

Learning	Spring	Boot	2.0

Second	Edition
	

	

	

	

	

	

	

	

	

Simplify	the	development	of	lightning	fast	applications	based	on	microservices	and
reactive	programming

	

	

	

	

	

	

	

	

	

	

Greg	L.	Turnquist

	

	

	

	

	

	

	

	

	

	

	

	

BIRMINGHAM	-	MUMBAI

Learning	Spring	Boot	2.0

Second	Edition
	

	

Copyright	©	2017	Packt	Publishing

	

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted
in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the	publisher,	except	in	the	case	of
brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the	information
presented.	However,	the	information	contained	in	this	book	is	sold	without	warranty,	either	express	or
implied.	Neither	the	author,	nor	Packt	Publishing,	and	its	dealers	and	distributors	will	be	held	liable	for
any	damages	caused	or	alleged	to	be	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and
products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.	However,	Packt	Publishing	cannot
guarantee	the	accuracy	of	this	information.

	

First	published:	November	2014

Second	edition:	November	2017

	

Production	reference:	1311017

	

Published	by	Packt	Publishing	Ltd.
Livery	Place
35	Livery	Street
Birmingham
B3	2PB,	UK.

	

ISBN	978-1-78646-378-4

www.packtpub.com

http://www.packtpub.com

Credits

Author

Greg	L.	Turnquist

Copy	Editor

Sonia	Mathur

Reviewer

Zoltan	Altfatter

Project	Coordinator

Prajakta	Naik

Commissioning	Editor

Aaron	Lazar

Proofreader

Safis	Editing

Acquisition	Editor Indexer

Chaitanya	Nair Francy	Puthiry

Content	Development	Editor

Siddhi	Chavan

Graphics

Abhinash	Sahu

Technical	Editor

Abhishek	Sharma

Production	Coordinator

Nilesh	Mohite

About	the	Author
Greg	L.	Turnquist	has	been	a	software	professional	since	1997.	In	2002,	he	joined	the	senior	software
team	that	worked	on	Harris'	$3.5	billion	FAA	telco	program,	architecting	mission-critical	enterprise
apps	while	managing	a	software	team.	He	provided	after-hours	support	to	a	nation-wide	system	and	is
no	stranger	to	midnight	failures	and	software	triages.	In	2010,	he	joined	the	SpringSource	division	of
VMware,	which	was	spun	off	into	Pivotal	in	2013.

As	a	test-bitten	script	junky,	Java	geek,	and	JavaScript	Padawan,	he	is	a	member	of	the	Spring	Data
team	and	the	lead	for	Spring	Session	MongoDB.	He	has	made	key	contributions	to	Spring	Boot,	Spring
HATEOAS,	and	Spring	Data	REST	while	also	serving	as	editor-at-large	for	Spring's	Getting	Started
Guides.

Greg	wrote	technical	best	sellers	Python	Testing	Cookbook	and	Learning	Spring	Boot,	First	Edition,	for
Packt.	When	he	isn't	slinging	code,	Greg	enters	the	world	of	magic	and	cross	swords,	having	written	the
speculative	fiction	action	and	adventure	novel,	Darklight.

He	completed	his	master's	degree	in	computer	engineering	at	Auburn	University	and	lives	in	the	United
States	with	his	family.

About	the	Reviewer
Zoltan	Altfatter	(@altfatterz)	is	a	software	engineer,	passionate	about	the	JVM	and	Spring	ecosystem.
He	has	several	years	of	industry	experience	working	at	small	startups	and	big	consultancy	firms.

You	can	find	more	about	him	on	his	blog:	http://zoltanaltfatter.com.

http://zoltanaltfatter.com

www.PacktPub.com
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and	ePub	files
available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as	a	print	book	customer,	you	are
entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with	us	at	service@packtpub.com	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up	for	a	range	of	free
newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books	and	eBooks.

www.packtpub.com/mapt

Get	the	most	in-demand	software	skills	with	Mapt.	Mapt	gives	you	full	access	to	all	Packt	books	and
video	courses,	as	well	as	industry-leading	tools	to	help	you	plan	your	personal	development	and
advance	your	career.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Customer	Feedback
Thanks	for	purchasing	this	Packt	book.	At	Packt,	quality	is	at	the	heart	of	our	editorial	process.	To	help
us	improve,	please	leave	us	an	honest	review	on	this	book's	Amazon	page	at	https://www.amazon.com/dp/1786
463784.

	

If	you'd	like	to	join	our	team	of	regular	reviewers,	you	can	e-mail	us	at	customerreviews@packtpub.com.	We
award	our	regular	reviewers	with	free	eBooks	and	videos	in	exchange	for	their	valuable	feedback.	Help
us	be	relentless	in	improving	our	products!

https://www.amazon.com/dp/1786463784

Table	of	Contents
Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	 Quick	Start	with	Java
Getting	started

Spring	Boot	starters

Running	a	Spring	Boot	application

Delving	into	Spring	Boot's	property	support

Bundling	up	the	application	as	a	runnable	JAR	file

Deploying	to	Cloud	Foundry

Adding	production-ready	support

Pinging	our	app	for	general	health

Metrics

Summary

2.	 Reactive	Web	with	Spring	Boot
Creating	a	reactive	web	application	with	Spring	Initializr

Learning	the	tenets	of	reactive	programming

Introducing	Reactor	types

Switching	from	Embedded	Netty	to	Apache	Tomcat

Comparing	reactive	Spring	WebFlux	against	classic	Spring	MVC

Why	is	Spring	doing	this?

Showing	some	Mono/Flux-based	endpoints

Creating	a	reactive	ImageService

Creating	a	reactive	file	controller

Why	use	reactive	programming?

Interacting	with	a	Thymeleaf	template

Illustrating	how	going	from	async	to	sync	can	be	easy,	but	the	opposite	is	not

Summary

3.	 Reactive	Data	Access	with	Spring	Boot
Getting	underway	with	a	reactive	data	store

Solving	a	problem

Wiring	up	Spring	Data	repositories	with	Spring	Boot

Creating	a	reactive	repository

Pulling	data	through	a	Mono/Flux	and	chain	of	operations

Creating	custom	finders

Querying	by	example

Querying	with	MongoOperations

Logging	reactive	operations

Summary

4.	 Testing	with	Spring	Boot
Test	dependencies

Unit	testing

Slice-based	testing

Testing	with	embedded	MongoDB

Testing	with	a	real	MongoDB	database

Testing	WebFlux	controllers

Fully	embedded	Spring	Boot	app	tests

Testing	your	custom	Spring	Boot	autoconfiguration

Summary

5.	 Developer	Tools	for	Spring	Boot	Apps
Using	Spring	Boot's	DevTools	for	hot	code	reloading

Using	Spring	Boot's	autoconfiguration	report

Making	local	changes	and	seeing	them	on	the	target	system

Writing	a	custom	health	check

Adding	build	data	to	/application/info

Creating	custom	metrics

Working	with	additional	Actuator	endpoints

Summary

6.	 AMQP	Messaging	with	Spring	Boot
Getting	started	with	RabbitMQ

Installing	RabbitMQ	broker

Launching	the	RabbitMQ	broker

Adding	messaging	as	a	new	component	to	an	existing	application

Creating	a	message	producer/message	consumer

Displaying	comments

Producing	comments

AMQP	fundamentals

Adding	customized	metrics	to	track	message	flow

Peeking	at	Spring	Cloud	Stream	(with	RabbitMQ)

Introduction	to	Spring	Cloud

Logging	with	Spring	Cloud	Stream

Summary

7.	 Microservices	with	Spring	Boot
A	quick	primer	on	microservices

Dynamically	registering	and	finding	services	with	Eureka

Introducing	@SpringCloudApplication

Calling	one	microservice	from	another	with	client-side	load	balancing

Implementing	microservice	circuit	breakers

Monitoring	circuits

Offloading	microservice	settings	to	a	configuration	server

Summary

8.	 WebSockets	with	Spring	Boot

Publishing	saved	comments	to	a	chat	service

Creating	a	chat	service	to	handle	WebSocket	traffic

Brokering	WebSocket	messages

Broadcasting	saved	comments

Configuring	WebSocket	handlers

Consuming	WebSocket	messages	from	the	web	page

Moving	to	a	fully	asynchronous	web	client

Handling	AJAX	calls	on	the	server

Introducing	user	chatting

Sending	user-specific	messages

Registering	users	without	authentication

Linking	a	user	to	a	session

Sending	user-to-user	messages

Checking	out	the	final	product

JSR	356	versus	Spring	WebFlux	messaging

Summary

9.	 Securing	Your	App	with	Spring	Boot
Securing	a	Spring	Boot	application

Using	Spring	Session

Creating	a	Gateway	API

Securing	the	chat	microservice

Authentication	versus	authorization

Sharing	session	details	with	other	microservices

Securing	the	images	microservice

Wiring	in	image	ownership

Authorizing	methods

Tailoring	the	UI	with	authorization	checks

Securing	WebSockets

Tracing	calls

Securing	the	Config	Server

Securing	the	Eureka	Server

Summary

10.	 Taking	Your	App	to	Production	with	Spring	Boot
Profile-based	sets	of	beans

Creating	configuration	property	beans

Overriding	property	settings	in	production

@ConfigurationProperties	versus	@Value

Pushing	app	to	Cloud	Foundry	and	adjusting	the	settings

Summary

Preface
@springboot	allows	me	to	focus	on	developing	my	app,	not	reinventing	the	wheel

@bananmuffins	#VelocityConf	@pivotal

–	Faiz	Parker	@_CloudNinja

When	Learning	Spring	Boot,	First	Edition,	by	Packt,	made	its	debut,	it	was	the	first	Spring	Boot	book
to	hit	the	international	market.	The	user	community	ate	it	up,	which	is	evidence	of	the	popularity	of
Spring	Boot.	And	today,	Spring	Boot	is	driven	by	the	same,	core	principal	stated	in	that	book's	preface,
"How	can	we	make	Spring	more	accessible	to	new	developers?"

By	focusing	on	developers,	community,	and	customers,	Spring	Boot	has	alleviated	untold	hours	of	time
normally	spent	plumbing	infrastructure.	Andrew	Clay	Shafer,	Pivotal's	Senior	Directory	of	Technology,
has	presented	a	most	famous	conference	slide,	"'Great	job	configuring	servers	this	year'​​––​No	CEO
Ever."	We	don't	get	bonus	points	for	wasting	time	configuring	web	containers,	database	connectors,
template	view	resolvers,	and	other	mind-numbing	infrastructure.	However,	we've	done	it	for	so	long,	we
all	assume	it's	a	part	and	parcel	of	our	trade.

Spring	Boot	has	upset	that	apple	cart	and	shown	that	we	can,	in	fact,	focus	on	building	features	our
customers	want	on	day	one.	As	James	Watters,	Senior	Vice	President	at	Pivotal,	has	stated	in	countless
presentations,	when	you	focus	on	things	above	the	value	line,	you	build	real	confidence	with	your
customers.	This	is	demonstrated	by	the	latest	Zero	Turnaround	whitepaper	showing	that	46%,	or	almost
one	of	every	two	Java	developers,	is	using	some	part	of	the	Spring	portfolio.	Spring	Boot	is	solving
problems	for	legions	of	customers,	and	this	book	can	help	you	close	the	gap	in	your	understanding.

What	this	book	covers
Chapter	1,	Quick	Start	with	Java,	explains	how	to	rapidly	craft	a	web	application	running	on	an
embedded	web	container,	access	some	data,	and	then	deploy	it	into	the	cloud	using	minimal	amounts	of
code	and	build	settings.

Chapter	2,	Reactive	Web	with	Spring	Boot,	shows	how	to	start	building	a	social	media	service	to	upload
pictures	using	Spring	WebFlux,	Project	Reactor,	and	the	Thymeleaf	template	engine.

Chapter	3,	Reactive	Data	Access	with	Spring	Boot,	explains	how	we	can	pick	up	Spring	Data	MongoDB
as	a	reactive-power	data	store	and	hook	it	to	our	social	media	platform.	You'll	find	out	how	Spring	Boot
autoconfigures	our	app	to	persist	data.

Chapter	4,	Testing	with	Spring	Boot,	explains	how	we	can	write	unit	tests	with	JUnit,	slice	tests	where
small	parts	of	our	app	uses	real	components,	and	full-blown	embedded	container	testing.	Also,	you	will
see	how	to	write	an	autoconfiguration	policy	for	a	browser-driving	test	toolkit	and	test	that	as	well.

Chapter	5,	Developer	Tools	for	Spring	Boot	Apps,	puts	several	tools	in	our	hands	to	enhance	developer
experience,	such	as	DevTools,	LiveReload,	and	connecting	our	IDE	to	the	cloud.

Chapter	6,	AMQP	Messaging	with	Spring	Boot,	explains	how	to	use	RabbitMQ	as	our	message	broker
and	reactively	build	up	a	reliable,	streaming	message	service	between	components.

Chapter	7,	Microservices	with	Spring	Boot,	introduces	Spring	Cloud	and	the	ability	to	break	up	our	social
media	platform	into	smaller,	more	manageable	apps,	dynamically	talking	to	each	other.

Chapter	8,	WebSockets	with	Spring	Boot,	shows	how	to	enhance	the	user	experience	by	sending	updates
to	all	interested	parties	from	various	microservices.	You	will	also	see	how	to	route	all	WebSocket
messages	through	a	RabbitMQ	broker.

Chapter	9,	Securing	Your	App	with	Spring	Boot,	lets	us	secure	the	social	media	platform	for	production
with	both	URL-based	and	method-based	tactics,	so	only	registered	users	can	get	online,	and	only
authorized	admins	and	owners	can	actually	delete	uploaded	pictures.

Chapter	10,	Taking	Your	App	to	Production	with	Spring	Boot,	shows	us	how	to	bundle	up	our	application
and	deploy	to	production	without	breaking	the	bank	by	using	profile-based	configurations	to	distinguish
between	local	and	cloud-based	situations	and	creating	custom	properties	to	tailor	application	settings
without	rewriting	code	for	every	environment.

What	you	need	for	this	book
Spring	Boot	2.0	requires	Java	Developer	Kit	(JDK)	8	or	higher
A	modern	IDE	(IntelliJ	IDEA	or	Spring	Tool	Suite)	is	recommended
RabbitMQ	3.6	or	higher	must	be	installed	(check	out	https://www.rabbitmq.com/download.html,	or,	when
using	Mac	Homebrew,	brew	install	RabbitMQ)
MongoDB	3.0	or	higher	must	be	installed	(check	out	https://www.mongodb.com/download-center,	or,	when
using	Mac	Homebrew,	brew	install	MongoDB)

https://www.rabbitmq.com/download.html
https://www.mongodb.com/download-center

Who	this	book	is	for
This	book	is	designed	for	both	novices	and	experienced	Spring	developers.	It	will	teach	you	how	to
override	Spring	Boot's	opinions	and	frees	you	from	the	need	to	define	complicated	configurations.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds	of
information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their	meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,	pathnames,	dummy
URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:

"The	@Data	annotation	from	Lombok	generates	getters,	setters,	a	toString()	method,	an	equals()	method,	a
hashCode()	method,	and	a	constructor	for	all	required	(that	is,	final)	fields."

A	block	of	code	is	set	as	follows:

				public	interface	MyRepository	{	

						List<Image>	findAll();	

				}

Any	command-line	input	or	output	is	written	as	follows:

$	java	-jar	build/libs/learning-spring-boot-0.0.1-SNAPSHOT.jar		

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	for	example,	in
menus	or	dialog	boxes,	appear	in	the	text	like	this:	"When	the	first	user	clicks	on	Submit,	the	message
automatically	appears	on	the	second	user's	window."

Warnings	or	important	notes	appear	like	this.

Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this	book--what	you
liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us	develop	titles	that	you	will	really	get
the	most	out	of.

To	send	us	general	feedback,	simply	email	feedback@packtpub.com,	and	mention	the	book's	title	in	the
subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or	contributing	to	a
book,	see	our	author	guide	at	www.packtpub.com/authors.

http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help	you	to	get	the
most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	this	book	from	your	account	at	http://www.packtpub.com.	If
you	purchased	this	book	elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the
files	emailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	to	our	website	using	your	email	address	and	password.
2.	 Hover	the	mouse	pointer	on	the	SUPPORT	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box.
5.	 Select	the	book	for	which	you're	looking	to	download	the	code	files.
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
7.	 Click	on	Code	Download.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the	folder	using	the	latest
version	of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	macOS
7-Zip	/	PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://github.com/PacktPublishing/Learning-Spring-
Boot-2.0-Second-Edition.	We	also	have	other	code	bundles	from	our	rich	catalog	of	books	and	videos
available	at	https://github.com/PacktPublishing/.	Check	them	out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Learning-Spring-Boot-2.0-Second-Edition
https://github.com/PacktPublishing/

Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams	used	in	this
book.	The	color	images	will	help	you	better	understand	the	changes	in	the	output.	You	can	download
this	file	from	https://www.packtpub.com/sites/default/files/downloads/LearningSpringBoot2.0_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/LearningSpringBoot2.0_ColorImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do	happen.	If	you
find	a	mistake	in	one	of	our	books--maybe	a	mistake	in	the	text	or	the	code--we	would	be	grateful	if	you
could	report	this	to	us.	By	doing	so,	you	can	save	other	readers	from	frustration	and	help	us	improve
subsequent	versions	of	this	book.	If	you	find	any	errata,	please	report	them	by	visiting	http://www.packtpub
.com/submit-errata,	selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and	the	errata	will
be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the	Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to	https://www.packtpub.com/books/content/support	and	enter	the
name	of	the	book	in	the	search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	internet	is	an	ongoing	problem	across	all	media.	At	Packt,	we	take
the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come	across	any	illegal	copies	of	our
works	in	any	form	on	the	internet,	please	provide	us	with	the	location	address	or	website	name
immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	copyright@packtpub.com	with	a	link	to	the	suspected	pirated	material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable	content.

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at	questions@packtpub.com,	and	we
will	do	our	best	to	address	the	problem.

Quick	Start	with	Java
Working	with	Spring	Boot	is	like	pair-programming	with	the	Spring	developers.

–	Josh	Long	@starbuxman

Perhaps	you've	heard	about	Spring	Boot?	It's	cultivated	the	most	popular	explosion	in	software
development	in	years.	Clocking	millions	of	downloads	per	month,	the	community	has	exploded	since	its
debut	in	2013.

I	hope	you're	ready	for	some	fun,	because	we	are	going	to	take	things	to	the	next	level	as	we	use	Spring
Boot	to	build	a	social	media	platform.	We'll	explore	its	many	valuable	features,	all	the	way	from	the
tools	designed	to	speed	up	development	efforts	to	production-ready	support	as	well	as	cloud-native
features.

Despite	some	rapid	fire	demos	you	might	have	caught	on	YouTube,	Spring	Boot	isn't	just	for	quick
demos.	Built	atop	the	de	facto	standard	toolkit	for	Java,	the	Spring	Framework,	Spring	Boot	will	help	us
build	this	social	media	platform	with	lightning	speed	and	stability.

Also,	this	book	will	explore	a	new	paradigm	introduced	in	Spring	Framework	5,	reactive
programming.	In	this	day	and	age,	as	we	build	bigger	systems,	iterate	faster,	and	host	fleets	of
distributed	microservices,	it	has	become	critical	that	we	switch	from	a	classic	blocking	programming
style.	As	Josh	Long	would	point	out,	this	is	nothing	new.	The	network	stacks	of	today's	OSs	are
inherently	asynchronous,	but	the	JVM	is	not.	Only	in	recent	years	have	people	realized	the	need	to	chop
up	tasks	in	a	asynchronous,	non-blocking	fashion.	However,	the	programming	paradigm	to	handle
potentially	unlimited	streams	of	data	coming	at	fluctuating	times	requires	a	new	programming	model,
which	we	will	explore	carefully	alongside	the	power	of	Spring	Boot	itself.

In	this	chapter,	we'll	get	a	quick	kick	off	with	Spring	Boot	using	the	Java	programming	language.
Maybe	that	makes	you	chuckle?	People	have	been	dissing	Java	for	years	as	being	slow,	bulky,	and	not	a
good	language	for	agile	shops.	In	this	chapter,	we'll	see	how	that	is	not	the	case.

In	this	chapter,	we	will	cover	the	following	topics:

Creating	a	bare	project	using	the	Spring	Initializr	found	at	http://start.spring.io
Exploring	Spring	Boot's	management	of	third-party	libraries
Seeing	how	to	run	our	app	straight	inside	our	Integrated	Development	Environment	(IDE)	with
no	standalone	containers
Using	Spring	Boot's	property	support	to	make	external	adjustments
Packaging	our	app	into	a	self-contained,	runnable	JAR	file
Deploying	our	app	into	the	cloud
Adding	out-of-the-box	production-grade	support	tools

At	any	time,	if	you're	interested	in	a	more	visual	medium,	feel	free	to	check	out	my

http://start.spring.io

Learning	Spring	Boot	[Video]	at	https://www.packtpub.com/application-development/learning-spring
-boot-video.

https://www.packtpub.com/application-development/learning-spring-boot-video

Getting	started
What	is	step	one	when	we	get	underway	with	a	project?	We	visit	Stack	Overflow	and	look	for	an
example	project	to	help	us	build	our	project!

Seriously,	the	amount	of	time	spent	adapting	another	project's	build	file,	picking	dependencies,	and
filling	in	other	details	adds	up	to	a	lot	of	wasted	time.

No	more.

At	the	Spring	Initializr	(https://start.spring.io),	we	can	enter	minimal	details	about	our	app,	pick	our
favorite	build	system	and	the	version	of	Spring	Boot	we	wish	to	use,	and	then	choose	our	dependencies
off	a	menu.	Click	the	Generate	Project	button,	and	we	have	a	free-standing,	ready-to-run	application.

In	this	chapter,	we'll	take	a	quick	test	drive,	and	build	a	small	web	app.	We	can	start	by	picking	Gradle
from	the	drop-down	menu.	Then	select	2.0.0.M5	as	the	version	of	Spring	Boot	we	wish	to	use.

Next,	we	need	to	pick	our	application's	coordinates,	as	follows:

Group	-	com.greglturnquist.learningspringboot
Artifact	-	learning-spring-boot

Now	comes	the	fun	part.	We	pick	the	ingredients	for	our	application,	like	picking	off	a	delicious	menu.
If	we	start	typing,	say,	Web,	into	the	Dependencies	box,	we'll	see	several	options	appear.	To	see	all	the
available	options,	click	on	the	Switch	to	the	full	version	link	toward	the	bottom.

There	are	lots	of	overrides,	such	as	switching	from	JAR	to	WAR,	or	using	an	older	version
of	Java.	You	can	also	pick	Kotlin	or	Groovy	as	the	primary	language	for	your	application.
For	starters,	in	this	day	and	age,	there	is	no	reason	to	use	anything	older	than	Java	8.	JAR
files	are	the	way	to	go.	WAR	files	are	only	needed	when	applying	Spring	Boot	to	an	old
container.

To	build	our	social	media	platform,	we	need	these	few	ingredients:

Reactive	Web	(embedded	Netty	+	Spring	WebFlux)
Reactive	MongoDB	(Spring	Data	MongoDB)
Thymeleaf	template	engine
Lombok	(to	simplify	writing	POJOs)

The	following	screenshot	shows	us	picking	these	options:

https://start.spring.io

With	these	items	selected,	click	on	Generate	Project.

There	are	lots	of	other	tools	that	leverage	this	site.	For	example,	IntelliJ	IDEA	lets	you
create	a	new	project	inside	the	IDE,	giving	you	the	same	options	shown	here.	It	invokes	the
website's	REST	API,	and	imports	your	new	project.	You	can	also	interact	with	the	site	via
curl	or	any	other	REST-based	tool.

Now,	let's	unpack	that	ZIP	file,	and	see	what	we've	got.	You	will	find	the	following:

A	build.gradle	build	file
A	Gradle	wrapper,	so	there's	no	need	to	install	Gradle
A	LearningSpringBootApplication.java	application	class
An	application.properties	file
A	LearningSpringBootApplicationTests.java	test	class

We	built	an	empty	Spring	Boot	project.	Now	what?	Before	we	sink	our	teeth	into	writing	code,	let's	take
a	peek	at	the	build	file.	It's	quite	terse,	but	carries	some	key	bits.

Let's	take	a	look,	starting	from	the	top:

				buildscript	{	

						ext	{	

								springBootVersion	=	'2.0.0.M5'	

						}	

						repositories	{	

								mavenCentral()	

								maven	{	url	"https://repo.spring.io/snapshot"	}	

								maven	{	url	"https://repo.spring.io/milestone"	}	

						}	

						dependencies	{	

								classpath(

												"org.springframework.boot:spring-boot-gradle-

													plugin:${springBootVersion}")	

						}	

				}	

This	preceding	build	file	contains	the	basis	for	our	project:

springBootVersion	shows	us	we	are	using	Spring	Boot	2.0.0.M5
The	Maven	repositories	it	will	pull	from	are	listed	next	(Maven	central	plus	Spring's	snapshot	and
milestone	repositories)
Finally,	we	see	the	spring-boot-gradle-plugin,	a	critical	tool	for	any	Spring	Boot	project

The	first	piece,	the	version	of	Spring	Boot,	is	important.	That's	because	Spring	Boot	comes	with	a
curated	list	of	140	third-party	library	versions,	extending	well	beyond	the	Spring	portfolio	and	into
some	of	the	most	commonly	used	libraries	in	the	Java	ecosystem.	By	simply	changing	the	version	of
Spring	Boot,	we	can	upgrade	all	these	libraries	to	newer	versions	known	to	work	together.	(See	https://g
ithub.com/spring-projects/spring-boot/blob/master/spring-boot-project/spring-boot-dependencies/pom.xml	for	a
complete	list.)

There	is	an	extra	project,	the	Spring	IO	Platform	(http://platform.spring.io/platform/),	which
includes	an	additional	134	curated	versions,	bringing	the	total	to	274.

The	repositories	aren't	as	critical,	but	it's	important	to	add	milestones	and	snapshots	if	fetching	a	library
that	hasn't	been	released	to	Maven	central,	or	is	hosted	on	some	vendor's	local	repository.	Thankfully,
Spring	Initializr	does	this	for	us	based	on	the	version	of	Spring	Boot	selected	on	the	site.

Finally,	we	have	spring-boot-gradle-plugin	(and	there	is	a	corresponding	spring-boot-maven-plugin	for	Maven
users).	This	plugin	is	responsible	for	linking	Spring	Boot's	curated	list	of	versions	with	the	libraries	we
select	in	the	build	file.	That	way,	we	don't	have	to	specify	the	version	number.

Additionally,	this	plugin	hooks	into	the	build	phase	and	bundles	our	application	into	a	runnable	über
JAR,	also	known	as	a	shaded	or	fat	JAR.

Java	doesn't	provide	a	standardized	way	of	loading	nested	JAR	files	into	the	classpath.
Spring	Boot	provides	the	means	to	bundle	up	third-party	JARs	inside	an	enclosing	JAR
file,	and	properly	load	them	at	runtime.	Read	more	at	http://docs.spring.io/spring-boot/docs/2.
0.0.M5/reference/htmlsingle/#executable-jar.

With	an	über	JAR	in	hand,	we	only	need	put	it	on	a	thumb	drive.	We	can	carry	it	to	another	machine,	to
a	hundred	virtual	machines	in	the	cloud,	our	data	center,	or	anywhere	else.	It	runs	anywhere	we	can	find
a	JVM.

Peeking	a	little	further	down	in	build.gradle,	we	can	see	the	plugins	that	are	enabled	by	default:

				apply	plugin:	'java'	

				apply	plugin:	'eclipse'	

				apply	plugin:	'org.springframework.boot'	

				apply	plugin:	'io.spring.dependency-management'	

The	java	plugin	indicates	the	various	tasks	expected	for	a	Java	project
The	eclipse	plugin	helps	generate	project	metadata	for	Eclipse	users
The	org.springframework.boot	plugin	is	where	the	actual	spring-boot-gradle-plugin	is	activated

https://github.com/spring-projects/spring-boot/blob/master/spring-boot-project/spring-boot-dependencies/pom.xml
http://platform.spring.io/platform/
http://docs.spring.io/spring-boot/docs/2.0.0.M5/reference/htmlsingle/#executable-jar

The	io.spring.dependency-management	plugin	supports	Maven	Bill	of	Materials	(BOM)	manifests,
allowing	usage	of	libraries	that	manage	the	sets	of	library	versions	in	our	Gradle	build.	(Because
Maven	supports	this	natively,	there	is	no	Maven	equivalent	plugin.)

An	up-to-date	copy	of	IntelliJ	IDEA	can	read	a	plain	old	Gradle-build	file	just	fine	without
extra	plugins.

This	brings	us	to	the	final	ingredient	used	to	build	our	application--Dependencies.

Spring	Boot	starters
No	application	is	complete	without	specifying	dependencies.	A	valuable	feature	of	Spring	Boot	is	its
virtual	packages.	These	are	published	packages	that	don't	contain	any	code,	but	simply	list	other
dependencies	instead.

The	following	code	shows	all	the	dependencies	we	selected	on	the	Spring	Initializr	site:

				dependencies	{	

						compile('org.springframework.boot:spring-boot-starter-data-

							mongodb-reactive')	

						compile('org.springframework.boot:spring-boot-starter-thymeleaf')	

						compile('org.springframework.boot:spring-boot-starter-webflux')	

	

						compile('org.projectlombok:lombok')	

						compile('de.flapdoodle.embed:de.flapdoodle.embed.mongo')	

						testCompile('org.springframework.boot:spring-boot-starter-test')	

				}	

You	might	have	noticed	that	most	of	these	packages	are	Spring	Boot	starters:

spring-boot-starter-data-mongodb-reactive	pulls	in	Spring	Data	MongoDB	with	the	reactive	bits	enabled
spring-boot-starter-thymeleaf	pulls	in	the	Thymeleaf	template	engine
spring-boot-starter-webflux	pulls	in	Spring	WebFlux,	Jackson	JSON	support,	and	embedded	Netty

These	starter	packages	allow	us	to	quickly	grab	the	bits	we	need	to	get	up	and	running.	Spring	Boot
starters	have	become	so	popular	that	many	other	third-party	library	developers	are	crafting	their	own.

In	addition	to	starters,	we	have	the	following	three	extra	libraries:

Project	Lombok	(https://projectlombok.org)	makes	it	dead	simple	to	define	POJOs	without	getting
bogged	down	in	getters,	setters,	and	other	details.
Flapdoodle	is	an	embedded	MongoDB	database	that	allows	us	to	write	tests,	tinker	with	a	solution,
and	get	things	moving	before	getting	involved	with	an	external	database.

At	the	time	of	writing,	Flapdoodle	isn't	listed	on	the	website.	We	must	add	it	manually,	as
shown	previously.

spring-boot-starter-test	pulls	in	Spring	Boot	Test,	JSONPath,	JUnit,	AssertJ,	Mockito,	Hamcrest,
JSONassert,	and	Spring	Test,	all	within	test	scope.

The	value	of	this	last	starter,	spring-boot-starter-test,	cannot	be	overstated.	With	a	single	line,	the	most
powerful	test	utilities	are	at	our	fingertips,	allowing	us	to	write	unit	tests,	slice	tests,	and	full-blown	our-
app-inside-embedded-Netty	tests.	It's	why	this	starter	is	included	in	all	projects	without	checking	a	box
on	the	Spring	Initializr	site.

Now,	to	get	things	off	the	ground,	we	need	to	shift	focus	to	the	tiny	bit	of	code	written	for	us	by	the
Spring	Initializr.

https://projectlombok.org

Running	a	Spring	Boot	application
The	fabulous	https://start.spring.io	website	created	a	tiny	class,	LearningSpringBootApplication,	as	shown
here:

				package	com.greglturnquist.learningspringboot;	

	

				import	org.springframework.boot.SpringApplication;	

				import	

					org.springframework.boot.autoconfigure.SpringBootApplication;	

	

				@SpringBootApplication	

				public	class	LearningSpringBootApplication	{	

	

						public	static	void	main(String[]	args)	{	

								SpringApplication.run(

										LearningSpringBootApplication.class,	args);	

						}	

				}	

This	preceding	tiny	class	is	actually	a	fully	operational	web	application!

The	@SpringBootApplication	annotation	tells	Spring	Boot,	when	launched,	to	scan	recursively	for
Spring	components	inside	this	package	and	register	them.	It	also	tells	Spring	Boot	to	enable
autoconfiguration,	a	process	where	beans	are	automatically	created	based	on	classpath	settings,
property	settings,	and	other	factors.	We'll	see	more	of	this	throughout	the	book.	Finally,	it	indicates
that	this	class	itself	can	be	a	source	for	Spring	bean	definitions.
It	holds	public	static	void	main(),	a	simple	method	to	run	the	application.	There	is	no	need	to	drop
this	code	into	an	application	server	or	servlet	container.	We	can	just	run	it	straight	up,	inside	our
IDE.	The	amount	of	time	saved	by	this	feature,	over	the	long	haul,	adds	up	fast.
SpringApplication.run()	points	Spring	Boot	at	the	leap-off	point--​in	this	case,	this	very	class.	But	it's
possible	to	run	other	classes.

This	little	class	is	runnable.	Right	now!	In	fact,	let's	give	it	a	shot:

						.			____										_												__	_	_

				/\\	/	___'_	__	_	_(_)_	__		__	_	\	\	\	\

				(()___	|	'_	|	'_|	|	'_	\/	_`	|	\	\	\	\

				\\/		___)|	|_)|	|	|	|	|	||	(_|	|))))

						'		|____|	.__|_|	|_|_|	|___,	|	/	/	/	/

				=========|_|==============|___/=/_/_/_/

				::	Spring	Boot	::		(v2.0.0.M5)

				

				2017-08-02	15:34:22.374:	Starting	LearningSpringBootApplication

					on	ret...

				2017-08-02	15:34:22.377:	Running	with	Spring	Boot

					v2.0.0.BUILD-SNAPSHO...

				2017-08-02	15:34:22.378:	No	active	profile	set,	falling	back

					to	defaul...

				2017-08-02	15:34:22.433:	Refreshing	

					org.springframework.boot.web.react...

				2017-08-02	15:34:23.717:	HV000184:	ParameterMessageInterpolator

					has	be...

				2017-08-02	15:34:23.815:	HV000184:	ParameterMessageInterpolator

					has	be...

				2017-08-02	15:34:23.953:	Cannot	find	template	location:	

					classpath:/tem...

				2017-08-02	15:34:24.094:	Mapped	URL	path	[/webjars/**]	onto

					handler	of...

				2017-08-02	15:34:24.094:	Mapped	URL	path	[/**]	onto	handler	of

https://start.spring.io

					type	[c...

				2017-08-02	15:34:24.125:	Looking	for	@ControllerAdvice:	

					org.springfram...

				2017-08-02	15:34:24.501:	note:	noprealloc	may	hurt	performance

					in	many...

				2017-08-02	15:34:24.858:	2017-08-02T15:34:24.858-0500	I

					NETWORK		[init...

				2017-08-02	15:34:24.858:	start	

					de.flapdoodle.embed.mongo.config.Mongod...

				2017-08-02	15:34:24.908:	Cluster	created	with	settings

					{hosts=[localho...

				2017-08-02	15:34:24.908:	Adding	discovered	server

					localhost:65485	to	c...

				2017-08-02	15:34:25.007:	2017-08-02T15:34:25.006-0500	I

					NETWORK		[init...

				2017-08-02	15:34:25.038:	Opened	connection	

					[connectionId{localValue:1,...

				2017-08-02	15:34:25.040:	Monitor	thread	successfully

					connected	to	serv...

				2017-08-02	15:34:25.041:	Discovered	cluster	type	of	STANDALONE

				2017-08-02	15:34:25.145:	Cluster	created	with	settings

					{hosts=[localho...

				2017-08-02	15:34:25.145:	Adding	discovered	server

					localhost:65485	to	c...

				2017-08-02	15:34:25.153:	Opened	connection	

					[connectionId{localValue:2,...

				2017-08-02	15:34:25.153:	Monitor	thread	successfully	connected

					to	serv...

				2017-08-02	15:34:25.153:	Discovered	cluster	type	of	STANDALONE

				2017-08-02	15:34:25.486:	Registering	beans	for	JMX	exposure

					on	startup

				2017-08-02	15:34:25.556:	Started	HttpServer	on	

					/0:0:0:0:0:0:0:0:8080

				2017-08-02	15:34:25.558:	Netty	started	on	port(s):	8080

				2017-08-02	15:34:25.607:	Started	in	3.617	seconds	(JVM	

					running	for	4.0...		

Scrolling	through	the	preceding	output,	we	can	see	these	several	things:

The	banner	at	the	top	gives	us	a	read-out	of	the	version	of	Spring	Boot.	(By	the	way,	you	can	create
your	own	ASCII	art	banner	by	creating	either	banner.txt	or	banner.png	and	putting	it	in	the
src/main/resources/	folder.)
Embedded	Netty	is	initialized	on	port	8080,	indicating	that	it's	ready	for	web	requests.
It's	slightly	cut	off,	but	there	are	signs	that	Flapdoodle,	our	embedded	MongoDB	data	store,	has
come	up.
And	the	wonderful	Started	LearningSpringBootApplication	in	3.617	seconds	message	can	be	seen
too.

Spring	Boot	uses	embedded	Netty,	so	there's	no	need	to	install	a	container	on	our	target	machine.	Non-
web	apps	don't	even	require	that.	The	JAR	itself	is	the	new	container	that	allows	us	to	stop	thinking	in
terms	of	old-fashioned	servlet	containers.	Instead,	we	think	in	terms	of	apps.	All	these	factors	add	up	to
maximum	flexibility	in	application	deployment.

How	does	Spring	Boot	use	embedded	Netty	among	other	things?	As	mentioned	earlier,	it	has
autoconfiguration,	which	means	that	it	defines	Spring	beans	based	on	different	conditions.	When	Spring
Boot	sees	Netty	on	the	classpath,	it	creates	an	embedded	Netty	instance	along	with	several	beans	to
support	it.

When	it	spots	Spring	WebFlux	on	the	classpath,	it	creates	view	resolution	engines,	handler	mappers,
and	a	whole	host	of	other	beans	needed	to	help	us	write	a	web	application.	This	lets	us	focus	writing
routes,	not	doddling	around	configuring	infrastructure.

With	Flapdoodle	on	the	classpath	as	well	as	the	Reactive	MongoDB	drivers,	it	spins	up	an	in-memory,
embedded	MongoDB	data	store	and	connects	to	it	with	its	state-of-the-art	drivers.

Spring	Data	MongoDB	will	cause	Spring	Boot	to	craft	a	MongoOperations	bean	along	with	everything	else
needed	to	start	speaking	Mongo	Query	Language	and	make	it	available	if	we	ask	for	it,	letting	us	focus
on	defining	repositories.

At	this	stage,	we	have	a	running	web	application,	albeit	an	empty	one.	There	are	no	custom	routes,	and
no	means	to	handle	data.	But	we	can	add	some	real	fast.

Let's	start	by	drafting	a	simple	REST	controller	as	follows:

				package	com.greglturnquist.learningspringboot;	

	

				import	org.springframework.web.bind.annotation.GetMapping;	

				import	org.springframework.web.bind.annotation.RequestParam;	

				import	org.springframework.web.bind.annotation.RestController;	

	

				@RestController	

				public	class	HomeController	{	

	

						@GetMapping	

						public	String	greeting(@RequestParam(required	=	false,	

						defaultValue	=	"")	String	name)	{	

								return	name.equals("")	?	"Hey!"	:	"Hey,	"	+	name	+	"!";	

						}	

	

				}	

Let's	examine	this	tiny	REST	controller	in	detail:

The	@RestController	annotation	indicates	that	we	don't	want	to	render	views,	but	write	the	results
straight	into	the	response	body	instead.
@GetMapping	is	Spring's	shorthand	annotation	for	@RequestMapping(method	=	RequestMethod.GET).	In	this	case,
it	defaults	the	route	to	/.
Our	greeting()	method	has	one	argument--@RequestParam(required=false,	defaultValue="")	String	name.	It
indicates	that	this	value	can	be	requested	via	an	HTTP	query	(?name=Greg)--the	query	isn't	required,
and	in	case	it's	missing,	it	will	supply	an	empty	string.
Finally,	we	return	one	of	two	messages	depending	on	whether	or	not	the	name	is	an	empty	string,
using	Java's	ternary	operator.

If	we	relaunch	LearningSpringBootApplication	in	our	IDE,	we'll	see	this	new	entry	in	the	console:

				2017-08-02	15:40:00.741:	Mapped	"{[],methods=[GET]}"	onto

					public	java....		

We	can	then	ping	our	new	route	in	the	browser	at	http://localhost:8080	and	http://localhost:8080?name=Greg.
Try	it	out!

(By	the	way,	it	sure	would	be	handy	if	the	system	could	detect	this	change	and	relaunch	automatically,
right?	Check	out	Chapter	5,	Developer	Tools	for	Spring	Boot	Apps	to	find	out	how.)

That's	nice,	but	since	we	picked	Spring	Data	MongoDB,	how	hard	would	it	be	to	load	some	sample	data
and	retrieve	it	from	another	route?	(Spoiler	alert--Not	hard	at	all.)

We	can	start	out	by	defining	a	simple	Chapter	entity	to	capture	book	details,	as	follows:

				package	com.greglturnquist.learningspringboot;	

	

				import	lombok.Data;	

	

				import	org.springframework.data.annotation.Id;	

				import	org.springframework.data.mongodb.core.mapping.Document;	

	

				@Data	

				@Document	

				public	class	Chapter	{	

	

						@Id	

						private	String	id;	

						private	String	name;	

	

						public	Chapter(String	name)	{	

								this.name	=	name;	

						}	

	

				}	

This	preceding	little	POJO	lets	us	look	at	the	details	about	the	chapter	of	a	book	as	follows:

The	@Data	annotation	from	Lombok	generates	getters,	setters,	a	toString()	method,	an	equals()
method,	a	hashCode()	method,	and	a	constructor	for	all	required	(that	is,	final)	fields
The	@Document	annotation	flags	this	class	as	suitable	for	storing	in	a	MongoDB	data	store
The	id	field	is	marked	with	Spring	Data's	@Id	annotation,	indicating	this	is	the	primary	key	of	our
Mongo	document
Spring	Data	MongoDB	will,	by	default,	create	a	collection	named	chapters	with	two	fields,	id	and
name

Our	field	of	interest	is	name,	so	let's	create	a	constructor	call	to	help	insert	some	test	data

To	interact	with	this	entity	and	its	corresponding	collection	in	MongoDB,	we	could	dig	in	and	start
using	the	autoconfigured	MongoOperations	supplied	by	Spring	Boot.	But	why	do	that	when	we	can	declare	a
repository-based	solution?

To	do	this,	we'll	create	an	interface	defining	the	operations	we	need.	Check	out	this	simple	interface:

				package	com.greglturnquist.learningspringboot;	

	

				import	org.springframework.data.repository

					.reactive.ReactiveCrudRepository;	

	

				public	interface	ChapterRepository	

					extends	ReactiveCrudRepository<Chapter,	String>	{	

	

				}	

This	last	declarative	interface	creates	a	Spring	Data	repository	as	follows:

ReactiveCrudRepository	extends	Repository,	a	Spring	Data	Commons	marker	interface	that	signals
Spring	Data	to	create	a	concrete	implementation	based	on	the	reactive	paradigm	while	also
capturing	domain	information.	It	also	comes	with	some	predefined	CRUD	operations	(save,	delete,
deleteById,	deleteAll,	findById,	findAll,	and	more).
It	specifies	the	entity	type	(Chapter)	and	the	type	of	the	primary	key	(String).
We	could	also	add	custom	finders,	but	we'll	save	that	for	Chapter	3,	Reactive	Data	Access	with

Spring	Boot.

Spring	Data	MongoDB	will	automatically	wire	up	a	concrete	implementation	of	this	interface.

Spring	Data	doesn't	engage	in	code	generation.	Code	generation	has	a	sordid	history	of
being	out	of	date	at	some	of	the	worst	times.	Instead,	Spring	Data	uses	proxies	and	other
mechanisms	to	support	these	operations.	Never	forget--​the	code	you	don't	write	has	no
bugs.

With	Chapter	and	ChapterRepository	defined,	we	can	now	preload	the	database,	as	shown	in	the	following
code:

				package	com.greglturnquist.learningspringboot;	

	

				import	reactor.core.publisher.Flux;	

	

				import	org.springframework.boot.CommandLineRunner;	

				import	org.springframework.context.annotation.Bean;	

				import	org.springframework.context.annotation.Configuration;	

	

				@Configuration	

				public	class	LoadDatabase	{	

	

						@Bean	

						CommandLineRunner	init(ChapterRepository	repository)	{	

								return	args	->	{	

										Flux.just(

												new	Chapter("Quick	Start	with	Java"),	

												new	Chapter("Reactive	Web	with	Spring	Boot"),	

												new	Chapter("...and	more!"))	

												.flatMap(repository::save)	

												.subscribe(System.out::println);	

								};	

						}	

	

				}	

This	preceding	class	will	be	automatically	scanned	by	Spring	Boot	and	run	in	the	following	way:

@Configuration	marks	this	class	as	a	source	of	beans.
@Bean	indicates	that	the	return	value	of	init()	is	a	Spring	Bean--​in	this	case,	a	CommandLineRunner	(utility
class	from	Spring	Boot).
Spring	Boot	runs	all	CommandLineRunner	beans	after	the	entire	application	is	up	and	running.	This	bean
definition	requests	a	copy	of	ChapterRepository.
Using	Java	8's	ability	to	coerce	the	args	→	{}	lambda	function	into	CommandLineRunner,	we	are	able	to
gather	a	set	of	Chapter	data,	save	all	of	them	and	then	print	them	out,	preloading	our	data.

We	aren't	going	to	delve	into	the	intricacies	of	Flux,	flatMap,	and	subscribe	yet.	We'll	save	that
for	Chapter	2,	Reactive	Web	with	Spring	Boot	and	Chapter	3,	Reactive	Data	Access	with
Spring	Boot.

With	all	this	in	place,	the	only	thing	left	is	to	write	a	REST	controller	to	serve	up	the	data!

				package	com.greglturnquist.learningspringboot;	

	

				import	reactor.core.publisher.Flux;	

	

				import	org.springframework.web.bind.annotation.GetMapping;	

				import	org.springframework.web.bind.annotation.RestController;	

	

				@RestController	

				public	class	ChapterController	{	

	

						private	final	ChapterRepository	repository;	

	

						public	ChapterController(ChapterRepository	repository)	{	

								this.repository	=	repository;	

						}	

	

						@GetMapping("/chapters")	

						public	Flux<Chapter>	listing()	{	

								return	repository.findAll();	

						}	

				}	

This	preceding	controller	is	able	to	serve	up	our	data	as	follows:

@RestController	indicates	that	this	is	another	REST	controller.
Constructor	injection	is	used	to	automatically	load	it	with	a	copy	of	ChapterRepository.	With	Spring,	if
there	is	only	one	constructor	call,	there	is	no	need	to	include	an	@Autowired	annotation.
@GetMapping	tells	Spring	that	this	is	the	place	to	route	/chapters	calls.	In	this	case,	it	returns	the	results
of	the	findAll()	call	found	in	ReactiveCrudRepository.	Again,	if	you're	curious	what	Flux<Chapter>	is,	we'll
tackle	that	at	the	top	of	the	next	chapter.	For	now,	think	of	it	being	like	a	Stream<Chapter>.

If	we	relaunch	our	application	and	visit	http://localhost:8080/chapters,	we	can	see	our	preloaded	data
served	up	as	a	nicely	formatted	JSON	document,	as	seen	in	this	screenshot:

This	may	not	be	very	elaborate,	but	this	small	collection	of	classes	has	helped	us	quickly	define	a	slice
of	functionality.	And,	if	you'll	notice,	we	spent	zero	effort	configuring	JSON	converters,	route	handlers,
embedded	settings,	or	any	other	infrastructure.

Spring	Boot	is	designed	to	let	us	focus	on	functional	needs,	not	low-level	plumbing.

Delving	into	Spring	Boot's	property	support
We	just	got	things	off	the	ground	with	an	operational	application,	but	that	isn't	the	only	killer	feature	of
Spring	Boot.

Spring	Boot	comes	with	a	fistful	of	prebuilt	properties.	In	fact,	just	about	every	autoconfigured
component	has	some	property	setting	(http://docs.spring.io/spring-boot/docs/2.0.0.M5/reference/htmlsingle/#com
mon-application-properties)	allowing	you	to	override	just	the	parts	you	like.

Many	of	these	autoconfigured	beans	will	back	off	if	Boot	spots	us	creating	our	own.	For	example,	when
Spring	Boot	spots	reactive	MongoDB	drivers	on	the	classpath,	it	automatically	creates	a	reactive
MongoClient.	However,	if	we	define	our	own	MongoClient	bean,	then	Spring	Boot	will	back	off	and	accept
ours.

This	can	lead	to	other	components	switching	off.	But	sometimes,	we	don't	need	to	swap	out	an	entire
bean.	Instead,	we	may	wish	to	merely	tweak	a	single	property	of	one	of	these	autoconfigured	beans.

Let's	try	to	make	some	adjustments	to	src/main/resources/application.properties	as	follows:

				#	Override	the	port	Tomcat	listens	on	

				server.port=9000	

	

				#	Customize	log	levels	

				logging.level.com.greglturnquist=DEBUG	

This	preceding	changes	will	cause	Spring	Boot	to	launch	Netty	on	port	9000,	as	shown	here:

2017-08-02	15:40:02.489:	Netty	started	on	port(s):	9000		

It	will	also	bump	up	the	log	level	for	package	com.greglturnquist	to	DEBUG.

Many	modern	IDEs	include	code	completion	to	find	various	properties.

While	it's	handy	to	externalize	configuration	settings	into	property	files,	it	wouldn't	be	a	big	advantage
if	they	were	only	embeddable	inside	our	app's	JAR	file.

That's	why,	Spring	Boot	comes	with	property	override	support.	The	following	list	shows	all	the
locations	from	which	we	can	override	properties,	the	first	being	the	highest	priority:

The	@TestPropertySource	annotation	on	test	classes
Command-line	arguments
The	properties	found	inside	SPRING_APPLICATION_JSON	(inline	JSON	embedded	in	an	env	variable	or
system	property)
The	ServletConfig	init	parameters
The	ServletContext	init	parameters

http://docs.spring.io/spring-boot/docs/2.0.0.M5/reference/htmlsingle/#common-application-properties

The	JNDI	attributes	from	java:comp/env
The	Java	System	properties	(System.getProperties())
The	OS	environment	variables
A	RandomValuePropertySource	that	only	has	properties	in	random.*
Profile-specific	properties	outside	the	packaged	JAR	file	(application-{profile}.properties	and	YAML
variants)
Profile-specific	properties	inside	the	packaged	JAR	file	(application-{profile}.properties	and	YAML
variants)
Application	properties	outside	the	package	JAR	file	(application.properties	and	YAML	variants)
Application	properties	inside	the	packaged	JAR	file	(application.properties	and	YAML	variants)
The	@PropertySource	annotation	on	any	@Configuration	classes
Default	properties	(specified	using	SpringApplication.setDefaultProperties)

For	an	example	of	the	same	overrides	in	YAML	format	as	our	application.properties	file,	we	could	put	the
following	in	application.yml	in	src/main/resources:

				server:

						port:	9000

				

				logging:

						level:

								com:

										greglturnquist:	DEBUG		

This	would	do	the	exact	same	thing	that	we	already	saw	with	application.properties.	The	only	difference
is	the	formatting.

What	are	the	benefits	of	YAML	over	properties?	If	we	need	to	override	lots	of	settings,	it	avoids
duplication	of	various	keys.

Spring	properties	can	also	reference	other	properties,	as	shown	in	this	fragment:

				app.name=MyApp

				app.description=${app.name}	is	a	Spring	Boot	application		

In	this	preceding	example,	the	second	property,	app.description,	references	the	first	property,	app.name.

This	isn't	the	end	of	options	with	property	overrides.	It's	just	the	beginning.	Throughout	this	book,	we'll
expand	on	the	options	provided	by	Spring	Boot's	property	support.

For	now,	let's	focus	on	getting	our	app	to	production!

Bundling	up	the	application	as	a	runnable
JAR	file
We've	hacked	out	a	suitable	application.	Now	it's	time	to	take	it	to	production.	As	Spring	Developer
Advocate	Josh	Long	likes	to	say,	production	is	the	happiest	place	on	earth.

The	good	ol'	spring-boot-gradle-plugin	has	built-in	hooks	to	handle	that	for	us.	By	invoking	Gradle's	build
task,	it	will	insert	itself	into	the	build	process,	and	create	a	JAR	file.

$./gradlew	clean	build

:clean

:compileJava

:processResources

:classes

:findMainClass

:jar

:bootRepackage

:assemble

:compileTestJava

:processTestResources	UP-TO-DATE

:testClasses

:test

...	test	output	...

:check

:build

				

BUILD	SUCCESSFUL

				

Total	time:	10.946	secs		

If	we	peek	at	the	output,	we'll	find	the	original	JAR	file	(non-FAT)	along	with	the	rebundled	one
containing	our	application	code	as	well	as	the	third-party	dependencies,	as	shown	here:

$	ls	build/libs

learning-spring-boot-0.0.1-SNAPSHOT.jar

learning-spring-boot-0.0.1-SNAPSHOT.jar.original		

If	you	wish	to	check	out	the	newly	minted	JAR's	contents,	type	jar	tvf	build/libs/learning-
spring-boot-0.0.1-SNAPSHOT.jar.	We	won't	show	it	here	because	of	space	constraints.

The	über	JAR	is	nicely	loaded	up	with	our	custom	code,	all	of	our	third-party	dependencies,	and	a	little
Spring	Boot	code	to	allow	us	to	run	it.	Why	not	try	that	out	right	here?

Let's	type	the	following	command:

$	java	-jar	build/libs/learning-spring-boot-0.0.1-SNAPSHOT.jar		

We	can	expect	the	same	output	as	before,	which	is	as	seen	in	this	image:

						.			____										_												__	_	_

				/\\	/	___'_	__	_	_(_)_	__		__	_	\	\	\	\

				(()___	|	'_	|	'_|	|	'_	\/	_`	|	\	\	\	\

				\\/		___)|	|_)|	|	|	|	|	||	(_|	|))))

						'		|____|	.__|_|	|_|_|	|___,	|	/	/	/	/

				=========|_|==============|___/=/_/_/_/

				::	Spring	Boot	::		(v2.0.0.M5)

				

				2017-09-19	20:41:20.036:	Starting	LearningSpringBootApplication	

					on	ret...

				...

				...	the	rest	has	been	cut	for	space	...		

By	invoking	the	JAR	using	Java's	-jar	option,	we	can	launch	the	application	with	nothing	more	than	the
JVM	on	our	machine.

With	our	JAR	file	in	hand,	we	can	take	our	application	anywhere.	If	we	need	to	override	any	settings,
we	can	do	it	without	cracking	it	open	and	making	alterations.

Suppose	we	alter	our	command	slightly,	like	this:

$	SERVER_PORT=8000	java

	-jar	build/libs/learning-spring-boot-0.0.1-SNAPSHOT.jar		

We	can	now	expect	the	results	to	be	a	little	different,	as	seen	in	this	image:

						.			____										_												__	_	_

				/\\	/	___'_	__	_	_(_)_	__		__	_	\	\	\	\

				(()___	|	'_	|	'_|	|	'_	\/	_`	|	\	\	\	\

				\\/		___)|	|_)|	|	|	|	|	||	(_|	|))))

						'		|____|	.__|_|	|_|_|	|___,	|	/	/	/	/

				=========|_|==============|___/=/_/_/_/

				::	Spring	Boot	::		(v2.0.0.M5)

				

				...

				2017-08-03	15:40:02.489:	Netty	started	on	port(s):	8000

				...		

From	the	command	line,	we	override	server.port	using	an	alternative	notation	(SERVER_PORT)	and	run	it	on
port	8000.

This	lends	us	the	ability	to	deploy	it	into	the	cloud.

Deploying	to	Cloud	Foundry
Cloud-native	applications	are	becoming	the	norm,	as	companies	accelerate	their	rate	of	releasing	to
production	(https://pivotal.io/cloud-native).

Cloud	Native	describes	the	patterns	of	high	performing	organizations	delivering	software	faster,
consistently	and	reliably	at	scale.	Continuous	delivery,	DevOps,	and	microservices	label	the	why,	how
and	what	of	the	cloud	natives.	In	the	the	most	advanced	expression	of	these	concepts	they	are
intertwined	to	the	point	of	being	inseparable.	Leveraging	automation	to	improve	human	performance	in
a	high	trust	culture,	moving	faster	and	safer	with	confidence	and	operational	excellence.

Many	cloud	platforms	thrive	under	releasing	self-contained	applications.	The	open	source	Cloud
Foundry	platform,	with	its	support	for	many	technologies	and	runnable	JAR	files,	is	one	of	the	most
popular	ones.

To	get	started,	we	need	either	a	copy	of	Cloud	Foundry	installed	in	our	data	center,	or	an	account	at
Pivotal	Web	Services	(PWS),	a	Cloud	Foundry	hosting	provider	(https://run.pivotal.io/).	Assuming	we
have	a	PWS	account	(pronounced	p-dubs),	let's	install	the	tools	and	deploy	our	app.

On	macOS	X,	we	can	type	this:

$	brew	tap	cloudfoundry/tap

$	brew	install	cf-cli

=>	Installing	cf-cli	from	cloudfoundry/tap

==>	Downloading

					https://cli.run.pivotal.io/stable?release=macosx64-bin...

==>	Downloading	from

					https://s3-us-west-1.amazonaws.com/cf-cli-release...

					##

					####################...

==>	Caveats

					Bash	completion	has	been	installed	to:

					/usr/local/etc/bash_completion.d

==>	Summary

					/usr/local/Cellar/cf-cli/6.32.0:	6	files,	16.7MB,

					built	in	10	seco...

		

For	Linux,	we	can	fetch	a	tarball	like	this:

$	wget	-O	cf-linux.tgz	"https://cli.run.pivotal.io/stable?

		release=linux64-binary&source=github"

$	tar	xvfz	cf-linux.tgz

$	chmod	755	./cf

This	preceding	code	will	download	and	enable	a	Linux-based	cf	tool.

Before	using	the	cf	tool,	you	must	register	for	an	account	at	PWS.

For	more	installation	details,	visit	https://docs.run.pivotal.io/cf-cli/install-go-cli.html.

https://pivotal.io/cloud-native
https://run.pivotal.io/
https://docs.run.pivotal.io/cf-cli/install-go-cli.html

Using	the	cf	tool,	let's	deploy	our	application.	To	kick	things	off,	we	need	to	log	into	PWS,	as	follows:

$	cf	login

API	endpoint:	https://api.run.pivotal.io

				

Email>	gturnquist@pivotal.io

				

Password>

Authenticating...

OK

				

Select	an	org	(or	press	enter	to	skip):

				

...	your	organizations	will	be	listed	here	...

				

Org>	2

Targeted	org	FrameworksAndRuntimes

				

Select	a	space	(or	press	enter	to	skip):

				

...	your	spaces	will	be	listed	here	...

				

Space>	1

Targeted	space	development

				

API	endpoint:			https://api.run.pivotal.io	(API	version:	2.62.0)

User:											gturnquist@pivotal.io

Org:												FrameworksAndRuntimes

Space:										development		

We	are	logged	in	and	targeting	a	logical	space	inside	an	organization.

Your	Org	and	Space	will	certainly	be	different.

Time	to	deploy!	We	can	do	so	with	the	cf	push	command.	At	a	minimum,	we	specify	the	name	of	our
application	and	the	artifact	with	the	-p	option	(and	use	a	different	name	than	learning-spring-boot,	since	it's
been	taken	by	this	book!):

$	cf	push	learning-spring-boot	-p	build/libs/learning-spring-boot-

		0.0.1-SNAPSHOT.jar

Creating	app	learning-spring-boot	in	org	FrameworksAndRuntimes

/	space	development	as	gturnquist@pivotal.io...

OK

				

Creating	route	learning-spring-boot.cfapps.io...

OK

				

Binding	learning-spring-boot.cfapps.io	to	learning-spring-boot...

OK

				

Uploading	learning-spring-boot...

...

...

Staging	complete

Uploading	droplet,	build	artifacts	cache...

Uploading	build	artifacts	cache...

Uploading	droplet...

Uploaded	build	artifacts	cache	(108B)

Uploaded	droplet	(76.7M)

Uploading	complete

Destroying	container

Successfully	destroyed	container

				

0	of	1	instances	running,	1	starting

0	of	1	instances	running,	1	starting

0	of	1	instances	running,	1	starting

1	of	1	instances	running

				

App	started

				

OK

...

...

requested	state:	started

instances:	1/1

usage:	1G	x	1	instances

urls:	learning-spring-boot.cfapps.io

last	uploaded:	Tue	Sep	20	02:01:13	UTC	2017

stack:	cflinuxfs2

buildpack:	java-buildpack=v3.9-offline-

https://github.com/cloudfoundry/java-buildpack.git#b050954	java-main	

open-jdk-like-jre=1.8.0_101	open-jdk-like-memory-

calculator=2.0.2_RELEASE	spring-auto-reconfiguration=1.10.0_RELEASE

				

				state					since																				cpu						memory								disk					

#0		running		2017-09-19	09:01:59	PM			243.7%			503.5M	of	1G			158.1M	of	1G

				details

We	have	pushed	our	JAR	file	to	PWS,	let	the	Java	buildpack	(automatically	selected)	register	it	with	a
URL,	and	start	it	up.	Now,	we	can	visit	its	registered	URL	at	http://learning-spring-boot.cfapps.io:

$	curl	http://learning-spring-boot.cfapps.io?name=Greg

		Hey,	Greg!		

We've	taken	our	application	to	production.

The	next	step	is	to	handle	what	are	sometimes	referred	to	as	Day	2	situations.	This	is	where	we	must
now	monitor	and	maintain	our	application,	and	Spring	Boot	is	ready	to	provide	us	just	what	we	need.

Adding	production-ready	support
We've	created	a	Spring	web	app	with	minimal	code	and	released	it	to	production.	This	is	the	perfect
time	to	introduce	production-grade	support	features.

There	are	some	questions	that	often	arise	in	production,	and	these	are	as	follows:

What	do	we	do	when	the	system	administrator	wants	to	configure	his	or	her	monitoring	software	to
ping	our	app	to	see	if	it's	up?
What	happens	when	our	manager	wants	to	know	the	metrics	of	people	hitting	our	app?
What	are	we	going	to	do	when	the	ops	center	supervisor	calls	us	at	2:00	a.m.	and	we	have	to	figure
out	what	went	wrong?

The	last	feature	we	are	going	to	introduce	in	this	chapter	is	Spring	Boot's	Actuator	module.	This
module	provides	some	super	slick	Ops-oriented	features	that	are	incredibly	valuable	in	a	production
environment.

We	start	by	adding	this	dependency	to	our	build.gradle	as	follows:

				compile('org.springframework.boot:spring-boot-starter-actuator')	

When	you	run	this	version	of	our	app,	the	same	business	functionality	is	available	that	we	saw	earlier,
but	there	are	additional	HTTP	endpoints;	these	are	listed	in	the	following	table:

Actuator	Endpoint Description

/application/autoconfig This	reports	what	Spring	Boot	did	and	didn't	autoconfigure,	and	why

/appplication/beans
This	reports	all	the	beans	configured	in	the	application	context	(including	ours	as	well
as	the	ones	autoconfigured	by	Boot)

/application/configprops This	exposes	all	configuration	properties

/application/dump This	creates	thread	dump	report

/application/env This	reports	on	the	current	system	environment

/application/health This	is	a	simple	endpoint	to	check	the	life	of	the	app

/application/info This	serves	up	custom	content	from	the	app

/application/metrics This	shows	counters	and	gauges	on	web	usage

/application/mappings This	gives	us	details	about	all	Spring	WebFlux	routes

/application/trace This	shows	the	details	about	past	requests

Endpoints,	by	default,	are	disabled.	We	have	to	opt	in.	This	is	accomplished	by	setting	endpoints.
{endpoint}.enabled=true	inside	src/main/resources/application.properties,	like	this:

endpoints.health.enabled=true

This	line	added	to	application.properties	mentions	the	endpoint,	health,	and	enables	it.	If	we	restart	the
application,	we	can	ping	for	its	health,	as	shown	in	the	next	section.

Pinging	our	app	for	general	health
Each	of	these	endpoints	can	be	visited	using	our	browser	or	using	other	tools	like	curl:

$	curl	localhost:9000/application/health

{

		"status":	"UP",

		"details":	{

				"mongo":	{

						"status":	"UP",

						"details":	{

								"version":	"3.2.2"

						}

				},

				"diskSpace":	{

						"status":	"UP",

						"details":	{

								"total":	498937626624,

								"free":	66036432896,

								"threshold":	10485760

						}

				}

		}

}

This	preceding	health	status	gives	us	the	following:

An	overall	UP	status
The	status	of	MongoDB
The	status	of	the	diskspace

When	other	components	are	added,	they	may,	optionally,	add	their	own	health	checks.

This	immediately	solves	our	first	need	listed	previously.	We	can	inform	the	system	administrator	that	he
or	she	can	write	a	management	script	to	interrogate	our	app's	health.

Be	warned	that	each	of	these	endpoints	serve	up	a	compact	JSON	document.	Generally	speaking,
command-line	curl	probably	isn't	the	best	option.	While	it's	convenient	on	*nix	and	Mac	systems,	the
content	is	dense	and	hard	to	read.	It's	more	practical	to	have	the	following:

a	JSON	plugin	installed	in	our	browser	(such	as	JSON	Viewer	at	https://github.com/tulios/json-viewer)
a	script	that	uses	a	JSON	parsing	library	if	we're	writing	a	management	script	(such	as	Groovy's
JsonSlurper	at	http://docs.groovy-lang.org/latest/html/gapi/groovy/json/JsonSlurper.html	or	JsonPath	at	http
s://code.google.com/p/json-path)

https://github.com/tulios/json-viewer
http://docs.groovy-lang.org/latest/html/gapi/groovy/json/JsonSlurper.html
https://code.google.com/p/json-path

Metrics
To	really	get	operational,	we	need	metrics.	Most	production	systems	have	metrics	in	one	form	or
another.	Thankfully,	we	don't	have	to	start	from	scratch.	There	is	a	metric	endpoint	in	Spring	Boot
Actuator.	If	we	add	this	following	setting	to	application.properties:

				endpoints.metrics.enabled=true

With	this	property	setting,	if	we	restart	the	application,	we	can	get	a	quick	read	out	on	thing.

Assuming	we	have	JSON	Viewer	installed,	it's	easy	to	surf	to	http://localhost:9000/application/metrics	and
get	a	listing	on	all	sorts	of	metrics.	We	even	have	counters	for	every	good/bad	web	hit,	broken	down	on
a	per-page	basis,	as	shown	here:

				{

						"names":	[

								"jvm.buffer.memory.used",

								"jvm.memory.used",

								"jvm.buffer.count",

								"logback.events",

								"process.uptime",

								"jvm.memory.committed",

								"jvm.buffer.total.capacity",

								"jvm.memory.max",

								"process.starttime",

								"http.server.requests"

]

				}

We	can	visit	any	one	of	these	metrics	by	appending	it's	name	to	the	metrics	URL.	For	example,	to	view
the	http.server.requests,	visit	http://localhost:9000/application/metrics/http.server.requests:

				{

						"name":	"http.server.requests",

						"measurements":	[

								{

										"statistic":	"TotalTime",

										"value":	3.53531643E8

								},

								{

										"statistic":	"Count",

										"value":	57.0

								}

],

						"availableTags":	[

								{

										"tag":	"exception",

										"values":	[

												"none",

												"none",

												"none",

												"none"

]

								},

								{

										"tag":	"method",

										"values":	[

												"GET",

												"GET",

												"GET",

												"GET"

]

								},

								{

										"tag":	"uri",

										"values":	[

												"/application/metrics/{requiredMetricName}",

												"/application/metrics/{requiredMetricName}",

												"/application/metrics",

												"/favicon.ico"

]

								},

								{

										"tag":	"status",

										"values":	[

												"200",

												"404",

												"200",

												"200"

]

								}

]

				}

This	provides	a	basic	framework	of	metrics	to	satisfy	our	manager's	needs.	It's	important	to	understand
that	metrics	gathered	by	Spring	Boot	Actuator	aren't	persistent	across	application	restarts.	To	gather
long-term	data,	we	have	to	write	them	elsewhere	(http://docs.spring.io/spring-boot/docs/2.0.0.M5/reference/ht
mlsingle/#production-ready-metrics).

If	you	have	used	Spring	Boot	1.x,	then	this	may	look	very	different.	That's	because	a	newer,
more	sophisticated	version	of	metrics	has	arrived--Micrometer.	It's	currently	in
development,	and	may	change	quite	a	bit,	so	stay	tuned	at	http://micrometer.io/,	and	be	sure
to	follow	@micrometerio	on	Twitter,	as	the	ability	to	craft	highly	detailed	and	advanced
metrics	comes	to	Spring	Boot.

http://docs.spring.io/spring-boot/docs/2.0.0.M5/reference/htmlsingle/#production-ready-metrics
http://micrometer.io/

Summary
In	this	chapter,	we	rapidly	crafted	a	Spring	Web	application	using	the	Spring	stack	on	top	of	Netty	with
little	configuration	from	our	end.	We	plugged	in	Spring	Boot's	Actuator	module,	configuring	it	with
metrics,	health,	and	management	features	so	that	we	can	monitor	it	in	production	by	merely	adding	two
lines	of	extra	code.

In	the	next	chapter,	we'll	get	underway	building	our	social	media	platform	using	these	scalable	APIs
built	on	top	of	Reactive	Streams.

Reactive	Web	with	Spring	Boot
The	more	and	more	I	use	#SpringBoot	the	more	I	like	it.

–	Derek	Stainer	@dstainer

In	the	previous	chapter,	we	saw	how	quickly	an	application	can	be	created	with	just	a	few	lines	of	code.
In	this	chapter,	we	are	going	to	embark	upon	a	journey.	We	will	build	a	social	media	application	where
users	can	upload	pictures	and	write	comments.

In	this	chapter,	we	will	build	the	web	layer	for	our	social	media	application	doing	the	following:

Creating	a	reactive	web	application	with	Spring	Initializr
Learning	the	tenets	of	reactive	programming
Introducing	Reactor	types
Switching	from	Apache	Tomcat	to	Embedded	Netty
Comparing	reactive	Spring	WebFlux	against	classic	Spring	MVC
Showing	some	Mono/Flux-based	endpoints
Creating	a	reactive	ImageService
Creating	a	reactive	file	controller
Showing	how	to	interact	with	a	Thymeleaf	template
Illustrating	how	going	from	async	to	sync	can	be	easy,	but	the	opposite	is	not

Creating	a	reactive	web	application	with
Spring	Initializr
In	the	last	chapter,	we	took	a	quick	tour	through	the	Spring	Initializr	site	at	http://start.spring.io.	Let's	go
back	there	and	pick	some	basic	ingredients	to	start	building	our	social	media	site	by	picking	the	options
needed	as	shown	in	the	following	screenshot:

As	shown	in	the	preceding	screenshot,	we've	picked	the	following	options:

Build	system:	Gradle
Spring	Boot	Version:	2.0
Group:	com.greglturnquist.learningspringboot
Artifact:	learning-spring-boot

For	dependencies,	we	are	going	to	use	these:

Reactive	Web:	This	pulls	in	Reactive	Spring,	something	we'll	explore	here	and	through	the	rest	of
this	book
Lombok:	This	is	a	tiny	library	that	keeps	Java	interesting	by	handling	getters,	setters,	toString,
equals,	hashCode,	and	more

http://start.spring.io

Thymeleaf:	This	is	not	Boot's	only	supported	template	library,	but	a	powerful	one	that	includes
reactive	support	as	well	as	strict	HTML	compliance.

From	here,	we	merely	need	to	click	on	the	Generate	Project	button	and	a	zipped	up	project	will	be
downloaded.	Import	it	into	our	IDE,	and	we're	ready	to	get	rolling.

(We	will	add	more	dependencies	to	our	project	in	later	chapters.)

We	won't	list	the	entire	Gradle	build	file	generated	by	the	site,	but	the	dependencies	are	listed	as
follows:

				dependencies	{	

						compile('org.springframework.boot:spring-boot-starter-webflux')	

						compile("org.springframework.boot:spring-boot-starter-thymeleaf")	

						compile('org.synchronoss.cloud:nio-multipart-parser:1.1.0')	

						compile('org.projectlombok:lombok')	

						testCompile('org.springframework.boot:spring-boot-starter-test')	

				}	

The	following	dependencies	are	included	in	the	build	file:

spring-boot-starter-webflux:	This	is	the	foundation	for	a	Reactive	Spring	web	applications
spring-boot-starter-thymeleaf:	This	brings	in	Thymeleaf's	template	engine
nio-multipart-parser:	This	is	a	third-party	library	from	Synchronoss,	which	supports	reactive	multipart
file	uploads
lombok:	This	is	a	convenient	library	to	create	mutable	and	immutable	value	objects	among	other
things
spring-boot-starter-test:	This	is	a	collection	of	test	libraries	including	JUnit,	Spring	Boot	Test,
Mockito,	AssertJ,	JSONassert,	and	Hamcrest

What	version	of	Spring	Boot	are	we	using?	That	can	be	spotted	toward	the	top	of	build.gradle	inside	the
buildscript	fragment,	as	seen	here:

				ext	{	

						springBootVersion	=	'2.0.0.M5'	

				}	

The	version	is	specified	at	the	top	to	feed	both	spring-boot-gradle-plugin	as	well	as	in	the	dependencies.

The	Gradle	build	additionally	uses	the	Spring	team's	Dependency	Management	Gradle	plugin	(available
here:	https://github.com/spring-gradle-plugins/dependency-management-plugin),	which	includes	several	Maven-
like	dependency	management	features.	It	includes	the	ability	to	consume	any	Maven	Bills	of	Materials
(BOMs)	while	also	handling	direct	and	transitive	dependencies.

With	our	build	file	in	place,	we	can	now	dive	into	reactive	programming.

https://github.com/spring-gradle-plugins/dependency-management-plugin

Learning	the	tenets	of	reactive
programming
To	launch	things,	we	are	going	to	take	advantage	of	one	of	Spring	Boot's	hottest	new	features--Spring
Framework	5's	reactive	support.	The	entire	Spring	portfolio	is	embracing	the	paradigm	of	reactive
applications,	and	we'll	focus	on	what	this	means	and	how	we	can	cash	in	without	breaking	the	bank.

Before	we	can	do	that,	the	question	arises--what	is	a	reactive	application?

In	simplest	terms,	reactive	applications	engage	in	the	concept	of	non-blocking,	asynchronous
operations.	Asynchronous	means	that	the	answer	comes	later,	whether	by	polling	or	by	an	event	pushed
backed	to	us.	Non-blocking	means	not	waiting	for	a	response,	implying	we	may	have	to	poll	for	the
results.	Either	way,	while	the	result	is	being	formed,	we	don't	hold	up	the	thread,	allowing	it	to	service
other	calls.

The	side	effect	of	these	two	characteristics	is	that	applications	are	able	to	accomplish	more	with	existing
resources.

There	are	several	flavors	of	reactive	applications	going	back	to	the	1970s,	but	the	current	one	gaining
resonance	is	Reactive	Streams	due	its	introduction	of	backpressure.

Backpressure	is	another	way	of	saying	volume	control.	The	consumer	controls	how	much	data	is	sent	by
using	a	pull-based	mechanism	instead	of	a	traditional	push-based	solution.	For	example,	imagine
requesting	a	collection	of	images	from	the	system.	You	could	receive	one	or	a	hundred	thousand.	To
prevent	the	risk	of	running	out	of	memory	in	the	latter	case,	people	often	code	page-based	solutions.
This	ripples	across	the	code	base,	causing	a	change	in	the	API.	And	it	introduces	another	layer	of
handling.

To	expand	on	this	example,	the	following	solution	would	depict	that	risky	collection:

				public	interface	MyRepository	{	

						List<Image>	findAll();	

				}	

This	preceding	repository	could	indeed	return	one	Image	or	a	hundred	thousand.	There's	no	way	to	tell.
The	most	common	solution,	as	mentioned,	would	be	to	switch	to	something	like	this	instead:

				public	interface	MyRepository	{	

						Page<Image>	findAll(Pageable	p);	

				}	

The	first	solution	is	simple.	We	know	how	to	iterate	over	it.	The	second	solution	is	also	iterable	(Spring
Data	Commons's	Page	type	implements	Java's	Iterable	interface),	but	requires	passing	in	a	parameter	to
our	API,	specifying	how	big	a	page	is	and	which	page	we	want.	While	not	hard,	it	introduces	a
fundamental	change	in	our	API.

Reactive	Streams	is	much	simpler--return	a	container	that	lets	the	client	choose	how	many	items	to	take.
Whether	there	is	one	or	thousands,	the	client	can	use	the	exact	same	mechanism	and	take	however	many
it's	ready	for.	To	do	this,	we	would	use	the	following	method	signature:

				public	interface	MyRepository	{	

						Flux<Image>	findAll();	

				}	

A	Flux,	which	we'll	explore	in	greater	detail	in	the	next	section,	is	very	similar	to	a	Java	8	Stream.	We	can
take	as	many	as	we	want	and	it	lazily	waits	until	we	subscribe	to	it	to	yield	anything.	There	is	no	need	to
put	together	a	PageRequest,	making	it	seamless	to	chain	together	controllers,	services,	and	even	remote
calls.

Introducing	Reactor	types
We've	mentioned	Reactive	Streams	with	little	detail.	There	is	a	spec	for	Reactive	Streams	(http://www.reac
tive-streams.org/),	but	it's	important	to	understand	that	it	is	quite	primitive.	In	fact,	it's	so	primitive	that
it's	not	very	effective	for	building	applications.	That	may	sound	counterintuitive,	but	it	wasn't	written	so
much	for	end	users	as	it	was	for	framework	developers.	To	build	reactive	applications,	we'll	use	Project
Reactor	(http://projectreactor.io/),	the	core	library	that	Spring	Framework	5	uses	for	its	reactive
programming	model.

To	introduce	Reactor's	core	types,	we'll	begin	with	the	one	we	just	saw	in	the	previous	section,	Flux,	and
some	code	like	this:

				Flux.just("alpha",	"bravo",	"charlie");	

This	simple	creation	of	a	Reactor	Flux	can	be	detailed	as	follows:

Flux	is	Reactor's	base	type,	a	container	holding	0..N	items,	none	of	which	will	be	reached	until	the
client	calls	the	reactive	stream's	subscribe()	method.	In	this	case,	the	container	holds	a	set	of	strings.
just()	is	a	static	helper	method	to	construct	a	fixed	collection.	Other	static	helpers	are	also
available,	like	fromArray(),	fromIterable(),	and	fromStream().	This	makes	it	easy	to	bridge	existing	Java
collections.

There	are	additional	methods	to	convert	a	Flux	to	a	Java	Stream	and	an	Iterable.	But	since
these	types	are	generally	blocking,	it's	best	to	avoid	them	if	possible.

Exactly	what	does	a	Flux	embody?	How	is	it	different	from	a	Java	List	or	Stream?	A	Flux	keenly	represents
multiple	values	coming,	in	the	future,	asynchronously.	When	those	values	are	coming	is	not	specified
nor	can	it	be	assumed	they	are	all	arriving	on	the	same	thread.

In	the	past,	Java	has	made	it	possible	to	represent	either	a	single	value	or	a	collection	of	values	that	are
coming	right	now	in	synchronous,	blocking	APIs.	We've	also	had	single	value	types	for	asynchronous
values	(Future	and	CompletableFuture).	But	Java	has	yet	to	create	a	value	type	for	multiple,	asynchronous
values.	That	is	what	Project	Reactor	and	Reactive	Streams	is	all	about--processing	multiple,
asynchronous,	non-blocking	values	in	a	cohesive	fashion.

To	consume	a	Flux,	we	have	to	either	subscribe	or	let	the	framework	do	it	for	us.	Here's	an	example	of
subscribing	for	the	results:

				Flux.just("alpha",	"bravo",	"charlie")	

					.subscribe(System.out::println);	

This	last	code	creates	a	Flux	with	three	items,	subscribes	for	the	results,	and	prints	each	value	out	to	the
screen	as	follows:

alpha

bravo

http://www.reactive-streams.org/
http://projectreactor.io/

charlie		

This	may	not	appear	impressive,	especially	when	compared	to	the	existing	Java	collection	builders	like
Arrays.asList("alpha",	"bravo",	"charlie").	Looks	the	same,	right?

A	difference	can	be	seen	when	we	start	leveraging	Java	8	lambdas	and	function	types.	That's	when	we
can	chain	together	a	series	of	function	calls,	all	of	which	are	delayed	until	that	exact	element	is
extracted.	Look	at	the	following	fragment:

				Flux.just(

						(Supplier<String>)	()	->	"alpha",	

						(Supplier<String>)	()	->	"bravo",	

						(Supplier<String>)	()	->	"charlie")	

							.subscribe(supplier	->	System.out.println(supplier.get()));	

This	Flux	contains	the	equivalent	in	values	of	our	earlier	Flux.just()	except	that	each	one	is	wrapped
inside	a	Java	8	Supplier.	This	means	that,	actually,	retrieving	each	value	is	delayed	until	subscription	and
only	when	each	individual	value	is	fetched	through	Reactor's	onNext()	method.	This	is	also	known	as
lazy.

Sure	this	example	is	contrived,	but	we'll	see	more	of	this	paradigm	as	we	explore	reactive	programming
throughout	this	book.

Another	facet	of	Project	Reactor	is	over	160	operations	rooted	in	functional	programming	including
some	of	the	most	well	known	ones	such	as	map,	flatMap,	filter,	and	then.

To	wrap	up	this	section,	let's	pick	an	example	a	little	more	complex	in	nature.	What	if	we	took	the
sample	data	that	we	have	been	poking	at	and	count	up	how	many	of	each	letter	we	have.	Check	it	out:

				Flux.just("alpha",	"bravo",	"charlie")	

						.map(String::toUpperCase)	

						.flatMap(s	->	Flux.fromArray(s.split("")))	

						.groupBy(String::toString)	

						.sort((o1,	o2)	->	o1.key().compareTo(o2.key()))	

						.flatMap(group	->	Mono.just(group.key()).and(group.count()))	

						.map(keyAndCount	->	

								keyAndCount.getT1()	+	"	=>	"	+	keyAndCount.getT2())	

								.subscribe(System.out::println);	

We	can	take	apart	this	preceding	flow	as	follows:

This	flow	starts	with	the	same	values	as	shown	earlier	in	this	chapter,	alpha,	bravo,	and	charlie
bundled	into	a	Reactor	Flux.
Each	entry	is	converted	to	uppercase	using	String::toUpperCase	ensuring	we'll	count	lowers	and
uppers	together.
The	entries	are	then	flatMapped	into	individual	letters.	To	visualize	flatMapping,	look	at	this
example--["alpha",	"bravo"]	is	mapped	by	s.split("")	into	a	collection	of	collections,	[["a",	"l",	"p",
"h",	"a"],	["b",	"r",	"a",	"v",	"o"]],	and	then	flattened	into	a	single	collection,	["a",	"l",	"p",	"h",	"a",
"b",	"r",	"a",	"v",	"o"].
Then	we	group	by	the	string	value,	which	will	combine	all	the	"a"	entries	into	one	subgroup,	and	so
on	and	so	forth.
Next,	we	sort	by	the	key	value,	because	the	group	type	doesn't	implement	Comparable.

The	underlying	type	of	groupBy()	is	a	GroupedFlux,	a	Flux	with	a	key	value	that	doesn't
implement	Comparable.

We	flatMap	the	group's	key	and	count	value	into	a	pair	of	Mono	objects.	(More	on	Mono	further	in	this
chapter.)
We	unpack	the	tuple,	and	convert	it	into	a	string	showing	key	and	count.
We	subscribe	to	the	entire	flow,	printing	out	the	results.

The	output	can	be	seen	as	follows:

A	=>	4

B	=>	1

C	=>	1

E	=>	1

H	=>	2

I	=>	1

L	=>	2

O	=>	1

P	=>	1

R	=>	2

V	=>	1

Now	that's	a	lot	to	take	in	all	at	once.	Reactor	flows,	much	like	Java	8	streams,	can	pack	a
lot	of	functionality.	But	that	is	their	key	benefit.	By	spending	little	time	on	language
ceremony,	we,	instead,	focus	on	strong	functional	definitions.	If	needed,	it	can	be	handy	to
read	each	step	in	that	flow	again,	using	the	bullet	points	to	help	decode	it.

After	chatting	about	Flux	and	all	of	its	operations,	something	else	has	leaked	into	our	code--Mono.	What	is
that?	It's	a	Reactor	container	for	0..1	items,	a	subset	of	Flux.	It	implements	the	same	Reactive	Streams
interface,	Publisher,	which	means	that	we	only	get	its	results	when	we	invoke	subscribe().	It	has	a	few	API
differences	from	Flux	like	flatMap()	versus	flatMapMany(),	but	apart	from	that,	it	is	not	hard	to	grok.

It	turns	out,	a	lot	of	use	cases	involve	handling	single	values,	making	it	worthwhile	capturing	this	type.
In	the	flow	we	just	walked	through,	it	turns	out	that	the	count()	of	a	group	is	stored	in	a	Mono<Long>,
indicating	that	we	can't	know	the	value	until	the	subscribe	is	applied	at	the	end.	So	we	have	to	bundle	it
up	along	with	the	key	and	map	over	it	to	effectively	unpack	it.

Given	that	we	just	walked	through	a	chain	of	Reactor	operations,	it's	handy	to	review	some	of	the	most
commonly	used	ones.	Look	at	this	quick	guide:

Operation Description

map() Converts	one	Flux	into	another	Flux	of	identical	size	using	a	function	applied	to	each	element

flatMap()
Converts	one	Flux	into	another	Flux	of	a	different	size	by	first	mapping,	and	then	removing	any
nesting

filter() Converts	one	Flux	into	a	smaller	Flux	with	elements	removed	based	on	a	filtering	function

groupBy() Converts	the	Flux	into	a	bundled	set	of	subgroups	based	on	the	grouping	function

sort() Converts	one	Flux	into	a	sorted	Flux	based	on	the	sorting	function

Several	of	these	operations	listed	in	the	previous	table	also	exist	for	Mono.	There	are	others,	but	these	are
the	big	ones.

What's	the	big	picture	in	all	this?	Essentially,	every	step	of	this	flow	could	be	an	asynchronous,	non-
blocking,	remote	call	to	another	service.	With	Reactor,	we	don't	have	to	worry	about	thread
management	unless	we	really	want	to	get	into	it.	It's	handled	for	us.	And	soon,	we'll	start	doing	just	that.

There's	a	myth	that	is	possibly	as	old	as	Java	itself:	To	make	things	run	faster,	we	must
use	threads.	And	the	corollary	would	be:	The	more	threads,	the	faster.	But	this	is	not
born	out	of	empirical	research.	In	fact,	using	threads	can	lead	to	concurrent	faults	and
using	too	many	threads	can	introduce	context	switching	overhead.	JavaScript	developers,
in	an	environment	where	there	is	but	one	thread,	have	developed	many	reactive	solutions
that	are	very	efficient	at	handling	things.	That	is	because	using	queues	and	event	loops
combined	with	asynchronous,	non-blocking	APIs	that	don't	hold	up	the	thread,	actually
results	in	accomplishing	a	lot	with	few	resources.

If	this	introductory	taste	of	Project	Reactor,	Flux,	and	Mono	is	still	confusing,	please	read	the	following
blog	articles	for	more	detailed	information	on	reactive	programming:

http://bit.ly/reactive-part-1

http://bit.ly/reactive-part-2

http://bit.ly/reactive-part-3

http://bit.ly/reactive-types

http://bit.ly/reactive-part-1
http://bit.ly/reactive-part-2
http://bit.ly/reactive-part-3
http://bit.ly/reactive-types

Switching	from	Embedded	Netty	to	Apache
Tomcat
By	default,	Spring	Boot	is	geared	up	to	use	embedded	Netty	(http://netty.io).	Why?	Because	it's	one	of
the	most	popular	solutions	for	reactive	applications.	And	when	it	comes	to	reactive	applications,	it's
critical	that	the	entire	stack	be	reactive.

However,	it's	possible	to	switch	to	another	embedded	container.	We	can	experiment	with	using	Apache
Tomcat	and	its	asynchronous	Servlet	3.1	API.	All	we	have	to	do	is	to	make	some	tweaks	to	the
dependency	settings	in	build.gradle,	as	follows:

				compile('org.springframework.boot:spring-boot-starter-webflux')	{	

						exclude	group:	'org.springframework.boot',	

						module:	'spring-boot-starter-reactor-netty'	

				}	

				compile('org.springframework.boot:spring-boot-starter-tomcat')	

What's	happening	in	the	preceding	code?	This	can	be	explained	as	follows:

spring-boot-starter-webflux	excludes	spring-boot-starter-reactor-netty,	taking	it	off	the	classpath
spring-boot-starter-tomcat	is	added	to	the	classpath
Spring	Boot's	TomcatAutoConfiguration	kicks	in,	and	configures	the	container	to	work	using
TomcatReactiveWebServerFactory

It's	important	to	point	out	that	there	are	these	other	containers	available:

Jetty
Undertow

For	the	rest	of	this	title,	we'll	stick	with	Spring	Boot's	default,	Netty.

It's	interesting	to	refer	to	these	as	containers	given	that	they	are	contained	inside	our
application.	It	used	to	be	standard	practice	to	install	Apache	Tomcat	(or	whatever
container	we	picked)	and	install	the	application	into	it.	But	Spring	Boot	has	made
embedded	containers	a	core	feature,	inverting	this	concept	of	apps	inside	containers	and
putting	the	container	inside	the	app	instead.	For	an	entertaining	presentation	on	how	this
change	has	swept	the	Java	community,	check	out	Eberhard	Wolff's	Java	Application
Servers	Are	Dead	(http://www.slideshare.net/ewolff/java-application-servers-are-dead)
presentation.

http://netty.io
http://www.slideshare.net/ewolff/java-application-servers-are-dead

Comparing	reactive	Spring	WebFlux
against	classic	Spring	MVC
Ever	heard	of	Spring	MVC?	It's	one	of	the	most	popular	web	frameworks	used	by	the	Java	community.
Since	Spring	Framework	3,	it	has	utilized	an	annotation-driven	programming	style,	sometimes	known
as	@MVC.

But	we	aren't	going	to	use	that	in	this	book.	Instead,	we	are	going	to	use	something	new,	Spring
WebFlux.	WebFlux	is	an	alternative	module	in	the	Spring	Framework	focused	on	reactive	handling	of
web	requests.	A	huge	benefit	is	that	it	uses	the	same	annotations	as	@MVC,	along	with	many	of	the	same
paradigms	while	also	supporting	Reactor	types	(Mono	and	Flux)	on	the	inputs	and	outputs.	This	is	NOT
available	in	Spring	MVC.	The	big	thing	to	understand	is	that	it's	just	a	module	name--spring-webflux
versus	spring-webmvc.

Why	is	Spring	doing	this?
Spring	MVC	is	built	on	top	of	Java	EE's	Servlet	spec.	This	specification	is	inherently	blocking	and
synchronous.	Asynchronous	support	has	been	added	in	later	versions,	but	servlets	can	still	hold	up
threads	in	the	pool	while	waiting	for	responses,	defying	our	need	for	non-blocking.	To	build	a	reactive
stack,	things	need	to	be	reactive	from	top	to	bottom,	and	this	requires	new	contracts	and	expectations.

Certain	things,	like	HTTP	status	codes,	a	ResponseBody,	and	the
@GetMapping/@PostMapping/@DeleteMapping/@PutMapping	annotations	are	used	by	both	modules.	But	other	things
under	the	hood	must	be	rewritten	from	scratch.	The	important	point	is	that	this	doesn't	impact	the	end
developer.

By	switching	to	Reactive	Spring,	we	can	immediately	start	coding	with	Flux	and	Mono,	and	don't	have	to
stop	and	learn	a	totally	new	web	stack.	Instead,	we	can	use	the	popular	annotation-based	programming
model	while	we	invest	our	effort	in	learning	how	to	make	things	reactive.	It's	also	important	to	know
that	Spring	MVC	isn't	going	away	or	slated	for	end	of	life.	Both	Spring	WebFlux	and	Spring	MVC	will
stay	as	actively	supported	options	inside	the	Spring	portfolio.

Showing	some	Mono/Flux-based	endpoints
Let's	start	with	a	simple	HTTP	GET.	Similar	to	Spring	MVC	endpoints,	Spring	WebFlux	supports	Flux
operations	as	shown	here:

				@GetMapping(API_BASE_PATH	+	"/images")	

				Flux<Image>	images()	{	

						return	Flux.just(

								new	Image("1",	"learning-spring-boot-cover.jpg"),	

								new	Image("2",	"learning-spring-boot-2nd-edition-cover.jpg"),	

								new	Image("3",	"bazinga.png")	

);	

				}	

This	preceding	controller	can	be	described	as	follows:

Using	the	same	Flux.just()	helper,	we	return	a	rather	contrived	list
The	Spring	controller	returns	a	Flux<Image>	Reactor	type,	leaving	Spring	in	charge	of	properly
subscribing	to	this	flow	when	the	time	is	right

Before	we	can	move	forward,	we	need	to	define	this	Image	data	type	like	this:

				@Data	

				@NoArgsConstructor	

				public	class	Image	{	

	

						private	String	id;	

						private	String	name;	

	

						public	Image(String	id,	String	name)	{	

								this.id	=	id;	

								this.name	=	name;	

						}	

				}	

The	preceding	POJO	class	can	be	described	as	follows:

@Data	is	a	Lombok	annotation	that	generates	getters,	toString,	hashCode,	equals	as	well	as	setters	for	all
non-final	fields
@NoArgsConstructor	is	a	Lombok	annotation	to	generate	a	no-argument	constructor
It	has	id	and	name	fields	for	storing	data
We	have	crafted	a	custom	constructor	to	load	up	fields	of	data

With	this	simple	data	type,	we	can	now	focus	on	reactively	interacting	with	them.

Nothing	is	simple	without	creating	new	data.	To	do	that,	we	can	write	an	HTTP	POST	operation	as
follows:

				@PostMapping(API_BASE_PATH	+	"/images")	

				Mono<Void>	create(@RequestBody	Flux<Image>	images)	{	

						return	images	

							.map(image	->	{	

									log.info("We	will	save	"	+	image	+	

										"	to	a	Reactive	database	soon!");	

										return	image;	

							})	

							.then();	

				}	

The	last	code	can	be	described	as	follows:

@PostMapping	indicates	this	method	will	respond	to	HTTP	POST	calls.	The	route	is	listed	in	the
annotation.
@RequestBody	instructs	Spring	to	fetch	data	from	the	HTTP	request	body.
The	container	for	our	incoming	data	is	another	Flux	of	Image	objects.
To	consume	the	data,	we	map	over	it.	In	this	case,	we	simply	log	it	and	pass	the	original	Image	onto
the	next	step	of	our	flow.
To	wrap	this	logging	operation	with	a	promise,	we	invoke	Flux.then(),	which	gives	us	Mono<Void>.
Spring	WebFlux	will	make	good	on	this	promise,	subscribing	to	the	results	when	the	client	makes	a
request.

If	we	run	this	code	and	submit	some	JSON,	we	can	check	out	the	results.

First,	let's	use	HTTPie	(https://httpie.org):

http	--json	-v	POST	localhost:8080/api/images	id=10	name=foo		

The	verbose	results	are	easy	to	read	and	are	as	follows:

POST	/api/images	HTTP/1.1

Accept:	application/json,	*/*

Accept-Encoding:	gzip,	deflate

Connection:	keep-alive

Content-Length:	27

Content-Type:	application/json

Host:	localhost:8080

User-Agent:	HTTPie/0.9.8

				

{

		"id":	"10",

		"name":	"foo"

}

				

HTTP/1.1	200

Content-Length:	0

Date:	Sat,	28	Jan	2017	20:14:35	GMT		

In	this	case,	HTTPie	nicely	sent	a	single	item	and	our	Spring	WebFlux	controller	parsed	it	perfectly,	like
this:

...	c.g.learningspringboot.ApiController	...	We	will	save

	Image(id=10,	name=foo)	to	a	Reactive	database	soon!

Single	entry	Flux	has	been	nicely	handled.

If	we	want	to	send	a	JSON	array,	we	can	either	embed	the	JSON	array	in	a	file	or	just	send	it	directly
with	curl,	as	follows:

curl	-v	-H	'Content-Type:application/json'	-X	POST	-d	'[{"id":10,

	"name":	"foo"},	{"id":11,	"name":"bar"}]'	localhost:8080/api/images

Ta-dah!

c.g.learningspringboot.ApiController	...	We	will	save	Image(id=10,

https://httpie.org

	name=foo)	to	a	Reactive	database	soon!

c.g.learningspringboot.ApiController	...	We	will	save	Image(id=11,

	name=bar)	to	a	Reactive	database	soon!		

Whether	we	send	a	single	JSON	item	or	an	array	of	JSON	items,	Spring	WebFlux	maps
both	onto	Reactor's	Flux	with	no	issue.	In	classic	Spring	MVC,	we'd	have	to	choose	either
Image	or	List<Image>	and	encode	things	properly	or	write	two	handlers.

Want	to	dial	up	the	log	levels?	With	Spring	Boot,	adjusting	logging	levels	is	a	snap.	Rename	the
application.properties	file	supplied	by	start.spring.io	as	application.yml,	and	edit	it	to	look	like	this:

				logging:	

						level:	

								io:	

										netty:	DEBUG	

								reactor:	DEBUG	

The	preceding	code	will	punch	up	Netty	and	Project	Reactor	to	spit	out	DEBUG	level	messages.

If	we	fetch	the	list	of	images	again	(http	localhost:8080/api/images),	we	can	see	stuff	like	this	in	the	server
logs:

				2017-01-28	15:46:23.470	DEBUG	28432	---	[ctor-http-nio-4]	r.i.n.http.server.HttpServerOperations			:	New	http	connection,	requesting	read

				2017-01-28	15:46:23.471	DEBUG	28432	---	[ctor-http-nio-4]	r.ipc.netty.http.server.HttpServer							:	[id:	0x9ddcd1ba,	L:/0:0:0:0:0:0:0:1:8080	-	R:/0:0:0:0:0:0:0:1:65529]	RECEIVED:	145B

												+---+

												|		0		1		2		3		4		5		6		7		8		9		a		b		c		d		e		f	|

				+--------+---+----------------+

				|00000000|	47	45	54	20	2f	61	70	69	2f	69	6d	61	67	65	73	20	|GET	/api/images	|

				|00000010|	48	54	54	50	2f	31	2e	31	0d	0a	48	6f	73	74	3a	20	|HTTP/1.1..Host:	|

				|00000020|	6c	6f	63	61	6c	68	6f	73	74	3a	38	30	38	30	0d	0a	|localhost:8080..|

				|00000030|	55	73	65	72	2d	41	67	65	6e	74	3a	20	48	54	54	50	|User-Agent:	HTTP|

				|00000040|	69	65	2f	30	2e	39	2e	38	0d	0a	41	63	63	65	70	74	|ie/0.9.8..Accept|

				|00000050|	2d	45	6e	63	6f	64	69	6e	67	3a	20	67	7a	69	70	2c	|-Encoding:	gzip,|

				|00000060|	20	64	65	66	6c	61	74	65	0d	0a	41	63	63	65	70	74	|	deflate..Accept|

				|00000070|	3a	20	2a	2f	2a	0d	0a	43	6f	6e	6e	65	63	74	69	6f	|:	*/*..Connectio|

				|00000080|	6e	3a	20	6b	65	65	70	2d	61	6c	69	76	65	0d	0a	0d	|n:	keep-alive...|

				|00000090|	0a																																														|.															|

				+--------+---+----------------+

				2017-01-28	15:46:23.471	DEBUG	28432	---	[ctor-http-nio-4]	r.ipc.netty.channel.ChannelOperations				:	[HttpServer]	handler	is	being	applied:	org.springframework.http.server.reactive.ReactorHttpHandlerAdapter@3a950f21

This	shows	the	incoming	web	request	to	GET	/api/images,	headers	and	all.	The	output	can	also	be	read,	but
given	the	volume	of	data	from	Netty,	its	verbose	output	is	not	shown.	Nevertheless,	these	log	levels
provide	a	handy	means	to	debug	traffic	on	the	wire.

DON'T	DO	THIS	if	the	request	or	the	results	are	HUGE!	I	once	switched	this	on	when	I
was	uploading	a	300	MB	JAR	file.	The	logging	broke	the	application.

Creating	a	reactive	ImageService
The	first	rule	of	thumb	when	building	web	apps	is	to	keep	Spring	controllers	as	light	as	possible.	We
can	think	of	them	as	converters	between	HTTP	traffic	and	our	system.

To	do	that,	we	need	to	create	a	separate	ImageService,	as	shown	here,	and	let	it	do	all	the	work:

				@Service	

				public	class	ImageService	{	

	

						private	static	String	UPLOAD_ROOT	=	"upload-dir";	

	

						private	final	ResourceLoader	resourceLoader;	

	

						public	ImageService(ResourceLoader	resourceLoader)	{	

								this.resourceLoader	=	resourceLoader;	

						}	

						...	

				}	

This	last	Spring	service	can	be	described	as	follows:

@Service:	This	indicates	this	is	a	Spring	bean	used	as	a	service.	Spring	Boot	will	automatically	scan
this	class	and	create	an	instance.
UPLOAD_ROOT:	This	is	the	base	folder	where	images	will	be	stored.
ResourceLoader:	This	is	a	Spring	utility	class	used	to	manage	files.	It	is	created	automatically	by
Spring	Boot	and	injected	to	our	service	via	constructor	injection.	This	ensures	our	service	starts
off	with	a	consistent	state.

Now	we	can	start	creating	various	utility	methods	needed	to	service	our	application.

Let's	kick	things	off	by	loading	up	some	mock	image	files	loaded	with	test	data.	To	do	that,	we	can	add
the	following	method	to	the	bottom	of	our	newly	minted	ImageService	class:

				/**	

				*	Pre-load	some	test	images	

				*	

				*	@return	Spring	Boot	{@link	CommandLineRunner}	automatically	

				*									run	after	app	context	is	loaded.	

				*/	

				@Bean	

				CommandLineRunner	setUp()	throws	IOException	{	

						return	(args)	->	{	

								FileSystemUtils.deleteRecursively(new	File(UPLOAD_ROOT));	

	

								Files.createDirectory(Paths.get(UPLOAD_ROOT));	

	

								FileCopyUtils.copy("Test	file",	

									new	FileWriter(UPLOAD_ROOT	+	

										"/learning-spring-boot-cover.jpg"));	

	

								FileCopyUtils.copy("Test	file2",	

									new	FileWriter(UPLOAD_ROOT	+	

										"/learning-spring-boot-2nd-edition-cover.jpg"));	

	

								FileCopyUtils.copy("Test	file3",	

									new	FileWriter(UPLOAD_ROOT	+	"/bazinga.png"));	

						};	

				}	

The	preceding	little	nugget	of	initializing	code	is	described	as	follows:

@Bean	indicates	that	this	method	will	return	back	an	object	to	be	registered	as	a	Spring	bean	at	the
time	that	ImageService	is	created.
The	bean	returned	is	a	CommandLineRunner.	Spring	Boot	runs	ALL	CommandLineRunners	after	the	application
context	is	fully	realized	(but	not	in	any	particular	order).
This	method	uses	a	Java	8	lambda,	which	gets	automatically	converted	into	a	CommandLineRunner	via
Java	8	SAM	(Single	Abstract	Method)	rules.
The	method	deletes	the	UPLOAD_ROOT	directory,	creates	a	new	one,	then	creates	three	new	files	with	a
little	bit	of	text.

With	test	data	in	place,	we	can	start	interacting	with	it	by	fetching	all	the	existing	files	in	UPLOAD_ROOT
reactively	by	adding	the	following	method	to	our	ImageService:

				public	Flux<Image>	findAllImages()	{	

						try	{	

								return	Flux.fromIterable(

										Files.newDirectoryStream(Paths.get(UPLOAD_ROOT)))	

											.map(path	->	

												new	Image(path.hashCode(),	

																						path.getFileName().toString()));	

						}	catch	(IOException	e)	{	

										return	Flux.empty();	

						}	

				}	

Let's	explore	the	preceding	code:

This	method	returns	Flux<Image>,	a	container	of	images	that	only	gets	created	when	the	consumer
subscribes.
The	Java	NIO	APIs	are	used	to	create	a	Path	from	UPLOAD_ROOT,	which	is	used	to	open	a	lazy
DirectoryStream	courtesy	of	Files.newDirectoryStream().	DirectoryStream	is	a	lazy	iterable,	which	means
that	nothing	is	fetched	until	next()	is	called,	making	it	a	perfect	fit	for	our	Reactor	Flux.
Flux.fromIterable	is	used	to	wrap	this	lazy	iterable,	allowing	us	to	only	pull	each	item	as	demanded
by	a	reactive	streams	client.
The	Flux	maps	over	the	paths,	converting	each	one	to	an	Image.
In	the	event	of	an	exception,	an	empty	Flux	is	returned.

It's	important	to	repeat	that	the	stream	of	directory	paths	is	lazy	as	well	as	the	Flux	itself.	This	means	that
nothing	happens	until	the	client	subscribes,	that	is,	starts	pulling	for	images.	At	that	point,	the	flow	we
just	wrote	will	react,	and	start	performing	our	data	transformation.	And	it	will	only	process	each	entry
as	each	entry	is	pulled.

The	next	piece	we	need	in	our	ImageService	is	the	ability	to	fetch	a	single	image	so	it	can	be	displayed,
and	we	can	use	this	to	do	so:

				public	Mono<Resource>	findOneImage(String	filename)	{	

						return	Mono.fromSupplier(()	->	

								resourceLoader.getResource(

										"file:"	+	UPLOAD_ROOT	+	"/"	+	filename));	

				}	

This	last	code	can	easily	be	described	as	follows:

Since	this	method	only	handles	one	image,	it	returns	a	Mono<Resource>.	Remember,	Mono	is	a	container
of	one.	Resource	is	Spring's	abstract	type	for	files.
resourceLoader.getResource()	fetches	the	file	based	on	filename	and	UPLOAD_ROOT.
To	delay	fetching	the	file	until	the	client	subscribes,	we	wrap	it	with	Mono.fromSupplier(),	and	put
getResource()	inside	a	lambda.

Until	now,	we've	seen	Mono.just()	used	to	illustrate	Reactor's	way	of	initializing	single	items.	However,	if
we	wrote	Mono.just(resourceLoader.getResource(...​)),	the	resource	fetching	would	happen	immediately	when
the	method	is	called.	By	putting	it	inside	a	Java	8	Supplier,	that	won't	happen	until	the	lambda	is	invoked.
And	because	it's	wrapped	by	a	Mono,	invocation	won't	happen	until	the	client	subscribes.

There	is	another	Mono	operation	that	is	very	similar	to	fromSupplier()--defer().	The	difference
is	that	Mono.defer()	is	invoked	individually	by	every	downstream	subscriber.	It's	best	used
not	for	fetching	resources	like	our	situation	but	for	something	like	polling	status	instead.

Having	written	code	to	fetch	all	images	and	a	single	image,	it's	time	we	introduce	the	ability	to	create
new	ones.	The	following	code	shows	a	reactive	way	to	handle	this:

				public	Mono<Void>	createImage(Flux<FilePart>	files)	{	

						return	files.flatMap(file	->	file.transferTo(

								Paths.get(UPLOAD_ROOT,	file.filename()).toFile())).then();	

				}	

The	last	code	can	be	described	as	follows:

This	method	returns	a	Mono<Void>	indicating	that	it	has	no	resulting	value,	but	we	still	need	a	handle
in	order	to	subscribe	for	this	operation	to	take	place
The	incoming	Flux	of	FilePart	objects	are	flatMapped	over,	so	we	can	process	each	one
Each	file	is	tested	to	ensure	it's	not	empty
At	the	heart	of	our	chunk	of	code,	Spring	Framework	5's	FilePart	transfers	the	content	into	a	new
file	stored	in	UPLOAD_ROOT
then()	lets	us	wait	for	the	entire	Flux	to	finish,	yielding	a	Mono<Void>

Our	last	image-based	operation	to	add	to	ImageService	is	to	implement	the	means	to	delete	images,	as
shown	here:

				public	Mono<Void>	deleteImage(String	filename)	{	

						return	Mono.fromRunnable(()	->	{	

								try	{	

										Files.deleteIfExists(Paths.get(UPLOAD_ROOT,	filename));	

								}	catch	(IOException	e)	{	

												throw	new	RuntimeException(e);	

								}	

						});	

				}	

The	preceding	code	can	be	described	as	follows:

Because	this	method	doesn't	care	about	return	values,	its	return	type	is	Mono<Void>.
To	hold	off	until	subscribe,	we	need	to	wrap	our	code	with	Mono.fromRunnable(),	and	use	a	lambda
expression	to	coerce	a	Runnable.	This	lets	us	put	our	code	off	to	the	side	until	we're	ready	to	run	it.
Inside	all	of	that,	we	can	use	Java	NIO's	handy	Files.deleteIfExists().

If	wrapping	every	return	type	in	either	a	Flux	or	a	Mono	is	starting	to	bend	your	brain,	you
are	not	alone.	This	style	of	programming	may	take	a	little	getting	used	to	but	it's	not	that
big	of	a	leap.	Once	you	get	comfortable	with	it,	I	guarantee	you'll	spot	blocking	code	all
over	the	place.	Then	you	can	set	out	to	make	it	reactive	without	descending	into	callback
hell.

Creating	a	reactive	file	controller
With	our	reactive	image	service	in	place,	we	can	start	to	work	on	the	reactive	file	controller.

For	starters,	let's	create	a	HomeController	as	shown	here:

				@Controller	

				public	class	HomeController	{	

	

						private	static	final	String	BASE_PATH	=	"/images";	

						private	static	final	String	FILENAME	=	"{filename:.+}";	

	

						private	final	ImageService	imageService;	

	

						public	HomeController(ImageService	imageService)	{	

								this.imageService	=	imageService;	

						}	

The	preceding	code	can	be	described	as	follows:

@Controller:	This	indicates	that	it	is	a	web	controller,	and	will	be	registered	by	Spring	Boot	to	handle
web	requests.
BASE_PATH:	This	is	a	static	string	used	to	define	the	base	of	many	routes.
FILENAME:	This	is	a	pattern	for	filenames	where	the	"."	is	included.	Otherwise,	Spring	WebFlux	will
use	the	suffix	as	part	of	content	negotiation	(for	example,	.json	would	try	to	fetch	a	JSON	response,
while	.xml	would	try	to	fetch	an	XML	response).
ImageService:	This	is	injected	via	constructor	injection	so	that	we	can	tap	our	reactive	image	handling
code	we	just	wrote.

With	this	in	place,	we	can	code	the	handler	for	displaying	a	single	image	on	the	web	page	like	this:

				@GetMapping(value	=	BASE_PATH	+	"/"	+	FILENAME	+	"/raw",	

					produces	=	MediaType.IMAGE_JPEG_VALUE)	

				@ResponseBody	

				public	Mono<ResponseEntity<?>>	oneRawImage(

						@PathVariable	String	filename)	{	

								return	imageService.findOneImage(filename)	

									.map(resource	->	{	

											try	{	

													return	ResponseEntity.ok()	

														.contentLength(resource.contentLength())	

														.body(new	InputStreamResource(

																resource.getInputStream()));	

											}	catch	(IOException	e)	{	

															return	ResponseEntity.badRequest()	

																.body("Couldn't	find	"	+	filename	+	

																	"	=>	"	+	e.getMessage());	

											}	

								});	

				}	

The	last	code	can	be	explained	as	follows:

@GetMapping	defines	a	route	mapping	for	GET	BASE_PATH	+	"/"	+	FILENAME	+	"/raw".	It	also	sets	the	Content-
Type	header	to	properly	render	it	as	an	image.
@ResponseBody	indicates	that	this	method's	response	will	be	written	directly	into	the	HTTP	response

body.
@PathVariable	flags	that	the	input	filename	will	be	extracted	from	the	route's	{filename}	attribute.
Mono<ResponseEntity<?>>	shows	that	we	are	returning	a	single	response,	reactively.	ResponseEntity<?>
describes	a	generic	HTTP	response.
The	code	taps	our	image	service's	findOneImage()	using	filename.

It's	possible	to	have	incoming	arguments	wrapped	in	Reactor	types	such	as	Mono<String>.
Since	this	argument	comes	from	the	route	and	not	the	request	body,	there	is	nothing	gained
in	this	situation.

Since	findOneImage	returns	a	Mono<Resource>,	we	map	over	it,	transforming	this	Spring	Resource	into	a
ResponseEntity	including	a	Content-Length	response	header	as	well	as	the	data	embedded	in	the	body.
In	the	event	of	an	exception,	it	will	return	an	HTTP	Bad	Response.

This	one	controller	handler	method	demonstrates	many	features	provided	by	Reactive	Spring.	We	see
route	handling,	delegating	to	a	separate	service,	converting	the	response	into	a	suitable	format	for
clients,	and	error	handling.

This	code	also	shows	it	being	done	reactively.	Generating	the	HTTP	OK	/	HTTP	BAD	REQUEST
response	doesn't	happen	until	map()	is	executed.	This	is	chained	to	the	image	service	fetching	the	file
from	disk.	And	none	of	that	happens	until	the	client	subscribes.	In	this	case,	subscribing	is	handled	by
the	framework	when	a	request	comes	in.

I	thought	you	said	to	keep	controllers	light!	That	is	true.	Maybe	this	looks	not	so	light?	To
take	the	ResponseEntity	wrapping	and	move	it	into	the	ImageService	would	be	wrong,	because
that	service	doesn't	know	anything	about	the	web	layer.	This	controller's	focus	is	to	make
the	data	presentable	to	web	clients,	which	is	exactly	what	we've	coded.

The	next	controller	method	we	can	add	to	HomeController	is	the	handler	for	uploading	new	files,	as	shown
here:

				@PostMapping(value	=	BASE_PATH)	

				public	Mono<String>	createFile(@RequestPart(name	=	"file")	

					Flux<FilePart>	files)	{	

							return	imageService.createImage(files)	

								.then(Mono.just("redirect:/"));	

				}	

The	preceding	method	is	described	as	follows:

A	collection	of	incoming	FilePart	objects	is	represented	as	a	Flux
The	flux	of	files	is	handed	directly	to	the	image	service	to	be	processed
.then()	indicates	that	once	the	method	is	complete,	it	will	then	return	a	redirect:/	directive	(wrapped
in	a	Mono),	issuing	an	HTML	redirect	to	/

It's	important	to	remember	that	we	aren't	issuing	.then()	against	the	flux	of	files.	Instead,	the	image
service	hands	us	back	a	Mono<Void>	that	signals	when	it	has	completed	processing	all	the	files.	It	is	that
Mono	which	we	are	chaining	an	additional	call	to	return	back	the	redirect.

The	next	thing	we	need	to	add	to	our	HomeController	is	the	ability	to	handle	requests	for	deleting	images.
This	is	done	as	follows:

				@DeleteMapping(BASE_PATH	+	"/"	+	FILENAME)	

				public	Mono<String>	deleteFile(@PathVariable	String	filename)	{	

						return	imageService.deleteImage(filename)	

							.then(Mono.just("redirect:/"));	

				}	

The	previous	code	can	be	described	like	this:

Using	Spring's	@DeleteMapping	annotation,	this	method	is	ready	for	HTTP	DELETE	operations
It's	keyed	to	the	same	BASE_PATH	+	"/"	+	FILENAME	pattern
It	taps	the	image	service's	deleteImage()	method
It	uses	then()	to	wait	until	the	delete	is	done	before	returning	back	a	mono-wrapped	redirect:/
directive

The	last	bit	to	add	to	our	HomeController	is	the	call	to	serve	up	a	list	of	images	in	a	template.	For	that,	we
need	this	general	GET	handler	for	the	root:

				@GetMapping("/")	

				public	Mono<String>	index(Model	model)	{	

						model.addAttribute("images",	imageService.findAllImages());	

						return	Mono.just("index");	

				}	

The	preceding	handler	can	be	described	as	follows:

@GetMapping	is	used	to	explicitly	map	the	"/"	route.
It	accepts	a	Model	object,	giving	us	a	place	to	load	data	reactively.
addAttribute()	lets	us	assign	the	image	service's	findAllImages()	Flux	to	the	template	model's	images
attribute.
The	method	returns	"index"	wrapped	in	a	Mono,	ensuring	the	whole	thing	is	chained	together,	top	to
bottom,	to	kick	off	when	Spring	WebFlux	subscribes	to	render	the	template.

It's	important	to	understand	that	we	don't	assign	a	list	of	images	to	the	template	model's	images	attribute.
We	assign	a	lazy	Flux	of	images,	which	means	that	the	model	won't	be	populated	with	real	data	until
Reactive	Spring	subscribes	for	the	data.	Only	then	will	the	code	actually	start	fetching	image	data.

Perhaps,	at	this	stage,	you're	wondering	amidst	all	the	lambdas,	Fluxes,	Monos,	and
subscriptions,	exactly	what	is	happening	from	a	threading	perspective.	Project	Reactor	is
concurrency	agnostic.	It	doesn't	enforce	a	certain	concurrency	model,	but	leaves	you	in
command	instead.	Reactor	has	several	schedulers	that	support	a	multitude	of	options.	This
includes	running	in	the	current	thread,	running	in	a	single	worker	thread,	running	on	a
per-call	dedicated	thread,	an	elastic	pool	of	threads,	a	fixed	pool	of	worker	threads	tuned
for	parallel	work,	and	a	time-aware	scheduler	capable	of	scheduling	tasks	in	the	future.
Additionally,	Reactor	allows	creating	a	scheduler	out	of	any	ExecutorService.	We	aren't
going	to	delve	into	that	in	this	work,	but	it's	definitely	something	to	investigate	when	you
build	a	real	application	and	want	to	govern	how	things	scale.

Why	use	reactive	programming?
At	this	stage,	you've	gotten	a	good	taste	of	how	to	whip	up	a	file-handling	controller,	and	hitch	it	to	a
service	that	reads	and	writes	files	to	disk.	But	the	question	that	often	arises	is	why	do	I	need	to	do	this
reactively?

With	imperative	programming,	the	process	of	taking	inputs,	building	intermediate	collections	and	other
steps	often	leaves	us	with	lots	of	intermediate	states--some	of	it	potentially	blocking	in	bad	places.

Using	the	functional	style	as	we've	explored	so	far	moves	away	from	the	risk	of	inefficiently	building
up	this	state,	and	switches	to	building	a	stream	of	data	instead.	And	Reactor's	operations	let	us	have	one
stream	feed	another	in	lots	of	different	ways.	We	can	merge	streams,	filter	streams,	and	transform
streams.

When	we	engage	in	reactive	programming,	the	level	of	abstraction	moves	up	a	level.	We	find	ourselves
focusing	on	creating	tiny	functions	to	perform	various	operations,	and	chaining	them	together.	We	think
more	along	integration	of	the	items	in	our	streams	rather	than	the	lower-level	implementation	details.

By	building	up	these	flows	of	chained	operations,	tying	inputs	to	outputs,	Reactor	is	able	to	do	the
heavy	lifting	of	invoking	code	when	needed,	and	requesting/releasing	resources	as	effectively	as
possible.

Additionally,	by	having	an	inherently	asynchronous,	non-blocking	nature,	our	framework	of	choice
(Reactor)	is	able	to	manage	talking	to	the	scheduler	for	us.	We	can	focus	on	what	happens	during	the
flow	while	the	framework	handles	when	it	happens.

For	yet	another	metaphor	to	describe	reactive	operations	chained	together,	imagine	a	train	with	lots	of
cars.	Each	car	is	a	different	operation	to	be	applied	to	our	data,	and	we	can	easily	see	the	order	in	which
things	must	happen.	We	can	carefully	lay	out	each	car	with	its	defined	purpose,	but	nothing	moves	until
the	locomotive	moves.	And	then,	the	whole	chain	of	cars	moves	as	expected.
Adding/removing/inserting	cars	is	the	nature	of	building	a	reactive	data	flow.

To	summarize,	reactive	programming	helps	us	in	the	following:

Avoid	inefficient,	intermediate	state
Focus	on	building	streams	of	data
Gives	us	ability	to	merge,	filter,	and	transform	streams	of	data
Focus	on	what	happens	at	each	step	while	Reactor	decides	when

Interacting	with	a	Thymeleaf	template
Having	put	Thymeleaf	on	the	classpath,	an	entire	reactive	view	resolver	has	already	been	configured	for
us.	The	last	step	in	putting	together	the	web	layer	for	our	social	media	platform	is	to	create	the
Thymeleaf	template	itself.	We	can	do	that	by	putting	the	following	content	into	index.html	underneath
/src/main/resources/templates:

				<!DOCTYPE	html>	

				<html	xmlns:th="http://www.thymeleaf.org">	

				<head>	

						<meta	charset="UTF-8"	/>	

						<title>Learning	Spring	Boot:	Spring-a-Gram</title>	

						<link	rel="stylesheet"	href="/main.css"	/>	

				</head>	

				<body>	

	

				<h1>Learning	Spring	Boot	-	2nd	Edition</h1>	

	

				<div>	

						<table>	

								<thead>	

								<tr>	

												<th>Id</th><th>Name</th><th>Image</th><th></th>	

								</tr>	

								</thead>	

								<tbody>	

								<tr	th:each="image	:	${images}">	

												<td	th:text="${image.id}"	/>	

												<td	th:text="${image.name}"	/>	

												<td>	

																<a	th:href="@{'/images/'	+	${image.name}	+	'/raw'}">	

																				<img	th:src="@{'/images/'+${image.name}+'/raw'}"	

																								class="thumbnail"	/>	

																	

												</td>	

												<td>	

																<form	th:method="delete"	

																						th:action="@{'/images/'	+	${image.name}}">	

																				<input	type="submit"	value="Delete"	/>	

																</form>	

												</td>	

								</tr>	

								</tbody>	

						</table>	

	

						<form	method="post"	enctype="multipart/form-data"	

																																								action="/images">	

								<p><input	type="file"	name="file"	/></p>	

								<p><input	type="submit"	value="Upload"	/></p>	

						</form>	

				</div>	

	

				</body>	

				</html>	

Key	parts	of	the	preceding	template	are	described	here:

All	of	the	Thymeleaf	directives	are	tagged	with	a	th	prefix,	making	the	entire	template	HTML
compliant
<tr	th:each="image	:	${images}"	/>	is	Thymeleaf's	for-each	directive,	where	we	read	images	from	the
template	model	and	iterate	over	it,	forming	one	table	row	element	per	image
<a	th:href="@{'/images/'	+	${image.name}	+	'/raw'}">	shows	how	to	create	a	link	by	splicing	together
strings	with	the	image.name	attribute

The	whole	thing	builds	a	table	with	a	row	for	each	image,	showing	ID,	name,	image,	and	a	delete
button
At	the	bottom	is	a	single	upload	form	for	creating	new	images

A	critical	thing	to	remember	is	that	the	name	of	the	template	must	be	index.html,	matching	our
controller's	return	of	Mono.just("index")	combined	with	the	default	configuration	settings	of	Spring	Boot
for	Thymeleaf.

Spring	Boot	autoconfigures	view	resolvers	based	on	the	templating	solution	we	pick.
Spring	Boot	supports	many	including	Thymeleaf,	Mustache,	Groovy	Templates,	and	even
Apache	FreeMarker.	By	default,	they	all	come	with	a	conventional	location	to	put
templates,	in	this	case,	src/main/resources/templates/<template	name>.html.

Since	we	want	a	bare	amount	of	CSS,	we	can	drop	the	following	into	src/main/resources/static/main.css:

				table	{	

						border-collapse:	collapse;	

				}	

	

				td,	th	{	

						border:	1px	solid	#999;	

						padding:	0.5rem;	

						text-align:	left;	

				}	

	

				.thumbnail	{	

						max-width:	75px;	

						max-height:	75px;	

				}	

Let's	tear	the	preceding	small	bit	of	CSS	apart:

The	borders	of	the	table	are	collapsed
A	little	spacing	is	defined	for	the	table	entries
A	special	class	is	created	to	render	images	with	a	small	thumbnail	size

Of	course,	this	is	primitive	CSS,	but	our	focus	is	to	learn	about	Spring	Boot	not	CSS3.	The	important
thing	to	observe	here	is	that	Spring	Boot	will	automatically	serve	up	all	content	underneath
src/main/resources/static	as	web	resources.	We	can	put	CSS,	JavaScript,	favicons,	and	images	for	our	site.
Anything	that	needs	to	be	statically	served	can	be	put	here,	and	will	be	available	from	the	root	of	the
web	application's	context	path.

Throughout	this	book,	we'll	add	to	this	web	page,	enhancing	the	user	experience.	But	for	now,	we
should	have	enough	to	get	off	the	ground.

The	only	thing	remaining	is	to	code	a	public	static	void	main();	however,	we	don't	have	to!	The	Spring
Initializr	site	has	already	created	one	for	us,	which	is	as	follows:

				@SpringBootApplication	

				public	class	LearningSpringBootApplication	{	

	

						public	static	void	main(String[]	args)	{	

								SpringApplication.run(

										LearningSpringBootApplication.class,	args);	

						}	

	

						@Bean	

						HiddenHttpMethodFilter	hiddenHttpMethodFilter()	{	

								return	new	HiddenHttpMethodFilter();	

						}	

	

				}	

This	last	code	is	almost	identical	to	the	application	class	we	created	in	Chapter	1,	Quick	Start	with	Java.
But	there	is	one	difference--we	must	add	a	HiddenHttpMethodFilter	Spring	bean	to	make	the	HTTP	DELETE
methods	work	properly.

DELETE	is	not	a	valid	action	for	an	HTML5	FORM,	so	Thymeleaf	creates	a	hidden	input	field
containing	our	desired	verb	while	the	enclosing	form	uses	an	HTML5	POST.	This	gets
transformed	by	Spring	during	the	web	call,	resulting	in	the	@DeleteMapping	method	being
properly	invoked	with	no	effort	on	our	end.

Illustrating	how	going	from	async	to	sync
can	be	easy,	but	the	opposite	is	not
Invariably,	the	question	comes	along--Do	I	need	a	synchronous	or	asynchronous	API?

It's	important	to	understand	that	reactive	programming	is	not	very	effective	unless	the	entire	stack	is
reactive.	Otherwise,	we're	simply	blocking	at	some	point,	which	causes	the	backpressure	to	not	achieve
much.	That's	a	long-winded	way	of	saying	there	is	little	value	in	making	the	web	layer	reactive	if	the
underlying	services	are	not.

However,	it	is	very	likely	that	we	may	produce	a	chunk	of	code	that	must	be	tapped	by	a	non-reactive
layer,	hence,	we	have	to	wrap	our	asynchronous,	non-blocking	code	with	the	means	to	block.

Let's	explore	async-to-sync	by	creating	a	BlockingImageService.	This	service	will,	basically,	leverage	the
already	written	ImageService,	but	not	include	any	of	Reactor's	Flux	or	Mono	types	in	its	method	signatures.

We	can	start	with	a	class	definition	as	follows:

				public	class	BlockingImageService	{	

	

						private	final	ImageService	imageService;	

	

						public	BlockingImageService(ImageService	imageService)	{	

								this.imageService	=	imageService;	

						}	

This	preceding	class	definition	can	be	described	as	follows:

The	class	has	no	annotation,	hence,	it	won't	be	automatically	scanned	and	activated	by	Spring
Boot.	However,	it	can	appear	in	a	configuration	class	somewhere	via	a	@Bean-annotated	method.
It	will	contain	a	constructor	injected	ImageService.

With	this	in	place,	we	can	look	at	wrapping	the	findAllImages()	method	with	blocking	semantics,	like	this:

				public	List<Image>	findAllImages()	{	

						return	imageService.findAllImages()	

							.collectList()	

							.block(Duration.ofSeconds(10));	

				}	

Let's	dig	into	the	details	of	the	last	code:

ImageService.findAllImages()	has	no	arguments,	and	returns	a	Flux<Image>.	The	simplest	mechanism	is
collectList(),	which	transforms	it	into	a	Mono<List<Image>>.	This	means	that	instead	of	signaling	the
arrival	of	each	image,	there	is	one	single	(Mono)	for	a	list	of	ALL	images.
To	ask	for	the	result,	we	use	block().	Reactor's	block()	can	either	wait	forever	for	the	next	signal,	or
we	can	supply	it	with	a	timeout	limit.	In	this	case,	we	have	selected	ten	seconds	as	the	longest	that
we'll	wait.

Reactor's	block()	API	is	what	we	do	when	we	want	to	transform	a	Mono<T>	into	just	T.	It's	a	simple	one-to-
one	concept.	Inside	the	method,	it	invokes	the	reactive	streams'	subscribe()	API,	meaning	it	will	cause
any	chain	of	operations	to	take	effect.

Flux	has	no	block()	because	it	represents	multiple	values.	Flux	does	come	with	blockFirst()	and	blockLast()	if
we	wanted	the	first	or	the	last	item.	But	to	get	the	whole	collection	entails	a	bigger	semantic	scope.
Hence,	the	need	to	collectList()	into	a	Mono	followed	by	blocking	for	it.

It's	usually	a	good	idea	to	set	a	timeout	limit	for	any	async	call	to	avoid	deadlock
situations	or	waiting	for	a	response	that	may	never	come.

Fetching	a	single	image	is	a	bit	simpler	and	can	be	done	using	the	following	code:

				public	Resource	findOneImage(String	filename)	{	

						return	imageService.findOneImage(filename)	

							.block(Duration.ofSeconds(30));	

				}	

ImageService.findOneImage()	has	one	argument,	the	filename,	but	it	isn't	wrapped	with	any	Reactor	types.
The	return	type	is	Mono<Resource>,	so	a	simple	block()	is	all	we	need	to	transform	it	into	a	Resource.	In	this
case,	we've	picked	thirty	seconds	as	the	maximum	time	to	wait	for	an	answer.

When	it	comes	to	uploading	new	images,	that	is	a	little	more	complicated.

				public	void	createImage(List<FilePart>	files)	{	

						imageService.createImage(Flux.fromIterable(files))	

							.block(Duration.ofMinutes(1));	

				}	

The	last	code	can	be	described	as	follows:

The	image	service's	input	is	Flux<FilePart>	and	the	return	type	is	Mono<Void>.	This	makes	things	doubly
interesting,	having	to	massage	both	the	input	and	the	output.
The	preceding	code	assumes	we	are	uploading	multiple	files.	To	transform	it	into	a	Flux,	we	use
Flux.fromIterable(files).	If	the	input	had	been	a	single	FilePart,	we	could	have	used	Flux.just(file).
The	return	type	is	void,	meaning	we	don't	have	to	return	anything.	Simply	invoking	image	service's
create()	method	may	seem	hunky	dory.	But	remember--nothing	happens	with	Reactor	types	until
we	subscribe,	so	it's	critical	that	we	invoke	block()	even	if	we	aren't	going	to	return	it.

We'll	leave	it	as	an	exercise	for	the	reader	to	implement	a	blocking	version	of	deleteImage().

Summary
We're	off	to	a	good	start	by	building	the	web	layer	of	our	social	media	platform.	We	used	the	Spring
Initializr	to	create	a	bare	bones	Reactive	Spring	application	with	Gradle	support.	Then	we	explored	the
basics	of	reactive	programming	by	creating	a	reactive	image	handling	service	and	wrapping	it	with	a
reactive	web	layer.	And	we	drafted	a	Thymeleaf	template	to	show	thumbnails,	allow	deleting	of	images
and	uploading	of	new	images.

In	the	next	chapter,	we	will	see	how	to	build	a	data	layer	and	make	it	reactive	as	well.

Reactive	Data	Access	with	Spring	Boot
Very	impressed	with	@springboot	so	far,	10	mins	to	get	a	REST	service	up	and	running,	now	to	add

MongoDB.	No	black	magic	under	the	covers!

–	Graham	Rivers-Brown	@grahamrb

In	the	previous	chapter,	we	started	putting	together	the	frontend	bits	of	our	social	media	platform	using
Spring	WebFlux.	The	missing	critical	ingredient	was	a	data	store.	Few	applications	exist	that	don't	touch
a	database.	In	fact,	data	storage	is	arguably	one	of	the	most	critical	components	we	encounter	with	app
development.	In	this	chapter,	we'll	learn	how	to	persist	information	in	a	reactive	data	store	(MongoDB),
and	learn	how	to	interact	with	it.

In	this	chapter,	we	will	be	doing	the	following:

Getting	underway	with	a	reactive	data	store
Wiring	up	Spring	Data	repositories	with	Spring	Boot
Creating	a	reactive	repository
Pulling	data	through	a	Mono/Flux	and	chain	of	operations
Creating	custom	finders
Querying	by	example
Querying	with	MongoOperations
Logging	reactive	operations

Getting	underway	with	a	reactive	data	store
Since	this	book	is	aimed	at	the	cutting	edge	of	Spring	Boot	2.0	and	its	Reactive	Streams	support,	we
have	to	pick	something	a	little	more	up	to	date	than	JPA.	The	JPA	spec	doesn't	cover	reactive
programming.	Hence,	its	APIs	are	not	reactive.	However,	MongoDB	has	reactive	drivers,	and	will	be
perfect.

To	get	going,	we	need	to	install	the	latest	version	of	MongoDB	3.4	(for	reactive	support).

If	you're	using	macOS	X,	installing	MongoDB	is	as	simple	as	this:

$	brew	install	mongodb

==>	Installing	mongodb

==>	Downloading	https://homebrew.bintray.com/bottles/mongodb-

3.4.6.el_capitan.bottle.tar.gz

##	100.0%

==>	Pouring	mongodb-3.4.6.el_capitan.bottle.tar.gz

==>	Summary

/usr/local/Cellar/mongodb/3.4.6:	18	files,	267.5MB

		

With	MongoDB	installed,	we	can	launch	it	as	a	service,	like	this:

$	brew	services	start	mongodb

==>	Successfully	started	`mongodb`	(label:	homebrew.mxcl.mongodb)

For	other	operating	systems,	check	out	the	download	links	at	https://www.mongodb.com/download
-center.	For	more	details	about	installing	MongoDB,	visit	https://docs.mongodb.com/manual/insta
llation/.

Assuming	that	we	have	MongoDB	installed	and	running,	we	can	now	delve	into	writing	a	little	code.

To	write	any	MongoDB	code,	we	need	to	add	Spring	Data	MongoDB	to	our	classpath.	We	can	do	so	by
updating	our	build	file	with	the	following:

				compile('org.springframework.boot:spring-boot-starter-

					data-mongodb-reactive')	

The	preceding,	new	compile-time	dependency	pulls	in	the	following:

Spring	Data	MongoDB
MongoDB's	core	components	+	Reactive	Stream	drivers

It's	important	to	point	out	that	both	spring-boot-starter-webflux	and	spring-boot-starter-data-
mongodb-reactive	transitively	bring	in	Project	Reactor.	Spring	Boot's	dependency-management
plugin	is	responsible	for	ensuring	they	both	pull	in	the	same	version.

With	all	these	things	on	the	classpath,	Spring	Boot	will	get	busy	configuring	things	for	us.	But	first,
what	is	the	problem	we	are	trying	to	solve?

https://www.mongodb.com/download-center
https://docs.mongodb.com/manual/installation/

Solving	a	problem
In	this	day	and	age,	why	are	we	still	writing	queries	like	this:

				SELECT	*	

				FROM	PERSON	

				WHERE	FIRST_NAME	=	%1

That	type	of	query	must	be	thirty	years	old!	The	ANSI	spec	for	SQL	was	released	in	1986,	and	its
effects	can	be	seen	in	countless	languages.

So,	is	it	any	better	to	write	something	more	like	this:

				SELECT	e	

				FROM	Employee	e	

				WHERE	e.firstName	=	:name	

The	last	bit	of	code	is	JPA	(Java	Persistence	API),	based	upon	the	open	source	Hibernate	project
(which	has	become	JPA's	reference	implementation).	Is	this	Java's	improvement	over	writing	pure	SQL?

Maybe	this	fragment	below	is	an	enhancement?

				create	

						.select()	

						.from(EMPLOYEE)	

						.where(EMPLOYEE.FIRST_NAME.equal(name))	

						.fetch()	

That	last	code	snippet	is	jOOQ,	and	can	help	with	code	completion,	but	it	seems	that	we	are,	basically,
doing	the	same	thing	we've	been	doing	for	decades.

Especially,	considering	that	we	could	do	the	same	thing	by	merely	creating	this:

				interface	EmployeeRepository	

					extends	ReactiveCrudRepository<Employee,	Long>	{	

	

							Flux<Employee>	findByFirstName(Mono<String>	name);	

				}	

This	preceding	declarative	interface	does	the	exact	same	thing,	but	without	writing	a	single	query	in	any
language.

By	extending	Spring	Data's	ReactiveCrudRepository,	we	are	granted	an	out-of-the-box	set	of	CRUD
operations	(save,	findById,	findAll,	delete,	deleteById,	count,	exists,	and	more).	We	also	have	the	ability	to	add
custom	finders	purely	by	method	signature	(findByFirstName	in	this	example).

When	Spring	Data	sees	an	interface	extending	its	Repository	marker	interface	(which	ReactiveCrudRepository
does),	it	creates	a	concrete	implementation.	It	scans	every	method,	and	parses	their	method	signatures.
Seeing	findBy,	it	knows	to	look	at	the	rest	of	the	method	name,	and	start	extracting	property	names	based
on	the	domain	type	(Employee).	Because	it	can	see	that	Employee	has	firstName,	it	has	enough	information	to
fashion	a	query.	This	also	tips	it	off	about	expected	criteria	in	the	arguments	(name).	Finally,	Spring	Data

looks	at	the	return	type	to	decide	what	result	set	to	assemble--in	this	case,	a	Reactor	Flux	that	we	started
to	explore	in	the	previous	chapter.	The	entire	query	(not	the	query	results),	once	assembled,	is	cached,
so,	there	is	no	overhead	in	using	the	query	multiple	times.

In	a	nutshell,	by	following	a	very	simple	convention,	there	is	no	need	to	handwrite	a	query	at	all.	And
while	this	book	is	focused	on	MongoDB	and	its	corresponding	Mongo	Query	Language,	this	concept
applies	to	SQL,	JPA,	Cassandra	Query	Language,	or	any	other	supported	data	store.

Spring	Data	does	not	engage	in	code	generation	of	any	code.	Code	generation	has	had	a
flaky	history.	Instead,	it	uses	various	tactics	to	pick	a	base	class	that	handles	the	minimum
set	of	operations	while	wrapping	it	with	a	proxy	that	implements	the	declared	interface,
bringing	onboard	the	dynamic	query	handler.

This	mechanism	of	managing	data	is	revolutionary,	making	Spring	Data	one	of	the	most	popular	Spring
portfolio	projects,	second	only	to	the	Spring	Framework	itself	and	Spring	Security	(and	of	course
Spring	Boot).

Wait	a	second,	didn't	we	just	mention	using	MongoDB	earlier?

Yup.	That's	why	Spring	Data's	query-neutral	approach	is	even	better.	Changing	data	stores	doesn't
require	throwing	away	absolutely	everything	and	starting	over.	The	interface	declared	previously
extends	Spring	Data	Commons,	not	Spring	Data	MongoDB.	The	only	data	store	details	are	in	the
domain	object	itself.

Instead	of	Employee	being	some	JPA-based	entity	definition,	we	can	work	on	a	MongoDB	document-
based	one	instead,	like	this:

				@Data	

				@Document(collection="employees")	

				public	class	Employee	{	

						@Id	String	id;	

						String	firstName;	

						String	lastName;	

				}	

This	preceding	MongoDB	POJO	can	be	described	as	follows:

The	@Data	Lombok	annotation	takes	care	of	getters,	setters,	toString,	equals,	and	hashCode	functions.
@Document	is	an	optional	annotation	that	lets	us	spell	out	the	MongoDB	collection	that	this	domain
object	will	be	stored	under	("employees").
@Id	is	a	Spring	Data	Commons	annotation	that	flags	which	field	is	the	key.	(NOTE:	When	using
Spring	Data	JPA,	the	required	annotation	is	javax.persistence.Id,	whereas,	all	other	Spring-Data-
supported	stores	utilize	org.springframework.data.annotation.Id).

What	is	Spring	Data	Commons?	It's	the	parent	project	for	all	Spring	Data
implementations.	It	defines	several	concepts	implemented	by	every	solution.	For	example,
the	concept	of	parsing	finder	signatures	to	put	together	a	query	request	is	defined	here.
But	the	bits	where	this	is	transformed	into	a	native	query	is	supplied	by	the	data	store
solution	itself.	Spring	Data	Commons	also	provides	various	interfaces,	allowing	us	to

reduce	coupling	in	our	code	to	the	data	store,	such	as	ReactiveCrudRepository,	and	others	that
we'll	soon	see.

Nothing	else	is	needed	to	start	writing	Employee	objects	into	the	employees	collection	of	our	MongoDB
database.

Wiring	up	Spring	Data	repositories	with
Spring	Boot
Normally,	wiring	up	a	repository	requires	not	only	defining	a	domain	object	and	a	repository,	but	also
activating	Spring	Data.	Each	data	store	comes	with	an	annotation	to	activate	it	for	repository	support.	In
our	case,	that	would	be	@EnableReactiveMongoRepositories,	since	we	are	using	MongoDB's	reactive	drivers.

However,	with	Spring	Boot,	we	don't	have	to	lift	a	finger!

Why?

Because	the	following	code,	lifted	from	Spring	Boot	itself,	shows	how	MongoDB	reactive	repository
support	is	enabled:

				@Configuration	

				@ConditionalOnClass({	MongoClient.class,

					ReactiveMongoRepository.class	})	

				@ConditionalOnMissingBean({

						ReactiveMongoRepositoryFactoryBean.class,	

							ReactiveMongoRepositoryConfigurationExtension.class	})	

				@ConditionalOnProperty(prefix	=	"spring.data.mongodb.reactive-

						repositories",	name	=	"enabled",

						havingValue	=	"true",	matchIfMissing	=	true)	

				@Import(MongoReactiveRepositoriesAutoConfigureRegistrar.class)	

				@AutoConfigureAfter(MongoReactiveDataAutoConfiguration.class)	

				public	class	MongoReactiveRepositoriesAutoConfiguration	{	

	

				}	

The	preceding	autoconfiguration	policy	can	be	described	as	follows:

@Configuration:	This	indicates	that	this	class	is	a	source	of	bean	definitions.
@ConditionalOnClass:	This	lists	ALL	the	classes	that	must	be	on	the	classpath	for	this	to	kick	in--in	this
case,	MongoDB's	reactive	MongoClient	(Reactive	Streams	version)	and	ReactiveMongoRepository,	which
means	that	it	only	applies	if	Reactive	MongoDB	and	Spring	Data	MongoDB	2.0	are	on	the
classpath.
@ConditionalOnMissingBean:	This	indicates	that	it	only	applies	if	there	isn't	already	a
ReactiveMongoRepositoryFactoryBean	and	a	ReactiveMongoRepositoryConfigurationExtension	bean.
@ConditionalOnProperty:	This	means	that	it	requires	that	the	spring.data.mongodb.reactive-repositories
property	must	be	set	to	true	for	this	to	apply	(which	is	the	default	setting	if	no	such	property	is
provided).
@Import:	This	delegates	all	bean	creation	for	reactive	repositories	to
MongoReactiveRepositoriesAutoConfigureRegistrar.
@AutoConfigureAfter:	This	ensures	that	this	autoconfiguration	policy	is	only	applied	after
MongoReactiveDataAutoConfiguration	has	been	applied.	That	way,	we	can	count	on	certain	infrastructure
being	configured.

When	we	added	spring-boot-starter-data-mongodb-reactive	to	the	classpath,	this	policy	kicked	in,	and	created
critical	beans	for	interacting	reactively	with	a	MongoDB	database.

It's	left	as	an	exercise	for	the	reader	to	pull	up	MongoReactiveRepositoriesAutoConfigureRegistrar,	and	see	how	it
works.	What's	important	to	note	is	that	nestled	at	the	bottom	of	that	class	is	the	following:

				@EnableReactiveMongoRepositories	

				private	static	class	EnableReactiveMongoRepositoriesConfiguration	{	

				}	

This	aforementioned	little	class	means	that	we	don't	have	to	enable	reactive	MongoDB	repositories.
Spring	Boot	will	do	it	for	us	automatically	when	Reactive	MongoDB	and	Spring	Data	MongoDB	2.0+
are	on	the	classpath.

Creating	a	reactive	repository
So	far,	we	have	been	dabbling	with	Spring	Data	using	our	sample	domain	of	employees.	We	need	to
shift	our	focus	back	to	the	social	media	platform	that	we	started	building	in	the	previous	chapter.

Before	we	can	work	on	a	reactive	repository,	we	need	to	revisit	the	Image	domain	object	we	defined	in
the	last	chapter.	Let's	adjust	it	so	that	it	works	nicely	with	MongoDB:

				@Data	

				@Document	

				public	class	Image	{	

	

						@Id	final	private	String	id;	

						final	private	String	name;	

				}	

This	preceding	definition	is	almost	identical	to	what	we	saw	in	the	previous	chapter,	with	the	following
differences:

We	use	@Document	to	identify	this	is	a	MongoDB	domain	object,	but	we	accept	Spring	Data
MongoDB's	decision	about	what	to	name	the	collection	(it's	the	short	name	of	the	class,	lowercase,
that	is,	image)
@Data	creates	a	constructor	for	all	final	fields	by	default,	hence,	we've	marked	both	id	and	name	as
final

We	have	also	marked	both	fields	private	for	proper	encapsulation

With	that	in	place,	we	are	ready	to	declare	our	social	media	platform's	reactive	repository	as	follows:

				public	interface	ImageRepository	

					extends	ReactiveCrudRepository<Image,	String>	{	

	

						Mono<Image>	findByName(String	name);	

				}	

This	code	for	the	reactive	repository	can	be	described	as	follows:

Our	interface	extends	ReactiveCrudRepository,	which,	as	stated	before,	comes	with	a	prepackaged	set
of	reactive	operations	including	save,	findById,	exists,	findAll,	count,	delete,	and	deleteAll,	all
supporting	Reactor	types
It	includes	a	custom	finder	named	findByName	that	matches	on	Image.name	based	on	parsing	the	name
of	the	method	(not	the	input	argument)

Each	of	the	operations	inherited	from	ReactiveCrudRepository	accepts	direct	arguments	or	a	Reactor-
friendly	variant.	This	means,	we	can	invoke	either	save(Image)	or	saveAll(Publisher<Image>).	Since	Mono	and
Flux	both	implement	Publisher,	saveAll()	can	be	used	to	store	either.

ReactiveCrudRepository	has	ALL	of	its	methods	returning	either	a	Mono	or	a	Flux	based	on	the	situation.
Some,	like	delete,	simply	return	Mono<Void>,	meaning,	there	is	no	data	to	return,	but	we	need	the
operation's	handle	in	order	to	issue	the	Reactive	Streams'	subscribe	call.	findById	returns	a	Mono<Image>,

because	there	can	be	only	one.	And	findAll	returns	a	Flux<Image>.

Before	we	can	get	our	feet	wet	in	using	this	reactive	repository,	we	need	to	preload	our	MongoDB	data
store.	For	such	operations,	it's	recommended	to	actually	use	the	blocking	API.	That's	because	when
launching	an	application,	there	is	a	certain	risk	of	a	thread	lock	issue	when	both	the	web	container	as
well	as	our	hand-written	loader	are	starting	up.	Since	Spring	Boot	also	creates	a	MongoOperations	object,
we	can	simply	grab	hold	of	that,	as	follows:

				@Component	

				public	class	InitDatabase	{	

						@Bean	

						CommandLineRunner	init(MongoOperations	operations)	{	

								return	args	->	{	

										operations.dropCollection(Image.class);	

	

										operations.insert(new	Image("1",	

											"learning-spring-boot-cover.jpg"));	

										operations.insert(new	Image("2",	

											"learning-spring-boot-2nd-edition-cover.jpg"));	

										operations.insert(new	Image("3",	

											"bazinga.png"));	

	

										operations.findAll(Image.class).forEach(image	->	{	

												System.out.println(image.toString());	

										});	

								};	

						}	

				}	

The	preceding	code	is	detailed	as	follows:

@Component	ensures	that	this	class	will	be	picked	up	automatically	by	Spring	Boot,	and	scanned	for
bean	definitions.
@Bean	marks	the	init	method	as	a	bean	definition	requiring	a	MongoOperations.	In	turn,	it	returns	a
Spring	Boot	CommandLineRunner,	of	which	all	are	run	after	the	application	context	is	fully	formed
(though	in	no	particular	order).
When	invoked,	the	command-line	runner	will	use	MongoOperations,	and	request	that	all	entries	be
deleted	(dropCollection).	Then	it	will	insert	three	new	Image	records.	Finally,	it	will	fetch	with	(findAll)
and	iterate	over	them,	printing	each	out.

With	sample	data	loaded,	let's	hook	things	into	our	reactive	ImageService	in	the	next	section.

Pulling	data	through	a	Mono/Flux	and	chain
of	operations
We	have	wired	up	a	repository	to	interface	with	MongoDB	through	Spring	Data.	Now	we	can	start
hooking	it	into	our	ImageService.

The	first	thing	we	need	to	do	is	inject	our	repository	into	the	service,	like	this:

				@Service	

				public	class	ImageService	{	

						...	

						private	final	ResourceLoader	resourceLoader;	

	

						private	final	ImageRepository	imageRepository;	

	

						public	ImageService(ResourceLoader	resourceLoader,	

							ImageRepository	imageRepository)	{	

									this.resourceLoader	=	resourceLoader;	

									this.imageRepository	=	imageRepository;	

						}	

						...	

				}	

In	the	previous	chapter,	we	loaded	Spring's	ResourceLoader.	In	this	chapter,	we	are	adding	ImageRepository	to
our	constructor.

Previously,	we	looked	up	the	names	of	the	existing	uploaded	files,	and	constructed	a	Flux	of	Image
objects.	That	required	coming	up	with	a	contrived	id	value.

Now	that	we	have	a	real	data	store,	we	can	simply	fetch	them	all,	and	return	them	to	the	client,	like	this:

				public	Flux<Image>	findAllImages()	{	

						return	imageRepository.findAll();	

				}	

In	this	last	bit	of	code,	we	leverage	imageRepository	to	do	all	the	work	with	its	findAll()	method.
Remember--findAll	was	defined	inside	ReactiveCrudRepository.	We	didn't	have	to	write	it	ourselves.	And
since	it	already	gives	us	a	Flux<Image>,	there	is	no	need	to	do	anything	else.

It's	good	to	remember	that	the	Flux	of	images	being	returned	is	lazy.	That	means	that	only	the	number	of
images	requested	by	the	client	is	pulled	from	the	database	into	memory	and	through	the	rest	of	the
system	at	any	given	time.	In	essence,	the	client	can	ask	for	one	or	as	many	as	possible,	and	the	database,
thanks	to	reactive	drivers,	will	comply.

Let's	move	on	to	something	a	little	more	complex--storing	a	Flux	of	images	as	follows:

				public	Mono<Void>	createImage(Flux<FilePart>	files)	{	

						return	files	

							.flatMap(file	->	{	

									Mono<Image>	saveDatabaseImage	=	imageRepository.save(

											new	Image(

													UUID.randomUUID().toString(),	

														file.filename()));	

	

													Mono<Void>	copyFile	=	Mono.just(

															Paths.get(UPLOAD_ROOT,	file.filename())	

																.toFile())	

																.log("createImage-picktarget")	

																.map(destFile	->	{	

																		try	{	

																				destFile.createNewFile();	

																				return	destFile;	

																		}	catch	(IOException	e)	{	

																						throw	new	RuntimeException(e);	

																		}	

																})	

																.log("createImage-newfile")	

																.flatMap(file::transferTo)	

																.log("createImage-copy");	

	

												return	Mono.when(saveDatabaseImage,	copyFile);	

							})	

							.then();	

				}	

The	preceding	code	can	be	described	as	follows:

With	a	Flux	of	multipart	files,	flatMap	each	one	into	two	independent	actions:	saving	the	image	and
copying	the	file	to	the	server.
Using	imageRepository,	put	together	a	Mono	that	stores	the	image	in	MongoDB,	using	UUID	to	create	a
unique	key	and	the	filename.
Using	FilePart,	WebFlux's	reactive	multipart	API,	build	another	Mono	that	copies	the	file	to	the
server.
To	ensure	both	of	these	operations	are	completed,	join	them	together	using	Mono.when().	This	means
that	each	file	won't	be	completed	until	the	record	is	written	to	MongoDB	and	the	file	is	copied	to
the	server.
The	entire	flow	is	terminated	with	then()	so	we	can	signal	when	all	the	files	have	been	processed.

Ever	worked	with	promises?	They	are	quite	popular	in	the	JavaScript	world.	Project
Reactor's	Mono.when()	is	akin	to	the	A+	Promise	spec's	promise.all()	API,	that	waits	until	all
sub-promises	are	completed	before	moving	forward.	Project	Reactor	can	be	thought	of	as
promises	on	steroids	with	many	more	operations	available.	In	this	case,	by	stringing
several	operations	together	using	then(),	you	can	avoid	callback	hell	while	ensuring	the
flow	of	how	things	unfold.

On	a	fundamental	level,	we	need	creating	an	image	to	involve	two	things--copying	the	file's	contents
to	the	server,	and	writing	a	record	of	it	in	MongoDB.	That	is	on	par	with	what	we've	declared	in	the
code	by	using	Mono.when()	to	combine	two	separate	actions.

imageRepository.save()	is	already	a	reactive	operation,	so	we	can	capture	it	straight	up	as	a	Mono.	Because
MultipartFile	is,	inherently,	tied	to	the	blocking	servlet	paradigm,	WebFlux	has	a	new	interface,	FilePart,
meant	to	handle	file	uploads	reactively.	Its	transferTo()	API	returns	a	Mono<Void>	letting	us	signal	when	to
carry	out	the	transfer.

Is	this	a	transaction?	Certainly	not	an	ACID-style	one	(Atomic,	Consistent,	Isolated,	Durable)
traditionally	found	with	relational	data	stores.	Those	types	of	transactions	have	a	long	history	of	not
scaling	well.	When	more	clients	try	to	alter	the	same	rows	of	data,	traditional	transactions	block	with
increasing	frequency.	And	blocking	in,	and	of	itself,	is	not	congruent	with	reactive	programming.

However,	semantically,	perhaps	we	are	engaged	in	a	transaction.	After	all,	we	are	saying	that	both	of
these	actions	must	complete	from	a	Reactive	Streams	perspective	before	the	given	FilePart	is	considered
to	be	processed	in	the	middle	of	the	Flux.	Given	the	long	history	of	assumptions	made	regarding
transactions,	it	might	be	best	to	leave	that	term	behind,	and	refer	to	this	as	a	reactive	promise.

While	it's	possible	to	inline	both	the	saveDatabaseImage	operation	and	the	copyFile	operation
inside	the	Mono.when(),	they	were	pulled	out	as	separate	variables	for	readability.	The	more
flows	you	write,	the	more	you	may	be	tempted	to	streamline	things	in	a	single,	chained
statement.	If	you're	feeling	lucky,	go	for	it!

When	it	comes	to	order	of	processing,	which	goes	first?	Saving	the	document	in	MongoDB,	or	storing
the	file	on	the	server?	It's	actually	not	specified	in	the	API.	All	that	is	declared	is	that	both	of	these
operations	must	be	completed	to	move	on,	and	Reactor	guarantees	that	if	any	asynchronous	threading	is
being	used,	the	framework	will	handle	any	and	all	coordination.

This	is	why	Mono.when()	is	the	perfect	construct	when	two	or	more	tasks	need	to	be	completed,	and	the
order	doesn't	matter.	The	first	time	the	code	is	run,	perhaps,	MongoDB	is	able	to	store	the	record	first.
It's	quite	possible	that	the	next	time	this	code	is	exercised,	MongoDB	may	be	slightly	delayed	due	to
external	factors	such	as	responding	to	another	operation,	hence	allowing	the	file	to	be	copied	first.	And
the	time	after	that,	other	factors	may	cause	the	order	to	swap.	But	the	key	point	of	this	construct	is	to
ensure	that	we	use	resources	with	maximum	efficiency	while	still	having	a	consistent	result--both	are
completed	before	moving	on.

Notice	how	we	used	flatMap	to	turn	each	file	into	a	promise	to	both	copy	the	file	and	save	a
MongoDB	record?	flatMap	is	kind	of	like	map	and	then,	but	on	steroids.	map	has	a	signature	of
map(T	→	V)	:	V,	while	flatMap	has	flatMap(T	→	Publisher<V>)	:	V,	meaning,	it	can	unwrap	the	Mono
and	produce	the	contained	value.	If	you're	writing	a	reactive	flow	that	isn't	clicking,	check
if	one	of	your	map	or	then	calls	needs	to	be	replaced	with	a	flatMap.

If	we	wanted	a	certain	order	to	happen,	the	best	construct	would	be	Mono.then().	We	can	chain	multiple
then	calls	together,	ensuring	that	a	certain	uniform	state	is	achieved	at	each	step	before	moving	forward.

Let's	wrap	up	this	section	by	making	adjustments	to	deleteImage	as	follows:

				public	Mono<Void>	deleteImage(String	filename)	{	

						Mono<Void>	deleteDatabaseImage	=	imageRepository	

							.findByName(filename)	

							.flatMap(imageRepository::delete);	

	

						Mono<Void>	deleteFile	=	Mono.fromRunnable(()	->	{	

								try	{	

										Files.deleteIfExists(

												Paths.get(UPLOAD_ROOT,	filename));	

								}	catch	(IOException	e)	{	

												throw	new	RuntimeException(e);	

								}	

						});	

	

						return	Mono.when(deleteDatabaseImage,	deleteFile)	

							.then();	

				}	

The	previous	code	can	be	explained	as	follows:

First	we	create	a	Mono	to	delete	the	MongoDB	image	record.	It	uses	imageRepository	to	first	findByName,
and	then	it	uses	a	Java	8	method	handle	to	invoke	imageRepository.delete.
Next,	we	create	a	Mono	using	Mono.fromRunnable	to	delete	the	file	using	Files.deleteIfExists.	This	delays
deletion	until	Mono	is	invoked.
To	have	both	of	these	operations	completed	together,	we	join	them	with	Mono.when().
Since	we're	not	interested	in	the	results,	we	append	a	then(),	which	will	be	completed	when	the
combined	Mono	is	done.

We	repeat	the	same	coding	pattern	as	createImage()	where	we	collect	operations	into	multiple	Mono
definitions,	and	wrap	them	with	a	Mono.when().	This	is	the	promise	pattern,	and	when	coding	reactively,
we'll	use	it	often.

Traditionally,	Runnable	objects	are	started	in	some	multithreaded	fashion,	and	are	meant	to
run	in	the	background.	In	this	situation,	Reactor	is	in	full	control	of	how	it	gets	started
through	the	use	of	its	scheduler.	Reactor	is	also	able	to	ensure	that	the	reactive	streams
complete	signal	is	issued	when	the	Runnable	object	is	done	with	its	work.

At	the	end	of	the	day,	that	is	the	whole	point	of	these	various	operations	from	Project	Reactor.	We
declare	the	desired	state,	and	offload	all	the	work	scheduling	and	thread	management	to	the	framework.
We	use	a	toolkit	that	is	designed	from	the	ground	up	to	support	asynchronous,	non-blocking	operations
for	maximum	resource	usage.	This	gives	us	a	consistent,	cohesive	way	to	define	expected	results	while
getting	maximum	efficiency.

Creating	custom	finders
With	Spring	Data	repositories,	we	are	able	to	create	queries	to	suit	any	situation.	Earlier	in	this	chapter,
we	saw	findByName,	which	merely	queries	based	on	the	domain	object's	name	attribute.

The	following	table	shows	a	more	comprehensive	collection	of	finders	we	can	write	with	Spring	Data
MongoDB.	To	illustrate	the	breadth	of	these	keywords,	it	presumes	a	domain	model	bigger	than	the
Image	class	we	defined	earlier:

Finder	Method Description

findByLastName(...​) Query	based	on	lastName

findByFirstNameAndLastName(...​) Query	based	on	firstName	and	lastName

findByFirstNameAndManagerLastName(...​) Query	based	on	firstName	and	by	a	related	manager's
lastName

findTop10ByFirstName(...​)	or	findFirst10ByFirstName(...​) Query	based	on	firstName,	but	only	return	the	first	ten
entries

findByFirstNameIgnoreCase(...​) Query	by	firstName,	but	ignore	the	case	of	the	text

findByFirstNameAndLastNameAllIgnoreCase(...​) Query	by	firstName	and	lastName,	but	ignore	the	case	of	the
text	in	ALL	fields

findByFirstNameOrderByLastNameAsc(...​) Query	by	firstName,	but	order	the	results	based	on	lastName
in	ascending	order	(or	use	Desc	for	descending	order)

findByBirthdateAfter(Date	date) Query	based	on	birthdate	being	after	the	date

findByAgeGreaterThan(int	age)
Query	based	on	age	attribute	being	greater	than	age
parameter.

findByAgeGreaterThanEqual(int	age) Query	based	on	age	attribute	being	greater	than	or	equal	to

age	parameter.

findByBirthdateBefore(Date	date) Query	based	on	birthdate	being	before	the	date

findByAgeLessThan(int	age) Query	based	on	age	attribute	being	less	than	age	parameter.

findByAgeLessThanEqual(int	age)
Query	based	on	age	attribute	being	less	than	or	equal	to
age	parameter.

findByAgeBetween(int	from,	int	to) Query	based	on	age	being	between	from	and	to

findByAgeIn(Collection	ages) Query	based	on	age	being	found	in	the	supplied	collection

findByAgeNotIn(Collection	ages)
Query	based	on	age	NOT	being	found	in	the	supplied
collection

findByFirstNameNotNull()	or	findByFirstNameIsNotNull() Query	based	on	firstName	not	being	null

findByFirstNameNull()	or	findByFirstNameIsNull() Query	based	on	firstName	being	null

findByFirstNameLike(String	f)	or
findByFirstNameStartingWith(String	f)	or
findByFirstNameEndingWith(String	f)

Query	based	on	input	being	a	regular	expression

findByFirstNameNotLike(String	f)	or
findByFirstNameIsNotLike(String	f)

Query	based	on	input	being	a	regex,	with	a	MongoDB
$not	applied

findByFirstnameContaining(String	f)
For	a	string	input,	query	just	like	Like;	for	a	collection,
query	testing	membership	in	the	collection

findByFirstnameNotContaining(String	f)
For	a	string	input,	query	like	like	NotLike;	for	a	collection,
query	testing	lack	of	membership	in	the	collection

findByFirstnameRegex(String	pattern) Query	using	pattern	as	a	regular	expression

findByLocationNear(Point	p) Query	by	geospatial	relation	using	MongoDB's	$near

findByLocationNear(Point	p,	Distance	max) Query	by	geospatial	relation	using	MongoDB's	$near	and
$maxDistance

findByLocationNear(Point	p,	Distance	min,	Distance	max)
Query	by	geospatial	relation	using	MongoDB's	$near,
$minDistance,	and	$maxDistance

findByLocationWithin(Circle	c)
Query	by	geospatial	relation	using	MongoDB's	$geoWithin,
$circle,	and	distance

findByLocationWithin(Box	b)
Query	by	geospatial	relation	using	MongoDB's	$geoWithin,
$box,	and	square	coordinates

findByActiveIsTrue() Query	by	active	being	true

findByActiveIsFalse() Query	by	active	being	false

findByLocationExists(boolean	e)
Query	by	location	having	the	same	Boolean	value	as	the
input

All	of	these	aforementioned	keywords	can	also	be	used	to	construct	deleteBy	methods.

Many	of	these	operators	also	work	with	other	supported	data	stores	including	JPA,	Apache
Cassandra,	Apache	Geode,	and	GemFire	to	name	a	few.	However,	be	sure	to	check	the
specific	reference	guide.

While	the	previous	table	shows	all	the	keywords	supported	for	MongoDB	repository	queries,	the
following	list	shows	the	various	supported	return	types:

Image	(or	Java	primitive	types)
Iterable<Image>

Iterator<Image>

Collection<Image>

List<Image>

Optional<Image>	(Java	8	or	Guava)
Option<Image>	(Scala	or	Vavr)
Stream<Image>

Future<Image>

CompletableFuture<Image>

ListenableFuture<Image>

@Async	Future<Image>

@Async	CompletableFuture<Image>

@Async	ListenableFuture<Image>

Slice<Image>

Page<Image>

GeoResult<Image>

GeoResults<Image>

GeoPage<Image>

Mono<Image>

Flux<Image>

Spring	Data	blocking	APIs	support	void	return	types	as	well.	In	Reactor-based
programming,	the	equivalent	is	Mono<Void>,	because	the	caller	needs	the	ability	to	invoke
subscribe().

In	a	nutshell,	just	about	every	container	type	is	covered	by	Spring	Data,	which	means	that	we	can	pick
the	right	solution	to	suit	our	needs.	Since	this	book's	focus	is	reactive	programming,	we'll	stick	with	Mono
and	Flux,	considering	they	encapsulate	asynchronous	+	non-blocking	+	lazy,	without	impacting	the
client,	and	regardless	of	quantity.

Querying	by	example
So	far,	we've	built	up	several	reactive	queries	using	property	navigation.	And	we've	updated	ImageService
to	reactively	transform	our	queried	results	into	operations	needed	to	support	our	social	media	platform.

But	something	that	may	not	be	apparent	in	the	design	of	our	data	API	is	the	fact	that	our	method
signatures	are	tied	to	the	properties	directly.	This	means	that	if	a	domain	field	changes,	we	would	have
to	update	the	queries,	or	they	will	break.

There	are	other	issues	we	might	run	into,	such	as	offering	the	ability	to	put	a	filter	on	our	web	page,	and
letting	the	user	fetch	a	subset	of	images	based	on	their	needs.

What	if	we	had	a	system	that	listed	information	about	employees.	If	we	imagined	writing	a	finder	that
lets	a	user	enter	firstName,	lastName,	and	age	range,	it	would	probably	look	like	this:

				interface	PersonRepository	

					extends	ReactiveCrudRepository<Person,	Long>	{	

	

							List<Person>	findByFirstNameAndLastNameAndAgeBetween(

									String	firstName,	String	lastName,	int	from,	int	to);	

				}	

Yikes!	That's	ugly.	(Even	worse,	imagine	making	all	the	strings	case	insensitive!)

All	of	these	things	lead	us	toward	an	alternative	Spring	Data	solution--Query	by	Example.

Query	by	Example,	simply	stated,	has	us	assemble	a	domain	object	with	the	criteria	provided,	and
submit	them	to	a	query.	Let's	look	at	an	example.	Assume	we	were	storing	Employee	records	like	this:

				@Data	

				@Document	

				public	class	Employee	{	

	

						@Id	private	String	id;	

						private	String	firstName;	

						private	String	lastName;	

						private	String	role;	

				}	

This	preceding	example	is	a	very	simple	domain	object,	and	can	be	explained	as	follows:

Lombok's	@Data	annotation	provides	getters,	setters,	equals,	hashCode,	and	toString	methods
Spring	Data	MongoDB's	@Document	annotation	indicates	this	POJO	is	a	target	for	storage	in
MongoDB
Spring	Data	Commons'	@Id	annotation	indicates	that	the	id	field	is	the	identifier
The	rest	of	the	fields	are	simple	strings

Next,	we	need	to	define	a	repository	as	we	did	earlier,	but	we	must	also	mix	in	another	interface	that
gives	us	a	standard	complement	of	Query	by	Example	operations.	We	can	do	that	with	the	following
definition:

				public	interface	EmployeeRepository	extends	

					ReactiveCrudRepository<Employee,	String>,	

					ReactiveQueryByExampleExecutor<Employee>	{	

	

				}	

This	last	repository	definition	can	be	explained	as	follows:

It's	an	interface	declaration,	meaning,	we	don't	write	any	implementation	code
ReactiveCrudRepository	provides	the	standard	CRUD	operations	with	reactive	options	(Mono	and	Flux
return	types,	and	more)
ReactiveQueryByExampleExecutor	is	a	mix-in	interface	that	introduces	the	Query	by	Example	operations
which	we'll	poke	at	shortly

Once	again,	with	just	a	domain	object	and	a	Spring	Data	repository	defined,	we	have	all	the	tools	to	go
forth	and	query	MongoDB!

First	things	first,	we	should	again	use	blocking	MongoOperations	to	preload	some	data	like	this:

				mongoOperations.dropCollection(Employee.class);	

	

				Employee	e1	=	new	Employee();	

				e1.setId(UUID.randomUUID().toString());	

				e1.setFirstName("Bilbo");	

				e1.setLastName("Baggins");	

				e1.setRole("burglar");	

	

				mongoOperations.insert(e1);	

	

				Employee	e2	=	new	Employee();	

				e2.setId(UUID.randomUUID().toString());	

				e2.setFirstName("Frodo");	

				e2.setLastName("Baggins");	

				e2.setRole("ring	bearer");	

	

				mongoOperations.insert(e2);	

The	preceding	setup	can	be	described	as	follows:

Start	by	using	dropCollection	to	clean	things	out
Next,	create	a	new	Employee,	and	insert	it	into	MongoDB
Create	a	second	Employee	and	insert	it	as	well

Only	use	MongoOperations	to	preload	test	data.	Do	NOT	use	it	for	production	code,	or	your
efforts	at	building	reactive	apps	will	be	for	nothing.

With	our	data	preloaded,	let's	take	a	closer	look	at	that	ReactiveQueryByExampleExecutor	interface	used	to
define	our	repository	(provided	by	Spring	Data	Commons).	Digging	in,	we	can	find	a	couple	of	key
query	signatures	like	this:

				<S	extends	T>	Mono<S>	findOne(Example<S>	example);	

				<S	extends	T>	Flux<S>	findAll(Example<S>	example);	

Neither	of	these	aforementioned	methods	have	any	properties	whatsoever	in	their	names	compared	to
finders	like	findByLastName.	The	big	difference	is	the	usage	of	Example	as	an	argument.	Example	is	a	container
provided	by	Spring	Data	Commons	to	define	the	parameters	of	a	query.

What	does	such	an	Example	object	look	like?	Let's	construct	one	right	now!

				Employee	e	=	new	Employee();	

				e.setFirstName("Bilbo");	

				Example<Employee>	example	=	Example.of(e);	

This	construction	of	an	Example	is	described	as	follows:

We	create	an	Employee	probe	named	e
We	set	the	probe's	firstName	to	Bilbo
Then	we	leverage	the	Example.of	static	helper	to	turn	the	probe	into	an	Example

In	this	example,	the	probe	is	hard	coded,	but	in	production,	the	value	would	be	pulled	from
the	request	whether	it	was	part	of	a	REST	route,	the	body	of	a	web	request,	or	somewhere
else.

Before	we	actually	use	the	Example	to	conduct	a	query,	it	pays	to	understand	what	an	Example	object	is.
Simply	put,	an	Example	consists	of	a	probe	and	a	matcher.	The	probe	is	the	POJO	object	containing	all	the
values	we	wish	to	use	as	criteria.	The	matcher	is	an	ExampleMatcher	that	governs	how	the	probe	is	used.
We'll	see	different	types	of	matching	in	the	following	various	usages.

Proceeding	with	our	Example	in	hand,	we	can	now	solicit	a	response	from	the	repository	as	follows:

				Mono<Employee>	singleEmployee	=	repository.findOne(example);	

We	no	longer	have	to	put	firstName	in	the	query's	method	signature.	Instead,	it	has	become	a	parameter
fed	to	the	query	through	the	Example	input.

Examples,	by	default,	only	query	against	non-null	fields.	That's	a	fancy	way	of	saying	that	only	the
fields	populated	in	the	probe	are	considered.	Also,	the	values	supplied	must	match	the	stored	records
exactly.	This	is	the	default	matcher	used	in	the	Example	objects.

Since	an	exact	match	isn't	always	what's	needed,	let's	see	how	we	can	adjust	things,	and	come	up	with	a
different	match	criteria,	as	shown	in	this	code:

				Employee	e	=	new	Employee();	

				e.setLastName("baggins");	//	Lowercase	lastName	

	

				ExampleMatcher	matcher	=	ExampleMatcher.matching()	

					.withIgnoreCase()	

					.withMatcher("lastName",	startsWith())	

					.withIncludeNullValues();	

	

				Example<Employee>	example	=	Example.of(e,	matcher);	

This	preceding	example	can	be	described	as	follows:

We	create	another	Employee	probe
We	deliberately	set	the	lastName	value	as	lowercase
Then	we	create	a	custom	ExampleMatcher	using	matching()
withIgnoreCase	says	to	ignore	the	case	of	the	values	being	checked
withMatcher	lets	us	indicate	that	a	given	document's	lastName	starts	with	the	probe's	value

withIncludeNullValues	will	also	match	any	entries	that	have	nulled-out	values
Finally,	we	create	an	Example	using	our	probe,	but	with	this	custom	matcher

With	this	highly	customized	example,	we	can	query	for	ALL	employees	matching	these	criteria:

				Flux<Employee>	multipleEmployees	=	repository.findAll(example);	

This	last	code	simply	uses	the	findAll	query,	that	returns	a	Flux	using	the	same	example	criteria.

Remember	how	we	briefly	mentioned	that	Query	by	Example	can	lend	itself	to	a	form	on	a
web	page	where	various	fields	are	filled	out?	Based	on	the	fields,	the	user	can	decide	what
to	fetch.	Notice	how	we	used	withIgnoreCase?	By	default,	that	flag	flips	to	true,	but	it's
possible	to	feed	it	a	Boolean.	It	means	we	can	put	a	checkbox	on	the	web	page	allowing
the	user	to	decide	whether	or	not	to	ignore	case	in	their	search.

Simple	or	complex,	Query	by	Example	provides	flexible	options	to	query	for	results.	And	using	Reactor
types,	we	can	get	just	about	anything	we	need	with	the	two	queries	provided:	findOne	or	findAll.

Querying	with	MongoOperations
So	far,	we	have	delved	into	the	repository	solution	using	both	query	by	property	and	Query	by	Example.
There	is	another	angle	we	can	use,	MongoTemplate.

MongoTemplate	mimics	the	Spring	Framework's	JdbcTemplate,	the	first	data	access	mechanism	implemented
by	Spring.	JdbcTemplate	allows	us	to	focus	on	writing	queries	while	delegating	connection	management
and	error	handling	to	the	framework.

MongoTemplate	brings	the	same	power	to	bear	on	crafting	MongoDB	operations.	It's	very	powerful,	but
there	is	a	critical	tradeoff.	All	code	written	using	MongoTemplate	is	MongoDB-specific.	Porting	solutions	to
another	data	store	is	very	difficult.	Hence,	it's	not	recommended	as	the	first	solution,	but	as	a	tool	to
keep	in	our	back	pocket	for	critical	operations	that	require	highly	tuned	MongoDB	statements.

To	perform	reactive	MongoTemplate	operations,	there	is	a	corresponding	ReactiveMongoTemplate	that	supports
Reactor	types.	The	recommended	way	to	interact	with	ReactiveMongoTemplate	is	through	its	interface,
ReactiveMongoOperations.

The	tool	that	actually	conducts	MongoDB	repository	operations	under	the	hood	is,	in	fact,
a	MongoTemplate	(or	a	ReactiveMongoTemplate	depending	on	the	nature	of	the	repository).

Additionally,	Spring	Boot	will	automatically	scan	the	classpath,	and	if	it	spots	Spring	Data	MongoDB
2.0	on	the	classpath	along	with	MongoDB	itself,	it	will	create	a	ReactiveMongoTemplate.	We	can	simply
request	a	copy	autowired	into	our	class,	whether	by	constructor	injection	or	field	injection,	as	follows:

				@Autowired	

				ReactiveMongoOperations	operations;	

@Autowired	in	the	last	code	snippet	indicates	this	field	will	be	injected	when	the	class	is	loaded,	and	we'll
get	a	copy	of	the	bean	that	implements	ReactiveMongoOperations.

For	test	cases,	field	injection	is	fine.	But	for	actual	running	components,	the	Spring	team
recommends	constructor	injection,	as	will	be	shown	throughout	this	book.	For	more
details	about	the	benefits	of	constructor	injection,	read	Spring	Data	lead	Oliver	Gierke's
blog	post	at	http://olivergierke.de/2013/11/why-field-injection-is-evil/.

Using	ReactiveMongoOperations	along	with	Query	byExample,	we	can	see	the	previous	query	rewritten	as
follows:

				Employee	e	=	new	Employee();	

				e.setFirstName("Bilbo");	

				Example<Employee>	example	=	Example.of(e);	

	

				Mono<Employee>	singleEmployee	=	operations.findOne(

						new	Query(byExample(example)),	Employee.class);	

We	can	tear	apart	this	latest	wrinkle	in	MongoDB	querying	as	follows:

http://olivergierke.de/2013/11/why-field-injection-is-evil/

The	declaration	of	the	probe	and	its	example	is	the	same	as	shown	earlier
To	create	a	query	for	one	entry,	we	use	findOne	from	ReactiveMongoOperations
For	the	first	parameter,	we	create	a	new	Query,	and	use	the	byExample	static	helper	to	feed	it	the
example
For	the	second	parameter,	we	tell	it	to	return	an	Employee

Because	this	is	ReactiveMongoOperations,	the	value	is	returned	wrapped	inside	a	Mono.

A	similar	tune-up	can	be	made	to	fetch	multiple	entries	with	custom	criteria,	as	follows:

				Employee	e	=	new	Employee();	

				e.setLastName("baggins");	//	Lowercase	lastName	

	

				ExampleMatcher	matcher	=	ExampleMatcher.matching()	

					.withIgnoreCase()	

					.withMatcher("lastName",	startsWith())	

					.withIncludeNullValues();	

	

				Example<Employee>	example	=	Example.of(e,	matcher);	

	

				Flux<Employee>	multipleEmployees	=	operations.find(

						new	Query(byExample(example)),	Employee.class);	

Now	let's	check	out	the	details	of	this	preceding	query:

The	example	is	the	same	as	the	previous	findAll	query
This	time	we	use	find,	which	accepts	the	same	parameters	as	findOne,	but	returns	a	Flux

ReactiveMongoOperations	and	its	Query	input	opens	up	a	world	of	powerful	operations,	like	this:

				reactiveMongoOperations	

					.findOne(

							query(

									where("firstName").is("Frodo")),	Employee.class)

Beyond	that,	there	is	support	for	updating	documents,	finding-then-updating,	and	upserting,	all
supporting	the	rich,	native	MongoDB	operators	through	a	fluent	API.

Delving	into	more	MongoDB	operations	is	beyond	the	scope	of	this	book,	but	it's	within	your	grasp
should	the	need	arise.

Logging	reactive	operations
So	far,	we	have	crafted	a	domain	object	for	MongoDB,	defined	a	reactive	repository,	and	updated	our
ImageService	to	use	it.	If	we	fire	things	up,	though,	how	can	we	see	what's	happening?	Apart	from	viewing
the	web	page,	what	can	we	expect	to	see	in	the	console	logs?

So	far,	this	appears	to	be	the	most	we	get:

We	see	some	log	messages	about	connecting	to	an	instance	of	MongoDB,	but	that's	it!	Not	much	there
to	debug	things,	ehh?	Never	fear,	Spring	Boot	to	the	rescue.

Spring	Boot	comes	with	extensive	logging	support.	Off	the	cuff,	we	can	create	a	logback.xml	file,	and	add
it	to	our	configuration	in	src/main/resources.	Spring	Boot	will	read	it,	and	override	its	default	logging
policy.	That's	nice	if	we	want	to	totally	overhaul	the	log	settings.

But	often	times,	we	just	want	to	adjust	some	logging	levels	for	specific	packages.	Spring	Boot	grants	us
a	more	fine-grained	way	to	alter	what	gets	logged.

Simply	add	this	to	src/main/resources/application.properties:

				logging.level.com.greglturnquist=DEBUG	

				logging.level.org.springframework.data=TRACE	

				logging.level.reactor.core=TRACE	

				logging.level.reactor.util=TRACE	

These	adjustments	can	be	described	as	follows:

logging.level	tells	Spring	Boot	to	adjust	log	levels	with	the	name	of	the	package	tacked	on	followed
by	a	level
The	application	code,	com.greglturnquist,	is	set	to	DEBUG
Spring	Data,	org.springframework.data,	is	set	to	TRACE
Project	Reactor,	reactor.core	and	reactor.util,	are	set	to	TRACE

With	these	adjustments,	if	we	launch	our	application,	this	is	part	of	the	output	we	get:

This	preceding	output	shows	some	MongoDB	activity	including	cluster	configuration,	connections,	and
domain	analysis.	Toward	the	end,	the	effects	of	InitDatabase	preloading	our	data	can	be	seen	to	some
degree,	and	can	be	explained	as	follows:

Dropped	collection	[image]:	This	indicates	all	the	entries	being	deleted	by	our	dropCollection
Inserting	Document	containing	fields...​:	This	indicates	entries	being	saved	using	our	insert

This	is	definitely	an	improvement,	but	something	that's	missing	is	the	role	that	Reactor	plays	in
handling	all	of	this.	While	we've	dialed	up	the	log	levels	for	Reactor,	nothing	has	been	output.

If	we	look	at	ImageService,	the	question	arises,	where	can	we	add	more	logging?	In	traditional	imperative
programming,	we	would,	typically,	write	log.debug("blah	blah")	at	several	spots	along	the	way.	But	in	this
reactive	flow,	there	are	no	"stops"	to	put	them.

Project	Reactor	comes	with	a	declarative	log	statement	we	can	add	along	the	way.	Here	is	how	we	can
decorate	findAllImages:

				public	Flux<Image>	findAllImages()	{	

						return	imageRepository.findAll()	

							.log("findAll");	

				}	

This	preceding	service	operation	has	but	one	reactive	step,	so	we	can	only	slip	in	a	single	log	statement.
ImageService.findOneImage	has	the	same	story,	so	no	need	to	show	that.

However,	createImage	has	several	steps,	which	are	seen	in	this	code:

				public	Mono<Void>	createImage(Flux<FilePart>	files)	{	

						return	files	

							.log("createImage-files")	

							.flatMap(file	->	{	

									Mono<Image>	saveDatabaseImage	=	imageRepository.save(

											new	Image(

													UUID.randomUUID().toString(),	

													file.filename()))	

													.log("createImage-save");	

	

									Mono<Void>	copyFile	=	Mono.just(

											Paths.get(UPLOAD_ROOT,	file.filename())	

											.toFile())	

											.log("createImage-picktarget")	

											.map(destFile	->	{	

													try	{	

															destFile.createNewFile();	

															return	destFile;	

													}	catch	(IOException	e)	{	

																	throw	new	RuntimeException(e);	

													}	

											})	

											.log("createImage-newfile")	

											.flatMap(file::transferTo)	

											.log("createImage-copy");	

	

											return	Mono.when(saveDatabaseImage,	copyFile)	

											.log("createImage-when");	

							})	

							.log("createImage-flatMap")	

							.then()	

							.log("createImage-done");	

				}	

This	last	code	is	identical	to	what	we	had	before	except	that	each	Reactor	operation	is	tagged	with	a	log
statement.	And	each	one	has	a	unique	tag	appended,	so,	we	can	tell	exactly	what	is	happening	and
where.

If	we	exercise	this	code	from	a	unit	test	that	uploads	two	mock	multipart	files	(a	test	we'll	look	closer	at
in	the	next	chapter,	Chapter	4,	Testing	with	Spring	Boot),	we	can	spot	each	tag	in	the	console	output	as
follows:

This	preceding	output	shows	each	of	the	steps,	and	how	they	play	together	in	the	reactive	streams'	dance
of	subscribe,	request,	next,	and	complete.	Most	notably,	the	outer	operations	(files,	flatMap,	and	done)	are
shown	at	the	top	when	subscriptions	are	made.	Each	file	causes	a	filter	operation	to	occur	followed	by	a
save	and	a	copy.	And	at	the	bottom,	the	same	outer	operations	(again	files,	flatMap,	and	done)	issue	a
reactive	streams	complete.

To	mark	up	deleteImage	with	logs,	let's	make	these	changes:

				public	Mono<Void>	deleteImage(String	filename)	{	

						Mono<Void>	deleteDatabaseImage	=	imageRepository	

							.findByName(filename)	

							.log("deleteImage-find")	

							.flatMap(imageRepository::delete)	

							.log("deleteImage-record");	

	

						Mono<Object>	deleteFile	=	Mono.fromRunnable(()	->	{	

								try	{	

										Files.deleteIfExists(

												Paths.get(UPLOAD_ROOT,	filename));	

								}	catch	(IOException	e)	{	

												throw	new	RuntimeException(e);	

								}	

						})	

						.log("deleteImage-file");	

	

						return	Mono.when(deleteDatabaseImage,	deleteFile)	

							.log("deleteImage-when")	

							.then()	

							.log("deleteImage-done");	

				}	

This	is	the	same	deleteImage	code	we	wrote	earlier,	only,	we've	sprinkled	in	log	statements	everywhere	to
indicate	exactly	what	is	happening.

With	everything	set	up,	we	should	be	able	to	test	things	out.	For	starters,	we	can	launch	the	code	by
either	running	the	LearningSpringBootApplication	class's	public	static	void	main()	method,	or	we	can	run	it
from	the	command	line	using	Gradle	like	this:

$./gradlew	clean	bootRun

If	we	launch	the	application	and	navigate	to	http://localhost:8080,	we	can	see	our	preloaded	images,	as
seen	in	this	screenshot:

We	can	click	on	a	single	image,	and	see	some	comparable	log	messages	like	this:

findOneImage	:	|	onSubscribe([Fuseable]	Operators.MonoSubscriber)

findOneImage	:	|	request(unbounded)

findOneImage	:	|	onNext(URL	[file:upload-dir/learning-spring-boot-

	cover.jpg])

findOneImage	:	|	onComplete()		

This	very	simple	flow	illustrates	the	Reactive	Streams	pattern.	We	subscribe	for	an	image.	A	request	is
sent--in	this	case,	unbounded	(even	though	we	know	in	advance	there	is	only	one	result).	onNext	is	the
answer,	and	it's	a	file-based	URL	(a	Spring	Resource)	being	returned.	Then	the	complete	is	issued.

This	logging	is	confined	to	ImageService,	which	means	we	don't	see	it	transformed	into	an
HTTP	response.	If	you	wish	to	explore	this	further,	feel	free	to	add	extra	log	statements	to
HomeController.oneRawImage.

If	we	click	on	the	Delete	button,	it	deletes	the	image	and	refreshes	the	page,	as	follows:

After	completing	the	deletion,	if	we	look	at	the	console	logs	and	focus	on	what	happened,	we	will	see
something	like	this:

At	the	very	top,	we	can	see	a	MongoDB	query	issued	to	find	the	desired	image	with	the	findOne	using
query	output.	A	Mono.when	is	set	up,	and	then,	a	Remove	using	query	is	issued	to	delete	the	record.	The	actual
deletion	of	the	file	is	logged	with	little	details	except	the	complete	signal.	The	whole	thing	is	wrapped
up	when	we	see	deleteImage-done	issue	a	complete.

We	haven't	begun	to	mark	up	the	HomeController	with	log	messages,	but	we	don't	need	to	at
this	stage.	If	you	wish	to	explore	that	area,	feel	free	to	do	so.	Using	these	log	statements,
you	can	get	a	real	feel	for	how	Reactor	arranges	tasks,	and	even	spot	cases	where	the
order	of	operations	fluctuates	at	different	times.	The	key	thing	is	we	have	a	real	tool	for
debugging	reactive	flows.

With	this,	we	have	successfully	coded	a	reactive	ImageService	that	both	copies	files	to	the	server	and
writes	records	in	MongoDB;	and	we	did	it	letting	Spring	Boot	autoconfigure	all	the	beans	needed	to
make	Spring	Data	MongoDB	work	seamlessly	with	Spring	WebFlux	and	MongoDB.

Summary
In	this	chapter,	we	wrote	several	data	access	operations	using	a	repository-based	solution.	We	explored
alternative	querying	options.	Then	we	showed	how	to	wire	that	into	our	controller,	and	store	live	data.
We	wrapped	things	up	by	exploring	logging	options	in	a	functional,	reactive	nature.

In	the	next	chapter,	we	will	discover	all	the	various	ways	Spring	Boot	makes	testing	super	easy,
combined	with	the	utilities	provided	by	Project	Reactor	to	test	async,	non-blocking	flows.

Testing	with	Spring	Boot
Most	innovative	contribution	to	the	java	ecosystem:	spring	Boot	#jaxlondon

–	@JAXenter

If	we	go	back	more	than	10	years,	we	would	find	testing	a	process	mostly	conducted	by	legions	of	test
engineers.	But	with	the	rise	of	JUnit,	the	adoption	of	continuous	integration	(CI)	servers,	a	plethora	of
test	assertion	libraries,	and	integrated	test	coverage	services,	we	can	see	widespread	adoption	of
automated	testing.

In	this	chapter,	we	will	see	how	critical	Spring	Boot	views	automated	testing	by	providing	multiple
levels	of	support.	We	shall	do	the	following:

Write	some	basic	unit	tests
Introduce	slice	testing
Embark	upon	WebFlux	testing
Leverage	complete	embedded	container	testing
Draft	some	autoconfiguration	tests

Test	dependencies
So	far,	we	have	used	the	Spring	Initializr	(http://start.spring.io)	to	create	our	social	media	platform.	We
picked	several	dependencies	and	added	others	along	the	way.	But	we	haven't	investigated	test	libraries.

It	turns	out,	Spring	Boot	takes	testing	so	seriously	that	it's	not	an	option	on	the	website.	All	projects
created	automatically	have	this	test-scoped	dependency:

				testCompile('org.springframework.boot:spring-boot-starter-test')	

So	what's	included	with	that	single	line?

JUnit:	De-facto	standard	for	testing	Java	apps
JSON	Path:	XPath	for	JSON
AssertJ:	Fluent	assertion	library
Mockito:	Java	mocking	library
Hamcrest:	Library	of	matcher	objects
JSONassert:	Assertion	library	for	JSON
Spring	Test	and	Spring	Boot	Test:	Test	libraries	provided	by	the	Spring	Framework	and	Spring
Boot

In	addition	to	these	various	testing	libraries	being	automatically	supplied,	many	optional	dependencies
are	also	included.	This	means	that	they	can	be	added	to	our	project's	list	of	dependencies	without
specifying	the	version.	The	optional	dependencies	are	listed	as	follows:

HTMLUnit:	Testing	toolkit	for	HTML	outputs
Selenium:	Browser	automation	for	UI	testing
Flapdoodle:	Embedded	MongoDB	database	for	testing
H2:	Embedded	SQL	database	for	testing
Spring	REST	Docs:	Generates	REST	documentation	using	automated	tests

Before	we	dig	any	deeper,	it's	important	to	understand	that	entire	books	have	been	written
about	testing	applications.	We'll	attempt	to	get	a	good	cross-section	of	testing	and	look	at
how	Spring	Boot	makes	certain	types	of	tests	even	easier,	but	don't	consider	this	chapter	to
be	the	end-all	of	what's	possible.

http://start.spring.io

Unit	testing
The	smallest	scoped	tests	we	can	write	are	referred	to	as	unit	tests.	In	fact,	people	have	been	writing	tiny
tests	for	years.	A	common	paradigm	is	to	try	and	test	just	one	class	in	a	given	unit	test.

To	get	going,	let's	test	the	smallest	unit	of	code	we	have:	our	Lombok-enabled	Image	domain	object.

As	a	reminder,	here	is	what	that	code	looks	like:

				@Data	

				@Document	

				public	class	Image	{	

								@Id	final	private	String	id;	

								final	private	String	name;	

				}	

This	tiny	little	POJO	is	flagged	with	Spring	Data	MongoDB	annotations	as	well	as	Lombok's	@Data
annotation	providing	getters	and	setters.

A	unit	test	shouldn't	be	too	hard.	We	can	start	by	creating	ImageTests.java	in	/src/test/java,	and	in	the	same
package	as	the	original	class	(com.greglturnquist.learningspringboot),	as	follows:

				public	class	ImageTests	{	

						@Test	

						public	void	imagesManagedByLombokShouldWork()	{	

								Image	image	=	new	Image("id",	"file-name.jpg");	

								assertThat(image.getId()).isEqualTo("id");	

								assertThat(image.getName()).isEqualTo("file-name.jpg");	

						}	

				}	

This	preceding	unit	test	can	easily	be	explained,	as	follows:

@Test	indicates	that	imagesManagedByLombokShouldWork	is	a	JUnit	test	case,	ensuring	it	is	automatically
picked	up	and	run	either	from	our	IDE	when	we	choose	or	from	Gradle	when	we	build	the	system
The	test	creates	a	new	Image	object
Then	it	uses	AssertJ's	assertThat()	method	to	prove	the	values	are	as	expected

Let's	run	it!

As	shown	in	the	preceding	screenshot,	we	merely	right-click	on	the	class	ImageTests,	select	Run
'ImageTests',	and	watch	for	the	output	(shown	next):

Hooray!	There	is	always	a	little	happiness	when	our	automated	tests	go	green.

I	know	that	in	print,	the	color	green	turns	to	grey.	But	we	can	also	see	the	OK	text	in	the
bubble	next	to	the	test	case,	indicating	that	it	passed.

So	far,	so	good.	With	our	first	test	written,	we	have	gotten	off	the	ground	with	a	test-based	approach	to
things.	But	testing	can	get	more	complicated,	quickly.

Slice-based	testing
Across	the	industry,	many	express	an	interest	in	testing.	Yet,	when	push	comes	to	shove	and	we	run	into
tricky	situations,	it's	quite	easy	to	throw	up	our	hands	and	shout,	This	is	too	hard!

Spring	Boot	aims	to	help!

JUnit,	all	by	itself,	gives	us	the	power	to	declare	tests	and	assert	pass/fail	scenarios.	But	in	reality,	not
everything	works	straight	out	of	the	box.	For	example,	parts	of	our	code	will	easily	come	to	rely	upon
Boot	autoconfiguring	various	beans	as	well	as	having	that	powerful	property	support.

A	keen	example	is	the	need	to	do	some	MongoDB	operations.	It	would	be	quite	handy	if	we	could	ask
Spring	Boot	to	autoconfigure	just	enough	beans	to	support	MongoDB	for	our	tests	but	nothing	else.

Well,	today's	our	lucky	day.

Spring	Boot	1.5	introduced	slice	testing.	This	is	where	a	subset	of	Spring	Boot's	autoconfiguration
power	can	be	switched	on,	while	also	having	full	access	to	its	property	support.	The	following	list	of
test	annotations	each	enable	a	different	slice	of	code:

@DataMongoTest

@DataJpaTest

@JdbcTest

@JsonTest

@RestClientTest

@WebFluxTest

@WebMvcTest

Each	of	these	annotations	enables	a	different	slice	of	beans	to	be	configured.	For	example,	@DataJpaTest
will:

Enable	transactions	by	applying	Spring's	@Transactional	annotation	to	the	test	class
Enable	caching	on	the	test	class,	defaulting	to	a	NoOp	cache	instance
Autoconfigure	an	embedded	test	database	in	place	of	a	real	one
Create	a	TestEntityManager	bean	and	add	it	to	the	application	context
Disable	the	general	Spring	Boot	autoconfiguration,	confining	things	to	the	autoconfiguration
policies	found	in	spring-boot-test-autoconfigure

All	of	these	annotations	require	additionally	annotating	our	test	class	with
@RunWith(SpringRunner.class).

An	important	point	to	understand	is	that	tests	work	best	when	confined	to	a	relatively	narrow	scope.
Hence,	using	more	than	one	of	these	@...​Test	annotations	is	not	recommended.	Instead,	break	things	up

into	multiple	test	classes.

Testing	with	embedded	MongoDB
The	first	annotation	listed	above	for	slice	testing	is	@DataMongoTest.	In	this	section,	we	want	to	write	some
test	methods	that	involve	our	MongoDB-specific	code.

When	it	comes	to	testing	MongoDB	code,	we	have	the	following	two	options	provided	by	Spring	Boot:

Testing	against	an	embedded	MongoDB	instance
Testing	against	a	live	MongoDB	instance

Spring	Boot,	by	default,	will	check	if	Flapdoodle,	the	embedded	MongoDB	database,	is	on	the
classpath.	If	so,	it	will	attempt	to	run	the	test	using	it.	If	Flapdoodle	is	NOT	on	our	classpath,	it	will
attempt	to	connect	to	a	real	MongoDB	instance.

So	let's	get	started	by	adding	flapdoodle	to	our	project's	list	of	dependencies	as	follows:

				testCompile("de.flapdoodle.embed:de.flapdoodle.embed.mongo")	

Since	we	are	going	to	test	our	Reactor-based	APIs,	we	also	want	to	leverage	Reactor	Test,	a	library	of
utilities	provided	by	Project	Reactor.	Let's	add	the	following	test	dependency:

				testCompile("io.projectreactor:reactor-test")	

With	this	last	dependency	added	to	our	project,	we	can	now	start	writing	EmbeddedImageRepositoryTests.java
inside	src/test/java,	in	the	com.greglturnquist.learningspringboot	package,	like	this:

				@RunWith(SpringRunner.class)	

				@DataMongoTest	

				public	class	EmbeddedImageRepositoryTests	{	

	

						@Autowired	

						ImageRepository	repository;	

	

						@Autowired	

						MongoOperations	operations;	

The	preceding	code	for	the	first	part	of	this	test	class	can	be	described	as	follows:

@RunWith(SpringRunner.java)	is	needed	to	ensure	that	Spring	Boot	test	annotations	run	properly	within
JUnit
@DataMongoTest	will	disable	the	general	Spring	Boot	autoconfiguration,	and	instead,	use	Spring	Boot's
test-based	autoconfigurations	to	create	a	MongoTemplate,	a	MongoDB	connection,	MongoDB	property
settings,	a	ReactiveMongoTemplate	and	an	embedded	MongoDB	instance;	it	will	also	enable	the
MongoDB	repositories
With	the	Spring	Data	MongoDB	repositories	enabled,	Spring	Boot	will	automatically	instantiate	an
ImageRepository,	and	inject	it	into	our	autowired	repository	field

In	general,	it's	recommended	to	use	constructor	injection	for	production	code.	But	for	test
code	where	constructors	are	limited	due	to	JUnit,	autowiring	as	we've	just	done	is	fine.

With	access	to	a	clean	MongoDB	instance	(embedded),	we	can	now	perform	a	little	setup	work	as
follows:

				/**	

				*	To	avoid	{@code	block()}	calls,	use	blocking	

				*	{@link	MongoOperations}	during	setup.	

				*/	

				@Before	

				public	void	setUp()	{	

						operations.dropCollection(Image.class);	

						operations.insert(new	Image("1",	

								"learning-spring-boot-cover.jpg"));	

						operations.insert(new	Image("2",	

								"learning-spring-boot-2nd-edition-cover.jpg"));	

						operations.insert(new	Image("3",	

								"bazinga.png"));	

						operations.findAll(Image.class).forEach(image	->	{	

								System.out.println(image.toString());	

						});	

				}	

This	preceding	setup	method	can	be	described	as	follows:

The	@Before	flags	this	method	to	be	run	before	every	single	@Test	method	in	this	class
The	operations	is	used	to	dropCollection	and	then	insert	three	new	entries	in	the	database,	turn	around
and	fetch	them	all,	and	print	them	to	the	console

With	things	preloaded	properly,	we	can	start	writing	our	first	test	case,	as	shown	next:

				@Test	

				public	void	findAllShouldWork()	{	

						Flux<Image>	images	=	repository.findAll();	

						StepVerifier.create(images)	

							.recordWith(ArrayList::new)	

							.expectNextCount(3)	

							.consumeRecordedWith(results	->	{	

									assertThat(results).hasSize(3);	

									assertThat(results)	

									.extracting(Image::getName)	

									.contains(

											"learning-spring-boot-cover.jpg",	

											"learning-spring-boot-2nd-edition-cover.jpg",	

											"bazinga.png");	

									})	

							.expectComplete()	

							.verify();	

				}	

This	preceding	test	case	can	be	described	as	follows:

@Test	indicates	this	is	a	test	method	and	the	method	name	describes	our	overall	goal.
We	use	Reactor	Test's	StepVerifier	to	subscribe	to	the	Flux	from	the	repository	and	then	assert	against
it.
Because	we	want	to	assert	against	the	whole	collection,	we	need	to	pipe	it	through	Reactor	Test's
recordWith	method,	which	fetches	the	entire	Flux	and	converts	it	into	an	ArrayList	via	a	method	handle.
We	verify	that	there	were	indeed	three	entries.
We	write	a	lambda	to	peek	inside	the	recorded	ArrayList.	In	it,	we	can	use	AssertJ	to	verify	the	size
of	ArrayList	as	well	as	extract	each	image's	name	with	Image::getName	and	verify	them.
Finally,	we	can	verify	that	Flux	emitted	a	Reactive	Streams	complete	signal,	meaning	that	it

finished	correctly.

StepVerifier	speaks	Reactive	Streams	and	will	execute	all	the	various	signals	to	talk	to	the	enclosed
Publisher.	In	this	case,	we	interrogated	a	Flux	but	this	can	also	be	used	on	a	Mono.

To	wrap	things	up,	we	are	going	to	test	our	custom	finder,	findByName,	as	shown	here:

				@Test	

				public	void	findByNameShouldWork()	{	

						Mono<Image>	image	=	repository.findByName("bazinga.png");	

						StepVerifier.create(image)	

							.expectNextMatches(results	->	{	

									assertThat(results.getName()).isEqualTo("bazinga.png");	

									assertThat(results.getId()).isEqualTo("3");	

									return	true;	

						});	

				}	

This	last	test	case	can	be	described	as	follows:

repository.findByName()	is	used	to	fetch	one	record
We	again	use	StepVerifier	to	create	a	subscriber	for	our	Mono	and	then	expect	the	next	signal	to	come
through,	indicating	that	it	was	fetched
Inside	the	lambda,	we	perform	a	couple	of	AssertJ	assertions	to	verify	the	state	of	this	Image

Due	to	the	functional	nature	of	StepVerifier,	we	need	to	return	a	Boolean	representing
pass/fail.

By	the	way,	exactly	how	many	CRUD	methods	do	we	need	to	test?	We	covered	findAll	and	findByName.	In
principle,	we	could	sidestep	findAll	since	that	can	be	considered	a	part	of	Spring	Data	MongoDB.	But	it
makes	a	good	example	in	this	book	for	testing	a	Reactor	Flux	result.

In	general,	we	shouldn't	bite	off	testing	framework	code.	But	verifying	our	custom	finder	makes	perfect
sense.	And	there's	always	room	for	end-to-end	testing,	which	we'll	explore	further	in	this	chapter.

Testing	with	a	real	MongoDB	database
Testing	against	an	embedded	MongoDB	instance	is	quite	handy.	But	there	are	times	when	we	need	to
work	with	a	real	instance,	and	for	multiple	reasons:	security	settings,	a	batch	of	live	data,	a	customized
configuration.	Whatever	the	reason,	there	is	no	need	for	that	to	derail	our	testing	efforts.

We	can	write	another	test	class,	LiveImageRepositoryTests,	and	make	it	look	like	this:

				@RunWith(SpringRunner.class)	

				@DataMongoTest(excludeAutoConfiguration	=	

						EmbeddedMongoAutoConfiguration.class)	

						public	class	LiveImageRepositoryTests	{	

								@Autowired	

								ImageRepository	repository;		

								@Autowired	

								MongoOperations	operations;	

The	details	for	this	preceding	live	test	are	as	follows:

@RunWith(SpringRunner.class)	is	our	familiar	annotation	to	integrate	Spring	with	JUnit.
@DataMongoTest	(and	the	other	@...​Test	annotations)	lets	us	exclude	explicit	autoconfiguration	classes.
To	switch	off	Flapdoodle,	all	we	need	to	do	is	exclude	EmbeddedMongoAutoConfiguration

The	rest	of	the	code	in	this	class	is	the	same	as	EmbeddedImageRepositoryTests,	so	there's	no	need	to	show	it
here.	(In	fact,	it	would	be	quite	nice	if	the	exact	same	tests	ran	on	both	embedded	as	well	as	a	live
MongoDB	instance.)

Let's	run	our	latest	batch	of	both	embedded	and	live	MongoDB	tests:

All	green	(along	with	the	OK	icon)!

Keeping	identical	test	code	in	two	different	classes	violates	the	DRY	(Don't	Repeat
Yourself)	principle.	If	we	altered	one	test	class,	we	should	presumably	alter	the	matching
test	case	in	the	other	class.	But	a	new	teammate	may	not	be	aware	of	this.	It's	left	as	an
exercise	for	the	reader	to	extract	an	abstract	set	of	test	methods	to	be	used	by	both
LiveImageRepositoryTests	and	EmbeddedImageRepositoryTests.

Testing	WebFlux	controllers
So	far,	we've	looked	at	unit	testing	as	well	as	slice	testing	for	MongoDB.	These	are	good	for	covering
services	and	backend	logic.	The	last	part	we	need	to	ensure	is	whether	the	web	controllers	are	working
properly.

Spring	Boot	comes	with	automated	support	to	help	us	pick	the	exact	type	of	test	that	we	want	to	run.
Let's	start	with	an	example:

				@RunWith(SpringRunner.class)	

				@WebFluxTest(controllers	=	HomeController.class)	

				@Import({ThymeleafAutoConfiguration.class})	

				public	class	HomeControllerTests	{	

						@Autowired	

						WebTestClient	webClient;	

						@MockBean	

						ImageService	imageService;	

						...	

				}	

This	preceding	beginning	of	a	controller	test	case	can	be	described	as	follows:

@RunWith(SpringRunner.class)	ensures	all	of	our	Spring	Framework	and	Spring	Boot	test	annotations
integrate	properly	with	JUnit.
@WebFluxTest(controllers	=	HomeController.class)	is	another	slice	of	testing	which	focuses	on	Spring
WebFlux.	The	default	configuration	enables	all	@Controller	beans	and	@RestController	beans	as	well	as
a	mock	web	environment,	but	with	the	rest	of	the	autoconfiguration	disabled.	However,	by	using
the	controllers	argument,	we	have	confined	this	test	case	to	ONLY	enable	HomeController.
@Import(...​)	specifies	what	additional	bits	we	want	configured	outside	of	any	Spring	WebFlux
controllers.	In	this	case,	the	Thymeleaf	autoconfiguration	is	needed.
A	WebTestClient	bean	is	autowired	into	our	test	case,	giving	us	the	means	to	make	mock	web	calls.
@MockBean	signals	that	the	ImageService	collaborator	bean	needed	by	our	HomeController	will	be	replaced
by	a	mock,	which	we'll	configure	shortly.

Even	though	@WebFluxTest	is	another	slice	similar	to	@DataMongoTest,	we	broke	it	out	of	the
previous	section,	Slice	Testing,	because	WebFlux	testing	comes	with	an	extensive	range	of
configuration	options,	which	we	will	explore	later	in	more	detail.

Let's	look	at	a	test	case	where	we	get	the	base	URL	/:

				@Test	

				public	void	baseRouteShouldListAllImages()	{	

						//	given	

						Image	alphaImage	=	new	Image("1",	"alpha.png");	

						Image	bravoImage	=	new	Image("2",	"bravo.png");	

						given(imageService.findAllImages())	

								.willReturn(Flux.just(alphaImage,	bravoImage));	

	

						//	when	

						EntityExchangeResult<String>	result	=	webClient	

								.get().uri("/")	

								.exchange()	

								.expectStatus().isOk()	

								.expectBody(String.class).returnResult();	

	

						//	then	

						verify(imageService).findAllImages();	

						verifyNoMoreInteractions(imageService);	

						assertThat(result.getResponseBody())	

								.contains(

										"<title>Learning	Spring	Boot:	Spring-a-Gram</title>")	

								.contains("")	

								.contains("");	

				}	

We	can	cover	the	details	of	this	last	test	case	as	follows:

@Test	marks	this	method	as	a	JUnit	test	case.
The	method	name,	baseRouteShouldListAllImages,	gives	us	a	quick	summary	of	what	this	method	should
verify.
The	first	three	lines	mock	up	the	ImageService	bean	to	return	a	Flux	of	two	images	when	findAllImages
gets	called.
webClient	is	then	used	to	perform	a	GET	/	using	its	fluent	API.
We	verify	the	HTTP	status	to	be	a	200	OK,	and	extract	the	body	of	the	result	into	a	string.
We	use	Mockito's	verify	to	prove	that	our	ImageService	bean's	findAllImages	was	indeed	called.
We	use	Mockito's	verifyNoMoreInteractions	to	prove	that	no	other	calls	are	made	to	our	mock
ImageService.
Finally,	we	use	AssertJ	to	inspect	some	key	parts	of	the	HTML	page	that	was	rendered.

This	test	method	gives	us	a	pretty	good	shake	out	of	GET	/.	We	are	able	to	verify	that	the	web	page	was
rendered	with	the	right	content.	We	can	also	verify	that	our	ImageService	bean	was	called	as	expected.
And	both	were	done	without	involving	a	real	MongoDB	engine	and	without	a	fully	running	web
container.

Spring's	WebFlux	machinery	is	verified	since	it	still	includes	the	bits	that	take	an	incoming	request	for	/
and	routes	it	to	HomeController.index(),	yielding	a	Thymeleaf-generated	HTML	page.	This	way,	we	know
our	controller	has	been	wired	properly.	And	oftentimes,	this	is	enough	to	prove	the	web	call	works.

A	key	scenario	to	explore	is	actually	fetching	a	file,	mockingly.	It's	what	our	app	does	when	requesting
a	single	image.	Check	out	the	following	test	case:

				@Test	

				public	void	fetchingImageShouldWork()	{	

					given(imageService.findOneImage(any()))	

						.willReturn(Mono.just(

									new	ByteArrayResource("data".getBytes())));	

	

						webClient	

								.get().uri("/images/alpha.png/raw")	

								.exchange()	

								.expectStatus().isOk()	

								.expectBody(String.class).isEqualTo("data");	

						verify(imageService).findOneImage("alpha.png");	

						verifyNoMoreInteractions(imageService);	

				}	

This	preceding	test	case	can	be	described	as	follows:

@Test	flags	this	method	as	a	JUnit	test	case.
The	method	name,	fetchingImageShouldWork,	hints	that	this	tests	successful	file	fetching.

The	ImageService.findOneImage	method	returns	a	Mono<Resource>,	so	we	need	to	assemble	a	mock
resource.	That	can	be	achieved	using	Spring's	ByteArrayResource,	which	takes	a	byte[].	Since	all	Java
strings	can	be	turned	into	byte	arrays,	it's	a	piece	of	cake	to	plug	it	in.
webClient	calls	GET	/images/alpha.png/raw.
After	the	exchange()	method,	we	verify	the	HTTP	status	is	OK.
We	can	even	check	the	data	content	in	the	body	of	the	HTTP	response	given	that	the	bytes	can	be
curried	back	into	a	Java	string.
Lastly,	we	use	Mockito's	verify	to	make	sure	our	mock	was	called	once	and	in	no	other	way.

Since	we're	coding	against	a	very	simple	interface,	Resource,	we	don't	have	to	go	through	any
complicated	ceremony	of	staging	a	fake	test	file	and	having	it	served	up.	While	that's	possible,	Mockito
makes	it	easy	to	stand	up	stubs	and	mocks.	Additionally,	Spring's	assortment	of	Resource
implementations	lets	us	pick	the	right	one.	This	reinforces	the	benefit	of	coding	services	against
interfaces	and	not	implementations	when	possible.

The	other	side	of	the	coin	when	testing	file	retrieval	is	to	verify	that	we	properly	handle	file	errors.
What	if	we	attempted	to	fetch	an	image	but	for	some	reason	the	file	on	the	server	was	corrupted?	Check
it	out	in	the	following	test	code:

				@Test		

				public	void	fetchingNullImageShouldFail()	throws	IOException	{	

						Resource	resource	=	mock(Resource.class);	

						given(resource.getInputStream())	

								.willThrow(new	IOException("Bad	file"));	

						given(imageService.findOneImage(any()))	

								.willReturn(Mono.just(resource));	

	

						webClient	

								.get().uri("/images/alpha.png/raw")	

								.exchange()	

								.expectStatus().isBadRequest()	

								.expectBody(String.class)	

								.isEqualTo("Couldn't	find	alpha.png	=>	Bad	file");	

	

						verify(imageService).findOneImage("alpha.png");	

						verifyNoMoreInteractions(imageService);	

				}	

This	preceding	test	of	a	failure	can	be	described	as	follows:

@Test	flags	this	method	as	a	JUnit	test	case.
The	method	name,	fetchingNullImageShouldFail,	hints	that	this	test	is	aimed	at	a	failure	scenario.
We	need	to	mock	out	the	file	on	the	server,	which	is	represented	as	a	Spring	Resource.	That	way,	we
can	force	it	to	throw	an	IOException	when	getInputStream	is	invoked.
That	mock	is	returned	when	ImageService.findOneImage	is	called.	Notice	how	we	use	Mockito's	any()	to
simplify	inputs?
webClient	is	again	used	to	make	the	call.
After	the	exchange()	method	is	made,	we	verify	that	the	HTTP	status	is	a	400	Bad	Request.
We	also	check	the	response	body	and	ensure	it	matches	the	expected	body	from	our	controller's
exception	handler.
Finally,	we	use	Mockito	to	verify	that	our	mock	ImageService.findOneImage()	was	called	once	(and	only
once!)	and	that	no	other	calls	were	made	to	this	mock	bean.

This	test	case	shows	a	critical	skill	we	all	need	to	polish:	verifying	that	the	path	of	failure	is	handled
properly.	When	a	manager	asks	what	if	the	file	isn't	there?,	we	can	show	them	a	test	case	indicating	that
we	have	covered	it.	Say	we	write	a	try...catch	clause	in	the	our	code,	like	this	one	in
HomeController.oneRawImage():

				return	imageService.findOneImage(filename)	

				.map(resource	->	{	

						try	{	

								return	ResponseEntity.ok()	

								.contentLength(resource.contentLength())	

								.body(new	InputStreamResource(

										resource.getInputStream()));	

						}	catch	(IOException	e)	{	

								return	ResponseEntity.badRequest()	

								.body("Couldn't	find	"	+	filename	+	

										"	=>	"	+	e.getMessage());	

						}	

				});	

We	should	immediately	start	thinking	of	two	test	cases:	one	test	case	for	the	try	part	when	we	can	find
the	file	and	return	an	OK,	and	another	test	case	for	the	catch	part	when	IOException	gets	thrown	and	we
return	a	Bad	Request.

While	it's	not	hard	to	think	up	all	the	successful	scenarios,	capturing	the	failure	scenarios	and	testing
them	is	important.	And	Mockito	makes	it	quite	easy	to	mock	failing	behavior.	In	fact,	it's	a	common
pattern	to	have	one	mock	return	another,	as	we	did	in	this	test	case.

Mockito	makes	it	easy	to	mock	things	left	and	right.	Just	keep	sight	of	what	you're	really
trying	to	test.	One	can	get	so	caught	up	in	mocking	so	that	all	that	gets	tested	are	the
mocks.	We	must	be	sure	to	verify	the	actual	behavior	of	the	code,	or	the	test	will	be
meaningless.

Another	webish	behavior	that	happens	all	the	time	is	processing	a	call	and	then	redirecting	the	client	to
another	web	location.	This	is	exactly	the	behavior	when	we	issue	an	HTTP	DELETE	to	our	site.	The	URL	is
expected	to	carry	the	resource	that	must	be	deleted.	Once	completed,	we	need	to	instruct	the	browser	to
go	back	to	the	home	page.

Check	out	the	following	test	case:

				@Test	

				public	void	deleteImageShouldWork()	{	

						Image	alphaImage	=	new	Image("1",	"alpha.png");	

						given(imageService.deleteImage(any())).willReturn(Mono.empty());	

	

						webClient	

								.delete().uri("/images/alpha.png")	

								.exchange()	

								.expectStatus().isSeeOther()	

								.expectHeader().valueEquals(HttpHeaders.LOCATION,	"/");	

	

						verify(imageService).deleteImage("alpha.png");	

						verifyNoMoreInteractions(imageService);	

				}	

We	can	describe	this	preceding	redirecting	web	call	as	follows:

The	@Test	flags	this	method	as	a	JUnit	test	case.
We	prep	our	ImageService	mock	bean	to	handle	a	deleteImage	by	returning	Mono.empty().	This	is	the	way

to	construct	a	Mono<Void>	object,	which	represents	the	promise	that	our	service	hands	us	when
deletion	of	the	file	and	its	corresponding	MongoDB	record	are	both	completed.
webClient	performs	a	DELETE	/images/alpha.png.
After	the	exchange()	is	complete,	we	verify	the	HTTP	status	is	303	See	Other,	the	outcome	of	a	Spring
WebFlux	redirect:/	directive.
As	part	of	the	HTTP	redirect,	there	should	also	be	a	Location	header	containing	the	new	URL,	/.
Finally,	we	confirm	that	our	ImageService	mock	bean's	deleteImage	method	was	called	and	nothing
else.

This	proves	that	we	have	properly	invoked	our	service	and	then	followed	it	up	with	a	redirect	back	to
the	home	page.	It's	actually	possible	to	grab	that	Location	header	and	issue	another	webClient	call,	but
there	is	no	point	in	this	test	case.	We	have	already	verified	that	behavior.

However,	imagine	that	the	redirect	included	some	contextual	thing	like	redirect:/?msg=Deleted	showing	a
desire	to	bounce	back	to	the	home	page	but	with	extra	data	to	be	shown.	That	would	be	a	great	time	to
issue	a	second	call	and	prove	that	this	special	message	was	rendered	properly.

Now	we	can	run	the	entire	test	case	and	see	green	bubbles	all	the	way	down:

We	have	used	Mockito	quite	a	bit	but	we	aren't	going	to	delve	into	all	its	features.	For	that,
I	recommend	reading	Mockito	Cookbook	written	by	Spring	teammate	Marcin	Grzejszczak
(@MGrzejszczak).

Fully	embedded	Spring	Boot	app	tests
We	did	some	nice	testing	of	the	web	controller	and	verified	that	it	behaves	properly.	But	that	was	just
another	slice.	At	some	point,	it's	good	to	test	the	whole	thing,	end-to-end.	And	with	today's	modern
suite	of	test	tools,	it's	totally	doable.

Spring	Boot	doesn't	always	support	every	tool.	For	example,	Selenium	WebDriver,	a	popular	browser
automation	toolkit,	is	not	yet	supported	outside	of	servlets.

No	problem!	What	we	really	need	is	for	Spring	Boot	to	launch	our	application,	preferably	on	an
unoccupied	port,	and	get	out	of	the	way	while	we	do	some	testing.	So	let's	do	just	that.

We	can	start	by	crafting	a	new	test	case	like	this:

				@RunWith(SpringRunner.class)	

				@SpringBootTest(

						webEnvironment	=	SpringBootTest.WebEnvironment.RANDOM_PORT)	

						public	class	EndToEndTests	{	

This	preceding	test	class	can	be	described	as	follows:

@RunWith(SpringRunner.class)	ensures	the	Spring	Boot	annotations	integrate	with	JUnit.
@SpringBootTest	is	the	test	annotation	where	we	can	activate	all	of	Spring	Boot	in	a	controlled
fashion.	With	webEnvironment	switched	from	the	default	setting	of	a	mocked	web	environment	to
SpringBootTest.WebEnvironment.RANDOM_PORT,	a	real	embedded	version	of	the	app	will	launch	on	a	random
available	port.

This	configuration	will	spin	up	a	copy	of	our	application	on	an	open	port,	with	a	full-blown
autoconfiguration,	and	all	of	our	CommandLineRunners	will	run.	That	means	our	InitDatabase	class	that	pre-
loads	MongoDB	will	kick	in.

By	the	way,	Flapdoodle	will	also	run	an	embedded	MongoDB	instance	because	we	are	in
the	test	scope.

First	of	all,	we	need	a	handful	of	test	objects	declared	as	fields	of	our	test	class.	These	are	obtained	as
follows:

				static	ChromeDriverService	service;	

				static	ChromeDriver	driver;	

				@LocalServerPort	

				int	port;	

These	attributes	of	EndToEndTests	can	be	described	as	follows:

ChromeDriverService:	This	gives	us	a	handle	on	the	bridge	between	Selenium	and	the	Chrome	handling
library
ChromeDriver:	This	is	an	implementation	of	the	WebDriver	interface,	giving	us	all	the	operations	to	drive

a	test	browser
@LocalServerPort:	This	is	a	Spring	Boot	annotation	that	instructs	Boot	to	autowire	the	port	number	of
the	web	container	into	port

To	use	ChromeDriver,	not	only	do	we	need	the	browser	Chrome	downloaded	and	installed	in
its	default	location,	we	also	need	a	separate	executable:	chromedriver.	Assuming	you	have
visited	https://sites.google.com/a/chromium.org/chromedriver/downloads,	downloaded	the	bundle
(macOS	in	my	case),	unzipped	it,	and	put	the	executable	in	a	folder	named	ext,	you	can
proceed.

With	chromedriver	installed	in	ext,	we	can	configure	it	to	start	and	stop	as	follows:

				@BeforeClass	

				public	static	void	setUp()	throws	IOException	{	

						System.setProperty("webdriver.chrome.driver",	

								"ext/chromedriver");	

						service	=	createDefaultService();	

						driver	=	new	ChromeDriver(service);	

						Path	testResults	=	Paths.get("build",	"test-results");	

						if	(!Files.exists(testResults))	{	

								Files.createDirectory(testResults);	

						}	

				}	

	

				@AfterClass		

				public	static	void	tearDown()	{	

						service.stop();		

				}	

This	setup/teardown	behavior	can	be	described	as	follows:

@BeforeClass	directs	JUnit	to	run	this	method	before	any	test	method	inside	this	class	runs	and	to
only	run	this	method	once
Inside	the	setUp	method,	it	sets	the	webdriver.chrome.driver	property	to	the	relative	path	of	chromedriver
Next,	it	creates	a	default	service
Then	it	creates	a	new	ChromeDriver	to	be	used	by	all	the	test	methods
Finally,	it	creates	a	test	directory	to	capture	screenshots	(as	we'll	soon	see)
@AfterClass	directs	JUnit	to	run	the	tearDown	method	after	ALL	tests	have	run	in	this	class
It	commands	ChromeDriverService	to	shut	down.	Otherwise,	the	server	process	will	stay	up	and
running

Is	this	starting	to	sound	a	bit	convoluted?	We'll	explore	options	to	simplify	this	later	on	in	this	chapter.

For	now,	let's	focus	on	writing	this	test	case:

				@Test	

				public	void	homePageShouldWork()	throws	IOException	{	

						driver.get("http://localhost:"	+	port);	

	

						takeScreenshot("homePageShouldWork-1");	

	

						assertThat(driver.getTitle())	

								.isEqualTo("Learning	Spring	Boot:	Spring-a-Gram");	

	

						String	pageContent	=	driver.getPageSource();	

	

						assertThat(pageContent)	

								.contains("");	

						WebElement	element	=	driver.findElement(

										By.cssSelector("a[href*=\"bazinga.png\"]"));

						Actions	actions	=	new	Actions(driver);

						actions.moveToElement(element).click().perform();

	

						takeScreenshot("homePageShouldWork-2");

						driver.navigate().back();	

				}	

This	preceding	test	case	can	be	detailed	as	follows:

@Test	indicates	this	is	a	JUnit	test	case
driver	navigates	to	the	home	page	using	the	injected	port
It	takes	a	screenshot	so	we	can	inspect	things	after	the	fact
We	verify	the	title	of	the	page	is	as	expected
Next,	we	grab	the	entire	page's	HTML	content	and	verify	one	of	the	links
Then	we	hunt	down	that	link	using	a	W3C	CSS	selector	(there	are	other	options	as	well),	move	to
it,	and	click	on	it
We	grab	another	snapshot	and	then	click	on	the	back	button

This	is	a	pretty	basic	test.	It	doesn't	do	a	lot	apart	from	verifying	the	home	page	and	checking	out	one
link.	However,	it	demonstrates	that	we	can	automatically	test	the	entire	system.	Remember,	​we	have	the
whole	system	up,	including	a	live	MongoDB	database	(if	you	count	an	embedded	one	as	being	real).
This	verifies	not	only	our	own	code,	but	our	assumptions	regarding	what	gets	autoconfigured,
autowired,	and	initialized.

As	a	culmination	of	testing	nirvana,	we	can	even	grab	screen	snapshots	to	prove	we	were	here.	Or	at
least	that	our	test	case	was	here.	That	code	is	shown	here:

				private	void	takeScreenshot(String	name)	throws	IOException	{	

					FileCopyUtils.copy(

						driver.getScreenshotAs(OutputType.FILE),	

						new	File("build/test-results/TEST-"	+	name	+	".png"));	

				}	

Snapping	a	screenshot	can	be	explained	as	follows:

driver.getScreenshotAs(OutputType.FILE)	taps	the	TakesScreenshot	subinterface	to	grab	a	snapshot	of	the
screen	and	put	it	into	a	temp	file
Spring's	FileCopyUtils	utility	method	is	used	to	copy	that	temp	file	into	the	project's	build/test-results
folder	using	the	input	argument	to	give	it	a	custom	name

Taking	screenshots	is	a	key	reason	to	use	either	ChromeDriver,	FirefoxDriver,	or	SafariDriver.	All	of	these	real-
world	browser	integrations	support	this	feature.	And	thanks	to	that,	we	have	the	following	snapshot
results:

That	first	shot	shows	the	whole	web	page.	The	following	screenshot	shows	a	single	image	after	being
clicked:

The	screenshot	of	this	image	may	look	a	little	awkward,	but	remember;	these	images	aren't	real	JPGs.
Instead,	they	are	strings	stuffed	into	the	filesystem.

If	we	run	our	entire	suite	of	test	cases,	we	can	see	the	whole	thing	takes	just	shy	of	2.5	seconds:

Impressive,	huh?

How	good	a	test	suite	is	that?	Using	the	IDE,	we	can	run	the	same	test	suite	but	with	coverage	analysis

turned	on:

After	running	the	same	test	suite	but	with	the	IDE's	coverage	tools	enabled,	we	can	get	a	read	out	in	the
source	code	listing,	as	seen	in	this	screenshot:

That's	quite	handy.	We	can	even	drill	into	each	class	and	see	what's	missing.	As	deft	as	this	is,	we	aren't
going	to	delve	any	more	into	test	coverage.	That's	something	best	left	to	a	more	test-oriented	book.

Don't	let	test	coverage	consume	you.	As	mentioned	in	my	other	book,	Python	Testing
Cookbook,	in	Chapter	9	under	the	Coverage	isn't	everything	section,	the	test	coverage
should	be	used	to	identify	new,	reasonable	scenarios	that	should	be	checked	out,	not
gaming	the	system	to	squeeze	out	another	percentage	point	or	two.	And	coverage	reports
should	never	be	used	to	compare	one	system	or	test	regimen	against	another,	let	alone	be
used	as	a	gate	for	release.	We	should	all	seek	to	increase	test	coverage	over	time	as	the
means	to	increase	confidence	and	reduce	risk,	not	as	a	gate	to	make	releases.

We	just	mentioned	all	the	ceremony	invested	into	getting	Chrome	to	operate.	Why	did	we	do	that?
Because	the	one	WebDriver	implementation	that	requires	no	such	effort	to	bring	online	doesn't	support
taking	screenshots.	There	is	also	no	way	of	knowing	if	the	person	checking	out	your	code	has	the	same
browser	installed.

If	we	coded	everything	around	Chrome	because	we	don't	like	Firefox	but	another	teammate	doesn't
have	Chrome,	we've	got	a	problem.

On	one	hand,	if	screenshots	aren't	important,	then	HtmlUnitDriver	is	the	way	to	go.	It	comes	out	of	the	box,
works	as	good	as	any	other	WebDriver,	and	doesn't	require	any	third-party	executables	or	drivers.	But	that
is	the	penalty	of	going	by	the	least	common	denominator.

Wouldn't	it	be	preferable	to	have	whatever	WebDriver	we	can	get	based	on	whatever	we	have	installed	on
our	system	and	automatically	load	that	into	our	test	case?	After	all,	Spring	Boot	is	about	reducing	Java
complexity	when	building	apps.

If	you	sense	a	slow	walk	toward	a	Spring	Boot-oriented	solution	to	this	craziness,	you're	right.	In	the
next	section,	we'll	explore	how	to	autoconfigure	a	WebDriver	based	on	what's	available	and	then	we'll	unit
test	that	autoconfiguration	policy.

Testing	your	custom	Spring	Boot
autoconfiguration
If	picking	between	several	WebDriver	implementations	sounds	hokey	and	unnecessarily	complicated,	then
let's	do	what	Spring	Boot	does	best:	autoconfigure	it!

Okay,	if	we're	going	to	autoconfigure	something,	we	sure	as	heck	want	to	test	what	we're	doing.	That
way,	we	can	make	sure	it	performs	as	expected.	To	do	so	requires	a	little	bit	of	test	setup.	Check	it	out:

				public	class	WebDriverAutoConfigurationTests	{	

						private	AnnotationConfigApplicationContext	context;	

						@After	

						public	void	close()	{	

								if	(this.context	!=	null)	{	

										this.context.close();	

								}	

						}	

	

						private	void	load(Class<?>[]	configs,	String...	environment)	{	

								AnnotationConfigApplicationContext	applicationContext	=	

										new	AnnotationConfigApplicationContext();	

								applicationContext	

										.register(WebDriverAutoConfiguration.class);	

								if	(configs.length	>	0)	{	

										applicationContext.register(configs);	

								}	

								EnvironmentTestUtils	

										.addEnvironment(applicationContext,	environment);	

								applicationContext.refresh();	

								this.context	=	applicationContext;	

						}

						...more	coming	later...

				}	

This	preceding	test	case	is	set	up	as	follows:

It	starts	off	very	different	from	what	we've	seen	up	until	now.	Instead	of	using	various	Spring	Boot
test	annotations,	this	one	starts	with	nothing.	That	way,	we	can	add	only	the	bits	of	Boot	that	we
want	in	a	very	fine-grained	fashion.
We'll	use	Spring's	AnnotationConfigApplicationContext	as	the	DI	container	of	choice	to	programmatically
register	beans.
The	@After	annotation	flags	the	close()	method	to	run	after	every	test	case	and	close	the	application
context,	ensuring	the	next	test	case	has	a	clean	start.
load()	will	be	invoked	by	each	test	method	as	part	of	its	setup,	accepting	a	list	of	Spring
configuration	classes	as	well	as	optional	property	settings,	as	it	creates	a	new	application	context.
load()	then	registers	a	WebDriverAutoConfiguration	class	(which	we	haven't	written	yet).
After	that,	it	registers	any	additional	test	configuration	classes	we	wish.
It	then	uses	Spring	Boot's	EnvironmentTestUtils	to	add	any	configuration	property	settings	we	need	to
the	application	context.	This	is	a	convenient	way	to	programmatically	set	properties	without
mucking	around	with	files	or	system	settings.
It	then	uses	the	application	context's	refresh()	function	to	create	all	the	beans.
Lastly,	it	assigns	the	application	context	to	the	test	class's	context	field.

In	this	bit	of	code,	we	programmatically	build	up	a	Spring	application	context	from	scratch.	In	this	test
class,	we	register	our	brand	new	WebDriverAutoConfiguration	class	to	be	at	the	heart	of	all	of	our	tests.	Then
we	are	free	to	run	all	kinds	of	test	cases,	ensuring	it	acts	properly.	We	can	even	register	different
configuration	classes	to	override	any	of	the	autoconfiguration	beans.

Now	let's	noodle	out	our	first	test	case.	What's	a	good	place	to	start?	What	if	we	were	to	disable	all	the
browser-based	WebDriver	instances	(like	Firefox	and	Chrome),	and	instead,	expect	the	thing	to	fall	back	to
the	universal	HtmlUnitDriver?	Let's	try	it:

				@Test	

				public	void	fallbackToNonGuiModeWhenAllBrowsersDisabled()	{	

						load(new	Class[]{},	

								"com.greglturnquist.webdriver.firefox.enabled:false",	

								"com.greglturnquist.webdriver.safari.enabled:false",	

								"com.greglturnquist.webdriver.chrome.enabled:false");	

			

						WebDriver	driver	=	context.getBean(WebDriver.class);	

						assertThat(ClassUtils.isAssignable(TakesScreenshot.class,	

								driver.getClass())).isFalse();	

						assertThat(ClassUtils.isAssignable(HtmlUnitDriver.class,	

								driver.getClass())).isTrue();	

				}	

This	test	case	can	be	explained	as	follows:

@Test	marks	fallbackToNonGuiModeWhenAllBrowsersDisabled	as	a	JUnit	test	method.
To	start	things,	it	uses	the	load()	method.	Since	we	don't	have	any	custom	overrides,	we	supply	it
with	an	empty	array	of	configuration	classes.	We	also	include	a	slew	of	properties,	the	first	one
being	com.greglturnquist.webdriver.firefox.enabled:false.	From	a	design	perspective,	it's	nice	to
optionally	exclude	certain	types,	so	having	a	well-qualified	property	(using	a	domain	we	own)	and
setting	them	all	to	false	sounds	like	a	good	start.
Now	we	can	ask	the	application	context	to	give	us	a	WebDriver	bean.
If	it	bypassed	all	those	browser-specific	ones	and	landed	on	HtmlUnitDriver,	then	it	shouldn't	support
the	TakesScreenshot	interface.	We	can	verify	that	with	the	AssertJ	assertThat()	check,	using	Spring's
ClassUtils.isAssignable	check.
To	make	it	crystal	clear	that	we're	getting	an	HtmlUnitDriver,	we	can	also	write	another	check
verifying	that.

Since	we	aren't	actually	testing	the	guts	of	Selenium	WebDriver,	there	is	no	need	to	examine	the	object
anymore.	We	have	what	we	want,	an	autoconfigured	WebDriver	that	should	operate	well.

Having	captured	our	first	expected	set	of	conditions,	it's	time	to	roll	up	our	sleeves	and	get	to	work.
We'll	start	by	creating	WebDriverAutoConfiguration.java	as	follows:

				@Configuration	

				@ConditionalOnClass(WebDriver.class)	

				@EnableConfigurationProperties(

						WebDriverConfigurationProperties.class)	

				@Import({ChromeDriverFactory.class,	

						FirefoxDriverFactory.class,	SafariDriverFactory.class})	

				public	class	WebDriverAutoConfiguration	{	

						...	

				}	

This	preceding	Spring	Boot	autoconfiguration	class	can	be	described	as	follows:

@Configuration:	This	indicates	that	this	class	is	a	source	of	beans'	definitions.	After	all,	that's	what
autoconfiguration	classes	do--create	beans.
@ConditionalOnClass(WebDriver.class):	This	indicates	that	this	configuration	class	will	only	be	evaluated
by	Spring	Boot	if	it	detects	WebDriver	on	the	classpath,	a	telltale	sign	of	Selenium	WebDriver	being
part	of	the	project.
@EnableConfigurationProperties(WebDriverConfigurationProperties.class):	This	activates	a	set	of	properties	to
support	what	we	put	into	our	test	case.	We'll	soon	see	how	to	easily	define	a	set	of	properties	that
get	the	rich	support	Spring	Boot	provides	of	overriding	through	multiple	means.
@Import(...​):	This	is	used	to	pull	in	extra	bean	definition	classes.

This	class	is	now	geared	up	for	us	to	actually	define	some	beans	pursuant	to	creating	a	WebDriver	instance.
To	get	an	instance,	we	can	imagine	going	down	a	list	and	trying	one	such	as	Firefox.	If	it	fails,	move	on
to	the	next.	If	they	all	fail,	resort	to	using	HtmlUnitDriver.

The	following	class	shows	this	perfectly:

				@Primary	

				@Bean(destroyMethod	=	"quit")	

				@ConditionalOnMissingBean(WebDriver.class)		

				public	WebDriver	webDriver(

						FirefoxDriverFactory	firefoxDriverFactory,	

						SafariDriverFactory	safariDriverFactory,	

						ChromeDriverFactory	chromeDriverFactory)	{	

								WebDriver	driver	=	firefoxDriverFactory.getObject();	

	

								if	(driver	==	null)	{	

										driver	=	safariDriverFactory.getObject();	

								}	

	

								if	(driver	==	null)	{	

										driver	=	chromeDriverFactory.getObject();	

								}	

	

								if	(driver	==	null)	{	

										driver	=	new	HtmlUnitDriver();	

								}	

	

								return	driver;	

						}

This	WebDriver	creating	code	can	be	described	as	follows:

@Primary:	This	indicates	that	this	method	should	be	given	priority	when	someone	is	trying	to
autowire	a	WebDriver	bean	over	any	other	method	(as	we'll	soon	see).
@Bean(destroyMethod	=	"quit"):	This	flags	the	method	as	a	Spring	bean	definition,	but	with	the	extra
feature	of	invoking	WebDriver.quit()	when	the	application	context	shuts	down.
@ConditionalOnMissingBean(WebDriver.class):	This	is	a	classic	Spring	Boot	technique.	It	says	to	skip	this
method	if	there	is	already	a	defined	WebDriver	bean.	HINT:	There	should	be	a	test	case	to	verify	that
Boot	backs	off	properly!
webDriver():	This	expects	three	input	arguments	to	be	supplied	by	the	application	context--a
FirefoxDriver	factory,	a	SafariDriver	factory,	and	a	ChromeDriver	factory.	What	is	this	for?	It	allows	us	to
swap	out	FirefoxDriver	with	a	mock	for	various	test	purposes.	Since	this	doesn't	affect	the	end	user,
this	form	of	indirection	is	suitable.
The	code	starts	by	invoking	firefoxDriver	using	the	FirefoxDriver	factory.	If	null,	it	will	try	the	next
one.	It	will	continue	doing	so	until	it	reaches	the	bottom,	with	HtmlUnitDriver	as	the	last	choice.	If	it

got	a	hit,	these	if	clauses	will	be	skipped	and	the	WebDriver	instance	returned.

This	laundry	list	of	browsers	to	try	out	makes	it	easy	to	add	new	ones	down	the	road	should	we	wish	to
do	so.	But	before	we	investigate,	say	firefoxDriver(),	let's	first	look	at	FirefoxDriverFactory,	the	input
parameter	to	that	method:

				class	FirefoxDriverFactory	implements	ObjectFactory<FirefoxDriver>

				{	

						private	WebDriverConfigurationProperties	properties;	

	

						FirefoxDriverFactory(WebDriverConfigurationProperties	properties)

						{	

								this.properties	=	properties;	

						}	

	

						@Override	

						public	FirefoxDriver	getObject()	throws	BeansException	{	

								if	(properties.getFirefox().isEnabled())	{	

										try	{	

													return	new	FirefoxDriver();	

										}	catch	(WebDriverException	e)	{	

														e.printStackTrace();	

													//	swallow	the	exception	

										}	

								}	

								return	null;	

						}	

				}	

This	preceding	driver	factory	can	be	described	as	follows:

This	class	implements	Spring's	ObjectFactory	for	the	type	of	FirefoxDriver.	It	provides	the	means	to
create	the	named	type.
With	constructor	injection,	we	load	a	copy	of	WebDriverConfigurationProperties.
It	implements	the	single	method,	getObject(),	yielding	a	new	FirefoxDriver.
If	the	firefox	property	is	enabled,	it	attempts	to	create	a	FirefoxDriver.	If	not,	it	skips	the	whole	thing
and	returns	null.

This	factory	uses	the	old	trick	of	try	to	create	the	object	to	see	if	it	exists.	If	successful,	it	returns	it.	If
not,	it	swallows	the	exception	and	returns	a	null.	This	same	tactic	is	used	to	implement	a	SafariDriver
bean	and	a	ChromeDriver	bean.	Since	the	code	is	almost	identical,	it's	not	shown	here.

Why	do	we	need	this	factory	again?	Because	later	in	this	chapter	when	we	wish	to	prove	it	will	create
such	an	item,	we	don't	want	the	test	case	to	require	installing	Firefox	to	work	properly.	Thus,	we'll
supply	a	mocked	solution.	Since	this	doesn't	impact	the	end	user	receiving	the	autoconfigured	WebDriver,
it's	perfectly	fine	to	use	such	machinery.

Notice	how	we	used	properties.getFirefox().isEnabled()	to	decide	whether	or	not	we	would	try?	That	was
provided	by	our	com.greglturnquist.webdriver.firefox.enabled	property	setting.	To	create	a	set	of	properties
that	Spring	Boot	will	let	consumers	override	as	needed,	we	need	to	create	a
WebDriverConfigurationProperties	class	like	this:

				@Data	

				@ConfigurationProperties("com.greglturnquist.webdriver")	

				public	class	WebDriverConfigurationProperties	{	

	

						private	Firefox	firefox	=	new	Firefox();	

						private	Safari	safari	=	new	Safari();	

						private	Chrome	chrome	=	new	Chrome();	

	

						@Data	

						static	class	Firefox	{	

								private	boolean	enabled	=	true;	

						}	

	

						@Data	

						static	class	Safari	{	

								private	boolean	enabled	=	true;	

						}	

	

						@Data	

						static	class	Chrome	{	

								private	boolean	enabled	=	true;	

						}	

				}	

This	last	property-based	class	can	be	described	as	follows:

@Data	is	the	Lombok	annotation	that	saves	us	from	creating	getters	and	setters.
@ConfigurationProperties("com.greglturnquist.webdriver")	marks	this	class	as	a	source	for	property	values
with	com.greglturnquist.webdriver	as	the	prefix.
Every	field	(firefox,	safari,	and	chrome)	is	turned	into	a	separately	named	property.
Because	we	want	to	nest	subproperties,	we	have	Firefox,	Safari,	and	Chrome,	each	with	an	enabled
Boolean	property	defaulted	to	True.
Each	of	these	subproperty	classes	again	uses	Lombok's	@Data	annotation	to	simplify	their	definition.

It's	important	to	point	out	that	the	name	of	the	property	class,
WebDriverConfigurationProperties,	and	the	names	of	the	subclasses	such	as	Firefox	are	not
important.	The	prefix	is	set	by	@ConfigurationProperties,	and	the	individual	properties	use	the
field's	name	to	define	themselves.

With	this	class,	it's	easy	to	inject	this	strongly	typed	POJO	into	any	Spring-managed	bean	and	access	the
settings.

At	this	stage,	our	first	test	case,	fallbackToNonGuiModeWhenAllBrowsersDisabled,	should	be	operational.	We	can
test	it	out.

Assuming	we	verified	it,	we	can	now	code	another	test,	verifying	that	FirefoxDriver	is	created	under	the
right	circumstances.	Let's	start	by	defining	our	test	case.	We	can	start	by	deliberately	disabling	the	other
choices:

				@Test	

				public	void	testWithMockedFirefox()	{	

						load(new	Class[]{MockFirefoxConfiguration.class},	

								"com.greglturnquist.webdriver.safari.enabled:false",	

								"com.greglturnquist.webdriver.chrome.enabled:false");	

						WebDriver	driver	=	context.getBean(WebDriver.class);	

						assertThat(ClassUtils.isAssignable(TakesScreenshot.class,	

								driver.getClass())).isTrue();	

						assertThat(ClassUtils.isAssignable(FirefoxDriver.class,	

								driver.getClass())).isTrue();	

				}	

This	preceding	test	case	is	easily	described	as	follows:

@Test	marks	testWithMockedFirefox	as	a	JUnit	test	method

load	is	used	to	add	MockFirefoxConfiguration,	a	configuration	class	we'll	soon	write	to	help	us	mock	out
the	creation	of	a	real	FirefoxDriver
We	also	disable	Chrome	and	Safari	using	the	property	settings
Fetching	a	WebDriver	from	the	application	context,	we	verify	that	it	implements	the	TakesScreenshot
interface	and	is	actually	a	FirefoxDriver	class

As	one	can	imagine,	this	is	tricky.	We	can't	assume	the	developer	has	the	Firefox	browser	installed.
Hence,	we	can	never	create	a	real	FirefoxDriver.	To	make	this	possible,	we	need	to	introduce	a	little
indirection.	When	Spring	encounters	multiple	bean	definition	methods,	the	last	one	wins.	So,	by	adding
another	config	class,	MockFirefoxConfiguration,	we	can	sneak	in	and	change	how	our	default	factory	works.

The	following	class	shows	how	to	do	this:

				@Configuration	

				protected	static	class	MockFirefoxConfiguration	{	

						@Bean	

						FirefoxDriverFactory	firefoxDriverFactory()	{	

								FirefoxDriverFactory	factory	=	

												mock(FirefoxDriverFactory.class);	

								given(factory.getObject())	

												.willReturn(mock(FirefoxDriver.class));	

								return	factory;	

						}	

				}	

The	previous	class	can	be	described	as	follows:

@Configuration	marks	this	class	as	a	source	of	bean	definitions.
@Bean	shows	that	we	are	creating	a	FirefoxDriverFactory	bean,	the	same	type	pulled	into	the	top	of	our
WebDriverAutoConfiguration	class	via	the	@Import	annotation.	This	means	that	this	bean	definition	will
overrule	the	one	we	saw	earlier.
We	use	Mockito	to	create	a	mock	FirefoxDriverFactory.
We	instruct	this	mock	factory	to	create	a	mock	FirefoxDriver	when	it's	factory	method	is	invoked.
We	return	the	factory,	so	it	can	be	used	to	run	the	actual	test	case.

With	this	code,	we	are	able	to	verify	things	work	pretty	well.	There	is	a	slight	bit	of	hand	waving.	The
alternative	would	be	to	figure	out	the	means	to	ensure	every	browser	was	installed.	Including	the
executables	in	our	test	code	for	every	platform	and	running	them	all,	may	yield	a	little	more	confidence.
But	at	what	price?	It	could	possibly	violate	the	browser's	license.	Ensuring	that	every	platform	is
covered,	just	for	a	test	case,	is	a	bit	extreme.	So,	all	in	all,	this	test	case	hedges	such	a	risk	adequately	by
avoiding	all	that	extra	ceremony.

It's	left	as	an	exercise	for	the	reader	to	explore	creating	Safari	and	Chrome	factories	along	with	their
corresponding	test	cases.

If	we	run	all	the	test	cases	in	WebDriverAutoConfigurationTests,	what	can	we	hope	to	find?

Using	Spring	Boot	and	Spring	Framework	test	modules	along	with	JUnit	and	Flapdoodle,	we	have
managed	to	craft	an	autoconfiguration	policy	for	Selenium	WebDriver	with	a	complete	suite	of	test
methods.	This	makes	it	possible	for	us	to	release	our	own	third-party	autoconfiguration	module	that
autoconfigures	Selenium	WebDriver.

So	what	have	we	covered?	Unit	tests,	MongoDB-oriented	slice	tests,	WebFlux-oriented	slice	tests,	full
container	end-to-end	tests,	and	even	autoconfiguration	tests.

This	is	a	nice	collection	of	tests	that	should	deliver	confidence	to	any	team.	And	Spring	Boot	made	it
quite	easy	to	execute.

Summary
In	this	chapter,	we	crafted	unit	tests	using	JUnit	and	AssertJ.	Then	we	performed	slice-based	tests
against	MongoDB	using	Spring	Boot's	@DataMongoTest	annotation,	with	and	without	embedded	MongoDB.
We	tested	WebFlux	controllers,	ensuring	they	operated	correctly.	We	also	wrote	end-to-end	tests	with
Spring	Boot	spinning	up	an	entire	embedded	web	container	so	that	Selenium	WebDriver	could	drive	it
from	the	browser.	Finally,	we	put	together	an	autoconfiguration	policy	for	Selenium	WebDriver	using
test-first	practices	to	verify	that	it	worked.

In	the	next	chapter,	we	will	explore	the	developer	tools	provided	by	Spring	Boot	to	ease	the	tasks	we	all
must	deal	with.

Developer	Tools	for	Spring	Boot	Apps
I	owe	@springboot	a	lot.	#productivity	#engineering	#sota	#minimalist	#microservices	#performance

#quality	#bestpractises

–	Amir	Sedighi	@amirsedighi

In	the	previous	chapter,	you	learned	how	to	use	Spring	Boot's	various	testing	features.	We	saw	how	to
craft	simple	unit	tests,	slice	tests,	mock	WebFlux	tests,	and	even	fully	spun-up	embedded	Netty
integration	tests.

When	we	get	into	the	swing	of	things,	anything	that	can	bend	the	curve	of	time	spent	building	an	app	is
appreciated.	We	will	explore	the	various	tools	Spring	Boot	brings	to	the	table	to	help	us	hack	away	at
our	applications.

In	this	chapter,	we	will	do	the	following:

Using	Spring	Boot's	DevTools	for	hot	code	reloading	and	decaching
Glean	what	Spring	Boot	did	with	its	autoconfiguration	report
Make	local	changes	and	see	them	on	the	target	system
Write	a	custom	health	check
Add	build	data	to	the	/application/info	endpoint
Create	custom	metrics

Using	Spring	Boot's	DevTools	for	hot	code
reloading
Developers	are	always	looking	for	ways	to	speed	things	up.	Long	ago,	one	of	the	biggest	speedups	was
incremental	compilers	and	having	them	run	every	time	we	saved	a	file.	Now	that	it's	permeated	modern
tools,	no	one	thinks	twice	about	such	a	feature.

Something	critically	needed	when	it	comes	to	building	Spring	Boot	apps	is	the	ability	to	detect	a	change
in	our	code	and	relaunch	the	embedded	container.

Thankfully,	we	just	need	one	addition	to	our	code	we	built	in	the	previous	chapter:

				compile("org.springframework.boot:spring-boot-devtools")	

If	you	happen	to	be	using	Maven,	you	would	want	to	include	the	optional	flag.

So,	this	tiny	module	performs	the	following	activities:

Disables	cache	settings	for	autoconfigured	components
When	it	detects	a	change	in	code,	it	restarts	the	application,	holding	onto	third-party	classes	and
simply	throwing	away	and	reloading	custom	classes
Activates	an	embedded	LiveReload	(http://livereload.com/)	server	that	can	trigger	the	browser	to
refresh	the	page	automatically

For	a	listing	of	all	the	disabled	components,	look	at	the	following	code	snippet:

				properties.put("spring.thymeleaf.cache",	"false");	

				properties.put("spring.freemarker.cache",	"false");	

				properties.put("spring.groovy.template.cache",	"false");	

				properties.put("spring.mustache.cache",	"false");	

				properties.put("server.session.persistent",	"true");	

				properties.put("spring.h2.console.enabled",	"true");	

				properties.put("spring.resources.cache-period",	"0");	

				properties.put("spring.resources.chain.cache",	"false");	

				properties.put("spring.template.provider.cache",	"false");	

				properties.put("spring.mvc.log-resolved-exception",	"true");	

				properties.put("server.servlet.jsp.init-parameters.development",

					"true");	

				properties.put("spring.reactor.stacktrace-mode.enabled",	"true");	

Many	IDEs	also	come	with	additional	reloading	support	when	apps	are	run	in	the	debug
mode,	a	highly	recommended	option	to	use	in	conjunction	with	Spring	Boot	DevTools.

What	is	the	net	benefit,	you	ask?

When	we	make	a	change	to	our	code	and	either	issue	a	Save	or	a	Make	Project,	DevTools	will	throw
away	the	class	loader	holding	our	custom	code	and	launch	a	new	application	context.	This	makes	for	a

http://livereload.com/

relatively	speedy	restart.

Save	or	Make	Project?	Spring	Boot	DevTools	listens	for	file	updates.	For	certain	IDEs,
such	as	Eclipse,	⌘-S	is	used	to	perform	a	Save	operation.	IntelliJ	IDEA	autosaves,	so	an
alternative	signal	is	Make	Project,	⌘-F9,	which	refreshes	the	environment.

With	the	LiveReload	server	running	and	a	LiveReload	plugin	(http://livereload.com/extensions/)	installed
in	our	browser,	we	can	enable	LiveReloading	upon	visiting	the	site.	Anytime	we	update	the	code,	the
plugin	will	essentially	click	the	browser's	refresh	button	for	us.

Restarting	versus	reloading:	DevTools	provides	the	ability	to	restart	the	application
quickly,	but	it	is	limited	in	various	ways.	For	example,	updating	the	classpath	by	adding
new	dependencies	is	not	picked	up.	Adding	new	classes	isn't	supported.	For	more
sophisticated	tools	that	handle	these	complex	use	cases,	you	may	wish	to	investigate
something	such	as	Spring	Loaded	(https://github.com/spring-projects/spring-loaded)	or	JRebel	(
http://zeroturnaround.com/software/jrebel/).

With	all	these	caches	cleared	out,	we	can	see	changes	propagate	much	faster.	Let's	test	it	out	by
launching	LearningSpringBootApplication	in	the	debug	mode.	If	we	visit	the	site,	things	look	as	expected:

The	site	starts	off	with	our	pre-loaded	test	data.	To	have	the	browser	listen	for	updates,	we	need	to	click
the	LiveReload	icon:

At	first,	the	dot	in	the	center	is	hollow.	When	enabled,	the	dot	turns	solid,	as	shown	in	the	preceding
screenshot.

Let's	make	some	edits	to	our	template:

http://livereload.com/extensions/
https://github.com/spring-projects/spring-loaded
http://zeroturnaround.com/software/jrebel/

With	this	extra	sub-header,	we	just	need	to	hit	Save	or	Make	Project	in	our	IDE.	Switching	to	the
browser	will	show	the	results	instantly:

Let's	make	some	tweaks	to	HomeController	as	shown	here:

				@GetMapping("/")	

				public	Mono<String>	index(Model	model)	{	

						model.addAttribute("images",	

								imageService.findAllImages());	

						model.addAttribute("extra",	

								"DevTools	can	also	detect	code	changes	too");	

						return	Mono.just("index");	

				}	

This	is	the	same	as	the	previous	chapter,	except	that	we	have	added	a	new	attribute,	extra,	to	the	model.
We	can	display	it	with	an	adjustment	to	our	template:

				<h4	th:text="${extra}"></h4>	

This	displays	the	new	extra	model	attribute	as	an	H4	header,	all	without	clicking	a	thing	in	our	browser:

There	is	one	key	side	effect	when	using	Spring	Boot	DevTools	for	restarts--	any	in-memory	data	or	state
will	be	lost.

That	can	be	good	or	bad.	It	certainly	encourages	you	to	create	a	pre-loader,	perhaps	with	a	@Profile("dev")
annotation	such	that	it	only	runs	when	spring.profiles.active=dev	is	switched	on.

This	can	become	an	issue	if	our	use	case	takes	a	lot	of	steps	to	set	up,	and	restarting	the	app	makes	us
repeat	these	steps	again	and	again.	This	is	amplified	by	in-memory	database	solutions	such	as	H2.	In
our	situation,	the	start-up	code	that	cleans	out	the	uploaded	files	will	cause	a	similar	refresh	of	data.

Another	reason	to	consider	NOT	switching	on	LiveReload	in	the	browser	(yet	let	the	app	restart)	is	if
we	are	working	on	a	JavaScript-heavy	frontend	and	don't	want	every	change	to	force	a	reload.	For
example,	we	might	have	a	page	with	a	lot	of	fields	filled	out.	A	triggered	restart	may	clean	out	our	form
and	force	us	to	re-enter	the	data.

Nevertheless,	this	is	a	good	problem	to	have.	Having	the	option	to	refresh	the	browser	and	stay	in	sync
with	code	changes	is	a	powerful	tool.

Using	Spring	Boot's	autoconfiguration
report
As	we've	seen	in	this	book	so	far,	Spring	Boot	autoconfigures	beans	to	help	us	avoid	configuring
infrastructure	and	instead	focus	on	coding	business	requirements.	However,	sometimes,	we	may	want	to
know	what	Spring	Boot	did	(or	didn't)	do	for	us.

That's	why	it	has	an	autoconfiguration	report.	Essentially,	every	time	a	bean	is	selected	based	on	some
conditional	check,	Spring	Boot	logs	the	decision	(yea	or	nay)	and	offers	it	to	us	in	many	different	ways.

The	simplest	approach	is	to	add	--debug	to	the	run	configuration.	In	the	following	screenshot,	we	can	see
how	to	set	it	in	IntelliJ:

If	we	launch	our	app	with	--debug	as	a	program	argument,	an	autoconfiguration	report	is	printed	out	to
the	console:

That's	nice,	and	during	certain	failure	scenarios,	the	report	will	print	out	automatically	to	help	with
postmortem	analysis.	However,	scraping	the	console	for	a	report	isn't	very	effective.

If	we	use	Spring	Boot	Actuator,	we	can	consume	this	report	in	a	nicer	JSON	structure.	If	you'll	recall,
we	included	Actuator	in	our	list	of	dependencies	back	in	Chapter	1,	Quick	Start	with	Java:

				compile('org.springframework.boot:spring-boot-starter-actuator')		

If	you're	building	a	new	application	and	didn't	pick	it	on	http://start.spring.io,	this

http://start.spring.io

dependency	is	quite	valuable.

In	addition	to	adding	Spring	Boot's	Actuator	module,	we	have	to	opt	in	or	rather	enable	its	features.	In
Spring	Boot	2.0,	Actuator	supports	many	technologies	including	Spring	MVC,	Spring	WebFlux,	and
JMX.	We	have	to	signal	what	platforms	we	wish	to	enable	instead	of	expecting	Spring	Boot	to	guess.	To
do	so,	we	need	to	add	the	following	line	of	code	to	our	application.properties	file:

				endpoints.default.web.enabled=true		

This	will	make	Actuator's	endpoints	active	from	an	HTTP	perspective;	(to	enable	Actuator	for	JMX,	we
would	want	to	set	endpoints.default.jmx.enabled	to	true).

When	we	launch	our	application,	several	Spring	WebFlux	endpoints	are	added,	providing	additional
information.	To	get	a	quick	glance	at	all	the	available	endpoints,	we	can	visit
http://localhost:8080/application,	as	shown	in	the	following	screenshot:

his	screenshot	doesn't	capture	them	all,	but	there	is	a	long	list	of	endpoints	serving	up	detailed
information	about	our	application.	(By	the	way,	earlier	in	the	book,	we	enabled	just	one	actuator
endpoint,	/application/health.	This	flag	lets	us	switch	on	all	the	default	endpoints.)

From	there,	we	can	easily	find	the	autoconfiguration	report	at	http://localhost:8080/application/autoconfig,
click	on	it,	and	thanks	to	JSON	Viewer	(https://github.com/tulios/json-viewer),	see	this	nicely	formatted

https://github.com/tulios/json-viewer

report:

Okay,	so	we've	seen	a	couple	ways	to	generate	this	report.	But	what	does	it	say?

If	we	zoom	into	one	fragment,	we	can	figure	something	out:

				"ReactiveWebServerConfiguration.ReactorNettyAutoConfiguration":	[

				{	

						"condition":	"OnClassCondition",	

						"message":	"@ConditionalOnClass	found	required	class	

						'reactor.ipc.netty.http.server.HttpServer';	

						@ConditionalOnMissingClass	did	not	find	unwanted	class"	

				},	

				{	

						"condition":	"OnBeanCondition",	

						"message":	"@ConditionalOnMissingBean	(types:	

								org.springframework.boot.web.reactive

								.server.ReactiveWebServerFactory;	SearchStrategy:	all)	did

									not	find	any	beans"	

				}	

]	

This	fragment	of	JSON	in	the	autoconfiguration	report	can	be	described	as	follows:

ReactiveWebServerConfiguration.ReactorNettyAutoConfiguration	is	a	Spring	Boot	autoconfiguration	policy
that	was	evaluated,	specifically	on	the	subject	of	Netty.
@ConditionalOnClass	matched	on	spotting	Reactor's	HttpServer	class,	glue	code	used	by	Reactor	to
embed	the	Netty	container.	This	shows	that	Netty	was	on	the	classpath.
@ConditionalOnMissingBean	is	the	second	condition,	and	was	negative,	indicating	there	is	no	overriding,
user-defined	ReactiveWebServerFactory	defined.	Therefore,	Spring	Boot	is	activating	its	default	policy
for	Reactor	Netty.

To	divine	exactly	what	this	autoconfiguration	policy	was,	we	can	open	the	code	and	inspect	it	ourselves.
Using	our	IDE,	we	merely	need	to	look	for	the	parent	class,	ReactiveWebServerConfiguration:

				abstract	class	ReactiveWebServerConfiguration	{	

	

						@ConditionalOnMissingBean(ReactiveWebServerFactory.class)	

						@ConditionalOnClass({	HttpServer.class	})	

						static	class	ReactorNettyAutoConfiguration	{	

	

								@Bean	

								public	NettyReactiveWebServerFactory	

									NettyReactiveWebServerFactory()	{	

											return	new	NettyReactiveWebServerFactory();	

								}	

	

						}	

						...	

				}	

This	fragment	from	Spring	Boot's	Reactive	web	server	configuration	code	can	be	explained	as	follows:

ReactiveWebServerConfiguration	is	an	abstract	class	that	is	merely	used	as	a	container	for	other	policies
@ConditionalOnMissingBean(ReactiveWebServerFactory.class)	tells	Spring	Boot	to	back	off	and	not	use	this	if
the	user	has	declared	such	a	bean	elsewhere
@ConditionalOnClass({HttpServer.class})	tells	Spring	Boot	to	only	consider	this	if	Reactor	Netty	is	on	the
classpath
static	class	ReactorNettyAutoConfiguration	names	this	rule	used	to	autoconfigure	Reactor	Netty
@Bean	flags	the	code	as	a	Spring	bean
return	new	NettyReactiveWebServerFactory()	actually	creates	the	Spring	bean	for	Reactor	Netty

All	this	comes	together	to	allow	Reactor	Netty	to	be	configured	automatically	when	put	on	the
classpath.	And	we	spotted	it	in	the	autoconfiguration	report.

There	are	other	bean	definitions	in	ReactiveWebServerConfiguration,	including	support	for	Jetty,
Apache	Tomcat,	and	Undertow,	but	aren't	shown	due	to	space	constraints.

What	is	this	good	for?

If	we	are	attempting	to	use	some	feature	of	Spring	Boot	and	it's	not	going	as	desired,	one	thing	to	debug
is	whether	or	not	the	expected	beans	are	being	created.	Another	usage	is	if	we	are	working	on	our	own
autoconfiguration	module	for	a	given	project	and	need	to	see	if	the	right	beans	are	being	created.

You	see,	the	autoconfiguration	report	isn't	confined	to	what	is	released	by	the	Spring	team.	It	looks	at
everything.

Speaking	of	making	a	change,	notice	how	we	have	Netty	running	under	the	hood.	We	can	tell	both	from
the	console	output	as	well	as	the	autoconfiguration	report	we	just	looked	at.

What	if	we	wanted	to	change	containers?	It's	quite	easy	with	Spring	Boot.	We	simply	have	to	tweak	the
build	file.

By	default,	Spring	Boot	uses	Netty	for	Reactive	apps,	but	it's	not	hard	to	switch:

				compile('org.springframework.boot:spring-boot-starter-webflux')	{	

						exclude	module:	'spring-boot-starter-reactor-netty'	

				}	

				compile('org.springframework.boot:spring-boot-starter-undertow')	

The	changes	to	build.gradle	are	as	follows:

Excludes	spring-boot-starter-reactor-netty	from	the	reactive	web	dependency
Introduces	spring-boot-starter-undertow	as	an	alternative	container

If	we	relaunch	our	application	and	look	at	the	autoconfiguration	report	again	and	look	for	the
ReactorNettyAutoConfiguration	entry,	we	will	find	this:

				"ReactiveWebServerConfiguration.ReactorNettyAutoConfiguration":	{	

						"notMatched":	[

						{	

								"condition":	"OnClassCondition",	

								"message":	"@ConditionalOnClass	did	not	find	required	class	

								'reactor.ipc.netty.http.server.HttpServer'"	

						}	

],	

						"matched":	[

	

]	

				}	

The	new	fragment	of	JSON	from	the	autoconfiguration	report	shows	that	the	same	policy	we	just
looked	at	has	now	switched	to	notMatched.	In	the	details,	it	failed	because	@ConditionalOnClass	didn't	spot
HttpServer	on	the	classpath.

In	light	of	switching	from	Reactor	Netty	to	Undertow,	searching	for	Undertow	in	the	autoconfiguration
report	will	lead	us	to	this:

				"ReactiveWebServerConfiguration.UndertowAutoConfiguration":	[

				{	

						"condition":	"OnClassCondition",	

						"message":	"@ConditionalOnClass	found	required	class	

						'io.undertow.Undertow';	@ConditionalOnMissingClass	did	not

							find	unwanted	class"	

				},	

				{	

						"condition":	"OnBeanCondition",	

						"message":	"@ConditionalOnMissingBean	(types:	

							org.springframework.boot.web.reactive.server

							.ReactiveWebServerFactory;	SearchStrategy:	all)	did	not	

							find	any	beans"	

				}	

]	

This	fragment	of	JSON	reveals	that	UndertowAutoConfiguration	is	now	in	effect	as	follows:

@ConditionalOnClass	has	found	Undertow	on	the	classpath
@ConditionalOnMissingBean	has	not	found	a	user-defined	ReactiveWebServerFactory	bean;	hence,	Spring
Boot	did	not	back	off	with	its	autoconfiguration	of	Undertow.

On	further	digging	into	UndertowReactiveWebServerFactory,	we	will	find	all	the	details	needed	to	run
Undertow	for	a	Reactor-based	application.

Making	local	changes	and	seeing	them	on
the	target	system
So	far,	we've	seen	how	to	speed	up	developer	time	by	using	automatic	restarts,	and	we	have	gathered
information	on	what	Spring	Boot	is	up	to,	courtesy	of	its	autoconfiguration	report.

The	next	step	for	developers	is	often	using	the	debugger	of	their	IDE.	We	won't	go	into	profuse	detail
about	that	because	it's	highly	specific	to	which	IDE	you	use.	However,	something	of	extended	value
offered	by	Spring	Boot	is	the	opportunity	to	remotely	connect	to	an	application	and	make	changes.

Imagine	we	have	built	up	our	application	and	pushed	it	to	the	cloud.	We	test	a	key	feature	in	this
environment	because	it's	the	only	way	to	tie	it	to	a	particular	resource	or	in	a	certain	configuration.	Well,
the	process	for	making	changes	is	much	more	expensive.	We	would	have	to	bundle	things	up,	redeploy,
restart,	and	re-navigate.	All	for	a	few	lines	of	code!

Spring	Boot's	DevTools	provide	the	means	to	connect	our	IDE	to	our	remotely	running	application	and
push	code	changes	over	the	wire,	allowing	us	to	automatically	make	mods	and	test	them	immediately.

To	get	geared	up,	we	must	execute	the	following	steps:

1.	 Add	spring.devtools.remote.secret=learning-spring-boot	to	application.properties.
2.	 Build	the	application	using	./gradlew	build.
3.	 Push	the	application	to	the	cloud	(Pivotal	Web	Services	in	this	case	with	cf	push	learning-spring-boot

-p	build/libs/learning-spring-boot-0.0.1-SNAPSHOT.jar).

4.	 Instead	of	running	the	app	locally	in	our	IDE,	run	Spring	Boot's	RemoteSpringApplication	class	instead.
5.	 Add	https://learning-spring-boot.cfapps.io	(or	whatever	the	app's	remote	URL	is)	as	a	program

argument.
6.	 Launch	the	RemoteSpringApplication	configured	runner.

The	following	screenshot	shows	how	to	configure	it	in	IntelliJ	IDEA:

After	it	launches,	the	console	in	our	IDE	shows	a	remote	banner:

Now,	we	are	free	to	make	changes	in	our	IDE,	Save/Make	Project,	and	watch	them	propagate	to	our
cloud-based	app	running	at	https://learning-spring-boot.cfapps.io.

First	of	all,	let's	tweak	our	template	at	src/main/resources/templates/index.html.	We	can	add	a	sub-header
below	the	main	header	similar	to	what	we	did	earlier	in	this	chapter:

				<h1>Learning	Spring	Boot	-	2nd	Edition</h1>	

	

				<h2>It's	really	handy	to	make	local	edits	and	watch	them	go	out

					to	the	cloud	automatically</h2>	

	

				<h4	th:text="${extra}"></h4>	

Hitting	Save	or	Make	Project,	the	code	change	will	be	uploaded	to	the	cloud	and	trigger	a	restart	(this	is
a	great	opportunity	to	use	the	LiveReload	server	and	automatically	refresh	the	page):

With	this	flow,	we	can	make	all	sorts	of	changes.	When	ready,	we	can	commit	them	locally,	build	a
newer	JAR	file,	push	to	the	cloud,	and	continue	forward.

It's	always	recommended	to	use	https://	when	connecting	to	a	remote	application.	It
prevents	other	users	from	snooping	the	network	for	secrets.

Enabling	Spring	Boot	DevTools	on	a	remote	application	is	a	risk.	The	only	thing
protecting	the	application	from	code	updates	is	the	simple	secret	the	two	share.	You	should
never	enable	this	on	a	production	deployment.

Writing	a	custom	health	check
Another	critical	feature	needed	when	we	take	our	application	to	production	is	monitoring	it.	In	the	olden
days,	people	would	set	up	a	CRON	job	to	ping	a	server	and	see	if	it	was	up.	More	intricate	systems
would	track	disk	usage,	memory	usage,	and	ideally	page	someone	when	the	database	was	at	95%,	so	it
could	be	saved	before	falling	over.

Spring	Boot	provides	a	new	era	in	health	check	monitoring.	To	kick	things	off,	launch	the	application
and	visit	/application/health:

				{

								status:	"UP",

								diskSpace:	{

												status:	"UP",

												total:	498937626624,

												free:	96519303168,

												threshold:	10485760

								},

								mongo:	{

												status:	"UP",

												version:	"3.4.6"

								}

				}		

Out	of	the	box,	this	provides	us	with	an	endpoint	we	can	ping	and	additionally,	gives	us	some
information	regarding	disk	space.	It	also	includes	an	automatically	included	MongoDB	health	check.

But	what	if	we	needed	to	write	our	own	health	check?	Perhaps,	there	is	a	system	we	are	dependent
upon.	Knowing	if	this	upstream	service	is	unavailable	could	prove	valuable.

To	write	our	own	health	check,	we	merely	need	to	write	a	Spring	component	that	implements	Spring
Boot's	HealthIndicator	interface:

				@Component	

				public	class	LearningSpringBootHealthIndicator	

					implements	HealthIndicator	{	

	

							@Override	

							public	Health	health()	{	

									try	{	

											URL	url	=	

													new	URL("http://greglturnquist.com/books/learning-spring-

														boot");	

													HttpURLConnection	conn	=	

															(HttpURLConnection)	url.openConnection();	

													int	statusCode	=	conn.getResponseCode();	

													if	(statusCode	>=	200	&&	statusCode	<	300)	{	

															return	Health.up().build();	

													}	else	{	

																	return	Health.down()	

																		.withDetail("HTTP	Status	Code",	statusCode)	

																		.build();	

													}	

									}	catch	(IOException	e)	{	

													return	Health.down(e).build();	

									}	

							}	

				}	

Let's	dissect	this	custom	health	indicator:

@Component	marks	this	class	so	that	Spring	Boot	picks	it	up	and	registers	it	automatically.
By	implementing	the	HealthIndicator	interface,	Spring	Boot	will	include	it	along	with	the	pre-built
health	checks	when	we	hit	/application/health.
The	name	LearningSpringBootHealthIndicator	is	used	to	create	the	indicator.	HealthIndicator	will	be
trimmed	off,	and	the	remaining	text	will	be	formatted	with	lazy	camel	style.
There	is	but	one	method	in	this	interface	(meaning	you	could	implement	it	using	a	Java	8	lambda),
health().	It	uses	some	plain	old	Java	APIs	to	open	a	connection	to	a	remote	URL	and	fetch	a	status
code.	If	the	status	code	is	good,	it	will	build	a	Health	status	code	of	UP.	Otherwise,	it	will	build	a
Health	status	code	of	DOWN	while	also	giving	us	the	failed	HTTP	status	code.
Finally,	if	any	other	exceptions	occur,	we	will	also	get	a	Health	status	code	of	DOWN	but	with	the
information	from	the	exception	instead	of	a	commonly	coded	error	path.

Let's	relaunch	the	application	and	see	what	our	/application/health	endpoint	reports:

				{

						"status":	"UP",

						"details":	{

								"mongo":	{

										"status":	"UP",

										"details":	{

												"version":	"3.4.6"

										}

								},

								"diskSpace":	{

										"status":	"UP",

										"details":	{

												"total":	498937626624,

												"free":	43632435200,

												"threshold":	10485760

										}

								},

								"learningSpringBoot":	{

										"status":	"UP"

								}

						}

				}		

We	can	see	our	new	health	indicator,	learningSpringBoot,	listed	with	its	status	of	UP.

To	simulate	a	failure,	let's	alter	the	URL	by	switching	the	domain	in	the	code	to	greglturnquist.io	and	see
what	happens:

				URL	url	=	new	URL("http://greglturnquist.io/books/learning-spring-

					boot");	

When	we	restart	and	ping	/application/health,	this	is	the	outcome:

				{

						"status":	"DOWN",

						"details":	{

								"mongo":	{

										"status":	"UP",

										"details":	{

												"version":	"3.4.6"

										}

								},

								"diskSpace":	{

										"status":	"UP",

										"details":	{

												"total":	498937626624,

												"free":	43629961216,

												"threshold":	10485760

										}

								},

								"learningSpringBoot":	{

										"status":	"DOWN",

										"details":	{

												"error":	"java.net.UnknownHostException:	greglturnquist.io"

										}

								}

						}

				}		

A	few	things	have	happened:

Our	learningSpringBoot	indicator	now	reports	DOWN.	It's	not	due	to	some	HTTP	status	code,	but
instead	ConnectionException	caused	by	not	being	able	to	form	a	connection.
While	diskSpace	and	mongo	are	UP,	the	DOWN	status	of	this	indicator	percolates	to	the	top-level	status,
switching	it	to	DOWN.

If	we	change	the	URL	to	simply	http://greglturnquist.com/foo	and	restart,	we	can	see	a	different	status:

In	this	situation,	we	still	have	a	DOWN	status,	but	the	HTTP	status	code	404	is	reported.	Both	of	these
indicators	can	be	quite	informative	for	the	DevOps	team	watching	our	application.

Adding	build	data	to	/application/info
One	of	the	biggest	issues	in	getting	to	the	heart	of	problems	is	knowing	what	version	is	running!	Have
you	ever	gotten	a	3:00	a.m.	call	from	a	customer	reporting	that	the	system	is	broken?	In	a	half-awake
state,	it's	easy	to	start	trying	to	solve	the	problem	only	to	discover	two	hours	later,	the	customer	is
running	an	older	version	and	that	their	issue	was	patched	last	week.

The	solution	is	embedding	precise	versions	in	every	release	so	that	the	customer	can	relay	this	over	the
phone.	Then,	we	can	quickly	figure	out	if	this	issue	is	new,	fixed,	or	a	regression.	Interested?

Just	add	this	to	the	build.gradle	file,	right	below	the	buildscripts	section:

				id	"com.gorylenko.gradle-git-properties"	version	"1.4.17"	

This	will	add	a	new	task,	generateGitProperties,	to	our	system.	Anytime	we	engage	Gradle	to	build	the
app,	whether	it's	to	package	up	a	runnable	JAR	or	simply	to	bootRun	it,	a	new
build/resources/main/git.properties	file	will	be	generated	and	served	up	via	Spring	Boot	Actuator's
/application/info	endpoint:

				{

								git:	{

												commit:	{

																time:	1474434957000,

																id:	"3ac9c1c"

												},

												branch:	"master"

								}

				}		

This	report	gives	us	the	timestamp,	git	commit	hash,	and	branch.	That	tiny	nugget	of	knowledge	has	the
potential	to	save	us	hours	of	effort	over	the	long	haul.

Using	Maven?	There	is	a	similar	plugin:

				<build>	

								<plugins>	

												<plugin>	

																<groupId>pl.project13.maven</groupId>	

																<artifactId>git-commit-id-plugin</artifactId>	

												</plugin>	

								</plugins>	

				</build>	

It	works	the	same.

One	extra	tidbit--Spring	Boot	has	two	different	modes	of	git	information.	The	format	shown	is	the
SIMPLE	mode.	To	get	more	details,	add	this	to	application.properties:

				management.info.git.mode=full	

This	will	produce	a	much	more	detailed	report:

				{

								git:	{

												commit:	{

																message:	{

																				full:	"Move	images	back	to	1/image",

																				short:	"Move	images	back	to	1/image"

																},

																time:	1474434957000,

																id:	"3ac9c1c7875d7378d6fbd607d0af5ef206e21ede",

																id.abbrev:	"3ac9c1c",

																user:	{

																				email:	"gturnquist@pivotal.io",

																				name:	"Greg	Turnquist"

																}

												},

												branch:	"master"

								}

				}		

It's	up	to	each	team	to	decide	which	version	is	the	most	useful	and	which	version	doesn't	leak	out
unnecessary	details.

Additionally,	we	can	grab	more	details	about	the	build	by	adding	this	to	our	build.gradle	file:

				springBoot	{	

						buildInfo()	

				}	

This	little	addition,	when	we	run	Gradle's	build	task,	will	add	a	build-info.properties	file	to	our	JAR	file,
showing	content	like	this:

				#Properties

				#Tue	Sep	12	23:53:05	CDT	2017

				build.time=2017-09-12T23\:53\:05-0500

				build.artifact=5/part2

				build.group=learning-spring-boot

				build.name=5/part2

				build.version=unspecified		

Both	of	these	reports	(a	simple	git	report	+	build	info	details)	would	give	us	this	nice	bit	of	information
useful	to	start	debugging	an	issue	by	visiting	localhost:8080/application/info.

Creating	custom	metrics
Every	program	manager	loves	metrics.	In	fact,	a	popular	company	(Netflix)	is	so	well	known	in	this
arena	that	people	describe	it	as	a	metrics-gathering	company	that	happens	to	stream	video.

When	it	comes	to	Spring	Boot,	metrics	are	a	prime	piece	of	Spring	Boot	Actuator	functionality.	If	we
visit	/application/metrics,	we	can	see	a	list	of	metrics:

				{

						"names":	[

								"jvm.buffer.memory.used",

								"jvm.memory.used",

								"jvm.buffer.count",

								"logback.events",

								"process.uptime",

								"jvm.memory.committed",

								"http.server.requests",

								"jvm.buffer.total.capacity",

								"jvm.memory.max",

								"process.starttime"

]

				}

This	lists	all	sorts	of	stuff--memory,	garbage	collection,	heap	versus	nonheap,	threads,	and	more.	That's
nice,	but	what's	usually	needed	is	the	ability	to	create	our	own	metrics.

Spring	Boot	provides	an	interface	to	register	our	own	metrics	and	have	them	appear	on	the	same	page.
Supplied	immediately	is	the	ability	to	grab	a	MeterRegistry.

To	make	use	of	this	three	meter	registry,	we	need	to	inject	it	into		ImageService	we	built	in	Chapter	3,
Reactive	Data	Access	with	Spring	Boot:

				@Service	

				public	class	ImageService	{	

	

						...	

	

						private	final	MeterRegistry	meterRegistry;	

	

						public	ImageService(ResourceLoader	resourceLoader,	

								ImageRepository	imageRepository,	

								MeterRegistry	meterRegistry)	{	

	

										this.resourceLoader	=	resourceLoader;	

										this.imageRepository	=	imageRepository;	

										this.meterRegistry	=	meterRegistry;	

								}	

								...	

This	code	shows	the	following:

Three	metric	services,	CounterService,	GaugeService,	and	InMemoryMetricRepository	declared	as	final
attributes
These	three	fields	are	populated	by	constructor	injection,	ensuring	they	are	supplied	when	the
service	is	created

With	that	in	place,	further	down	inside	createImage,	we	can	define	custom	metrics:

				public	Mono<Void>	createImage(Flux<FilePart>	files)	{	

						return	files	

							.log("createImage-files")	

							.flatMap(file	->	{	

									Mono<Image>	saveDatabaseImage	=	imageRepository.save(

											new	Image(

													UUID.randomUUID().toString(),	

													file.filename()))	

													.log("createImage-save");	

	

													Mono<Void>	copyFile	=	Mono.just(Paths.get(UPLOAD_ROOT,

													file.filename()).toFile())	

													.log("createImage-picktarget")	

													.map(destFile	->	{	

															try	{	

																	destFile.createNewFile();	

																	return	destFile;	

															}	catch	(IOException	e)	{	

																			throw	new	RuntimeException(e);	

															}	

													})	

													.log("createImage-newfile")	

													.flatMap(file::transferTo)	

													.log("createImage-copy");	

	

													Mono<Void>	countFile	=	Mono.fromRunnable(()	->	{	

															meterRegistry

																		.summary("files.uploaded.bytes")

																		.record(Paths.get(UPLOAD_ROOT,

																			file.filename()).toFile().length())

													});	

	

													return	Mono.when(saveDatabaseImage,	copyFile,	countFile)	

														.log("createImage-when");	

							})	

							.log("createImage-flatMap")	

							.then()	

							.log("createImage-done");	

				}	

The	first	part	of	the	code	where	a	new	image	is	created	is	the	same,	but	following	that	is
meterRegistry.summary("files.uploaded.bytes").record(…),	which	creates	a	new	distribution	summary	named
files.uploaded.bytes.	A	distribution	summary	includes	both	a	name,	optional	tags,	and	a	value.	What	is
registered	is	both	a	value	and	an	occurrence.	Each	time	a	meter	is	added,	it	counts	it,	and	the	running
total	is	tabulated.

With	these	adjustments,	we	can	refresh	the	application,	wait	for	it	to	reload,	and	then	upload	a	few
images,	as	shown	here:

After	uploading	these	images,	if	we	revisit	/application/metrics,	we	can	see	our	new	metric	at	the	bottom
of	the	list:

				{

						"names":	[

								"jvm.buffer.memory.used",

								"jvm.memory.used",

								"jvm.buffer.count",

								"logback.events",

								"process.uptime",

								"jvm.memory.committed",

								"http.server.requests",

								"jvm.buffer.total.capacity",

								"jvm.memory.max",

								"process.starttime",

								"files.uploaded.bytes"

]

				}

If	we	navigate	to	http://localhost:8080/application/metrics/files.uploaded.bytes,	we	can	view	it:

				{

						"name":	"files.uploaded.bytes",

						"measurements":	[

								{

										"statistic":	"Count",

										"value":	3.0

								},

								{

										"statistic":	"Total",

										"value":	208020.0

								}

],

						"availableTags":	[

]

				}

This	JSON	shows	that	three	measurements	have	been	registered	with	files.uploaded.bytes,	totaling	208020
bytes.	What's	not	immediately	shown	is	also	the	time	when	these	metrics	were	posted.	It's	possible	to
calculate	upload	trends	using	the	new	Micrometer	module	(http://micrometer.io).

Micrometer	is	a	new	project	at	Pivotal.	It's	a	facade	for	metrics	gathering.	Think	SLF4J,
but	for	metrics	instead.	It	is	designed	to	integrate	with	lots	of	metric-gathering	systems,
including	Atlas,	Prometheus,	Datadog,	Influx,	Graphite,	and	more.	In	this	case,	it's	using	a
memory-based	solution.	Since	it's	currently	under	development	and	could	warrant	its	own
book,	we	will	not	delve	too	deep.

This	is	but	a	sampling	of	the	possible	metrics	that	can	be	defined.	Feel	free	to	dig	in	and	experiment
with	the	data.

http://micrometer.io

Working	with	additional	Actuator	endpoints
Spring	Boot	Actuator	provides	lots	of	extra	data.	The	following	table	is	a	quick	summary:

Actuator
Endpoint Description

auditevents Exposes	audit	events	for	the	current	application

autoconfig Reports	what	Spring	Boot	did	and	didn't	autoconfigure	and	why

beans Reports	all	the	beans	configured	in	the	application	context	(including	ours	as	well	as	the
ones	autoconfigured	by	Boot)

configprops Exposes	all	configuration	properties

env Reports	on	the	current	system	environment

health A	simple	endpoint	to	check	the	life	of	the	app

heapdump Returns	a	GZip-compressed	hprof	heap	dump	file	(hprof	is	a	tool	by	every	JDK)

info Serves	up	custom	content	from	the	app

logfile Returns	the	contents	of	the	logfile	(assuming	logging.file	or	logging.path	has	been	set)

loggers Lists	all	configured	loggers	and	their	levels.	Also	supports	updating	log	levels	through
POST	operations.

metrics Shows	counters	and	gauges	on	web	usage

mappings Gives	us	details	about	all	Spring	WebFlux	routes

status threaddump

Creates	thread
dump	report trace

Every	one	of	these	is	prefixed	(by	default)	with	/application/.	For	example,	health	is	found	at
/application/health.	To	override	this	prefix,	just	add	management.context-path	to
application.properties	and	swap	out	your	preferred	prefix	(such	as	/manager).	Also,
management.context-path	is	relative	to	server.context-path.

It's	possible	to	adjust	the	port	that	Actuator	endpoints	are	served	on.	Setting	the	management.port	property
to	8081	will	change	the	port	for	all	these	endpoints	to	8081.	We	can	even	adjust	the	network	address	used
by	setting	management.address=127.0.0.1.	This	setting	would	make	these	information-rich	endpoints	only
visible	to	the	local	box	and	curtail	visibility	to	outside	connections.

Summary
In	this	chapter,	we	hooked	up	Spring	Boot's	DevTools	module.	This	made	it	possible	to	use	an
embedded	LiveReload	server	as	well	as	decache	the	templates.	We	used	Spring	Boot's	autoconfiguration
report	to	glean	information	about	the	embedded	container.	Then,	we	swapped	out	Netty	with	Undertow
and	verified	it	through	the	same	report.	We	dabbled	with	writing	a	custom	health	check	and	a	custom
metric.	Then,	we	buttoned	things	up	by	embedding	our	build	information	into	the	application	to	spot	the
version	in	operations	should	we	get	a	late	night	phone	call	from	our	Ops	center.

In	the	next	chapter,	we'll	learn	how	to	communicate	between	processes	using	fault-tolerant	Advanced
Message	Queuing	Protocol	(AMQP)	messaging.

AMQP	Messaging	with	Spring	Boot
I	should	add	that	we	are	@springboot	/	@SpringCloudOSS	from	top	to	bottom.

–	DaShaun	Carter	@dashaun

In	the	previous	chapter,	we	added	some	tools	to	our	social	media	application	to	speed	up	developer	time
as	well	as	to	provide	basic	operational	support	features.

But	nothing	stands	still.	In	various	social	media	platforms,	there	is	some	form	of	messaging	between	the
users.	Why	not	create	one	for	ours?

In	this	chapter,	we	will	learn	the	following	topics:

Getting	started	with	RabbitMQ,	an	AMQP	broker
Creating	a	message-based	module	for	our	social	media	app
Adding	customized	metrics	to	track	message	flow
Creating	dynamically	routed	messages
Taking	a	peek	at	Spring	Cloud	Stream	and	its	RabbitMQ	bindings

Getting	started	with	RabbitMQ
RabbitMQ	is	an	open	source	AMQP	broker.	Advanced	Message	Queuing	Protocol	(AMQP)	is	an
open	protocol	that	includes	the	format	of	messages	sent	over	the	wire.	This	has	risen	in	popularity
compared	to	other	messaging	solutions	like	JMS.	Why?

JMS	is	an	API,	whereas	AMQP	is	a	protocol.	JMS	defines	how	to	talk	to	the	broker	but	not	the	format
of	its	messages.	And	it's	confined	to	Java	apps.	AMQP	doesn't	speak	about	how	to	talk	to	a	broker	but
about	how	messages	are	put	on	the	wire	and	how	they	are	pulled	down.

To	illustrate	this	point,	imagine	two	different	applications.	If	they	were	both	Java,	they	could
communicate	via	JMS.	But	if	one	of	them	were	Ruby,	JMS	would	be	off	the	table.

To	further	demonstrate	the	differences	between	JMS	and	AMQP,	a	JMS-speaking	broker	can	actually
use	AMQP	under	the	hood	to	transport	the	messages.

In	fact,	I	have	contributed	to	the	RabbitMQ	JMS	Client	developed	by	Pivotal	Software
found	at	https://github.com/rabbitmq/rabbitmq-jms-client.

For	this	chapter,	we	will	explore	using	RabbitMQ	in	the	spirit	of	maximum	options.

https://github.com/rabbitmq/rabbitmq-jms-client

Installing	RabbitMQ	broker
To	do	this,	we	need	to	install	the	RabbitMQ	broker.

On	a	macOS,	if	we	are	using	Homebrew	(http://brew.sh/),	it's	as	simple	as	this:

$	brew	install	rabbitmq

==>	Installing	dependencies	for	rabbitmq:	openssl,	libpng,	libtiff,

				wx...

==>	Pouring	openssl-1.0.2j.el_capitan.bottle.tar.gz

				/usr/local/Cellar/openssl/1.0.2j:	1,695	files,	12M

==>	Pouring	libpng-1.6.25.el_capitan.bottle.tar.gz

				/usr/local/Cellar/libpng/1.6.25:	25	files,	1.2M

==>	Pouring	libtiff-4.0.6_2.el_capitan.bottle.tar.gz

				/usr/local/Cellar/libtiff/4.0.6_2:	261	files,	3.4M

==>	Pouring	wxmac-3.0.2_3.el_capitan.bottle.tar.gz

				/usr/local/Cellar/wxmac/3.0.2_3:	809	files,	23.6M

==>	Pouring	erlang-19.1.el_capitan.bottle.tar.gz

				/usr/local/Cellar/erlang/19.1:	7,297	files,	279.8M

==>	Installing	rabbitmq

				/usr/local/Cellar/rabbitmq/3.6.4:	187	files,	5.8M,	built	in	6	

				seco...

		

On	Debian	Linux,	you	can	use	the	following	command:

$	sudo	apt-get	install	rabbitmq-server		

On	any	of	the	Red	Hat	Linux	systems,	the	following	command	can	be	run:

$	yum	install	erlang

$	yum	install	rabbitmq-server-<version>.rpm		

On	various	cloud	solutions,	including	Cloud	Foundry,	RabbitMQ	can	be	found	as	a	service	(including
Pivotal's	RabbitMQ	for	PCF	at	https://network.pivotal.io/products/p-rabbitmq),	something	we'll	explore	in	Ch
apter	10,	Taking	Your	App	to	Production	with	Spring	Boot.

For	more	details	on	downloading	and	installing,	visit	https://www.rabbitmq.com/download.html.

http://brew.sh/
https://network.pivotal.io/products/p-rabbitmq
https://www.rabbitmq.com/download.html

Launching	the	RabbitMQ	broker
With	the	RabbitMQ	broker	installed,	we	just	need	to	launch	it.	There	are	these	two	approaches	to	doing
that:

Starting	it	in	our	current	shell
Having	it	start	when	the	machine	boots

To	start	in	our	current	shell,	we	can	execute	the	following	command:

$	rabbitmq-server

				

RabbitMQ	3.6.4.	Copyright	(C)	2007-2016	Pivotal	Software...

##		##						Licensed	under	the	MPL.		See	http://www.rabbitmq.com/

##		##

##########		Logs:	/usr/local/var/log/rabbitmq/rabbit@localhost.log

######		##								/usr/local/var/log/rabbitmq/rabbit@localhost-sasl....

##########

Starting	broker...

completed	with	10	plugins.		

On	a	macOS	with	Homebrew,	use	the	following	to	launch	as	a	daemon	process	and	relaunch	when	we
reboot:

$	brew	services	start	rabbitmq

==>	Tapping	homebrew/services

Cloning	into	'/usr/local/Homebrew/Library/Taps/homebrew/homebrew-services'...

remote:	Counting	objects:	10,	done.

remote:	Compressing	objects:	100%	(7/7),	done.

remote:	Total	10	(delta	0),	reused	6	(delta	0),	pack-reused	0

Unpacking	objects:	100%	(10/10),	done.

Checking	connectivity...	done.

Tapped	0	formulae	(36	files,	46K)

==>	Successfully	started	`rabbitmq`	(label:	homebrew.mxcl.rabbitmq)		

If	you	are	using	Homebrew,	there	is	a	feature	to	manage	various	services.	Type	homebrew	services	to	see
the	commands	available.	For	example,	brew	services	list	will	list	all	services	and	their	state:

$	brew	services	list

		Name					Status		User							Plist

		activemq	stopped

		mongodb		started	gturnquist	

		/Users/gturnquist/Library/LaunchAgents/hom...

		mysql				stopped

		neo4j				stopped

		rabbitmq	started	gturnquist			

		/Users/gturnquist/Library/LaunchAgents/hom...

		redis				stopped

		tor						stopped		

Now	we	can	see	that	RabbitMQ	has	joined	MongoDB	(which	we	installed	in	Chapter	3,	Reactive	Data
Access	with	Spring	Boot).

This,	essentially,	leverages	macOS	X's	launchctl	system	with	a	Homebrew-supplied	daemon	control	file.

For	Windows,	check	out	https://www.rabbitmq.com/install-windows.html.	It	has	links	to	download	the	broker.
Upon	installation,	it	will	configure	it	with	various	defaults	and	also	start	it	up.

https://www.rabbitmq.com/install-windows.html

To	control	the	broker,	check	out	the	rabbitmqctl.bat	script	found	in	the	sbin	folder	(as	administrator).	Use
the	following	commands:

rabbitmqctl	start

rabbitmqctl	stop

rabbitmqctl	status

Want	to	poke	around	with	the	RabbitMQ	broker	in	a	more	visual	way?	Run	rabbitmq-plugins
enable	rabbitmq_managment,	and	visit	http://localhost:15672.	The	default	username/password	for
RabbitMQ	is	guest/guest.	I	suggest	looking	at	Exchanges	and	Queues	first.

With	the	RabbitMQ	broker	up	and	running,	we	can	now	shift	focus	to	our	application	efforts.

Adding	messaging	as	a	new	component	to
an	existing	application
What	have	we	built	so	far	for	our	social	media	platform?	We	have	the	ability	to	upload	and	delete
pictures.	However,	a	key	piece	of	any	social	media	platform	is	to	allow	users	to	interact	with	each	other.
This	is	commonly	done	by	either	commenting	on	the	social	media	content	or	chatting	directly	with	each
other.

Let's	start	by	adding	the	ability	to	comment	on	images.	But	before	we	get	going,	let's	stop	and	discuss
the	architecture.

For	years,	people	have	used	the	layer	approach	to	split	up	applications.	Fundamentally,	we	don't	want	a
big	application	with	all	the	classes	in	one	package	because	it's	too	hard	to	keep	up	with	everything.

So	far,	we	have	everything	located	in	com.greglturnquist.learningspringboot.	Historically,	the	pattern	has
been	to	split	things	up	in	a	domain	layer,	a	services	layer,	and	a	controllers	layer,	as	shown	in	the
following	screenshot:

In	this	structure,	we	would	put	every	service	into	the	services	subpackage	and	create	further	sub-
subpackages	if	need	be.	We'd	put	all	the	domain	objects	in	domain	and	all	the	controllers	would	go	into
controllers.

The	idea	was	that	controllers	call	services	and	services	return	domain	objects.	It	prevented
entanglements	such	as	services	invoking	controllers,	which	made	sense	at	the	time.

But	with	the	rise	of	microservices	(something	we'll	dig	into	in	Chapter	7,	Microservices	with	Spring
Boot),	these	layer-based	approaches	become	an	issue	when	the	application	gets	really	big.	When
refactoring	is	in	order,	services	found	in	the	same	package	that	are	functionally	unrelated	can	get	tricky
due	to	needless	coupling	we	may	have	created.

A	more	slim	and	trim	approach	is	to	break	things	up	using	vertical	slices	instead	of	horizontal	layers:

With	the	structure	shown	in	the	preceding	screenshot,	we	have	split	things	up	into	images	and	comments,	a
more	function-based	nature.

We	would	put	everything	related	to	handling	images	in	the	former	and	everything	related	to	comments
in	the	latter.	If	the	need	arises,	either	of	these	packages	can	be	further	split	up	into	subpackages,	as
follows:

Worried	that	this	will	cause	an	explosion	of	the	domain/services/controllers	trio	all	over	our	code?	Don't
panic!	We	only	do	this	as	needed,	and	given	that	each	domain	subpackage	will	be	relatively	small	in	scope
as	compared	to	the	old	layer	approach,	the	functionality	should	be	highly	cohesive,	that	is,	have	much	in
common	with	each	other.

Since	we	are	about	to	create	a	separate	piece	of	functionality	(comments),	it	would	make	sense	to	go
ahead	and	break	up	our	application	into	images	and	comments.	So	let's	do	that!

First,	let's	create	the	images	and	comments	subpackages.	With	that	in	place,	the	most	obvious	change	is	to
move	Image,	ImageRepository,	and	ImageService	into	the	image	subpackage.	Easy	enough.

That	leaves	us	with	the	following:

LearningSpringBootApplication

HomeController

LearningSpringBootHealthIndicator

LearningSpringBootApplication	embodies	the	entire	app,	so	it	should	stay	at	the	top	level.	This	isn't	just	a
semantic	statement.	That	class	contains	our	SpringBootApplication	annotation,	which	enables	the
application's	autoconfigured	behaviors	like	component	scanning.	Component	scanning	should	start	at
the	top	level	and	search	all	subpackages.

HomeController	represents	an	interesting	concept.	Even	though	it	calls	into	ImageService,	since	it	serves	the
application's	top-level	view,	let's	leave	it	at	the	top	level	as	well.

As	for	LearningSpringBootHealthIndicator,	a	similar	case	could	be	made	to	keep	it	at	the	root.	Since	we	are
shooting	to	keep	things	light	at	the	top,	why	don't	we	create	a	separate	module	to	encompass	all	Ops-
based	features	that	aren't	specific	to	any	one	module,	ops.

Given	all	these	decisions,	our	new	structure	now	looks	like	this:

Is	spending	this	amount	of	time	debating	package	structure	worth	it?	In	any	agile
environment,	it's	okay	to	try	something	if	it	doesn't	cost	two	weeks	of	effort.	Stopping	to
spend	ten	minutes	thinking	about	a	maintainable	structure	is	an	acceptable	investment,
especially	if	we're	willing	to	change	it	later	should	the	need	arise.

Creating	a	message	producer/message
consumer
Having	restructured	our	application	to	make	room	for	comments,	let's	get	to	it!

First	of	all,	we	need	to	add	a	new	dependency	to	our	build	file,	which	is	done	with	the	following	code:

				compile('org.springframework.boot:spring-boot-starter-amqp')

That	will	give	us	access	to	Spring	AMQP,	which	includes	RabbitMQ	support.

Adding	messaging	technology	to	our	application	may	make	us	clamor	to,	well,	write	some	code	that
talks	to	RabbitMQ.	But	that	isn't	really	a	good	flow.	Instead,	we	should	start	from	one	of	two
perspectives--writing	a	unit	test	or	writing	some	UI.

Either	approach	is	aimed	at	figuring	out	the	use	case	we	are	trying	to	solve.	Before	solving	the	problem
at	hand,	we	need	to	noodle	out	what	our	exact	problem	is.	In	this	case,	let's	start	from	the	UI
perspective.

To	do	that,	we	can	take	advantage	of	Spring	Boot	DevTools	from	the	last	chapter	and	launch	our
application	in	the	Debug	mode	with	the	LiveReload	feature	enabled.	That	way,	as	we	make	changes,	we
can	see	them	right	away:

With	this	preceding	screenshot,	we	can	see	our	application	up	and	running	with	the	LiveReload	server
enabled	(and	some	sample	data	preloaded).

Displaying	comments
Now	we	can	make	edits	to	our	Thymeleaf	template	and	create	input	fields	for	people	to	write
comments:

				<td>	

									

												<li	th:each="comment	:	${image.comments}"	

																th:text="${comment.comment}">	

									

				</td>	

				<td>	

								<form	th:method="post"	th:action="@{'/comments'}">	

												<input	name="comment"	value=""	type="text"	/>	

												<input	name="imageId"	th:value="${image.id}"

													type="hidden"	/>	

												<input	type="submit"	/>	

								</form>	

				</td>	

The	section	of	our	preceding	template	where	each	row	is	rendered	can	be	explained	as	follows:

There	is	a	new	column	containing	an	HTML	unordered	list	to	display	each	comment
The	unordered	list	consists	of	an	HTML	line	item	for	each	comment	via	Thymeleaf's	th:each
construct
There	is	also	a	new	column	containing	an	HTML	form	to	post	a	new	comment
The	form	contains	an	HTML	text	input	for	the	comment	itself
The	form	also	contains	a	hidden	HTML	element	specifying	the	ID	of	the	image	that	the	comment
will	be	associated	with

To	support	this,	we	need	to	update	HomeController	as	follows:

				private	final	ImageService	imageService;	

				private	final	CommentReaderRepository	repository;	

	

				public	HomeController(ImageService	imageService,	

					CommentReaderRepository	repository)	{	

							this.imageService	=	imageService;	

							this.repository	=	repository;	

				}	

We	have	updated	the	class	definition	as	follows:

A	new	repository	field	is	created	for	CommentReaderRepository	(which	we'll	define	further	ahead	in	the
chapter)
This	field	is	initialized	by	constructor	injection

We	need	to	look	up	the	comments.	To	do	that,	we	need	a	Spring	Data	repository	that	can	read
comments.	And	reading	comments	is	ALL	this	repository	needs	to	do	at	this	stage	of	our	social	media
app.

Let's	take	this	new	repository	and	use	it	inside	the	Spring	WebFlux	handler	for	GET	/,	like	this:

				@GetMapping("/")	

				public	Mono<String>	index(Model	model)	{	

						model.addAttribute("images",	

							imageService	

							.findAllImages()	

							.flatMap(image	->	

									Mono.just(image)	

											.zipWith(repository.findByImageId(

													image.getId()).collectList()))	

							.map(imageAndComments	->	new	HashMap<String,	Object>(){{	

												put("id",	imageAndComments.getT1().getId());	

												put("name",	imageAndComments.getT1().getName());	

												put("comments",	

														imageAndComments.getT2());	

								}})

);	

						model.addAttribute("extra",	

							"DevTools	can	also	detect	code	changes	too");	

							return	Mono.just("index");	

				}	

This	last	code	contains	a	slight	adjustment	to	the	model's	images	attribute:

The	code	takes	the	Flux	returned	from	our	ImageService.findAll()	method	and	flatMaps	each	entry
from	an	Image	into	a	call	to	find	related	comments.
repository.findByImageId(image.getId()).collectList()	actually	fetches	all	Comment	objects	related	to	a	given
Image,	but	turns	it	into	Mono<List<Comment>>.	This	waits	for	all	of	the	entries	to	arrive	and	bundles	them
into	a	single	object.
The	collection	of	comments	and	it's	related	image	are	bundled	together	via	Mono.zipWith(Mono),
creating	a	tuple-2	or	a	pair.	(This	is	the	way	to	gather	multiple	bits	of	data	and	pass	them	on	to	the
next	step	of	any	Reactor	flow.	Reactor	has	additional	tuple	types	all	the	way	up	to	Tuple8.)
After	flatMapping	Flux<Image>	into	Flux<Tuple2<Image,List<Comment>>>,	we	then	map	each	entry	into	a
classic	Java	Map	to	service	our	Thymeleaf	template.
Reactor's	Tuple2	has	a	strongly	typed	getT1()	and	getT2(),	with	T1	being	the	Image	and	T2	being	the	list
of	comments,	which	is	suitable	for	our	needs	since	it's	just	a	temporary	construct	used	to	assemble
details	for	the	web	template.
The	image's	id	and	name	attributes	are	copied	into	the	target	map	from	T1.
The	comments	attribute	of	our	map	is	populated	with	the	complete	List<Comment>	extracted	from	T2.

Since	Thymeleaf	templates	operate	on	key-value	semantics,	there	is	no	need	to	define	a
new	domain	object	to	capture	this	construct.	A	Java	Map	will	work	just	fine.

As	we	continue	working	with	Reactor	types,	these	sorts	of	flows	are,	hopefully,	becoming	familiar.
Having	an	IDE	that	offers	code	completion	is	a	key	asset	when	putting	flows	like	this.	And	the	more	we
work	with	these	types	of	transformations	the	easier	they	become.

If	you'll	notice,	ImageService	is	fully	reactive	given	that	we	use	MongoDB's	reactive	drivers.
The	operation	to	retrieve	comments	is	also	reactive.	Chaining	reactive	calls	together,	using
Reactor's	operators	and	hitching	them	to	Thymeleaf's	reactive	solution,	ensures	that
everything	is	being	fetched	as	efficiently	as	possible	and	only	when	necessary.	Writing
reactive	apps	hinges	on	having	a	fully	reactive	stack.

To	round	out	our	feature	of	reading	comments,	we	need	to	define	CommentReaderRepository	as	follows:

				public	interface	CommentReaderRepository	

					extends	Repository<Comment,	String>	{	

	

							Flux<Comment>	findByImageId(String	imageId);	

				}	

The	preceding	code	can	be	described	as	follows:

It's	a	declarative	interface,	similar	to	how	we	created	ImageRepository	earlier	in	this	book.
It	extends	Spring	Data	Commons'	Repository	interface,	which	contains	no	operations.	We	are	left	to
define	them	all.	This	lets	us	create	a	read-only	repository.
It	has	a	findByImageId(String	imageId)	method	that	returns	a	Flux	of	Comment	objects.

This	repository	gives	us	a	read-only	readout	on	comments.	This	is	handy	because	it	lets	us	fetch
comments	and	does	not	accidentally	let	people	write	through	it.	Instead,	we	intend	to	implement
something	different	further	in	this	chapter.

Our	CommentReaderRepository	needs	one	thing:	a	Comment	domain	object:

				package	com.greglturnquist.learningspringboot.images;	

	

				import	lombok.Data;	

	

				import	org.springframework.data.annotation.Id;	

	

				@Data	

				public	class	Comment	{	

	

						@Id	private	String	id;	

						private	String	imageId;	

						private	String	comment;	

	

				}	

This	preceding	domain	object	contains	the	following:

The	@Data	annotation	tells	Lombok	to	generate	getters,	setters,	toString(),	equals(),	and	hashCode()
methods
The	id	field	is	marked	with	Spring	Data	Commons'	@Id	annotation	so	we	know	it's	the	key	for
mapping	objects
The	imageId	field	is	meant	to	hold	an	Image.id	field,	linking	comments	to	images
The	comment	field	is	the	place	to	store	an	actual	comment

For	both	CommentReaderRepository	and	Comment,	the	entire	class	is	shown	including	the	package.
That's	to	show	that	it's	located	in	the	images	subpackage	we	defined	earlier	in	this	chapter.
This	domain	object	provides	the	comment	information	pertinent	to	images.	And	this
information	is	read-only,	which	means	that	this	is	not	where	updates	regarding	comments
are	made.

Producing	comments
Having	written	the	code	to	display	comments,	it's	now	time	to	craft	the	bits	to	create	them.

We've	already	seen	the	changes	to	our	template	adding	an	HTML	form	to	write	a	comment.	Let's	code
the	corresponding	controller	in	the	comments	subpackage,	as	follows:

				@Controller	

				public	class	CommentController	{	

	

						private	final	RabbitTemplate	rabbitTemplate;	

	

						public	CommentController(RabbitTemplate	rabbitTemplate)	{	

								this.rabbitTemplate	=	rabbitTemplate;	

						}	

	

						@PostMapping("/comments")	

						public	Mono<String>	addComment(Mono<Comment>	newComment)	{	

								return	newComment.flatMap(comment	->	

									Mono.fromRunnable(()	->	rabbitTemplate	

											.convertAndSend(

													"learning-spring-boot",	

													"comments.new",	

													comment)))	

											.log("commentService-publish")	

											.then(Mono.just("redirect:/"));	

						}	

	

				}	

The	code	can	be	explained	as	follows:

It's	the	first	class	we	have	put	in	the	new	comments	subpackage.
The	@Controller	annotation	marks	this	as	another	Spring	controller.
It	contains	a	RabbitTemplate	initialized	by	constructor	injection.	This	RabbitTemplate	is	created
automatically	by	Spring	Boot	when	it	spots	spring-amqp	on	the	classpath.
The	@PostMapping("/comments")	annotation	registers	this	method	to	respond	to	the	form	submissions
that	we	added	earlier	in	the	template	with	th:action="@{'/comments'}".
Spring	will	automatically	convert	the	body	of	the	POST	into	a	Comment	domain	object.	Additionally,
since	we	are	using	WebFlux,	deserializing	the	request	body	is	wrapped	in	a	Mono,	hence	that	process
will	only	occur	once	the	framework	subscribes	to	the	flow.
The	incoming	Mono<Comment>	is	unpacked	using	flatMap	and	then	turned	into	a
rabbitTemplate.convertAndSend()	operation,	which	itself	is	wrapped	in	Mono.fromRunnable.
The	comment	is	published	to	RabbitMQ's	learning-spring-boot	exchange	with	a	routing	key	of
comments.new.
We	wait	for	this	to	complete	with	then(),	and	when	done,	return	a	Spring	WebFlux	redirect	to	send
the	webpage	back	to	the	home	page.

Time	out.	That	bullet	point	about	the	RabbitMQ	exchange	and	routing	key	may	have	sounded	a	bit
complex.

The	comment	is	published	to	RabbitMQ's	learning-spring-boot	exchange	with	a	routing	key
of	comments.new.

We	need	to	take	this	apart	to	understand	the	basics	of	AMQP	a	little	better.

AMQP	fundamentals
If	you've	already	used	JMS,	then	you're	aware	that	it	has	queues	and	topics.	AMQP	has	queues	as	well
but	the	semantics	are	different.

Each	message	sent	by	a	JMS-based	producer	is	consumed	by	just	one	of	the	clients	of	that	queue.
AMQP-based	producers	don't	publish	directly	to	queues	but	to	exchanges	instead.	When	queues	are
declared,	they	must	be	bound	to	an	exchange.	Multiple	queues	can	be	bound	to	the	same	exchange,
emulating	the	concept	of	topics.

JMS	has	message	selectors	which	allow	consumers	to	be	selective	about	the	messages	they	receive	from
either	queues	or	topics.	AMQP	has	routing	keys	that	behave	differently	based	on	the	type	of	the
exchange,	as	listed	next.

A	direct	exchange	routes	messages	based	on	a	fixed	routing	key,	often	the	name	of	the	queue.	For
example,	the	last	code	that	we	just	looked	at	mentioned	learning-spring-boot	as	the	name	of	exchange	and
comments.new	as	the	routing	key.	Any	consumer	that	binds	their	own	queue	to	that	exchange	with	a	routing
key	of	comments.new	will	receive	a	copy	of	each	message	posted	earlier.

A	topic	exchange	allows	routing	keys	to	have	wildcards	like	comments.*.	This	situation	best	suits	clients
where	the	actual	routing	key	isn't	known	until	a	user	provides	the	criteria.	For	example,	imagine	a	stock-
trading	application	where	the	user	must	provide	a	list	of	ticker	symbols	he	or	she	is	interested	in
monitoring.

A	fanout	exchange	blindly	broadcasts	every	message	to	every	queue	that	is	bound	to	it,	regardless	of
the	routing	key.

Regarding	the	semantics	of	AMQP,	let's	explore	that	further	by	looking	at	the	CommentService	(also	in
comments	subpackage)	in	chunks:

				@Service	

				public	class	CommentService	{	

	

						private	CommentWriterRepository	repository;	

	

						public	CommentService(CommentWriterRepository	repository)	{	

								this.repository	=	repository;	

						}

						...	more	to	come	below...

				}	

This	preceding	code	can	be	described	as	follows:

The	@Service	annotation	marks	it	as	a	Spring	service	to	be	registered	with	the	application	context	on
startup
CommentWriterRepository	is	a	Spring	Data	repository	used	to	write	new	comments	and	is	initialized	by
the	constructor	injection

Which	brings	us	to	the	meat	of	this	service,	which	is	as	follows:

				@RabbitListener(bindings	=	@QueueBinding(

						value	=	@Queue,	

						exchange	=	@Exchange(value	=	"learning-spring-boot"),	

						key	=	"comments.new"	

))	

				public	void	save(Comment	newComment)	{	

						repository	

							.save(newComment)	

							.log("commentService-save")	

							.subscribe();	

				}	

This	last	little	function	packs	a	punch,	so	let's	take	it	apart:

The	@RabbitListener	annotation	is	the	easiest	way	to	register	methods	to	consume	messages.
The	@QueueBinding	annotation	is	the	easiest	way	to	declare	the	queue	and	the	exchange	it's	bound	to
on-the-fly.	In	this	case,	it	creates	an	anonymous	queue	for	this	method	and	binds	to	the	learning-
spring-boot	exchange.
The	routing	key	for	this	method	is	comments.new,	meaning	any	message	posted	to	the	learning-spring-
boot	exchange	with	that	exact	routing	key	will	cause	this	method	to	be	invoked.
It's	possible	for	the	@RabbitListener	methods	to	receive	a	Spring	AMQP	Message,	a	Spring	Messaging
Message,	various	message	headers,	as	well	as	a	plain	old	Java	object	(which	is	what	we	have	here).
The	method	itself	invokes	our	CommentWriterRepository	to	actually	save	the	comment	in	the	data	store.

To	use	RabbitMQ,	we	would	normally	need	@EnableRabbit,	but	thanks	to	Spring	Boot,	it's	automatically
activated	when	spring-boot-starter-amqp	is	on	the	classpath.	Once	again,	Boot	knows	what	we	want	and
just	does	it.

An	important	thing	to	understand	is	that	@RabbitListener	makes	it	possible	to	dynamically	create	all	the
exchanges	and	queues	needed	to	operate.	However,	it	only	works	if	an	instance	of	AmqpAdmin	is	in	the
application	context.	Without	it,	ALL	exchanges	and	queues	must	be	declared	as	separate	Spring	beans.
But	Spring	Boot's	RabbitMQ	autoconfiguration	policy	provides	one,	so	no	sweat!

There	is	one	slight	issue	with	this	method	that	will	cause	it	to	not	operate--object	serialization.	If	we	had
declared	the	method	signature	to	provide	us	with	a	Spring	AMQP	Message	object,	we	would	pull	down	a
byte	array.	However,	out	of	the	box,	Spring	AMQP	has	limited	functionality	in	serializing	custom
domain	objects.	With	no	effort,	it	can	handle	simple	strings	and	serializables.

But	for	custom	domain	objects,	there	is	a	more	preferred	solution--a	Spring	AMQP	message	converter,
as	shown	next:

				@Bean	

				Jackson2JsonMessageConverter	jackson2JsonMessageConverter()	{	

						return	new	Jackson2JsonMessageConverter();	

				}	

This	preceding	bean,	listed	right	below	the	save(Comment	newComment)	method,	can	be	described	as	follows:

@Bean	registers	this	as	a	bean	definition.
It	creates	Jackson2JsonMessageConverter,	an	implementation	of	Spring	AMQP's	MessageConverter,	used	to
serialize	and	deserialize	Spring	AMQP	Message	objects.	In	this	case,	is	uses	Jackson	to	convert

POJOs	to/from	JSON	strings.

Spring	Boot's	RabbitMQ	autoconfiguration	policy	will	look	for	any	implementation	of	Spring	AMQP's
MessageConverter	instances	and	register	them	with	both	the	RabbitTemplate	we	used	earlier	as	well	as	the
SimpleMessageListenerContainer	that	it	creates	when	it	spots	@RabbitListener	in	our	code.

To	start	our	application	with	a	clean	slate,	we	have	this	code	at	the	bottom	of	CommentService:

				@Bean	

				CommandLineRunner	setUp(MongoOperations	operations)	{	

						return	args	->	{	

								operations.dropCollection(Comment.class);	

						};	

				}	

The	last	code	can	be	described	as	follows:

The	@Bean	annotation	will	register	this	chunk	of	code	automatically
By	implementing	Spring	Boot's	CommandLineRunner	interface,	the	Java	8	lambda	expression	will	run
itself	when	all	beans	have	been	created
It	receives	a	copy	of	MongoOperations,	the	blocking	MongoDB	object	we	can	use	to	drop	the	entire
collection	based	on	Comment

This	code	is	handy	for	development,	but	should	be	either	removed	in	production	or
wrapped	in	a	@Profile("dev")	annotation	such	that	it	ONLY	runs	when
spring.profiles.active=dev	is	present.

To	persist	comments	in	our	data	store,	we	have	the	following	Spring	Data	repository:

				public	interface	CommentWriterRepository	

					extends	Repository<Comment,	String>	{	

	

							Mono<Comment>	save(Comment	newComment);	

	

							//	Needed	to	support	save()	

							Mono<Comment>	findById(String	id);	

				}	

This	preceding	repository	isn't	too	difficult	to	dissect,	and	that	can	be	done	as	follows:

It's	an	interface,	which	means	that	we	don't	have	to	write	any	code.	We	just	declare	the	semantics
and	Spring	Data	does	the	rest.
By	extending	Spring	Data	Commons'	Repository	interface,	it	will	be	picked	up	as	a	repository.	Being
an	empty	interface,	it	comes	with	no	predefined	operations.
It	contains	a	save()	operation	to	store	a	new	comment	(and	return	it	after	it	gets	saved).	If	the	ID
value	is	null,	Spring	Data	MongoDB	will	automatically	generate	a	unique	string	value	for	us.
Spring	Data	requires	a	findOne()	operation	in	order	to	perform	saves	because	that's	what	it	uses	to
fetch	what	we	just	saved	in	order	to	return	it.
All	of	these	method	signatures	use	Reactor	Mono	types.

This	repository	is	focused	on	writing	data	into	MongoDB	and	nothing	more.	Even	though	it	has	a
findOne(),	it's	not	built	for	reading	data.	That	has	been	kept	over	in	the	images	subpackage.

To	finish	things	up	in	our	comments	subpackage,	let's	look	at	the	core	domain	object:

				package	com.greglturnquist.learningspringboot.comments;	

	

				import	lombok.Data;	

	

				import	org.springframework.data.annotation.Id;	

				import	org.springframework.data.mongodb.core.mapping.Document;	

	

				@Data	

				@Document	

				public	class	Comment	{	

	

						@Id	private	String	id;	

						private	String	imageId;	

						private	String	comment;	

				}	

This	previous	domain	object	contains	the	following:

The	@Data	annotation	tells	Lombok	to	generate	getters,	setters,	toString(),	equals(),	and	hashCode()
methods
The	id	field	is	marked	with	Spring	Data	Common's	@Id	annotation	so	we	know	it's	the	key	for
mapping	objects
The	imageId	field	is	meant	to	hold	an	Image.id	field	linking	comments	to	images
The	comment	field	is	the	place	to	store	an	actual	comment

Wait	a	second!	Isn't	this	the	exact	same	code	found	in
com.greglturnquist.learningspringboot.images.Comment?	It	is	right	now.	But	it's	important	to
recognize	that	different	slices	may	need	different	attributes	in	the	future.	By	keeping	a
slice-specific	domain	object,	we	can	change	one	without	the	risk	of	changing	the	other.	In
fact,	it's	possible	that	we	can	(spoiler	alert!),	later	in	this	book,	move	this	entire	comments
system	into	a	separate	microservice.	By	keeping	things	in	nicely	divided	slices,	the	risk	of
tight	coupling	can	be	reduced.

Another	factor	is	that	RabbitMQ	is	not	reactive.	Invoking	rabbitTemplate.convertAndSend()	is	blocking.	That
may	sound	awkward	given	AMQP	is	a	pub/sub	technology.	But	the	whole	process	of	publishing	the
message	to	the	RabbitMQ	broker	holds	up	our	thread,	and	is,	by	definition,	blocking.

So	our	code	wraps	that	inside	a	Java	Runnable	and	converts	it	into	a	Mono	via	Reactor's	Mono.fromRunnable.
That	makes	it	possible	to	invoke	this	blocking	task	only	when	we're	ready	at	the	right	time.	It's
important	to	know	that	a	Mono-wrapped-Runnable	doesn't	act	like	a	traditional	Java	Runnable	and	doesn't
get	launched	in	a	separate	thread.	Instead,	the	Runnable	interface	provides	a	convenient	wrapper	where
Reactor	controls	precisely	when	the	run()	method	is	invoked	inside	its	scheduler.

If	we	refresh	our	code	in	the	IDE	and	let	it	restart,	we	can	now	start	creating	comments.	Check	out	the
following	screenshot:

The	preceding	screenshot	shows	a	couple	of	comments	added	to	the	first	image	and	a	third	being
written.	Cool,	ehh?

But	perhaps,	you're	wondering	why	we	spent	all	that	effort	splitting	up	reading	and	writing	comments?
After	all,	Spring	Data	appears	to	make	it	easy	enough	to	define	a	single	repository	that	could	handle
both.	That	may	even	imply	we	didn't	need	RabbitMQ	and	could	let	HomeController	and	CommentController	use
the	repository	directly	instead.

The	reason	to	use	messaging	is	to	provide	a	reliable	way	to	offload	work	to	another	system.	A	real
system	that	grows	to	thousands,	if	not	millions,	of	users	will	see	a	huge	flow	of	traffic.	Think	about	it.
Are	there	any	other	social	media	platforms	where	people	write	comments	constantly	but	only	view	a
handful	at	a	time?

This	facet	of	our	application	is	designed	with	scalability	in	mind.	If	we	had	one	million	users,	they	may
be	writing	tens	of	millions	of	messages	a	day.	Hitching	our	controller	directly	to	MongoDB	may	cause	it
to	keel	over.	But	if	we	push	all	the	writes	to	a	separate	service,	we	can	tune	suitably.

The	number	of	reads	is	much	smaller.

Adding	customized	metrics	to	track
message	flow
Having	added	the	ability	to	comment	on	other	people's	posted	images,	it	would	be	nice	to	start	gathering
metrics.

To	do	so,	we	can	introduce	metrics	similar	to	those	shown	in	Chapter	5,	Developer	Tools	for	Spring	Boot
Apps,	as	follows:

				@Controller	

				public	class	CommentController	{	

	

						private	final	RabbitTemplate	rabbitTemplate;	

	

						private	final	MeterRegistry	meterRegistry;	

	

						public	CommentController(RabbitTemplate	rabbitTemplate,	

							MeterRegistry	meterRegistry)	{	

									this.rabbitTemplate	=	rabbitTemplate;	

									this.meterRegistry	=	meterRegistry;	

						}	

	

						@PostMapping("/comments")	

						public	Mono<String>	addComment(Mono<Comment>	newComment)	{	

								return	newComment.flatMap(comment	->	

									Mono.fromRunnable(()	->	

										rabbitTemplate	

											.convertAndSend(

													"learning-spring-boot",	

													"comments.new",	

											comment))	

												.then(Mono.just(comment)))	

												.log("commentService-publish")	

												.flatMap(comment	->	{	

														meterRegistry

																.counter("comments.produced",	"imageId",	comment.getImageId())

																.increment();	

														return	Mono.just("redirect:/");	

												});	

						}	

				}	

This	last	code	has	these	few	changes	compared	to	what	we	wrote	earlier	in	this	chapter:

A	MeterRegistry	is	injected	through	the	constructor	and	captured	as	a	field.
It's	used	to	increment	a	comments.produced	metric	with	every	comment.
Each	metric	is	also	"tagged"	with	the	related	imageId.
We	have	to	tune	the	Mono	wrapping	our	rabbitTemplate.convertAndSend(),	and	ensure	that	the	comment	is
passed	via	then().	Then	it	must	be	unpacked	via	flatMap	in	the	part	of	the	flow	that	writes	metrics.

Should	the	code	talking	to	the	meterRegistry	also	be	wrapped	in	Mono.fromRunnable()?	Perhaps.
The	code	blocks	when	writing,	but	in	this	incarnation,	the	metrics	are	stored	in	memory,	so
the	cost	is	low.	Nevertheless,	the	cost	could	rise,	meaning	it	should	be	properly	managed.
If	the	service	became	external,	the	odds	would	increase	quickly	in	favor	of	wrapping	with
a	separate	Mono.

In	a	similar	vein,	if	we	inject	MeterRegistry	into	CommentService,	we	can	then	use	it	there	as	well:

				@RabbitListener(bindings	=	@QueueBinding(

						value	=	@Queue,	

						exchange	=	@Exchange(value	=	"learning-spring-boot"),	

						key	=	"comments.new"	

))	

				public	void	save(Comment	newComment)	{	

						repository	

							.save(newComment)	

							.log("commentService-save")	

							.subscribe(comment	->	{	

									meterRegistry

										.counter("comments.consumed",	"imageId",	comment.getImageId())

										.increment();	

							});	

				}	

This	lines	up	with	what	we	added	to	CommentController.	The	preceding	code	can	be	explained	as	follows:

Using	the	injected	MeterRegistry,	we	increment	a	comments.consumed	metric	with	every	comment.
It's	also	tagged	with	the	comment's	related	imageId.
The	metrics	are	handled	after	the	save	is	completed	inside	the	subscribe	method.	This	method	grants
us	the	ability	to	execute	some	code	once	the	flow	is	complete.

Spring	AMQP	doesn't	yet	support	Reactive	Streams.	That	is	why
rabbitTemplate.convertAndSend()	must	be	wrapped	in	Mono.fromRunnable.	Blocking	calls	such	as
this	subscribe()	method	should	be	red	flags,	but	in	this	situation,	it's	a	necessary	evil	until
Spring	AMQP	is	able	to	add	support.	There	is	no	other	way	to	signal	for	this	Reactor	flow
to	execute	without	it.

The	thought	of	relaunching	our	app	and	manually	entering	a	slew	of	comments	doesn't	sound	very
exciting.	So	why	not	write	a	simulator	to	do	it	for	us!

@Profile("simulator")

@Component

public	class	CommentSimulator	{

		private	final	CommentController	controller;

		private	final	ImageRepository	repository;

		private	final	AtomicInteger	counter;

		public	CommentSimulator(CommentController	controller,

														ImageRepository	repository)	{

				this.controller	=	controller;

				this.repository	=	repository;

				this.counter	=	new	AtomicInteger(1);

		}

		@EventListener

		public	void	onApplicationReadyEvent(ApplicationReadyEvent	event)	{

				Flux

						.interval(Duration.ofMillis(1000))

						.flatMap(tick	->	repository.findAll())

						.map(image	->	{

								Comment	comment	=	new	Comment();

								comment.setImageId(image.getId());

								comment.setComment(

										"Comment	#"	+	counter.getAndIncrement());

								return	Mono.just(comment);

						})

						.flatMap(newComment	->

								Mono.defer(()	->

										controller.addComment(newComment)))

						.subscribe();

		}

}

Let's	take	this	simulator	apart:

The	@Profile	annotation	indicates	that	this	only	operates	if	spring.profiles.active=simulator	is	present
when	the	app	starts
The	@Component	annotation	will	allow	this	class	to	get	picked	up	by	Spring	Boot	automatically	and
activated
The	class	itself	is	located	in	the	root	package,	com.greglturnquist.learningspring,	given	that	it	pulls	bits
from	both	subpackages
The	@EventListener	annotation	signals	Spring	to	pipe	application	events	issued	to	the	app	context.	In
this	case,	the	method	is	interested	in	ApplicationReadyEvents,	fired	when	the	application	is	up	and
operational
Flux.interval(Duration.ofMillis(1000))	causes	a	stream	of	lazy	ticks	to	get	fired	every	1000	ms,	lazily
By	flatMapping	over	this	Flux,	each	tick	is	transformed	into	all	images	using	the	ImageRepository
Each	image	is	used	to	generate	a	new,	related	comment
Using	the	injected	CommentController,	it	simulates	the	newly	minted	comment	being	sent	in	from	the
web

If	we	reconfigure	our	runner	with	spring.profiles.active=simulator,	we	can	see	it	run.	IntelliJ	IDEA
provides	the	means	to	set	Spring	profiles	easily:

You	can	see	the	entry	highlighted	at	the	bottom	of	the	previous	screenshot.

If	we	kick	things	off	after	hearing	our	machine's	fan	move	into	high	gear,	we	can	check	the	metrics	at
http://localhost:8080/application/metrics/comments.consumed	and
http://localhost:8080/application/metrics/comments.produced,	and	expect	to	see	tallies.

In	this	last	screenshot,	we	can	clearly	see	counter.comments.produced	and	counter.comments.consumed,	and	they

happen	to	be	the	same,	which	means	that	none	were	lost.

We	can	also	see	the	unique	image	IDs	with	an	equal	number	of	messages	spread	between	them	(as
expected	with	our	simulator).

Peeking	at	Spring	Cloud	Stream	(with
RabbitMQ)
Linking	lots	of	small	services	together	via	messaging	is	a	very	common	pattern.	It	increases	in
popularity	with	the	rise	of	microservices.	Coding	the	same	pattern	over	and	over	using	RabbitTemplate	or
some	other	transport	template	(KafkaTemplate	and	others)	is	another	level	of	complexity	we	shouldn't	be
saddled	with.

Spring	Cloud	Stream	(http://cloud.spring.io/spring-cloud-stream/)	to	the	rescue!

Spring	Cloud	Stream	takes	the	concept	of	inputs,	outputs,	and	transformers	from	Spring	Integration
and	makes	it	super	easy	to	chain	them	together.

To	alter	our	social	media	platform	to	do	this,	we	can	remove	spring-boot-starter-amqp	from	our	build	file
and	add	this	instead:

				compile(

						'org.springframework.cloud:spring-cloud-starter-stream-rabbit')	

				compile(

						'org.springframework.cloud:spring-cloud-stream-reactive')	

This	preceding	dependency	brings	in	the	following:

spring-cloud-stream-binder-rabbit-core

spring-cloud-stream-codec

spring-cloud-stream

spring-cloud-stream-reactive

spring-boot-starter-amqp

spring-integration-amqp

Spring	Cloud	Stream	has	many	starters.	In	essence,	we	must	pick	the	underlying	transport
technology,	but	we	don't	have	to	interact	with	the	transport	technology	directly.

http://cloud.spring.io/spring-cloud-stream/

Introduction	to	Spring	Cloud
Spring	Cloud?	What	is	that?

Spring	Cloud	is	an	extension	of	Spring	Boot	provided	through	various	libraries	and	aimed	at	addressing
different	cloud-native	patterns.	In	this	case,	Spring	Cloud	Stream	aims	to	simplify	the	chaining	together
of	services	via	messaging.

To	use	any	Spring	Cloud	library,	we	need	to	add	the	following	chunk	to	the	bottom	of	our	build.gradle
file:

				dependencyManagement	{	

						imports	{	

								mavenBom	"org.springframework.cloud:spring-cloud-	

									dependencies:${springCloudVersion}"	

						}	

				}	

This	preceding	fragment	of	code	is	part	of	Spring's	Dependency	Management	gradle	plugin,	pulling	in
Spring	Cloud	BOM	(Bill	of	Materials).	In	this	case,	it	has	a	variable,	springCloudVersion,	which	we	need
to	select.

Spring	Cloud	has	release	trains,	which	means	that	each	library	has	a	version	but	all	the	versions	are
coordinated.	By	picking	one	train,	we	get	a	fleet	of	tools	to	pick	from	(and	we	will	throughout	the	rest
of	this	book!).

The	Spring	Cloud	release	train	tied	to	Spring	Boot	2.0	is	Finchley,	so	let's	put	that	right	next	to	our
version	of	Boot	at	the	top:

				buildscript	{	

						ext	{	

								springBootVersion	=	'2.0.0.M5'	

								springCloudVersion	=	'Finchley.M3'	

						}	

						...	

				}

If	you're	curious	about	the	various	release	trains	of	Spring	Cloud,	check	out	its	project
page	at	http://projects.spring.io/spring-cloud/.

With	Spring	Cloud's	BOM	and	Spring	Cloud	Stream	added	to	our	build,	let's	return	to	configuring
messaging	using	Spring	Cloud	Stream's	core	interfaces,	as	follows:

				@Controller	

				@EnableBinding(Source.class)	

				public	class	CommentController	{	

	

						private	final	CounterService	counterService;	

						private	FluxSink<Message<Comment>>	commentSink;	

						private	Flux<Message<Comment>>	flux;	

	

						public	CommentController(CounterService	counterService)	{	

								this.counterService	=	counterService;	

								this.flux	=	Flux.<Message<Comment>>create(

http://projects.spring.io/spring-cloud/

										emitter	->	this.commentSink	=	emitter,	

										FluxSink.OverflowStrategy.IGNORE)	

										.publish()	

										.autoConnect();	

						}	

	

						@PostMapping("/comments")	

						public	Mono<String>	addComment(Mono<Comment>	newComment)	{	

								if	(commentSink	!=	null)	{	

										return	newComment	

											.map(comment	->	commentSink.next(MessageBuilder	

											.withPayload(comment)	

											.build()))	

											.then(Mono.just("redirect:/"));	

								}	else	{	

												return	Mono.just("redirect:/");	

								}	

						}	

	

						@StreamEmitter	

						public	void	emit(@Output(Source.OUTPUT)	FluxSender	output)	{	

								output.send(this.flux);	

						}	

	

				}	

This	last	code	is	very	similar	to	the	CommentController	that	we	created	earlier	in	this	chapter,	but	with	the
following	differences:

@EnableBinding(Source.class)	flags	this	app	as	a	source	for	new	events.	Spring	Cloud	Stream	uses	this
annotation	to	signal	the	creation	of	channels,	which,	in	RabbitMQ,	translates	to	exchanges	and
queues.
The	constructor	proceeds	to	set	up	a	FluxSink,	the	mechanism	to	emit	new	messages	into	a
downstream	Flux.	This	sink	is	configured	to	ignore	downstream	backpressure	events.	It	starts
publishing	right	away,	autoconnecting	to	its	upstream	source	upon	subscription.
The	objects	being	emitted	are	Message<Comment>,	which	is	Spring's	abstraction	for	a	POJO	wrapped	as
a	transportable	message.	This	includes	the	ability	to	add	headers	and	other	information.
Inside	addComments,	if	the	sink	has	been	established,	it	maps	newComment	into	a	Message<Comment>	using
Spring	Messaging	APIs.	Finally,	it	transmits	the	message	into	the	sink.
When	the	message	is	successfully	emitted	to	Flux,	a	redirect	is	issued.
To	transmit	Flux	of	Message<Comment>	objects,	a	separate	method,	emit,	is	wired	up	with	an	@StreamEmitter
annotation.	This	method	is	fed	a	FluxSender,	which	provides	us	with	a	Reactor-friendly	means	to
transmit	messages	into	a	channel.	It	lets	us	hook	up	the	Flux	tied	to	our	FluxSink.
The	@Output(Source.OUTPUT)	annotation	marks	up	which	channel	it	gets	piped	to	(visiting	Source.OUTPUT
reveals	the	channel	name	as	output).

That's	a	lot	of	stuff	packed	into	this	controller.	To	better	understand	it,	there	are	some	fundamental
concepts	to	realize.

First	of	all,	it's	not	common	practice	to	create	a	Flux	and	then	add	to	it.	The	paradigm	is	to	wrap	it
around	something	else.	To	drive	this	point	home,	Flux	itself	is	an	abstract	class.	You	can't	instantiate	it.
Instead,	you	must	use	its	various	static	helper	methods	to	craft	one.	So,	when	we	want	to	take	a
behavior	that	is	tied	to	users	clicking	on	a	site	and	link	it	to	a	Flux	that	was	created	when	the	application
started,	we	need	something	like	FluxSink	to	bridge	these	two	things	together.

Spring	Cloud	Stream	focuses	on	chaining	together	streams	of	messages	with	source/sink	semantics.

When	it	comes	to	Reactor,	this	means	adapting	a	Flux	of	messages	onto	a	channel,	a	concept	curated	for
several	years	by	Spring	Integration.	Given	that	the	concrete	nature	of	the	channel	is	abstracted	away,	it
doesn't	matter	what	transport	technology	we	use.	Thanks	to	the	power	of	Spring	Boot,	this	is	defined	by
dependencies	on	the	classpath.	Nevertheless,	we'll	continue	using	RabbitMQ	because	it's	darn	simple
and	powerful	at	the	same	time.

By	the	way,	we'll	see	this	concept	of	connecting	a	sink	to	Flux	again	when	we	visit	Chapter	8,	WebSockets
with	Spring	Boot.	It's	a	common	Reactor	pattern	when	connecting	one-off	objects	to	established	flows.

To	declare	a	Spring	Cloud	Stream	consumer,	we	merely	need	to	update	our	CommentService	as	follows:

				@Service	

				@EnableBinding(CustomProcessor.class)	

				public	class	CommentService	{	

At	the	top	of	CommentService,	we	need	to	add	@EnableBinding(CustomProcessor.class).	If	this	was	the	only	Spring
Cloud	Stream	component,	we	could	have	used	@EnableBinding(Processor.class),	however,	we	can't	share	the
same	channel,	output,	with	the	CommentController.	So	we	need	to	code	a	custom	set	of	channels,
CustomProcessor	as	shown	below:

public	interface	CustomProcessor	{

			String	INPUT	=	"input";

			String	OUTPUT	=	"emptyOutput";

			@Input(CustomProcessor.INPUT)

			SubscribableChannel	input();

			@Output(CustomProcessor.OUTPUT)

			MessageChannel	output();

}

This	custom	processor	is	quite	similar	to	Spring	Cloud	Stream's	Processor:

It's	a	declarative	interface.
It	has	two	channel	names,	INPUT	and	OUTPUT.	The	INPUT	channel	uses	the	same	as	Processor.	To	avoid
colliding	with	the	OUTPUT	channel	of	Source,	we	create	a	different	channel	name,	emptyOutput.	(Why	call
it	emptyOutput?	We'll	see	in	a	moment!)
The	is	a	SubscribableChannel	for	inputs	and	a	MessageChannel	for	outputs.

This	flags	our	application	as	both	a	Sink	as	well	as	a	Source	for	events.	Remember	how	we	had	to	subscribe
earlier	when	consuming	with	RabbitTemplate?

Thankfully,	Spring	Cloud	Stream	is	Reactor-friendly.	When	dealing	with	Reactive	Streams,	our	code
shouldn't	be	the	termination	point	for	processing.	So,	receiving	an	incoming	Flux	of	Comment	objects	must
result	in	an	outgoing	Flux	that	the	framework	can	invoke	as	we'll	soon	see.

Further	down	in	CommentService,	we	need	to	update	our	save	method	as	follows:

				@StreamListener	

				@Output(CustomProcessor.OUTPUT)	

				public	Flux<Void>	save(@Input(CustomProcessor.INPUT)	

					Flux<Comment>	newComments)	{	

							return	repository	

								.saveAll(newComments)	

								.flatMap(comment	->	{	

										meterRegistry

												.counter("comments.consumed",	"imageId",	comment.getImageId())

												.increment();	

										return	Mono.empty();	

								});	

				}	

Let's	tear	apart	this	preceding	updated	version	of	save:

The	@RabbitListener	annotation	has	been	replaced	with	@StreamListener,	indicating	that	it's	transport-
agnostic.
The	argument	newComments	is	tied	to	the	input	channel	via	the	@Input()	annotation.
Since	we've	marked	it	as	Flux,	we	can	immediately	consume	it	with	our	MongoDB	repository.
Since	we	have	to	hand	a	stream	back	to	the	framework,	we	have	marked	up	the	whole	method	with
@Output.
From	there,	we	can	flatMap	it	to	generate	metrics	and	then	transform	it	into	a	Flux	of	Mono<Void>	s
with	Mono.empty().	This	ensures	that	no	more	processing	is	done	by	the	framework.

This	method	has	the	same	concept	as	all	Spring	@*Listener	annotations--​invoke	the	method	with	optional
domain	objects.	But	this	time,	it	receives	them	from	whatever	underlying	technology	we	have
configured	Spring	Cloud	Stream	to	use.	The	benefit	is	that	this	is	slim	and	easy	to	manage	and	our	code
is	no	longer	bound	to	RabbitMQ	directly.

That	being	said,	we	need	to	express	to	Spring	Cloud	Stream	that	our	source	and	sink	need	to
communicate	through	the	same	RabbitMQ	exchange.	To	do	so,	we	need	to	provide	settings	in
application.yml:

				spring:	

						cloud:	

								stream:	

										bindings:	

												input:	

														destination:	learning-spring-boot-comments	

														group:	learning-spring-boot	

												output:	

														destination:	learning-spring-boot-comments	

														group:	learning-spring-boot	

This	last	application	configuration	contains	the	following	details:

spring.cloud.stream.bindings	is	configured	for	both	the	input	and	the	output	channel's	destination	to	be
learning-spring-boot.	When	using	RabbitMQ	bindings,	this	is	the	name	of	the	exchange	and	Spring
Cloud	Stream	uses	topic	exchanges	by	default.
We	take	advantage	of	Spring	Cloud	Streams'	support	for	consumer	groups	by	also	setting	the	group
property.	This	ensures	that	even	if	there	are	multiple	stream	listeners	to	a	given	channel,	only	one
listener	will	consume	any	one	message.	This	type	of	guarantee	is	required	in	cloud-native
environments	when	we	can	expect	to	run	multiple	instances.

As	stated	early	in	this	book,	you	can	use	either	application.properties	or	application.yml.	If	you
find	yourself	configuring	many	settings	with	the	same	prefix,	use	YAML	to	make	it	easier	to
read	and	avoid	repetition.

By	the	way,	remember	having	to	define	a	Jackson2JsonMessageConverter	bean	earlier	in	this	chapter	to	handle
serialization?	No	longer	needed.	Spring	Cloud	Stream	uses	Esoteric	Software's	Kryo	library	for
serialization/deserialization	(https://github.com/EsotericSoftware/kryo).	That	means,	we	can	chuck	that	bean
definition.	Talk	about	thinning	out	the	code!

If	we	run	the	simulator	again	(spring.profiles.active=simulator)	and	check
http://localhost:8080/application/metrics,	we	can	see	our	custom	metrics	tabulating	everything.

With	this,	we	have	managed	to	change	the	comments	solution	and	yet	retain	the	same	set	of	metrics.

However,	by	switching	to	Spring	Cloud	Stream,	we	have	gathered	a	whole	new	fleet	of	metrics,	as	seen
in	this	screenshot:

This	is	a	subset	(too	many	to	fill	a	book)	covering	the	input	and	output	channels.

Remember	how	we	wrote	a	custom	health	check	in	the	last	chapter?	It	would	be	handy	to	have	one	for
RabbitMQ	and	its	bindings.	Guess	what?	It's	already	done.	Check	it	out:

https://github.com/EsotericSoftware/kryo

In	this	last	screenshot,	we	can	see	the	following:

The	RabbitMQ	broker	is	up	and	operational
Our	RabbitMQ	binders	are	operational	as	well

With	this	in	place,	we	have	a	nicely	working	comment	system.

Logging	with	Spring	Cloud	Stream
To	wrap	things	up,	it	would	be	nice	to	actually	see	how	Spring	Cloud	Stream	is	handling	things.	To	do
so,	we	can	dial	up	the	log	levels	in	application.yml	like	this:

				logging:	

							level:	

								org:	

										springframework:	

												cloud:	DEBUG	

												integration:	DEBUG	

This	last	code	dials	up	the	log	levels	for	both	Spring	Cloud	Stream	and	its	underlying	technology,
Spring	Integration.	It's	left	as	an	exercise	for	the	reader	to	change	RabbitTemplate	log	levels	by	setting
org.springframework.amqp=DEBUG	and	see	what	happens.

With	these	levels	dialed	up,	if	we	run	our	application,	we	can	see	a	little	of	this:

This	previous	screenshot	shows	a	clear	separation	between	Spring	Cloud	Stream	involved	in	binding
compared	to	Spring	Integration	dealing	with	channel	settings	as	well	as	setting	up	AMQP	exchanges
and	queues.

It's	also	nice	to	observe	that	the	logging	prefix	o.s.c.s	is	short	for	org.springframework.cloud.stream	or	Spring
Cloud	Stream.

If	we	add	a	new	comment	on	the	web	page,	we	can	see	the	outcome,	as	seen	here:

This	screenshot	nicely	shows	Comment	being	transmitted	to	the	output	channel	and	then	received	on
the	input	channel	later.

Also	notice	that	the	logging	prefix	o.s.i	indicates	Spring	Integration,	with	s.i.m	being	Spring
Integration's	Message	API.

Summary
In	this	chapter,	we	created	a	message-based	solution	for	users	to	comment	on	images.	We	first	used
Spring	AMQP	and	RabbitTemplate	to	dispatch	writes	to	a	separate	slice.	Then	we	replaced	that	with	Spring
Cloud	Stream	with	RabbitMQ	bindings.	That	let	us	solve	the	comments	situation	with	messaging,	but
without	our	code	being	bound	to	a	specific	transport	technology.

In	the	next	chapter,	we'll	break	up	our	quickly	growing,	monolithic	application	into	smaller
microservices	and	use	Spring	Cloud	to	simplify	integration	between	these	distributed	components.

Microservices	with	Spring	Boot
@SpringBoot	and	@SpringCloudOSS	are	making	it	way	too	easy	to	build	advanced	distributed	systems.

Shame	on	you!	#ComplimentarySarcasm

–	InSource	Software	@InSourceOmaha

In	the	previous	chapter,	we	learned	how	to	communicate	between	different	systems	using	AMQP
messaging	with	RabbitMQ	as	our	broker.

In	this	day	and	age,	teams	around	the	world	are	discovering	that	constantly	tacking	on	more	and	more
functionality	is	no	longer	effective	after	a	certain	point.	Domains	become	blurred,	coupling	between
various	systems	makes	things	resistant	to	change,	and	different	teams	are	forced	to	hold	more	and	more
meetings	to	avoid	breaking	various	parts	of	the	system,	sometimes,	for	the	tiniest	of	changes.

Emerging	from	all	this	malaise	are	microservices.	The	term	microservice	is	meant	to	connote	a	piece	of
software	that	doesn't	attempt	to	solve	too	many	problems,	but	a	targeted	situation	instead.	Its	scope	is
microscopic	when	compared	with	the	existing	behemoth	monoliths	that	litter	the	horizon.

And	that's	where	Spring	Cloud	steps	in.	By	continuing	the	paradigm	of	autoconfiguration,	Spring	Cloud
extends	Spring	Boot	into	the	realm	of	cloud-native	microservices,	making	the	development	of
distributed	microservices	quite	practical.

In	this	chapter,	we	will	cover	the	following	topics:

A	quick	primer	on	microservices
Dynamically	registering	and	finding	services	with	Eureka
Introducing	@SpringCloudApplication
Calling	one	microservice	from	another	with	client-side	load	balancing
Implementing	microservice	circuit	breakers
Monitoring	circuits
Offloading	microservice	settings	to	a	configuration	server

A	quick	primer	on	microservices
As	we	said,	a	microservice	focuses	on	solving	a	problem	and	solving	it	right,	much	like	the	UNIX
philosophy	of	make	each	program	do	one	thing	well	[Doug	McIlroy].

That	said,	too	many	people	describe	microservices	as	being	less	than	a	certain	number	of	lines	of	code,
or	less	than	a	certain	number	of	megabytes	in	total	size.	Nothing	could	be	further	from	the	truth.	In	fact,
microservices	are	more	closely	tied	to	bounded	contexts	as	defined	by	Eric	Evans	in	Domain	Driven
Design,	a	worthwhile	read	despite	having	been	written	in	2003.

In	essence,	a	microservice	should	focus	on	solving	a	particular	problem,	and	only	use	enough	domain
knowledge	to	tackle	that	specific	problem.	If	other	parts	of	the	system	wish	to	interact	with	the	same
domain,	their	own	context	might	be	different.

In	case	you	missed	it,	we	introduced	Spring	Cloud	(http://projects.spring.io/spring-cloud/)	in
the	previous	chapter	using	Spring	Cloud	Stream.	Spring	Cloud	is	a	collection	of	Spring
projects	that	are	aimed	at	solving	cloud-native	problems.	These	are	problems	observed
time	and	again	when	systems	grow	in	size	and	scope,	and	are	often	relegated	to	cloud
platforms.	Solving	cloud-native	problems	with	microservices	has	seen	a	high	rate	of
success,	hence	making	many	of	their	tools	a	perfect	fit	for	this	chapter.

Suffice	it	to	say,	entire	books	have	been	written	on	the	subject	of	microservices,	so,	to	further	explore
this	realm,	feel	free	to	look	about.	For	the	rest	of	this	chapter,	we'll	see	how	Spring	Boot	and	Spring
Cloud	make	it	super	simple	to	engage	in	microservice	development	without	paying	a	huge	cost.

There	are	hundreds	of	books	written	on	the	subject	of	microservices.	For	more	details,
check	out	the	free	book,	Migrating	to	Cloud	Native	Application	Architectures	by	cloud
native	polymath	Matt	Stine	(http://mattstine.com).	It	covers	many	concepts	that	underpin
microservices.

http://projects.spring.io/spring-cloud/
http://mattstine.com

Dynamically	registering	and	finding
services	with	Eureka
At	a	fundamental	level,	taking	one	big	application	(like	we've	built	so	far)	and	splitting	it	up	into	two	or
more	microservices	requires	that	the	two	systems	communicate	with	each	other.	And	to	communicate,
these	systems	need	to	find	each	other.	This	is	known	as	service	discovery.

The	Netflix	engineering	team	built	a	tool	for	this	called	Eureka,	and	open	sourced	it.	Eureka	provides
the	means	for	microservices	to	power	up,	advertise	their	existence,	and	shutdown	as	well.	It	supports
multiple	copies	of	the	same	service	registering	themselves,	and	allows	multiple	instances	of	Eureka	to
register	with	each	other	to	develop	a	highly	available	service	registry.

Standing	up	a	Eureka	Server	is	quite	simple.	We	simply	have	to	create	a	new	application	at	http://start.s
pring.io:

Yes,	that's	correct.	We	create	an	entirely	separate	Spring	Boot	application	using	the	Spring	Initializr,
apart	from	our	functional	application.	And	in	the	preceding	screenshot,	the	arrows	point	out	that	we	are
calling	it	learning-spring-boot-eureka-server	while	also	adding	a	single	dependency,	Eureka	Server.	This
application	will	be	dedicated	to	providing	our	microservices	with	a	service	registry.

If	we	peek	at	our	Eureka	Server's	build	file,	we'll	find	a	slim	list	of	dependencies	toward	the	bottom:

				dependencies	{	

						compile('org.springframework.cloud:spring-cloud-starter-eureka-

							server')	

				}	

	

				dependencyManagement	{	

http://start.spring.io

						imports	{	

								mavenBom	"org.springframework.cloud:spring-cloud-

									dependencies:${springCloudVersion}"	

						}	

				}	

This	short	list	has	but	one	dependency--spring-cloud-starter-eureka-server.	Following	it	is	the	same	Spring
Cloud	Bill	of	Materials	(BOM)	used	to	provide	the	proper	versions	of	the	Spring	Cloud	components.

Toward	the	top	of	the	build	file,	we	can	see	the	exact	versions	of	both	Spring	Boot	and	Spring	Cloud:

				buildscript	{	

						ext	{	

								springBootVersion	=	'2.0.0.M5'	

								springCloudVersion	=	'Finchley.M3'	

						}	

						...	

				}	

Spring	Cloud's	Finchley	release	train,	also	mentioned	in	the	previous	chapter,	is	the	version
compatible	with	Spring	Boot	2.0.

With	that	in	place,	the	only	code	we	must	write	is	shown	here:

				@SpringBootApplication	

				@EnableEurekaServer	

				public	class	LearningSpringBootEurekaServerApplication	{	

	

						public	static	void	main(String[]	args)	{	

								SpringApplication.run(

										LearningSpringBootEurekaServerApplication.class);	

						}	

				}	

This	preceding	simple	application	can	be	described	as	follows:

@SpringBootApplication	marks	this	app	as	a	Spring	Boot	application,	which	means	that	it	will
autoconfigure	beans	based	on	the	classpath,	and	load	properties	as	well.
@EnableEurekaServer	tells	Spring	Cloud	Eureka	that	we	want	to	run	a	Eureka	Server.	It	proceeds	to
configure	all	the	necessary	beans	to	host	a	service	registry.
The	code	inside	public	static	void	main	is	the	same	as	the	previous	chapters,	simply	loading	the
surrounding	class.

Before	we	can	launch	our	Eureka	service	registry,	there	are	some	key	settings	that	must	be	plugged	in.
To	do	so,	we	need	to	create	a	src/main/resources/application.yml	file	as	follows:

				server:	

						port:	8761	

	

				eureka:	

						instance:	

								hostname:	localhost	

						client:	

								registerWithEureka:	false	

								fetchRegistry:	false	

								serviceUrl:	

										defaultZone:	

											http://${eureka.instance.hostname}:${server.port}/eureka/	

The	previous	configuration	file	can	be	explained	in	detail	as	follows:

server.port	lets	us	run	it	on	Eureka's	standard	port	of	8761.
For	a	standalone	Eureka	Server,	we	have	to	configure	it	with	a	eureka.instance.hostname	and	a
eureka.client.serviceUrl.defaultZone	setting.	This	resolves	to	http://localhost:8761/eureka,	the	URI	for	this
standalone	version	of	Eureka.	For	a	multi-node	Eureka	Server	configuration,	we	would	alter	this
configuration.

Eureka	servers	are	also	clients,	which	means	that	with	multiple	instances	running,	they	will	send
heartbeats	to	each	other,	and	also	registry	data.	With	a	standalone	instance,	we	would	get	bombarded
with	log	messages	about	failing	to	reach	peers	unless	we	disable	the	Eureka	server	from	being	a	client
via	eureka.client.registerWithEureka=false	and	eureka.client.fetchRegistry=false	(as	we	just	did).

To	run	things	in	a	more	resilient	mode,	we	could	run	two	instances,	each	with	a	different	Spring	profile
(peer1	and	peer2)	with	the	following	configuration:

				spring:	

						profiles:	peer1	

				eureka:	

						instance:	

								hostname:	peer1	

						client:	

								serviceUrl:	

										defaultZone:	http://peer2/eureka/	

				spring:	

						profiles:	peer2	

				eureka:	

						instance:	

								hostname:	peer2	

						client:	

								serviceUrl:	

										defaultZone:	http://peer1/eureka/	

spring.profiles,	in	a	YAML	file	with	the	triple-dash	separators,	lets	us	put	multiple	profiles	in	the	same
application.yml	configuration	file.	To	launch	an	application	with	a	given	profile,	we	merely	need	to	run	it
with	spring.profiles.active=peer1	or	SPRING_PROFILES_ACTIVE=peer1.	As	stated,	this	configuration	file	has	two
profiles,	peer1	and	peer2.

Assuming	we	launched	two	separate	copies	of	our	Eureka	Server,	each	on	a	different	port	running	each
profile,	they	would	seek	each	other	out,	register	as	clients	to	each	other,	send	heartbeats,	and
synchronize	their	registry	data.	It's	left	as	an	exercise	for	the	reader	to	spin	up	a	pair	of	Eureka	Servers.

Going	back	to	the	original	configuration	file	we	wrote,	we	can	now	run
LearningSpringBootEurekaServerApplication.	With	this	service	running	in	the	background,	we	can	now	embark
on	converting	our	previous	monolith	into	a	set	of	microservices.

Introducing	@SpringCloudApplication
If	you	haven't	caught	on	by	now,	we	plan	to	split	up	the	system	we've	built	so	far	so	that	one
microservice	focuses	on	images,	and	the	other	on	comments.	That	way,	in	the	future,	we	can	scale	each
service	with	the	appropriate	number	of	instances	based	on	traffic.

To	make	this	break,	let's	basically	grab	all	the	code	from	the	comments	subpackage,	and	move	it	into	an
entirely	different	project.	We'll	call	one	project	images	and	the	other	one	comments.

Before	we	can	copy	all	that	code,	we	need	a	project	for	each.	To	do	so,	simply	create	two	new	folders,
learning-spring-boot-comments	and	learning-spring-boot-images.	We	could	go	back	to	Spring	Initializr	to	create
them	from	scratch,	but	that's	unnecessary.	It's	much	easier	to	simply	copy	the	existing	build	file	of	our
monolith	into	both	of	our	new	microservices,	and	customize	the	name	of	the	artifact.	Since	the
build.gradle	file	is	almost	identical	to	the	monolith,	there's	no	need	to	inspect	it	here.

The	new	comments	microservice	file	layout	should	look	something	like	this:

And	the	new	images	microservice	file	layout	should	appear	something	like	this:

With	that	completed,	we	now	need	to	tweak	the	launcher	for	our	comments	microservice	like	this:

				@SpringCloudApplication	

				public	class	LearningSpringBootCommentsApplication	{	

	

						public	static	void	main(String[]	args)	{	

								SpringApplication.run(

												LearningSpringBootCommentsApplication.class);	

						}	

				}	

This	last	bit	of	code	is,	virtually,	identical	to	what	we	have	seen	in	previous	chapters	except	for	the
following:

@SpringCloudApplication	replaces	the	previous	@SpringBootApplication.	This	new	annotation	extends
@SpringBootApplication,	giving	us	the	same	autoconfiguration,	component	scanning,	and	property
support	(among	other	things)	that	we	have	come	to	love.	Additionally,	it	adds	@EnableDiscoveryClient
to	register	with	Eureka	and	@EnableCircuitBreaker	so	we	can	create	fallback	commands	if	a	remote
service	is	down	(something	we'll	see	explored	later	in	this	chapter).
The	name	of	the	class	has	been	changed	to	better	describe	its	job.

There	are	both	@EnableEurekaClient	and	@EnableDiscoveryClient	annotations	available.
DiscoveryClient	is	the	abstract	interface	that	Spring	Cloud	Netflix	puts	above	EurekaClient	in
the	event	that	future	service	registry	tools	are	built.	At	this	point	in	time,	there	is	little
difference	in	our	code,	except	the	convenient	usage	of	a	single
annotation,@SpringCloudApplication,	to	turn	our	component	into	a	microservice.

Having	split	up	images	and	comments,	we	should	make	a	similar	adjustment	to	the	top-level	class	for	images:

				@SpringCloudApplication	

				public	class	LearningSpringBootImagesApplication	{	

	

						public	static	void	main(String[]	args)	{	

								SpringApplication.run(

										LearningSpringBootImagesApplication.class,	args);	

						}	

				}	

In	the	preceding	code,	we	have	applied	the	same	type	to	the	images	microservice	as	we	did	to	the	comments
microservice	(@SpringBootApplication	→	@SpringCloudApplication).

For	each	of	our	microservices	to	talk	to	Eureka,	we	need	to	add	the	following	code	to
src/main/resources/application.yml	(in	both	images	and	comments):

				eureka:	

						client:	

								serviceUrl:	

										defaultZone:	http://localhost:8761/eureka/

This	single-property	configuration	file	can	be	described	as	follows:

eureka.client.serviceUrl.defaultZone	instructs	our	DiscoveryClient-powered	application	to	look	for
Eureka	at	http://localhost:8761/eureka.

There	are	many	more	options	for	configuring	Eureka	and	its	clients.	See	http://cloud.spring.
io/spring-cloud-netflix/spring-cloud-netflix.html	for	more	details.

We	can	now	move	forward	with	splitting	up	our	system.

http://cloud.spring.io/spring-cloud-netflix/spring-cloud-netflix.html

Calling	one	microservice	from	another	with
client-side	load	balancing
Remember	how	we	configured	our	Eureka	Server	earlier	to	run	on	a	separate	port?	Every	microservice
has	to	run	on	a	distinct	port.	If	we	assume	the	images	service	is	our	frontend	(it	has	the	Thymeleaf
template,	and	is	closest	to	consumers	for	serving	up	image	data),	then	we	can	let	it	continue	to	run	on
Netty's	default	port	of	8080.

That	leaves	one	decision:	what	port	to	run	the	comments	service	on?	Let's	add	this	to	the	comments	service's
application.yml:

				server:	

						port:	9000	

This	setting	instructs	Spring	Boot	to	run	comments	on	port	9000.	With	that	in	place,	let's	go	back	to	images,
and	make	some	adjustments.

For	starters	(Spring	Boot	starters),	we	need	to	add	some	extra	things	to	the	images	build.gradle	file:

				compile('org.springframework.cloud:spring-cloud-starter-eureka')	

				compile('org.springframework.cloud:spring-cloud-starter-hystrix')	

These	changes	include	the	following:

spring-cloud-starter-eureka	is	the	dependency	needed	to	register	our	microservice	as	a	Eureka	client.
It	brings	in	several	transitive	dependencies,	the	most	important	one	for	this	section	being	Ribbon.
spring-cloud-starter-hystrix	is	the	dependency	for	the	circuit-breaker	pattern,	which	we	will	dig	into
later	in	this	chapter.

The	Spring	Framework	has	had,	for	a	long	time,	the	powerful	RestTemplate	utility.	To	make	a	remote	call,
we	just	do	something	like	this:

				List<Comment>	comments	=	restTemplate.exchange(

						"http://localhost:9000/comments/{imageId}",	

						HttpMethod.GET,	

						null,	

						new	ParameterizedTypeReference<List<Comment>>()	{},	

						image.getId()).getBody();	

There's	a	lot	going	on	here,	so	let's	take	it	apart:

restTemplate.exchange()	is	the	generic	method	for	making	remote	calls.	There	are	shortcuts	such	as
getForObject()	and	getForEntity(),	but	when	dealing	with	generics	(such	as	List<Comment>),	we	need	to
switch	to	exchange().
The	first	argument	is	the	URL	to	the	comments	service	that	we	just	picked.	It	has	the	port	number	we
selected	along	with	the	route	(/comments/{imageId},	a	template)	where	we	can	serve	up	a	list	of
comments	based	on	the	image's	ID.
The	second	argument	is	the	HTTP	verb	we	wish	to	use--GET.

The	third	argument	is	for	headers	and	any	body.	Since	this	is	a	GET,	there	are	none.
The	fourth	argument	is	the	return	type	of	the	data.	Due	to	limitations	of	Java's	generics	and	type
erasure,	we	have	created	a	dedicated	anonymous	class	to	capture	the	type	details	for	List<Comment>,
which	Spring	can	use	to	interact	with	Jackson	to	properly	deserialize.
The	final	argument	is	the	parameter	(image.getId())	that	will	be	used	to	expand	our	URI	template's
{imageId}	field.
Since	exchange()	returns	a	Spring	ResponseEntity<T>,	we	need	to	invoke	the	body()	method	to	extract	the
response	body.

There	is	a	big	limitation	in	this	code	when	dealing	with	microservices--the	URL	of	our	target	service
can	change.

Getting	locked	into	a	fixed	location	is	never	good.	What	if	the	comments	service	changes	ports?	What	if
we	need	to	scale	up	multiple	copies	in	the	future?

Frankly,	that's	unacceptable.

The	solution?	We	should	tie	in	with	Netflix's	Ribbon	service,	a	software	load	balancer	that	also
integrates	with	Eureka.	To	do	so,	we	only	need	some	small	additions	to	our	images	service.

First,	we	should	create	a	RestTemplate	object.	To	do	so,	let's	add	a	Config	class	as	follows:

				@Configuration	

				public	class	Config	{	

	

						@Bean	

						@LoadBalanced	

						RestTemplate	restTemplate()	{	

								return	new	RestTemplate();	

						}	

				}	

We	can	describe	the	preceding	code	as	follows:

@Configuration	marks	this	as	a	configuration	class	containing	bean	definitions.	Since	it's	located
underneath	LearningSpringBootImagesApplication,	it	will	be	automatically	picked	up	by	component
scanning.
@Bean	marks	the	restTemplate()	method	as	a	bean	definition.
The	restTemplate()	method	returns	a	plain	old	Spring	RestTemplate	instance.
@LoadBalanced	instructs	Netflix	Ribbon	to	wrap	this	RestTemplate	bean	with	load	balancing	advice.

We	can	next	inject	our	RestTemplate	bean	into	the	HomeController	like	this:

				private	final	RestTemplate	restTemplate;	

	

				public	HomeController(ImageService	imageService,	

					RestTemplate	restTemplate)	{	

							this.imageService	=	imageService;	

							this.restTemplate	=	restTemplate;	

				}	

This	uses	constructor	injection	to	set	the	controller's	final	copy	of	restTemplate.

With	a	load-balanced,	Eureka-aware	restTemplate,	we	can	now	update	our	index()	method	to	populate

the	comments	model	attribute	like	this:

				restTemplate.exchange(

						"http://COMMENTS/comments/{imageId}",	

						HttpMethod.GET,	

						null,	

						new	ParameterizedTypeReference<List<Comment>>()	{},	

						image.getId()).getBody());	

This	code	is	almost	identical	to	what	we	typed	out	earlier	except	for	one	difference--​the	URL	has	been
revamped	into	http://COMMENTS/comments/{imageId}.	COMMENTS	is	the	logical	name	that	our	comments	microservice
registered	itself	with	in	Eureka.

The	logical	name	for	a	microservice	used	by	Eureka	and	Ribbon	is	set	using	spring.application.name	inside
its	src/main/resources/application.yml	file:

comments:	spring.application.name:	comments
images:	spring.application.name:	images

The	logical	name	is	case	insensitive,	so	you	can	use	either	http://COMMENTS/comments/{imageId}
or	http://comments/comments/{imageId}.	Uppercase	helps	make	it	clear	that	this	is	a	logical
hostname,	not	a	physical	one.

With	this	in	place,	it	doesn't	matter	where	we	deploy	our	system	nor	how	many	instances	are	running.
Eureka	will	dynamically	update	things,	and	also	support	multiple	copies	registered	under	the	same
name.	Ribbon	will	handle	routing	between	all	instances.

That's	nice	except	that	we	still	need	to	move	the	CommentReadRepository	we	built	in	the	previous	chapter	to
the	comments	microservice!

In	the	previous	chapter,	we	differentiated	between	reading	comments	with	a	CommentReadRepository	and
writing	comments	with	a	CommentWriteRepository.	Since	we	are	concentrating	all	MongoDB	operations	in
one	microservice,	it	makes	sense	to	merge	both	of	these	into	one	CommentRepository	like	this:

				public	interface	CommentRepository	

					extends	Repository<Comment,	String>	{	

	

							Flux<Comment>	findByImageId(String	imageId);	

	

							Flux<Comment>	saveAll(Flux<Comment>	newComment);	

	

							//	Required	to	support	save()	

							Mono<Comment>	findById(String	id);	

	

							Mono<Void>	deleteAll();	

				}	

Our	newly	built	repository	can	be	described	as	follows:

We've	renamed	it	as	CommentRepository
It	still	extends	Repository<Comment,	String>,	indicating	it	only	has	the	methods	we	need
The	findByImageId(),	save(),	findOne(),	and	deleteAll()	methods	are	all	simply	copied	into	this	one
interface

It's	generally	recommended	to	avoid	sharing	databases	between	microservices,	or	at	least
avoid	sharing	the	same	tables.	The	temptation	to	couple	in	the	database	is	strong,	and	can
even	lead	to	integrating	through	the	database.	Hence,	the	reason	to	move	ALL	MongoDB
comment	operations	to	one	place	nicely	isolates	things.

Using	this	repository,	we	need	to	build	a	REST	controller	to	serve	up	lists	of	comments	from
/comments/{imageId}:

				@RestController	

				public	class	CommentController	{	

	

						private	final	CommentRepository	repository;	

	

						public	CommentController(CommentRepository	repository)	{	

								this.repository	=	repository;	

						}	

	

						@GetMapping("/comments/{imageId}")	

						public	Flux<Comment>	comments(@PathVariable	String	imageId)	{	

								return	repository.findByImageId(imageId);	

						}	

				}	

This	previous	tiny	controller	can	be	easily	described	as	follows:

@RestController	indicates	this	is	a	Spring	WebFlux	controller	where	all	results	are	written	directly
into	the	HTTP	response	body
CommentRepository	is	injected	into	a	field	using	constructor	injection
@GetMapping()	configures	this	method	to	respond	to	GET	/comments/{imageId}	requests.
@PathVariable	String	imageId	gives	us	access	to	the	{imageId}	piece	of	the	route
The	method	returns	a	Flux	of	comments	by	invoking	our	repository's	findByImage()	using	the	imageId

Having	coded	things	all	the	way	from	populating	the	UI	with	comments	in	our	images	service,	going
through	Ribbon	and	Eureka,	to	our	comments	service,	we	are	fetching	comments	from	the	system
responsible	for	managing	them.

RestTemplate	doesn't	speak	Reactive	Streams.	It's	a	bit	too	old	for	that.	But	there	is	a	new
remote	calling	library	in	Spring	Framework	5	called	WebClient.	Why	aren't	we	using	it?
Because	it	doesn't	(yet)	support	Eureka	logical	hostname	resolution.	Hence,	the	part	of	our
application	making	RestTemplate	calls	is	blocking.	In	the	future,	when	that	becomes
available,	I	highly	recommend	migrating	to	it,	based	on	its	fluent	API	and	support	for
Reactor	types.

In	addition	to	linking	two	microservices	together	with	remote	calls,	we	have	decoupled	comment
management	from	image	management,	allowing	us	to	scale	things	for	efficiency	and	without	the	two
systems	being	bound	together	too	tightly.

With	all	these	changes	in	place,	let's	test	things	out.	First	of	all,	we	must	ensure	our	Eureka	Server	is
running:

										.			____										_												__	_	_

				/\\	/	___'_	__	_	_(_)_	__		__	_	\	\	\	\

				(()___	|	'_	|	'_|	|	'_	\/	_`	|	\	\	\	\

				\\/		___)|	|_)|	|	|	|	|	||	(_|	|))))

						'		|____|	.__|_|	|_|_|	|___,	|	/	/	/	/

				=========|_|==============|___/=/_/_/_/

				::	Spring	Boot	::													(v2.0.0.M5)

				

				2017-08-12	09:48:47.966:	Setting	initial	instance	status	as:	

					STARTING

				2017-08-12	09:48:47.993:	Initializing	Eureka	in	region	us-east-1

				2017-08-12	09:48:47.993:	Client	configured	to	neither	register	nor

					que...

				2017-08-12	09:48:47.998:	Discovery	Client	initialized	at	timestamp	

					150...

				2017-08-12	09:48:48.042:	Initializing	...

				2017-08-12	09:48:48.044:	The	replica	size	seems	to	be	empty.

					Check	the...

				2017-08-12	09:48:48.051:	Finished	initializing	remote	region	

					registrie...

				2017-08-12	09:48:48.051:	Initialized

				2017-08-12	09:48:48.261:	Registering	application	unknown	with	

					eureka	w...

				2017-08-12	09:48:48.294:	Setting	the	eureka	configuration..

				2017-08-12	09:48:48.294:	Eureka	data	center	value	eureka.datacenter

					is...

				2017-08-12	09:48:48.294:	Eureka	environment	value	

					eureka.environment	i...

				2017-08-12	09:48:48.302:	isAws	returned	false

				2017-08-12	09:48:48.303:	Initialized	server	context

				2017-08-12	09:48:48.303:	Got	1	instances	from	neighboring	DS	node

				2017-08-12	09:48:48.303:	Renew	threshold	is:	1

				2017-08-12	09:48:48.303:	Changing	status	to	UP

				2017-08-12	09:48:48.307:	Started	Eureka	Server

				2017-08-12	09:48:48.343:	Tomcat	started	on	port(s):	8761	(http)

				2017-08-12	09:48:48.343:	Updating	port	to	8761

				2017-08-12	09:48:48.347:	Started	

				LearningSpringBootEurekaServerApplica...

		

In	this	preceding	subset	of	console	output,	bits	of	Eureka	can	be	seen	as	it	starts	up	on	port	8761	and
switches	to	a	state	of	UP.	It	may	seem	quirky	to	see	messages	about	Amazon	Web	Services	(AWS),	but
that's	not	surprising	given	Eureka's	creators	(Netflix)	run	all	their	systems	there.	However,	isAws	returned
false	clearly	shows	the	system	knows	it	is	NOT	running	on	AWS.

If	you	look	closely,	you	can	spot	that	the	Eureka	Server	is	running	on	Apache	Tomcat.	So
far,	we've	run	everything	on	Netty,	right?	Since	Eureka	is	a	separate	process	not	involved
in	direct	operations,	it's	okay	for	it	not	to	be	a	Reactive	Streams-based	application.

Next,	we	can	fire	up	the	images	service:

						.			____										_												__	_	_

				/\\	/	___'_	__	_	_(_)_	__		__	_	\	\	\	\

				(()___	|	'_	|	'_|	|	'_	\/	_`	|	\	\	\	\

				\\/		___)|	|_)|	|	|	|	|	||	(_|	|))))

						'		|____|	.__|_|	|_|_|	|___,	|	/	/	/	/

				=========|_|==============|___/=/_/_/_/

				::	Spring	Boot	::		(v2.0.0.M5)

				

				...

				

				2017-10-20	22:29:34.319:	Registering	application	images	with	eureka

					wi...

				2017-10-20	22:29:34.320:	Saw	local	status	change	event

					StatusChangeEve...

				2017-10-20	22:29:34.321:	DiscoveryClient_IMAGES/retina:images:

					registe...

				2017-10-20	22:29:34.515:	DiscoveryClient_IMAGES/retina:images	-	

					regist...

				2017-10-20	22:29:34.522:	Netty	started	on	port(s):	8080	(http)

				2017-10-20	22:29:34.523:	Updating	port	to	8080

				2017-10-20	22:29:34.906:	Opened	connection	

				[connectionId{localValue:2,...

				2017-10-20	22:29:34.977:	Started	

				LearningSpringBootImagesApplication	i...		

This	preceding	subsection	of	console	output	shows	it	registering	itself	with	the	Eureka	service	through
DiscoveryClient	under	the	name	IMAGES.

At	the	same	time,	the	following	tidbit	is	logged	on	the	Eureka	Server:

Registered	instance	IMAGES/retina:images	with	status	UP	

(replication=false)		

We	can	easily	see	that	the	images	service	has	registered	itself	with	the	name	IMAGES,	and	it's	running	on
retina	(my	machine	name).

Finally,	let's	launch	the	comments	microservice:

						.			____										_												__	_	_

				/\\	/	___'_	__	_	_(_)_	__		__	_	\	\	\	\

				(()___	|	'_	|	'_|	|	'_	\/	_`	|	\	\	\	\

				\\/		___)|	|_)|	|	|	|	|	||	(_|	|))))

						'		|____|	.__|_|	|_|_|	|___,	|	/	/	/	/

				=========|_|==============|___/=/_/_/_/

				::	Spring	Boot	::		(v2.0.0.M5)

				

				...

				

				2016-10-20	22:37:31.477:	Registering	application	comments	with

					eureka	...

				2016-10-20	22:37:31.478:	Saw	local	status	change	event

					StatusChangeEve...

				2016-10-20	22:37:31.480:	

					DiscoveryClient_COMMENTS/retina:comments:9000...

				2016-10-20	22:37:31.523:	

					DiscoveryClient_COMMENTS/retina:comments:9000...

				2016-10-20	22:37:32.154:	Netty	started	on	port(s):	9000	(http)

				2016-10-20	22:37:32.155:	Updating	port	to	9000

				2016-10-20	22:37:32.188:	Opened	connection	

					[connectionId{localValue:2,...

				2016-10-20	22:37:32.209:	Started	

				LearningSpringBootCommentsApplication...

In	this	last	output,	our	comment	handling	microservice	has	registered	itself	with	Eureka	under	the
logical	name	COMMENTS.

And	again,	in	the	Eureka	Server	logs,	we	can	see	a	corresponding	event:

Registered	instance	COMMENTS/retina:comments:9000	with	status	UP	

(replication=false)		

The	COMMENTS	service	can	be	found	at	retina:9000	(author	alert--that's	my	laptop's	hostname,	yours	will	be
different),	which	matches	the	port	we	configured	that	service	to	run	on.

To	see	all	this	from	a	visual	perspective,	let's	navigate	to	http://localhost:8761,	and	see	Eureka's	webpage:

This	preceding	web	page	is	not	provided	by	Netflix	Eureka,	but	is	crafted	by	the	Spring	Cloud	Netflix
project	(hence	Spring	Eureka	at	the	top)	instead.	It	has	some	basic	details	about	the	environment
including	uptime,	refresh	policies,	and	others.

Further	down	on	the	page	is	some	more	interesting	information:

DS	(Discovery	Service)	Replica	details	are	listed	on	the	web	page.	Specifically,	we	can	see	the	logical
applications	on	the	left	(COMMENTS	and	IMAGES),	their	status	on	the	right	(both	UP),	and	hyperlinks	to	every
instance	(retina:comments:9000	and	retina:images).

If	we	actually	click	on	the	retina:comments:9000	hyperlink,	it	takes	us	to	the	Spring	Boot	info	endpoint:

In	this	case,	there	is	no	custom	info	provided.	But	it	also	proves	that	the	service	is	up	and	operational.

We	may	have	verified	everything	is	up,	but	let's	prove	that	our	new	and	improved	microservice	solution
is	in	operation	by	visiting	http://localhost:8080.

If	we	load	up	a	couple	of	new	images	and	submit	some	comments,	things	can	now	look	like	this:

What's	happening	under	the	hood?	If	we	look	at	the	images	microservice's	console,	we	can	see	a	little
action:

				2016-10-20	22:53:07.260		Flipping	property:	

					COMMENTS.ribbon.ActiveConn...

				2016-10-20	22:53:07.286		Shutdown	hook	installed	for:	

					NFLoadBalancer-P...

				2016-10-20	22:53:07.305		Client:COMMENTS	instantiated	a	

					LoadBalancer:D...

				2016-10-20	22:53:07.308		Using	serverListUpdater	

					PollingServerListUpda...

				2016-10-20	22:53:07.325		Flipping	property:	

					COMMENTS.ribbon.ActiveConn...

				2016-10-20	22:53:07.326		DynamicServerListLoadBalancer	for	client

					COMM...

								DynamicServerListLoadBalancer:	{

												NFLoadBalancer:name=COMMENTS,

												current	list	of	Servers=[retina:9000],

								}ServerList:org.springframework.cloud.netflix

								.ribbon.eureka.DomainExt...

				2016-10-20	22:53:08.313		Flipping	property:	

					COMMENTS.ribbon.ActiveConn...

				2016-10-20	22:54:33.870		Resolving	eureka	endpoints	via	

					configuration		

There's	a	lot	of	detail	in	the	preceding	output,	but	we	can	see	Netflix	Ribbon	at	work	handling	software
load	balancing.	We	can	also	see	DynamicServerListLoadBalancer	with	a	current	list	of	servers	containing
[retina:9000].

So,	what	would	happen	if	we	launched	a	second	copy	of	the	comments	service	using	SERVER_PORT=9001	to
ensure	it	didn't	clash	with	the	current	one?

In	the	console	output,	we	can	spot	the	new	instance	registering	itself	with	Eureka:

DiscoveryClient_COMMENTS/retina:comments:9001	-	registration

	status:	204		

If	we	go	back	and	visit	the	Spring	Eureka	web	page	again	at	http://localhost:8761,	we	can	see	this	updated
listing	of	replicas:

If	we	start	posting	comments	on	the	site,	they	will	rotate,	going	between	each	comments	microservice.

Normally,	when	using	RabbitMQ,	each	instance	of	comments	will	register	its	own	queue,	and
hence,	receive	its	own	copy	of	newly	posted	comments.	This	would	result	in	double	posting
in	this	scenario.	However,	Spring	Cloud	Stream	has	a	solution--consumer	groups.	By
having	spring.cloud.stream.bindings.input.group=comments	in	comments	microservice's
application.yml,	we	declare	that	only	one	such	queue	should	receive	each	individual
message.	This	ensures	that	only	one	of	the	microservices	actually	processes	a	given	event.
See	http://docs.spring.io/spring-cloud-stream/docs/Elmhurst.M1/reference/htmlsingle/index.html#consu
mer-groups	for	more	details.

With	microservice-to-microservice	remote	calls	tackled	(and	supported	for	scaling	up),	it's	time	to
pursue	another	problem	often	seen	in	microservice-based	solutions.

http://docs.spring.io/spring-cloud-stream/docs/Elmhurst.M1/reference/htmlsingle/index.html#consumer-groups

Implementing	microservice	circuit	breakers
The	ability	to	invoke	a	remote	microservice	comes	with	an	implicit	risk--there	is	always	a	chance	that
the	remote	service	is	down.

Remember	using	@SpringCloudApplication?	As	a	reminder,	that	annotation	contains:

				@SpringBootApplication	

				@EnableDiscoveryClient	

				@EnableCircuitBreaker	

				public	@interface	SpringCloudApplication	{	

				}	

The	last	annotation,	@EnableCircuitBreaker,	enables	Netflix	Hystrix,	the	circuit	breaker	solution	(http://mart
infowler.com/bliki/CircuitBreaker.html).

In	short,	a	circuit	breaker	is	something	that,	when	it	detects	a	certain	threshold	of	failure,	will	open	the
circuit	and	prevent	any	future	remote	calls	for	a	certain	amount	of	time.	The	purpose	is	to	prevent
cascade	failures	while	giving	the	remote	service	an	opportunity	to	heal	itself	and	come	back	online.
Slamming	a	service	in	the	middle	of	startup	might	be	detrimental.

For	example,	if	the	images	microservice's	HomeController	makes	a	call	to	comments,	and	the	system	is	down,
it's	possible	for	the	calling	thread	to	get	hung	up	waiting	for	the	request	to	timeout	properly.	In	the
meantime,	incoming	requests	are	served	by	a	slightly	reduced	threadpool.	If	the	problem	is	bad	enough,
it	can	hamper	calls	coming	into	the	frontend	controller,	effectively	spreading	the	remote	service	outage
to	users.

A	side	effect	when	operating	multiple	instances	of	such	a	service	is	that	it	can	also	speed	up	the	failover
to	an	alternate	instance	of	the	service.

In	exchange	for	opening	the	circuit	on	a	service	(and	failing	a	call),	we	can	provide	a	fallback
command.	For	example,	if	Netflix's	recommendation	engine	happens	to	be	down	when	a	user	finishes	a
show,	it	will	fallback	to	showing	a	list	of	newly	released	shows.	This	is	definitely	better	than	a	blank
screen,	or,	worse,	a	cryptic	stack	trace	on	the	website	or	someone's	TV.

In	the	previous	section,	we	had	this	fragment	of	code	inside	HomeController.index():

				restTemplate.exchange(

						"http://COMMENTS/comments/{imageId}",	

						HttpMethod.GET,	

						null,	

						new	ParameterizedTypeReference<List<Comment>>()	{},	

						image.getId()).getBody());	

We	want	to	wrap	this	remote	call	to	the	comments	system	with	a	circuit	breaker/fallback	command.

First,	we	need	to	move	the	code	into	a	separate	method	as	follows:

				@HystrixCommand(fallbackMethod	=	"defaultComments")	

				public	List<Comment>	getComments(Image	image)	{	

http://martinfowler.com/bliki/CircuitBreaker.html

						return	restTemplate.exchange(

								"http://COMMENTS/comments/{imageId}",	

								HttpMethod.GET,	

								null,	

								new	ParameterizedTypeReference<List<Comment>>()	{},	

								image.getId()).getBody();	

	

				}	

This	tiny	Hystrix	command	can	be	described	as	follows:

This	shows	the	exact	same	restTemplate	call	we	wrote	using	Ribbon	and	Eureka	earlier	in	this
chapter
@HystrixCommand(fallback="defaultComments")	wraps	the	method	with	an	aspect	that	hooks	into	a	Hystrix
proxy
In	the	event	the	remote	call	fails,	Hystrix	will	call	defaultComments

What	would	make	a	good	fallback	command?	Since	we're	talking	about	user	comments,	there	is	nothing
better	than	an	empty	list,	so	a	separate	method	with	the	same	signature	would	be	perfect:

				public	List<Comment>	defaultComments(Image	image)	{	

						return	Collections.emptyList();	

				}	

In	this	scenario,	we	return	an	empty	list.	But	what	makes	a	suitable	fallback	situation	will	invariably
depend	on	the	business	context.

Hystrix	commands	operate	using	Spring	AOP	(Aspect	Oriented	Programming).	The	standard
approach	is	through	Java	proxies	(as	opposed	to	AspectJ	weaving,	which	requires	extra	setup).	A	well-
known	issue	with	proxies	is	that	in-class	invocations	don't	trigger	the	enclosing	advice.	Hence,	the
Hystrix	command	method	must	be	put	inside	another	Spring	bean,	and	injected	into	our	controller.

There	is	some	classic	advice	to	offer	when	talking	about	Hystrix's	AOP	advice--be	careful
about	using	thread	locals.	However,	the	recommendation	against	thread	locals	is	even
stronger	when	we	are	talking	about	Reactor-powered	applications,	the	basis	for	this	entire
book.	That's	because	Project	Reactor	uses	work	stealing,	a	well-documented	concept	that
involves	different	threads	pulling	work	down	when	idle.	Reactor's	scheduler	is	thread
agnostic,	which	means	that	we	don't	know	where	the	work	is	actually	being	carried	out.	So
don't	use	thread	locals	when	writing	Reactor	applications.	This	impacts	other	areas	too
such	as	Spring	Security,	which	uses	thread	locals	to	maintain	contextual	security	status
with	SecurityContextHolder.	We'll	visit	this	subject	in	Chapter	9,	Securing	Your	App	with	Spring
Boot.

The	following	shows	our	method	pulled	into	a	separate	class:

				@Component	

				public	class	CommentHelper	{	

		

						private	final	RestTemplate	restTemplate;	

	

						CommentHelper(RestTemplate	restTemplate)	{	

								this.restTemplate	=	restTemplate;	

						}	

	

						//	@HystrixCommand	code	shown	earlier	

	

						//	fallback	method	

				}	

We've	already	seen	the	@HystrixCommand	code	as	well	as	the	fallback.	The	other	parts	we	wrote	include:

The	CommentHelper	class	is	flagged	with	an	@Component	annotation,	so,	it's	picked	up	and	registered	as	a
separate	Spring	bean
This	component	is	injected	with	the	restTemplate	we	defined	earlier	via	constructor	injection

To	update	our	HomeController	to	use	this	instead,	we	need	to	adjust	its	injection	point:

				private	final	CommentHelper	commentHelper;	

	

				public	HomeController(ImageService	imageService,	

					CommentHelper	commentHelper)	{	

							this.imageService	=	imageService;	

							this.commentHelper	=	commentHelper;	

				}	

The	code	in	HomeController	is	almost	the	same,	except	that	instead	of	injecting	a	RestTemplate,	it	injects
commentHelper.

Finally,	the	call	to	populate	comments	in	the	index()	method	can	be	updated	to	use	the	new	commentHelper:

				put("comments",	commentHelper.getComments(image));	

At	this	point,	instead	of	calling	restTemplate	to	make	a	remote	call,	we	are	invoking	commentHelper,	which	is
wrapped	with	Hystrix	advice	to	handle	failures,	and,	potentially,	open	a	circuit.

Notice	earlier	that	I	said,	"In	the	event	the	remote	call	fails,	Hystrix	will	call
defaultComments.",	but	didn't	mention	anything	about	opening	the	circuit?	Perhaps	that's
confusing,	since	this	whole	section	has	been	about	the	circuit	breaker	pattern.	Hystrix
tabulates	every	failure,	and	only	opens	the	circuit	when	a	certain	threshold	has	been
breached.	One	missed	remote	call	isn't	enough	to	switch	to	an	offline	state.

Monitoring	circuits
Okay,	we've	coded	up	a	command	with	a	circuit	breaker,	and	given	it	a	fallback	command	in	the	event
the	remote	service	is	down.	But	how	can	we	monitor	it?	Simply	put--how	can	we	detect	if	the	circuit	is
open	or	closed?

Introducing	the	Hystrix	Dashboard.	With	just	a	smidgeon	of	code,	we	can	have	another	Spring	Boot
application	provide	us	with	a	graphical	view	of	things.	And	from	there,	we	can	test	out	what	happens	if
we	put	the	system	under	load,	and	then	break	the	system.

To	build	the	app,	we	first	need	to	visit	http://start.spring.io,	and	select	Hystrix	Dashboard	and	Turbine.	If
we	also	select	Gradle	and	Spring	Boot	2.0.0,	and	enter	in	our	similar	artifact	details,	we	can	produce	another
app.	(Notice	how	handy	it	is	to	simply	let	everything	be	a	Spring	Boot	app?)

The	build	file	is	the	same	except	for	these	dependency	settings:

				buildscript	{	

						ext	{	

								springBootVersion	=	'2.0.0.M5'	

								springCloudVersion	=	'Finchley.M3'	

						}	

						...	

				}	

				...	

				dependencies	{	

						compile('org.springframework.cloud:spring-cloud-starter-

							hystrix-dashboard')	

				}	

	

				dependencyManagement	{	

						imports	{	

								mavenBom	"org.springframework.cloud:spring-cloud-

									dependencies:${springCloudVersion}"	

						}	

				}	

We	can	explain	this	preceding	build	file	as	follows:

We	pick	up	spring-cloud-starter-hystrix-dashboard	to	build	a	UI	for	monitoring	circuits
Again,	we	select	Spring	Cloud's	Finchley	BOM	release	with	the	dependencyManagement	settings

To	display	the	Hystrix	dashboard,	this	is	all	we	need:

				@SpringBootApplication	

				@EnableHystrixDashboard	

				public	class	LearningSpringBootHystrixDashboard	{	

	

						public	static	void	main(String[]	args)	{	

								SpringApplication.run(

										LearningSpringBootHystrixDashboard.class);	

						}	

				}	

This	previous	tiny	application	can	be	described	as	such:

@SpringBootApplication	declares	this	to	be	a	Spring	Boot	application.	We	don't	need

http://start.spring.io

@SpringCloudApplication,	because	we	don't	intend	to	hook	into	Eureka,	nor	institute	any	circuit
breakers.
@EnableHystrixDashboard	will	start	up	a	UI	that	we'll	explore	further	in	this	section.
The	class	public	static	void	main	is	used	to	launch	this	class.

To	configure	this	service,	we	need	the	following	settings:

				server:	

						port:	7979	

Hystrix	Dashboard	is	usually	run	on	port	7979.

With	this	in	place,	let's	launch	the	application	and	take	a	peek.	To	see	the	dashboard,	we	must	navigate
to	http://localhost:7979/hystrix:

Here	we	have	a	pretty	simple	interface,	as	seen	in	the	preceding	screenshot.	It	tells	us	we	have	options
regarding	what	we	want	to	view.	The	simplest	variant	is	to	have	the	dashboard	look	at	one
microservice's	collection	of	circuits.	This	preceding	screenshot	shows	the	URL	for	the	images	service,	the
one	we	wrote	a	@HystrixCommand	for.

Since	each	microservice	that	has	@EnableCircuitBreaker	(pulled	in	via	@SpringCloudApplication)	has	a
/hystrix.stream	endpoint	outputting	circuit	metrics,	we	can	enter	that	service's	URL.

After	clicking	Monitor	Stream,	we	can	see	this	nice	visual	display	of	our	single	circuit:

There's	a	lot	on	the	preceding	screen,	so	let's	break	it	down:

Across	the	top	is	the	ability	to	sort	various	circuits	based	on	different	criteria.	We	only	have	one
circuit,	so	it's	not	that	important.
getComments	is	shown	underneath	Circuit.	The	color	coding	of	the	numbers	runs	across	the	top,	from
Success	to	Failure,	with	everything	currently	showing	0.
There	is	an	overall	failure	percentage	(also	at	0%).
There	is	a	rate	of	activity	for	the	host	and	for	the	cluster	(also	at	0/second).
It	may	be	hard	to	spot,	but	there's	a	flat	horizontal	line	just	left	of	Cluster.	This	will	actually	update
based	on	traffic,	showing	spikes.
Finally,	it	tracks	the	cost	of	making	remote	calls,	and	includes	some	statistics	such	as	Mean,
Median,	90	percentile,	95	percentile,	and	99.5	percentile.
The	Thread	Pools	section	can	show	how	taxed	the	system	is	from	a	threading	perspective.	This	can
help	us	tune	@HystrixCommand	if	we	need	to	adjust	thread-pool	settings.

With	circuit	monitoring	set	up,	why	don't	we	institute	a	failure,	and	watch	the	whole	thing	go	down	and
then	recover?

To	do	that,	we	need	to	update	our	simulator	that	we	created	earlier	in	this	book:

				@Profile("simulator")	

				@Component	

				public	class	CommentSimulator	{	

	

						private	final	HomeController	homeController;	

						private	final	CommentController	commentController;	

						private	final	ImageRepository	repository;	

	

						private	final	AtomicInteger	counter;	

	

						public	CommentSimulator(HomeController	homeController,	

							CommentController	commentController,	

							ImageRepository	repository)	{	

									this.homeController	=	homeController;	

									this.commentController	=	commentController;	

									this.repository	=	repository;	

									this.counter	=	new	AtomicInteger(1);	

						}	

	

						@EventListener	

						public	void	simulateComments(ApplicationReadyEvent	event)	{	

								Flux	

									.interval(Duration.ofMillis(1000))	

									.flatMap(tick	->	repository.findAll())	

									.map(image	->	{	

											Comment	comment	=	new	Comment();	

											comment.setImageId(image.getId());	

											comment.setComment(

													"Comment	#"	+	counter.getAndIncrement());	

														return	Mono.just(comment);	

											})	

											.flatMap(newComment	->	

												Mono.defer(()	->	

													commentController.addComment(newComment)))	

													.subscribe();	

						}	

	

						@EventListener	

						public	void	simulateUsersClicking(ApplicationReadyEvent	event)	{	

								Flux	

										.interval(Duration.ofMillis(500))	

										.flatMap(tick	->	

											Mono.defer(()	->	

												homeController.index(new	BindingAwareModelMap())))	

												.subscribe();	

						}	

				}	

The	following	are	some	key	points	to	note	about	this	preceding	code:

The	@Profile	annotation	indicates	that	this	component	is	only	active	when
spring.profiles.active=simulator	is	set	in	the	environment	variables.
By	constructor	injection,	it	gets	copies	of	both,	CommentController	and	HomeController.
simulateActivity()	is	triggered	when	Spring	Boot	generates	an	ApplicationReadyEvent.
The	Flux	generates	a	tick	every	1000	ms.	This	tick	is	transformed	into	a	request	for	all	images,	and
then	a	new	comment	is	created	against	each	one,	simulating	user	activity.
simulateUsersClicking()	is	also	triggered	by	the	same	ApplicationReadyEvent.	It	has	a	different	Flux	that
simulates	a	user	loading	the	home	page	every	500	ms.

In	both	of	these	simulation	flows,	the	downstream	activity	needs	to	be	wrapped	in	a	Mono.defer	in	order	to
provide	a	target	Mono	for	the	downstream	provider	to	subscribe	to.

Finally,	both	of	these	Reactor	flows	must	be	subscribed	to,	or	they	will	never	run.

If	we	relaunch	the	images	service,	and	watch	the	Hystrix	Dashboard,	we	get	a	nice,	rosy	picture:

The	bubble	on	the	left	of	the	preceding	screenshot	is	green,	and	the	green	60	at	the	top	indicates	that	the
volume	of	traffic	for	its	window	of	monitoring	shows	60	successful	hits.	Looking	at	the	rate	(6.0/s),	we
can	deduce	this	is	a	10-second	window.

I	realize	that	in	print,	the	bubble	along	with	all	the	numbers	are	gray,	but	you	can	tell
success/failure	by	noting	that	the	circuit	is	Closed,	meaning,	traffic	is	flowing	through	it.

Let's	switch	over	to	our	IDE,	and	kill	the	comments	microservice:

This	preceding	screenshot	shows	IntelliJ	IDEA.	Your	IDE's	kill	switch	may	appear
different.

If	we	jump	back	to	the	dashboard,	things	look	very	different:

The	10	second	window	shows	6	successful	calls,	30	failed	calls,	and	24	short	circuited	calls.	The
horizontal	status	line	takes	a	precipitous	drop,	and	the	green	bubble	has	now	turned	red.	Additionally,
the	circuit	is	now	Open.

Again,	you	may	not	be	able	to	discern	the	bubble	is	red	in	print,	but	the	circuit	is	now
Open,	indicating	the	failures	are	being	replaced	with	short-circuited	calls.

If	we	follow	this	outage	a	little	longer,	things	migrate	all	the	way	to	100%	failure:

Now	there	are	only	two	failures	with	58	short-circuited	calls.	In	essence,	with	the	circuit	Open,	there	is
no	point	in	trying	to	make	remote	calls	and	wasting	resources.	Instead,	we	use	the	fallback	method
without	question.	We	can	also	see	the	graph	has	flatlined	at	the	bottom.

We	can	simulate	our	ops	team	rushing	in	and	fixing	things	by	restarting	the	comments	service:

With	a	little	bit	of	time,	this	service	will	come	back	up	and	re-register	with	Eureka,	making	it	available.
After	that,	the	circuit	breaker	must	wait	a	minimum	amount	of	time	before	a	remote	call	will	even	be
attempted.

Hystrix's	default	setting	is	50%	failure	or	higher	to	open	the	circuit.	Another	subtle	property	is	that	a
minimum	number	of	requests	must	be	made	to	possibly	open	the	circuit.	The	default	is	20,	meaning	that
19	failures	in	a	row	would	not	open	it.	When	the	circuit	is	opened,	Hystrix	keeps	the	circuit	open	a
minimum	amount	of	time	before	looking	at	the	rolling	window	(default:	5000	ms).	Hystrix	maintains	a
rolling	window,	by	default,	10	seconds	split	up	into	10	buckets.	As	a	new	bucket	of	metrics	is	gathered,
the	oldest	is	dropped.	This	collection	of	buckets	is	what	is	examined	when	deciding	whether	or	not	to
open	the	circuit.

As	you	can	see,	there	is	a	lot	of	sophistication	to	Hystrix's	metrics.	We'll	just	use	the
defaults	here.	But	if	you're	interested	in	adjusting	Hystrix's	various	settings,	visit	https://git
hub.com/Netflix/Hystrix/wiki/configuration	where	all	its	parameters	are	documented.

When	we	make	a	remote	call,	the	circuit	is	immediately	closed:

Successful	calls	climbs	to	57,	and	the	number	of	short-circuited	and	failed	calls	clears	out	in	a	few
seconds	time.	The	graph	turns	around	and	climbs	back	up,	showing	a	nice	recovery.

The	circuit	breaker	we	have	in	place	watches	REST	calls	from	images	to	comments.	The	means

https://github.com/Netflix/Hystrix/wiki/configuration

the	mechanism	by	which	new	comments	are	sent	over	the	wire	via	RabbitMQ	is,	inherently,
fault	tolerant.	While	comments	was	down,	the	new	comments	pile	up	in	RabbitMQ's	exchange
until	the	queue	restored	itself,	and	the	system	caught	up.

This	nice	little	scenario	shows	how	we	can	keep	a	visual	eye	on	microservice-to-microservice
operations.

Offloading	microservice	settings	to	a
configuration	server
One	thing	that	quickly	adds	up	when	building	a	microservice-based	solution	are	all	the	properties	that
must	be	managed.	It's	one	thing	to	manage	a	single	application's	application.yml	file,	and	make	tweaks
and	adjustments.	But	working	with	all	these	services,	and	having	to	jump	to	the	correct	file	underneath
each	application's	src/main/resources	folder	quickly	becomes	daunting.	On	top	of	that,	when	trying	to
make	changes	or	adjustments,	it	is	easy	to	overlook	the	settings	of	one	microservice.

A	key	piece	of	the	twelve-factor	app	(https://12factor.net/)	is	externalizing	configuration.	We	already
took	a	big	step	using	Spring	Boot's	powerful	property	support.	But	Spring	Cloud	brings	another	key
technology	to	the	table	that	takes	property	support	to	the	next	level--Spring	Cloud	Config	Server.

The	Config	Server	let's	us	put	all	the	properties	into	a	centralized	location,	and	feed	them	via	an
application	to	our	existing	microservices.

To	see	how,	let's	dive	into	creating	one.	First,	go	to	http://start.spring.io	and	select	Config	Server	(along
with	our	other	favorite	settings).

When	we	do	that,	we	get	a	familiar	Gradle	build	file	containing	the	following	dependencies:

				buildscript	{	

						ext	{	

								springBootVersion	=	'2.0.0.M5'	

								springCloudVersion	=	'Finchley.M3'	

						}	

						...	

				}	

				...	

				dependencies	{	

						compile('org.springframework.cloud:spring-cloud-config-server')	

				}	

	

				dependencyManagement	{	

						imports	{	

								mavenBom	"org.springframework.cloud:spring-cloud-		

									dependencies:${springCloudVersion}"	

						}	

				}	

We	can	explain	this	preceding	build	file	as	follows:

spring-cloud-starter-config-server	is	only	needed	to	run	a	config	server,	not	a	config	server	client
The	dependencyManagement	shows	us	the	release	train	of	Spring	Cloud	we	are	using

In	a	way	very	analogous	to	the	Hystrix	Dashboard,	we	will	create	a	Config	Server:

				@SpringBootApplication	

				@EnableConfigServer	

				public	class	LearningSpringBootConfigServer	{	

	

						public	static	void	main(String[]	args)	{	

								SpringApplication.run(

										LearningSpringBootConfigServer.class,	args);	

https://12factor.net/
http://start.spring.io

						}	

				}	

This	preceding	app	isn't	hard	to	unravel:

@SpringBootApplication	marks	this	as	a	Spring	Boot	application.	Since	this	is	the	cornerstone	of	the
rest	of	our	microservices	(including	Eureka),	it	doesn't	use	Eureka.
@EnableConfigServer	launches	an	embedded	Spring	Cloud	Config	Server,	full	of	options.	We'll	use	the
defaults	as	much	as	possible.
It	has	a	public	static	void	main	to	launch	itself.

With	that,	we	just	need	a	couple	of	property	settings	in	application.yml:

				server:	

						port:	8888	

			

				spring:	

						cloud:	

								config:	

										server:	

												git:	

														uri:	https://github.com/gregturn/learning-spring-boot-

															config-repo	

Let's	set	its	port	to	8888,	since	that	is	the	default	port	for	Spring	Cloud	Config	clients
By	setting	spring.cloud.config.server.git.uri	to	https://github.com/gregturn/learning-spring-boot-config-repo,
we	tell	the	Config	Server	where	to	get	its	property	settings	for	all	the	other	services

That's	it!	That's	all	we	need	to	build	a	Config	Server.	We	can	launch	it	right	now,	but	there	is	one	thing
missing--all	the	other	properties	of	the	application!

To	configure	properties	for	our	Eureka	Server,	we	need	to	add	a	eureka.yml	that	looks	like	this:

				server:	

						port:	8761	

	

				eureka:	

						instance:	

								hostname:	localhost	

						client:	

								registerWithEureka:	false	

								fetchRegistry:	false	

								serviceUrl:	

										defaultZone:	

											http://${eureka.instance.hostname}:${server.port}/eureka/	

If	you'll	notice,	this	is	the	exact	same	setting	we	put	into	the	Eureka	Server's	application.yml	earlier	in	this
chapter.	We	are	simply	moving	it	into	our	config	repo.

To	make	our	Eureka	Server	talk	to	a	Config	Server,	we	need	to	add	this	to	its	build	file:

				compile('org.springframework.cloud:spring-cloud-starter-config')	

What	does	this	single	dependency	do?

spring-cloud-starter-config	empowers	the	Eureka	Server	to	talk	to	the	Config	Server	for	property
settings

https://github.com/gregturn/learning-spring-boot-config-repo

It's	important	to	note	that	spring-cloud-starter-config	is	for	clients	to	the	Config	Server.	The
dependency	that	was	added	to	the	Config	Server	itself	was	spring-cloud-starter-config-server,
which	is	only	needed	to	create	a	Config	Server.

There	is	a	certain	order	by	which	Spring	Boot	launches	things.	Suffice	it	to	say,	property	sources	must
be	read	early	in	the	Spring	lifecycle	in	order	to	work	properly.	For	this	reason,	Spring	Cloud	Config
clients	must	have	a	bootstrap.yml	file.	The	one	for	the	Eureka	Server	must	look	like	this:

				spring:	

						application:	

								name:	eureka	

Not	a	whole	lot	needs	to	be	in	here,	but	at	a	minimum,	spring.application.name	needs	to	be	set	so	that	the
Config	Server	knows	which	property	file	to	fetch	from	its	config	repo.	By	default,	Spring	Cloud	Config
clients	will	seek	{spring.application.name}.yml,	so	in	this	case,	eureka.yml.

Assuming	we	have	committed	eureka.yml	to	our	GitHub-based	config	repo	and	launched	the	config
server,	we	can	actually	see	what	is	served	up:

Let's	tear	apart	the	details	of	this	preceding	screenshot:

http://localhost:8888/eureka/default	looks	up	spring.application.name=eureka,	and	finds	the	default	state	of
things
The	name	eureka	is	at	the	top	along	with	information	like	its	label	and	SHA	version
The	config	server	entry	lists	the	available	Spring	property	sources	(eureka.yml)	along	with	each
property	found	in	that	property	source

It's	possible	to	retrieve	different	versions	of	configuration	settings.	All	we	have	to	do	is	set

spring.cloud.config.label=foo	in	bootstrap.yml	to	fetch	an	alternative	label.	When	we	use	Git	as
the	repository,	a	label	can	refer	to	either	a	branch	or	a	tag.

In	essence,	the	Spring	Cloud	Config	Server	is	Yet	Another	Way™	to	craft	a	property	source	that	the
Spring	Framework	can	intrinsically	consume.

Next,	let's	move	all	the	properties	for	images	from	its	application.yml	file	into	the	config	repo's	images.yml
like	this:

				eureka:	

						client:	

								serviceUrl:	

										defaultZone:	http://localhost:8761/eureka/	

	

				spring:	

						cloud:	

								stream:	

										bindings:	

												output:	

														destination:	learning-spring-boot-comments	

														group:	comments-service	

														content-type:	application/json	

With	all	these	settings	moved	to	the	Config	Server's	images.yml	file,	we	can	replace	the	application.yml	with
the	following	src/main/resources/bootstrap.yml	file:

				spring:	

						application:	

								name:	images	

Earlier	in	this	chapter,	spring.application.name=images,	along	with	all	the	other	settings,	were	combined	in
application.yml.	To	work	with	Spring	Cloud	Config	Server,	we	split	out	spring.application.name,	and	put	it
inside	bootstrap.yml.

We	can	do	the	same	for	comments	by	moving	all	of	its	property	settings	into	comments.yml.	You	can	see	it	at	h
ttps://github.com/gregturn/learning-spring-boot-config-repo/blob/master/comments.yml,	if	you	wish,	along	with
hystrix-dashboard.yml.

Instead,	we'll	give	comments	the	following	src/main/resources/bootstrap.yml	file:

				spring:	

						application:	

								name:	comments	

And	do	the	same	for	our	Hystrix	Dashboard	app:

				spring:	

						application:	

								name:	hystrix-dashboard	

You	know	what's	truly	amazing	about	all	this?	We	don't	have	to	touch	the	services.	At	all.

Is	running	lots	of	microservices	inside	your	IDE	driving	you	nuts?	Constantly	starting	and
stopping	can	get	old,	real	fast.	IntelliJ	IDEA	has	the	Multirun	(https://plugins.jetbrains.com/p
lugin/7248)	plugin	that	lets	you	group	together	several	launch	configurations	into	a	single
command.	If	you	use	Eclipse,	the	CDT	(C/C++	Development	Tooling)	module	provides	a

https://github.com/gregturn/learning-spring-boot-config-repo/blob/master/comments.yml
https://plugins.jetbrains.com/plugin/7248

component	called	Launch	Groups	that	lets	you	do	the	same.	The	following	screenshot
shows	the	IntelliJ	IDEA	Multirun	plugin	configured	for	our	microservices.

Notice	the	little	10	second	delay	in	the	bottom-right	corner	of	the	preceding	screenshot?	The	Config
Server	needs	to	be	up	and	operational	before	any	other	services	start,	or	they'll	fall	on	default	settings.

Using	the	Multirun	plugin,	if	we	launch	everything,	we	should	have	a	nice	little	system	up:

Each	service,	when	it	launches,	should	show	something	like	this:

Without	touching	a	line	of	code,	and	simply	moving	most	of	what	we've	already	written	into	another
location	(or	into	bootstrap.yml),	we	have	extracted	the	entire	configuration	of	our	social	media	site	to	a
remote	location,	making	configuration	a	snap	to	maintain.

So,	is	our	little	snap-a-picture	social	media	platform	ready	for	IPO?	Heh,	maybe	not	yet.	But	we've
made	a	major	enhancement	that	will	make	us	more	stable	and	ready	for	growth	by	breaking	things	up
into	microservices	without	breaking	the	bank.

There	are	lots	of	options	in	the	Spring	Cloud	Config	Server.	You	can	register	it	with
Eureka,	direct	clients	to	fail	fast	if	it's	not	up,	have	clients	retry	if	its	down	at	startup,	and
more.	Security	options	include	the	ability	to	secure	the	Config	Server	so	that	not	just
anyone	can	access	it	(something	we'll	visit	in	Chapter	9,	Securing	Your	App	with	Spring
Boot).	For	more	details,	see	http://cloud.spring.io/spring-cloud-config.

Spring	Cloud	Config	Server	currently	supports	GitHub,	GitLab,	and	Bitbucket	out	of	the
box.	This	means	that	you	can	quickly	put	your	configuration	on	a	publicly	hosted	GitHub
repository,	but	you	can	also	install	GitLab	inside	your	data	center,	and	point	there,
instead,	to	reduce	the	risk	of	public	repository	outages.

http://cloud.spring.io/spring-cloud-config

Summary
In	this	chapter,	we	took	a	quick	tour	of	building	a	microservice-based	solution	using	several	Spring
Cloud	projects	combined	with	their	Netflix	OSS	counterparts.	This	lets	us	make	each	component
smaller,	easier	to	maintain,	and	more	scalable	in	the	long	run.

With	little	effort,	we	made	it	possible	to	run	multiple	copies	of	services,	and	not	have	other
microservices	be	impacted	by	such	changes.	Services	could	call	other	services,	we	were	able	to
introduce	some	resiliency,	and	we	could	offload	the	configuration	of	this	system	to	an	externalized,
centralized	repository.

In	the	next	chapter,	we	will	shift	our	focus	back	to	user	experience,	and	introduce	Spring's	WebSocket
support	to	help	make	the	UX	more	dynamic.

WebSockets	with	Spring	Boot
Hell	yeah	@springboot	rocks!	(after	winning	JAX	Innovation	Award	2016)

–	Andrew	Rubalcaba	@Han_Cholo

In	the	previous	chapter,	we	learned	how	to	split	our	application	into	microservices	driven	by	bounded
contexts.	Yet,	we	still	linked	things	together	in	an	efficient	manner	using	Spring	Cloud.

When	it	comes	to	building	a	social	media	platform,	the	standard	has	been	set	very	high.	We	all	expect
dynamic	updates	to	whatever	content	we	view.	If	someone	comments	on	a	topic	that	we	are	also
viewing,	we	expect	to	be	alerted	to	the	update	immediately.	Such	fluid	changes	are	made	possible
through	the	power	of	WebSockets.

In	this	chapter,	we	will	cover	the	following	topics:

Publishing	saved	comments	to	a	chat	service
Broadcasting	saved	comments	to	web	subscribers
Configuring	a	WebSocket	broker
Consuming	messages	from	the	web	asynchronously
Introducing	user	chatting	with	channel-wide	and	user-specific	messages

We	will	use	Spring's	reactive	WebSocket	API	found	in	WebFlux	while	also	using	a	little	JavaScript	in
our	template.

Publishing	saved	comments	to	a	chat
service
In	the	previous	chapter,	we	connected	our	images	service	to	the	comments	service	via	Spring	Cloud	Stream.
This	let	us	transmit	new	comments	over	the	wire	to	a	service	dedicated	to	storing	them	in	a	MongoDB
data	store.

The	following	screenshot	shows	us	entering	a	new	comment:

To	carry	on	this	use	case	to	its	natural	conclusion,	it's	expected	that	after	storing	a	message,	we'd	want
to	share	it	with	everyone,	right?	To	do	so,	let's	pick	up	with	the	comment	microservice's	CommentService.

In	the	previous	chapter,	the	comments	service	transformed	an	incoming	stream	of	Flux<Comment>	into	a
Flux<Void>,	a	stream	of	voids.	This	had	the	effect	of,	essentially,	dropping	the	stream	at	this	point.	In	this
chapter,	we	want	to	take	that	incoming	stream	of	comments	and	forward	them.

This	is	accomplished	by	altering	the	Comment.save()	operation	as	follows:

				@StreamListener	

				@Output(Processor.OUTPUT)	

				public	Flux<Comment>	save(@Input(Processor.INPUT)	Flux<Comment>	

					newComment)	{	

							return	repository	

								.saveAll(newComment)	

								.map(comment	->	{	

										log.info("Saving	new	comment	"	+	comment);	

										meterRegistry

												.counter("comments.consumed",	"imageId",	comment.getImageId())

												.increment();	

										return	comment;	

								});	

				}	

This	previous	code	is	almost	identical	to	what	we	had	before	except	for	the	following	changes:

The	last	step	of	the	map	operation	now	returns	comment	instead	of	Mono.empty()
The	method	now	has	a	return	type	of	Flux<Comment>

With	this	tweak,	the	return	results	from	save()	are	transmitted	over	the	Source.OUTPUT	channel.

Processor.INPUT	and	Processor.OUTPUT	are	just	channel	names.	They	don't	say	where	anything
goes.	That's	why	we	need	to	configure	bindings.

Our	comments.yml	properties	file	stored	on	the	Config	Server	needs	to	be	upgraded	as	follows:

				server:	

						port:	9000	

	

				spring:	

						cloud:	

								stream:	

										bindings:	

												input:	

														destination:	learning-spring-boot-comments	

														group:	comments-service	

														content-type:	application/json	

												output:	

														destination:	learning-spring-boot-chat	

														group:	comments-chat	

														content-type:	application/json	

The	preceding	code	is	mostly	the	same	as	the	previous	chapter,	but	with	the	following:

spring.cloud.stream.bindings.input	and	its	properties	are	the	same	as	before
spring.cloud.stream.bindings.output.destination	points	to	a	different	exchange	to	avoid	colliding	with
the	one	feeding	messages	into	this	service
spring.cloud.stream.bindings.output.group	provides	a	logical	grouping	to	ensure	proper	handling	if	we
ever	scale	up	to	more	than	one	instance	of	comments	service
spring.cloud.stream.bindings.output.content-type	is	marked	application/json,	indicating	we	don't	expect
the	consumer	to	use	the	same	domain	class,	but	will	probably	deserialize	into	their	own	POJO
instead

With	these	changes,	we	can	expect	an	output	as	follows:

2017-07-05	00:00:36.769		INFO	92207	---	[ments-service-1]	

c.g.l.comments.CommentService	:	Saving	new	comment	Comment(id=null,

imageId=581d6669596aec65dc9e6c05,	comment=Nice	cover!)

With	all	these	changes,	our	comments	microservice	is	geared	up	to	transmit	saved	comments	to	someone
else	able	to	broadcast	to	users.	It	may	be	tempting	to	send	them	back	to	the	images	service.	But	let's
continue	with	the	concept	of	keeping	a	narrow	scope,	and	send	this	traffic	to	a	different,	chat-focused
microservice	instead.	We	can	even	call	it	the	chat	service!

Creating	a	chat	service	to	handle
WebSocket	traffic
If	we	visit	http://start.spring.io,	select	Gradle,	Spring	Boot	2.0,	Eureka	Discovery,	Config	Client,
Stream	Rabbit,	Lombok,	and	Reactive	Web,	we'll	have	a	nice	little	service	ready	to	chat:

				compile('org.springframework.boot:spring-boot-starter-webflux')	

				compile('org.projectlombok:lombok')	

				compile('org.springframework.cloud:spring-cloud-starter-stream-

					rabbit')	

				compile('org.springframework.cloud:spring-cloud-stream-reactive')	

				compile('org.springframework.cloud:spring-cloud-starter-eureka')	

				compile('org.springframework.cloud:spring-cloud-starter-config')	

These	aforementioned	dependencies	in	our	new	chat	service	can	be	described	as	follows:

spring-boot-starter-webflux:	This	comes	with	a	Reactive	Streams	capable	WebSocket	API
lombok:	This	is	the	library	that	gets	us	out	of	the	business	of	coding	getters,	setters,	and	other
boilerplate	Java	code
spring-cloud-starter-stream-rabbit:	This	is	the	Spring	Cloud	Stream	library	that	uses	RabbitMQ	as	the
underlying	technology
spring-cloud-stream-reactive:	This	layers	on	Reactive	Streams	support
spring-cloud-starter-eureka:	This	makes	the	microservice	capable	of	registering	itself	with	our	Eureka
Server	and	of	consuming	other	Eureka-based	services
spring-cloud-starter-config:	This	lets	the	microservice	get	its	configuration	details	from	the	Config
Server

There	is	little	value	in	looking	at	the	rest	of	the	build	file,	since	it's	the	same	as	our	other	microservices.

With	these	dependencies,	the	only	thing	needed	to	make	this	Yet	Another	Microservice™	is	to	fashion
our	Spring	Boot	public	static	void	main	like	this:

				@SpringCloudApplication	

				@EnableEurekaClient	

				public	class	LearningSpringBootChatApplication	{	

	

						public	static	void	main(String[]	args)	{	

								SpringApplication.run(

										LearningSpringBootChatApplication.class,	args);	

						}	

				}	

The	last	code	can	be	described	quite	simply:

@SpringCloudAppplication	is	a	@SpringBootApplication	combined	with	a	Eureka	Discovery,	and	with	circuit
breaker	enabled

We're	close.	Early	in	this	book,	we	would	put	the	needed	settings	in	application.yml	(or
application.properties),	but	since	we	have	adopted	Spring	Cloud	Config	Server,	we,	instead,	need	to	create
the	following	bootstrap.yml	file:

http://start.spring.io

				spring:	

						application:	

								name:	chat	

This	bootstrap.yml	file	now	identifies	our	application	as	the	chat	microservice	to	Eureka,	and	will	cause	it
to	ask	the	Config	Server	for	chat.yml	on	startup.

To	support	that,	we	need	to	add	the	following	to	our	Config	Server's	Git	repository:

				server:	

						port:	8200	

	

				spring:	

						cloud:	

								stream:	

										bindings:	

												input:	

														destination:	learning-spring-boot-chat	

														group:	comments-chat	

														content-type:	application/json	

												newComments:	

														destination:	learning-spring-boot-chat	

														group:	comments-chat	

														content-type:	application/json	

												clientToBroker:	

														destination:	learning-spring-boot-chat-user-messages	

														group:	app-chatMessages	

												brokerToClient:	

														destination:	learning-spring-boot-chat-user-messages	

														group:	topic-chatMessages	

Wow!	That's	a	lot	of	settings.	Let's	take	them	apart:

server.port	shows	this	service	will	listen	on	port	8200.	(Why	not?)
spring.cloud.stream.bindings.input	contains	the	exact	same	settings	we	saw	earlier	in	the	comments
spring.cloud.stream.bindings.output	settings.	This	ensures	that	the	two	are	talking	to	each	other.
We	also	have	spring.cloud.stream.bindings.newComments,	.clientToBroker,	and	.brokerToClient.	This	part	is	a
little	complex,	so	let's	discuss	what	happens.

Before	we	dig	into	moving	WebSocket	messages	around,	don't	forget	to	commit	this
change,	and	push	to	origin!

Brokering	WebSocket	messages
Something	that's	important	to	understand	is	the	flow	of	messages.	So	far,	we	have	seen	messages	sent
from	the	website	into	the	comments	service,	stored	into	a	MongoDB	database,	and	then	forwarded	to	our
chat	service.

At	this	point,	we	are	trying	to	onramp	these	messages	to	WebSockets.	But	what	does	that	mean?	A
WebSocket	is	a	very	lightweight,	two-way	channel	between	a	web	page	and	the	server.	WebSockets,	on
their	own,	don't	dictate	much	about	what	travels	over	this	thin	pipe,	but	one	thing	is	for	certain--​each
web	page,	when	connected	to	a	server,	has	a	separate	session.

Spring	WebFlux	provides	an	API	that	lets	us	hook	into	this	WebSocket-oriented	session,	whether	to
transmit	or	receive.	But	no	WebSocket	session	is	immediately	linked	to	another	WebSocket	session.	If
we	were	using	Spring	Framework	4's	WebSocket	API,	we	would	be	leveraging	its	most	sophisticated
Messaging	API.	This	API	was	born	in	Spring	Integration,	and	is	the	same	concept	found	in	Spring
Cloud	Streams.	Spring	MVC	comes	with	a	built-in	broker	to	help	bridge	messages	between	different
sessions.	In	essence,	a	message	that	originates	in	one	WebSocket	session	must	be	transmitted	to	the
broker	where	it	can	then	be	forwarded	to	any	other	WebSocket	session	that	might	be	interested.

With	Spring	WebFlux,	we	have	no	such	Messaging	API,	no	such	broker,	and	no	higher	level	constructs
such	as	user-based	messaging.	But	it's	no	big	deal!	We	can	fashion	it	ourselves--using	the	Spring	Cloud
Stream	tools	we	are	already	familiar	with.

Through	the	rest	of	this	chapter,	we	will	chain	together	these	streams	of	messages,	and	it	will	be	most
elegant.

Broadcasting	saved	comments
To	consume	messages	sent	via	Spring	Cloud	Stream,	the	chat	application	needs	its	own	CommentService:

				@Service	

				@EnableBinding(Sink.class)	

				public	class	CommentService	implements	WebSocketHandler	{	

	

						private	final	static	Logger	log	=	

								LoggerFactory.getLogger(CommentService.class);	

								...	

				}	

The	preceding	code	can	be	described	as	follows:

@Service	marks	this	as	a	Spring	bean,	picked	up	automatically	when	the	chat	microservice	starts
@EnableBinding(Sink.class)	shows	this	to	be	a	receiver	for	Spring	Cloud	Stream	messages
Our	service	implements	WebSocketHandler,	a	WebFlux	interface	that	comes	with	a
handle(WebSocketSession)	method	(which	we'll	use	shortly)
An	Slf4j	Logger	is	used	to	print	out	traffic	passing	through

This	service	needs	to	consume	the	messages	sent	from	Spring	Cloud	Stream.	However,	the	destination
for	these	messages	is	not	another	Spring	Cloud	Stream	destination.	Instead,	we	want	to	pipe	them	into	a
WebSocket	session.

To	do	that,	we	need	to	pull	messages	down	from	a	RabbitMQ-based	Flux,	and	forward	them	to	a	Flux
connected	to	a	WebSocket	session.	This	is	where	we	need	another	one	of	those	FluxSink	objects:

				private	ObjectMapper	mapper;	

				private	Flux<Comment>	flux;	

				private	FluxSink<Comment>	webSocketCommentSink;	

	

				CommentService(ObjectMapper	mapper)	{	

						this.mapper	=	mapper;	

						this.flux	=	Flux.<Comment>create(

								emitter	->	this.webSocketCommentSink	=	emitter,	

								FluxSink.OverflowStrategy.IGNORE)	

									.publish()	

									.autoConnect();	

				}	

This	last	bit	of	code	can	easily	be	described	as	follows:

We	need	a	Jackson	ObjectMapper,	and	will	get	it	from	Spring's	container	through	constructor
injection.
To	create	a	FluxSink	that	lets	us	put	comments	one	by	one	onto	a	Flux,	we	use	Flux.create(),	and	let	it
initialize	our	sink,	webSocketCommentSink.
When	it	comes	to	backpressure	policy,	it's	wired	to	ignore	backpressure	signals	for	simplicity's
sake.	There	may	be	other	scenarios	where	we	would	select	differently.
publish()	and	autoConnect()	kick	our	Flux	into	action	so	that	it's	ready	to	start	transmitting	once	hooked
into	the	WebSocket	session.

The	idea	we	are	shooting	for	is	to	put	events	directly	onto	webSocketCommentSink,	and	then	hitch	the
corresponding	flux	into	the	WebSocket	API.	Think	of	it	like	webSocketCommentSink	as	the	object	we	can
append	comments	to,	and	flux	being	the	consumer	pulling	them	off	on	the	other	end	(after	the	consumer
subscribes).

With	our	webSocketCommentSink	configured,	we	can	now	hook	it	into	our	Spring	Cloud	Stream	Sink,	as
follows:

				@StreamListener(Sink.INPUT)	

				public	void	broadcast(Comment	comment)	{	

						if	(webSocketCommentSink	!=	null)	{	

								log.info("Publishing	"	+	comment.toString()	+	

									"	to	websocket...");	

								webSocketCommentSink.next(comment);	

						}	

				}	

The	preceding	code	can	be	described	as	follows:

The	broadcast()	method	is	marked	as	a	@StreamListener	for	Sink.INPUT.	Messages	get	deserialized	as
Comment	objects	thanks	to	the	application/json	setting.
The	code	checks	if	our	webSocketCommentSink	is	null,	indicating	whether	or	not	it's	been	created.
A	log	message	is	printed.
The	Comment	is	dropped	into	our	webSocketSink,	which	means	that	it	will	become	available	to	our
corresponding	flux	automatically.

With	this	service	in	place,	we	can	expect	to	see	the	following	in	the	chat	service's	logs	when	a	new
comment	arrives:

2017-08-05	:	Publishing	Comment(id=581d6774596aec682ffd07be,	

imageId=581d6669596aec65dc9e6c05,	comment=Nice	cover!)	to	websocket...		

The	last	step	is	to	push	this	Flux	of	comments	out	over	a	WebSocket	session.	Remember	the
WebSocketHandler	interface	at	the	top	of	our	class?	Let's	implement	it:

				@Override	

				public	Mono<Void>	handle(WebSocketSession	session)	{	

						return	session.send(this.flux	

								.map(comment	->	{	

										try	{	

												return	mapper.writeValueAsString(comment);	

										}	catch	(JsonProcessingException	e)	{	

														throw	new	RuntimeException(e);	

										}	

								})	

								.log("encode-as-json")	

								.map(session::textMessage)	

								.log("wrap-as-websocket-message"))	

						.log("publish-to-websocket");	

				}	

This	WebSocketHandler	can	be	described	as	follows:

We	are	handed	a	WebSocketSession	which	has	a	very	simple	API
The	Comment-based	Flux	is	piped	into	the	WebSocket	via	its	send()	method
This	Flux	itself	is	transformed	from	a	series	of	Comment	objects	into	a	series	of	JSON	objects	courtesy
of	Jackson,	and	then,	finally,	into	a	series	of	WebSocketMessage	objects

It's	important	to	point	out	that	in	Spring	Framework	4,	much	of	this	was	handled	by	the	inner	working
of	Spring's	WebSocket	API	as	well	as	its	Messaging	API.	There	was	no	need	to	serialize	and	deserialize
Java	POJOs	into	JSON	representations.	That	was	provided	out	of	the	box	by	Spring's	converter	services.

In	Spring	Framework	5,	in	the	WebFlux	module,	the	WebSocket	API	is	very	simple.	Think	of	it	as
streams	of	messages	coming	and	going.	So,	the	duty	of	transforming	a	chain	of	Comment	objects	into	one
of	JSON-encoded	text	messages	is	paramount.	As	we've	just	seen,	with	the	functional	paradigm	of
Reactor,	this	is	no	bother.

Getting	bogged	down	in	POJO	overload?	Seeing	Comment	domain	objects	in	every
microservice?	Don't	panic!	While	we	could	write	some	common	module	that	was	used	by
every	microservice	to	hold	this	domain	object,	that	may	not	be	the	best	idea.	By	letting
each	microservice	manage	their	own	domain	objects,	we	reduce	coupling.	For	example,
only	the	comments	service	actually	marks	the	id	field	with	Spring	Data	Commons's	@Id
annotation,	since	it's	the	only	one	talking	to	MongoDB.	What	may	appear	identical	in	code
actually	carries	slightly	semantic	differences	that	can	arise	down	the	road.

Configuring	WebSocket	handlers
We've	coded	our	CommentService	to	implement	Spring's	WebSocketHandler	interface,	meaning,	it's	ready	to
transmit	traffic	over	a	WebSocket.	The	next	step	is	to	hook	this	service	into	the	machinery.

We	can	start	by	creating	a	Spring	configuration	class:

				@Configuration	

				public	class	WebSocketConfig	{	

						...	

				}	

This	Spring	configuration	class	is	devoted	to	configuring	WebSocket	support,	and	is	marked	up	with	the
@Configuration	annotation,	indicating	it's	a	source	of	Spring	bean	definitions.

With	that	in	place,	we	now	come	to	the	core	piece	of	registering	WebSocket	functionality:

				@Bean	

				HandlerMapping	webSocketMapping(CommentService	commentService)	{	

						Map<String,	WebSocketHandler>	urlMap	=	new	HashMap<>();	

						urlMap.put("/topic/comments.new",	commentService);	

	

						Map<String,	CorsConfiguration>	corsConfigurationMap	=	

								new	HashMap<>();	

						CorsConfiguration	corsConfiguration	=	new	CorsConfiguration();	

						corsConfiguration.addAllowedOrigin("http://localhost:8080");	

						corsConfigurationMap.put(

								"/topic/comments.new",	corsConfiguration);	

	

						SimpleUrlHandlerMapping	mapping	=	new	SimpleUrlHandlerMapping();	

						mapping.setOrder(10);	

						mapping.setUrlMap(urlMap);	

						mapping.setCorsConfigurations(corsConfigurationMap);	

	

						return	mapping;	

				}	

This	preceding	little	chunk	of	code	can	be	taken	apart	as	follows:

@Bean	indicates	this	entire	method	is	used	to	construct	a	Spring	bean.
It's	a	HandlerMapping	bean,	Spring's	interface	for	linking	routes	with	handler	methods.
The	name	of	the	method,	webSocketMapping,	indicates	this	method	is	about	wiring	routes	for
WebSocket	message	handling.
It	asks	for	a	copy	of	the	CommentService	bean	we	defined	earlier.	Since	Spring	Boot	activates
component	scanning,	an	instance	of	that	service	will	be	created	automatically,	thanks	to	the	@Service
annotation	we	put	on	it	earlier.
We	create	a	Java	Map,	designed	for	mapping	string-based	routes	onto	WebSocketHandler	objects,	and
dub	it	a	urlMap.
We	load	the	map	with	/topic/comments.new,	and	link	it	with	our	CommentService,	a	class	that	implements
the	WebSocketHandler	interface.
There's	the	sticky	issue	of	microservices,	whereby,	our	chat	service	runs	on	a	different	port	from	the
frontend	image	service.	Any	modern	web	browser	will	deny	a	web	page	calling	a	different	port	from
the	original	port	it	was	served.	To	satisfy	security	restrictions	(for	now),	we	must	implement	a

custom	Cross-origin	Resource	Sharing	or	CORS	policy.	In	this	case,	we	add	an	Allowed	Origin
of	http://localhost:8080,	the	address	where	the	frontend	image	service	resides.
With	both	the	urlMap	and	the	corsConfiguration	policy,	we	construct	SimpleUrlHandlerMapping.	It	also	needs
an	order	level	of	10	to	get	viewed	ahead	of	certain	other	route	handlers	provided	automatically	by
Spring	Boot.

Essentially,	this	bean	is	responsible	for	mapping	WebSocket	routes	to	handlers,	whether	that	is	to	target
client-to-server,	or	server-to-client	messaging.	The	message	route	we've	designed	so	far	is	a	WebSocket
message	that	originates	on	the	server	when	a	new	comment	is	created,	and	is	pushed	out	to	all	clients	so
they	can	be	alerted	to	the	new	comment.

In	Spring	Framework	4,	there	is	an	annotation-based	mechanism	that	lets	us	configure	these	routes
directly	on	the	handlers	themselves.	But	for	Spring	Framework	5	(WebFlux),	we	must	configure	things
by	hand.	CORS	is	also	critical	to	handle	given	the	way	we	split	things	up	across	multiple	microservices.

Another	critical	component	in	the	same	configuration	class	is	listed	next:

				@Bean	

				WebSocketHandlerAdapter	handlerAdapter()	{	

						return	new	WebSocketHandlerAdapter();	

				}	

This	preceding,	somewhat	boring	looking,	Spring	bean	is	critical	to	the	infrastructure	of	WebSocket
messaging.	It	connects	Spring's	DispatcherHandler	to	a	WebSocketHandler,	allowing	URIs	to	be	mapped	onto
handler	methods.

Don't	confuse	DispatcherHandler,	a	Reactive	Spring	component	responsible	for	handling
Reactor-based	web	requests	with	the	venerable	DispatcherServlet,	a	servlet-based	component
that	performs	an	analogous	function.	This	WebSocket	handling	is	purely	Reactive	Streams-
oriented.

Consuming	WebSocket	messages	from	the
web	page
With	everything	configured	on	the	server,	it's	time	to	wire	things	up	in	the	client.	Because	JavaScript
has	a	WebSocket	API,	and	we	aren't	using	subprotocols	such	as	Simple	(or	Streaming)	Text	Oriented
Message	Protocol	(STOMP),	we	don't	need	any	extra	libraries.

So	we	can	augment	our	Thymeleaf	template,	index.html.	It's	important	to	point	out	that	our	template	is	in
the	images	microservice,	not	the	chat	microservice	we	just	created.	Add	the	following	chunk	of	code
toward	the	bottom	of	the	HTML:

				<script	th:inline="javascript">	

								/*<![CDATA[*/	

								(function()	{	

												...	custom	JavaScript	code	here...	

								})();	

								/*]]>*/	

				</script>	

This	preceding	chunk	of	code	can	be	explained	as	follows:

The	HTML	<script>	tag	combined	with	th:inline="javascript"	allows	Thymeleaf	to	process	it.
To	avoid	HTML	parsing	in	various	browsers	as	well	as	our	IDE,	the	entire	code	is	wrapped	with
CDATA	tags.
To	ensure	our	JavaScript	code	doesn't	litter	the	global	namespace,	we	have	enclosed	it	in	an
immediately-invoked	function	expression	(IIFE)	(function()	{	/*	code	*/	})();.	The	code	inside
this	block	cannot	be	reached	from	anywhere	outside,	and	this	is	a	Good	Thing™.	There	is	no
chance	we'll	run	into	anyone	else's	variables	without	deliberate	action.

To	repeat	this	point--we	write	any	JavaScript	used	to	send	and	receive	messages	over	the	WebSocket	in
the	images	microservice.	That's	because	it's	where	our	Thymeleaf	template	is	served	from.	To	actually
send	and	receive	WebSocket	messages,	it	will	connect	to	the	chat	microservice.

To	subscribe	to	WebSocket	messages,	we	need	to	subscribe	as	follows:

				var	socket	=	new	WebSocket(

						'ws://localhost:8200/topic/comments.new');	

				socket.onopen	=	function(event)	{	

						console.log('Connected	to	chat	service!');	

						console.log(event);	

				}	

				socket.onmessage	=	function(event)	{	

						console.log('Received	'	+	event.data	+	'!');	

						var	parsedMessage	=	JSON.parse(event.data);	

						var	ul	=	document.getElementById(

								'comments-'	+	parsedMessage.imageId);	

						var	li	=	document.createElement('li');	

						li.appendChild(

								document.createTextNode(parsedMessage.comment));	

						ul.appendChild(li);	

				}	

The	last	code	can	be	described	as	follows:

We	start	by	creating	a	WebSocket	connection	at	ws://localhost:8200/topic/comments.new.
With	a	JavaScript	WebSocket	object	assigned	to	our	socket	variable,	we	then	assign	event	handlers	to
onopen	and	onmessage.
The	onopen	handler	is	processed	when	a	connection	is	first	opened	on	the	server.	In	this	case,	it
merely	logs	that	we	have	connected.
The	onmessage	handler	is	processed	everytime	a	message	is	issued	from	the	server.	In	this	case,	we
log	the	event's	data,	parse	it	(assuming	it's	JSON),	construct	an	HTML	LI,	and	append	it	to	the
page's	already	existing	UL	based	on	the	comment's	imageId.

This	code	uses	native	JavaScript,	but	if	you're	using	React.js,	jQuery,	or	some	other
JavaScript	toolkit,	feel	free	to	use	its	APIs	to	generate	new	DOM	elements.

Moving	to	a	fully	asynchronous	web	client
Now	we	are	geared	up	to	receive	asynchronous	messages	from	the	server	as	comments	are	created,	and
display	them	dynamically	on	the	site.	However,	there	is	something	else	that	warrants	attention.

Remember	how,	in	the	previous	chapter,	we	had	an	HTML	form	for	the	user	to	fill	out	comments?	The
previous	chapter's	controller	responded	to	such	POSTs	like	this:

				@PostMapping("/comments")	

				public	Mono<String>	addComment(Mono<Comment>	newComment)	{	

	

						/*	stream	comments	to	COMMENTS	service	*/	

	

						return	Mono.just("redirect:/");	

				}	

redirect:/	is	a	Spring	Web	signal	to	re-render	the	page	at	/	via	an	HTTP	redirect.	Since	we	are	shifting
into	dynamically	updating	the	page	based	on	asynchronous	WebSocket	messages,	this	is	no	longer	the
best	way.

What	are	the	issues?	A	few	can	be	listed	as	follows:

If	the	comment	hasn't	been	saved	(yet),	the	redirect	would	re-render	the	page	with	no	change	at	all.
The	redirect	may	cause	an	update	in	the	midst	of	handling	the	new	comment's	WebSocket	message.
Based	on	the	race	conditions,	the	comment	may	not	yet	be	saved,	causing	it	to	not	appear,	and	the
refresh	may	miss	the	asynchronous	message,	causing	the	entire	comment	to	not	be	displayed	unless
the	page	is	manually	refreshed.
Setting	up	a	WebSocket	handler	with	every	new	comment	isn't	efficient.

Either	way,	this	isn't	a	good	use	of	resources,	and	could	introduce	timing	issues.	Instead,	it's	best	if	we
convert	this	into	an	AJAX	call.

To	do	so,	we	need	to	alter	the	HTML	like	this:

				<td>	

						<input	th:id="'comment-'	+	${image.id}"	type="text"	value=""	/>	

						<button	th:id="${image.id}"	class="comment">Submit</button>	

				</td>	

Instead	of	a	form	with	a	text	input	and	a	Submit	input,	we	remove	the	HTML	form	and	replace	it	with	a
button:

The	<input>	contains	an	id	attribute	unique	to	its	corresponding	image
The	<button>	has	a	similar	id	attribute

The	<button>	also	has	class="comment",	which	we'll	use	to	find,	and	decorate	it	with	an	event	handler	to
process	clicks	as	follows:

				//	Register	a	handler	for	each	button	to	make	an	AJAX	call	

				document.querySelectorAll('button.comment')	

					.forEach(function(button)	{	

							button.addEventListener('click',	function()	{	

									var	comment	=	document.getElementById(

											'comment-'	+	button.id);	

	

									var	xhr	=	new	XMLHttpRequest();	

									xhr.open('POST',	/*[[@{'/comments'}]]*/'',	true);	

	

									var	formData	=	new	FormData();	

									formData.append('comment',	comment.value);	

									formData.append('imageId',	button.id);	

	

									xhr.send(formData);	

	

									comment.value	=	'';	

							});	

				});	

This	last	block	of	JavaScript,	contained	inside	our	tidy	little	(function(){})(),	has	the	following:

document.querySelectorAll('button.comment')	uses	a	native	JavaScript	query	selector	to	find	all	the	HTML
buttons	that	have	the	class	comment.
Iterating	over	each	button,	an	event	listener	is	added,	responding	to	the	click	events.
When	a	click	is	received,	it	fetches	the	corresponding	comment	input.
Then	it	fashions	an	XMLHttpRequest	object,	opening	a	POST	operation	set	for	asynchronous
communications.
With	Thymeleaf's	JavaScript	support,	it	will	plug	in	the	URL	for	@{'/comments'}	upon	rendering.
Then	it	constructs	a	FormData,	and	loads	the	same	fields	as	the	previous	chapter	as	if	we	had	filled
out	an	HTML	form	on	the	page.
It	transmits	the	form	data	over	the	wire.	Since	we	don't	depend	on	the	results,	they	are	ignored.
Finally,	it	clears	out	the	comment	input's	entry	box.

In	this	example,	we're	using	JavaScript's	native	APIs.	But	if	you're	using	Rest.js,	jQuery,
Restangular,	lodash,	or	any	other	toolkit,	feel	free	to	assemble	your	AJAX	call	using	that
instead.	The	point	is	to	asynchronously	transmit	the	data	instead	of	navigating	to	another
page.

Handling	AJAX	calls	on	the	server
To	support	the	fact	that	we	are	now	making	an	AJAX	call,	and	not	expecting	a	redirect,	we	need	to
make	alterations	on	the	server	side.

For	one	thing,	we	need	to	change	the	image	microservice's	CommentController	from	being	view-based	to
being	a	REST	controller.	Earlier	in	this	book,	it	looked	like	this:

				@Controller	

				@EnableBinding(Source.class)	

				public	class	CommentController	{	

						...	

				}	

@Controller	marked	it	as	a	Spring	WebFlux	controller	that	was	expected	to	return	the	HTTP	redirect.

To	tweak	things	for	AJAX	calls,	update	it	to	look	like	this:

				@RestController	

				@EnableBinding(Source.class)	

				public	class	CommentController	{	

						...	

				}	

By	replacing	@Controller	with	@RestController,	we	have	marked	this	class	as	a	Spring	WebFlux	controller
with	results	written	directly	into	the	HTTP	response	body.

With	that	in	place,	we	can	now	rewrite	addComment	as	shown	here:

				@PostMapping("/comments")	

				public	Mono<ResponseEntity<?>>	addComment(Mono<Comment>	newComment)

				{	

						if	(commentSink	!=	null)	{	

								return	newComment	

									.map(comment	->	{	

											commentSink.next(MessageBuilder	

												.withPayload(comment)	

												.setHeader(MessageHeaders.CONTENT_TYPE,	

													MediaType.APPLICATION_JSON_VALUE)	

													.build());	

											return	comment;	

									})	

									.flatMap(comment	->	{	

											meterRegistry

													.counter("comments.produced",	"imageId",	comment.getImageId())

													.increment();	

											return	Mono.just(ResponseEntity.noContent().build());	

									});	

						}	else	{	

										return	Mono.just(ResponseEntity.noContent().build());	

						}	

				}	

What	did	we	change?	The	following:

The	return	type	has	switched	from	Mono<String>	to	Mono<ResponseEntity<?>>.	ResponseEntity<?>	is	a	Spring
Web	container	that	holds	HTTP	response	headers,	body,	and	status	code.
The	logic	for	forwarding	messages	to	the	comments	service	over	a	FluxSink	to	Spring	Cloud	Stream	is

the	same	as	the	previous	chapter.
The	last	line	of	both	the	if	and	the	else	clauses	uses	the	static	builder	methods	of	ResponseEntity	to
generate	an	HTTP	204	(No	Content)	response.	It	indicates	success,	but	no	response	body	is	included.
Considering	the	client	isn't	interested	in	any	content,	that's	good	enough!

Let's	check	our	handiwork.	If	we	start	up	everything	(remember	to	launch	the	Config	Server	before	the
others),	and	open	two	separate	browser	tabs,	we	can	see	the	effects.

In	the	following	screenshot,	one	user	enters	a	new	comment	(Nice	cover!):

Another	user	with	their	own	browser	is	looking	at	the	same	images.	When	the	first	user	clicks	on
Submit,	the	message	automatically	appears	on	the	second	user's	window,	as	follows:

No	page	reloads,	and	no	need	to	refresh	the	data	and	pull	it	from	the	comments	service.

We	can	also	see	the	message	activity	in	the	second	user's	browser	console:

Introducing	user	chatting
What	social	media	platform	doesn't	provide	a	means	for	users	to	communicate	with	each	other?	In	this
section,	we'll	enhance	our	application	to	allow	chatting	between	users.	This	is	another	way	to	use
asynchronous	WebSocket	messaging	between	clients	and	servers.

To	start,	let's	add	a	new	HTML	element	at	the	bottom	of	our	template	like	this:

				<div	id="chatBox">	

								Greetings!	

								
	

								<textarea	id="chatDisplay"	rows="10"	cols="80"	

														disabled="true"></textarea>	

								
	

								<input	id="chatInput"	type="text"	style="width:	500px"	

														value=""	/>	

								
	

								<button	id="chatButton">Send</button>	

								
	

				</div>	

This	preceding	HTML	code	is	placed	right	underneath	the	Upload	widget	for	sending	new	pictures.	It
contains:

A	simple	greeting.
An	HTML	textarea	for	displaying	messages,	80	columns	wide	and	10	rows	tall.	It	is	disabled	to	make
it	a	read-only	message	output.
A	text	input	for	entering	new	messages.
A	button	to	submit	new	messages.

It's	true	that	any	and	all	styling	should	be	done	through	CSS,	but	we	are	trying	to	keep
things	simple,	and	not	turn	this	into	a	UX-based	book.

To	post	new	messages	from	the	text	input	box,	we	need	to	add	another	bit	of	code	inside	our	piece	of
JavaScript:

				var	outboundChatMessages	=	new	

					WebSocket('ws://localhost:8200/app/chatMessage.new');	

				//	Post	new	chat	messages	

				outboundChatMessages.onopen	=	function(event)	{	

						document.getElementById('chatButton')	

							.addEventListener('click',	function	()	{	

									var	chatInput	=	document.getElementById('chatInput');	

									console.log('Publishing	"'	+	chatInput.value	+	'"');	

									outboundChatMessages.send(chatInput.value);	

									chatInput.value	=	'';	

									chatInput.focus();	

							});	

				}	

This	last	bit	of	code	does	the	following:

It	creates	another	WebSocket	connection,	this	time	to	ws://localhost:8200/app/chatMessage.new	(which
we'll	code	further	down).

Registers	a	handler	function	to	be	invoked	when	the	onopen	event	of	the	WebSocket	is	triggered.
Finds	the	chatButton,	and	registers	an	event	handler	for	the	click	events.
When	clicked,	fetches	the	chatInput	text	input.
Using	the	WebSocket	variable,	it	sends	the	value	of	the	chatInput	text	input.	NOTE:	This	is	pure
text.	No	JSON	encoding	needed.
Clears	out	chatInput,	and	switches	focus	back	to	it.

This	will	transport	raw	strings	to	the	server.	How	these	messages	are	received	will	be	defined	shortly,
but	while	we're	here,	why	not	go	ahead	and	code	up	the	other	side,	that	is,	when	these	messages	are
transmitted	from	server	to	client?

Are	you	getting	nervous	about	seeing	http://localhost:8200?	It's	appeared	in	a	couple	places
so	far	(and	will	again	as	we	write	more	code).	It's	a	bit	arbitrary,	and	also	doesn't	lend
itself	to	scaling	in	production,	right?	We	could	stuff	this	value	into	the	Config	Server	Git
repo,	and	then	write	some	JavaScript	to	scarf	it	out,	but	that	sounds	a	little	complicated.
And	it	still	wouldn't	solve	the	scaling	issue.	The	truth	is	that	there	is	a	much	simpler
solution	in	Chapter	9,	Securing	Your	App	with	Spring	Boot.	So	we'll	stick	with	hard-coded
URLs	for	now.

To	display	chat	messages	as	they	arrive,	add	the	following:

				var	inboundChatMessages	=	

						new	WebSocket('ws://localhost:8200/topic/chatMessage.new');	

				//	Listen	for	new	chat	messages	

				inboundChatMessages.onmessage	=	function	(event)	{	

						console.log('Received	'	+	event.data);	

						var	chatDisplay	=	document.getElementById('chatDisplay');	

						chatDisplay.value	=	chatDisplay.value	+	event.data	+	'\n';	

				};

The	preceding	code	does	the	following:

Creates	a	third	WebSocket	connection	to	ws://localhost:8200/topic/chatMessage.new
On	the	WebSocket's	onmessage	handler,	registers	a	function	handler	to	be	invoked	with	every	new
message
When	an	event	arrives,	grabs	hold	of	the	chatDisplay
Appends	the	message's	data	to	the	chatDisplay,	and	adds	a	newline	character

Confused	by	the	paths	/app/chatMessage.new	and	/topic/chatMessage.new?	The	first	is	for	sending
messages	from	the	client	to	our	server-side	application,	while	the	latter	is	for	sending
messages	from	server	to	client.	There	is	no	requirement	that	they	be	prefixed	by	/app	or
/topic.	It's	just	a	convention	to	help	denote	where	the	messages	are	traveling.

We	just	defined	a	route	to	send	user	messages	to	the	server	as	well	as	a	route	to	receive	messages	from
the	server.	The	next	step	is	to	register	these	routes	in	our	server-side	code.	We	do	so	by	updating	our
WebSocketConfig	class's	webSocketMapping	like	this:

				@Bean	

				HandlerMapping	webSocketMapping(CommentService	commentService,	

						InboundChatService	inboundChatService,	

						OutboundChatService	outboundChatService)	{	

								Map<String,	WebSocketHandler>	urlMap	=	new	HashMap<>();	

								urlMap.put("/topic/comments.new",	commentService);	

								urlMap.put("/app/chatMessage.new",	inboundChatService);	

								urlMap.put("/topic/chatMessage.new",	outboundChatService);	

	

								Map<String,	CorsConfiguration>	corsConfigurationMap	=	

									new	HashMap<>();	

								CorsConfiguration	corsConfiguration	=	new	CorsConfiguration();	

								corsConfiguration.addAllowedOrigin("http://localhost:8080");	

								corsConfigurationMap.put(

										"/topic/comments.new",	corsConfiguration);	

								corsConfigurationMap.put(

										"/app/chatMessage.new",	corsConfiguration);	

								corsConfigurationMap.put(

										"/topic/chatMessage.new",	corsConfiguration);	

	

								SimpleUrlHandlerMapping	mapping	=	new	

									SimpleUrlHandlerMapping();	

								mapping.setOrder(10);	

								mapping.setUrlMap(urlMap);	

								mapping.setCorsConfigurations(corsConfigurationMap);	

	

								return	mapping;	

				}	

This	last	code	contains	many	changes,	so	let's	take	them	apart	one	by	one:

Previously,	this	method	only	injected	CommentService.	Now	we	also	inject	InboundChatService	as	well	as
OutboundChatService.	These	are	two	services	we	must	define	based	on	the	need	to	broker	WebSocket
messages	between	sessions.	(Don't	panic!	We'll	get	to	that	real	soon).
We	have	two	new	routes	added	to	the	urlMap--/app/chatMessage.new	and	/topic/chatMessage.new--which	we
just	saw	used	in	the	web	layer.
These	same	routes	must	also	be	added	to	our	CORS	policy.

Are	you	a	little	nervous	about	the	CORS	policy?	Worried	about	managing	hard-coded
ports	in	your	code	when	we	just	showed	how	that's	not	necessary	in	the	previous	chapter?
Concerned	about	what	this	means	when	it	comes	time	to	secure	everything?	Don't	worry,
we'll	show	how	this	can	be	handled	in	Chapter	9,	Securing	Your	App	with	Spring	Boot.

With	this	adjustment	to	our	chat	microservice's	WebSocketConfig,	we	must	now	configure	how	incoming
WebSocket	messages	are	handled.	It's	important	to	realize	that	if	we	receive	the	Flux	of	messages,	and
turn	around	and	broadcast	them	on	the	same	WebSocketSession,	the	only	person	receiving	the	messages	will
be	the	person	that	sent	them-​-an	echo	server	if	you	will.

This	is	why	we	need	a	broker	if	we	want	to	broadcast	such	messages.	Incoming	messages	must	be
received,	relayed	to	a	broker,	and	then	picked	up	on	the	other	side	by	all	clients.

Now,	where	can	we	find	a	broker?	We	already	have	one!	We've	been	using	Spring	Cloud	Stream	to
transport	messages	over	RabbitMQ	on	our	behalf.	We	can	do	the	same	for	these	messages	as	well.

It's	important	to	remember	that	Spring	Cloud	Stream	operates	on	the	channel	paradigm.	Everything	is
sent	and	received	over	channels.	Up	until	now,	we've	gotten	by	using	Source,	Sink,	and	Processor,	three
interfaces	that	work	with	output	and	input.	To	handle	new	comment-based	messages,	client-to-server	user
messages,	and	server-to-client	user	messages,	those	two	channels	aren't	enough.

So,	we	need	to	define	a	new	set	of	streams.	We	can	do	that	by	creating	our	own	interface,
ChatServiceStreams	in	the	chat	microservice,	as	shown	here:

				public	interface	ChatServiceStreams	{	

	

						String	NEW_COMMENTS	=	"newComments";	

						String	CLIENT_TO_BROKER	=	"clientToBroker";	

						String	BROKER_TO_CLIENT	=	"brokerToClient";	

	

						@Input(NEW_COMMENTS)	

						SubscribableChannel	newComments();	

	

						@Output(CLIENT_TO_BROKER)	

						MessageChannel	clientToBroker();	

	

						@Input(BROKER_TO_CLIENT)	

						SubscribableChannel	brokerToClient();	

				}	

This	preceding	declarative	cornerstone	of	our	chat	service	can	be	described	as	follows:

Three	channel	names	are	defined	at	the	top--NEW_COMMENTS,	CLIENT_TO_BROKER,	and	BROKER_TO_CLIENT.	They
each	map	onto	a	channel	name	of	newComments,	clientToBroker,	and	brokerToClient.
newComments()	is	defined	as	an	input	linked	to	the	NEW_COMMENTS	channel	via	the	@Input	annotation,	and
has	a	return	type	of	SubscribableChannel,	meaning,	it	can	be	used	to	consume	messages.
clientToBroker()	is	defined	as	an	output	linked	to	the	CLIENT_TO_BROKER	channel	via	the	@Output
annotation,	and	has	a	return	type	of	MessageChannel,	which	means	that	it	can	be	used	to	transmit
messages.
brokerToClient()	is	defined	as	an	input	linked	to	the	BROKER_TO_CLIENT	channel	via	the	@Input	annotation,
and	also	has	a	return	type	of	SubscribableChannel,	which	means	it,	too,	can	be	used	to	consume
messages.

We	need	this	interface	in	place	so	we	can	then	dive	into	creating	that	InboundChatService	we	promised	to
build	earlier:

				@Service	

				@EnableBinding(ChatServiceStreams.class)	

				public	class	InboundChatService	implements	WebSocketHandler	{	

	

						private	final	ChatServiceStreams	chatServiceStreams;	

	

						public	InboundChatService(ChatServiceStreams	chatServiceStreams)

						{	

								this.chatServiceStreams	=	chatServiceStreams;	

						}	

	

						@Override	

						public	Mono<Void>	handle(WebSocketSession	session)	{	

								return	session	

									.receive()	

									.log("inbound-incoming-chat-message")	

									.map(WebSocketMessage::getPayloadAsText)	

									.log("inbound-convert-to-text")	

									.map(s	->	session.getId()	+	":	"	+	s)	

									.log("inbound-mark-with-session-id")	

									.flatMap(this::broadcast)	

									.log("inbound-broadcast-to-broker")	

									.then();	

						}	

	

						public	Mono<?>	broadcast(String	message)	{	

								return	Mono.fromRunnable(()	->	{	

										chatServiceStreams.clientToBroker().send(

												MessageBuilder	

													.withPayload(message)	

													.build());	

								});	

						}	

				}	

This	preceding	service	code,	registered	to	handle	messages	coming	in	on	/app/chatMessage.new	can	be
described	as	follows:

@Service	marks	it	as	a	Spring	service	that	should	launch	automatically	thanks	to	Spring	Boot's
component	scanning.
@EnableBinding(ChatServiceStreams.class)	signals	Spring	Cloud	Stream	to	connect	this	component	to	its
broker-handling	machinery.
It	implements	the	WebSocketHandler	interface--when	a	client	connects,	the	handle(WebSocketSession)
method	will	be	invoked.
Instead	of	using	the	@StreamListener	annotation	as	in	the	previous	code,	this	class	injects	a
ChatServiceStreams	bean	(same	as	the	binding	annotation)	via	constructor	injection.
To	handle	a	new	WebSocketSession,	we	grab	it	and	invoke	its	receive()	method.	This	hands	us	a	Flux	of
potentially	endless	WebSocketMessage	objects.	These	would	be	the	incoming	messages	sent	in	by	the
client	that	just	connected.	NOTE:	Every	client	that	connects	will	invoke	this	method
independently.
We	map	the	Flux<WebSocketMessage>	object's	stream	of	payload	data	into	a	Flux<String>	via
getPayloadAsText().
From	there,	we	transform	each	raw	message	into	a	formatted	message	with	the	WebSocket's
session	ID	prefixing	each	message.
Satisfied	with	our	formatting	of	the	message,	we	flatMap	it	onto	our	broadcast()	message	in	order	to
broadcast	it	to	RabbitMQ.
To	hand	control	to	the	framework,	we	put	a	then()	on	the	tail	of	this	Reactor	flow	so	Spring	can
subscribe	to	this	Flux.
The	broadcast	method,	invoked	as	every	message	is	pulled	down,	marshals	and	transmits	the
message	by	first	building	a	Spring	Cloud	Streams	Message<String>	object.	It	is	pushed	out	over	the
ChatServiceStreams.clientToBroker()	object's	MessageChannel	via	the	send()	API.	To	reactorize	it,	we	wrap
it	with	Mono.fromRunnable.

Whew!	That's	a	lot	of	code!	Such	is	the	effect	of	functional	reactive	programming	(FRP).	Not	a	lot	of
effort	is	spent	on	imperative	constructs	and	intermediate	results.	Instead,	each	step	is	chained	to	the	next
step,	forming	a	transforming	flow,	pulling	data	from	one	input	(the	WebSocketSession	in	this	case),	and
steering	it	into	a	channel	for	the	broker	(ChatServiceStreams.clientToBroker()).

Remember	earlier	when	we	created	a	chat.yml	file	in	our	Config	Server's	Git	repo?	Here's	the	key
fragment:

				spring:	

						cloud:	

								stream:	

										bindings:	

												clientToBroker:	

														destination:	learning-spring-boot-chat-user-messages	

														group:	app-chatMessages	

It	contains	an	entry	for	spring.cloud.stream.bindings.clientToBroker,	where	clientToBroker	matches	the	channel
name	we	set	in	ChatServiceStreams.	It	indicates	that	messages	transmitted	over	the	clientToBroker	channel
will	be	put	on	RabbitMQ's	learning-spring-boot-chat-user-messages	exchange,	and	grouped	with	other
messages	marked	app-chatMessages.

This	sets	things	up	to	broadcast	any	user-based	chat	message	to	everyone.	We	just	need	to	have	every
user	listen	for	them!

To	do	so,	we	need	to	create	that	other	service	we	promised	to	build	earlier,	OutboundChatService:

				@Service	

				@EnableBinding(ChatServiceStreams.class)	

				public	class	OutboundChatService	implements	WebSocketHandler	{	

	

						private	final	static	Logger	log	=	

								LoggerFactory.getLogger(CommentService.class);	

	

						private	Flux<String>	flux;	

						private	FluxSink<String>	chatMessageSink;	

	

						public	OutboundChatService()	{	

								this.flux	=	Flux.<String>create(

										emitter	->	this.chatMessageSink	=	emitter,	

											FluxSink.OverflowStrategy.IGNORE)	

											.publish()	

											.autoConnect();	

						}	

	

						@StreamListener(ChatServiceStreams.BROKER_TO_CLIENT)	

						public	void	listen(String	message)	{	

								if	(chatMessageSink	!=	null)	{	

										log.info("Publishing	"	+	message	+	

												"	to	websocket...");	

												chatMessageSink.next(message);	

								}	

						}	

	

						@Override	

						public	Mono<Void>	handle(WebSocketSession	session)	{	

								return	session	

									.send(this.flux	

									.map(session::textMessage)	

									.log("outbound-wrap-as-websocket-message"))	

									.log("outbound-publish-to-websocket");	

	

						}	

				}

The	code	can	be	described	as	follows:

Again,	the	@Service	annotation	marks	this	as	an	automatically	wired	Spring	service.
It	has	the	same	EnableBinding(ChatServicesStreams.class)	as	the	inbound	service,	indicating	that	this,	too,
will	participate	with	Spring	Cloud	Streams.
The	constructor	call	wires	up	another	one	of	those	FluxSink	objects,	this	time	for	a	Flux	or	strings.
@StreamListener(ChatServiceStreams.BROKER_TO_CLIENT)	indicates	that	this	service	will	be	listening	for
incoming	messages	on	the	brokerToClient	channel.	When	it	receives	one,	it	will	forward	it	to
chatMessageSink.
This	class	also	implements	WebSocketHandler,	and	each	client	attaches	via	the	handle(WebSocketSession)
method.	It	is	there	that	we	connect	the	flux	of	incoming	messages	to	the	WebSocketSession	via	its	send()
method.
Because	WebSocketSession.send()	requires	Flux<WebSocketMessage>,	we	map	the	Flux<String>	into	it	using
session::textMessage.	Nothing	to	serialize.
There	is	a	custom	log	flag	when	the	Flux	finished,	and	another	for	when	the	entire	Flux	is	handled.

That's	it!

With	InboundChatService	routing	individual	messages	from	client	to	server	to	broker,	we	are	able	to	take
individual	messages	and	broadcast	them	to	ALL	users.	Then,	with	OutboundChatService	pulling	down
copies	of	the	message	for	each	WebSocket	session,	each	user	is	able	to	receive	a	copy.

Don't	forget,	we	also	added	a	binding	to	chat.yml	on	the	Config	Server	to	OutboundChatService	as	well:

				spring:	

						cloud:	

								stream:	

										bindings:	

												brokerToClient:	

														destination:	learning-spring-boot-chat-user-messages	

														group:	topic-chatMessages	

And	remember	that	little	bit	of	JavaScript	we	wrote	to	subscribe	to
ws://localhost:8200/topic/chatMessage.new?	It	will	receive	the	broadcast	messages.

Flux	and	FluxSink--if	you	haven't	caught	on,	linking	async	operations	with	pre-established
Flux	objects	is	easily	handled	by	this	pattern.	We've	seen	it	several	times	now.	If	both	sides
of	an	async	service	use	a	Flux,	it's	not	necessary.	But	if	something	bars	hooking	them
directly,	this	mechanism	easily	bridges	the	gap.

The	names	InboundChatService	and	OutboundChatService	are	somewhat	arbitrary.	The	important	point	to	note	is
that	one	is	responsible	for	transporting	WebSocket	messages	from	the	client	to	the	broker	through	the
server.	Those	are	incoming.	After	crossing	the	broker,	we	describe	them	at	this	stage	as	being	outgoing.
The	naming	convention	is	meant	to	help	remember	what	does	what.	Neither	Spring	Boot	nor	Spring
Cloud	Stream	care	about	what	these	classes	are	named.

With	this	enhancement,	we	can	fire	things	up	and	see	what	it	looks	like.

In	the	following	screenshot	of	our	new	chat	box	there	is	a	conversation	involving	two	users:

The	prefix	values	(2f05fa8e	and	298b3bcf)	are	pure	WebSocket	session	IDs.	Kind	of	tricky	to	connect	with
a	human	user,	ehh?	Nevertheless,	this	interchange	is	what	is	seen	by	all	parties.	(Since	both	sides	see	the
same	exchange,	no	need	to	show	both	browser	tabs.)

However,	if	we	peek	inside	the	browser's	JavaScript	console,	we	get	a	new	insight.	The	following	is	a

screenshot	from	the	user	with	2f05fa8e	as	their	session	ID:

We	can	immediately	see	the	first	message	(Do	you	like	the	new	cover?)	being	published,	and	received	right
back.	Following	that,	the	other	user	sends	a	separate	message	(You	bet!	Wish	I	could	get	a	t-shirt).

If	we	inspect	the	other	user's	JavaScript	console,	we	can	see	the	other	side	of	the	conversation:

The	first	message	was	from	the	first	user	(Do	you	like	the	new	cover?)	followed	by	the	second	user's
response	(You	bet!...​),	and	so	forth.

Simple.	Elegant.	Asynchronous.	That's	what	WebSockets	are	for.	And	here	we	have	a	simple	usage.

Sending	user-specific	messages
So	far,	we	have	crafted	a	relatively	rich	application	using	different	types	of	broadcast	messages.

For	example,	when	a	new	comment	is	written,	it's	sent	to	every	client.	Only	the	clients	actually
displaying	the	relevant	image	will	update	anything.	But	the	message	was	sent	nonetheless.	Also,	when	a
user	enters	a	new	chat	message,	it's	sent	to	everybody.	For	these	use	cases,	this	solution	is	fine.
WebSockets	make	the	process	quite	efficient.

But	there	are	definitely	scenarios	when	we	want	to	send	a	message	to	just	one	subscriber.	A	perfect
example	we'll	pursue	in	this	section	is	adding	the	ability	to	"@"	a	user	with	a	chat	message.	We	only	want
such	a	message	sent	to	that	specific	user.	What	would	be	even	better?	If	we	could	do	this	without
ripping	up	everything	we've	done	so	far.

We	can	start	with	the	ChatController	inside	the	chat	microservice.	We	should	be	able	to	look	at	the
incoming	message,	and	sniff	out	anything	starting	with	@.	If	we	find	it,	then	we	should	be	able	to	extract
the	username,	and	send	the	message	to	that	user	and	that	user	alone.	If	a	message	does	NOT	start	with	@,
simply	broadcast	the	message	to	everyone	as	before.

Registering	users	without	authentication
In	this	chapter,	we	haven't	yet	picked	up	security.	That	will	be	covered	in	Chapter	9,	Securing	Your	App
with	Spring	Boot.	For	now,	we	need	something	to	take	its	place.

As	a	workaround,	we	can	introduce	the	concept	of	the	user	entering	his	or	her	own	username	and
sending	it	with	the	HTTP-based	request	used	to	create	the	WebSocket.

To	offer	the	user	a	place	to	enter	their	username,	we	can	put	this	at	the	top	of	the	Thymeleaf	template:

				<input	id="username"	type="text"	/>	

				<button	id="connect">Connect</button>	

				<button	id="disconnect"	style="display:	none">Disconnect</button>	

There	is	a	both	a	Connect	and	a	Disconnect	button	to	analogously	log	in/log	out	of	the	WebSocket	session.

Now	we	can	wire	it	so	that	clicking	the	Connect	button,	actually	creates	the	WebSocket	connection:

				document.getElementById('connect')	

					.addEventListener('click',	function	()	{	

							document.getElementById('connect').style.display	=	'none';	

							document.getElementById('disconnect').style.display	=	'inline';	

	

							var	usernameInput	=	document.getElementById('username');	

	

							document.getElementById('chatBox').style.display	=	'inline';	

This	is	what	happens	when	Connect	is	clicked:

The	connect	button	is	hidden	while	the	disconnect	button	is	shown
We	get	hold	of	the	username	input
The	chatBox	is	switched	from	hidden	to	displayed

From	here,	the	rest	of	the	flow	of	creating	a	WebSocket	is	followed,	including	the	extra	user	parameter
supplied	by	the	userInput	input	as	we	subscribe	for	/topic/chatMessage.new:

				inboundChatMessages	=	

						new	WebSocket(

								'ws://localhost:8200/topic/chatMessage.new?user='	

								+	usernameInput.value);	

				inboundChatMessages.onmessage	=	function	(event)	{	

						console.log('Received	'	+	event.data);	

						var	chatDisplay	=	document.getElementById('chatDisplay');	

						chatDisplay.value	=	chatDisplay.value	+	event.data	+	'\n';	

				};	

This	preceding	subscription	code	for	incoming	chat	messages	works	as	follows:

We	again	create	a	JavaScript	WebSocket,	but	it	has	an	extra	query	argument,	user,	populated	with	the
usernameInput	value
The	route	we	subscribe	to	is	/topic/chatMessage.new,	the	same	one	that	OutboundChatService	publishes	to
The	onmessage	handler	is	assigned	a	function	that	updates	the	chatDisplay	textarea	with	the	new	event's
data

To	wrap	things	up,	we	add	the	following	event	listener	in	case	Disconnect	is	clicked:

				document.getElementById('disconnect')	

					.addEventListener('click',	function	()	{	

							document.getElementById('connect').style.display	=	'inline';	

							document.getElementById('disconnect').style.display	=	'none';	

							document.getElementById('chatBox').style.display	=	'none';	

	

							if	(newComments	!=	null)	{	

									newComments.close();	

							}	

							if	(outboundChatMessages	!=	null)	{	

									outboundChatMessages.close();	

							}	

							if	(inboundChatMessages	!=	null)	{	

									inboundChatMessages.close();	

							}	

				});	

This	last	code	nicely	does	the	following	things:

It	hides	the	Disconnect	button	and	the	chat	box	while	showing	the	Connect	button
It	closes	all	the	WebSockets

Linking	a	user	to	a	session
We	are	still	missing	a	critical	ingredient--linking	the	username	entered	to	the	user's	WebSocket	session.

Since	every	one	of	our	WebSocketHandler	services	we	built	may	need	access	to	this	user	data,	we	should
build	a	shim	called	UserParsingHandshakeHandler	to	slip	in	like	this:

				abstract	class	UserParsingHandshakeHandler	

						implements	WebSocketHandler	{	

	

								private	final	Map<String,	String>	userMap;	

	

								UserParsingHandshakeHandler()	{	

										this.userMap	=	new	HashMap<>();	

								}	

	

								@Override	

								public	final	Mono<Void>	handle(WebSocketSession	session)	{	

	

										this.userMap.put(session.getId(),	

											Stream.of(session.getHandshakeInfo().getUri()	

												.getQuery().split("&"))	

												.map(s	->	s.split("="))	

												.filter(strings	->	strings[0].equals("user"))	

												.findFirst()	

												.map(strings	->	strings[1])	

												.orElse(""));	

	

										return	handleInternal(session);	

								}	

	

								abstract	protected	Mono<Void>	handleInternal(

										WebSocketSession	session);	

	

								String	getUser(String	id)	{	

										return	userMap.get(id);	

								}	

				}	

The	previous	code	can	be	described	as	follows:

This	abstract	class	implements	WebSocketHandler;	it	will	be	invoked	when	a	new	WebSocketSession	is
created
It	contains	a	mapping	between	session	ID	and	username,	called	userMap,	initialized	in	the
constructor
The	implementation	of	handle(WebSocketSession)	takes	the	userMap	and	puts	a	new	entry	keyed	off	the
session's	ID
The	value	stored	under	that	session	ID	is	extracted	from	the	session's	handshake,	granting	access	to
the	original	URI
With	some	Java	8	stream	magic,	we	can	extract	the	query	string	from	this	URI,	and	find	the	user
argument
findFirst()	produces	an	Optional,	so	we	can	either	map	over	the	answer	or	fall	back	to	an	empty
string	(no	user)
Having	loaded	the	userMap,	we	then	invoke	the	concrete	subclass	through	a	custom	abstract	method,
handleInternal(WebSocketMessage)

To	facilitate	looking	up	the	current	username,	getUser(String)	is	provided	to	look	up	user	based	on

session	ID

This	chunk	of	code	will	handle	user	details,	allowing	each	concrete	WebSocketHandler	to	do	its	thing	while
also	having	access	to	the	current	session's	username.

To	use	this	new	handshake	handler,	we	need	to	update	the	InboundChatService	like	this:

				@Service	

				@EnableBinding(ChatServiceStreams.class)	

				public	class	InboundChatService	extends	UserParsingHandshakeHandler	

				{	

	

						private	final	ChatServiceStreams	chatServiceStreams;	

	

						public	InboundChatService(ChatServiceStreams	chatServiceStreams){	

								this.chatServiceStreams	=	chatServiceStreams;	

						}	

	

						@Override	

						protected	Mono<Void>	handleInternal(WebSocketSession	session)	{	

								return	session	

									.receive()	

									.log(getUser(session.getId())	

													+	"-inbound-incoming-chat-message")	

									.map(WebSocketMessage::getPayloadAsText)	

									.log(getUser(session.getId())	

													+	"-inbound-convert-to-text")	

									.flatMap(message	->	

													broadcast(message,	getUser(session.getId())))	

									.log(getUser(session.getId())	

													+	"-inbound-broadcast-to-broker")	

									.then();	

						}	

	

						public	Mono<?>	broadcast(String	message,	String	user)	{	

								return	Mono.fromRunnable(()	->	{	

										chatServiceStreams.clientToBroker().send(

												MessageBuilder	

													.withPayload(message)	

													.setHeader(ChatServiceStreams.USER_HEADER,	user)	

													.build());	

								});	

						}	

	

				}

It's	almost	the	same	as	what	we	coded	earlier	in	this	chapter,	with	a	few	key	differences:

It	now	extends	UserParsingHandshakeHandler	instead	of	WebSocketHandler.
Instead	of	implementing	handle(WebSocketSession),	we	must	now	write	handleInternal(WebSocketSession).
This	is	a	classic	pattern	of	using	a	parent	abstract	class	to	intercept	and	then	delegate.
broadcast()	takes	two	arguments--message	and	user.	The	user	field	is	populated	using
getUser(session.getId()).
broadcast()	builds	a	Message	like	it	did	earlier	in	this	chapter,	but	also	adds	a	custom	header	containing
the	user	of	the	creator	of	the	message.

Part	of	the	power	of	the	Message	API	are	headers.	You	can	use	standard	headers	as	well
as	make	up	your	own	to	suit	your	needs.	In	this	case,	we	mark	up	every	message	with	the
originator.	Other	useful	details	could	include	the	timestamp	of	creation	and	origin
address.	Really,	anything.

Sending	user-to-user	messages
The	last	step	in	implementing	user-to-user	messages	is	to	apply	a	filter	to	OutboundChatService.	Since	we
coded	up	UserParsingHandshakeHandler,	we	have	to	adjust	the	service	to	handle	this:

				@Service	

				@EnableBinding(ChatServiceStreams.class)	

				public	class	OutboundChatService	

					extends	UserParsingHandshakeHandler	{	

							...	

				}	

For	starters,	we	need	to	change	this	class	to	extend	UserParsingHandshakeHandler	instead	of	WebSocketHandler.

There's	no	need	to	alter	the	constructor	call	where	our	FluxSink	is	configured.	However,	the	handler	itself
must	be	adjusted	as	follows:

				@Override	

				protected	Mono<Void>	handleInternal(WebSocketSession	session)	{	

						return	session	

							.send(this.flux	

										.filter(s	->	validate(s,	getUser(session.getId())))	

										.map(this::transform)	

										.map(session::textMessage)	

										.log(getUser(session.getId())	+	

														"-outbound-wrap-as-websocket-message"))	

						.log(getUser(session.getId())	+	

										"-outbound-publish-to-websocket");	

				}	

The	details	can	be	explained	as	follows:

Just	like	InboundChatService,	we	must	now	implement	handleInternal(WebSocketSession).
It	has	the	same	session.send(Flux)	call,	but	that	Flux	has	a	couple	of	extra	steps	added,	including	a
filter	and	an	extra	map.
The	filter	call	validates	each	message,	deciding	whether	or	not	this	user	should	get	it.	(We'll	write
that	validate()	method	in	a	moment).
Assuming	the	message	is	valid	for	this	user,	it	uses	a	local	transform	method	to	tweak	it.
The	rest	of	the	machinery	used	to	convert	this	string	message	into	a	WebSocketMessage<String>	and	pipe
it	over	the	WebSocket	is	the	same	as	before.

When	dealing	with	streams	of	messages,	layering	in	a	filter	is	no	biggie.	See	how	in	the	following	code:

				private	boolean	validate(Message<String>	message,	String	user)	{	

						if	(message.getPayload().startsWith("@"))	{	

								String	targetUser	=	message.getPayload()	

												.substring(1,	message.getPayload().indexOf("	"));	

	

								String	sender	=	message.getHeaders()	

												.get(ChatServiceStreams.USER_HEADER,	String.class);	

	

								return	user.equals(sender)	||	user.equals(targetUser);	

						}	else	{	

								return	true;	

						}	

				}

This	last	code	can	be	described	as	follows:

validate	accepts	a	Message<String>	and	the	name	of	the	current	user	(not	the	user	that	sent	the
message).
It	first	checks	the	payload,	and	if	it	starts	with	@,	it	looks	deeper.	If	the	message	does	NOT	start
with	@,	it	just	lets	it	on	through.
If	the	message	starts	with	@,	it	proceeds	to	extract	the	target	user	by	parsing	the	text	between	@	and
the	first	space.	It	also	extracts	the	original	sender	of	the	message	using	the	User	header.
If	the	current	user	is	either	the	sender	or	the	receiver,	the	message	is	allowed	through.	Otherwise,	it
is	dropped.

A	filtering	function	like	this	makes	it	easy	to	layer	various	options.	We	used	it	to	target	user-specific
messages.	But	imagine	putting	things	like	security	checks,	regional	messages,	time-based	messages,	and
more!

To	wrap	this	up,	we	need	to	also	code	a	little	transformation	to	make	the	user-to-user	experience	top
notch:

				private	String	transform(Message<String>	message)	{	

						String	user	=	message.getHeaders()	

								.get(ChatServiceStreams.USER_HEADER,	String.class);	

						if	(message.getPayload().startsWith("@"))	{	

								return	"("	+	user	+	"):	"	+	message.getPayload();	

						}	else	{	

										return	"("	+	user	+	")(all):	"	+	message.getPayload();	

						}	

				}	

This	preceding	nice	little	transformation	can	be	described	as	follows:

transform	accepts	a	Message<String>,	and	converts	it	into	a	plain	old	string	message
It	extracts	the	User	header	to	find	who	wrote	the	message
If	the	message	starts	with	@,	then	it	assumes	the	message	is	targeted,	and	prefixes	it	with	the	author
wrapped	in	parentheses
If	the	message	does	NOT	start	with	@,	then	it	prefixes	it	with	the	author	wrapped	in	parentheses
plus	(all),	to	make	it	clear	that	this	is	a	broadcast	message

With	this	change	in	place,	we	have	coded	a	sophisticated	user-to-user	chat	service,	running	on	top	of
RabbitMQ,	using	Reactive	Streams.

Checking	out	the	final	product
By	hooking	up	a	username	with	a	WebSocket	ID,	let's	see	how	all	this	runs.	Restart	everything,	and	visit
the	site.

First,	we	login	as	shown	in	this	screenshot:

As	seen	in	the	last	screenshot,	the	user	logs	in	as	greg.	After	that,	the	chat	box	will	display	itself	at	the
bottom	of	the	page.	If	we	assume	that	oliver	and	phil	have	also	logged	in,	we	can	see	an	exchange	of
messages	as	follows:

Greg	asks	how	everyone	likes	the	cover:

This	preceding	message	is	seen	by	everyone.	Again,	no	reason	to	display	all	three	users'	views,	since	it
is	identical	at	this	stage.

Oliver	gives	his	$0.02:

So	far,	the	conversation	is	wide	open,	as	depicted	by	the	(all)	tag	on	each	message.	By	the	way,	isn't	this
user-based	interaction	easier	to	follow	the	conversation	than	the	earlier	version	where	we	used	session

IDs?

Phil	writes	a	direct	question	to	Greg:

After	Phil	clicks	on	Send,	the	following	appears	in	Greg's	browser:

Notice	how	this	message	does	NOT	have	(all)?	We	know	this	message	is	direct,	which	is	further
verified	by	looking	at	Oliver's	browser:

No	sign	of	a	followup	question	about	t-shirt	availability.

And	if	we	look	at	Greg's	JavaScript	console,	we	can	see	all	of	this:

This	preceding	interchange	shows	the	following:

One	message	is	sent	from	Greg's	session	to	the	server
Two	broadcast	messages	are	received	via	the	broker	from	Greg	and	Oliver
One	direct	message	is	received	from	Phil

In	conclusion,	it's	nice	to	see	that	by	chaining	together	streams	of	messages	across	the	system	with
Spring	Cloud	Stream,	we	were	able	to	pipe	exactly	the	messages	we	wanted	to	whom	we	wanted	to
receive	them.	We	were	able	to	leverage	a	sturdy	transport	broker,	RabbitMQ,	without	getting	caught	up
in	messy	details.

We	took	advantage	of	things	like	headers	to	mark	up	our	messages,	and	filtered	things	as	needed	to
implement	business	requirements.	And	we	didn't	spend	all	our	time	configuring	brokers,	servlet
containers,	or	anything	else.	Instead,	we	logically	defined	channels	and	what	was	posted/consumed
from	those	channels.

JSR	356	versus	Spring	WebFlux	messaging
Perhaps,	you're	wondering	why	this	chapter	doesn't	delve	into	Java's	standard	WebSocket	API?	In	truth,
the	standard	API	is	a	good	piece	of	technology,	but	due	to	several	limitations,	it	doesn't	suit	our	needs.

A	big	limitation	of	JSR	356	is	that	it's	based	on	the	Servlet	3.1	spec.	If	we	were	running	Apache
Tomcat,	we'd	have	access	to	that.	But	being	a	Reactive	Streams	application,	we	are	using	Netty,	putting
it	off	limits.

Even	if	we	did	switch	to	Apache	Tomcat,	there	is	no	support	for	Reactor	types.	This	is	partly	due	to	its
blocking	API,	despite	being	hitched	to	an	asynchronous	programming	model.

Summary
In	this	chapter,	we	made	our	social	media	platform	asynchronous,	front	to	back,	through	the	usage	of
WebSocket	messages.	We	published	new	comments	to	all	users.	We	introduced	a	way	for	our	users	to
chat	amongst	themselves,	whether	that	was	by	broadcasting	to	everyone,	or	by	sending	individual
messages	directly	to	each	other.

In	the	next	chapter,	we	will	apply	one	of	the	most	critical	components	needed	for	production,	security.

Securing	Your	App	with	Spring	Boot
It's	not	real	until	it's	secured.

–	Greg	L.	Turnquist	@gregturn

In	the	previous	chapter,	you	learned	how	to	turn	our	application	into	a	fully	asynchronous,	message-
based	app	using	WebSockets.

Security	is	hard.	Even	among	the	experts.	Rob	Winch,	the	lead	for	Spring	Security,	has	stated	in
multiple	forums,	"Do	not	implement	security	on	your	own."	A	classic	example	is	when	someone	wrote	a
utility	to	crack	password-protected	Microsoft	Word	documents.	It	had	an	intentional	delay	so	that	it
didn't	operate	in	subsecond	time.	Get	it?	The	author	of	the	tool	didn't	want	to	show	how	easy	it	was	to
break	a	Word	document.

Suffice	it	to	say,	there	are	lots	of	attack	vectors.	Especially	on	the	web.	The	fact	that	our	applications
partially	run	in	a	remote	location	(the	browser)	on	someone	else's	machine	leaves	little	in	guarantees.	In
fact,	whole	books	have	been	written	on	Spring	Security.	We	can't	cover	everything,	but	we	will	cover
Just	Enough™	to	secure	our	microservice-based	social	media	platform.

In	this	chapter,	we	will	cover	the	following	topics:

Using	Spring	Session	to	share	state	between	services
Creating	a	Gateway	API
Securing	the	chat	microservice
Securing	the	images	microservice
Authorizing	methods
Securing	WebSockets
Securing	the	Config	Server
Securing	the	Eureka	Server

Securing	a	Spring	Boot	application
In	this	chapter,	we	will	secure	our	microservice-based	social	media	platform.	This	will	introduce	some
interesting	use	cases,	ones	that	Spring	Security	can	easily	handle.	However,	it's	important	to	know	that
almost	every	situation	is	slightly	different.	Spring	Security	can	handle	them,	but	it	requires
understanding	how	it	operates	so	that	you	can	adapt	what	you	learn	in	this	chapter	to	our	unique
situation.

To	kick	things	off,	we	just	need	one	dependency	added	to	our	project:

						compile('org.springframework.boot:spring-boot-starter-security-

							reactive')

In	addition	to	adding	Spring	Security,	we	will	need	to	define	a	policy,	and	also	include	authorization
rules.	As	we	move	through	this	chapter,	you'll	learn	what	all	this	means.

By	the	way,	remember	the	microservice-based	solution	we've	developed	in	the	previous	chapters?	What
is	the	side	effect	of	splitting	our	app	into	multiple	services?	We	have	to	secure	each	and	every	one.	This
means,	we	have	to	add	these	dependencies	to	each	module.	Yikes!	Can	you	imagine	logging	in	to	the
user	interface	(UI),	clicking	on	a	link,	and	logging	in	again?

Yech!

Using	Spring	Session
Before	we	can	dig	into	those	nice	security	policies	and	authorization	rules	we	just	talked	about,	we	need
a	solution	to	secure	multiple	microservices.

What	is	the	exact	problem?	When	we	log	in	to	the	first	piece	of	our	social	media	platform,	we	want	that
status	to	be	carried	through	to	the	other	components	with	ease.

The	solution	is	Spring	Session	(http://projects.spring.io/spring-session/),	which	supports	multiple	third-
party	data	stores	to	offload	session	state	including	Redis,	MongoDB,	GemFire,	Hazelcast,	and	others.
Instead	of	the	session	data	being	stored	in	memory,	it	is	externalized	to	a	separate	data	store.

This	provides	multiple	benefits	such	as	the	following:

Provides	scalability	when	running	multiple	instances	of	various	services
Avoids	the	need	for	session	affinity	(sticky	sessions)	by	not	requiring	load	balancers	to	route
clients	to	the	same	instance
Leverages	a	data	store's	built-in	expiration	options	(if	desired)
Multi-user	profiles

There	is	one	other,	hidden	benefit	that	we	will	take	immediate	advantage	of	in	this	chapter--sharing
session	state	between	different	microservices.	Log	in	to	the	user-facing	microservice,	create	a	session
with	that	security	state,	and	share	the	session	with	all	microservices.	Bam!	Automatic	access.

Since	we	are	already	using	MongoDB,	let's	use	that	to	also	store	our	session.

The	first	thing	we	need	to	do	in	getting	Spring	Session	off	the	ground	is	to	update	each	microservice
with	the	following	dependencies:

				compile('org.springframework.boot:spring-boot-starter-security-

					reactive')	

				compile('org.springframework.session:spring-session-data-mongodb')	

These	preceding	dependencies	can	be	described	as	follows:

spring-boot-starter-security-reactive	brings	in	all	the	configuration	support	we	need	to	define	a
security	policy,	including	some	critical	annotations,	as	well	as	Spring	WebFlux-based	security
components	to	implement	our	policy,	including	various	filters
spring-session-data-mongodb	will	bring	in	Spring	Session	MongoDB	and	Spring	Data	MongoDB,
making	it	possible	to	write	session	data	to	our	MongoDB	service	reactively

It's	important	to	understand	that	sessions	and	security	are	orthogonal	concepts	that	nicely
leverage	each	other.	We	can	use	one	or	the	other	for	different	purposes.	However,	when
used	in	concert,	the	effect	is	most	elegant.

To	configure	Spring	Session	to	use	MongoDB,	we	need	the	following	added	to	each	microservice:

http://projects.spring.io/spring-session/

				@EnableMongoWebSession	

				public	class	SessionConfig	{	

	

				}	

This	new	SessionConfig	class	does	the	following:

@EnableMongoWebSession	activates	Spring	Session	MongoDB,	signaling	to	use	MongoDB	as	the	place	to
read	and	write	any	session	data

This	is	all	it	takes	to	enable	using	MongoDB	for	session	data.	However,	there	are	some	lingering	issues
we	have	to	sort	out	due	to	the	structure	of	our	microservice-based	application	that	bars	us	from	moving
forward.

We	used	this	code	in	the	previous	chapter:

				Map<String,	CorsConfiguration>	corsConfigurationMap	=	

						new	HashMap<>();	

				CorsConfiguration	corsConfiguration	=	new	CorsConfiguration();	

				corsConfiguration.addAllowedOrigin("http://localhost:8080");	

				corsConfigurationMap.put(

						"/topic/comments.new",	corsConfiguration);	

				corsConfigurationMap.put(

						"/app/chatMessage.new",	corsConfiguration);	

				corsConfigurationMap.put(

						"/topic/chatMessage.new",	corsConfiguration);	

To	make	our	WebSocket	chat	microservice	integrate	with	the	images-based	web	page,	we	needed
addAllowedOrigin("http://localhost:8080").	That	way,	a	web	request	from	a	service	on	port	8080	was	permitted
to	cross	over	to	a	service	on	port	8200.

When	it	comes	to	security	and	sessions,	stitching	together	two	different	services	on	two	different	ports
in	the	browser	isn't	the	best	way	to	approach	things.	Not	only	is	it	technically	daunting,	it	is	really	a
code	smell--a	hint	that	our	application	is	leaking	too	much	of	its	structure	to	the	outside	world.

The	solution	is	to	create	a	Gateway	API.

Creating	a	Gateway	API
What	is	a	Gateway	API?	It's	a	one-stop	facade	where	we	can	make	all	our	various	web	requests.	The
facade	then	dispatches	the	requests	to	the	proper	backend	service	based	on	the	configuration	settings.

In	our	case,	we	don't	want	the	browser	talking	to	two	different	ports.	Instead,	we'd	rather	serve	up	a
single,	unified	service	with	different	URL	paths.

In	Chapter	7,	Microservices	with	Spring	Boot,	we	used	Spring	Cloud	for	several	microservice	tasks,
including	service	discovery,	circuit	breaker,	and	load	balancing.	Another	microservice-based	tool	we
will	make	use	of	is	Spring	Cloud	Gateway,	a	tool	for	building	just	such	a	proxy	service.

Let's	start	by	adding	this	to	our	chat	microservice:

				compile('org.springframework.cloud:spring-cloud-starter-gateway')	

With	Spring	Cloud	Gateway	on	the	classpath,	we	don't	have	to	do	a	single	thing	to	activate	it	in	our	chat
microservice.	Out	of	the	box,	Spring	Cloud	Gateway	makes	the	chat	microservice	our	front	door	for	all
client	calls.	What	does	that	mean?

Spring	Cloud	Gateway	forwards	various	web	calls	based	on	patterns	to	its	respective	backend	service.
This	allows	us	to	split	up	the	backend	into	various	services	with	some	simple	settings,	yet	offer	a
seamless	API	to	any	client.

Spring	Cloud	Gateway	also	allows	us	to	pull	together	legacy	services	into	one	unified
service.	Older	clients	can	continue	talking	to	the	old	system,	while	newer	clients	adopt	the
new	gateway.	This	is	known	as	API	strangling	(http://www.kennybastani.com/2016/08/strangling-l
egacy-microservices-spring-cloud.html).

To	configure	which	URL	patterns	are	forwarded	where,	we	need	to	add	this	to	our	chat.yml	stored	in	the
Config	Server:

spring:	

		cloud:	

				gateway:	

						routes:	

						#	==	

						-	id:	imagesService	

								uri:	lb://IMAGES	

								predicates:	

								-	Path=/imagesService/**	

								filters:	

								-	RewritePath=/imagesService/(?<segment>.*),	/$\{segment}	

								-	RewritePath=/imagesService,	/	

								-	SaveSession	

						-	id:	images	

								uri:	lb://IMAGES	

								predicates:	

								-	Path=/images/**	

								filters:	

								-	SaveSession	

						-	id:	mainCss	

								uri:	lb://IMAGES	

								predicates:	

http://www.kennybastani.com/2016/08/strangling-legacy-microservices-spring-cloud.html

								-	Path=/main.css	

								filters:	

								-	SaveSession	

						-	id:	commentsService	

								uri:	lb://IMAGES	

								predicates:	

								-	Path=/comments/**	

								filters:	

								-	SaveSession	

Looking	at	the	preceding	code,	we	can	discern	the	following:

Each	entry	has	an	id,	a	uri,	an	optional	collection	of	predicates,	and	an	optional	list	of	filters.
Looking	at	the	first	entry,	we	can	see	that	requests	to	/imagesService	are	routed	to	the	load-balanced
(lb:	prefix),	Eureka-registered	IMAGES	service.	There	are	filters	to	strip	the	imagesService	prefix.
All	requests	to	/images	will	also	be	sent	to	the	images	microservice.	However,	compared	to
/imagesServices,	the	full	path	of	the	request	will	be	sent.	For	example,	a	request	to	/images/abc123	will
be	forwarded	to	the	images	service	as	/images/abc123,	and	not	as	/abc123.	We'll	soon	see	why	this	is
important.
Asking	for	/main.css	will	get	routed	to	images	as	well.
All	requests	to	/comments	will	get	sent	to	images,	full	path	intact.	(Remember	that	images	uses	Ribbon	to
remotely	invoke	comments,	and	we	don't	want	to	change	that	right	now).
All	of	these	rules	include	the	SaveSession	filter,	a	custom	Spring	Cloud	Gateway	filter	we'll	write
shortly	to	ensure	our	session	data	is	saved	before	making	any	remote	call.

Don't	forget	to	restart	the	Config	Server	after	committing	changes!

What's	going	on?

First	and	foremost,	we	create	a	Gateway	API,	because	we	want	to	keep	image	management	and	chatting
as	separate,	nicely	defined	services.	At	one	point	in	time,	there	was	only	HTTP	support.	WebSocket
support	is	newly	added	to	Spring	Cloud	Gateway,	so	we	don't	use	it	yet,	but	keep	all	of	our	WebSocket
handling	code	in	the	gateway	instead.	In	essence,	the	chat	microservice	moves	to	the	front,	and	the	images
microservice	moves	to	the	back.

Additionally,	with	WebSocket	handling	kept	in	the	gateway,	we	can	eliminate	the	latency	of
forwarding	WebSocket	messages	to	another	service.	It's	left	as	an	exercise	for	you	to	move
WebSocket	messaging	into	another	service,	configure	Spring	Cloud	Gateway	to	forward
them	and	measure	the	effects.

This	suggests	that	we	should	have	chat	serve	up	the	main	Thymeleaf	template,	but	have	it	fetch	image-
specific	bits	of	HTML	from	the	images	service.

To	go	along	with	this	adjustment	to	our	social	media	platform,	let's	create	a	Thymeleaf	template	at
src/main/resources/templates/index.html	in	chat	like	this:

				<!DOCTYPE	html>	

				<html	xmlns:th="http://www.thymeleaf.org">	

								<head>	

												<meta	charset="UTF-8"	/>	

												<title>Learning	Spring	Boot:	Spring-a-Gram</title>	

												<link	rel="stylesheet"	href="/main.css"	/>	

								</head>	

								<body>	

												<div>	

																	

																	

												</div>	

												<hr	/>	

	

												<h1>Learning	Spring	Boot	-	2nd	Edition</h1>	

	

												<div	id="images"></div>	

	

												<div	id="chatBox">	

																Greetings!	

																
	

																<textarea	id="chatDisplay"	

																						rows="10"	cols="80"	

																						disabled="true"	></textarea>	

																
	

																<input	id="chatInput"	type="text"	

																						style="width:	500px"	value=""	/>	

																
	

																<button	id="chatButton">Send</button>	

																
	

												</div>	

	

								</body>	

				</html>	

This	preceding	template	can	be	described	as	follows:

It's	the	same	header	as	we	saw	in	the	previous	chapter,	including	the	main.css	stylesheet.
The	<h1>	header	has	been	pulled	in	from	the	image	service.
For	images,	we	have	a	tiny	<div>	identified	as	images.	We	need	to	write	a	little	code	to	populate	that
from	our	images	microservice.
Finally,	we	have	the	same	chat	box	shown	in	the	earlier	chapter.
By	the	way,	we	remove	the	connect/disconnect	buttons,	since	we	will	soon	leverage	Spring
Security's	user	information	for	WebSocket	messaging!

To	populate	the	images	<div>,	we	need	to	write	a	tiny	piece	of	JavaScript	and	stick	it	at	the	bottom	of	the
page:

<script	th:inline="javascript">	

				/*<![CDATA[*/	

				(function()	{	

								var	xhr	=	new	XMLHttpRequest();	

								xhr.open('GET',	/*[[@{'/imagesService'}]]*/'',	true);	

								xhr.onload	=	function(e)	{	

												if	(xhr.readyState	===	4)	{	

																if	(xhr.status	===	200)	{	

																				document.getElementById('images').innerHTML	=	

																								xhr.responseText;	

	

																				//	Register	a	handler	for	each	button	

																				document.querySelectorAll('button.comment')	

																								.forEach(function(button)	{	

																												button.addEventListener('click',	

																																function()	{	

																																				e.preventDefault();	

																																				var	comment	=	

																																								document.getElementById(

																																								'comment-'	+	button.id);	

	

																																				var	xhr	=	new	XMLHttpRequest();	

																																				xhr.open('POST',	

																																								/*[[@{'/comments'}]]*/'',	

																																								true);	

	

																																				var	formData	=	new	FormData();	

																																				formData.append('comment',	

																																																comment.value);	

																																				formData.append('imageId',	

																																																				button.id);	

	

																																				xhr.send(formData);	

	

																																				comment.value	=	'';	

																																});	

																								});	

	

																				document.querySelectorAll('button.delete')	

																								.forEach(function(button)	{	

																												button.addEventListener('click',	

																																function()	{	

																																e.preventDefault();	

																																var	xhr	=	new	XMLHttpRequest();	

																																xhr.open('DELETE',	button.id,	true);	

																																xhr.withCredentials	=	true;	

																																xhr.send(null);	

																												});	

																								});	

	

																				document.getElementById('upload')	

																								.addEventListener('click',	function()	{	

																												e.preventDefault();	

																												var	xhr	=	new	XMLHttpRequest();	

																												xhr.open('POST',	

																																				/*[[@{'/images'}]]*/'',	

																																true);	

	

																												var	files	=	document	

																																.getElementById('file').files;	

	

																												var	formData		=	new	FormData();	

																												formData.append('file',	files[0],	

																																files[0].name);	

	

																												xhr.send(formData);	

																								})	

																}	

												}	

								}	

								xhr.send(null);	

				})();	

				/*]]>*/	

</script>	

This	code	can	be	explained	as	follows:

The	whole	thing	is	an	immediately	invoked	function	expression	(IIFE),	meaning	no	risk	of
global	variable	collisions.
It	creates	an	XMLHttpRequest	named	xhr	to	do	the	legwork,	opening	an	asynchronous	GET	request	to
/imagesService.
A	callback	is	defined	with	the	onload	function.	When	it	completes	with	a	successful	response	status,
the	images	<div>	will	have	its	innerHTML	replaced	by	the	response,	ensuring	that	the	DOM	content	is
updated	using	document.getElementById('images').innerHTML	=	xhr.responseText.
After	that,	it	will	register	handlers	for	each	of	the	image's	comment	buttons	(something	we've
already	seen).	The	delete	buttons	and	one	upload	button	will	also	be	wired	up.
With	the	callback	defined,	the	request	is	sent.

Don't	get	confused	by	the	fact	that	there	are	four	xhr	objects.	One	is	used	to	fetch	the
image-based	HTML	content,	the	other	three	are	used	to	handle	new	comments,	delete

images,	and	upload	new	images,	when	the	corresponding	button	is	clicked.	They	are	in
separate	scopes	and	have	no	chance	of	bumping	into	each	other.

Since	we	only	need	the	image-specific	bits	of	HTML	from	the	images	microservice,	we	should	tweak	that
template	to	serve	up	a	subset	of	what	it	did	in	the	previous	chapter,	like	this:

				<!DOCTYPE	html>	

				<div	xmlns:th="http://www.thymeleaf.org">	

	

								<table>	

	

								<!--	...the	rest	of	the	image	stuff	we've	already	seen...	-->	

This	last	fragment	of	HTML	can	be	explained	as	follows:

This	is	no	longer	a	complete	page	of	HTML,	hence,	no	<html>,	<head>,	and	<body>	tags.	Instead,	it's
just	a	<div>.
Despite	being	just	a	<div>,	we	need	the	Thymeleaf	namespace	th	to	give	the	IDE	the	right
information	to	help	us	with	code	completion.
From	there,	it	goes	into	the	table	structure	used	to	display	images.	The	rest	is	commented	out,	since
it	hasn't	changed.

With	these	changes	to	chat	and	images,	along	with	the	Spring	Cloud	Gateway	settings,	we	have	been	able
to	merge	what	appeared	as	two	different	services	into	one.	Now	that	these	requests	will	be	forwarded	by
Spring	Cloud	Gateway,	there	is	no	longer	any	need	for	CORS	settings.	Yeah!

This	means	we	can	slim	down	our	WebSocket	configuration	as	follows:

				@Bean	

				HandlerMapping	webSocketMapping(CommentService	commentService,	

					InboundChatService	inboundChatService,	

					OutboundChatService	outboundChatService)	{	

							Map<String,	WebSocketHandler>	urlMap	=	new	HashMap<>();	

							urlMap.put("/topic/comments.new",	commentService);	

							urlMap.put("/app/chatMessage.new",	inboundChatService);	

							urlMap.put("/topic/chatMessage.new",	outboundChatService);	

	

							SimpleUrlHandlerMapping	mapping	=	new	SimpleUrlHandlerMapping();	

							mapping.setOrder(10);	

							mapping.setUrlMap(urlMap);	

	

							return	mapping;	

				}	

The	preceding	code	is	the	same	as	shown	earlier	in	this	chapter,	but	with	the	CORS	settings,	which	we
briefly	saw	earlier,	removed.

As	a	reminder,	we	are	focusing	on	writing	Java	code.	However,	in	this	day	and	age,	writing	JavaScript
is	unavoidable	when	we	talk	about	dynamic	updates	over	WebSockets.	For	a	full-blown	social	media
platform	with	a	frontend	team,	something	like	webpack	(https://webpack.github.io/)	and	babel.js	(https://ba
beljs.io/)	would	be	more	suitable	than	embedding	all	this	JavaScript	at	the	bottom	of	the	page.
Nevertheless,	this	book	isn't	about	writing	JavaScript-based	apps.	Let's	leave	it	as	an	exercise	to	pull	out
all	this	JavaScript	from	the	Thymeleaf	template	and	move	it	into	a	suitable	module-loading	solution.

https://webpack.github.io/
https://babeljs.io/

Securing	the	chat	microservice
Okay,	this	chapter	is	titled	Securing	Your	App	with	Spring	Boot,	yet	we	have	spent	a	fair	amount	of
time...	NOT	securing	our	app!	That	is	about	to	change.	Thanks	to	this	little	bit	of	restructuring,	we	can
move	forward	with	locking	things	down	as	desired.

Let's	take	a	crack	at	writing	some	security	policies,	starting	with	the	chat	microservice:

				@EnableWebFluxSecurity	

				public	class	SecurityConfiguration	{	

	

						@Bean	

						SecurityWebFilterChain	springWebFilterChain(HttpSecurity	http)	{	

								return	http	

												.authorizeExchange()	

																.pathMatchers("/**").authenticated()	

																.and()	

												.build();	

						}	

				}	

The	preceding	security	policy	can	be	defined	as	follows:

@EnableWebFluxSecurity	activates	the	Spring	WebFlux	security	filters	needed	to	secure	our	application
@Bean	marks	the	one	method	as	a	bean	definition
HttpSecurity.http()	lets	us	define	a	simple	set	of	authentication	and	authorization	rules
In	this	case,	every	Spring	WebFlux	exchange	(denoted	by	/**)	must	be	authenticated

The	.pathMatchers("/**").authenticated()	rule	is	the	first	rule	based	upon	URLs.	It's	also
possible	to	put	additional	requirements	at	the	method	level,	which	we'll	explore	later	in
this	chapter.

This	is	a	nice	beginning	to	define	a	security	policy,	but	we	need	some	way	to	track	user	data	to
authenticate	against.	To	do	so,	we	need	a	User	domain	object	and	a	way	to	store	such	data.	To	minimize
our	effort	at	storing	user	information	in	a	database,	let's	leverage	Spring	Data	again.

First,	we'll	create	a	User	domain	object	like	this:

				@Data	

				@AllArgsConstructor	

				@NoArgsConstructor	

				public	class	User	{	

	

						@Id	private	String	id;	

						private	String	username;	

						private	String	password;	

						private	String[]	roles;	

				}	

This	preceding	User	class	can	easily	be	described	as	follows:

@Data	uses	the	Lombok	annotation	to	mark	this	for	getters,	setters,	equals,	toString,	and	hashCode
functions

@AllArgsConstructor	creates	a	constructor	call	for	all	of	the	attributes
@NoArgsConstructor	creates	an	empty	constructor	call
@Id	marks	this	id	field	as	the	key	in	MongoDB
username,	password,	and	roles	are	critical	fields	required	to	properly	integrate	with	Spring	Security,	as
shown	further	in	the	chapter

The	names	of	these	fields	don't	matter	when	it	comes	to	integrating	with	Spring	Security,
as	we'll	soon	see.

To	interact	with	MongoDB,	we	need	to	create	a	Spring	Data	repository	as	follows:

				public	interface	UserRepository	

					extends	Repository<User,	String>	{	

	

							Mono<User>	findByUsername(String	username);	

				}	

This	is	similar	to	the	other	repositories	we	have	built	so	far	in	the	following	ways:

It	extends	Spring	Data	Commons'	Repository,	indicating	that	the	domain	type	is	User	and	the	ID	type
is	String
It	has	one	finder	needed	for	security	lookups,	findByUsername,	which	is	returned	as	a	reactive
Mono<User>,	signaling	Spring	Data	MongoDB	to	use	reactive	MongoDB	operations

With	this	handy	repository	defined,	let's	preload	some	user	data	into	our	system	by	creating	an	InitUsers
class,	as	shown	here:

				@Configuration	

				public	class	InitUsers	{	

	

						@Bean	

						CommandLineRunner	initializeUsers(MongoOperations	operations)	{	

								return	args	->	{	

										operations.dropCollection(User.class);	

	

										operations.insert(

												new	User(

														null,	

														"greg",	"turnquist",	

														new	String[]{"ROLE_USER",	"ROLE_ADMIN"}));	

										operations.insert(

												new	User(

														null,	

														"phil",	"webb",	

														new	String[]{"ROLE_USER"}));	

	

										operations.findAll(User.class).forEach(user	->	{	

												System.out.println("Loaded	"	+	user);	

										});	

								};	

						}	

				}	

This	preceding	user-loading	class	can	be	described	as	follows:

@Configuration	indicates	this	class	contains	bean	definitions
@Bean	marks	the	initializeUsers	method	as	a	Spring	bean
initializeUsers	requires	a	copy	of	the	blocking	MongoOperations	bean	defined	by	Spring	Boot's

MongoDB	autoconfiguration	code
The	return	type	is	CommandLineRunner,	which	we'll	supply	with	a	lambda	function
Inside	our	lambda	function,	we	drop	the	User	based	collection,	insert	two	new	users,	and	then	print
out	the	collection

Now,	let's	see	how	to	put	that	to	good	use!	To	hook	into	Reactive	Spring	Security,	we	must	implement
its	UserDetailsRepository	interface.	This	interface	is	designed	to	look	up	a	user	record	through	any	means
necessary	and	bridge	it	to	Spring	Security	as	a	Mono<UserDetails>	return	type.	The	solution	can	be	found
here:

				@Component	

				public	class	SpringDataUserDetailsRepository	implements			

					UserDetailsRepository	{	

	

							private	final	UserRepository	repository;	

	

							public	SpringDataUserDetailsRepository(UserRepository

								repository)	

							{	

									this.repository	=	repository;	

							}	

	

							@Override	

							public	Mono<UserDetails>	findByUsername(String	username)	{	

									return	repository.findByUsername(username)	

										.map(user	->	new	User(

												user.getUsername(),	

												user.getPassword(),	

												AuthorityUtils.createAuthorityList(user.getRoles())	

));	

							}	

				}	

The	previous	code	can	be	described	as	follows:

It	injects	a	UserRepository	we	just	defined	through	constructor	injection
It	implements	the	interface's	one	method,	findByUsername,	by	invoking	our	repository's	findByUsername
method	and	then	mapping	it	onto	a	Spring	Security	User	object	(which	implements	the	UserDetails
interface)
AuthorityUtils.createAuthorityList	is	a	convenient	utility	to	translate	a	String[]	of	roles	into	a
List<GrantedAuthority>

If	no	such	user	exists	in	MongoDB,	it	will	return	a	Mono.empty(),	which	is	the	Reactor	equivalent	of
null

We	map	our	MongoDB	User	domain	object	onto	Spring	Security's
org.springframework.security.core.userdetails.User	object	to	satisfy	the	UserDetails	requirement.
However,	that	doesn't	mean	we	can't	implement	a	custom	version	of	this	interface.	Imagine
we	were	building	a	medical	tracking	system	and	needed	each	patient	record	to	contain	a
detailed	profile.	A	custom	implementation	would	allow	us	to	fill	in	the	critical	fields	while
also	adding	all	the	other	data	needed	to	track	a	person.

By	hooking	MongoDB-stored	users	into	Spring	Security,	we	can	now	attempt	to	access	the	system.

When	we	try	to	access	localhost:8080,	we	can	expect	a	login	prompt,	as	shown	in	this	screenshot:

This	popup	(run	from	an	incognito	window	to	ensure	there	are	no	cookies	or	lingering	session	data)	lets
us	nicely	log	in	to	the	gateway.

Authentication	versus	authorization
Spring	Security	operates	on	two	fundamental	concepts--authentication	and	authorization.

These	two	concepts	can	be	described	as	follows:

Authentication:	This	defines	who	you	are
Authorization:	This	defines	what	you	are	allowed	to	do

The	first	step	in	any	security	system	is	to	confirm	the	user's	identify.	This	often	involves	a	username	and
a	password,	but	these	credentialed	bits	can	be	stored	in	many	different	systems,	including	relational
databases,	directory	servers,	certificates,	and	other	things.	However,	these	are	implementation	details
that	surround	verifying	someone's	identity.	Until	we	know	who	you	are,	we	can't	make	any
determination.

HTTP	Basic,	HTTP	FORM,	and	other	forms	of	authentication	are	supported	by	Spring	Security.	Right
now,	we	are	using	HTTP	Basic	on	the	frontend	as	well	as	the	cross-service	calls,	given	that	it's	the	only
version	currently	supported	with	Reactive	Spring	Security.

The	second	step	in	any	security	system	is	to	decide	what	the	user	is	authorized	to	do.	Both	a	teller	and
a	vice	president	at	a	bank	can	be	authenticated,	but	they	will	certainly	have	differing	permissions	on
what	they	are	each	allowed	to	do.	The	teller	may	be	granted	permission	to	open	his	assigned	cash
drawer,	while	the	vice	president	may	be	authorized	to	open	her	customer's	account.

With	the	SecurityConfig	code	given	earlier,	our	chat	microservice	has	instituted	authentication,	which	is
linked	to	the	session.	However,	it	also	chose	a	very	simple	authorization	strategy:	anyone	that	is
authenticated	can	do	anything.	Since	the	chat	microservice	does	little	more	than	communicate	via	a
WebSocket,	that	is	fine.	In	the	next	section,	we'll	see	a	different	policy,	where	certain	operations	are
restricted	to	a	subset	of	users.

Sharing	session	details	with	other
microservices
Something	that's	critical	to	our	microservice-based	social	media	platform	is	sharing	the	session	details
when	putting	things	together.	When	we	load	the	main	page,	it	may	have	to	pull	together	bits	of	data
from	multiple	places.	This	means	that	after	logging	in	to	the	system,	the	session	ID	that	is	generated	has
to	be	passed	along	seamlessly.

Spring	Cloud	Gateway	can	forward	various	requests,	but	Spring	Session	has	a	lazy	approach	to	things.
This	means,	we	need	to	step	up	and	save	the	session	immediately;	otherwise,	the	first	few	remote	calls
might	fail.

To	do	so,	we	need	to	create	a	custom	Spring	Cloud	Gateway	filter	as	follows:

				@Configuration	

				public	class	GatewayConfig	{	

	

						private	static	final	Logger	log	=	

								LoggerFactory.getLogger(GatewayConfig.class);	

	

						/**	

						*	Force	the	current	WebSession	to	get	saved	

						*/	

						static	class	SaveSessionGatewayFilterFactory	

							implements	GatewayFilterFactory	{	

									@Override	

									public	GatewayFilter	apply(Tuple	args)	{	

											return	(exchange,	chain)	->	exchange.getSession()	

												.map(webSession	->	{	

														log.debug("Session	id:	"	+	webSession.getId());	

														webSession.getAttributes().entrySet()	

															.forEach(entry	->	

																log.debug(entry.getKey()	+	"	=>	"	+	

																	entry.getValue()));	

																return	webSession;	

												})	

												.map(WebSession::save)	

												.then(chain.filter(exchange));	

									}	

						}	

	

						@Bean	

						SaveSessionGatewayFilterFactory	saveSessionGatewayFilterFactory()	{	

								return	new	SaveSessionGatewayFilterFactory();	

						}	

				}	

This	preceding	filter	can	be	described	as	follows:

The	@Configuration	annotation	indicates	that	this	class	contains	beans	to	be	picked	up	by	Boot's
component	scanning
There	is	an	Slf4j	Logger	to	print	out	debug	statements
static	class	SaveSessionGatewayFilterFactory	implements	the	Spring	Cloud	Gateway's	GatewayFilterFactory
interface,	allowing	us	to	write	a	custom	filter,	which	is,	essentially,	a	function	call	where	the	inputs
are	transformed	into	a	GatewayFilter
To	implement	this	functional	interface,	we	write	a	lambda,	accepting	a	WebFlux	WebServerExchange

and	GatewayFilterChain,	which	gives	us	access	to	the	request	as	well	as	the	chain	of	filters	to	hand	it
off	to
We	grab	the	exchange's	WebSession	and	map	over	it	in	order	to	print	out	all	its	details
Next,	we	map	over	the	same	WebSession	and	invoke	its	save	function	through	a	method	reference
We	wrap	things	up	with	a	then()	call	to	invoke	the	filter	chain	on	the	exchange
With	@Bean,	we	define	a	bean	in	the	application	context	that	implements	SaveSessionGatewayFilterFactory

Spring	Cloud	Gateway's	default	policy	is	to	use	the	classname	of	the	filter	with	GatewayFilterFactory
removed	as	the	name	of	the	filter	itself.	Hence,	SaveSessionGatewayFilterFactory	becomes	simply	SaveSession
for	purposes	of	inserting	into	our	configuration	file,	as	we	saw	earlier.

				spring:	

						cloud:	

								gateway:	

										routes:	

										-	id:	imagesService	

												uri:	lb://IMAGES	

												predicates:	

												-	Path=/imagesService/**	

												filters:	

												-	RewritePath=/imagesService/(?<segment>.*),	/${segment}	

												-	RewritePath=/imagesService,	/	

												-	SaveSession	

												...​	

With	the	preceding	little	filter	in	place,	we	can	guarantee	that	all	the	forwarded	calls	made	by	Spring
Cloud	Gateway	will	first	ensure	that	the	current	WebSession	has	been	saved.

The	default	Spring	WebFlux	behavior	for	a	web	call	with	a	WebSession	is	to	issue	a	Set-Cookie
directive	(with	the	SESSION	entry	configured	with	the	ID)	back	to	the	client	in	its	response.
Subsequent	calls	into	WebFlux	will	automatically	parse	this	cookie	entry	and	load
WebSession	details.	Spring	Cloud	Gateway	itself	forwards	cookies	unless	explicitly
configured	not	to.	Hence,	the	session	entry	gets	propagated.	All	that	we	do	is	ensure	the
security	details	automatically	linked	to	the	session	are	properly	stored	before	a	forwarded
call	is	made.

Securing	the	images	microservice
Having	secured	the	frontend	and	also	embedded	a	session	ID	in	every	gateway	call	to	the	backend,	we
can	shift	our	focus	to	securing	those	backend	services.

Let's	start	with	the	images	service.	First	of	all,	we	need	to	configure	session	management	by	creating
SessionConfig	as	follows:

				@EnableMongoWebSession	

				public	class	SessionConfig	{	

	

				}	

This	preceding	code	can	be	described	as	follows:

@EnableMongoWebSession	activates	the	Reactor-based	Spring	Session	MongoDB

Next,	we	can	lock	things	down	by	creating	a	SecurityConfiguration	class	like	this:

				@EnableWebFluxSecurity	

				@EnableReactiveMethodSecurity	

				public	class	SecurityConfiguration	{	

	

						@Bean	

						SecurityWebFilterChain	springWebFilterChain()	{	

								return	HttpSecurity.http()	

												.securityContextRepository(

																new	WebSessionSecurityContextRepository())	

												.authorizeExchange()	

																.anyExchange().authenticated()	

																.and()	

												.build();	

						}	

				}	

The	preceding	class	definition	can	be	described	as	follows:

@EnableWebFluxSecurity	activates	a	collection	of	filters	and	components	needed	to	secure	Spring
WebFlux	endpoints.
@EnableReactiveMethodSecurity	adds	additional	support	for	putting	annotations	on	methods	and	classes
where	we	can	plug	in	sophisticated	security	expressions	(as	we'll	soon	see).
Next,	we	create	a	SecurityWebFilterChain.	This	is,	actually,	a	collection	of	filters	defined	in	a	very
specific	order	using	Spring	Security's	fluent	API.	This	API	nicely	lets	us	define	what	we	need
while	leaving	Spring	Security	to	put	it	together	in	the	right	order.
In	this	case,	we	want	HTTP	support,	but	with	a	WebSession-based	SecurityContextRepository.	This
activates	a	filter	that	will	load	the	exchange	with	a	Principal	object	from	our	session	store.
As	a	minimum	for	authorization,	all	exchanges	must	be	authenticated.

Some	of	this	is	the	same	as	earlier,	and	some	of	it	is	different.

What's	different?	The	images	service	has	method	security,	meaning,	it	can	annotate	individual	methods
with	additional	authorization	rules,	which	we'll	see	shortly.	We	are	no	longer	confined	to	securing

things	based	on	URLs	and	HTTP	verbs.	There	are	also	no	account	definitions.	That's	because	the	images
service	is	not	creating	new	sessions,	but	riding	on	the	one	created	in	the	gateway	by	the	chat
microservice	instead;	(do	we	really	want	to	create	a	separate	User	domain	object	in	every	microservice?).

Both	services	respond	to	Authorization	headers	as	well	as	SESSION	headers,	which	means	that	once	logged
in,	the	two	can	easily	share	information.	Both,	essentially,	route	all	URLs	into	the	same	authorization
rule,	.anyExchange().authenticated().	(That's	the	same	net	effect	as	that	of	.pathMatchers("/**").authenticated()).

Wiring	in	image	ownership
Spring	WebFlux's	ServerWebExchange	comes	prepared	for	security	by	providing	a	getPrincipal()	API	that
returns	Mono<Principal>.	While	the	default	version,	straight	out	of	Spring	Framework,	supplies	Mono.empty(),
Spring	Security	automatically	hooks	in	a	filter	to	supply	a	real	value	via
WebSessionSecurityContextRepository.

With	Spring	Security	and	Spring	Session	hooked	into	all	our	web	calls,	we	can	leverage	this	information
every	time	a	new	image	is	uploaded.

First	of	all,	we	can	adjust	our	Image	domain	object	as	follows:

				@Data	

				@AllArgsConstructor	

				public	class	Image	{	

	

						@Id	private	String	id;	

						private	String	name;	

						private	String	owner;	

				}	

This	last	code	is	the	same	POJO	that	we've	used	throughout	this	book	with	one	change:

It	now	has	a	String	owner	property.	This	lets	us	associate	an	image	with	whoever	uploaded	it	(which
we'll	see	shortly).

Spring	Security	makes	it	possible	to	inject	any	Spring	WebFlux	controller	with	an	authentication	object
as	follows:

				@PostMapping(value	=	BASE_PATH)	

				public	Mono<String>	createFile(

						@RequestPart("file")	Flux<FilePart>	files,	

							@AuthenticationPrincipal	Principal	principal)	{	

									return	imageService.createImage(files,	principal)	

										.then(Mono.just("redirect:/"));	

				}	

This	change	to	our	image	service's	UploadController.createFile,	as	shown	in	the	preceding	code,	can	be
described	as	follows:

Using	Spring	Security's	@AuthenticationPrincipal	annotation,	the	second	parameter	allows	us	to	find
out	the	security	context	of	the	caller.
The	actual	type	can	be	flexible,	whether	we	want	a	Java	Principal,	a	Spring	Security	subinterface
Authentication,	or	a	concrete	instance	(UsernamePasswordAuthenticationToken	by	default).	This	parameter
can	also	be	wrapped	as	a	Mono<T>	of	this	type.
For	simplicity,	we	grab	it	unwrapped	and	pass	it	along	to	ImageService	as	a	new	argument.

So,	let's	go	update	ImageService.createImage(),	where	Image	objects	are	actually	created:

				public	Mono<Void>	createImage(Flux<FilePart>	files,	

					Principal	auth)	{	

							return	files	

								.log("createImage-files")	

								.flatMap(file	->	{	

										Mono<Image>	saveDatabaseImage	=	imageRepository.save(

												new	Image(

														UUID.randomUUID().toString(),	

															file.filename(),	

															auth.getName()))	

															.log("createImage-save");	

	

										...the	rest	that	hasn't	changed...	

								}

					}	

The	parts	that	have	changed	in	the	preceding	code	can	be	described	as	follows:

This	method	now	accepts	a	second	argument,	Principal.	This	is	a	Java	standard	token.
The	code	where	we	actually	create	a	new	Image	is	populated	in	the	same	as	done	earlier	for	the	first
two	fields,	with	a	random	ID	and	the	name	of	the	file.
The	owner	field	is	now	populated	with	auth.getName(),	supplied	to	us	by	Spring	Security's	context-
enabling	advice.

The	last	link	in	the	chain	of	ownership	is	to	display	it	on	the	page.	To	do	this,	we	can	update	the	model
fed	to	that	HTML	fragment	in	HomeController,	as	follows:

				model.addAttribute("images",	

					imageService	

						.findAllImages()	

						.map(image	->	new	HashMap<String,	Object>()	{{	

								put("id",	image.getId());	

								put("name",	image.getName());	

								put("owner",	image.getOwner());	

								put("comments",	

									commentHelper.getComments(image,	

												webSession.getId()));	

						}})	

);	

This	preceding	fragment	from	public	String	index()	has	been	updated	to	include	the	new	owner	attribute.

With	that	added	to	the	template's	model,	we	can	display	it	by	adding	the	following	bit	of	HTML	to	our
Thymeleaf	template,	like	this:

				<td	th:text="${image.owner}"	/>	

This	attribute	can	now	be	seen	when	we	log	in	and	check	things	out,	as	seen	in	this	screenshot:

In	the	preceding	screenshot,	we	see	one	image	loaded	by	greg	and	one	image	loaded	by	phil.

Authorizing	methods
For	a	security	framework	to	be	of	value,	it	needs	flexibility.	Security	rules	are	never	confined	to	simple
use	cases.	We	have	all	dealt	with	customers	needing	very	complex	settings	for	certain	operations.
Spring	Security	makes	this	possible	through	its	special	dialect	of	SpEL	or	Spring	Expression
Language.

To	get	a	taste	of	it,	let's	augment	the	images	microservice's	ImageService.delete()	method	with	an
authorization	rule:

				@PreAuthorize("hasRole('ADMIN')	or	"	+	

					"@imageRepository.findByName(#filename).owner	"	+	

						"==	authentication.name")	

				public	Mono<Void>	deleteImage(String	filename)	{	

	

						...	rest	of	the	method	unchanged	...	

				}	

This	preceding	code	for	deleting	images	is	only	different	in	the	new	annotation	in	the	following	manner:

The	method	is	flagged	with	a	@PreAuthorize	annotation,	indicating	that	the	SpEL	expression	must
evaluate	to	true	in	order	for	the	method	to	get	called
hasRole('ADMIN')	indicates	that	a	user	with	ROLE_ADMIN	is	allowed	access
or	@imageRepository.findByName(#filename).owner	==	authentication.name")	indicates	that	access	is	also
granted	if	the	user's	name	matches	the	image's	owner	property

Why	do	we	need	this	authorization	rule	again?	Because	without	it,	any	authenticated	user
can	delete	any	image.	Probably	not	a	good	idea.

This	authorization	rule	is	just	one	example	of	the	types	of	rules	we	can	write.	The	following	table	lists
the	prebuilt	rules	provided	by	Spring	Security:

SpEL	function Description

hasAuthority('ROLE_USER') Access	is	granted	if	user	has	ROLE_USER

hasAnyAuthority('ROLE_USER',

'ROLE_ADMIN') Access	is	granted	if	user	has	any	of	the	listed	authorities

hasRole('USER') Shorthand	for	hasAuthority('ROLE_USER')

hasAnyRole('USER',	'ADMIN') Shorthand	for	hasAnyAuthority('ROLE_USER',	'ROLE_ADMIN')

principal Direct	access	to	the	Principal	object	representing	the	user

authentication
Direct	access	to	the	Authentication	object	obtained	from	the	security
context

permitAll Evaluates	to	true

denyAll Evaluates	to	false

isAnonymous() Returns	true	if	user	is	an	anonymous	user

isRememberMe() Returns	true	if	user	is	a	remember-me	user

isAuthenticated() Returns	true	if	user	is	not	anonymous

isFullyAuthenticated() Returns	true	if	user	is	neither	anonymous	nor	a	remember-me	user

	

It's	possible	to	combine	these	SpEL	functions	with	and	and	or.

As	we	saw	demonstrated	earlier,	we	can	also	write	security	checks	like	this:

				@PreAuthorize("#contact.name	==	authentication.name")	

				public	void	doSomething(Contact	contact);	

This	preceding	security	check	will	grab	the	method's	contact	argument	and	compare	its	name	field	against
the	current	authentication	object's	name	field,	looking	for	a	match.

By	the	way,	these	types	of	parameter-specific	rules	are	great	when	we	want	to	restrict	operations	to	the
owner	of	the	record,	a	common	use	case.	In	essence,	if	you	are	logged	in	and	operating	on	your	data,
then	you	can	do	something.

In	addition	to	all	these	functions	and	comparators,	we	can	also	invoke	beans	(another	thing	shown
earlier).	Look	at	the	following	code,	for	example:

				@PreAuthorize("@imageRepository.findByName(#filename).owner	==

					authentication.name")	

This	last	security	check	will	invoke	the	bean	named	imageRepository		and	use	its	findByName	function	to	look

up	an	image's	owner	and	then	compare	it	against	the	current	authentication	object.

@PreAuthorize	rules	can	be	applied	to	any	Spring	bean,	but	it's	recommended	you	apply	them
to	your	service	layer	methods.	In	essence,	any	code	that	invokes	the	service	layer,	whether
it	was	from	a	web	call	or	somewhere	else,	should	be	secured.	Wrapping	higher	up	at	the
web	handler	can	leave	your	service	layer	susceptible	to	unauthorized	access.	To	guard
against	improper	web	calls,	it's	recommended	that	you	use	route-based	rules	(as	shown
earlier	in	the	chat	microservice's	SecurityConfiguration	policy).

Tailoring	the	UI	with	authorization	checks
With	the	REST	endpoints	locked	down,	it's	nice	to	know	things	are	secure.	However,	it	doesn't	make
sense	to	display	options	in	the	UI	that	will	get	cut	off.	Instead,	it's	better	to	simply	not	show	them.	For
that,	we	can	leverage	a	custom	Thymeleaf	security	rule.

Normally,	we	would	make	use	of	Thymeleaf's	Spring	Security	extension.	Unfortunately,	the	Thymeleaf
team	has	yet	to	write	such	support	for	Spring	Framework	5's	WebFlux	module.	No	problem!	We	can
craft	our	own	and	register	it	inside	the	Thymeleaf	engine.

For	starters,	we	want	to	define	an	authorization	scoped	operation	that	could	be	embedded	inside	a
Thymeleaf	th:if="${}"	expression,	conditionally	displaying	HTML	elements.	We	can	start	by	adding
SecurityExpressionObjectFactory	to	the	images	microservice,	since	that	fragment	of	HTML	is	where	we	wish
to	apply	it:

				public	class	SecurityExpressionObjectFactory	

					implements	IExpressionObjectFactory	{	

	

							private	final	

								SecurityExpressionHandler<MethodInvocation>	handler;	

	

							public	SecurityExpressionObjectFactory(

									SecurityExpressionHandler<MethodInvocation>	handler)	{	

											this.handler	=	handler;	

									}	

	

									@Override	

									public	Set<String>	getAllExpressionObjectNames()	{	

											return	Collections.unmodifiableSet(

													new	HashSet<>(Arrays.asList(

															"authorization"	

)));	

									}	

	

									@Override	

									public	boolean	isCacheable(String	expressionObjectName)	{	

											return	true;	

									}	

	

									@Override	

									public	Object	buildObject(IExpressionContext	context,	

										String	expressionObjectName)	{	

												if	(expressionObjectName.equals("authorization"))	{	

														if	(context	instanceof	ISpringWebFluxContext)	{	

																return	new	Authorization(

																		(ISpringWebFluxContext)	context,	handler);	

														}	

												}	

												return	null;	

									}	

				}	

The	preceding	Thymeleaf	expression	object	factory	can	be	described	as	follows:

This	class	implements	Thymeleaf's	IExpressionObjectFactory,	the	key	toward	writing	custom
expressions.
To	do	its	thing,	this	factory	requires	a	copy	of	Spring	Security's	SecurityExpressionHandler,	aimed	at
method	invocations.	It's	injected	into	this	factory	through	constructor	injection.

To	advertize	the	expression	objects	provided	in	this	class,	we	implement	getAllExpressionObjectNames,
which	returns	an	unmodifiable	Set	containing	authorization,	the	token	of	our	custom	expression.
We	implement	the	interface's	isCacheable	and	point	blank	say	that	all	expressions	may	be	cached	by
the	Thymeleaf	engine.
buildObject	is	where	we	create	objects	based	on	the	token	name.	When	we	see	authorization,	we
narrow	the	template's	context	down	to	a	WebFlux-based	context	and	then	create	an	Authorization
object	with	the	context,	Spring	Security's	expression	handler,	and	a	copy	of	the	current
ServerWebExchange,	giving	us	all	the	details	we	need.
Anything	else,	and	we	return	null,	indicating	this	factory	doesn't	apply.

Our	expression	object,	Authorization,	is	defined	as	follows:

				public	class	Authorization	{	

	

						private	static	final	Logger	log	=	

								LoggerFactory.getLogger(Authorization.class);	

	

						private	ISpringWebFluxContext	context;	

						private	SecurityExpressionHandler<MethodInvocation>	handler;	

	

						public	Authorization(ISpringWebFluxContext	context,	

								SecurityExpressionHandler<MethodInvocation>	handler)	{	

								this.context	=	context;	

								this.handler	=	handler;	

						}	

						...	

				}	

The	code	can	be	described	as	follows:

It	has	an	Slf4j	log	so	that	we	can	print	access	checks	to	the	console,	giving	developers	the	ability	to
debug	their	authorization	expressions
Through	constructor	injection,	we	load	a	copy	of	the	Thymeleaf	ISpringWebFluxContext	and	the	Spring
Security	SecurityExpressionHandler

With	this	setup,	we	can	now	code	the	actual	function	we	wish	to	use,	authorization.expr(),	as	follows:

				public	boolean	expr(String	accessExpression)	{	

						Authentication	authentication	=	

								(Authentication)	this.context.getExchange()	

									.getPrincipal().block();	

	

						log.debug("Checking	if	user	\"{}\"	meets	expr	\"{}\".",	

							new	Object[]	{	

									(authentication	==	null	?	

										null	:	authentication.getName()),	

											accessExpression});	

	

						/*	

						*	In	case	this	expression	is	specified	as	a	standard	

						*	variable	expression	(${...}),	clean	it.	

						*/	

						String	expr	=	

								((accessExpression	!=	null	

												&&	

												accessExpression.startsWith("${")	

												&&	

												accessExpression.endsWith("}"))	?	

	

												accessExpression.substring(2,	

																accessExpression.length()-1)	:	

												accessExpression);	

	

						try	{	

								if	(ExpressionUtils.evaluateAsBoolean(

										handler.getExpressionParser().parseExpression(expr),	

										handler.createEvaluationContext(authentication,	

											new	SimpleMethodInvocation())))	{	

	

													log.debug("Checked	\"{}\"	for	user	\"{}\".	"	+	

																				"Access	GRANTED",	

																new	Object[]	{	

																				accessExpression,	

																				(authentication	==	null	?	

																								null	:	authentication.getName())});	

	

													return	true;	

											}	else	{	

														log.debug("Checked	\"{}\"	for	user	\"{}\".	"	+	

															"Access	DENIED",	

																new	Object[]	{	

																		accessExpression,	

																			(authentication	==	null	?	

																				null	:	authentication.getName())});	

	

														return	false;	

											}	

						}	catch	(ParseException	e)	{	

										throw	new	TemplateProcessingException(

												"An	error	happened	parsing	\""	+	expr	+	"\"",	e);	

						}	

				}	

This	last	Thymeleaf	custom	function	can	be	described	as	follows:

Our	custom	expr()	function	is	named	in	the	first	line,	is	publicly	visible,	and	returns	a	Boolean,
making	it	suitable	for	th:if={}	expressions.
The	first	thing	we	need	is	to	grab	the	Authentication	object	from	the	context's	ServerWebExchange.
Because	we	are	inside	an	inherently	blocking	API,	we	must	use	block()	and	cast	it	to	a	Spring
Security	Authentication.
To	help	developers,	we	log	the	current	user's	authentication	details	along	with	the	authorization
expression.
In	the	event	the	whole	expression	is	wrapped	with	${},	we	need	to	strip	that	off.
We	tap	into	Spring	Security's	SpEL	support	by	invoking	ExpressionUtils.evaluateAsBoolean().
That	method	requires	that	we	parse	the	expression	via
handler.getExpressionParser().parseExpression(expr).
We	must	also	supply	the	SpEL	evaluator	with	a	context,	including	the	current	authentication	as
well	as	SimpleMethodInvocation,	since	we	are	focused	on	method-level	security	expressions.
If	the	results	are	true,	it	means	access	has	been	granted.	We	log	it	and	return	true.
If	the	results	are	false,	it	means	access	has	been	denied.	We	log	that	and	return	false.
In	the	event	of	a	badly	written	SpEL	expression,	we	catch	it	with	an	exception	handler	and	throw	a
Thymeleaf	TemplateProcessingException.

The	preceding	code	defines	the	expr()	function,	while	the	enclosing	SecurityExpressionObjectFactory	scopes
the	function	inside	authorization,	setting	us	up	to	embed	#authorization.expr(/*	my	Spring	Security	SpEL
expression*/)	inside	Thymeleaf	templates.

The	next	step	in	extending	Thymeleaf	is	to	define	a	Dialect	with	our	expression	object	factory,	as
follows:

				public	class	SecurityDialect	extends	AbstractDialect	

					implements	IExpressionObjectDialect	{	

	

							private	final	

								SecurityExpressionHandler<MethodInvocation>	handler;	

	

							public	SecurityDialect(

									SecurityExpressionHandler<MethodInvocation>	handler)	{	

											super("Security	Dialect");	

											this.handler	=	handler;	

							}	

	

							@Override	

							public	IExpressionObjectFactory	getExpressionObjectFactory()

							{	

										return	new	SecurityExpressionObjectFactory(handler);	

							}	

				}	

This	previous	code	can	be	described	as	follows:

SecurityDialect	extends	AbstractDialect	and	implements	IExpressionObjectDialect
We	need	a	copy	of	Spring	Security's	SecurityExpressionHandler	in	order	to	parse	Spring	Security	SpEL
expression,	and	it's	provided	by	constructor	injection
To	support	IExpressionObjectDialect,	we	supply	a	copy	of	our	custom	SecurityExpressionObjectFactory
factory	inside	the	getExpressionObjectFactory()	method

With	our	tiny	extension	dialect	defined,	we	must	register	it	with	Thymeleaf's	template	engine.	To	do	so,
the	easiest	thing	is	to	write	a	custom	Spring	post	processor,	like	this:

				@Component	

				public	class	SecurityDialectPostProcessor	

					implements	BeanPostProcessor,	ApplicationContextAware	{	

	

							private	ApplicationContext	applicationContext;	

	

							@Override	

							public	void	setApplicationContext(

									ApplicationContext	applicationContext)	

									throws	BeansException	{	

											this.applicationContext	=	applicationContext;	

							}	

	

							@Override	

							public	Object	postProcessBeforeInitialization(

									Object	bean,	String	beanName)	throws	BeansException	{	

											if	(bean	instanceof	SpringTemplateEngine)	{	

													SpringTemplateEngine	engine	=	

															(SpringTemplateEngine)	bean;	

													SecurityExpressionHandler<MethodInvocation>	handler	=	

															applicationContext.getBean(

																	SecurityExpressionHandler.class);	

													SecurityDialect	dialect	=	

															new	SecurityDialect(handler);	

													engine.addDialect(dialect);	

											}	

											return	bean;	

							}	

	

							@Override	

							public	Object	postProcessAfterInitialization(

									Object	bean,	String	beanName)	throws	BeansException	{	

											return	bean;	

							}	

				}	

The	preceding	code	can	be	defined	as	follows:

@Component	signals	Spring	Boot	to	register	this	class.

By	implementing	the	BeanPostProcessor	interface,	Spring	will	run	every	bean	in	the	application
context	through	it,	giving	our	SecurityDialectPostProcessor	the	opportunity	to	find	Thymeleaf's	engine
and	register	our	custom	dialect.
Since	our	custom	dialect	needs	a	handle	on	the	SecurityExpressionHandler	bean,	we	also	implement	the
ApplicationContextAware	interface,	giving	it	a	handle	on	the	application	context.
It	all	comes	together	in	postProcessBeforeInitialization,	which	is	invoked	against	every	bean	in	the
application	context.	When	we	spot	one	that	implements	Thymeleaf's	SpringTemplateEngine,	we	grab
that	bean,	fetch	SecurityExpressionHandler	from	the	app	context,	create	a	new	SecurityDialect,	and	add
that	dialect	to	the	engine.	Every	bean,	modified	or	not,	is	returned	back	to	the	app	context.
Because	we	don't	need	any	processing	before	initialization,	postProcessAfterInitialization	just	passes
through	every	bean.

With	all	this	in	place,	we	are	ready	to	make	some	security-specific	tweaks	to	our	templates.

In	the	main	page	(chat	microservice's	index.html	template),	it	would	be	handy	to	put	some	user-specific
information.	To	display	the	username	and	their	roles,	we	can	update	the	HomeController	like	this:

				@GetMapping("/")	

				public	String	index(@AuthenticationPrincipal	Authentication	auth,

					Model	model)	{	

							model.addAttribute("authentication",	auth);	

							return	"index";	

				}	

This	preceding	adjustment	to	the	home	controller	can	be	described	as	follows:

@AuthenticationPrincipal	Authentication	auth	grants	us	a	copy	of	the	current	user's	Authentication	object
Model	model	gives	us	a	model	object	to	add	data	to	the	template
By	simply	sticking	the	Authentication	object	into	the	model,	we	can	use	it	to	display	security	details
on	the	web	page

Now,	we	can	display	the	username	and	their	roles,	as	follows:

				<div>	

							

							

				</div>	

				<hr	/>	

This	little	DIV	element	that	we	just	defined	includes	the	following:

Displays	the	authentication's	name	property,	which	is	the	username
Displays	the	authentication's	authorities	properties,	which	are	the	user's	roles
Draws	a	horizontal	line,	setting	this	bit	of	user	specifics	apart	from	the	rest	of	the	page

Since	we	are	using	HTTP	Basic	security,	there	is	no	value	in	putting	a	logout	button	on	the
screen.	You	have	to	shut	down	the	browser	(or	close	the	incognito	tab)	to	clear	out	security
credentials	and	start	afresh.

We	can	now	expect	to	see	the	following	when	we	log	in	as	greg:

We	mentioned	limiting	things	that	the	user	can't	do.	The	big	one	in	our	social	media	platform	is
restricted	access	to	deleting	images.	To	enforce	this	in	the	UI,	we	need	to	parallel	the	authorization	rule
we	wrote	earlier	in	the	images	microservice's	index.html,	as	shown	here:

				<td>	

						<button	th:if="${#authorization.expr('hasRole(''ROLE_ADMIN'')')	

							or	#authorization.expr('''__${image.owner}__''	==	

							authentication.name')}"	

												th:id="'/images/'	+	${image.name}"			

													class="delete">Delete</button>	

				</td>	

This	last	code	looks	a	bit	more	complex	than	the	@PreAuthorize	rule	wrapping	ImageService.deleteImage(),	so
let's	take	it	apart:

We	use	Thymeleaf's	th:if="...	"	expression	along	with	${}	to	construct	a	complex	expression
consisting	of	two	#authorization.expr()	functions	chained	by	or.
#authorization.expr('hasRole(''ROLE_ADMIN'')')	grants	access	if	the	user	has	ROLE_ADMIN.
#authorization.expr('''__${image.owner}__''	==	authentication.name')	grants	access	if	the	image.owner
attribute	matches	the	current	authentication.name.
By	the	way,	the	double	underscore	before	and	after	${image.owner}	is	Thymeleaf's	preprocessor.	It
indicates	that	this	is	done	before	any	other	part	of	the	expression	is	evaluated.	In	essence,	we	need
the	image's	owner	attribute	parsed	first,	stuffed	into	the	authorization	expression,	and	finally	run
through	our	custom	tie-in	to	Spring	Security's	SpEL	parser.

The	expressions	inside	#authorization.expr()	are	supposed	to	be	wrapped	in	single	quotes.
Literal	values	themselves	have	to	be	wrapped	in	single	quotes.	To	escape	a	single	quote	in
this	context	requires	a	double	single	quote.	Confused	yet?	Thymeleaf's	rules	for
concatenation,	preprocessing,	and	nesting	expressions	can,	at	times,	be	daunting.	To	help
debug	an	expression,	pull	up	the	Authorization	class	coded	earlier	inside	your	IDE	and	set
breakpoints	inside	the	proper	security	expression.	This	will	pause	code	execution,	allowing
you	to	see	the	final	expression	before	it	gets	passed,	hopefully	making	it	easier	to	craft	a
suitable	authorization	rule.

With	our	nice	tweaks	to	the	UI,	let's	see	what	things	look	like	if	we	have	two	different	images	uploaded,
one	from	an	admin	and	one	from	a	regular	user.

If	greg	is	logged	in,	we	can	see	the	following	screenshot:

In	the	preceding	screenshot,	both	images	have	a	Delete	button,	since	greg	has	ROLE_ADMIN.

If	phil	is	logged	in,	we	can	see	the	following	screenshot:

In	the	earlier	screenshot,	only	the	second	image	has	the	Delete	button,	since	phil	owns	it.

With	these	nice	details	in	place,	we	can	easily	check	out	the	headers	relayed	to	the	backend	using	the
browser's	debug	tools,	as	seen	in	this	screenshot:

This	collection	of	request	and	response	headers	shown	in	the	last	image	lets	us	see	the	following	things:

The	session	ID,	8ab12c94-dd78-438e-a483-b75e8f37629f,	is	captured	in	SESSION	in	the	cookie	and	sent	over

the	wire.
There	is	an	Authorization	header	that	is	transmitted	once	we	have	been	authenticated.
More	security-based	headers	are	used	to	further	protect	us	from	other	attack	vectors.	See	http://docs
.spring.io/spring-security/site/docs/current/reference/html/headers.html	for	more	details.

When	we	started	building	this	social	media	platform	early	in	this	book,	we	had	several
operations	tied	into	our	Thymeleaf	template.	This	type	of	tight	interaction	between
controllers	and	views	is	of	classic	design.	However,	the	more	things	shift	to	piecing
together	bits	of	HTML	and	leveraging	JavaScript,	the	more	it	becomes	useful	to	have
REST-based	services.	Writing	AJAX	calls	decouples	the	HTML	from	the	server-side
controls,	which	can	be	further	leveraged	if	we	use	tools	such	as	React.js	(https://facebook.gi
thub.io/react/).	This	gets	us	out	of	the	business	of	assembling	DOM	elements	and	lets	us
focus	on	the	state	of	the	frontend	instead.

http://docs.spring.io/spring-security/site/docs/current/reference/html/headers.html
https://facebook.github.io/react/

Securing	WebSockets
So	far,	we	have	secured	the	chat	service	and	the	images	service.

Or	have	we?

Well,	we	configured	chat	as	the	Gateway	API	for	our	microservices	using	Spring	Cloud	Gateway.	To	do
that,	we	made	it	the	sole	source	of	HTTP	session	creation.	Given	that	the	session	details	were	also
included	in	forwarded	web	requests,	our	Gateway	API	is	nicely	buttoned	up.

However,		the	chat	microservice's	critical	function	is	brokering	WebSocket	messages.	And	we	haven't
lifted	a	finger	to	secure	that	component.	Time	to	roll	up	our	sleeves	and	get	to	work.

Since	our	WebSocket	handlers	are	stream	oriented,	we	merely	need	to	slip	in	a	parent	class	that
authorizes	things	when	the	WebSocket	session	is	configured,	as	follows:

				abstract	class	AuthorizedWebSocketHandler	

					implements	WebSocketHandler	{	

	

							@Override	

							public	final	Mono<Void>	handle(WebSocketSession	session)	{	

									return	session.getHandshakeInfo().getPrincipal()	

										.filter(this::isAuthorized)	

										.then(doHandle(session));	

							}	

	

							private	boolean	isAuthorized(Principal	principal)	{	

									Authentication	authentication	=	(Authentication)	principal;	

									return	authentication.isAuthenticated()	&&	

										authentication.getAuthorities().contains("ROLE_USER");	

							}	

	

							abstract	protected	Mono<Void>	doHandle(

									WebSocketSession	session);	

				}	

The	preceding	code	can	be	described	as	follows:

This	abstract	class	implements	the	WebSocketHandler	interface	with	a	Reactor-based	handle()	function
The	handle	method	looks	up	handshakeInfo,	finding	the	Principal	that	will	be	populated	by	Spring
Security,	and	filters	against	a	custom	isAuthorized	function
If	the	session	is	indeed	authorized,	an	abstract	doHandle	is	invoked,	handing	over	WebSocketSession	to
the	actual	handlers
The	isAuthorized	function	takes	the	session's	Principal,	casts	it	to	a	Spring	Security	Authentication,	and
verifies	that	the	user	is	both	authenticated	and	also	contains	ROLE_USER

With	this	in	place,	we	can	update	our	InboundChatService	like	this:

				@Service	

				@EnableBinding(ChatServiceStreams.class)	

				public	class	InboundChatService	extends	AuthorizedWebSocketHandler

				{	

	

						private	final	ChatServiceStreams	chatServiceStreams;	

	

						public	InboundChatService(ChatServiceStreams	chatServiceStreams){	

								this.chatServiceStreams	=	chatServiceStreams;	

						}	

	

						@Override	

						protected	Mono<Void>	doHandle(WebSocketSession	session)	{	

	

						...	

				}	

The	changes	in	the	previous	code	can	be	described	as	follows:

InboundChatService	now	extends	AuthorizedWebSocketHandler,	forcing	it	to	accept	those	upstream	checks
We	have	replaced	handle(WebSocketSession)	with	doHandle(WebSocketSession)
The	rest	of	the	code	is	the	same,	so	there's	no	reason	to	show	it

If	we	apply	the	same	changes	to	OutboundChatService	and	CommentService,	we	can	ensure	that	all	of	our
WebSocket	services	are	locked	down.

Admittedly,	our	policy	is	quite	simple.	However,	we	can	easily	scale	based	on	requirements.	For
example,	if	the	Admins	wanted	their	own	channel,	it	wouldn't	be	hard	to	add	/topic/admin/**	and	require
ROLE_ADMIN.

It's	also	important	to	recognize	that	this	level	of	security	is	aimed	at	the	whole	channel.	Adding	per-
message	security	checks	could	also	be	layered	in	by	going	to	each	concrete	service,	and,	essentially,
embedding	.filter(),	based	on	the	details	of	the	message.

And	that's	all	it	takes!	Our	WebSocket	channels	are	now	secured	such	that	only	proper	incoming
messages	are	allowed	through,	and	only	HTML	served	from	our	site	will	have	the	means	to	connect	and
send	such	messages.

Tracing	calls
Earlier,	we	saw	a	screenshot	from	Chrome's	debug	tools,	showing	request	and	response	headers.	There
is	another	tool	we	can	use	as	well--Spring	Boot	Actuator's	trace	endpoint.

By	visiting	http://localhost:8080/application/trace,	we	can	see	all	the	web	calls,	going	back	in	time.	For
example,	look	at	this	request	to	negotiate	the	WebSocket:

				{	

						"timestamp":	1480805242289,	

						"info":	{	

								"method":	"GET",	

								"path":	"/learning-spring-boot/160/ge00bkmu/websocket",	

								"headers":	{	

										"request":	{	

												"host":	"localhost:8080",	

												"connection":	"Upgrade",	

												"pragma":	"no-cache",	

												"cache-control":	"no-cache",	

												"authorization":	"Basic	Z3JlZzp0dXJucXVpc3Q=",	

												"upgrade":	"websocket",	

												"origin":	"http://localhost:8080",	

												"sec-websocket-version":	"13",	

												"user-agent":	"Mozilla/5.0	(Macintosh;	Intel	Mac	OS	X	

														10_11_5)	AppleWebKit/537.36	(KHTML,	like	Gecko)	

														Chrome/54.0.2840.98	Safari/537.36",	

												"accept-encoding":	"gzip,	deflate,	sdch,	br",	

												"accept-language":	"en-US,en;q=0.8",	

												"cookie":	"SESSION=3f0668ec-d528-43d8-a6e8-87a369571745",	

												"sec-websocket-key":	"L8fkEK8VtxXfxx4jBzOC9Q==",	

												"sec-websocket-extensions":	"permessage-deflate;		

													client_max_window_bits"	

										},	

										"response":	{	

												"X-Application-Context":	"chat:8080",	

												"Upgrade":	"websocket",	

												"Connection":	"upgrade",	

												"Sec-WebSocket-Accept":	"m8xyQSUtHR/qMEUp1xog4wwUS0E=",	

													"Sec-WebSocket-Extensions":	"permessage-

														deflate;client_max_window_bits=15",	

													"status":	"101"	

										}	

								}	

						}	

				}	

The	following	are	some	key	bits	that	can	be	pointed	out	in	the	preceding	code:

The	authorization	header	has	a	Basic	token	value,	us	having	logged	in
The	cookie	is	loaded	with	our	SESSION	ID
The	upgrade	protocol	to	go	from	HTTP	to	WebSocket	is	evident	in	the	response	headers	and	the	101
status	code

Let's	look	at	one	more,	the	request	to	view	our	bazinga.png	image:

				{	

						"timestamp":	1480805242286,	

						"info":	{	

								"method":	"GET",	

								"path":	"/images/bazinga.png/raw",	

								"headers":	{	

										"request":	{	

												"host":	"localhost:8080",	

												"connection":	"keep-alive",	

												"authorization":	"Basic	Z3JlZzp0dXJucXVpc3Q=",	

												"user-agent":	"Mozilla/5.0	(Macintosh;	Intel	Mac	OS	X	

													10_11_5)	AppleWebKit/537.36	(KHTML,	like	Gecko)

													Chrome/54.0.2840.98	Safari/537.36",	

												"accept":	"image/webp,image/*,*/*;q=0.8",	

												"referer":	"http://localhost:8080/",	

												"accept-encoding":	"gzip,	deflate,	sdch,	br",	

												"accept-language":	"en-US,en;q=0.8",	

												"cookie":	"SESSION=3f0668ec-d528-43d8-a6e8-87a369571745"	

										},	

										"response":	{	

												"X-Application-Context":	"chat:8080",	

												"Date":	"Sat,	03	Dec	2016	22:47:21	GMT",	

												"Content-Type":	"image/jpeg",	

												"Transfer-Encoding":	"chunked",	

												"status":	"200"	

										}	

								}	

						}	

				}	

Some	interesting	fields	in	the	last	code	include	the	following:

The	cookie	header	contains	our	SESSION	ID.
The	authorization	header	includes	the	same	token.
The	referer	header	shows	the	origin	of	the	request	as	http://localhost:8080/.
The	accept-encoding	header	indicates	the	formats	that	the	browser	will	accept,	including	zipped
images	and	deflated	ones.
The	content-type	response	header	has	JPEG,	a	value	we	hard-coded	into	our	controller.	Since	all
images	get	handled	by	the	same	part	of	the	browser,	it	doesn't	matter	if	it's	not	PNG.

Spring	Boot	Actuator's	trace	endpoint	will	track	the	last	one	hundred	requests.	It's	a	handy	way	to	peek
at	past	web	calls	in	case	you	don't	have	the	browser's	development	tools	open	at	the	time.

You	can	inject	TraceRepository	into	your	code	and	use	add(Map)	on	any	structure	you	want,
with	it	getting	serialized	into	JSON.

Securing	the	Config	Server
So,	we've	locked	down	chat,	images,	and	comments.	But	what	about	the	Config	Server	itself?	Seeing	how
critical	it	is	with	each	microservice's	configuration	details,	we	need	to	insulate	ourselves	from	a
malevolent	Config	Server	being	stood	up	in	its	place.

The	simplest	thing	to	do	is	to	add	Spring	Security	to	our	Config	Server.	So,	let's	do	it!

				compile('org.springframework.boot:spring-boot-starter-security')	

By	default,	Spring	Security	will	set	username	to	user	and	password	to	something	random.	Since	we	can't
be	updating	the	other	services	every	time	we	restart,	let's	override	that	with	a	fixed	password,	as
follows:

		@Bean

		UserDetailsService	userDetailsService()	{

				return	new	InMemoryUserDetailsManager(

						User

								.withUsername("user")

								.password("password")

								.roles("USER").build());

		}	

In	Spring	Boot	1.x,	there	was	a	security.password	property	to	override.	In	the	spirit	of	simplification,	this
property	has	been	removed	in	Spring	Boot	2.x.	The	new	approach	is	to	inject	a	UserDetailsService	bean,	as
shown	in	the	previous	code	fragment	(which	can	be	added	to	LearningSpringBootConfigServer).	This	code
shows	a	single	user,	user/password,	defined.

That's	all	it	takes	to	secure	our	Config	Server!

To	signal	the	other	services,	we	need	to	adjust	their	bootstrap.yml	files.	Let's	start	with	the	Eureka	Server,
like	this:

				spring:	

						application:	

								name:	eureka	

						cloud:	

								config:	

										label:	session	

										password:	password	

This	change	shown	in	the	last	code	adds	spring.cloud.config.password	set	to	the	same	password	we	just
chose.

Let's	continue	with	chat:

				spring:	

						application:	

								name:	chat	

						cloud:	

								config:	

										label:	session	

										password:	password	

In	the	preceding	code,	we	have	spring.cloud.config.password	and	spring.cloud.config.label	properly	set.

We	can	make	the	same	changes	to	images,	as	follows:

				spring:	

						application:	

								name:	images	

						cloud:	

								config:	

										label:	session	

										password:	password	

This	will	secure	things	with	the	exact	same	settings.

And	finally,	let's	make	the	following	changes	to	comments:

				spring:	

						application:	

								name:	comments	

						cloud:	

								config:	

										label:	session	

										password:	password	

This	will	lock	things	down,	preventing	others	from	getting	access	to	our	settings.	If	someone	attempted
to	stand	up	a	bogus	Config	Server,	they	would	have	to	somehow	secure	it	with	the	same	password	on
the	same	network	address.	(Not	likely!).

Securing	the	Eureka	Server
The	last	bastion	to	secure	is	our	Eureka	Server.	To	do	so,	we	need	to	adopt	similar	steps	to	what	we	did
with	the	Config	Server.

First,	add	Spring	Security	to	the	Eureka	Server,	as	follows:

				compile('org.springframework.boot:spring-boot-starter-security')	

This	preceding	dependency	will	enable	Spring	Security	automatically.	However,	just	like	Config	Server,
it	will	generate	a	random	password	every	time	it	launches.	To	pin	the	password,	we	need	to	add	the
same	UserDetailsService	bean	as	follows:

		@Bean

		UserDetailsService	userDetailsService()	{

				return	new	InMemoryUserDetailsManager(

						User

								.withUsername("user")

								.password("password")

								.roles("USER").build());

		}

The	recommended	way	to	plug	in	the	username/password	settings	for	a	Eureka	client	is	by	using	the
URL	notation.	For	the	chat	service,	we	need	to	update	the	Config	Server	with	this:

				eureka:	

						client:	

								serviceUrl:	

										defaultZone:	http://user:password@localhost:8761/eureka	

This	preceding	adjustment	will	have	the	chat	microservice	signing	into	the	Eureka	Server	with	a
username,	password,	hostname,	port,	and	path--all	standard	options	with	URLs.

These	options	can	be	applied	to	the	Config	Server's	images.yml	file,	like	this:

				eureka:	

						client:	

								serviceUrl:	

										defaultZone:	http://user:password@localhost:8761/eureka/	

This	can	also	be	applied	to	the	Config	Server's	comments.yml	file,	as	follows:

				eureka:	

						client:	

								serviceUrl:	

										defaultZone:	http://user:password@localhost:8761/eureka/

Are	you	unsure	that	this	is	working?	Enable	security	in	the	Eureka	Server	as	described,
but	do	not	make	these	changes	to	the	Eureka	clients.	When	they	are	launched,	they'll
report	inability	to	connect	to	Eureka.	Make	the	changes	to	the	Config	Server,	restart	it,
then	make	the	changes	to	the	clients.	They	will	then	connect.	Ta	dah!

We	now	have	every	component	secured.	We	also	have	session	state	shared	between	the	services,	making
it	easy	to	expand	and	add	new	services	or	to	refine	the	existing	roles.	Pretty	much	anything	we	can	think

of.

So...	does	it	smell	like	too	many	hard-coded	values?	Getting	nervous	about	this	system	being	able	to	roll
with	the	punches	of	the	network	changing	underneath	it?	Your	concern	is	justified.	We'll	soon	see	in	Chap
ter	10,	Taking	Your	App	to	Production	with	Spring	Boot,	how	we	can	take	our	social	media	platform	to
the	cloud,	scale	its	components,	and	with	minimal	adjustments,	overcome	what	may	appear	as	brittle
settings.

Summary
In	this	chapter,	we	applied	Spring	Security	to	each	of	our	microservices.	We	then	configured	our	chat
service	as	a	Gateway	API	using	Spring	Cloud	Gateway.	Finally,	we	brought	on	board	Spring	Session
MongoDB	and	had	it	share	session	details	with	the	other	backend	microservices.

After	ensuring	that	SESSION	IDs	were	propagated	by	Spring	Cloud	Gateway	to	all	the	backend	services,
we	wrote	authorization	rules,	both	for	REST	endpoints	as	well	as	for	WebSocket	messages.

To	wrap	things	up,	we	also	secured	our	Config	Server	and	our	Eureka	Server	so	that	only	our	system
can	talk	to	them.

In	the	next	chapter,	we	will	take	our	social	media	platform	to	production.	We'll	deploy	our
microservices-based	application	to	the	cloud,	and	see	how	to	scale	and	adjust	various	things.	We'll	also
discover	how	Spring	Boot	makes	adjusting	things	a	breeze.

Taking	Your	App	to	Production	with	Spring
Boot

Here	is	my	source	code

Run	it	on	the	cloud	for	me

I	do	not	care	how

–	Cloud	Foundry	haiku	(Onsi	Fakhouri	@onsijoe)

In	the	previous	chapter,	we	learned	how	to	secure	our	microservice-based	social	media	platform.

In	this	chapter,	we	will	cover	the	following	topics:

Configuring	profile-specific	beans
Creating	configuration	property	beans
Overriding	property	settings	in	production
Deploying	our	social	media	platform	to	the	cloud

So,	today	is	the	day.	We	worked	for	weeks	to	build	this	system.	And	now	we	want	to	take	it	to
production.	What	could	happen?	What	could	go	wrong?

Answer:	A	lot.	And... ​a	lot.

Spring	Boot	comes	with	powerful	features	to	make	it	easy	to	tune	and	adjust	things	in	production,
allowing	us	to	minimize	the	code.	Some	of	the	concepts	presented	here	are	rooted	in	The	Twelve-Factor
App	(https://12factor.net/)	and	the	ability	to	externalize	configuration	settings.	We've	already	seen	parts
of	that	through	the	Config	Server.	However,	now	we'll	dig	in	and	apply	more	as	we	go	to	production.

https://12factor.net/

Profile-based	sets	of	beans
Many	cloud-based	platforms	use	proxies	wrapped	around	applications.	This	enables	the	platform	to
support	many	features,	including	caching,	content	delivery	networks	(CDN),	load	balancing,	and	SSL
termination.	After	all,	why	put	such	common	infrastructure	requirements	on	developers?

However,	the	side	effect	can	break	security	protocols	designed	to	protect	us	in	the	web.	For	example,
our	application	may	be	running	on	a	private	IP	address,	while	original	requests	come	in	on	a	public-
facing	URL.	When	our	application	sees	a	forwarded	web	request,	how	are	we	to	distinguish	it	between	a
proper	request	versus	some	nefarious	cross	site	scripting	attack	leveraging	our	service?

The	first	place	this	can	affect	our	application	is	the	chat	service's	WebSocket	handling.	It	requires
explicit	configuration	to	handle	such	a	hop.	However,	we	only	want	such	an	adjustment	in	our	code	to
apply	when	we	are	in	production,	not	when	running	things	in	development	on	our	workstation.

The	solution	is	profile-based	beans.	Spring	lets	us	configure	beans	to	only	be	created	if	certain	profiles
are	enabled.

In	the	previous	chapter,	we	had	our	entire	WebSocket	configuration	in	a	top-level	class.	We	need	to
change	that	configuration	class	and	turn	it	into	a	container	class	with	different	options	based	on	whether
or	not	we	are	in	production.

The	first	step	is	to	move	the	existing	bean	definitions	into	a	new,	static	inner	class	as	shown	here:

				@Configuration	

				public	class	WebSocketConfig	{	

						...	

						@Profile("!cloud")	

						@Configuration	

						static	class	LocalWebSocketConfig	{	

								...	

						}	

				}	

So	far,	we	haven't	changed	a	lot.	What	we	have,	can	be	described	as	follows:

The	outer	class,	WebSocketConfig,	looks	the	same
This	new	inner	class,	LocalWebSocketConfig,	is	annotated	@Profile("!cloud"),	meaning	it	only	runs	if	there
is	no	cloud	profile
The	new	class	is	called	LocalWebSocketConfig	to	clarify	that	it	only	operates	when	we	run	things	locally

What	is	a	cloud	profile?	Spring	allows	settings	various	profiles	through	the
spring.profiles.active	application	property.	We	can	create	all	the	profiles	we	want,	even
overlapping	ones.	However,	any	application	deployed	to	Cloud	Foundry	automatically
has	an	extra	profile,	that	is,	cloud,	applied.

Since	we	plan	to	have	both	a	local	as	well	as	a	cloud-based	configuration,	it's	important	to	distinguish
what	is	the	same	and	what	is	different.	Something	that	will	be	the	same	are	the	WebSocket	route

mappings.

To	support	this,	we	need	a	single	configureUrlMappings()	method	to	configure	this	SimpleUrlHandlerMapping:

				private	static	SimpleUrlHandlerMapping	configureUrlMappings(

						CommentService	commentService,	

						InboundChatService	inboundChatService,	

						OutboundChatService	outboundChatService)	{	

								Map<String,	WebSocketHandler>	urlMap	=	new	HashMap<>();	

								urlMap.put("/topic/comments.new",	commentService);	

								urlMap.put("/app/chatMessage.new",	inboundChatService);	

								urlMap.put("/topic/chatMessage.new",	outboundChatService);	

	

								SimpleUrlHandlerMapping	mapping	=	new	

									SimpleUrlHandlerMapping();	

								mapping.setOrder(10);	

								mapping.setUrlMap(urlMap);	

	

								return	mapping;	

				}	

This	is	the	same	code	we	saw	in	the	last	chapter,	just	moved	around	a	little:

The	three	endpoints	are	tied	to	their	respective	services	in	Map	of	routes-to-WebSocketHandlers
A	SimpleUrlHandlerMapping	is	defined	with	this	map	of	handlers
The	order	is	set	to	10
The	method	is	static	since	it	will	be	placed	outside	our	new	LocalWebSocketConfig	(but	inside
WebSocketConfig)

To	tap	this,	we	simply	need	to	write	a	bean	definition	inside	LocalWebSocketConfig	like	this:

				@Bean	HandlerMapping	webSocketMapping(CommentService

					commentService,	InboundChatService	inboundChatService,	

					OutboundChatService	outboundChatService)	{	

							return	configureUrlMappings(commentService,		

													InboundChatService,	outboundChatService);	

				}	

This	method	does	nothing	more	than	invoke	our	WebSocket	configuring	method.

With	the	local	configuration	set	up,	we	can	now	turn	our	attention	towards	configuring	the	WebSocket
broker	to	work	in	the	cloud.	To	do	so,	we	need	another	inner	static	class	inside	WebSocketConfig,	as
follows:

				@Profile("cloud")	

				@Configuration	

				@EnableConfigurationProperties(ChatConfigProperties.class)	

				static	class	CloudBasedWebSocketConfig	{	

It	can	be	explained	as	follows:

It's	marked	as	@Profile("cloud"),	meaning	this	only	applies	if	the	cloud	profile	is	in	force,	the	opposite
of	LocalWebSocketConfig
It	contains	@EnableConfigurationProperties(ChatConfigProperties.class),	used	to	provide	an	extra	set	of
properties
It's	named	CloudBasedWebSocketConfig	to	point	out	its	role

If	you're	wondering	what	@EnableConfigurationProperties	means,	it	leads	us	into	the	next	section.

Creating	configuration	property	beans
@EnableConfigurationProperties,	applied	anywhere	in	our	application,	will	cause	a	bean	of	the	named	type,
ChatConfigProperties,	to	get	added	to	the	application	context.	A	configuration	property	bean	is	meant	to
hold	various	settings	that	can	be	configured	with	optional	defaults	and	can	be	overridden	through
various	means.

Remember	properties	like	server.port	where	we	adjusted	the	default	port	our	Netty	web	container
listened	for	web	requests?	All	the	properties	we've	seen	through	this	book	are	all	configuration	property
beans.	This	annotation	simply	gives	us	the	means	to	define	our	own	property	settings	specific	to	our
application.

In	this	case,	ChatConfigProperties	is	aimed	at	configuring	the	WebSocket	broker.

It's	not	critical	that	the	annotation	be	applied	to	this	specific	class.	It's	just	convenient
since	it's	the	place	where	we	intend	to	use	it.

Despite	enabling	such	property	settings,	we	still	have	to	inject	the	bean	into	our	CloudBasedWebSocketConfig
configuration	class,	as	shown	here:

				private	final	ChatConfigProperties	chatConfigProperties;	

	

				CloudBasedWebSocketConfig(ChatConfigProperties	

					chatConfigProperties)	{	

							this.chatConfigProperties	=	chatConfigProperties;	

				}	

Using	constructor	injection,	we	now	have	access	to	whatever	property	settings	are	provided	by	this
configuration	property	bean.

Configuration	property	beans	are	simply	Spring	beans	with	the	added	ability	to	override.
It	means	they	can	be	injected	just	like	any	other	Spring	bean.

Digging	into	the	WebSocket	broker	configuration,	what	we	need	is	the	remote	host	we	are	willing	to
accept	WebSocket	connection	requests	from.	Essentially,	the	public-facing	URL	of	our	chat
microservice.	To	do	that,	we'll	define	a	property	called	origin	and	use	it	as	shown	here:

				@Bean	HandlerMapping	webSocketMapping(CommentService

					commentService,	InboundChatService	inboundChatService,	

					OutboundChatService	outboundChatService)	{	

							SimpleUrlHandlerMapping	mapping	=	

									configureUrlMappings(commentService,		

									InboundChatService,	outboundChatService);	

	

							Map<String,	CorsConfiguration>	corsConfigurationMap	=	

									new	HashMap<>();	

							CorsConfiguration	corsConfiguration	=	new	CorsConfiguration();	

							corsConfiguration	

								.addAllowedOrigin(chatConfigProperties.getOrigin());	

	

							mapping.getUrlMap().keySet().forEach(route	->	

								corsConfigurationMap.put(route,	corsConfiguration)	

);	

	

							mapping.setCorsConfigurations(corsConfigurationMap);	

	

							return	mapping;	

				}	

This	code	has	the	same	endpoints	as	LocalWebSocketConfig,	thanks	to	the	configureUrlMappings	method.	It
additionally	creates	a	CORS	map,	like	we	did	in	Chapter	8,	WebSockets	with	Spring	Boot.	Only,	this	time,
it	uses	the	injected	getOrigin()	to	plug	in	the	public-facing	URL	of	the	chat	service	(hold	tight--​we'll	see
how	shortly).

What's	missing	is	the	definition	of	this	configuration	property	bean.	It's	shown	here:

				@Data	

				@ConfigurationProperties(prefix	=	"lsb")	

				public	class	ChatConfigProperties	{	

	

						@Value("https://${vcap.application.uris[0]}")	

						private	String	origin;	

	

				}	

The	code	can	be	explained	as	follows:

Once	again,	we	use	Project	Lombok's	@Data	annotation	to	avoid	writing	getters	and	setters.	This	is
ideal	for	configuration	property	beans.
@ConfigurationProperty(prefix="lsb")	flags	this	bean	as	a	candidate	for	Spring	Boot's	property	reading
rules,	starting	with	the	lsb	prefix.
There	is	a	single	property	named	origin	that	is	initialized	using	Spring's	@Value()	annotation.
On	Cloud	Foundry,	vcap.application.uris	is	a	property	applied	to	every	application	that	lists	publicly
visible	URLs.	Assuming	that	the	first	is	the	one	we	wish	to	use,	we	are	applying	it	to	our	origin
property.
By	combining	the	prefix	(lsb)	and	the	name	of	the	property	(origin),	the	full	path	of	this	property	is
lsb.origin,	and	it	can	be	overridden	at	any	time.

Overriding	property	settings	in	production
Everytime	we	take	our	application	to	a	new	environment,	there	are	always	settings	that	have	to	be
adjusted.	We	don't	want	to	edit	code.	Instead,	it's	easier	if	we	could	just	override	various	properties.	And
we	can!

This	was	touched	on	briefly	in	Chapter	1,	Quick	Start	with	Java,	under	the	guise	of	overriding	Spring
Boot's	property	settings.	However,	the	fact	that	we	can	write	our	own	custom	configuration	property
beans	makes	this	a	powerful	feature	for	application	customization.

To	recap	the	rules	listed	in	Chapter	1,	Quick	Start	with	Java,	property	settings	can	be	overridden	in	the
following	order,	highest	to	lowest:

1.	 @TestPropertySource	annotations	on	test	classes.
2.	 Command-line	arguments.
3.	 Properties	found	inside	SPRING_APPLICATION_JSON	(inline	JSON	embedded	in	an	env	variable	or	system

property).
4.	 ServletConfig	init	parameters.
5.	 ServletContext	init	parameters.
6.	 JNDI	attributes	from	java:comp/env.
7.	 Java	System	properties	(System.getProperties()).
8.	 OS	environment	variables.
9.	 RandomValuePropertySource	that	only	has	properties	in	random.*.
10.	 Profile-specific	properties	outside	the	packaged	JAR	file	(application-{profile}.properties	and	YAML

variants).
11.	 Profile-specific	properties	inside	the	packaged	JAR	file	(application-{profile}.properties	and	YAML

variants).
12.	 Application	properties	outside	the	package	JAR	file	(application.properties	and	YAML	variants).

13.	 Application	properties	inside	the	packaged	JAR	file	(application.properties	and	YAML	variants).
14.	 @PropertySource	annotations	on	any	@Configuration	classes.
15.	 Default	properties	(specified	using	SpringApplication.setDefaultProperties).

By	default,	we	can	run	with	vcap.application.uris[0].	However,	if	we	take	it	to	another	cloud
solution,	we	can	simply	plug	in	an	override	to	lsb.origin	and	leverage	whatever
environment	variables	the	new	cloud	provides.	This	lets	us	escape	having	to	alter	the	code
again	and	instead	focus	on	getting	things	running.

One	of	the	most	common	tactics	is	to	create	an	application-{profile}.yml	file	that	will	be	automatically
applied	when	<profile>	is	in	effect.	Since	Cloud	Foundry	apps	get	the	cloud	profile,	it	would	be	natural
to	create	an	application-cloud.yml	file.

However,	since	we	adopted	the	Spring	Cloud	Config	Server	and	specified	that	the	chat	service	is
governed	by	chat.yml,	we	instead	merely	need	to	add	a	chat-cloud.yml	file.	Then	we	know	the	following

cloud-specific	settings	will	be	applied	when	deployed	to	Cloud	Foundry:

				server:	

						port:	8080	

	

				eureka:	

						client:	

								serviceUrl:	

										defaultZone:	http://user:password@learning-spring-boot-

											eureka-server.cfapps.io/eureka/	

						instance:	

								hostname:	${vcap.application.uris[0]}	

								nonSecurePort:	80	

These	settings	can	be	explained	as	follows:

The	server.port	is	the	same	as	before
The	eureka.client.serviceUrl.defaultZone	is	changed	to	the	public-facing	URL	for	our	Eureka	service,
so	the	chat	service	can	find	it
Since	the	public-facing	URL	for	our	chat	service	is	terminated	by	a	proxy,	we	have	to	override
eureka.instance.hostname	with	${vcap.application.uris[0]}	to	avoid	registering	an	unreachable	IP	address
with	Eureka
We	must	also	register	that	we	are	visible	(non-secure)	on	port	80

The	following	settings	are	identical	for	comments-cloud.yml:

				server:	

						port:	8080	

	

				eureka:	

						client:	

								serviceUrl:	

										defaultZone:	http://user:password@learning-spring-boot-

											eureka-server.cfapps.io/eureka/	

						instance:	

								hostname:	${vcap.application.uris[0]}	

								nonSecurePort:	80	

And	the	same	for	images-cloud.yml:

				server:	

						port:	8080	

	

				eureka:	

						client:	

								serviceUrl:	

										defaultZone:	http://user:password@learning-spring-boot-

											eureka-server.cfapps.io/eureka/	

						instance:	

								hostname:	${vcap.application.uris[0]}	

								nonSecurePort:	80	

Finally,	we	need	to	set	the	same	instance	details	for	the	Eureka	service	itself	via	eureka-cloud.yml,	as
shown	here:

				server:	

						port:	8080	

	

				eureka:	

						instance:	

								hostname:	${vcap.application.uris[0]}	

								nonSecurePort:	80	

If	you'll	notice,	there	is	no	eureka.client.serviceUrl.defaultZone	given	that	this	IS	the	Eureka	service!

These	additional	settings	added	to	https://github.com/gregturn/learning-spring-boot-config-repo/tree/production
will	ensure	that	our	apps	function	smoothly	in	the	cloud.

If	we	want	to	see	our	newly	minted	property	settings,	we	can	visit	http://learning-spring-
boot.cfapps.io/configprops	and	look	for	ChatConfigProperties.

The	configuration	properties	can	be	described	as	follows:

The	name	is	captured	as	the	prefix	+	the	canonical	path	of	the	class
The	prefix,	lsb,	is	displayed
The	properties	lists	the	named	properties	we	can	tap	(nesting	displayed	if	that	were	the	case)

From	this,	we	can	easily	glean	that	lsb.origin	is	the	property	to	override	should	we	have	some	reason	to
adjust	this.

https://github.com/gregturn/learning-spring-boot-config-repo/tree/production

@ConfigurationProperties	versus	@Value
In	our	code,	we	have	used	both	strongly-type	@ConfigurationProperties	based	classes	as	well	as	@Value
labeled	attributes.	It's	important	to	understand	the	differences	before	using	them	in	your	application.

@Value	is	old,	preceding	Spring	Boot	by	years.	It	is	a	powerful	annotation,	able	to	inject	values	as	well	as
accept	default	values.	However,	it	misses	several	features	many	of	us	have	come	to	rely	upon	when
writing	Boot	apps,	as	shown	in	the	following	table:

Feature @ConfigurationProperties @Value

Relaxed	binding Yes No

Meta-data	support Yes No

SpEL	evaluation No Yes

	

This	matrix	documents	three	critical	features:

Relaxed	binding:	The	ability	to	match	server.port,	SERVER_PORT,	and	sErVeR.pOrT	to	the	same	attribute	is
quite	valuable.
Meta-data	support:	The	ability	to	include	code	completion	for	property	settings	is	also	of
incredible	value,	along	with	hover-over	tips.	Anything	that	speeds	up	developer	effort	cannot	be
understated	in	value.
SpEL	evaluation:	The	ability	to	write	SpEL	expressions	to	populate	properties.

There	is	a	strong	suggestion	to	start	with	@ConfigurationProperties.	When	you	bundle	together	a	set	of
properties	inside	a	POJO,	it	really	is	a	shortcut	for	a	fist	full	of	@Value	attributes.	And	the	property
binding	is	supercharged.

However,	when	you	need	SpEL	expression	support,	as	we	do	to	get	a	hold	of	the	application's	URI
(${vcap.application.uris[0]}),	then	it's	okay	to	break	from	@ConfigurationProperties	and	switch	to	@Value.

However,	if	you'll	notice,	we	continue	to	leverage	it	inside	@ConfigurationProperties.	The	real	hint	of	doing
it	wrong	is	if	we	try	to	construct	a	collection	of	properties	using	@Value.	Configuration	properties	is	a	nice
way	to	build	a	hierarchy	of	properties	with	little	effort.

Pushing	app	to	Cloud	Foundry	and
adjusting	the	settings

Keep	calm	and	cf	push.

-	Denizens	of	the	Internet

If	there's	one	thing	critical	to	any	smooth-running	Ops	center,	it's	the	need	for	automation.	If	we	do
things	by	hand,	we	introduce	the	risk	of	drift	among	our	various	components	in	production.

The	following	section	shows	some	BASH	scripts	for	deploying	our	microservices-based	social	media
platform,	a	first	step	on	the	path	towards	automated	deployment.

Assuming	we've	built	everything	with	Gradle,	let's	kick	things	off	by	deploying	our	Spring	Boot	uber
JARs	to	Cloud	Foundry:

#!/usr/bin/env	bash	

	

cf	push	learning-spring-boot-config-server	-p	config-server/build/libs/learning-spring-boot-config-server-0.0.1-SNAPSHOT.jar	&	

cf	push	learning-spring-boot-eureka-server	-p	eureka-server/build/libs/learning-spring-boot-eureka-server-0.0.1-SNAPSHOT.jar	&	

cf	push	learning-spring-boot	-p	chat/build/libs/learning-spring-boot-chat-0.0.1-SNAPSHOT.jar	&	

cf	push	learning-spring-boot-comments	-p	comments/build/libs/learning-spring-boot-comments-0.0.1-SNAPSHOT.jar	&	

cf	push	learning-spring-boot-images	-p	images/build/libs/learning-spring-boot-images-0.0.1-SNAPSHOT.jar	&	

cf	push	learning-spring-boot-hystrix-dashboard	-p	hystrix-dashboard/build/libs/learning-spring-boot-hystrix-dashboard-0.0.1-SNAPSHOT.jar	&	

It	can	be	described	as	follows:

Each	module	is	deployed	using	the	CF	CLI	(https://github.com/cloudfoundry/cli),	deploying	with	both
a	name	and	the	JAR	file
Each	command	is	backgrounded	to	speed	up	release

A	real	microservice-based	solution	presumes	different	teams	responsible	for	different
modules.	Hence,	each	team	may	have	a	different	deployment	script	as	well	as	different
release	schedules.

Let's	get	things	underway	and	deploy!	The	console	output	shows	us	running	our	deployment	script:

gturnquist$./deploy.sh	

	

Creating	app	learning-spring-boot-comments	in	org	cosmos-refarch	/	space	development	as	gturnquist@pivotal.io...	

Creating	app	learning-spring-boot	in	org	cosmos-refarch	/	space	development	as	gturnquist@pivotal.io...	

Creating	app	learning-spring-boot-config-server	in	org	cosmos-refarch	/	space	development	as	gturnquist@pivotal.io...	

Creating	app	learning-spring-boot-images	in	org	cosmos-refarch	/	space	development	as	gturnquist@pivotal.io...	

Creating	app	learning-spring-boot-hystrix-dashboard	in	org	cosmos-refarch	/	space	development	as	gturnquist@pivotal.io...	

Creating	app	learning-spring-boot-eureka-server	in	org	cosmos-refarch	/	space	development	as	gturnquist@pivotal.io...	

...	

Using	route	learning-spring-boot-config-server.cfapps.io	

Binding	learning-spring-boot-config-server.cfapps.io	to	learning-spring-boot-config-server...	

Using	route	learning-spring-boot-comments.cfapps.io	

Binding	learning-spring-boot-comments.cfapps.io	to	learning-spring-boot-comments...	

Using	route	learning-spring-boot-eureka-server.cfapps.io	

Binding	learning-spring-boot-eureka-server.cfapps.io	to	learning-spring-boot-eureka-server...	

Using	route	learning-spring-boot-images.cfapps.io	

Binding	learning-spring-boot-images.cfapps.io	to	learning-spring-boot-images...	

https://github.com/cloudfoundry/cli

Using	route	learning-spring-boot.cfapps.io	

Binding	learning-spring-boot.cfapps.io	to	learning-spring-boot...	

Using	route	learning-spring-boot-hystrix-dashboard.cfapps.io	

Binding	learning-spring-boot-hystrix-dashboard.cfapps.io	to	learning-spring-boot-hystrix-dashboard...	

...	

Uploading	learning-spring-boot-config-server...	

Uploading	learning-spring-boot-hystrix-dashboard...	

Uploading	learning-spring-boot-comments...	

Uploading	learning-spring-boot-eureka-server...	

Uploading	learning-spring-boot-images...	

Uploading	learning-spring-boot...	

...	

Starting	app	learning-spring-boot-hystrix-dashboard	in	org	cosmos-refarch	/	space	development	as	gturnquist@pivotal.io...	

Starting	app	learning-spring-boot-comments	in	org	cosmos-refarch	/	space	development	as	gturnquist@pivotal.io...	

Starting	app	learning-spring-boot-images	in	org	cosmos-refarch	/	space	development	as	gturnquist@pivotal.io...	

Starting	app	learning-spring-boot-eureka-server	in	org	cosmos-refarch	/	space	development	as	gturnquist@pivotal.io...	

Starting	app	learning-spring-boot	in	org	cosmos-refarch	/	space	development	as	gturnquist@pivotal.io...	

Starting	app	learning-spring-boot-config-server	in	org	cosmos-refarch	/	space	development	as	gturnquist@pivotal.io...	

...	

App	started	

	

(the	rest	ommitted	for	brevity)	

All	components	of	our	social	media	platform	are	now	deployed	to	the	cloud.

Be	warned!	This	isn't	enough.	There	are	custom	settings	that	must	be	applied	after	the	bits	are	uploaded.

Let's	start	with	the	section	that	configures	our	Eureka	server,	as	shown	here:

#!/usr/bin/env	bash	

	

cf	set-env	learning-spring-boot-eureka-server	spring.cloud.config.uri	https://learning-spring-boot-config-server.cfapps.io	

cf	set-env	learning-spring-boot-eureka-server	spring.cloud.config.label	production	

Eureka	needs	to	be	configured	with	a	Config	Server	URI	and	which	label	to	fetch	from	GitHub,	as	done
using	cf	set-env.

Next,	we	can	look	at	the	settings	for	the	chat	microservice:

cf	set-env	learning-spring-boot	spring.cloud.config.uri	https://learning-spring-boot-config-server.cfapps.io	

cf	set-env	learning-spring-boot	spring.cloud.config.label	production	

	

cf	bind-service	learning-spring-boot	learning-spring-boot-mongodb	

cf	set-env	learning-spring-boot	spring.data.mongodb.uri	\${vcap.services.learning-spring-boot-mongodb.credentials.uri}	

	

cf	bind-service	learning-spring-boot	learning-spring-boot-rabbitmq	

The	chat	service	needs	a	Config	Server	URI	(with	the	GitHub	label),	a	MongoDB	service	binding	and
URI	setting,	and	a	RabbitMQ	service	binding.

Next,	we	can	look	at	the	settings	for	the	comments	microservice,	as	shown	here:

cf	set-env	learning-spring-boot-comments	spring.cloud.config.uri	https://learning-spring-boot-config-server.cfapps.io	

cf	set-env	learning-spring-boot-comments	spring.cloud.config.label	production	

	

cf	bind-service	learning-spring-boot-comments	learning-spring-boot-mongodb	

cf	set-env	learning-spring-boot-comments	spring.data.mongodb.uri	\${vcap.services.learning-spring-boot-mongodb.credentials.uri}	

	

cf	bind-service	learning-spring-boot-comments	learning-spring-boot-rabbitmq	

The	comments	service	needs	a	Config	Server	URI	(with	the	GitHub	label),	a	MongoDB	service	binding
and	URI	setting,	and	a	RabbitMQ	service	binding.

Next,	we	can	look	at	the	settings	for	the	images	microservice,	as	shown	here:

cf	set-env	learning-spring-boot-images	spring.cloud.config.uri	https://learning-spring-boot-config-server.cfapps.io	

cf	set-env	learning-spring-boot-images	spring.cloud.config.label	production	

	

cf	bind-service	learning-spring-boot-images	learning-spring-boot-mongodb	

cf	set-env	learning-spring-boot-images	spring.data.mongodb.uri	\${vcap.services.learning-spring-boot-mongodb.credentials.uri}	

	

cf	bind-service	learning-spring-boot-images	learning-spring-boot-rabbitmq	

The	images	service	needs	a	Config	Server	URI	(with	the	GitHub	label),	a	MongoDB	service	binding	and
URI	setting,	and	a	RabbitMQ	service	binding.

While	all	three	services	are	binding	to	the	same	MongoDB	service,	they	could	actually	use
separate	MongoDB	services.	The	code	was	carefully	written	to	avoid	integrating	inside	the
database.	Each	service	has	separate	collections.	However,	for	the	sake	of	brevity,	just	one
service	is	used	in	this	code.

With	this	in	place,	let's	run	the	following	configuration	script:

gturnquist$./config.sh	

	

Setting	env	variable	'spring.cloud.config.uri'	to	'https://learning-spring-boot-config-server.cfapps.io'	for	app	learning-spring-boot-eureka-server	in	org	cosmos-refarch	/	space	development	as	gturnquist@pivotal.io...	

Setting	env	variable	'spring.cloud.config.label'	to	'production'	for	app	learning-spring-boot-eureka-server	in	org	cosmos-refarch	/	space	development	as	gturnquist@pivotal.io...	

Setting	env	variable	'spring.cloud.config.uri'	to	'https://learning-spring-boot-config-server.cfapps.io'	for	app	learning-spring-boot	in	org	cosmos-refarch	/	space	development	as	gturnquist@pivotal.io...	

Setting	env	variable	'spring.cloud.config.label'	to	'production'	for	app	learning-spring-boot	in	org	cosmos-refarch	/	space	development	as	gturnquist@pivotal.io...	

Binding	service	learning-spring-boot-mongodb	to	app	learning-spring-boot	in	org	cosmos-refarch	/	space	development	as	gturnquist@pivotal.io...	

Setting	env	variable	'spring.data.mongodb.uri'	to	'${vcap.services.learning-spring-boot-mongodb.credentials.uri}'	for	app	learning-spring-boot	in	org	cosmos-refarch	/	space	development	as	gturnquist@pivotal.io...	

Binding	service	learning-spring-boot-rabbitmq	to	app	learning-spring-boot	in	org	cosmos-refarch	/	space	development	as	gturnquist@pivotal.io...	

	

(the	rest	omitted	for	brevity)	

Having	applied	these	settings,	we	need	to	restart	everything.	To	do	so,	we	need	the	following	script:

#!/usr/bin/env	bash	

	

cf	restart	learning-spring-boot-config-server	

	

sleep	10	

	

cf	restart	learning-spring-boot-eureka-server	&	

cf	restart	learning-spring-boot	&	

cf	restart	learning-spring-boot-comments	&	

cf	restart	learning-spring-boot-images	&	

Why	the	delay	after	restarting	the	Config	Server?	It's	important	that	it's	given	a	chance	to	be	up	and
operational	before	the	other	applications.	So,	let's	run	it	as	follows:

$./restart.sh	

	

Stopping	app	learning-spring-boot-config-server	in	org	cosmos-refarch	/	space	development	as	gturnquist@pivotal.io...	

Starting	app	learning-spring-boot-config-server	in	org	cosmos-refarch	/	space	development	as	gturnquist@pivotal.io...	

	

				state					since																				cpu						memory									disk									details	

#0			running			2017-01-11	10:11:07	PM			207.4%			426.7M	of	1G			146M	of	1G	

	

Stopping	app	learning-spring-boot-images	in	org	cosmos-refarch	/	space	development	as	gturnquist@pivotal.io...	

Stopping	app	learning-spring-boot-eureka-server	in	org	cosmos-refarch	/	space	development	as	gturnquist@pivotal.io...	

Stopping	app	learning-spring-boot	in	org	cosmos-refarch	/	space	development	as	gturnquist@pivotal.io...	

Stopping	app	learning-spring-boot-comments	in	org	cosmos-refarch	/	space	development	as	gturnquist@pivotal.io...	

	

Starting	app	learning-spring-boot-eureka-server	in	org	cosmos-refarch	/	space	development	as	gturnquist@pivotal.io...	

Starting	app	learning-spring-boot-images	in	org	cosmos-refarch	/	space	development	as	gturnquist@pivotal.io...	

Starting	app	learning-spring-boot-comments	in	org	cosmos-refarch	/	space	development	as	gturnquist@pivotal.io...	

Starting	app	learning-spring-boot	in	org	cosmos-refarch	/	space	development	as	gturnquist@pivotal.io...	

	

App	started	

	

(the	rest	ommitted	for	brevity)	

We	can	easily	check	their	status	like	this:

$	cf	apps	

	

Getting	apps	in	org	cosmos-refarch	/	space	development	as	gturnquist@pivotal.io...	

OK	

	

name																																					requested	state			instances			memory			disk			urls	

learning-spring-boot																					started											1/1									1G							1G					learning-spring-boot.cfapps.io	

learning-spring-boot-comments												started											1/1									1G							1G					learning-spring-boot-comments.cfapps.io	

learning-spring-boot-config-server							started											1/1									1G							1G					learning-spring-boot-config-server.cfapps.io	

learning-spring-boot-eureka-server							started											1/1									1G							1G					learning-spring-boot-eureka-server.cfapps.io	

learning-spring-boot-hystrix-dashboard			started											1/1									1G							1G					learning-spring-boot-hystrix-dashboard.cfapps.io	

learning-spring-boot-images														started											1/1									1G							1G					learning-spring-boot-images.cfapps.io

Let's	take	a	peek.	We	can	do	so	by	visiting	http://learning-spring-boot.cfapps.io	(in	an	incognito	tab	to
ensure	a	fresh	session):

We	will	see	the	all	too	familiar	login	page.

If	we	log	in	as	greg/turnquist,	delete	the	default	images	and	load	up	our	favorites	from	earlier,	we	can
expect	to	see	this:

Our	favorite	chat	channel	is	at	the	bottom	of	the	page,	as	shown	in	the	following	screenshot:

For	extra	maintenance,	the	following	script	can	be	used	to	delete	all	the	apps	(but	not	the	related	AMQP
and	MongoDB	services):

#!/usr/bin/env	bash	

	

cf	delete	-f	learning-spring-boot-config-server	&	

cf	delete	-f	learning-spring-boot-eureka-server	&	

cf	delete	-f	learning-spring-boot	&	

cf	delete	-f	learning-spring-boot-comments	&	

cf	delete	-f	learning-spring-boot-images	&	

cf	delete	-f	learning-spring-boot-hystrix-dashboard	&	

Using	the	CF	CLI,	all	the	services	are	deleted	in	a	background	job.

Doesn't	Cloud	Foundry	support	manifest	YAML	files?	While	it's	true,	manifest	files	have
limitations	that	I	prefer	to	avoid.	Hence,	I'd	rather	directly	script	the	CF	CLI	operations
directly,	or	use	something	ever	more	powerful.

Summary
In	this	chapter,	we	created	profile-specific	configuration	settings	to	handle	the	WebSocket	broker	in
either	a	local	or	cloud-based	environment.	We	plugged	in	a	custom	configuration	property	bean	and
used	it	to	grab	necessary	details	from	our	cloud	provider	so	our	chat	channel	would	work	properly.	We
then	built	some	BASH	scripts	to	deploy	things	to	the	cloud,	configure	necessary	properties,	and
restart/cleanup	if	needed.

This	is	just	the	beginning.	We	touched	upon	a	lot	of	things	in	this	book,	including	web	apps,	data
access,	testing,	tools,	messaging,	microservices,	security,	and	production.	And	we	did	it	all	reactively,
ensuring	we	use	resources	more	efficiently	and	effectively.

Think	our	social	media	platform	is	worth	a	billion	dollars?	Maybe,	maybe	not.	However,	by	using	the
length	and	breadth	of	Spring	Boot	2.0,	Spring	Framework	5,	and	its	reactor-based	paradigm	end	to	end,
we've	learned	a	lot	in	how	to	build	a	scalable	system.

Hopefully,	I've	whetted	your	appetite	to	go	out	and	discover	what	else	Spring	Boot	has	to	offer	as	you
work	on	your	next	big	project.

Please	visit	https://github.com/learning-spring-boot/learning-spring-boot-2nd-edition-code	and	"star"	it.	That
way,	you'll	be	alerted	as	Spring	Boot	2.0	reaches	GA	release	and	this	code	base	is	upgraded	to	match.
Also	sign	up	for	updates	at	http://greglturnquist.com/books/learning-spring-boot	so	you	can	be	alerted	to	the
latest	news	including	code	mods,	contests,	and	more!

https://github.com/learning-spring-boot/learning-spring-boot-2nd-edition-code
http://greglturnquist.com/books/learning-spring-boot

	Title Page
	Second Edition

	Copyright
	Learning Spring Boot 2.0
	Second Edition

	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Why subscribe?

	Customer Feedback
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions

	Quick Start with Java
	Getting started
	Spring Boot starters
	Running a Spring Boot application
	Delving into Spring Boot's property support
	Bundling up the application as a runnable JAR file
	Deploying to Cloud Foundry
	Adding production-ready support
	Pinging our app for general health
	Metrics

	Summary

	Reactive Web with Spring Boot
	Creating a reactive web application with Spring Initializr
	Learning the tenets of reactive programming
	Introducing Reactor types
	Switching from Embedded Netty to Apache Tomcat
	Comparing reactive Spring WebFlux against classic Spring MVC
	Why is Spring doing this?

	Showing some Mono/Flux-based endpoints
	Creating a reactive ImageService
	Creating a reactive file controller
	Why use reactive programming?
	Interacting with a Thymeleaf template
	Illustrating how going from async to sync can be easy, but the opposite is not
	Summary

	Reactive Data Access with Spring Boot
	Getting underway with a reactive data store
	Solving a problem
	Wiring up Spring Data repositories with Spring Boot

	Creating a reactive repository
	Pulling data through a Mono/Flux and chain of operations
	Creating custom finders
	Querying by example
	Querying with MongoOperations
	Logging reactive operations
	Summary

	Testing with Spring Boot
	Test dependencies
	Unit testing
	Slice-based testing
	Testing with embedded MongoDB
	Testing with a real MongoDB database

	Testing WebFlux controllers
	Fully embedded Spring Boot app tests
	Testing your custom Spring Boot autoconfiguration
	Summary

	Developer Tools for Spring Boot Apps
	Using Spring Boot's DevTools for hot code reloading
	Using Spring Boot's autoconfiguration report
	Making local changes and seeing them on the target system
	Writing a custom health check
	Adding build data to /application/info
	Creating custom metrics
	Working with additional Actuator endpoints
	Summary

	AMQP Messaging with Spring Boot
	Getting started with RabbitMQ
	Installing RabbitMQ broker
	Launching the RabbitMQ broker

	Adding messaging as a new component to an existing application
	Creating a message producer/message consumer
	Displaying comments
	Producing comments
	AMQP fundamentals

	Adding customized metrics to track message flow
	Peeking at Spring Cloud Stream (with RabbitMQ)
	Introduction to Spring Cloud
	Logging with Spring Cloud Stream

	Summary

	Microservices with Spring Boot
	A quick primer on microservices
	Dynamically registering and finding services with Eureka
	Introducing @SpringCloudApplication
	Calling one microservice from another with client-side load balancing
	Implementing microservice circuit breakers
	Monitoring circuits
	Offloading microservice settings to a configuration server
	Summary

	WebSockets with Spring Boot
	Publishing saved comments to a chat service
	Creating a chat service to handle WebSocket traffic
	Brokering WebSocket messages
	Broadcasting saved comments
	Configuring WebSocket handlers

	Consuming WebSocket messages from the web page
	Moving to a fully asynchronous web client
	Handling AJAX calls on the server
	Introducing user chatting
	Sending user-specific messages
	Registering users without authentication
	Linking a user to a session
	Sending user-to-user messages

	Checking out the final product
	JSR 356 versus Spring WebFlux messaging
	Summary

	Securing Your App with Spring Boot
	Securing a Spring Boot application
	Using Spring Session
	Creating a Gateway API

	Securing the chat microservice
	Authentication versus authorization

	Sharing session details with other microservices
	Securing the images microservice
	Wiring in image ownership
	Authorizing methods

	Tailoring the UI with authorization checks
	Securing WebSockets
	Tracing calls
	Securing the Config Server
	Securing the Eureka Server
	Summary

	Taking Your App to Production with Spring Boot
	Profile-based sets of beans
	Creating configuration property beans
	Overriding property settings in production
	@ConfigurationProperties versus @Value

	Pushing app to Cloud Foundry and adjusting the settings
	Summary

