property applied to every application that lists publicly
visible URLs. Assuming that the first is the one we wish to use, we are applying it to our origin
property.

e By combining the prefix (1sb) and the name of the property (origin), the full path of this property is
1sb.origin, and it can be overridden at any time.

Overriding property settings in production

Everytime we take our application to a new environment, there are always settings that have to be
adjusted. We don't want to edit code. Instead, it's easier if we could just override various properties. And
we can!

This was touched on briefly in chapter 1, Quick Start with Java, under the guise of overriding Spring
Boot's property settings. However, the fact that we can write our own custom configuration property
beans makes this a powerful feature for application customization.

To recap the rules listed in chapter 1, Quick Start with Java, property settings can be overridden in the
following order, highest to lowest:

1. @TestPropertySource annotations on test classes.

2. Command-line arguments.

Properties found inside sprinc_appLicaTzon_sson (inline JSON embedded in an env variable or system

property).

ServletConfig 1nit parameters.

ServletContext 1nit parameters.

JNDI attributes from java:comp/env.

Java System properties (System.getProperties()).

OS environment variables.

RandomValuePropertySource that only has pI'OpGI'tiCS 1N random. *.

Proﬁle-speciﬁc properties outside the packaged JAR file (application-{profile} .properties and YAML

variants).

11. Profile-specific properties inside the packaged JAR file (application-{profile}.properties and YAML
variants).

12. Application properties outside the package JAR file (application.properties and YAML variants).

(98

SOPXARNUNSE

13. Application properties inside the packaged JAR file (application.properties and YAML variants).
14. @PropertySource annotations on any @configuration classes.
15. Default pI'OpGI'tiGS (SpGCiﬁCd USil’lg SpringApplication. setDefaultProperties).

By default, we can run with vcap.application.urisfo]. However, if we take it to another cloud
solution, we can simply plug in an override to 1sb.origin and leverage whatever
environment variables the new cloud provides. This lets us escape having to alter the code
again and instead focus on getting things running.

One of the most common tactics is to create an application-{profile}.ym1 file that will be automatically
applied when <profile> is in effect. Since Cloud Foundry apps get the cloud profile, it would be natural
to create an application-cloud.yml file.

However, since we adopted the Spring Cloud Config Server and specified that the chat service is
governed by chat.ym1, we instead merely need to add a chat-cloud.ym1 file. Then we know the following

cloud-specific settings will be applied when deployed to Cloud Foundry:

server:
port: 8080

eureka:
client:
serviceUrl:
defaultZone: http://user:password@learning-spring-boot-
eureka-server.cfapps.io/eureka/
instance:
hostname: ${vcap.application.uris[0]}
nonSecurePort: 80

These settings can be explained as follows:

e The server.port 1s the same as before

o The eureka.client.serviceurl.defaultzone 1S changed to the public-facing URL for our Eureka SGI'ViCC,
so the chat service can find it

¢ Since the public-facing URL for our chat service is terminated by a proxy, we have to override
eureka.instance.hostname With ${vcap.application.uris[0]} tO avoid registering an unreachable IP address
with Eureka

e We must also register that we are visible (non-secure) on port se

The following settings are identical for comments-cloud.yml:

server:
port: 8080

eureka:
client:
serviceUrl:
defaultZone: http://user:password@learning-spring-boot-
eureka-server.cfapps.io/eureka/
instance:
hostname: ${vcap.application.uris[0]}
nonSecurePort: 80

And the same for images-cloud.yml:

server:
port: 8080

eureka:
client:
serviceUrl:
defaultZone: http://user:password@learning-spring-boot-
eureka-server.cfapps.io/eureka/
instance:
hostname: ${vcap.application.uris[0]}
nonSecurePort: 80

Finally, we need to set the same instance details for the Eureka service itself via eureka-cloud.ymi, as
shown here:

server:
port: 8080

eureka:
instance:
hostname: ${vcap.application.uris[0]}
nonSecurePort: 80

If you'll notice, there is no eureka.client.serviceurl.defaultzone given that this IS the Eureka service!

These additional settings added to https://github.com/gregturn/learning-spring-boot-config-repo/tree/production
will ensure that our apps function smoothly in the cloud.

If we want to see our newly minted property settings, we can Visit http://learning-spring-
boot.cfapps.io/configprops and look for ChatConfigProperties.

o #) https://learning-spring-boot.c X
< C (0 @& Secure https://learning-spring-boot.cfapps.io/configprops
978 +s
979 ~ "1sb-com.greglturngquist.learningspringboot.chat.ChatConfigProperties": {
980 "prefix": "lsb",
981 -~ "properties": {
982 "origin": "https://learning-spring-boot.cfapps.io"
983 }
984 o

The configuration properties can be described as follows:

The name is captured as the prefix + the canonical path of the class
e The prefix, 1sb, 1s displayed
e The properties lists the named properties we can tap (nesting displayed if that were the case)

From this, we can easily glean that 1sb.origin is the property to override should we have some reason to
adjust this.

https://github.com/gregturn/learning-spring-boot-config-repo/tree/production

@ConfigurationProperties versus @Value

In our code, we have used both strongly-type aeconfigurationproperties based classes as well as evalue
labeled attributes. It's important to understand the differences before using them in your application.

avalue 1S old, preceding Spring Boot by years. It is a powerful annotation, able to inject values as well as
accept default values. However, it misses several features many of us have come to rely upon when
writing Boot apps, as shown in the following table:

Feature @ConfigurationProperties | @Value
Relaxed binding Yes No
Meta-data support | Yes No
SpEL evaluation | No Yes

This matrix documents three critical features:

¢ Relaxed binding: The ability to match server.port, server_rorT, and server.port to the same attribute is
quite valuable.

e Meta-data support: The ability to include code completion for property settings is also of
incredible value, along with hover-over tips. Anything that speeds up developer effort cannot be
understated in value.

e SpEL evaluation: The ability to write SpEL expressions to populate properties.

There is a strong suggestion to start with econfigurationproperties. When you bundle together a set of
properties inside a POJO, it really is a shortcut for a fist full of evaiue attributes. And the property
binding is supercharged.

However, when you need SpEL expression support, as we do to get a hold of the application's URI
(${vcap.application . uris[o]}), then it's okay to break from @ConfigurationProperties and switch to @value.

However, if you'll notice, we continue to leverage it inside @configurationproperties. The real hint of doing
it wrong is if we try to construct a collection of properties using evaive. Configuration properties is a nice
way to build a hierarchy of properties with little effort.

Pushing app to Cloud Foundry and
adjusting the settings

Keep calm and cf push.

- Denizens of the Internet

If there's one thing critical to any smooth-running Ops center, it's the need for automation. If we do
things by hand, we introduce the risk of drift among our various components in production.

The following section shows some BASH scripts for deploying our microservices-based social media
platform, a first step on the path towards automated deployment.

Assuming we've built everything with Gradle, let's kick things off by deploying our Spring Boot uber
JARs to Cloud Foundry:

cf push
cf push
cf push
cf push
cf push
cf push

learning-spring-boot-config-server -p config-server/build/libs/learning-spring-boot-config-server-0.0.
learning-spring-boot-eureka-server -p eureka-server/build/libs/learning-spring-boot-eureka-server-0

#1/usr/bin/env bash

learning-spring-boot -p chat/build/libs/learning-spring-boot-chat-0.0.1-SNAPSHOT.jar &
learning-spring-boot-comments -p comments/build/libs/learning-spring-boot-comments-0.0.1-SNAPSHOT.jar &
learning-spring-boot-images -p images/build/libs/learning-spring-boot-images-0.0.1-SNAPSHOT.jar &
learning-spring-boot-hystrix-dashboard -p hystrix-dashboard/build/libs/learning-spring-boot-hystrix-dashk

It can be described as follows:

e Each module is deployed LlSil’lg the CF CLI (https://github.Com/cloudfoundry/cli), deploylng with both
a name and the JAR file
e Each command is backgrounded to speed up release

A real microservice-based solution presumes different teams responsible for different
modules. Hence, each team may have a different deployment script as well as different
release schedules.

Let's get things underway and deploy! The console output shows us running our deployment script:

gturnqui

Creating
Creating
Creating
Creating
Creating
Creating

st$

app
app
app
app
app
app

./deploy.sh

learning-spring-boot-comments in org cosmos-refarch / space development as gturnquist@pivotal.io...
learning-spring-boot in org cosmos-refarch / space development as gturnquist@pivotal.io...
learning-spring-boot-config-server in org cosmos-refarch / space development as gturnquist@pivotal.i
learning-spring-boot-images in org cosmos-refarch / space development as gturnquist@pivotal.io...
learning-spring-boot-hystrix-dashboard in org cosmos-refarch / space development as gturnquist@pivot
learning-spring-boot-eureka-server in org cosmos-refarch / space development as gturnquist@pivotal.i

Using route learning-spring-boot-config-server.cfapps.io

Binding learning-spring-boot-config-server.cfapps.io to learning-spring-boot-config-server...
Using route learning-spring-boot-comments.cfapps.io

Binding learning-spring-boot-comments.cfapps.io to learning-spring-boot-comments...

Using route learning-spring-boot-eureka-server.cfapps.io

Binding learning-spring-boot-eureka-server.cfapps.io to learning-spring-boot-eureka-server...
Using route learning-spring-boot-images.cfapps.io

Binding learning-spring-boot-images.cfapps.io to learning-spring-boot-images. ..

https://github.com/cloudfoundry/cli

Using route learning-spring-boot.cfapps.io

Binding learning-spring-boot.cfapps.io to learning-spring-boot...

Using route learning-spring-boot-hystrix-dashboard.cfapps.io

Binding learning-spring-boot-hystrix-dashboard.cfapps.io to learning-spring-boot-hystrix-dashboard...

Uploading learning-spring-boot-config-server...
Uploading learning-spring-boot-hystrix-dashboard...
Uploading learning-spring-boot-comments...
Uploading learning-spring-boot-eureka-server...
Uploading learning-spring-boot-images. ..

Uploading learning-spring-boot...

Starting app learning-spring-boot-hystrix-dashboard in org cosmos-refarch / space development as gturnquist@pivot
Starting app learning-spring-boot-comments in org cosmos-refarch / space development as gturnquist@pivotal.io...
Starting app learning-spring-boot-images in org cosmos-refarch / space development as gturnquist@pivotal.io...
Starting app learning-spring-boot-eureka-server in org cosmos-refarch / space development as gturnquist@pivotal.i
Starting app learning-spring-boot in org cosmos-refarch / space development as gturnquist@pivotal.io...

Starting app learning-spring-boot-config-server in org cosmos-refarch / space development as gturnquist@pivotal.i

App started

(the rest ommitted for brevity)
All components of our social media platform are now deployed to the cloud.
Be warned! This isn't enough. There are custom settings that must be applied after the bits are uploaded.

Let's start with the section that configures our Eureka server, as shown here:

#!/usr/bin/env bash
cf set-env learning-spring-boot-eureka-server spring.cloud.config.uri https://learning-spring-boot-config-server.

cf set-env learning-spring-boot-eureka-server spring.cloud.config.label production

Eureka needs to be configured with a Config Server URI and which label to fetch from GitHub, as done
l,lSiIlg cf set-env.

Next, we can look at the settings for the chat microservice:

cf set-env learning-spring-boot spring.cloud.config.uri https://learning-spring-boot-config-server.cfapps.io
cf set-env learning-spring-boot spring.cloud.config.label production

cf bind-service learning-spring-boot learning-spring-boot-mongodb
cf set-env learning-spring-boot spring.data.mongodb.uri \${vcap.services.learning-spring-boot-mongodb.credentials

cf bind-service learning-spring-boot learning-spring-boot-rabbitmq

The chat service needs a Config Server URI (with the GitHub label), a MongoDB service binding and
URI setting, and a RabbitMQ service binding.

Next, we can look at the settings for the comments microservice, as shown here:

cf set-env learning-spring-boot-comments spring.cloud.config.uri https://learning-spring-boot-config-server.cfapy
cf set-env learning-spring-boot-comments spring.cloud.config.label production

cf bind-service learning-spring-boot-comments learning-spring-boot-mongodb
cf set-env learning-spring-boot-comments spring.data.mongodb.uri \${vcap.services.learning-spring-boot-mongodb.cr

cf bind-service learning-spring-boot-comments learning-spring-boot-rabbitmq

The comments service needs a Config Server URI (with the GitHub label), a MongoDB service binding
and URI setting, and a RabbitMQ service binding.

Next, we can look at the settings for the images microservice, as shown here:

cf set-env learning-spring-boot-images spring.cloud.config.uri https://learning-spring-boot-config-server.cfapps.
cf set-env learning-spring-boot-images spring.cloud.config.label production

cf bind-service learning-spring-boot-images learning-spring-boot-mongodb
cf set-env learning-spring-boot-images spring.data.mongodb.uri \${vcap.services.learning-spring-boot-mongodb.cred

cf bind-service learning-spring-boot-images learning-spring-boot-rabbitmq

The images service needs a Config Server URI (with the GitHub label), a MongoDB service binding and
URI setting, and a RabbitMQ service binding.

While all three services are binding to the same MongoDB service, they could actually use
separate MongoDB services. The code was carefully written to avoid integrating inside the
database. Each service has separate collections. However, for the sake of brevity, just one
service is used in this code.

With this in place, let's run the following configuration script:

gturnquist$./config.sh

Setting env variable 'spring.cloud.config.uri' to 'https://learning-spring-boot-config-server.cfapps.io' for app
Setting env variable 'spring.cloud.config.label' to 'production' for app learning-spring-boot-eureka-server in or
Setting env variable 'spring.cloud.config.uri' to 'https://learning-spring-boot-config-server.cfapps.io' for app
Setting env variable 'spring.cloud.config.label' to 'production' for app learning-spring-boot in org cosmos-refar
Binding service learning-spring-boot-mongodb to app learning-spring-boot in org cosmos-refarch / space developmer
Setting env variable 'spring.data.mongodb.uri' to '${vcap.services.learning-spring-boot-mongodb.credentials.uri}"'
Binding service learning-spring-boot-rabbitmq to app learning-spring-boot in org cosmos-refarch / space developme

(the rest omitted for brevity)

Having applied these settings, we need to restart everything. To do so, we need the following script:

#!/usr/bin/env bash

cf restart learning-spring-boot-config-server
sleep 10

cf restart learning-spring-boot-eureka-server &
cf restart learning-spring-boot &

cf restart learning-spring-boot-comments &
cf restart learning-spring-boot-images &

Why the delay after restarting the Config Server? It's important that it's given a chance to be up and
operational before the other applications. So, let's run it as follows:

$./restart.sh

(=D

Stopping app learning-spring-boot-config-server in org cosmos-refarch / space development as gturnquist@pivotal.
Starting app learning-spring-boot-config-server in org cosmos-refarch / space development as gturnquist@pivotal.

(=D

state since cpu memory disk details
#0 running 2017-01-11 10:11:07 PM 207.4% 426.7M of 16 146M of 16

Stopping app learning-spring-boot-images in org cosmos-refarch / space development as gturnquist@pivotal.io...
Stopping app learning-spring-boot-eureka-server in org cosmos-refarch / space development as gturnquist@pivotal.i
Stopping app learning-spring-boot in org cosmos-refarch / space development as gturnquist@pivotal.io...

Stopping app learning-spring-boot-comments in org cosmos-refarch / space development as gturnquist@pivotal.io...

Starting app learning-spring-boot-eureka-server in org cosmos-refarch / space development as gturnquist@pivotal.i
Starting app learning-spring-boot-images in org cosmos-refarch / space development as gturnquist@pivotal.io...
Starting app learning-spring-boot-comments in org cosmos-refarch / space development as gturnquist@pivotal.io...
Starting app learning-spring-boot in org cosmos-refarch / space development as gturnquist@pivotal.io...

App started

(the rest ommitted for brevity)

We can easily check their status like this:

disk
16
16
16
16
16
16

$ cf apps

Getting apps in org cosmos-refarch / space development as gturnquist@pivotal.io...
0K

name requested state instances memory
learning-spring-boot started 1/1 16
learning-spring-boot-comments started 1/1 16
learning-spring-boot-config-server started 1/1 16
learning-spring-boot-eureka-server started 1/1 16
learning-spring-boot-hystrix-dashboard started 1/1 16
learning-spring-boot-images started 1/1 16

urls

learning-spring-boot.cfapg
learning-spring-boot-comme
learning-spring-boot-confi
learning-spring-boot-eurek
learning-spring-boot-hystr
learning-spring-boot-image

Let's take a peek. We can do so by ViSitil’lg http://learning-spring-boot.cfapps.io (1n an incognito tab to

ensure a fresh session):

® @) Login Page X

& C' (@& Secure https://learning-spring-boot.cfapps.io Y

oo

[VMware Intranet # VMware [Jenkins] [@ [JSON Pretty Print 3 Other Bookmarks

Authentication Required

User Name: greg

Password: = eesecsses

Cancel Log In

We will see the all too familiar login page.

If we log in as greg/turnquist, delete the default images and load up our favorites from earlier, we can

expect to see this:

® @) Learning Spring Boot: Spring- % %

& C O @& Secure https://learning-spring-boot.cfapps.io

[1 VMware Intranet @VMware [Jenkins] E - » (5 Other Bookmarks

Learning Spring Boot - 2nd Edition

Id Name Image

8d22£555- _*

?ﬂSOO. GAd3E- B05771_MockupCover_Normal.png | [& 2 Delete
4d11562013eb —

37f6c64e-
Toc34005 | gings g IV | veers
82271822d4b4

d1459¢17-
ggig_.ma‘ platform-spring-boot.png @ Delete
b7243e47bab4

Choose File No file chosen

Upload

Our favorite chat channel is at the bottom of the page, as shown in the following screenshot:

® @) Learning Spring Boot: Spring- X

&= C' ¢ @& Secure https://learning-spring-boot.cfapps.io

[) VMware Intranet 4 VMware [Jenkins] [@ [1 JSON Pretty Print {} JSON

Greetings!

greg(channel): Wow! Are we really in production?
phil(channel): We sure are.

|boc|. Can't wait to work on the next feature \
Send

For extra maintenance, the following script can be used to delete all the apps (but not the related AMQP
and MongoDB services):

cf
cf
cf
cf
cf
cf

delete
delete
delete
delete
delete
delete

-f
-f
-f
-f
-f
-f

#1/usr/bin/env bash

learning-spring-boot-config-server &
learning-spring-boot-eureka-server &
learning-spring-boot &
learning-spring-boot-comments &
learning-spring-boot-images &
learning-spring-boot-hystrix-dashboard &

Using the CF CLI, all the services are deleted in a background job.

Doesn't Cloud Foundry support manifest YAML files? While it's true, manifest files have
limitations that I prefer to avoid. Hence, 1'd rather directly script the CF CLI operations
directly, or use something ever more powerful.

Summary

In this chapter, we created profile-specific configuration settings to handle the WebSocket broker in
either a local or cloud-based environment. We plugged in a custom configuration property bean and
used it to grab necessary details from our cloud provider so our chat channel would work properly. We
then built some BASH scripts to deploy things to the cloud, configure necessary properties, and
restart/cleanup if needed.

This is just the beginning. We touched upon a lot of things in this book, including web apps, data
access, testing, tools, messaging, microservices, security, and production. And we did it all reactively,
ensuring we use resources more efficiently and effectively.

Think our social media platform is worth a billion dollars? Maybe, maybe not. However, by using the
length and breadth of Spring Boot 2.0, Spring Framework 5, and its reactor-based paradigm end to end,
we've learned a lot in how to build a scalable system.

Hopefully, I've whetted your appetite to go out and discover what else Spring Boot has to offer as you
work on your next big project.

Please visit https://github.com/learning-spring-boot/learning-spring-boot-2nd-edition-code and "star" it. That
way, you'll be alerted as Spring Boot 2.0 reaches GA release and this code base is upgraded to match.
Also Sigl’l up for updates at http://greglturnquist.com/books/learning-spring-boot SO you can be alerted to the
latest news including code mods, contests, and more!

https://github.com/learning-spring-boot/learning-spring-boot-2nd-edition-code
http://greglturnquist.com/books/learning-spring-boot

	Title Page
	Second Edition

	Copyright
	Learning Spring Boot 2.0
	Second Edition

	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Why subscribe?

	Customer Feedback
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions

	Quick Start with Java
	Getting started
	Spring Boot starters
	Running a Spring Boot application
	Delving into Spring Boot's property support
	Bundling up the application as a runnable JAR file
	Deploying to Cloud Foundry
	Adding production-ready support
	Pinging our app for general health
	Metrics

	Summary

	Reactive Web with Spring Boot
	Creating a reactive web application with Spring Initializr
	Learning the tenets of reactive programming
	Introducing Reactor types
	Switching from Embedded Netty to Apache Tomcat
	Comparing reactive Spring WebFlux against classic Spring MVC
	Why is Spring doing this?

	Showing some Mono/Flux-based endpoints
	Creating a reactive ImageService
	Creating a reactive file controller
	Why use reactive programming?
	Interacting with a Thymeleaf template
	Illustrating how going from async to sync can be easy, but the opposite is not
	Summary

	Reactive Data Access with Spring Boot
	Getting underway with a reactive data store
	Solving a problem
	Wiring up Spring Data repositories with Spring Boot

	Creating a reactive repository
	Pulling data through a Mono/Flux and chain of operations
	Creating custom finders
	Querying by example
	Querying with MongoOperations
	Logging reactive operations
	Summary

	Testing with Spring Boot
	Test dependencies
	Unit testing
	Slice-based testing
	Testing with embedded MongoDB
	Testing with a real MongoDB database

	Testing WebFlux controllers
	Fully embedded Spring Boot app tests
	Testing your custom Spring Boot autoconfiguration
	Summary

	Developer Tools for Spring Boot Apps
	Using Spring Boot's DevTools for hot code reloading
	Using Spring Boot's autoconfiguration report
	Making local changes and seeing them on the target system
	Writing a custom health check
	Adding build data to /application/info
	Creating custom metrics
	Working with additional Actuator endpoints
	Summary

	AMQP Messaging with Spring Boot
	Getting started with RabbitMQ
	Installing RabbitMQ broker
	Launching the RabbitMQ broker

	Adding messaging as a new component to an existing application
	Creating a message producer/message consumer
	Displaying comments
	Producing comments
	AMQP fundamentals

	Adding customized metrics to track message flow
	Peeking at Spring Cloud Stream (with RabbitMQ)
	Introduction to Spring Cloud
	Logging with Spring Cloud Stream

	Summary

	Microservices with Spring Boot
	A quick primer on microservices
	Dynamically registering and finding services with Eureka
	Introducing @SpringCloudApplication
	Calling one microservice from another with client-side load balancing
	Implementing microservice circuit breakers
	Monitoring circuits
	Offloading microservice settings to a configuration server
	Summary

	WebSockets with Spring Boot
	Publishing saved comments to a chat service
	Creating a chat service to handle WebSocket traffic
	Brokering WebSocket messages
	Broadcasting saved comments
	Configuring WebSocket handlers

	Consuming WebSocket messages from the web page
	Moving to a fully asynchronous web client
	Handling AJAX calls on the server
	Introducing user chatting
	Sending user-specific messages
	Registering users without authentication
	Linking a user to a session
	Sending user-to-user messages

	Checking out the final product
	JSR 356 versus Spring WebFlux messaging
	Summary

	Securing Your App with Spring Boot
	Securing a Spring Boot application
	Using Spring Session
	Creating a Gateway API

	Securing the chat microservice
	Authentication versus authorization

	Sharing session details with other microservices
	Securing the images microservice
	Wiring in image ownership
	Authorizing methods

	Tailoring the UI with authorization checks
	Securing WebSockets
	Tracing calls
	Securing the Config Server
	Securing the Eureka Server
	Summary

	Taking Your App to Production with Spring Boot
	Profile-based sets of beans
	Creating configuration property beans
	Overriding property settings in production
	@ConfigurationProperties versus @Value

	Pushing app to Cloud Foundry and adjusting the settings
	Summary

