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Information for readers

Information for readers

The demand for ever more flexible solutions in the field of mechanical engineering
is also changing the methods by which the control systems themselves are pro-
grammed. Since we have already decided that mechatronic systems are the right way
to go, the need to develop highly modular software and the programming techniques
suitable for software of this kind is posing tough challenges. As the trend in favor of
creating modular functional units within machines increases, it is inevitable that this
modularity will be reflected in the software. The extensions defined in IEC 61131-3
ED3 relating to object-oriented programming go a long way to support the ongo-
ing efforts to achieve modularized software. Designers of automation engineering
software will thus have to deal with changes similar to those experienced by the
programmers of PC software from the mid-1980s onwards.

If we want to create application software for automation systems that is far superior
in design and structure, easier to modify and, above all, modular, then there will
be no alternative to object-oriented programming. With software version 4.5 of
the SIMOTION system, it will become possible to use object-oriented programming
mechanisms as defined in IEC 61131-3 ED3. The purpose of this book is to help pro-
grammers get to grips with this new way of thinking and programming. Illustrative
examples have been provided for each separate topic to make the learning process
easier. Each example is based on and relates to previous examples that have been
provided to explain individual topics. At the end of the book, the reader will find a
reusable machine module that is fully implemented in OOP.

This book will be useful for anyone who wants to learn about object-oriented pro-
gramming for automation engineering applications. The first part of the book
focuses on explaining the basic principles of object-oriented programming and is
based on the implementation of OOP in SIMOTION according to IEC 61131-3 ED3
(chapters 1 to 6). The second partis a general introduction to the SIMOTION system
itself (chapters 7 and 8).

We would advise readers who are not yet familiar with SIMOTION to start by reading
the second part “Introduction to SIMOTION”. This explains the basic principles of
the SIMOTION control system and its engineering system SIMOTION SCOUT.

For readers to fully understand and learn the content relating to object-oriented
programming, they must already be familiar with high-level programming lan-
guages such as Structured Text or Pascal. They must also have a basic knowledge of
programmable logic controllers and their system behavior.

Readers will also notice that descriptions of certain issues are repeated in different
chapters. This approach was motivated by our desire to manage with as few cross
references between chapters as possible. We have therefore made it possible for our
readers to jump between chapters without losing track of the discussion.

The examples we have included were specially developed for the book and they all
build on one another. We deliberately kept them simple because we wanted them to
clearly demonstrate the potential uses of object-oriented mechanisms. While all our
examples are based on this idea, some of them still managed to grow to a significant
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Information for readers

size. We obviously realize that nobody wants to go to the trouble of typing out all the
program code printed in this book. We have therefore made the examples from this
book available to our readers as an Internet download. You will find corresponding
links to them at www.siemens.com/simotion. Please note the conditions for use of
the examples.

Personal comments by the authors

Michael Braun

I have thought a very great deal about this chapter and was determined for a long
time that I wouldn’t write it at all. Perhaps because I myself am someone who often
skips this kind of chapter in books. But life is a learning process and after giving the
matter some thought, I decided that this chapter would give me the opportunity to
tell our readers something about myself and my motivation for writing this book.

From the very beginning of my career, I have followed developments in the field of
automation engineering and found them to be extraordinarily exciting. My atten-
tion was primarily focused on the design and development of software. To develop
programs that will ultimately allow a production plant to do its job properly was,
and still is, an occupation that I find thoroughly exhilarating, butitis also an activity
that keeps the programmer on a continual learning curve. The ability to write good
software is not something that falls out the sky into your lap (it didn’t fall into mine
either!). In my experience, you go through three distinct phases as a programmer.

During the first phase, you focus your attention on learning the basics of a new
system or programming language. Certain relationships are not quite clear and it
is simply a question of taking the first tentative steps. You are learning the basics
and writing your first programs. As a general rule, you will later throw these into
the waste bin because you have implemented them ineffectively or perhaps in an
overcomplicated manner. But because you have got them to work, you make the
transition into the second phase.

During this phase, you are reaching the point where you are familiar with all the
elements of the language and can use “clever” tricks to formulate solutions. The fact
that nobody can actually understand the solution is something that you deliberately
ignore, such is your pride in the ingenuity and brilliance that have flowed into the
creation of this software. Any pangs of conscience sink without trace in this mood
of euphoria! This is the most dangerous time in your life as a programmer because
you are writing unreadable code. It is now time for a helpful colleague to come along
and tell you in no uncertain terms that your programs are rubbish (happened to
me as well). You’ll get another chance to see the error of your ways if you find you
cannot get rid of this “brilliant” code and are obliged to take on the responsibility of
maintaining it (this is also a great opportunity to prove that you are “indispensable”).
These shocks will help you get through the second phase.

If you have reached the third phase, you will be over the worst and finally capable
of writing comprehensible program code that is easy to maintain - in other words,
you are creating reusable software. Every programmer should endeavor to reach
this phase as quickly as possible.

14
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Creating software for modern mechanical engineering applications is a team task.
The times when a developer hatched software in a quiet little room behind closed
doors are long gone. The creation process is driven by a continuous exchange of
information between different members of the team, but also communication
between different engineering disciplines. The more efficient the communication
between all the participants, the more effectively individual developers can com-
plete the tasks specifically assigned to them. Software development is an iterative
process that undergoes repeated rounds of improvement. With each improvement,
the development team gets closer to some imaginary optimum. I say “imaginary”
because the definition of “optimum” also changes over time.

Itis thus a fact that the software never actually gets finished. As development work
progresses, it is inevitable that a deliverable version of the software will sooner or
later emerge, but this delivery state is actually the basis for the next development
stage.

Like the user software, the development system is itself also a kind of software that
undergoes changes. Object-oriented programming is an extension of the develop-
ment system for automation engineering software which can, and should, make life
much easier for developers of application software than the conventional develop-
ment environments in which they have previously worked. But for this to succeed,
itis essential that programmers become familiar with and thoroughly understand
the mechanisms of this programming method.

It was for this purpose that a description and explanation of object-oriented pro-
gramming mechanisms was added to the SIMOTION documentation. The volume of
this documentation ultimately became so extensive that it led to the idea of writing
abook about OOP. You are now holding this book in your hands and I sincerely wish
that it will help you to think up many new ideas for improving your own software.
Learning and implementing what you have learned is something you have to do
yourself, but please don’t forget to have fun as well!
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When Michael Braun first came to me with the idea of writing a book about object-ori-
ented programming, my initial reaction was: Why do we need to write yet another
book on this subject? After all, countless publications about this topic from the
viewpoint of a myriad of different programming languages and applications already
exist. But when I had given more thought to the matter, I quickly realized that there
is not much literature available that specifically relates to automation engineering
or gives adequate support to those who wish to learn object-oriented programming
techniques for control systems.

Based on my own professional practice, I am well aware of the opportunities and
potential that can be exploited when OOP is used. This is true, of course, only if OOP
is directly supported by the programming environment and by the programming
language used. With the implementation of the 3rd Edition of the IEC in SIMOTION,
we have now given our users direct access to the world of OOP. But this alone is not
enough.

In the course of many discussions with Michael Braun and other colleagues who
are pursuing this development with enthusiasm, it became clear to me that sim-
ply learning the new language constructs is not sufficient. In order to achieve a
sustained effect, it is also important to understand why one can or should use a
particular language element or technology. Listening to the questions posed by my
colleagues, it became apparent that simple examples of programming constructs
would not be enough and we would also need to give guidance as to which new solu-
tions for automation engineering tasks could be developed by using object-oriented
programming.

We have discussed many of these aspects in this book. We have aimed to help readers
get to grips with the subject of object orientation using examples from the field
of control engineering. To those readers who already have experience with other
object-oriented programming languages we will try to explain the specific require-
ments of control engineering. Control-specific languages are specially formulated to
ensure that control system software can be programmed in such a way that program
runtimes do not exceed certain limits, in other words, to ensure that the number of
runtime errors during program execution are minimized. As aresult, readers of this
book will search in vain for any reference to constructs for dynamic object generation
and destruction. The reason that constructs of this kind are not offered in the control
programming environment is a simple one: they could have a significantly negative
impact on the real-time capability of the application.

When I set out on my professional career path, the programming language Struc-
tured Text (ST) was still one of the rank outsiders in the field of control technology.
The increasing complexity of programs of the kind we are now encountering in
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the field of motion control in particular is literally forcing us to adopt high-level
programming languages like ST. A logical continuation of this approach can be seen
in the support for object orientation afforded by control systems. It is my opinion
that this method of control system programming will have become the standard for
automation solutions in just a few years time.

By writing this book, we hope to contribute in some way to helping object-oriented
programming find broader acceptance in control engineering applications. With
respect to the modularity and combinability of software modules, the potential ben-
efits of object-oriented programming, particularly for more complex applications,
are enormous. In the meantime, I would like to join my colleague Michael Braun
in wishing our readers much enjoyment and patience in learning and trying out
their new skills.
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1 Developments in the Field of Control
Engineering

One of the most important extensions to IEC 61131-3 ED3 describes the mechanisms
for the object-oriented programming of control systems in automation applications.
This development has provided a solid basis for standardizing programs used in
automation systems and offers a solution for overcoming the limitations associated
with procedural programming methods.

As a result of the increasing trend to make mechanically engineered systems as
flexible as possible, it has become essential to change existing programs in such a
way that modular machine concepts are also reflected in the software. As a result,
modularization is becoming the guiding principle for designing the programs of
the future. Modularized software comprises modules that are fully functional and
tested as independent entities, but they can be combined to create a single functional
unit within different machines.

Anyone wishing to attain, and then retain, a competitive position on the interna-
tional market must be capable of minimizing commissioning times. This can be
achieved only if standardized program modules function reliably when combined
with other modules so that any corrective work during the commissioning phase is
either unnecessary or reduced to an absolute minimum.

The requirements to be fulfilled by the application software architecture and the
automation systems are therefore as follows:

The software must have a modular structure. The modules are totally
encapsulated with the ability to function fully independently.

The independent design of the modules means that even data belong to a

module, i.e. are an integral part of that module. In other words, it must be
possible to link data to the module and to prevent any changes from being
made to the data outside the module.

The ability to test modules as independent entities is crucial if they are to
be combined and assembled to create a functional unit. The modules must
therefore be designed in such a way that they can be individually tested in a
test environment.

Combining different modules in an environment must involve only mini-
mal software modification, or none at all. To achieve this goal, interaction
between modules is implemented on the basis of neutral interfaces.

Since the machinery as a whole including all its individual components
will undergo modernization over its service life, it is absolutely imperative
that the machine software can be adapted accordingly. However, any mod-
ernization process should, wherever possible, preclude the need to modify
tried-and-tested, functionally reliable modules.

It must be possible for the machine manufacturer’s software module devel-
opers to work as independently of one another as possible. To this end, it
is necessary to use programming languages with appropriate mechanisms
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1.1 The early days of programmable logic controllers (PLCs)

to reduce interdependencies between software modules. Agreement on
the interfaces provided to allow data exchange between different software
modules shall therefore be capable of being defined.

To satisfy all the requirements described above, we need to find a better program-
ming model than the procedural methods presently used to write control engineer-
ing programs.

Modern automation systems have been evolving through a process of development
for many years. During this time, the methods used to program them have also
changed in various ways. It was advances in the field of automation engineering that
necessitated these changes, and these in turn influenced users. Any forced change
was met with a degree of resistance by some, and it was this attitude that blocked the
acceptance of new approaches to programming. Programmers were only prepared to
accept new methods if their concerns or misgivings were addressed and alleviated.

The advent of object-oriented programming hails another paradigm shift in auto-
mation engineering. As programmers experienced the advances made in the field of
automation engineering, they developed a specific programming methodology for
individual applications. These methods now need to be examined, changed where
necessary, or even rejected altogether. But this could again engender misgivings or
reservations, and if it is not possible to alleviate these, they will be an obstacle to the
introduction of new methods. Programmers may well have adopted this mindset,
for example, as a result of their past experience of change.

For this reason, we are going to allow ourselves a brief tour through the history of
automation technology and pay special attention to the consequences of automa-
tion advances on programming. While the development stages described below are
certainly representative, they are not necessarily given in the correct chronological
sequence. Nor does the description claim to be complete. Nevertheless, each of these
advances actually resulted in changes to programming methods. We now need to
think about these consequences and, where misgivings and reservations from the
past still exist, find effective arguments to counter them.

1.1 The early days of programmable logic controllers
(PLCs)

A notable feature of early programmable logic controller (PLC) applications was
the fact that users of this new control generation knew virtually nothing about pro-
gramming. Before the days of the PL.C, automation systems had been implemented
using hard-wired relay controls, contactor controls or electronic components.
Machine designers, commissioning engineers and service personnel were suddenly
confronted with programming instead of wiring. For this reason, programming
methods needed to be devised with a view to what users already knew.

At this time, users understood how to read circuit diagrams and use wiring in order
to implement functions. It therefore made sense to design programming methods
which supported these capabilities. Thus was born the “ladder logic” programming
method (Figure 1) with resemblance to a circuit diagram, and the “function block
diagram” system that is based on electronic diagrams.
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Figure 1 Example of a ladder logic program

More complex function elements of the system such as timers or counters were
represented as a box with corresponding inputs and outputs. To allow users to
create their own complex function modules, the system provided them with a tool
to program their own function blocks or functions and these were represented in
turn as complex elements (boxes) with inputs and outputs in the ladder diagram or
function block diagram.

More complex elements of this kind needed to be programmed in a different way
to the functionally limited ladder or function block diagram elements. Users were
therefore provided with two programming languages with syntax similar to assem-
bler language, i.e. Statement List (STL) (Figure 2) or Instruction List (IL).

#Switch On
"Automatic Mode"
#Engine_On

#5witch Off
#Failure

W"’%OEM%C

#Engine_On #Engine Cn == Engine is switched on

Figure 2 Example of SIEMENS STL

These enabled users to create programs of significant complexity which supported
the programming, for example, of computation functions and branches within the
program. However, each control system manufacturer created their own set of com-
mands and there were wide variations between the command sets available. For this
reason, it was extremely difficult to transfer programs from one control system to
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1.1 The early days of programmable logic controllers (PLCs)

another and users were required to learn the different “dialects” and approaches of
each individual control system manufacturer.

Another disadvantage of these assembler-like mnemonics (= a plain-text,
human-readable abbreviation for an assembler instruction) was that the scope for
program structuring was extremely limited and the structuring tools were very
laborious to use. Furthermore, many users also felt compelled to teach themselves
how to program. As a result, some programs were readable to a greater or lesser
extent, while others contained sections of code that were impossible to maintain.

Despite all these problems, the ease with which programs could be changed and
the flexibility this offered was an immense advantage over conventional wiring,
and this was what eventually swept the programmable logic controller to triumph.
Programming therefore became an established, and now indispensable, part of the
mechanical engineering process.

Obstacles

The ease with which software programs could be changed also encouraged some pro-
grammers to work according to the “trial and error” principle. They were particularly
susceptible to this temptation when working under time pressure to make a machine
function ready for acceptance or delivery. This practice of putting the finishing touches to
a program by testing it during commissioning resulted in an unacceptably large number
of program variants and ultimately to software that had no structure. This problem had
a lasting, negative impact when it came to reusing programs.

It can often be observed in companies today that the time originally planned for writing
software is continuously squeezed as a machine construction project progresses. The
company has agreed a delivery deadline, but further technical changes to the machinery
(including those requested by the customer) lead to unplanned additional expenditure
or labor and exacerbate the scheduling situation. Changes to the system design can
probably never be avoided because they are generally justified for technical or other
reasons. Nonetheless, investment of substantially more labor in a project should logically
lead to an extension of the delivery deadline.

The end customer will only accept a deadline extension if it can be proved incontrovertibly
that the extra outlay was unavoidable due to requests for changes made by the customer.
But this proof can be provided only in cases where the scope of supply was clearly and
unambiguously formulated. If the scope of supply is not clearly defined when a system is
sold, it is inevitable that the scope promised by the seller will be open to interpretation.
In such cases, the end customer will generally demand delivery by the agreed deadline.
As a result, the time scheduled for programming software is squeezed. “It's so easy to
change software and you can do it so quickly”. This attitude often leads to the problem
that unfinished software is handed over to the commissioning team and has to be finished
within whatever time remains. The software cannot be made to conform to the specified
design guidelines and becomes less reusable.

Solutions

Precise software planning is the key to success. Software functions can be planned effi-
ciently only if the relevant requirements are identified in advance. On the basis of these
requirements, it is possible to work out how the software must be implemented and
structured. The time required to develop the software can be calculated and the relevant
deadlines planned accordingly.
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Regular consultation with the customer prevents any unpleasant surprises for either party.
For this purpose, the implementation schedule must be discussed with the customer and
recorded in writing at an early stage.

A process for implementing development of the software must also be set out. The status
and progress of the development task is then clearly identifiable and any deviations from
the agreed process can be picked up early. When deviations are identified early enough,
there is still time to take corrective action.

1.2 The PLC learns to communicate

The early PLCs had limited resources (e.g. memory capacity or processing perfor-
mance). Nor was fine scaling of the different performance classes of control systems
possible as it is with modern systems. This lack of scalability meant that it was
necessary to use multiple control systems in a single plant, and where several con-
trol systems were deployed, they needed to be synchronized with one another. One
of the simplest methods, but also one with extremely limited possibilities, was to
synchronize different controls via inputs and outputs. This option was not viable in
cases where large volumes of data needed to be exchanged.

The problem was resolved by using special communication modules that could be
inserted in the PLC. These “computer links” (e.g. RK512) utilized standardized pro-
tocol frames (e.g. 3964R) to exchange data and were operated by driver blocks in
the PLC. Even though the links provided by these modules were essentially no more
than point-to-point connections, their use increased the communication capability
of PLCs. Figure 3 shows a compact control system dating from around 1980.
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Figure 3 SIMATIC S5-150K
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Another advantage of these computer links was that they provided a master com-
puter interface. Using the same technology, therefore, it was possible to establish
communication links between control system and master computer levels in order
to record production data.

Since programmers were required to synchronize control systems by programming
communication links between them, they were also forced to create programs that
included the relevant communication mechanisms in addition to the implemented
actual control task. This meant that they had to take the following aspects into
account when designing the software:

The link to individual devices/control systems needed to be connected and
possibly disconnected. The system behavior when individual components
were switched on or off also needed to be taken into account.

Connections needed to be managed depending on the number of nodes.
The data needed to be structured accordingly and transferred to / dis-
patched from the relevant communication module for the purpose of data
exchange.

Connection monitoring systems needed to be implemented and a suitable
response programmed in the machine operating sequence.

There was a risk of telegram loss under certain operating conditions. This
could happen, for example, if a control system was unable to empty the tele-
gram buffer of a communication module because its cycle time had been
extended temporarily. In this instance as well, it was necessary to engineer
suitable program responses.

Production-relevant data needed to be collected in the control system and
prepared for transfer to master computers.

Obstacles

Control system programs increased in size due to the addition of communication mech-
anisms. These bigger programs needed to remain manageable. Suitable structuring of
the software and the modular programming this involved were the logical consequences
of the drive towards program manageability. Not only were programmers required to
concentrate on programming machine operating sequences, they also needed to consider
the data structures in the control system. It seemed meaningful, on the one hand, to
separate the communication functions from the machine operating sequences. On the
other, however, these sequences were naturally influenced by the communication data.
A way needed to be found to effectively combine communication functions with machine
operating sequences. But it was also important to ensure that software changes in one
area (e.g. machine operating sequence) would not automatically entail software changes
in another area (e.g. communication).

Solutions

Without clear definitions and structures, software designs can become so idiosyncratic
that they become difficult or even impossible to maintain and upgrade in the long term.
Software design, modularization and standardization of software are still clearly defined
objectives of the development process. By creating reusable software components and
implementing a well-planned structure, it is possible to reduce the outlay for software
development and plan deadlines with greater confidence.
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1.3 Development of fieldbus systems

The centralized structure of programmable logic controllers with central processing
units (CPU) mounted in the same rack as I/O modules made it necessary to increase
the volume of wiring between the control cabinet and actuators (such as valves)
installed in the machine or control components (such as switches and buttons) that
were needed to control the machinery. It was the expense of installing this wiring
that provided the impetus for change. The elements (actuators and sensors) were
installed in the machine rather than in the control cabinet and the goal was to find
a way of connecting them to the PLC using less wiring.

With this objective in mind, the control system manufacturers developed new com-
munication modules that provided a serial bus link between the control system and
field devices. By deploying these fieldbuses, it was possible to reduce the volume of
wiring to actuators and sensors in the field.

Reducing the volume of cabling also had a further benefit. Since actuators and sen-
sors were now linked to the PL.C via a bus system, it was no longer necessary to have
such a large number of /O modules in the PLC rack. The terminal strip converters
were relocated directly into local control boxes, allowing use of significantly smaller
control cabinets.

But this development objective of achieving a substantial reduction in wiring ulti-
mately increased the complexity of the software design process:

It was necessary to provide systems to monitor proper booting when exter-
nal I/O devices connected to the bus were powered up.

Failure of a component during operation needed to be detected by the
software and modeled by a suitable response in the process.

The software developer needed to work out a substitute value strategy for
inputs and outputs that would no longer be available if external I/O devices
failed. This substitute value strategy had to be integrated into the relevant
programs.

Obstacles

As 1/0 devices were relocated to external, bus-coupled components, the complexity of
the software design process increased yet again, but remained relatively easy to manage
as long as the 1/0 devices were purely digital or analog. As the technology continued to
advance, however, ever more complex I/O devices were coupled to buses and needed to
become a particular focus of attention for software developers. Implementing successful
interaction with 1/O components is not easy, especially when some of them are complex
and capable of independent operation. This task becomes even more difficult if the com-
ponents have their own independent operating sequence that needs to be synchronized
with the machine process. If the link to a component of this kind fails, the stop response
that may be required is relatively easy to manage. However, system restart after the stop
command may well involve significantly more complex programs. To achieve a successful
system restart, the main process requires more information and this needs to be acquired
by an additionally programmed information exchange with the affected I/O component.

24



1.4 Integration of display systems in PLCs

Solutions

A well-planned software design is absolutely essential if these interrelationships are to be
managed effectively. Without a suitable software design, many unique software versions
are created over time as machines are delivered — an approach which makes software
maintenance significantly more difficult and renders modularization and standardization
completely impossible.

In conclusion, it is fair to say that fieldbus systems and their components had an enor-
mous impact on programming, as we will see later on (see Chapter 1.6 “Drives become
fully-fledged bus system nodes1.6").

1.4 Integration of display systems in PL.Cs

As the complexity and size of installations increased, it became necessary to provide
the machine operator with a clear overview of process events. This entailed a great
deal more than just an indication of the machine status signaled via lamps and
illuminated pushbuttons. Machine operating sequences were becoming ever more
complex, necessitating a general improvement in the quality of display systems.
Driven by this necessity and aided by continuous advances in computer technology,
it became economical to deploy visualization systems in the form of plug-in modules
in the programmable logic controller. Control system manufacturers developed
single-board computers that could be plugged into the PLC and allowed screens to be
connected as a Human Machine Interface (HMI). These mini-computers exchanged
data with the PLC via the backplane bus and had their own driver blocks in the PLC
CPU. Manufacturers developed configuring tools and supplied these to users so that
they could configure their own displays. One of the first screen systems of this kind
for SIMATIC controllers was the WS400 visualization system (comprising the WF470
display module and various operator panels) developed by Siemens (Figure 4).

Using this visualization system, it was possible to display the plant as a block graphic
and show the status of individual machine modules. Further configurable detail
views provided the machine operator with more precise information about indi-
vidual modules. The visualization system was capable of displaying the machine
operating sequences for executing processes and also featured a standardized fault
diagnostics system that indicated any problems.

Programmers were therefore required to structure the software and data in such a
way that information could be transferred to the visualization system:

Data models had to be modularized for display purposes at least, and
scalability for different plant sizes needed to be taken into account. It was
only by structuring the software in this way that it could be reused across
different plants.

The operator needed to be supplied with detailed information if any faults
developed in the plant. Programmers therefore needed to ensure that the
relevant plant faults were transferred to the visualization system by means
of flags in the control system and that the corresponding fault messages
were assigned to the flags by text lists.
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Figure 4 WF470 with compact operator panel

= They also had to program status messages for transfer to the HMI system.

= Since it was necessary to shut down plant sections or even the entire plant
when serious faults occurred, fault-signaling processes often resulted in the
display of many other follow-on faults in addition to the actual fault cause.
This flurry of fault messages did not help the operator or service engineer
to resolve the problem. The consequence for the software design process
was that programmers now also needed to consider a means of evaluating
initial and follow-on faults and to integrate a suitable evaluation strategy
into the plant software.

= The integration of visualization systems into PLCs forced programmers to
implement additional modules in the plant software, modules that were
absolutely essential to effective operation of the machine but had little to do
with the actual control task. The size and complexity of programs continued
to increase as a consequence. Modularization and clear structures had
become even more important as efforts were made to create software that
could be maintained and upgraded. System programming nevertheless
continued in the LAD/FBD or STL languages. Sequential processes were
programmed with the GRAPH-5 language that had been specially developed
for the purpose.

Modern visualization systems are linked to the control system via Industrial Ether-
net. Configuring tools for HMI systems are a standard element of the engineering
software and function as integral components of appropriate software suites. Achiev-
ing the required degree of software modularization and developing suitable data
models in the control system still remain a key responsibility of software developers
and designers.
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Obstacles

Modern visualization systems allow direct use of PLC tags in configured plant displays. This
is one of the positive features that is often highlighted when HMI systems are marketed.
It seems simple enough and implies that users can easily create any plant display of their
choice. The drawback of this system is that it creates tightly coupled software components.
This means that changes to the machine program then also entail changes to the tag
management system and thus to changed tag addresses. As a consequence, the HMI
displays must at least be recompiled and reloaded. Loose coupling between software
components and independent software development are then no longer an option.

Solutions

A much better solution is to define a well-planned interface to the HMI. The machine
program transfers the necessary data to the interface and fetches from the interface the
data required for an operational sequence. Only interface tags are used in plant displays.
This approach ensures that data are loosely coupled. The HMI and control system can be
loaded independently of one another, and the control program and display configuring
software can be developed independently. Another advantage of this solution is that data
do not need to be collected across the entire program, but can be transferred in a block to
the HMI system, a solution that guarantees significantly faster transfer rates.

1.5 Integration of motion control in PL.Cs

The call for machine manufacturers to build machines that could be retooled quickly
for manufacturing new products made it necessary to achieve a greater flexibility
of machine motion. This resulted in an increasing trend to equip motion axes with
electric drives rather than with the conventional mechanical or hydraulic solutions.
The deployment of electric drives made it necessary in turn to use systems that
supported flexible positioning of the drive. As with HMI systems, positioning mod-
ules with special microcomputer systems that could be plugged into the PLC were
developed and so made it possible to flexibly position drives in the machine. To
enable positioning modules of this kind to be connected to the drive systems used in
those days, they needed to be equipped with analog setpoint outputs and be capable
of detecting the axis position via connectable encoder systems.

The WS600 system (Figure 5) was one of the first positioning systems developed
for the SIMATIC PLC. This system comprised the WF625 positioning module and the
WS600G display system.

Communication between the user program and the positioning modules was han-
dled by a standard software package. Data blocks with data content that needed to
be administered by the user program acted as the interface to the user program.

The traversing programs were programmed via the WS600G operator panels and the
programming methods were based on the semantics relating to numerical control of
machines defined by DIN 66025/ISO 6983. It was thus possible to adapt the traversing
movements more flexibly to the requirements of the production process.
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Figure 5 S5-150K with WF625 and WS600G

This trend towards integrating motion control functions into PLCs had a serious
impact on the PLC control programs. The user program became responsible for
managing the traversing movements in the form of CNC programs and the coordina-
tion of different modules. The fact that the positioning modules had their own cycle
that was generally considerably shorter than the PLC cycle needed to be taken into
account in the PL.C program. Owing to these cycle time differences, synchronization
routines had to be added to the PLC program.

If the traversing motion was executed faster than the time it took for the PLC to
complete a scan cycle, then the signal changes of the positioning module could
not be registered correctly in the PLC program. For the person programming the
PLC, this made it difficult to determine whether or not the positioning process had
actually taken place. When it came to fully automated processes, this lack of certainty
was not acceptable. The PLC programmer therefore needed to take measures in the
sequential program to ensure that positioning operations were clearly terminated.
This could be done, for example, by implementing functions that compared the
actual and target positions. Since it was possible to change the position values by
entering programming commands at the WS600G operator panel, the programmer
needed to ensure that the target positions required to perform the comparison were
dynamically calculated so as not to impair the flexibility of the plant. The additional
programming effort required to achieve this goal should not be underestimated.

These problems were solved by advances in the design of positioning modules which
saw the implementation of handshake mechanisms at the interface. This develop-
ment helped make PLC programs slightly simpler again.
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Motion control functionality is fully integrated in modern PLC systems and an inte-
gral component of the PLC’s operating system. Despite this integration of motion
control functions, it is still necessary to invest programming time and effort in order
to ensure effective organization of motion control movements:

Programmers were forced to expand their domain knowledge in order to
understand the processes managed by the motion control program. The
knowledge they acquired lead inevitably to changes in the way the machine
operating sequence was programmed.

They also needed to understand the control processes of the posi-
tioned-controlled positioning modules and the subordinate drive control
system. Errors occurring in these functional areas needed to be detected
and managed by appropriate reactions in the machine operating sequence.

Every positioning module works autonomously. As a result, it became
necessary to synchronize positioning movements across multiple modules
in the PLC. In this context, the most challenging task was to manage inter-
ruptions to the process caused by errors and restart the process smoothly
again afterwards.

In addition to organizing the motion control functionality itself, it was in
some instances also necessary to create routines to manage the CNC pro-
grams in the PLC so that various retooling operations could be conducted
quickly and automatically.

Integration of motion control functionality into programmable logic controllers
did and does represent an important step in the process of enhancing plant flexi-
bility. Motion control functionality has become an indispensable feature of modern
machinery because the shift towards mechatronic systems is already in full swing.

Obstacles

Motion control functions are now an integral component of control systems. As in the past,
itis essential for programmers to have the required level of domain knowledge if they are
to create useful process plant programs. It is precisely because motion control functionality
is integrated in the control system that software structuring and modularization have
become so important. If we ignore this fact, it will simply be impossible to make further
progress towards creating more abstract software modules.

Solutions

For programmers to write programs that are properly structured and modularized, they
need to have an understanding of the domain engineering associated with motion control.
Since this expertise does not come about by itself, the relevant personnel need to be given
the time and opportunity to acquire the knowledge they need.
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1.6 Drives become fully-fledged bus system nodes

The development of fieldbus systems for programmable logic controllers signifi-
cantly reduced the volume of plant wiring required. As drive technology evolved
from analog solutions to digital systems with processors, it was a completely logical
step to implement the connection between controller and drive system via bus links.
Bus systems had been a long-established engineering feature of control systems and
use of this technology to couple several drives to a single control system was easy to
accomplish. Standards committees like the PROFIBUS User Organization (PROFIBUS
Nutzerorganisation PNO) had been working to establish standardized protocols for
data exchange between control systems and drives. For example, they drew up the
standardized PROFIdrive profile that was first defined for PROFIBUS and later for
PROFINET (Industrial Ethernet).

As a consequence, control engineering software has been strongly influenced by the
integration of motion control functionality in control systems and the use of digital
buses to link drive systems. It is the responsibility of programmers to familiarize
themselves with the specific characteristics of drive technology and to implement
appropriate solutions in their software.

Obstacles

Modern drives are coupled to the control system via a bus or may even be an integral
component of a motion control system. The software must be capable of supplying the
drives with the data required for the process flow. It may also be necessary to display drive
data on visualization systems. Detection of drive system faults for processing in the plant
software is just as important as it is with positioning systems.

Programmers are therefore required to understand the basic principles of drive systems
and know which drive data (including communication channels) are relevant from a pro-
gramming perspective. This expertise is vital for designing suitable software concepts for
plants equipped with drive systems and ensuring that software applications are modular
and easily expandable.

Now that drive and motion control functionality form an integral component of the control
system, it may be necessary to include further calculations in the programs to adapt the
control process to certain operating situations. These might include, for example, dynamic
calculation of correction values in response to changing circumstances or operator inter-
ventions. The use of high-level programming languages (e.g. Structured Text) has become
indispensable as a means of keeping more complex calculation processes manageable.

Solutions

As mentioned in the previous chapter, it is essential to give the relevant personnel time
and opportunity to acquire the required degree of domain knowledge. Motion control
without drives doesn't exist. Knowledge about drive technology is just as important as
an understanding of motion control.
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1.7 PLC and PAC - what is the difference?

The history of development recounted in the previous chapters has been told from
the perspective of the programmable logic controller (PL.C). The first PLCs were born
over 40 years ago and the scope of PLC functions has been expanding ever since.

The innovations that have emerged in the field of personal computer (PC) technology
during the intervening period have given rise to another technical development. As
the price of PC components gradually falls, it is becoming increasingly economical
to integrate PC solutions in machinery. Rugged PCs suitable for industrial use have
come onto the market to meet the demand for computers that can function reliably in
harsh industrial environments. These PC-based controls have been expanded to fea-
ture connection technology for I/O components. Their appeal was further increased
by the integration of visualization systems (HMI) and the ability to utilize existing
communication mechanisms (Ethernet). Thus was born the Programmable Auto-
mation Controller (PAC). PACs combine the capabilities of a PC with the functional
scope of a PLC.

The advantages of PC-based systems include extremely high performance, large
memory capacity and outstanding ease of programming. Using appropriate software
modules in the PAC it is possible to program control and PLC functions, motion con-
trol capabilities and much more besides. Since PACs are based on personal computer
technology and therefore have multi-tasking-capable operating systems, they can
be used to advantage to implement automation engineering solutions.

Thus, two different development routes have emerged in the field of automation
engineering. The first route involves the expansion of PLCs through the integra-
tion of functions for communication, visualization, closed-loop control and motion
control. The second route started with the PC and involves enhancement of this
technology to include supplementary PL.C programming and I/O connection options.
It is now no longer possible to draw a clear boundary between PLC and PAC since
both systems are offering an increasingly similar scope of functions.

When it comes to choosing the right control systems, users have to depend on the
manufacturer’s description. If a manufacturer describes his control system as a
Programmable Automation Controller, then it is fairly safe to assume that it is a
PC-based control system. If the manufacturer uses the term “PLC” to describe the
control, it might very well be a system with PC-like functionality.

1.8 General conclusions about past developments

Every development increased the workload on programmers and entailed expansions
to processing plant programs. Software developers needed to work continuously to
keep abreast of advances in domain engineering and so ensure that modern-day
plants can be automated by software. Control engineering has evolved into a highly
complex technology and is a far cry from its beginnings in those early programmable
logic controllers.

The multitude of tasks to be implemented in a modern control system requires
efficient planning and proper design of the software. Modular programming and
well-planned interfaces between modules ensure that the software can be easily
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maintained and improved. Use of high-level programming languages such as
Structured Text or SCL are absolutely essential to the successful management of
complex software. High-level languages offer a significantly simpler, clearer means
of describing a software solution. It becomes easier to read and interpret program
codes.

If users regard classic PL.C programming languages like LAD/FBD or STL as an essen-
tial standard, it will not be as easy to meet the challenges of the future because
appropriate description languages will be needed if the full scope of functions
integrated in control systems is to be used meaningfully. It is only by the use of
high-level programming languages that more abstract programming methods will
become possible.

That notwithstanding, it is still justifiable to use LAD or FBD for the purpose of
expressing logic combinations because logic programs written in these graphical
languages are extremely easy to understand and analyze. Each programming lan-
guage should be used according to its own merits.
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2 Basic Principles of Object-Oriented
Programming

In this chapter we will briefly explain the basic principles of object-oriented pro-
gramming (OOP) so as to provide readers with a sound foundation in the subject
before they progress to further chapters. We have restricted our observations to the
essentials and made a conscious effort to keep explanations as brief as possible. A
broad range of books and information about object-oriented programming and the
philosophies that underlie OOP are available on the Internet.

This book does not claim to give a comprehensive explanation of object-oriented pro-
gramming nor a complete analysis of IEC 61131-3 ED3. Its primary goal instead is to
give the reader a useful introduction to the subject of object-oriented programming
based on the implementation of OOP in SIMOTION. The principles described are
further illustrated by programming examples that have been tested on a SIMOTION
system.

2.1 The basis of object-oriented programming

2.1.1 History

The principles of object-oriented programming ' were formulated during the 1960s
and 1970s. This new approach to programming emerged as a result of failed software
developments during the mid-1960s. This was the first time that software costs had
exceeded hardware costs, a situation that triggered the so-called “software crisis”.

But OOP did not gain in popularity until the mid-1980s and has become a widely
accepted computer programming concept during the intervening years.

Most modern programs for personal computers are written in the language C++.
These programs would be inconceivable today without object-oriented program-
ming. When it was time to switch from C to C++, programmers were faced with the
same paradigm shift as they are today in automation engineering.

With the Internet age came new programming languages. Java is generally the most
popular of these because it was integrated very early on as a programming tool
in WEB browsers. Java as well as C# both fundamentally support object-oriented
programming.

1 Source: page “History of programming languages“. In: Wikipedia - The Free Encyclopedia. Revision level:
December 14, 2015. 10:38 UTC. URL: https://fen.wikipedia.org/wiki/History_of programming_languages
(viewed on: March 22, 2016, 16:17 UTC)
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2.1.2 What’s different?

Object-oriented programming encapsulates functions and data in a single object.
This means that data are tightly coupled with the object and the programmer is
free to decide the means by which data may be accessed. Furthermore, in the event
of a legal data access operation, it is possible to check whether the data have been
changed to meaningful values. These check mechanisms are capable of preventing
illegal changes to data and eliminating other error sources. The object has complete
control over all its responsibilities at all times.

In Figure 6 you can see two objects in human form communicating with one another.
Let’s call our objects Michael and Manfred. Michael asks Manfred whether he’s got
a euro to spare. Manfred is not willing to give away a euro. Since Manfred always
retains control over his responsibilities and data, Michael is not going to get a euro.

Do you have
a euro for

"‘\-.._\___

{

o

Figure 6 Communication between objects — object-oriented

The old procedural programming method that comprises programs, subprograms,
functions and data breaks a task down into individual components. It thus uses a
series of commands to define algorithms which ultimately solve the task. However,
a basic principal feature of procedural programming is that data are not necessarily
directly coupled with programs, subprograms or functions. In other words, data are
defined by the programmer and made public for use by programs and functions.
They can thus be globally accessed by any program. When the software is extended
or modified, however, the overall contexts within the data mesh are often not docu-
mented, creating an error source which can lead to malfunctions in the processing
plant.

In the example of communication between objects in human form, Manfred has
now disclosed his data in accordance with the procedural method (note: the term
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“objects” is not strictly correct when referring to procedural programming). He has
disclosed where he keeps his money. Anyone now has access to it and can change
the data (Figure 7). No communication takes place and Manfred is no longer fully
in control. He’s likely to have difficulties — the next time he goes shopping at the
very latest.

I'll just take a
few euro’s!

I will just take
some!

Figure 7 Communication between objects — procedural

This example illustrates a fundamental problem with procedural programming.
Since there is no means of limiting or channeling access to data, changes to data can
give rise to sporadic and often inexplicable errors that can be very difficult to locate.

With object-oriented programming, data and operations are uniquely assigned to
the object. The programmer has the option of specifying how data can be accessed
and can therefore protect the data. If data need to be changed for the purpose of the
object function, this can only be done by specifically programmed methods. These
methods can include a mechanism for checking whether data changes are mean-
ingful. Erroneous transfer of data that can cause processing errors is prevented. An
explanation (including examples) of how methods are programmed and used can
be found in later chapters. First of all, however, we are going to lay the foundation
for helping you to understand the basic principles of object-oriented programming.

2.1.3 What does object orientation mean?

The whole concept is actually pretty simple. The term “object orientation” is used
because the language is entirely based on the concept of “objects”. As human beings,
we generally regard the world as a collection of objects. Everything that we perceive
is an object. Houses, cars, people, plants and animals, in other words, all tangible
things, are objects to us. At the same time, we can certainly view some of these things
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as complex objects which may each comprise a collection of different objects. For
example, a car consists of other objects such as wheels, seats, engine, bodywork, etc.

We also define more abstract groupings such as vehicles, for example, to which we
then assign specialized derivations. A car is a vehicle, but a particular specializa-
tion of vehicle. A bicycle is not a car, but it is a vehicle. Since everybody knows the
difference between a car and a bicycle, but both these objects can be assigned to
the grouping “vehicle”, we need to ask ourselves: How do we differentiate between
these objects?

To a vehicle we attribute certain universal properties and potential functions that
all vehicles must possess. Every vehicle has a number of wheels and some form of
drive mechanism that renders it capable of movement (acceleration, braking and
driving are all operations). There are of course other properties that can be used
to describe a vehicle. These are attributable to cars, bicycles, motor bikes or even
horse-drawn carriages.

It is therefore certainly true to say that when we consider properties, we describe
vehicles in more generalized terms than specialized forms of vehicle such as cars,
bicycles or HGVs.

Specializations thus inherit the properties (attributes) and the behavior of the orig-
inal abstract object and tend to refine or expand these attributes.

Let’s take a vehicle registration certificate as a useful example of how vehicle prop-
erties are described. This certificate defines all the properties of a vehicle that is
authorized for road use according to road traffic regulations. These properties
“include” specific values for the relevant vehicle such as length, width, engine type
and capacity as well as registration number, owner and so on. The vehicle registra-
tion certificate therefore describes a particular vehicle, i.e. the specific object, for
example, a car with all the defined attributes.

2.1.4 Objects and their interactions

Objects possess properties (attributes) and potential operations (functionalities). It
therefore follows that objects of the same kind must have the same kind of functional
scope. Individual vehicles are capable of movement, i.e. are capable of being driven.
A vehicle can accelerate or brake in order to move or come to a stop. We need to
remember that a car cannot move on its own, but simply has the potential to do so.

A car is generally controlled by another complex object, i.e. by its driver. The object
“car driver” is completely different from the object “car” and there is no comparison
between the two. For the car driver to be able to drive the car, some way needs to be
found to coordinate the two objects.

The driver has hands, feet and eyes (and a brain as well of course, but we can ignore
that for the moment). The car has a driver’s seat, steering wheel, ignition lock,
accelerator pedal and other control equipment. These have in turn been coordinated
with the limbs of the human driver. When we consider this on a more abstract level,
the object car and the object driver have mutually compatible interfaces and it is
precisely these that allow the two objects to communicate.

To accelerate the car, the driver needs to press down the accelerator pedal. The car
then accelerates at the rate determined by the position of the pedal. It is important
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to understand, however, that acceleration is effected by the engine, gearbox and
wheels and not by the accelerator pedal.

In other words, the car has a function (method) for accelerating and a method for
commanding acceleration. Thus it can be said that objects of this kind possess not
only methods to implement potential operations, but also methods to communicate.

The speedometer likewise displays the current traveling speed of the vehicle. The
driver can therefore release the pressure on the accelerator pedal until the vehicle
is moving at the desired speed. The speedometer is thus also a method possessed
by the car to feed information back to the driver, i.e. a method of communication.

In our modern, technologically advanced world, we have a vast number of complex
objects that possess executable operations (methods) as well as further methods
for communicating with other objects. Objects always retain control over their
own responsibilities and attributes. This encapsulation means that changes in the
behavior or the attributes of an object can only be effected in response to requests
(methods). The object itself decides according to existing (implemented) capabilities
whether or not it can fulfill the request. Pressing the accelerator pedal for our object
car will not directly cause it to accelerate if, for example, the engine is not running
and/or the car is not in gear. To be able to drive a car, the driver needs to understand
its fundamental behavior but does not need to know exactly how the car starts its
own engine or accelerates. The only thing the driver needs to grasp is what has to
be done to get the car to start its engine.

We can therefore deduce that a car possesses externally accessible (public) methods
and internal methods that are not externally visible. A core principal of the object
orientation concept is that access to the internal data or functions of objects is not
permitted. Data can be changed only by the methods provided expressly for this
purpose.

We have assimilated this view of the world as a series of objects and we find it easy
to describe and categorize them. We learn to handle and interact with objects from
an early age. Based on this insight, it is simply a question of logic when technical
functions exploit this view of the world for their own benefit. By applying this model
to software, it becomes easier for us to understand many aspects of software opera-
tion. This precisely was the driving force behind development of the object-oriented
programming concept.

2.2 General principles of OOP

2.2.1 Objects

Object-oriented programming applies the human view of the world to the program
engineering environment and so helps us to understand it better. Like a human
being, OOP views the (software) world as one that comprises objects. An object is an
entity that comprises properties (data) and potential operations (methods).

A hydraulic aggregate in a machine, for example, can be conceived as an object
(Figure 8). This object supplies the oil pressure required for other sub-aggregates
in the machine.
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Figure 8 Hydraulic aggregate

This object is also mapped in the control system. The object possesses the following
internal functions:

The hydraulic aggregate must be switched on and off.

The hydraulic pump must remain in operation until maximum pressure is
reached. The pump then shuts down.

If the pressure drops to the specified minimum pressure, the hydraulic
pump is restarted so as to increase the pressure again.

The object “Hydraulic aggregate” therefore possesses the methods “Switch on” and
“Switch off” and the properties “maximum pressure” and “minimum pressure”. The
term “attributes” is also often used to refer to properties. These are represented by
variables in control engineering applications.

Of crucial importance in this interpretation of software modules as objects is that the
attributes (data) and the operations (methods) are inseparably linked to the object,
i.e. they are encapsulated. An object operates autonomously with its implemented
methods and always retains control over its own data.

This means, for example, that any change to the maximum pressure setting made
necessary by other factors will be possible only if the object has implemented this
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as an operation. This could be achieved for instance by additional methods such as
SetMaxPressure or SetMinPressure. Overwriting values by accessing data directly is
rendered impossible by the OOP concept. Since the control over all responsibilities
rests entirely with the object itself, communication with the object is effected by
means of methods.

This encapsulation makes the programs extremely secure because unintentional
changes to public values as a result of programming errors are made impossible.
Furthermore, it is easier to ensure compliance with specific plausibility rules (such
as minimum pressure < maximum pressure) in value transfer methods (setter
methods).

2.2.2 Classes

The object-oriented programming technique requires the definition of a blueprint
for an object type before objects can be generated. This definition of an object type is
referred to as a class. The class specifies the attributes (properties) and the methods
(operations), i.e. it contains program code. Instances of this blueprint (class) can
now be formed (a process referred to as “instantiation”). The instances of a class
are the objects.

Once a class (blueprint) exists, instances of it can be created and thus several objects
of the same type generated. With the example illustrated in Figure 9, it is thus
possible to generate multiple hydraulic aggregates (e.g. Hydraulic_1, Hydraulic_2,...
Hydraulic_n) by instantiation. Each unit is assigned a unique name by the application
programmer. It has its own methods and attributes and can function independently
of the other instances.

Hydraulic_aggregate Instance of
N icl: i
MaxPressure:INT < Hydraulicl:Hydraulic aggregate
MinPressure:INT MaxPressure=50
Switch_on() MinPressure=10
Switch_off() Instance of
SetMinPressure() === =g Hydraulic2:Hydraulic_aggregate
SetMaxPressure() MaxPressure=100
Class MinPressure=50

Object

Figure 9 Class and object

2.2.3 Inheritance

After a unit and the associated software have been prepared for inclusion in the
control software, it is often the case that new ideas, wishes and requirements emerge
and result in extensions and modifications to this unit. It is generally true that mul-
tiple variants of the same unit need to be maintained in parallel. These requirements
also need to be addressed in the control system software. In the past, it was common

39



2 Basic Principles of Object-Oriented Programming

practice to copy existing software modules and then extend or modify the program
code. This process was repeated every time a new variant needed to be generated.

With conventional programming methods, this approach caused a variety of prob-
lems. Identical program code is duplicated in the sources. A large number of similar
software derivations are created over time, making software maintenance extremely
difficult. This situation becomes especially challenging with large-scale software
projects.

By using the principal of inheritance, object-oriented programming offers a solu-
tion. It allows fully functional software components to be left intact while making
it possible to integrate modifications as circumstances or requirements change.

However, the benefit of inheritance mechanisms needs to be considered in the
context of increasing the specialization of the functions of a class. In other words,
deriving a subclass from a base class is motivated by the desire to implement new
functions rather than to introduce minor adaptations or advances. Minor adaptations
are implemented in the program code of the base class. There is otherwise a risk
that too many derivations will be created over time and the software will become
difficult to manage. It is exactly this situation that we need to avoid. To obtain an
optimum class design, i.e. to meaningfully divide functions into base classes and
their derived classes, precise analysis of the commonalities and differences between
classes is essential.

Once a class is fully defined and operational, it can pass on its methods and proper-
ties to a new class which utilizes these inherited methods and properties. To achieve
further specialization, new methods and properties can be added or existing meth-
ods adapted (overridden).

The “Hydraulic_aggregate” class is a very simple implementation involving a two-
step control system. The hydraulic pump remains in operation until the maximum
pressure is reached and stays out of operation while the pressure remains above
the minimum value.

We are now going to create a new hydraulic aggregate which is capable of tracking
a defined pressure setpoint and maintaining the pressure until a new pressure set-
point is specified.

Hydraulic_aggregate Hydraulic_aggregate_controlled
. |
MaxPressure:INT PressComVal:INT
MinPressure:INT
Switch_on() | Switch_on()
Switch_off() Control()
SetMinPressure()
SetMaxPressure() Derived class
Base class

Figure 10 Inheritance principle with classes
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To implement this new design in the software, the object-oriented programming
principle allows us to derive a new class “Hydraulic_aggregate controlled” from the
base class “Hydraulic_aggregate”. The Hydraulic_aggregate_controlled class inherits
the methods Switch_on(), Switch_off(), SetMinPressure() and SetMaxPressure() and
the properties “MaxPressure” and “MinPressure”. To implement control according
to a pressure setpoint in the new class, it needs to be assigned this new property.
A new method “Control()” that provides control functionality also needs to be pro-
grammed. The programmer can choose various options for specifying the pressure
setpoint. If a variable pressure setpoint needs to be specified during operation, an
additional method, e.g. SetPressureSetpoint, has to be implemented. But if the pres-
sure setpoint always remains constant, it is defined by an initialization value when
Hydraulic_aggregate_controlled is instantiated. In our example, we have decided
to choose the second method.

With the inheritance principle applied by deriving an extended class from a base
class, it is not simply a question of copying the base class but of permanently main-
taining the relationship between these classes. The new subclass is inseparably
linked to the base class. This means that any changes to the programming of the
base class will always have a corresponding effect on the derived subclasses because
all subclasses will have inherited the attributes and methods of the base class.

It is possible to continue deriving other classes, either from the base class itself or
from the extended subclasses derived from the base class.

2.2.4 Overriding

In addition to the inheritance principle, object-oriented programming also offers
another means of adapting software. Adding new methods to a derived class does
not achieve the desired result in many cases, and it becomes necessary to expand
or modify methods that already exist. The mechanism used to implement changes
of this kind is referred to as “overriding”. This mechanism is used to override the
methods inherited by a derived class and to implement a different method in their
place. Furthermore, the newly implemented method can be programmed to call
the original method in the base class. In this instance, the program code originally
implemented in the base class remains intact and continues to function as normal.

To give an example, the method “Switch_on()” inherited by the derived class Hydrau-
lic_aggregate_controlled might not function properly because Hydraulic_aggregate
controlled requires a drive that is switched on with transfer of a speed setpoint. As a
result, the method Switch_on() needs to be changed with new or additional program
code. This problem can be best solved by overriding the Switch_on() method. Appro-
priate keywords exist for OOP in order to implement specific solutions. In order to
override the “Switch_on()” method, the program code beginning with the keywords
“METHOD OVERRIDE Switch_on()” is implemented in the class Hydraulic_aggre-
gate_controlled. When overriding methods, it is essential to remember that only
the program code for the method and possibly other temporary variables may be
changed. Changing the name results in the creation of a new method and changing
the defined external interface of the method is not permitted.

If an object of Hydraulic_aggregate_controlled is generated, it will possess a method
with the same name as the corresponding method Switch_on() in the base class, but
its method might have a completely different program code. This is why the method
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Switch_on() is included in Figure 10 (UML representation — Unified Modeling Lan-
guage) of the derived subclass Hydraulic_aggregate_controlled because the method
inherited from the base class Hydraulic_aggregate has been overridden.

2.2.5 Interfaces for object interaction

With the mechanisms described above (class definition, inheritance and overriding),
we focused our attention on how software can be structured so that it can be reused
and expanded. In this context, a class always defines the overall functionality of an
object and specifies how the relevant functions are implemented. In other words,
a class formulates all the functions required for a specific object type. If we repeat
this process for different objects in a given environment and compare a number of
subfunctionalities, we will discover that there are no essential differences between
them. In order to group these subfunctionalities so that they can be utilized in the
programming of a class, we would need to be able to derive several base classes for
inclusion in one class. According to IEC 61131-3, however, the multiple inheritance
concept required to achieve this goal does not exist. The interface construct is used
to address this problem.

The purpose of interfaces is to provide a separate definition of commonalities, i.e.
subfunctionalities which are generally regarded as distinctive and form the basis for
several different classes. The methods required to implement these subfunctional-
ities are grouped to form an interface. Attributes cannot be defined in an interface
(as they can in a class) nor do the methods in an interface have any separate program
code in that interface.

The objects of a class that implement an interface are still objects of the interface (as
with the inheritance principle). Since a class is capable of implementing an unlimited
number of interfaces, these offer a suitable method for compensating for the lack
of multiple inheritance in Structured Text (by contrast with C++).

Interfaces play another important role by allowing interaction between objects. They
are an efficient tool for implementing data exchange.

Let’s use the example of the hydraulic aggregate described above in order to illus-
trate this mechanism. Let’s assume that multiple hydraulic aggregates as well as
other types of equipment can be deployed in the plant. We also want to make it
possible to display the status of all the installed units on an HMI. In addition to the
class of the hydraulic aggregate (and for all other equipment types), we also need a
class to supply the display data for the HMI.

So that we can query the status of the aggregate, we need to program the method Sta-
tus for the relevant class. We want to use this method to implement HMI diagnostics
at all objects of type “Hydraulic_aggregate”. However, since it is not only hydraulic
aggregates that are installed in our plant, but also other types of equipment (e.g.
electrical drive systems, final control elements, etc.) and we want to equip these
with the same fault diagnostics functionality, we will define the interface IStatus.
This interface includes the definition (but not the program code) of a method that
will query the status of equipment.

Our hydraulic aggregate implements the interface IStatus and must therefore pro-
vide a status query method as defined in the interface.
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All other equipment types in our plant are assigned by the same method a (different)
implementation of the interface IStatus and can deposit their diagnostic function-
ality in a specific manner.

All aggregates that are to participate in the HMI diagnostics system must now be reg-
istered with the class HMI via the interface IStatus using the method registerObject()
and administered in a list in the class HMI (Figure 11). Class HMI can now be used
to diagnose all aggregates. The fact that different implementations of methods can
be called depending on the type of aggregate is concealed from class HMI.

Interfaces thus allow the definition of neutral mechanisms so that information can
be exchanged between different object types. In other words, methods are defined
as prototypes (without implementation) in an interface. If an interface is imple-
mented by a class, this class is responsible for providing the methods defined in
the interface with the corresponding functionality. In turn, an interface can be used
independently of the underlying implementation.

Interfaces significantly increase the potential of object-oriented programming and
make it simpler to combine different object types within the same environment.

This brief description of interfaces may well be insufficient to give full clarity about
their role, but we will discuss them in more detail in later chapters.

«interface»
IStatus

+Status(input StatMsg : StatStr)
7

«bind»

Hydraulic_aggregate
-CriHMI = HMI HMI
-gsStatStr : StatStr -Aggregate_list
-MaxPressure : int +registerObject(input Agg : IStatus)
-MinPressure : int 7

+mSwitch_on() :
+mSwitch_off() i
+mSetMaxPressure() «instance»
+mSetMinPressure() 1
+SetHMIReference()

+Status(input StatMsg : StatStr)
N

Hydraulicl:Hydraulic_aggregate . .

criHMI : HMI -

gsStatStr : StatStr < OperatingPanel : HMI
MaxPressure : int » Aggregate_list
MinPressure : int . .

Figure 11 Hydraulic aggregate with HMI display
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2.2.6 Summary

Object-oriented programming has used our object-focused view of the world to
create a new software engineering concept.

The software then consists of objects.

Classes are the basis for objects. Attributes (properties) and methods
(operations) are defined (or programmed) in the class.

Objects are formed by creating instances (instantiation) of classes.
An object thus represents an instance of a class.

The internal functions of objects are provided in the form of internal
methods.

Objects interact with one another using public methods.
Different objects can interact via defined interfaces.
The following also applies:

Objects function independently of one another and each object always
retains control over its own methods and attributes.

Extended classes can be derived from existing classes. The derived class
(subclass) inherits all the attributes and methods of the base class. Further
attributes and/or methods can be added to derived classes in order to adapt
them to new requirements.

The override mechanism is another tool for adapting OOP software. Inher-
ited methods can be overridden in derived classes. Using this mechanism,
it is possible to change the existing program code of a method without
altering the original program code.

Inheritance is a powerful feature of the object-oriented programming con-
cept. By deriving classes from a base class, it is possible to create specialized
(refined) subclasses of the base class. The base class thus embodies the
commonalities between classes and passes these commonalities on to the
specialized subclasses. Despite its enormous potential, this mechanism
should be used sparingly. Motto: “Avoid inheritance if you can find an
alternative.” This is what Bjarne Stroustrup says in his book “The C++ Pro-
gramming Language”. The reasons for this are simple: Design errors in the
base class affect all other classes in the inheritance chain. This can happen
if the software has not been planned with sufficient care.

OOP should be used whenever it can offer concrete benefits to programmers and
users. In some situations, a procedural programming solution might be simpler and
more efficient. The OOP programming language is not a panacea and does not speed
up the software development process. It does however ensure that the software is
better organized and easier to manage. When the OOP concept is applied correctly,
it offers a number of advantages that can result in time savings.

As with all forms of expression (programming languages) in software engineering,
poor program code can also be written in the OOP language. This problem can only
be avoided by sensible planning of software. Programmers who work according to
“straight from brain to terminal” should not bother with OOP.
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2.2.7 Advantages of using OOP

The encapsulation of objects is a feature of object-oriented programming
that ensures highly reliable program execution.

When the OOP method is used, it becomes significantly easier to design
modularized software.

Thanks to the encapsulation, inheritance and overriding mechanisms
associated with OOP, the software is simpler to manage and easier to modify
overall.

When OOP is utilized in appropriate program modules or libraries, the
degree to which the software can be standardized and reused is increased
considerably.

The amount of time and effort involved in programming can be reduced
thanks to the inheritance principle (because program code does not need to
be copied or adapted again).

Larger-scale software projects are easier to implement with substantially
fewer errors.

By comparison with procedural programming, object-oriented program-
ming makes it far simpler to develop software components independently.
This can be achieved by consistently applying the principles of encapsula-
tion and clear interface definition.

Interfaces support generic programming, helping to reduce the time and
effort involved in adapting software and making it significantly easier to
combine objects of different types.

OOP mechanisms permit the implementation of module tests without
necessitating changes to the modules themselves. Software testing is made
simpler.

OOP has a much closer resemblance to the object-focused world view of the
human being than procedural programming.

While it is necessary to learn the “mindset” behind object-oriented
programming, the concepts are relatively easy to understand and bring
enormous benefits to the programmer.

2.2.8 Disadvantages of OOP

Design errors in the base class affect all other classes in the inheritance
chain. Retrospective corrections require extensive reworking of derived
classes.

When OOP is used, the decision as to which function must be called is often
made during runtime. As a result of this dynamic binding, the programs
take longer to execute. This increased runtime should be taken into account
when program concepts are prepared. It is easy to compensate for runtime
increases by appropriate use of existing programming mechanisms (ref-
erences to these mechanisms can be found at various places in chapter 3).
Since it is not usual for objects to be dynamically generated and destroyed
in control systems during runtime, however, the programs take less time to
execute than they do in other systems.
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2.3 Tips about defining classes

Once you have embarked on an object-oriented programming project and you have
analyzed your existing programs, you will ultimately be faced with the question:
How can I define the right classes from these programs? It is a question to which
there is no easy answer nor is there any standard recipe that will show you a clear
way forward. That is to say, there are various possible solutions, all of which can
be correct. As often happens in life, your skills increase with your experience, and
as you spend more time working with OOP, you will find it easier to see the right
way forward. These comforting gems of wisdom unfortunately do little to help the
beginner. For this reason, we have decided to give you some tips about defining
classes at this early stage and so help you to get started. We have used “The C++
Programming Language” written by Bjarne Stroustrup as a source of information
for the following description.

There are essentially two types of class within a system:

1. Classes that are application-oriented.
They are directly deployed by the user to describe solutions.

a) These classes describe the real objects of the actual application. These
are objects that represent elements or assemblies in the machine includ-
ing, for example, axes, valves, valve-cylinder combinations or other
machine elements, but also software modules that act as a direct link to
operator interfaces.

2. Classes which represent artificial implementation constructs.
These are classes used by designers and programmers to express their
implementation techniques.

a) This type of class describes the fundamental implementation method
and focuses on the design of the software environment.

b) This category also includes classes for defining the method of connec-
tion of I/O components or classes which utilize hardware resources
of the system. As a general rule, these classes are not directly used by
the programmer, but are used to adapt the software to various system
responses.

c) Last but not least are the defined interfaces that need to be implemented
in classes. Interfaces define communication relationships and support
the independent development of software modules. Interfaces can
embody definitions for transferring information between different
programs, for example, or can function as neutralized interfaces to and
from I/O components of the same type (see chapter 3.5).

It is entirely possible that some readers of this section will still have a few question
marks in their minds and find some descriptions difficult to understand. But take
our word for it — once you have worked through the coming chapters, the fog will
lift and everything become clearer. Before you can gain a comprehensive under-
standing of the subject, you need a detailed explanation of the mechanisms used in
object-oriented programming.

As you start to learn more, you will still have a lot of open questions that need to
be answered. Using knowledge gained from various experiences, we have found
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that the following method has proven to be a practical solution. First of all, you
need to focus on the specific objects of a machine and identify a suitable object for
implementing the first class. Once the relevant objects with this class are proven to
function reliably in a test environment, you can functionally extend the class using
inheritance mechanisms. Once you have advanced to this stage, you will need to find
some method of displaying potential errors in the object. You will need to develop a
solution for passing on error messages. You will need to ensure that the functional
level in which you are working can be implemented independently of the display
function. It therefore makes sense to program a class specifically for the display
function. OOP techniques must be used to link this class in such a way that both
classes (display and machine objects) can be developed independently.

To successfully complete these tasks, you will need to apply and understand all the
OOP mechanisms implemented in the system. By using these techniques, you will
improve your understanding of the underlying principles and answer some of the
questions you had at the beginning. As you work through this process, you will
need to resist the temptation to resort to the “procedural programming” mindset.
As your understanding of object-oriented programming increases, you will start to
see software in a different light. As you think about software solutions, you will find
that your mind can work on a much more abstract level. You will develop a com-
pletely new approach to software design and forget the procedural way of thinking.
You will need to allow your brain a little time to adapt to this new way of thinking.
It is going to take a certain amount of patience, energy and practice. The learning
path described here is supported by relevant examples. If you practice using the
programs in this book, you will find it easier to understand and use object-oriented
mechanisms.

Other approaches to learning the principles of class definition in object-oriented
programming certainly already exist, but we feel that it is generally advantageous
to work from the simple to the complex and from the specific to the abstract. Every
programmer and designer should trust in their own common sense and above all
find the energy and courage to give up on a model they have created if it proves
to be unfit for the purpose. Because even unworkable models can provide us with
useful experience.

The chapters below are structured so that we start with an explanation of the princi-
ples of arange of interrelated issues. The theory is then applied to specific software
examples. This principle of an explanation followed by a relevant example is applied
consistently. But we should mention right at the outset that you will still not be a
specialist in object-oriented programming even after you have worked through all
the chapters. But you will have a solid foundation for becoming a specialist in the
future.

References

There is a wide range of books available on the subject of OOP software design. However,
since OOP is still not as widely used in automation as it is for PC applications, fewer ref-
erences exist in relation to object-oriented programming according to IEC. Nevertheless,
the migration problems that arose when C++ was introduced are precisely the same as
the problems caused by introduction of OOP to automation engineering. Furthermore,
software planning methods are not dependent on the selected programming language.
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For this reason, we will mention here two books that contain a vast amount of information
and guidance on software planning:
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3 Object-Oriented Programming

Object-oriented programming is a programming paradigm that has been reliably
applied in various PC programming languages for very many years. The term “pro-
gramming paradigm”? refers in this context to a fundamental style of programming,
i.e. to a programming method. A well-defined programming method makes it easier
to read and understand the program codes written by programmers.

Programming methods have changed several times in the past and these changes
were referred to as “paradigm shifts”. A paradigm shift can naturally only take place
if the relevant programming language supports a particular programming method.

As with all technical constructs, programming languages generally undergo contin-
ual development. What makes life easier for the user is that a programming language
can be functionally expanded without losing its existing scope of functions. This
means that existing programs do not need to be modified. Gradual changeover to
new methods can be smoothly planned and the experience gained can be put to
good use to improve the quality of programs.

With the advent of object-oriented programming, the field of automation engi-
neering is facing another paradigm shift. Over time, this change will have a huge
impact on the methods used to program control systems. OOP makes it simpler to
increase the security of programs by encapsulation, to adapt software more easily
to new requirements and to achieve greater modularity. Programs can be defined
on a more abstract level and the software design can be planned. The programs
are thus easier to read and the software simpler to maintain and develop. Since
the existing programming methods can comfortably coexist with object-oriented
programming, users will have time to plan the transition between them. To achieve
a smooth changeover, however, users must understand the available mechanisms.

3.1 Implementation of OOP with SIMOTION

A large number of extensions have been added to IEC 61131-3 ED3 as compared
to previous editions. A significant new feature is the definition of the scope of lan-
guage for object-oriented programming. These definitions for OOP form the basis
for implementation of OOP in the SIMOTION control system.

The IEC permits two basic concepts for the implementation of object-oriented pro-
gramming:

The first concept describes the use of OOP with object-oriented function
blocks. With this form of implementation, all functions are provided by
appropriately defined and programmed OO function blocks which therefore
substitute classes.

The second concept describes OOP implementation based on classes.

2 “Programming paradigm” In: Wikipedia - The Free Encyclopedia. Revision level: March 17, 2016, 16:54 UTC.
URL: https:/len.wikipedia.org/wiki/Programming_paradigm (viewed on: March 22, 2016, 16:22 UTC)
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The decision has been made to implement class-based object orientation for the
SIMOTION control system. This corresponds to the way in which OOP is usually
implemented in other programming languages. The extensions defined in the IEC
standard have been applied to SIMOTION in a two-stage process.

The first stage includes the implementation of classes with methods and
the inheritance mechanisms associated with the classes. It also covers
implementation of interfaces and the mechanisms (e.g. interface variables)
including inheritance that are normally required for use of interfaces. The
user therefore gains the use of all the important OOP mechanisms in this
first stage.

The second stage involves full implementation of the extensions described
in the IEC standard. The scope of software design options will be expanded
significantly for the user, particularly by the introduction of references.

This staged concept has been designed to ensure that SIMOTION users can use
object-oriented programming effectively during the first stage. Interfaces and
abstract classes increase the level of abstraction for developing programs and give
users the option of developing completely separate applications.

The second stage completes implementation of object-oriented programming and
gives the user an enhanced scope of design options. The stages have been conceived
to ensure that the user has full compatibility between both stages. This means that
the second stage simply expands the range of available functions and that any pro-
grams already developed during the first stage can be accepted without any changes.
The first stage essentially covers the following functions:

1. Methods in function blocks
2. Introduction of classes (CLASS) with their attributes (variables)
3. Introduction of methods (METHOD) to classes
4. Inheritance of classes and their methods
5. Implementation of interfaces
6. Handling of interface variables
In the second stage, the following are added to the functional scope:
1. General references
2. T/O references

3. Namespaces

3.2 Function blocks with methods

The IEC provides for the use of object-oriented function blocks (including derivation
and methods) as an object-oriented model. It has been decided not to use this form
of object-oriented programming in SIMOTION.

But the option of programming methods in function blocks (FBs) has been imple-
mented, though without inheritance (derivation) or overriding of methods. By
using methods in function blocks, therefore, it is possible to take a step towards
object-oriented programming without needing to switch completely over to OOP. The
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extensions associated with this approach also work on earlier versions of SIMOTION
Runtime.

Another advantage of programming methods in FBs is that the content of the blocks
can be structured much better than previously possible. The programmer can con-
trol access to variables. As a result, these FBs are better encapsulated than their
predecessors. The extended scope of options for programming function blocks is
described in the following chapters. In order to illustrate the improvements more
clearly, we will first take a look at the old method and temporarily ignore the OOP
extensions implemented in SIMOTION V4.5.

3.2.1 Modularization without OOP extensions

Modular programming was essentially based on the use of function blocks. An ele-
ment used several times in the same form in one machine was represented in the
software by programming a function block.

Hydraulic or pneumatic cylinders are frequently deployed in machines to perform
simple motions. The motion is controlled by a valve suitable for the purpose (Figure
12).

The movements of the cylinder are triggered by energization of the valve solenoids.
The limit switches “StartPos” and “EndPos” output a signal when the cylinder reaches
the relevant limit position. The 4/3-way valve used in this example has the advantage
that the cylinder stops in its current position when the valve is in mid-position (no
solenoid energized). The cylinder behaves differently depending on whether it is

StartPos I_;J I_;J EndPos

AL

L1

o
— —H

Figure 12 Valve-cylinder combination
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hydraulic or pneumatic. If a hydraulic cylinder is used, it will actually stop (unless
there is leakage of hydraulic fluid). If a pneumatic cylinder is used, the cylinder
might continue moving (due to compression of gases) even when the valve is in
mid-position. The difference in the behavior of these cylinders can certainly neces-
sitate variations in the programming in a function block. For the sake of simplicity,
oil is used as the medium in this example.

To provide the functionality of a valve-cylinder combination of the kind illustrated
above, a function block named “FB_Valve” is programmed with the required input
and output interfaces.

Inputs

- Forw - forward command

- Backw - backward command

- EndPos - front limit switch

- StartPos - rear limit switch

Outputs:
- QForw - output to valve forward
— QBackw - output to valve backward

IN_OUT
— State

In order to execute program code for different valves in the same machine, an
instance of the type FB_Valve is created in the program for each valve. The FB is
called via the relevant instance. The appropriate signals are combined via the FB
interfaces so as to activate the functions of the FB. But it is not possible to recognize
the selected function directly from the instance call. This can only be worked out

Command_Forw —— Forw FB—ValveQForw —— OUT_Forw
Command_Backw —— Backw QBackw —— OUT_Backw
IN_EndPos —— EndPos
IN_StartPos —— StartPos
State V1 —7---- State ----1— State_V1
VAT~
/”’ / \\\ § \\‘\
-~ 7 N s
- / N TS~o
/ \\
/ RS

Figure 13 FB_Valve
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by monitoring the signal status as the program executes. Furthermore, FBs of this
kind can perform a large number of functions by the combination of signals. But
too many signals can lead to confusion.

Data can be transferred between the function block and other software components
via the IN_OUT parameter “State”. It is generally by this method that read and write
structures are passed on. The valve deposits its status in this structure. This status
can be used, for example, to display the valve status in an HMI system for diagnostic
purposes.

If the FB needs only to write its valve status to the structure, but not have read
access to it, it is possible in this case to change the IN_OUT “status” to an OUTPUT
parameter.

3.2.2 Program and data are separate

Definition of function blocks and declaration of their instances are treated as sep-
arate programming tasks. For a new valve (which requires an additional FB call),
for instance, the programmer defines a variable with the data type of the FB. The
instance is generated when the program is compiled.

The FB data are stored in the instance. The definitions of the input and output
interfaces need to be public of course. All other variables are local and thus can-
not be accessed externally. However, since it is often necessary for certain data to
be propagated outwards when the FB is processed, the programmer needs to take
corresponding measures in the FB program. The normal method of doing this is to
transfer a reference at the IN_OUT parameter to the external data. This reference is
the “State_V1” in the example below. Thus, these data are declared outside the FB and
completely separate from the FB although they actually belong to the FB program.

According to the requirements defined in IEC 61131-3, the user has two options of
implementing an FB call.

The first option is to use the so-called complete “formal call”. With this call type, all
parameters of the FB are assigned in parentheses after the instance name. The call
from our example then looks like this:

//complete formal call
Valvel (Forw:=Command_Forw
,Backw:=Command_Backw
,EndPos:=IN_EndPos
,StartPos:=IN_StartPos
,State:=State V1
, QForw=>0UT_Forw
, QBackw=>0UT_Backw
,State=>State V1) ;
//incomplete formal call
Valvel (Forw:=Command_Forw
,Backw: =Command_Backw
,State:=State_V1
,State=>State_V1) ;

With a complete formal call, all parameters with their assignments are programmed.

If the call contains only some parameters and their assignments, it is referred to as
an “incomplete formal call”. This form is the other type of FB call permitted accord-
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ing to IEC. Incomplete formal calls are often used for blocks with a large number of
parameters. This call variant is especially used in cases where individual parameters
have no relevance in certain operating modes of the block. As a consequence, a
separate call has to be programmed for each operating mode, resulting in more
complicated program sequences.

Since the instance of the FB provides a memory and the INPUT parameters always
form part of the instance data and have a default value, the FB can also function
without any parameter transfer at all. The user of the FB does not therefore need
to define any parameter transfers at the call interface. To ensure that the block
functions can be executed, it is still of course necessary to program its parameter
assignments. Parameters can be assigned at a different location (e.g. before the call).
By specifying <Instance name>.<Variable name> and assignment, parameters can
also be transferred (Valve2.Forw:=Command_Forw). Read access to the outputs then
logically takes place after the call. However, this solution also makes the program
more difficult to read.

The call option “non-formal call” is also available for functions and methods. In this
instance, parameter names with assignment are not written in parentheses, but an
argument list is specified instead. This list contains values or unassigned variables
that are evaluated in the sequence in which they are declared.

myfunc (Command Forw, Command Backw, 0, 0, State V1)

This call method is used only in rare cases and is generally only meaningful for
functions with one parameter or for certain standard functions. The list becomes
far more difficult to read for blocks with a large number of parameters, and the call
ceases to function altogether if the call interface is changed.

It is possible to deduce the following conclusions on the basis of the possible block
call options:

Anyone can access (even unintentionally) the public data of an instance.
When a complete block call is used, errors caused by unintentional modifi-
cation of parameter settings at a different code position can be prevented.

In the case of incomplete block calls, the functional relationship is not easily
identifiable at one clear point in the program. Data transfer and call are
partially, or in some cases, completely separate.

The programmer must implement links to other software components using a data
area (e.g. array status list) that is located outside the FB (Figure 14). This is the only
method by which data can be exchanged between different software components.
All participating software components read and write in this data area. These data
are transferred to an IN_OUT parameter by means of a reference and are necessarily
public. The FB processes and changes the values (e.g. State_V1). But the data are
still completely separate from the FB. When the program and data are completely
separate, however, there is arisk that data will be changed unintentionally, resulting
in errors that are extremely difficult to find.

The complexity of programming required when the function block and data are
separate leads to programs that are not easy to read.

Since all functions are activated via the call interface of the FB, it is not easy to
achieve an FB implementation that is protected against parameterization errors and
comprehensive testing will therefore be required.
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Adress list

Command Forw 10.0 Command_Forw —— Forw FB—ValveQForw —— OUT_Forw
Command_Backw 110.1 Command_Backw —— Backw QBackw —— OUT_Backw
IN_EndPos 10.2
IN_StartPos 10.3 IN_EndPos —— EndPos
OUT_Forw Q0.1
OUT_Backw Q0.2 IN_StartPos —— StartPos

_v State V1 —7---- State ----1— State_V1

-
-

Instances of

)
Status list (e.g. array) \e@‘:/
?& e

State_V1
State_V2
State_V3
State_Vn

N

Figure 14 Program and data are separate in function blocks

We need to state quite clearly here, however, that this method of programming is
completely normal today and is not in any sense wrong. The systems function exactly
as prescribed by the IEC standard ED 2. As the IEC is developed further into ED 3,
however, it will become possible to design better, more secure programs.

3.2.3 Advances in the life cycle of software

Since all software is subject to continuous changes over its life cycle, the same is
also true of function blocks. Technical modifications to the mechanical engineering
design generally necessitate software modifications as well. In this case, the usual
procedure is to copy the existing FB and adapt the copy (Figure 15). This “copy
and adapt” solution is a continuous process, resulting in different function block
versions with modified functions.

The problem with this approach is that it can be difficult to maintain a clear overview
because various derivations of software solutions are created, all of which need to
be managed.

When machines in the field are controlled by a particular variant of the FB, it is
unlikely that the FB will need to be replaced while the machines are in operation
on condition that they operate reliably with the FB programmed for them. When
the machines themselves are modernized, the software developer needs to take
care when deciding which base software will be used for the new equipment. Any
measures taken to debug or improve the function block must be properly docu-
mented and all the relevant persons (commissioning and service engineers) must
be notified. The software can otherwise proliferate chaotically. Debugging may need
to be repeated several times when older blocks are used because errors that have
already been corrected will reemerge.

A large number of functions of mechanical systems are implemented by various
function blocks. In other words, the problem doesn’t just exist once but in multiple
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Forw FBVa\IveZQForvv
3ackw QBackw [——
e
0 e EndPos
co™y
Command_Forw —— Forw FBvalveQan- —ul_Forw StartPos — Forw FBVaIVeXQFmW —
Command_Backw ——{ Backw QBackw OUT_Backw ? ? — Backw QBackw [—
FBValve4
IN_EndPos ——{ EndPos Forw QFemy EndPos
IN_StartPos —— StartPos Backw QBacly P05
I Forw FBV::\IveSQFOT c\\al\ge P05
State V1 — - - State - -- State_V1 EndPosegad & — - 2 —
- — Backw QBack coP | __ State [
StartPos
— EndPos
? ?
—| StartPos - State .
— 2 ?
—_—t- State ==

Figure 15 Function blocks need to be copied and adapted

locations. An effective solution can be achieved only by disciplined working, carefully
planned software development and an efficient system of release management.

With object-oriented programming, the corresponding process for adapting and
upgrading software is simpler. OOP mechanisms are designed to support the adap-
tation and modification of software so that it is no longer necessary to make random
copies of software in the way described above.

With object-oriented programming, careful planning of the software development
process is of course essential. The best approach is to analyze the software and then
convert the more complex software components to object-oriented programming.
Simpler programs or those that are essentially based on pure combinational logic
are not generally converted. OOP should only be used where it brings real benefits.
It is highly likely that a large number of programs still in use for PC applications
were originally created by the procedural programming method.

3.2.4 Disadvantages of programming without OOP extensions

Conventional programming methods have several disadvantages that can be over-
come by changing to object-oriented programming. But even with OOP, it is possible
to create poor program code if the software design process is unstructured. The
objective is not to create poor program code, but to use OOP to improve the software.

The “modular programming” approach makes it easier to modularize
software, but it is not completely satisfactory when it comes to further
developing the software.

Modularization within an FB is not supported. An FB cannot be broken
down further into independent software sections because the requisite
structuring mechanisms do not exist.

As function blocks grow in size, it follows that development of the software
will become an increasingly complex and difficult process.
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Reusability of the software can be guaranteed only if all of the programmers
involved adhere to strict rules.

If various software areas (e.g. communication or HMI link) need to be
coupled with machine functions, the software may need to be modified,
resulting in delays in the work schedules of the various development
departments involved in the process. Independent development of the
software then becomes impossible.

Procedural programming is not a method that gives adequate support to
the software design process, particularly when it comes to the definition
and use of software interfaces.

Data and programs are separate, unrelated entities and therefore carry a
high error risk.

The degree of abstraction when developing software is limited with the
procedural programming method.

It is virtually impossible to test software modules without adjusting the
program code.

With the programming of methods in function blocks, a first step towards object-ori-
ented programming has been made. It allows better structuring and modularization
of FBs. By controlling access rights to the FB data, generally accessible data no longer
need to be explicitly moved outside the function block. The fact that local types
or constants can be assigned different access rights is a further advantage that
significantly improves the software design. Finally, the use of methods affords, on
the one hand, a more clearly organized FB design because the code is divided into
methods. On the other hand, the call interface of the FB can be simplified because it
is no longer necessary to map the entire scope of functions at this interface. Special
methods for placing commands, for example, need to be developed for this purpose.

The extended scope of programming options for function blocks is explained in the
following chapter.

3.2.5 Extensions to FBs and their access specification

The option of specifying the access to variables and methods has been developed for
function blocks. Even the declarations for types and constants that are permitted in
FBs in the SIMOTION system can be assigned an access specification. These modifica-
tions make it easier to handle variables or methods. By contrast with the old solution,
the programmer can now decide which variables/methods may be accessed from
outside the function block. Various keywords have been defined for this purpose:

PRIVATE

This keyword identifies constants, data types, variables or methods which may be
called only from inside the FB. PRIVATE is the default key and can be omitted. In
other words, all methods with METHOD <MethodName> in the method definition
are automatically PRIVATE.

PUBLIC

A method to which this access identifier is assigned can be called from anywhere.
Variables with the PUBLIC identifier also permit access from outside the function
block. If, for example, the variables VAR1 and VAR2 are identified by the keyword
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PUBLIC in a VAR block, it is possible to gain read and write access to variable VAR1
using <InstanceName>.VAR1 (VAR2). Data types and constants identified by the
keyword PUBLIC can also be utilized outside the FB. The data type TYPE1 with
<fb_name>.TYPE1 can be used, for example, to declare variables outside the FB.

It is permissible to include multiple VAR blocks with different access identifiers in
one FB. In this way, the programmer can simply assign different access rights to
variables. The use of FBs with methods thus increases the security of programs while
also enhancing the scope for structuring FBs so that programs are easier to maintain.

The following declaration subsections can be used in the definition of an FB:
TYPE
VAR
VAR CONSTANT
VAR_INPUT
VAR_IN_OUT
VAR _OUTPUT
VAR _TEMP

None of the input and output variables such as VAR_INPUT, VAR_IN_OUT, VAR_OUT-
PUT or VAR_TEMP may be declared as PRIVATE or PUBLIC (as this would obviously
be senseless).

As in the past, each FB has its own scope, i.e. the names of variables, data types and
methods within the scope must be unique.

Methods can be integrated in an FB in order to enhance the software structure. Each
method has its own scope. There must be no overlap between names within the
scope. Overlap between method names and variables is also not allowed because
it is the method name by which a potentially defined return value is assigned. The
following keywords are used to program methods in FBs.

METHOD <MethodName>

This is the keyword which denotes the start of a method. It can be a PUBLIC or
PRIVATE method. In this case, a method can (like the FB) have an interface with
variables. If a method is declared as PRIVATE (default), all variables will also be
PRIVATE including the interface variables (by contrast with the FB). In other words,
the variables of a method are not allowed to have a separate access identifier. The
following variables may be programmed for methods:

VAR or VAR_TEMP

VAR_INPUT

VAR_IN_OUT

VAR_OUTPUT

The method ends with keyword END_METHOD.

THIS.<MethodName>() is the method call within the FB. Methods may be called
within the body of the FB as well as in methods of the FB. As an additional option
to those specified in the IEC standard, it is permissible to use the alternative call
with <MethodName>(). This variant is generally used to call PRIVATE methods. If a
variable of a method hides a variable declared in the FB, the access conflict can be
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resolved easily by specifying <FBName>.<VariableName> in the method. This is an
extension of the IEC standard.

3.2.6 Use of methods to improve program structuring

The following example of a function block with methods is based on the scope of
functions required to control the 4/3-way valve of a valve-cylinder combination. The
example has been intentionally kept simple. The methods in this case have been
selected to provide an internal structure for the FB, but further methods could be
added to extend its functionality.

For the sake of clarity, the variable names at the inputs and outputs of the FB have
been labeled with meaningful names. As a general rule, these names are defined
differently in actual programming.

The FB contains the methods mForw() and mBackw() which are responsible
for controlling the cylinder (Figure 16). These methods are then called using
THIS.<MethodName()> in the program body of the FB. By contrast with classes,
however, this method call is static rather than dynamic. The method can also be
called via the method name alone (i.e. without the additional THIS keyword).

Valve-cylinder combination

FBValve43
Operation_mode —— Mode QForw —— OUT_Forw
StartPos EndPos
IN_EndPos ——{ EndPos QBackw —— OUT_Backw
IN_StartPos — StartPos
Command_Forw ——{ Forw
Command_Backw—— Backw
METHOD mForw
METHOD mBackw

o—H

Instances

|
LL]

Figure 16 Programming FB Valve43 with methods

According to the IEC standard, special additional restrictions apply to the variables
at the interface of the block (VAR_INPUT, VAR_OUTPUT, VAR_IN_OUT (not used in
this example)). This therefore means, for example, that variables from VAR_OUTPUT
may not be utilized outside the FB implementation. The keyword PRIVATE or PUBLIC
may not be assigned to any of these declaration subsections of the FB.

No keyword has been specified in the VAR block. The default keyword is PRIVATE
which means that these variables are not accessible from outside the FB.
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3.2.6.1 Example of FB with methods

FUNCTION BLOCK FBValve43
VAR_INPUT
Mode : BOOL;
EndPos : BOOL;
StartPos : BOOL;
Forw : BOOL;
Backw : BOOL;
END VAR

VAR_OUTPUT
QForw : BOOL;
QBackw : BOOL;
END VAR

VAR
boMode : BOOL;
boEndPos : BOOL;
boStartPos : BOOL;
boForward : BOOL;
boBackward : BOOL;
boMoveForward : BOOL;
boMoveBackward : BOOL;

END VAR

METHOD mForw // Method move forward
IF NOT boMode THEN // Jog mode
IF boForward AND NOT boBackward THEN

boMoveForward := TRUE;
boMoveBackward := FALSE;
ELSE
boMoveForward := FALSE;
END IF;
ELSE // Automatic mode
IF (boForward OR boEndPos) AND NOT boBackward THEN
boMoveForward := TRUE;
boMoveBackward := FALSE;
END IF;
END IF;
END METHOD

METHOD mBackw // Method move backward
IF NOT boMode THEN // Jog mode
IF boBackward AND NOT boForward THEN

boMoveForward := FALSE;

boMoveBackward := TRUE;
ELSE

boMoveBackward := FALSE;
END_IF;

ELSE // Automatic mode
IF (boBackward OR boStartPos) AND NOT boForward THEN

boMoveForward := FALSE;
boMoveBackward := TRUE;
END IF;
END_IF;

END METHOD

boMode = Mode;

boEndPos = EndPos;

boStartPos = StartPos;
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boForward := Forw;

boBackward := Backw;

THIS.mForw(); // Internal call mForward (static)
THIS.mBackw(); // Internal call mBackward (static)
QForw := boMoveForward;

QBackw := boMoveBackward;

END FUNCTION BLOCK

This FB has an input/output interface and 2 methods, i.e. mForw() and mBackw().
The methods are called in the body of the function block by means of the static call
for a method with THIS. The call may be alternatively programmed without THIS
(Forw(); or Backw()) in SIMOTION programs. It is important to ensure that methods
are programmed before the function block body. By defining instances, it is now
possible to reuse the function block.

There are no further options for function blocks in SIMOTION other than the func-
tions described above. There is no possibility of FB derivation or method overriding.
These extended mechanisms of OOP are available to SIMOTION users in the form of
classes with derivation and method overriding.

3.2.6.2 Example of a function block call

PROGRAM pValve

VAR

Valvel : FBValve43;

Valve?2 : FBValve43;

iboEAMode : BOOL;

iboComForl : BOOL; // from here are these normally I/Os
iboComFor2 : BOOL;

iboComBackl : BOOL;

iboComBack2 : BOOL;

iboEndPos1l : BOOL;

iboEndPos2 : BOOL;

iboStartPosl : BOOL;
iboStartPos2 : BOOL;

gboOutForl : BOOL;

gboOutFor2 : BOOL;

gboOutBackl : BOOL;

gboOutBack2 : BOOL;
END VAR

// first call FBValve43 (Valvel) complete call

Valvel (Mode := iboEAMode
,EndPos := i1boEndPosl
,StartPos := iboStartPosl
,Forw := iboComForl
, Backw := iboComBackl
, QForw => gboOutForl
, QBackw => gboOutBackl

)i

// second call FBValve43 (Valve2) incomplete call

Valve2.Mode := iboEAMode;
Valve?2.EndPos := 1boEndPos?2;
Valve2.StartPos := iboStartPos2;
Valve2.Forw := iboComFor?2;
Valve2.Backw := iboComBack2;
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Valve2 () ;
gboOutFor2 = Valve2.QForw;
gboOutBack2 := Valve2.QBackw;

END_ PROGRAM

Note: To ensure that this example is executable, the program must be assigned to the
BackgroundTask in the execution system of the SIMOTION CPU. For instructions
on how to assign programs in the execution system, see chapter 8.9.13.

With respect to the FB call, a function block programmed with methods in order to
improve the structure of the FB body is not used in any different way to a function
block programmed by the conventional method. Since the methods and variables
can be declared as PUBLIC or PRIVATE, however, this kind of programming ensures
more secure programs because it is easier to control access to the blocks.

In cases where PRIVATE variables need to be accessed from outside the function block
(for reading or setting), the programmer can implement various methods known as
Setter or Getter methods. For example, a PUBLIC method SetPrivValue(Value) (set
variable) or GetPrivValue(Value) (read variable) can be programmed in the FB. These
methods can be called from anywhere. A specific value can be transferred with the
parameter (Value). Whether the transfer value “Value” is actually used to set the
PRIVATE variable depends on the admissibility check implemented in the method
program. Thus, it is easy to program a check for admissible values in Set methods
of this kind. This further increases the security of programs.

3.2.7 Function block with methods for placing commands

In the past, function blocks have been programmed for execution in a cyclic context.
In other words, the program and sequences in the function block are designed to
work with precisely one cyclic FB call. All signals are transferred at the FB interface
and are read and written cyclically. By using methods, however, it is possible in some
respects to depart from the cyclic context and thus to influence the FB program in
a different, more flexible manner. The commands at the inputs of the FB now take
the form of method calls. These methods may be called asynchronously to the cyclic
processing sequence.

When implementing an FB of this kind, the programmer needs to give sufficient
consideration to the commands as these can obviously be issued to the FB at any
time. Since command transfer is now performed with methods, the signals that
previously carried out this task are no longer required at the FB interface.

It must of course be possible to transfer the binary signals for the limit switches and
the outputs for controlling the valve. A method named “mExecute” is implemented
in the FB for this purpose. mExecute must then be called once per valve instance
during cyclic program execution.

” o«

Commands are transferred using the methods “mForw”, “mBackw” and “mStop”.
These methods transfer the commands once and therefore need not be called cycli-
cally.
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Valve-cylinder combination

FB “FBValve43ext” with methods

StartPos |;|

I;l EndPos

FBValve43ext
METHOD Execute
IN_EndPos —— EndPos QForw [—— OUT_Forw
IN_StartPos —{ StartPos QBackw —— OUT_Backw
Mede removed

Ferward removed
Backward removed

METHOD mForw
METHOD mBackw
METHOD mStop

Figure 17 Further development FB Valve43 extended

Since all of the FB functions are implemented in methods in this model, the FB
does not have a body. The FB itself merely forms the framework for programming
methods and is responsible for supplying global variables.

Alternatively, you could of course omit the method mExecute() altogether and imple-
ment the relevant functions in the body of the FB.

The following example shows the program code for the modified function block.

3.2.7.1 Example of the FB with command methods

FUNCTION_BLOCK FBValve43ext

VAR

boEndPos
boStartPos
boForward
boBackward
boMoveForward
boMoveBackward

END VAR

METHOD PUBLIC mExecute

VAR_INPUT
EndPos
StartPos

END VAR

VAR OUTPUT
QForw
QBRackw

END VAR

BOOL;
BOOL;
BOOL;
BOOL;
BOOL;
BOOL;

VOID // Method Execute for cyclic call

BOOL;
BOOL;

:BOOL;
:BOOL;
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boEndPos := EndPos;
boStartPos StartPos;

IF boForward AND NOT boEndPos THEN

boMoveForward := TRUE;

boMoveBackward := FALSE;
ELSE

boMoveForward := FALSE;

boForward := FALSE;
END_IF;

IF boBackward AND NOT boStartPos THEN

boMoveBackward := TRUE;
boMoveForward := FALSE;
ELSE
boMoveBackward := FALSE;
boBackward := FALSE;
END_IF;
QForw := boMoveForward;
QBackw := boMoveBackward;
END_METHOD

METHOD PUBLIC mForw : VOID // Method command move forward
IF NOT boForward AND NOT boEndPos THEN
boForward := TRUE;
END IF;
END_METHOD

METHOD PUBLIC mBackw : VOID // Method command move backward
IF NOT boBackward AND NOT boStartPos THEN
boBackward := TRUE;
END IF;
END_METHOD

METHOD PUBLIC mStop : VOID // Method command Stop

boBackward := FALSE;
boForward := FALSE;

END METHOD

END FUNCTION BLOCK

The FB now has a total of four methods. The method mExecute is called cyclically
in the execution system and is responsible for controlling operation of the valve. It
is also used to interconnect the limit switches and the output signals for the valve.

The command methods mForw(), mBackw() and mStop() have no interface parame-
ters. They transfer commands to the mExecute() method via variables defined inter-
nally in the FB. Since a PUBLIC identifier has been assigned to the methods, they
can be called from anywhere. The relevant command is passed once to the method
mExecute. It is therefore also an ideal solution to call the commands from sequences.

Within the function block, all functions are now programmed in methods which
means that the body of the FB does not need a program. Since every FB must contain
a program, however, a blank program line (semicolon) is inserted at the end of the
FB. Implementing all functions in methods is the same as programming classes, a
technique that we will learn more about later on.
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3.2.7.2 Example of an FB call with command methods

PROGRAM pValve

VAR
iboEndPos : BOOL;
iboStartPos : BOOL;
iboForward : BOOL;
iboBackward : BOOL;
gboForward : BOOL;
gboBackward : BOOL;
Valvel : FBValved43ext;
END VAR

IF iboForward THEN
Valvel.mForw () ;
END_IF;

IF iboBackward THEN
Valvel.mBackw () ;
END_IF;

IF (NOT iboForward AND NOT iboBackward) THEN
Valvel.mStop () ;

END IF;
Valvel.mExecute (EndPos := iboEndPos
,StartPos := iboStartPos
, QForw => gboForward
, QBackw => gboBackward) ;

END_PROGRAM

Note: To ensure that this example is executable, the program must be assigned to the
BackgroundTask in the execution system of the SIMOTION CPU. For instructions
on how to assign programs in the execution system, see chapter 8.9.13.

An instance “Valvel” of the FB Valve43ext is created in the program pValve. The
method mExecute with the combined limit switch and output signals is then called.
To perform a simple command test, the call for commands mForw(), mBackw() and
mStop() via signal combinations is also stored in the cyclic section. As mentioned
above, methods can be called from anywhere.

With respect to the call of the cyclic section, the use of a function block with command
methods differs in the fact that only the input and output variables are transferred.

We have of course kept the example FB program very simple for the purpose of
illustrating the principle of command methods. The program for an actual valve
control system would almost certainly be larger and more elaborate.

The two operating modes “automatic” and “manual” are not necessary for this
example. It is extremely easy to make the distinction between these two operating
modes outside the FB. The method mStop() is called in manual mode when a manu-
ally-operated key (iboForward, iboBackward) is not actuated. In automatic mode, the
method is generally called from a sequence in which the stop command is issued via
corresponding sequence steps. To ensure that this functions properly, the operating
mode must also be linked into the queries of the signals iboForward and iboBack-
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ward. But designing software is all about considering aspects of this kind and it is
up to the programmer to decide how a program should best be implemented. It may
well be meaningful to retain an operating mode evaluation function in the valve FB.

3.3 Classes (CLASS)

Classes will be introduced with SIMOTION version 4.5. A class® forms the blueprint
for objects of the same kind with its attributes (properties/variables) and methods
(modes of behavior). To use a more general formulation, a class corresponds to
the data type of an object. A class thus has some resemblance with a complex data
type (such as a structure, TYPE), but goes even further. The programmer defines
additional algorithms (methods) in the class which work with these data.

A class is programmed in an ST source in the SIMOTION engineering system. The
ST source is a user-defined container in which programs can be written using a text
editor. The program for a class starts with the keyword CLASS<ClassName> and
ends with END_CLASS.

A description of how an ST source is generated in the engineering system can be
found in chapter 8.

Once a class has been fully programmed in the editor, it is also displayed in the
project navigator (PNV). The project navigator is similar to Windows Explorer and
displays all the elements of a SIMOTION project in a tree structure. The icon for a
class is labeled with a C (Figure 18). The methods are displayed underneath the class.

EB Class_Counter_ext
. & @ COUNTER
~.ql Basic types
35]- UP(OUT] INT UP, [IN]INT INC=1, [OUT] BOOL QL)
A DOWN(OUT] INT DOWMN, [IN]INT DEC=1, [OUT] BOOL QU
@ CallCounter ST(
=ME Class_Counter_Step5
. @@ COUNTER_SSTEP
é---;lf Basic types
L. UP(OUT]INT UP, [INJINT INC=1, [OUT] BOOL QLI
-0 CallCounter_ST2{)

Figure 18 CLASS in the PNV

Unlike function blocks, a class may contain only variable declarations, in other words,
itis not permissible to use VAR_INPUT, VAR_OUTPUT, VAR_IN_OUT or VAR_TEMP in
the declaration part of a program.

3 “Object-Oriented Programming”. In: Wikipedia - The Free Encyclopedia. Revision level: January 12, 2016, 08:24
UTC. URL: https:/len.wikipedia.org/wiki/Object-oriented_programming (viewed on: March 22, 2016, 17:28 UTC)
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The methods belonging to the class are specified within the class. Underneath the
class, the methods implemented within the class with their interfaces (signature)
are displayed in the project navigator. The icons for the methods are color-coded to
match the defined access identifier.

If a class is derived from another class (base class), the PNV shows the base class
under “Basic types”. The methods of the base class are not displayed here. The user
can jump to the base class in the PNV via the context menu in order to gain easy
access to the inherited methods. The methods of the base class are then displayed.

3.3.1 Keywords supported for a class

Table 1 shows the features defined according to IEC 61131-3 ED3 Table 48 (page
120 ff.) that are supported by SIMOTION.

Table 1 Keywords for classes

IEC No. | Keyword | Description
1) CLASS The declaration starts with the keyword CLASS followed
END CLASS by the class identifier and ends with END_CLASS.

1a) FINAL When this keyword is used in a defined class, no further
subclasses can be derived from the class. In other words,
it prohibits inheritance.

2a) VAR...END_VAR Declaration and initialization of the variables of a class.

3a) RETAIN Not specified in conjunction with PUBLIC.

3b)-4b) Omitted because NON RETAIN and VAR EXTERNAL are not
supported.

Methods and their

identifiers
5) METHOD The definition of a method starts with the keyword
METHOD followed by the method name and ends with
-+ END_METHOD END_METHOD.
5a) PUBLIC Identifier indicating that the method can be called from

anywhere (by any other class). The identifier is inserted
directly after the keyword METHOD.

5b) PRIVATE Identifier indicating that the method can be used only
within the class.

5¢) INTERNAL Available only when supported by namespaces.

5d) PROTECTED Method can be used within the class and its subclasses.
This identifier is the default and is effective even if no
identifier has been assigned.

5e) FINAL Method cannot be overridden.
Inheritance
6) EXTENDS This class is the extension (derivation) of a base class.

The keyword is inserted after the class name followed by
the base class. For example: CLASS derivedClass EXTENDS
baseClass

7) OVERRIDE Method overrides method of base class. The signature
and access identifier must be the same.
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IEC No. | Keyword | Description
8) ABSTRACT ABSTRACT CLASS - cannot be instantiated.

ABSTRACT METHOD — method is ABSTRACT and does not
contain any code. Class cannot be instantiated.

Access reference

9a) THIS Call of a method by dynamic binding within class (or a
subclass) in which method is defined.

9b) SUPER Call of a method of the base class. Can only be used in
subclasses (derived classes).

Variable access

identifiers
10a) PUBLIC Variable can be used anywhere.
10b) PRIVATE Variable can be used only within the class in which it is
defined.
10c) INTERNAL Available only when supported by namespaces.
10d) PROTECTED Variable can be used within the class in which it is defined

and its subclasses (derivations). This identifier is the
default and is effective even if no identifier has been

assigned.
Polymorphism
11a) VAR_IN_OUT An instance of a derived class may be transferred to
VAR_IN_OUT of a (base) class.
11b) Mit Referenz The address of an instance of a derived class may be
transferred to a reference to a (base) class (see chapter
6.3.2).

Methods or variables to which an access identifier has not been assigned have
PROTECTED status per default.

This kind of method is called within an implemented class via dynamic binding and
the keyword THIS. The term “dynamic binding” refers to the resolution of the actual
method call during runtime. The opposite of dynamic binding is “static binding”.
With static binding, the method call is clearly defined at the time the program is
compiled.

The keyword SUPER is used to call a method defined in the context of the base class
(one level higher) from a derived class.

The access identifier (e.g. PUBLIC, etc.) for variable declarations of the class is
specified at the relevant VAR declaration block of the variables (VAR ...) and not
individually for each variable. This means that the VAR CONSTANT block within
CLASS can also be used to define private or public constants.

It is also permissible to use the TYPE declaration block within CLASS to define pri-
vate/public data types (with access identifier if necessary). Thus, it is possible to
define class-specific data types (structures) within the class.

If a method is to override a method implemented in the base class, it must be
assigned the OVERRIDE identifier. Methods identified with the keyword FINAL may
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not be overridden. A compiler error message will be issued if an attempt is made
to override a FINAL method. If the identifier FINAL is assigned to a class, it is not
permissible to derive any subclasses from this class.

Classes identified with the keyword ABSTRACT cannot be instantiated. They merely
serve as a base class for deriving subclasses. Abstract methods may not contain any
program code and are only formulated in a derived class. The essential purpose
of abstract classes and methods is thus to assist the software designer with the
definition of classes.

3.3.1.1 Example of a CLASS declaration
CLASS ABSTRACT name
VAR (*vars*); END_ VAR

METHOD PUBLIC name_1 // Method anywhere usable
VAR INPUT (*inputs*); END VAR
VAR_OUTPUT (*outputs*) ; END_VAR

END_METHOD

METHOD FINAL name i // Method is final; OVERRIDE not possible
VAR INPUT (*inputs*); END VAR
VAR_OUTPUT (*outputs*) ; END_VAR

END_METHOD

END CLASS

Note: This example is only a condensed presentation designed to improve your
understanding of class definition. It is not an executable program.

3.3.2 Methods (METHOD)

The executable program code of a class is implemented in methods by the program-
mer. A method roughly corresponds to a function and includes a declaration part
and the executable program body. The definition of a method starts with the keyword
METHOD <MethodName> and ends with END_METHOD.

Methods resemble normal functions in terms of their behavior. In other words, the
method receives its data when it is called via the specified interface (VAR_INPUT,
VAR_IN_OUT) and writes its results to the output interface (VAR_OUTPUT, return
value). The data of the method are stored in the CPU stack and are deleted on exit
(the same as with functions).

Variables of the type VAR_INPUT, VAR_OUTPUT, VAR_IN_OUT and VAR (VAR_TEMP)
can be specified in the declaration part of a method. The method icon with inter-
face information does not become visible in the PNV until the complete method
interface (signature) has been entered. In this case, all the code for the method
(END_METHOD) as well as the class (END_CLASS) must be entered or else the tree
cannot show the information.
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3.3.3 Methods and their access specification

The user can define for each method in a class the program or program area from
which the method can be called. To do this, the programmer uses special keywords
that are typed before the name of the method definition (METHOD <KEYWORD>
<MethodName>). The following specification keywords are available:

PROTECTED

The keyword PROTECTED can be used if an inheritance has been implemen-
ted. It indicates that the method can be used only within the class in which
it is defined and all subclasses derived from this class. PROTECTED is the
default key and may be omitted. In other words, all methods with METHOD
<MethodName> in the method definition are automatically PROTECTED.

Note: If no inheritance has been implemented, this access definition has the
same meaning as PRIVATE. It must be noted, however, that the PROTECTED
method (in base classes without derived classes) is called with dynamic
binding.

INTERNAL

If namespaces have been implemented, the keyword INTERNAL can be
used (supported in versions later than V4.5). It indicates that the method
can be called within the namespace in which the class has been declared.
The namespace thus defines that access area. If namespace A comprises
program X and classes B and C, for example, then INTERNAL methods can
be called in program X and in classes B and C.

PUBLIC

This access identifier permits the method to be called from anywhere that
the relevant class is used. The place in which a class is used are the program
sections in which the instance of the class can be accessed.

PRIVATE

The identifier PRIVATE indicates that the method can be called only within
the class in which it is defined. By contrast with a PROTECTED method, a
method identified as PRIVATE may not be accessed from a derived class.

Figure 19 shows an example for access to methods defined in class C. Here follows
the explanation:

a) Access definition: PUBLIC, PRIVATE, INTERNAL, PROTECTED

- PUBLIC M1 can be accessed from anywhere with the method
call M1

- PRIVATE M2 can be accessed with the method call M2 only within
class C

- INTERNAL M3 can be accessed with method call M3 within
NAMESPACE A (as well as classes B and C)

- PROTECTED M4 can be accessed with method call M4 within class
C_derived (as well as class C)
b) Method calls inside/outside classes:
- M2 can be accessed within class C with THIS.
- M1, M3 and M4 are called outside class C - using keyword SUPER for M4.
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NAMESPACE A

CLASS B
a) Method call My_Class

\ CLASS C
Call M1 Ly PUBLIC METHOD M1 Calll M2 _L——1 THS
PRIVATE METHOD M2 -~

<4—— CallM3

PROTECTED METHOD M4 -

~ T~ SUPER
My_Class_derived

CLASS C_derived
METHOD Mx call M4

Figure 19 Access definition for methods (source: IEC 61131-3 ED3)

3.3.4 Declaration of instances of a class

The instances of classes are declared by the same method as structured variables.
When they are specified as a data type, the class name is typed after the colon. When
the object is created, the variables are initialized according to the initialization data
specified in the class.

If the variables are to be initialized with different values for a specific object, the
programmer can specify the initialization values via the expressions in parentheses.
The IEC standard states that this is only permitted for variables declared as PUBLIC.

Table 2 shows the features defined according to IEC 61131-3 ED3 Table 49 (page 123)
that are supported by SIMOTION.

Table 2 Declaration of instances of a class

Description Example
1 Declaration of instances VAR
of a class with default MyCounterl:Counter;
initialization END_ VAR
2 Declaration of instances VAR
of a class with initializa- MyCounter2:Counter:=(MAX Val:=1000,
tion of values MIN Val:=-1);
END VAR

Since PUBLIC variables can be accessed from anywhere, the value of the variables
can be changed from outside the class at any time. For example, the programmer can
easily change the value in the program by specifying “MyCounter1.Max_Val:=2000;".
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If the variables are declared as PROTECTED or PRIVATE, the programmer must pro-
vide a setter method in order to change a value.

In the interests of simplicity, the programmer may also permit initialization for
PROTECTED and PRIVATE variables with SIMOTION (this is an extension to the IEC
standard). By specifying the keyword OVERRIDE at the variable declaration of the
class, the programmer also enables initialization of PROTECTED/PRIVATE variables at
the instance declaration. In other words, the example in Table 2 in which values may
also be initialized for PROTECTED/PRIVATE variables will work if the programmer
has declared this as permissible in the class (see chapter 7.3.1). The definitions in
the access specification apply to all other access operations.

3.3.5 Rules for identifiers in a class

Each class forms its own scope. Names must be uniquely defined within this scope.
For this reason, the names of methods, variables and data types defined within a
class must not be duplicated. This rule also applies to derived classes. The only
exceptions to this rule are variables and methods identified as PRIVATE in the base
class because these are not visible in the derived class. Furthermore, the name of
the class and the base classes may not be used as the name of a variable or method.

The IEC standard stipulates that parameter names declared at methods may not hide
the names of variables or methods in the class itself.

In order to avoid various problems, SIMOTION permits (in deviation from the IEC
standard) an overlap between the identifiers of instance dataimethod names and
method parameters. Each method is given its own scope that is subordinate to the
scope of the class.

If an overlap between an identifier of parameter names and identifiers in the scope
of the class itself is detected in the program code for a method, the compiler outputs
a warning message. Moreover, to solve conflicts of this kind, it is permissible to
use the keyword THIS.<MethodName> to access methods within the class itself and
methods that are declared (and public) in the base class. It is permissible to access
variables of the class with <ClassName>.<VariableName> in addition to the simple
specification <VariableName>. (This is an extension of or modification to the IEC
standard, see chapter 7.2)

3.3.6 Use of class methods

Methods are used in a program in the same way as functions. The rules defined for
functions (formal call or non-formal call) with respect to parameter transfer also
apply to methods.

The following variants of method call in textual notation are available:

<InstanceName>.<MethodName>(); | External call with specification of the instance (static binding)
or reference transferred via VAR_IN_OUT (dynamic binding)

THIS.<MethodName>(); Call of a method within class in which method is defined;
internal call (dynamic binding)

SUPER.<MethodName>(); Explicit call of a method of the base class (static connection)
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As an extension to the IEC standard, the following additional call variants are also
permissible:

<MethodName>(); Call of a method within class in which method is defined;
Internal call (static binding)

<ClassName>.<MethodName>(); Call of a method from class in which it is defined, or a method
of a base class (static binding)

Method calls in graphical programming languages are used in conjunction with the
dialog boxes for function block calls that are already familiar to programmers. The
instance name of the class and the <ClassName>.<MethodeName> must be specified
in this case. The interfaces suitably formulated for assigning parameters are thus
represented.

With instance calls, the instance name of the class is typed in the position in which
the instance name of the function block is specified today. The call box for graphic
programming languages contains the class name and method name (separated by a
full stop) instead of the FB name. Since it is not possible to declare classes in graphi-
cal programming languages with SIMOTION, only an external call with specification
of the instance name can be programmed here.

In order to explain the principles of a class, a simple programming example is given
below. This example is based on information from IEC 61131-3, but has been modi-
fied in order to demonstrate various mechanisms. The example is moreover limited
to only those program sections that are absolutely necessary. Checks for correct
parameter transfer, etc. have been omitted in order to more clearly demonstrate
the principle.

A class “COUNTER” with a method “UP” (for count up) has been selected as the
example. In other words, the class has only one method UP() which counts up a
counter value (CV). You would not of course normally need to implement a class for
a counter, but our sole intention here is to illustrate certain principles of object-ori-
ented programming.

3.3.6.1 Example of a CLASS COUNTER

CLASS COUNTER
VAR
CV:INT; // Current value of counter
END_VAR

VAR OVERRIDE
MAX Val:INT :
MIN Val:INT :
END VAR

100;
0;

METHOD PUBLIC UP: INT // Method for count up by inc
VAR INPUT
INC:INT:=1;
END_VAR
VAR_OUTPUT
QU :BOOL;
END VAR
// Upper limit detection
IF CV <= (MAX_Val - INC) THEN
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CV := CV + INC; // Count up of current value
QU := FALSE;

ELSE
QU := TRUE; // upper limit reached

END_IF;

UP := CV; // Result of method

END METHOD
END_CLASS

The CLASS COUNTER has one method UP (with a defined return value INT) that can
count up a value (CV) for as long as the programmed maximum value (MAX_Val)
is not reached. When the maximum value is reached, the method sets the output
variable QU to TRUE. This output of QU (MAX Val reached) can be used to skip
another call of the same method in the calling program.

If the method is still called, the COUNTER ceases to count and the counts are lost.
Although this is one of the weaknesses of this example, our aim here is to explain
certain principles using the smallest possible programs.

The following example illustrates use of the method.

3.3.6.2 Use of the method of CLASS COUNTER

PROGRAM CallCounter_ ST
VAR
Cl:COUNTER::(MAX_Val:=1000,MIN_VAL:=O);
CountOut: INT;
Locking: BOOL;
END_VAR
// Call COUNTER UP for increment
IF Locking = FALSE THEN
CountOut:=C1.UP(INC:= 1, QU=>Locking); // increment
END_IF;
END_PROGRAM

Note: To ensure that this example is executable, the program must be assigned to the
BackgroundTask in the execution system of the SIMOTION CPU. For instructions
on how to assign programs in the execution system, see chapter 8.9.13.

The program creates instance C1 for the class COUNTER. According to the defini-
tion of the instance, initialization of variable values is permissible (MAX Val:=1000,
MIN_VAL:=0). The IEC standard states that this is only permitted for PUBLIC vari-
ables. With SIMOTION, however, the values of PROTECTED variables can also be
initialized if this is enabled by the programmer at the variable block with keyword
OVERRIDE (see chapter 3.3.6.1). To ensure that this applies to only selected variables,
the programmer can define multiple variable blocks in the class.

The current count value is transferred in the method’s return value to variable
“CountOut”. When the maximum value is reached, the Boolean variable “Locking”
is set to TRUE and further calls of the method are skipped in the program. If the
method UP() were to be called again, the counter would cease to count.

In order to describe the use of extended mechanisms, we are now going to add
another method for counting down (decrementing) to the class COUNTER.
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3.3.6.3 Extension of the CLLASS COUNTER and use of THIS

CLASS COUNTER
VAR
CV :INT; // Current value of counter
END_VAR
VAR OVERRIDE
MAX Val:INT :
MIN Val:INT :
END_VAR

100;
0;

METHOD PUBLIC UP: INT // Method for count up by inc
VAR INPUT
INC:INT:=1;
END VAR
VAR_OUTPUT
QU :BOOL;
END_VAR
// Upper limit detection
IF CV <= (MAX_Val - INC) THEN

CV := CV + INC; // Count up of current value
QU := FALSE;
ELSE
QU := TRUE; // upper limit reached
END IF;
UP := CV; // Result of method
END METHOD

METHOD PUBLIC DOWN : INT
VAR _INPUT
DEC:INT:=1; // decrement
END_VAR

IF CV > MIN_Val THEN
DOWN := THIS.UP(-DEC); // Internal method call
END IF;
END METHOD
END CLASS

The method DOWN has now been added to the base class COUNTER. This method
DOWN() uses the internal method call THIS and the method UP() to count down
(decrement). In this case, however, the method UP has been preset to the increment
value “-1”. In other words, the method UP is counting up with -1, i.e. it is counting
down. The method DOWN can now be used in a program in exactly the same way
as the method UP.

The methods UP() and DOWN() are PUBLIC methods and can be called from any-
where. When UP is called followed by DOWN in a program run, the relevant count
value is first incremented and then decremented. This behavior must be taken into
account in the calling program so as to ensure that the counter functions as required.

In other words, the subsequent method calls in PROGRAM are programmed such
that only UP() or DOWN() is called in each case.
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3.3.6.4 Use of the methods UP and DOWN

PROGRAM CallCounter ST
VAR
Cl:COUNTER::(MAX7Va1::1OOO,MIN7Va1::O);
CountOut: INT;
Locking: BOOL;
UpValreached: BOOL;

END_ VAR
// Call COUNTER for increment/decrement
IF UpValreached = TRUE THEN Locking := TRUE; END IF;

IF Locking = FALSE THEN
CountOut : =C1.UP (QU=>UpValreached) ; // increment

END IF;
IF Locking = TRUE THEN
CountOut :=C1.DOWN () ; // decrement
END_IF;
IF CountOut <= 0 THEN
Locking := FALSE;
UpValreached := FALSE;
END_IF;

END_PROGRAM

Note: To ensure that this example is executable, the program must be assigned to the
BackgroundTask in the execution system of the SIMOTION CPU. For instructions
on how to assign programs in the execution system, see chapter 8.9.13.

In this program, the count value is counted up until the maximum value is reached.
The new method DOWN is then called and this counts the value down until it has
reached zero. When the count value has reached zero, it is counted up again. The
switchover between counting up and counting down is controlled by the variable
“Locking”.

The calls of methods UP() and DOWN() utilize the specified default of the values at
the INPUT variables of the methods. Transferring values to these variables would
change the increment of the counter. If the values specified were not divisible by the
MAX Val, the counter might exceed the maximum value or drop below the minimum
value. This is another weakness of this example. But we need this potential change
in the transferred value in order to progress to the next stage of the explanation.

The examples we have used until now have only demonstrated use of a class with
methods that could be implemented just as well as a function block. The fact that data
and methods defined in classes can be inherited constitutes the major difference
between classes and function blocks. The principle of inheritance - an essential
building block of object-oriented programming - is explained in the following sec-
tion. We will then show you an example of the class COUNTER extended by these
mechanisms.

3.3.7 Classes and inheritance

In object-oriented programming, it is possible to derive subclasses from an existing
class. When a subclass is derived, it inherits all the properties of the original class.
This means that all the variables and methods defined in the original (base) class
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are available in the derived class although the source code is not visible in the
derived class. The new class created by this method can be used in turn to derive
further classes.

From base class X with methods a and b, we can derive class X1 (Figure 20). The
keyword for the derive process is EXTENDS and is specified in the definition of the
new class X1: CLASS X1 EXTENDS X. Method b from the base class is overridden in
class X1, i.e. it is implemented differently. Method c is also made available. Using
this new class X1 as a base, we can derive further subclasses such as X11 and X12.

CLASS X CLASS Y
METHOD a, METHOD b METHOD u, METHOD v

| |

CLASS X1 EXTENDS X CLASS Y1 EXTENDS Y
METHOD OVERRIDE b METHOD u, v

METHOD a, b METHOD w

METHOD ¢
Multible inheritance
/_/A R is not permitted

Basecl
(possibly ABSTRACT)

Derived
classes

CLASS X11 EXTENDS X1

CLASS X12 EXTENDS X1

CLASS

METHOD a, b, ¢

METHOD a, b, ¢

MET!

METHOD d

METHOD f

=

Figure 20 Classes and their derivations

IEC 61131-3 ED3 does not make any provision for multiple inheritance.

A derived class inherits all the properties (variables and methods) of the original
class. To derive a class only makes sense, however, when it is necessary to adapt the
inherited programs to fulfill different requirements. This is why provision is made
for overriding the methods from the base class in the new derived class in order to
program them with new functions. The overriding of methods must be programmed
by keywords in the new class. For example: METHOD PUBLIC OVERRIDE b.

By this means it is possible to integrate an adapted code for method b in the new
class.

As regards overriding, it is important to note that while the method can be imple-
mented with new functionality, the signature (interface definition and name) may
not be changed. Programmers can also use their own temporary variables (VAR,
VAR_TEMP) that are defined differently to the variables in the method of the base
class.

To illustrate how this all works, we have again used our class COUNTER in the fol-
lowing examples.
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3.3.7.1 Example of derivation of a class

CLASS COUNTER_5STEP EXTENDS COUNTER
METHOD PUBLIC OVERRIDE UP: INT // Method override
VAR _INPUT
INC:INT:=1;
END_ VAR
VAR _OUTPUT
QU :BOOL;
END_VAR
UP:=SUPER.UP (INC:=INC*5,QU=>QU) ;
END_METHOD
END_ CLASS

In this example we have created a class COUNTER_5STEP that we have derived from
the class COUNTER. This derived class inherits all the variables and methods from
the base class (COUNTER). The derive operation is implemented with the statement:
CLASS COUNTER_5STEP EXTENDS COUNTER. Figure 21 shows the structure of this
example.

CLASS COUNTER Extension CLASS COUNTER
CV:INT 5| CViINT
MAX_Val:INT MAX_Val:INT
MIN_Val:INT MIN_Val:INT
THIS.UP(*-1)
METHOD PUBLIC UP([IN] INC, [OUT]QU) METHOD PUBLIC UP([IN] INC, [OUT]QU)
METHOD PUBLIC DOWN([IN] DEC) -
Program Call_Counter
C1:COUNTER e SUPER.UP(*5) |
Derivation
METHOD PUBLIC UP() —
METHOD PUBLIC DOWN() — call CLASS COUNTER_5STEP
alls
METHOD PUBLIC OVERRIDE UP( [
[IN] INC, [OUTIQU)
THIS.UP(*-1)

Figure 21 Derivation and counter call principle

We now need to alter the functionality of the new class to that the counter can
count up and down in increments of five. In order to do this, we need to override
the method UP() inherited from the base class. The program code for method UP
is therefore changed and programmed with the new functionality “Count in incre-
ments of five”.

Method UP() is overridden with the statement: METHOD PUBLIC OVERRIDE UP. Since
we are not permitted to change the method signature, the name, the return value
and the definition for the INPUT and OUTPUT parameters must remain the same as
they are in the base class.

To be able to count in increments of five, the method UP() in the derived class
calls the method UP() in the base class using keyword SUPER, but also transfers the
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increment value (INC) multiplied by 5. This causes the method UP in the base class
to count in increments of five.

In response to the method call with SUPER, the base class passes the output variable
QU to the output variable QU of the derived class. Just to clarify once again: these
two variables QU are variables in different scopes that must have the same name
because they have the same signature. In other words, the programming of QU prior
to parameter assignment belongs to the scope of the base class method, while its
programming thereafter belongs to the scope of the current method.

Using this simple override mechanism, it is easy to alter the functionality of the base
class. Method UP() of COUNTER_5STEP counts in increments of five. Now you will
certainly ask yourself: What happens to the count down function?

When we derived class COUNTER_5STEP, it also inherited the method DOWN() from
the base class. The program code for this method has not been changed and is
therefore visible only in the base class, but it is still operative in the derived class.
In other words, COUNTER_5STEP has, like the base class, a method UP() and an
inherited method DOWN().

This means that the method DOWN() can also be called for an object of COUNTER _
5STEP. A reminder: The method UP() is called with THIS(DOWN := THIS.UP(-DEC))
in the method DOWN(). This is a dynamic call which means that the overridden
method UP() of COUNTER_5STEP is called in this case, but (as in the base class) with
a negated increment value (-DEC). This negated value migrates via the SUPER call
multiplied by 5 to the base class. The resultis a count down operation in increments
of five.

We have to admit here that this solution probably looks pretty tricky to a procedural
programmer. Furthermore, the example works with the use of THIS and the deriva-
tion only because the increment can be specified at the INPUT parameters.

The transfer of values via the INPUT parameters INC and DEC is a weak point of this
example because transferring a value other than “1” or “5” would lead to undesirable
results. If you are asking yourself why we cannot use an example without weak
points, you are quite justified to do so. The answer to the question is simple: This
example uses minimum program code (one code line change) to illustrate the effect
of dynamic calls and the mechanism of inheritance - and this was precisely our goal.
and we therefore decided to accept the weak points of the example. As we mentioned
right at the beginning, nobody would define a class just for a counter function, but
would use the standard FBs of the system.

3.3.7.2 Example of how to use base and derived classes

PROGRAM CallCounter ST2
VAR
C1:COUNTER;
C2:COUNTER_5STEP;
CountOut: INT;
CountOut2: INT;
Locking: BOOL;
Locking2: BOOL;
UpValreached: BOOL;
UpValreached2: BOOL;
END VAR
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// Call COUNTER (C1l) for increment/decrement
IF UpValreached = TRUE THEN Locking := TRUE; END IF;
IF Locking = FALSE THEN

CountOut :=C1l.UP (QU=>UpValreached); // increment
END_IF;

IF Locking = TRUE THEN

CountOut :=C1.DOWN () ; // decrement
END IF;
IF CountOut <= 0 THEN
Locking := FALSE;
UpValreached := FALSE;
END IF;
// Call COUNTER 5STEP (C2) for increment/decrement
IF UpValreached2 = TRUE THEN Locking2 := TRUE;
END IF;

IF Locking2 = FALSE THEN
CountOut2:=C2.UP (QU=>UpValreached2); // increment

END IF;
IF Locking2 = TRUE THEN
CountOut2:=C2.DOWN () ; // decrement
END IF;
IF CountOut2 <= 0 THEN
Locking2 := FALSE;
UpValreached2 := FALSE;
END IF;

END PROGRAM

Note: To ensure that this example is executable, the program must be assigned to the
BackgroundTask in the execution system of the SIMOTION CPU. For instructions
on how to assign programs in the execution system, see chapter 8.9.13.

The program code in this example illustrates the simultaneous use of the methods
in classes COUNTER and COUNTER_5STEP. In this case, the methods UP and DOWN
are being used as described above. The objects C1 and C2 continue counting up
until the maximum value is reached. The counter value is then decremented again
until the counter reading is 0.

When the methods UP and DOWN from class COUNTER are used, the count value is
incremented and decremented by one in each case. The methods defined in class
COUNTER_5STEP increment and decrement the count value by 5 in each case.

If we allow this program to execute, we can clearly observe that it is ultimately always
the method UP from the base class that is applied in the program, but with different
parameters. The restriction that either the UP or DOWN method from each class must
be called in order to achieve full count up or count down still applies.

3.3.7.3 Other aspects of the method call

In the COUNTER_5STEP example, we have only overridden the method UP. Since this
subclass inherited the DOWN method() and the call with THIS implemented within
the method, it will call the overridden method UP(). In this method, the keyword
SUPER has been used in turn to call the method UP() from the base class. Thanks to
this chaining of calls, the method DOWN() also works in the derived class without
having to be overridden.
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If this indirect influence is not desired, the programmer can prevent it by changing
the call for the method UP() in the base class. This is the call implemented with THIS:

DOWN := THIS.UP(-DEC); // method call (dynamic)

If the programmer replaces THIS by the name of the class, the method is called
statically. In other words, with methods inherited in derived classes, it is always the
method from the base class that is called. The call then looks like this:

DOWN := COUNTER.UP(-DEC); // method call (static)

By making this change to our example, the counter in the derived class COUNTER_
5STEP would only count up in increments of five. But when the method DOWN() in
the derived class is called, the counter still counts down in increments of one.

When implementing the base class, therefore, the programmer needs to decide how
method override mechanisms will or should work. While this makes the program-
ming process more complex and requires the programmer to understand the use of
methods, it ensures an extremely high degree of flexibility in program application.
Itis often necessary for a programmer to precisely define whether or not an override
will have an effect on other methods. We just want to point out once again that
programming this change of behavior in the implementation of a counter does not,
of course, make any technical sense. But what makes this example so useful is that
it demonstrates very neatly the difference between dynamic and static bindings
and their effects.

The IEC standard describes another option for prohibiting overrides. The keyword
FINAL can be programmed for a class or method in order to protect it against being
overridden.

CLASS FINAL <ClassName> can no longer be used as a base class from which other
classes can be derived. If a method is identified accordingly (METHOD FINAL
<MethodName>) within a class (that is not itself identified as FINAL), the class can
still be used as a base class but the method cannot be overridden and the compiler
will output an error message if any attempt is made to do so.

3.3.7.4 Example of base and derived classes in a function

The following example demonstrates the use of counter functionality programmed
in a function. In this case, the necessary signals including the object reference to
the COUNTER are transferred to the function via VAR_IN_OUT.

The switchover between counting up and counting down is thus implemented in the
function for both scenarios - count in increments of one and count in increments
of five.

The relevant object instance of the class (C1 and C2) is transferred with a dynamic
function binding when the function is called in the program at parameter C. This
must be done via VAR_IN_OUT because areference of the class instance is transferred
via this interface. Any other declaration would lead to a compilation error. With the
implicit reference creation at VAR_IN_OUT, the underlying polymorphism is also
clearly demonstrated here. Because an object of the base class (C1) is transferred
to the variable C of the function at one location, and an object of the derived class
(C2) at another.
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The program call is thus made simpler.

FUNCTION CallSingleCounter:VOID
VAR _IN OUT
CountOut: INT;
Locking: BOOL;
UpValReached: BOOL;
C : COUNTER;
END VAR
// Call COUNTER ( C )
IF UpValReached = TRUE THEN Locking
END IF;

IF Locking = FALSE THEN

CountOut :=C.UP (QU=>UpValReached) ;
END IF;
IF Locking = TRUE THEN

CountOut :=C.DOWN () ; // decrement
END_IF;
IF CountOut <= 0 THEN

Locking := FALSE;

UpValReached := FALSE;
END_IF;

END FUNCTION

PROGRAM CallCounter ST3

VAR
C1:COUNTER;
C2:COUNTER_5STEP;
CountOut: INT;
CountOut2: INT;
Locking: BOOL;
Locking2: BOOL;
UpValReached: BOOL;
UpValReached2: BOOL;

END VAR

// Call COUNTER (C1)

for increment/decrement

TRUE;

// increment

for increment/decrement

CallsingleCounter( C := Cl, CountOut := CountoOut,
Locking := Locking, UpValReached := UpValReached) ;

// Call COUNTER 5STEP (C2) for increment/decrement

CallSingleCounter( C := C2, CountOut := CountOut2,
Locking := Locking2, UpValReached := UpValReached2) ;

END_PROGRAM

Note: To ensure that this example is executable, the program must be assigned to the
BackgroundTask in the execution system of the SIMOTION CPU. For instructions
on how to assign programs in the execution system, see chapter 8.9.13.

3.3.8 Abstract classes

According to IEC, a class may be defined as an “abstract class®. Abstract classes are
used in object-oriented programming as a means of structuring the software. The
software designer can use abstract classes to define the structure of classes. The com-
monalities between objects still to be created are summarized in the abstract class.
In addition, an abstract class might contain the entire program code for individual
methods that can be used by classes derived from the abstract class.

Itis not possible to create instances or objects from an abstract class. We have already
discussed the topic of objects using “bicycle”, “car” or “horse-drawn carriage” as
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examples in chapter 2.1.3, i.e. objects that can be assigned to the higher-level class
“vehicles”. In this context, the class “car” represents a class for the formation of real
objects. The class “car” is derived from the class “vehicles”. But it is not possible
to create any objects from the class “vehicles” because it represents a generaliza-
tion (abstraction). In other words, the class “vehicles” is an abstract class which
predefines the properties and operations for all vehicles. In order to create actual
objects, we need to derive subclasses from the class “vehicles” and enrich them with
additional properties and operations.

Abstract classes are identified by the keyword CLASS ABSTRACT <ClassName>. If at
least one method is identified as ABSTRACT (METHOD ABSTRACT <MethodName>) in
a class without the keyword ABSTRACT, then this class also becomes an abstract class.
If a method is defined as ABSTRACT, it contains only the interface definition but no
program code. It is not possible to create instances or objects from an abstract class.

A subclass is derived from the abstract class. This derived class inherits all the meth-
ods and must (so that it can be instantiated) also override the methods identified as
ABSTRACT and fill them with the requisite program code.

If an abstract class already contains fully programmed methods, subclasses derived
from it will also inherit these. Programmers can thus save themselves the time and
effort of programming these methods again.

Let’s use a concrete example to illustrate the relevant principles: A machine is
equipped with a variety of different motors, e.g. induction motors with contactor-type
starters, motors with star-delta starters, or speed-controlled drive systems. It must
be possible to start up and shut down all motors or drive systems. However, the
startup and shutdown procedure varies according to the motor or drive type and
these variations need to be reflected in the programming. The methods Switch_on()
and Switch_off() could now be defined in an abstract class together with the input
and output parameters that they may need. In addition, it should be possible to query
the status of the relevant motor or drive. To make this possible, a method Status() is
defined in the abstract class. This method is capable of supplying the information
“motor/drive is “running”, “stationary”, “starting”, “stopped”, “actual speed” or
“error”. This method must be used by all the derived classes and may be programmed
in full in the abstract class. Once these decisions have been reached, the individual
development teams can start the program development work assigned to them.

The programmer responsible for programming the class for direct-on-line starting
drives derives a subclass named e.g., “DirectDrive”, from the abstract class and fills
the defined methods Switch_on() and Switch_off() with the program code actually
required for the direct-on-line starting drive application. This programmer tests the
program section until it is completed.

The other programmers work in the same way to complete the programs for the
other types of motor. At the end of this process, three different classes have been cre-
ated, each containing the appropriate program code for Switch_on() and Switch_off()
of the relevant motor type. But all these have one thing in common: the methods all
have the same name and the same input/output interface (signature).

This approach allows different development teams to work independently. The
structure of the software has been defined and the time/effort required to create it
can be reduced because programming can progress independently and in parallel.

You can find an example illustrating the use of abstract classes in chapter 3.7.
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3.4 Examples of valve applications with OOP

In previous chapters, we have explained the principle of using classes with inheri-
tance and also discussed method override mechanisms, but these examples merely
served to explain the principle. So we will now turn our attention to an example
with a more practical orientation and so improve your understanding of classes
and their use.

Valves are often deployed in combination with cylinders in mechanical engineering.
We therefore see this scenario as the perfect example for implementing a control
system for machine elements with valves and cylinders using object-oriented pro-
gramming mechanisms.

Valve designs are remarkably diverse and the way in which valves operate also varies
depending on the application. Programming valve applications using OOP offers
many advantages. By using OOP with inheritance, it is possible to extend the scope
of control functions easily without needing to adapt executable programs that have
already been tested. It thus becomes much easier to maintain the software or adapt
it as required. The following examples illustrate this.

Note: We have limited the content of the examples so as to illustrate only the essen-
tial elements. The diagrams and programs contain only those elements and
depictions that are needed to improve understanding of the functions. Other
essential components (such as hydraulic pumps, throttles, etc.) have been
omitted in order to focus your attention on the principles of OOP.

3.4.1 Example with 4/3-way valve

A cylinder is to be controlled by means of a 4/3-way valve. In this example, the valve
for the forwards and backwards movements is controlled by means of the corre-
sponding solenoids. If the solenoid is not energized, the valve moves to mid-position
and the cylinder stops.

Two cylinder operating modes must be implemented in the plant. In setup mode,
the cylinder can be moved forwards by means of a pushbutton (Forward). The
pushbutton (Backward) is actuated to reverse the cylinder. When the pushbutton is
released, neither of the solenoids is energized (i.e. the valve moves to mid-position).
In automatic mode, the cylinder must move forward in a self-holding motion in
response to a Forward command. The cylinder remains in this state until a Backward
command is issued.

Two limit switches, one to signal the start position and the other to signal the end
position, are provided. The valve must be held in the end positions by the corre-
sponding control signal. This is to prevent the cylinder from moving in the event
of leakage.

The following signals are therefore required:

Inputs:

- Mode - automatic mode = TRUE, setup = FALSE
- Forward - forward command

— Backward - backward command
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Figure 22 Plant with a 4/3-way valve

— EndPos - end position reached
- StartPos - start position reached

= Outputs:
— Out_Forward - output to valve
- Out_Backward - output to valve

3.4.1.1 Example of a class for 4/3-way valves

CLASS ValveControl43

VAR
cboMode : BOOL;
cboEndPos : BOOL;
cboStartPos:BOOL;
cboForward: BOOL;
cboBackward: BOOL;
cboOut_Forward:BOOL;
cboOut_Backward:BOOL;

END VAR

METHOD PUBLIC mExecute:VOID // Method for cyclic call
VAR INPUT
Mode : BOOL;
EndPos : BOOL;
StartPos:BOOL;
Forward:BOOL;
Backward:BOOL;
END VAR
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VAR OUTPUT
Out_Forward:BOOL;
Out_ Backward:BOOL;

END VAR

cboMode : =Mode;
cboEndPos : =EndPos;
cboStartPos:=StartPos;
cboForward:=Forward;
cboBackward:=Backward;

THIS.mForw(); // Internal call Forward
THIS.mBackw(); // Internal call Backward

Out_ Forward:=cboOut Forward;
Out_Backward:=cboOut_Backward;
END METHOD

METHOD mForw:VOID // Method move forward
IF cboMode = FALSE THEN // Jog mode
IF cboForward AND NOT cboBackward THEN
cboOut_Forward:=TRUE;
cboOut_ Backward:=FALSE;

ELSE
cboOut Forward:=FALSE;
END IF;
ELSE // Automatic mode

IF (cboForward OR cboEndPos) AND NOT cboBackward THEN
cboOut Forward:=TRUE;
cboOut_Backward:=FALSE;
END IF;
END IF;
END METHOD

METHOD mBackw:VOID // Method move backward
IF cboMode = FALSE THEN // Jog mode
IF cboBackward AND NOT cboForward THEN
cboOut_Forward:=FALSE;
cboOut Backward:=TRUE;
ELSE
cboOut_ Backward:=FALSE;
END IF;
ELSE // Automatic mode
IF (cboBackward OR cboStartPos) AND NOT cboForward THEN
cboOut Forward:=FALSE;
cboOut_Backward:=TRUE;
END IF;
END IF;
END METHOD
END_CLASS

The class ValveControl43 contains 3 methods. The method mExecute passes the
input and output signals to the class. The methods mForw() and mBackw() perform
the actual movement. These methods are not visible from outside the class and are
called in the method mExecute by means of internal method call with THIS.

The class ValveControl43 can therefore be called and executed with various instances
and as many times as required for various machine elements.
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Remark: From now onwards, we will be using so-called “prefixes” for the variables in
our examples. Prefixes are typed in lower case letters and digits before the
actual variable names and designate first the location and then the type.
For example, variable “cboEndPos” belongs to a class (c), has data type
BOOL (bo) and has the name EndPos. These prefixes make the program
significantly easier to read. By contrast, the interface variables of the blocks
have no prefixes.

3.4.1.2 Example of a valve call

PROGRAM CallValveControl

VAR
V1:ValveControl4d3;
V2:ValveControl43;
iboEA Mode: BOOL;
iboComForl: BOOL; // from here are these normally I/Os
iboComFor2: BOOL;
iboComBackl: BOOL;
iboComBack2: BOOL;
iboEndPosl: BOOL;
iboEndPos2: BOOL;
iboStartPosl: BOOL;
iboStartPos2: BOOL;
gboOut_Forl: BOOL;
gboOut_For2: BOOL;
gboOut_Backl: BOOL;
gboOut_Back2: BOOL;

END_ VAR

// first call ValveControl43 (V1)

V1.mExecute (
Mode :=iboEA Mode
,EndPos:=1boEndPosl
,StartPos:=1iboStartPosl
,Forward:=iboComForl
,Backward:=1iboComBackl
,Out_Forward =>gboOut_Forl
,Out_Backward =>gboOut_ Backl
)i

// second call ValveControl43 (V2)

V2 .mExecute (
Mode : =iboEA Mode
,EndPos:=1iboEndPos?2
,StartPos:=1iboStartPos2
,Forward:=iboComFor2
,Backward:=1iboComBack?2
,Out_Forward =>gboOut_For2
,Out_Backward =>gboOut_Back2
)i

END_PROGRAM

Note: To ensure that this example is executable, the program must be assigned to the
BackgroundTask in the execution system of the SIMOTION CPU. For instructions
on how to assign programs in the execution system, see chapter 8.9.13.
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The call in a graphic programming language is as follows:

Vi
o +
! ValveControl43.Execute !
o +
EN--! I-- ENO
iboEA Mode-- !Mode Out_Forward!-- gboOutForl
iboEndPosl-- !EndPos Out_Backward!-- gboOutFor2
iboStartPosl--!StartPos !
iboComForl- - !Forward !
iboComBackl-- !Backward !
B +

There is no difference between using the object-oriented program in class ValveCon-
trol43 and using a function block that has been programmed by the conventional
procedural method. The question we therefore need to answer is: What exactly is
the advantage of using object-oriented programming?

When a class is created, it is possible to exert some influence over access rights by
specifying the data (variables) and the methods using keywords PUBLIC, PRIVATE,
(INTERNAL), PROTECTED (with PROTECTED being the default). The variables in class
ValveControl43 are PROTECTED which means that they cannot be influenced from
outside the class. In other words, the data are encapsulated.

In the event of an interruption (e.g. as a result of an interrupt) during execution of
a program, this protection prevents the data from being changed unintentionally
because the program called in the interrupt has no access to the data in the inter-
rupted program. Furthermore, all the data required to permit interaction between
objects can also be incorporated in the class and made public if necessary. Transfer
of external data is made impossible. Programs can be executed more securely.

The other major advantages of using this programming method are revealed when
it becomes necessary to adapt existing programs to meet new requirements. In this
case, the existing functionality can be inherited by a derived class and the necessary
adjustments made in the derived class. The original functions that have already
been tested remain intact.

This is illustrated by the following example.

3.4.1.3 Example with 4/3-way valve with fast/slow speed

An additional fast/slow speed switchover mechanism has now been added to the
plant. We can now derive a subclass from the existing class and implement the new
functionality in the subclass.

A reminder: The following inputs and outputs were required.

Inputs:

- Mode - automatic mode =1, setup =0
- Forward - forward command

- Backward - backward command

— EndPos - end position reached

- StartPos - start position reached
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StartPos |_;_| |_;_| EndPos

E-I Rapid/slow speed

><{

o—H

E_

Figure 23 4/3-way valve with fast/slow speed

= Outputs:

- Out_Forward - output to valve
- Out_Backward - output to valve

We have now added an additional valve for fast/slow speed switchover and another

limit switch to activate it. One additional input FastSlow and one additional output
Out_Slow are thus required in each case.

® Additional input:
- FastSlow - fast/slow speed switchover
= Additional output:

— Out_Slow - output to valve slow speed

3.4.1.4 Example of a derived class ValveControl43FS

CLASS ValveControl43FS EXTENDS ValveControl43
VAR

cboFastSlow:BOOL;

cboOut_Slow:BOOL;
END VAR
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METHOD PUBLIC mExecutel // Method for cyclic call

VAR INPUT
Mode : BOOL;
EndPos : BOOL;
StartPos:BOOL;
Forward:BOOL;
Backward:BOOL;
FastSlow:BOOL;

END VAR

VAR_OUTPUT
Out Forward:BOOL;
Out_Backward:BOOL;
Out_ Slow:BOOL;

END VAR

SUPER.mExecute (
Mode : =Mode
,EndPos :=EndPos
,StartPos:=StartPos
, Forward:=Forward
,Backward:=Backward
,0ut_Forward=>Out_Forward
,0ut_Backward=>0Out_Backward) ;

cboFastSlow:=FastSlow;
Out_Slow:=cboOut_Slow;

cboOut_Slow:=cboFastSlow; // switch Fast to Slow
END METHOD
END_CLASS

In this class ValveControl43FS (derived from ValveControl43), method Execute is
replaced by method Executel. The reason it has been programmed like this in the
example is to ensure that all the necessary I/Os can be transferred at the call inter-
face. Executel uses the method Execute (SUPER.Execute(...)) from the base class.
which means that the program code does not need to be written again.

3.4.1.5 Example of calls of base class and extended class

PROGRAM CallValveControl 2
VAR

V1:ValveControl43;
V2:ValveControl43FS;
iboEA Mode: BOOL;
iboComForl: BOOL; // from here are these normally I/Os
iboComFor2: BOOL;
iboComBackl: BOOL;
iboComBack2: BOOL;
iboEndPosl: BOOL;
iboEndPos2: BOOL;
iboStartPosl: BOOL;
iboStartPos2: BOOL;
iboInFastSlow: BOOL;
gboOut_Forl: BOOL;
gboOut_For2: BOOL;
gboOut_Backl: BOOL;
gboOut_Back2: BOOL;
gboOut_Slowm: BOOL;
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END_VAR
// first call ValveControl43 (V1)
V1.mExecute (

Mode : =iboEA Mode
,EndPos:=iboEndPosl
,StartPos:=iboStartPosl
,Forward:=iboComForl
,Backward:=iboComBackl
,Out_Forward =>gboOut_ Forl
,0ut_Backward =>gboOut_Backl) ;
// second call ValveControl43FS (V2)
V2 .mExecutel (
Mode : =iboEA Mode
,EndPos:=1boEndPos?2
,StartPos:=iboStartPos2
,Forward:=1iboComFor2
,Backward:=iboComBack2
,FastSlow:=1iboInFastSlow
,Out_Forward =>gboOut For2
,Out_Backward =>gboOut_Back2
,0ut_Slow =>gboOut_ Slown) ;
END_PROGRAM

Note: To ensure that this example is executable, the program must be assigned to the
BackgroundTask in the execution system of the SIMOTION CPU. For instructions
on how to assign programs in the execution system, see chapter 8.9.13.

We are now using both classes in this call example. Each class is instantiated once (V1
from ValveControl43 and V2 from ValveControl43FS) and the functions are executed
in cyclical operation by means of the relevant method call.

3.4.1.6 Example of call of extended class with basic function

PROGRAM CallvValveControl 3

VAR
V1:ValveControl43FS;
V2:ValveControl43FS;
iboEA Mode: BOOL;
iboComForl: BOOL; // from here are these normally I/Os
iboComFor2: BOOL;
iboComBackl: BOOL;
iboComBack2: BOOL;
iboEndPosl: BOOL;
iboEndPos2: BOOL;
iboStartPosl: BOOL;
iboStartPos2: BOOL;
iboInFastSlow: BOOL;
gboOut_Forl: BOOL;
gboOut_For2: BOOL;
gboOut_Backl: BOOL;
gboOut_Back2: BOOL;
gboOut_Slowm: BOOL;

END VAR

// first call ValveControl43 with inherited Execute (V1)

V1.mExecute (
Mode : =iboEA Mode
,EndPos:=1iboEndPos1
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,StartPos:=iboStartPosl
,Forward:=iboComForl
,Backward:=iboComBackl
,0ut_Forward =>gboOut_Forl
,0ut_Backward =>gboOut Backl) ;
// second call ValveControl43FS (V2)
V2 .mExecutel (
Mode :=iboEA Mode
,EndPos :=iboEndPos2
,StartPos:=iboStartPos2
,Forward:=iboComFor2
,Backward:=iboComBack?2
,FastSlow:=iboInFastSlow
,0ut_Forward =>gboOut_For2
,0ut_Backward =>gboOut_Back2
,0ut_Slow =>gboOut_Slowm) ;
END_ PROGRAM
END_ IMPLEMENTATION

Note: To ensure that this example is executable, the program must be assigned to the
BackgroundTask in the execution system of the SIMOTION CPU. For instructions
on how to assign programs in the execution system, see chapter 8.9.13.

In this call example, the extended class is used for V1 and V2. Since ValveControlFS
inherits all methods and properties of the base class, the method Execute can natu-
rally be used in the call. This also means that only the variables declared in Execute
may be used for the class in the call interface. The call thus functions in the same
way as in the previous example.

Implementing the method mExecutel for the extension of the I/O interface is com-
pulsory because the method signature of the method mExecute may not be changed
in the derived class. While this solution is not particularly elegant or sound, this
is the only way it can be implemented using the knowledge we have gained so far.
When we have learned about other object-oriented programming mechanisms, we
will be able to find better solutions. For example, we will be able to neutralize the
connection of I/O devices using interfaces (see chapter 3.5.9). Another, less flexible
option would be to use I/O references, but this mechanism will not become available
until after version V4.5 (see chapter 6.1).

3.5 Interfaces

Understanding the concept of interfaces probably presents the greatest hurdle to
first-time users of object-oriented programming. Programmers who have previously
used the procedural programming method need to embark along a certain learning
curve in order to grasp the uses of this construct. It is important to state, however,
that understanding the functional scope of interfaces is absolutely crucial to anyone
who wishes to use object-oriented programming. It is only when classes are com-
bined with interfaces that the immense potential of OOP is unleashed. The concept
of interfaces was originally conceived as a feature of the JAVA or C# programming
language and has therefore been included in the IEC.

92



3.5 Interfaces

In the context of object orientation, the purpose of the INTERFACE is to separate the
function specification from its actual implementation in classes. In other words:
An INTERFACE defines the call-interface of functions without actual program code.
The classes that implement an interface make the functions available and operate
the interfaces in exactly the way defined in the INTERFACE. A class can implement
multiple interfaces. By using this construct, therefore, it is in a sense possible to
achieve multiple inheritance at functional level.

Interfaces have the ability to provide a general description of functions (methods)
when the program code for the functions does not actually exist. The interface thus
represents a declaration for methods that are yet to be programmed, i.e. the meth-
ods of an interface are “abstract methods”. It is not however necessary to write the
keyword ABSTRACT for the methods of an interface because “abstract” is an inherent
property of the interface. An interface thus strongly resembles an abstract class that
contains only abstract methods. You can find further information about this topic
in chapter 3.8.

Another property of interfaces is that the methods defined within them are auto-
matically PUBLIC which means that they can be called from anywhere. When these
methods are later implemented in classes, this property must not be changed. The
methods of an interface remain PUBLIC, even in all the subclasses derived from the
class that has implemented the interface.

Interfaces define the relationships between different types of object and thus pro-
vide a neutral platform for information exchange between objects. Interfaces allow
objects of different types to interact while retaining their independence.

Interfaces can be used to create programs which will use the methods defined in
the interface before the program code of the methods has even been developed.
The fact that this is so does not need to concern programmers who want to use
methods defined in the interface. When the program sections developed by different
programmers are later joined together and compiled, the compiler will monitor the
program for any declaration violations (changes to interfaces). The warnings output
by the compiler can be used to correct the problem immediately. The program will
work provided that the declaration has not been violated.

3.5.1 Supported features

Table 3 shows the features defined according to IEC 61131-3 ED3 Table 51 (page 137)
that are supported by SIMOTION.

Table 3 Keywords for interfaces

IEC No. | Keyword | Description

1) INTERFACE... The interface declaration begins with the keyword INTER-
FACE followed by the interface identifier, and ends with
END_INTERFACE END_INTERFACE.

2) METHOD... Prototype methods are defined within the interface. Pro-
END_METHOD totype methods are ones that have only their names and
interface definition, but no program code. All methods are
PUBLIC.
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IEC No. | Keyword | Description
Inheritance
3) EXTENDS The interface is derived from a base interface (only one
derivation).

Use of interface

4a) IMPLEMENTS Implements an interface in the class definition.

4b) IMPLEMENTS Implements multiple interfaces in the class definition.

4¢c) Interface as variables A variable of the type Interface supports referencing of
functions.

Using these options, the programmer can define interfaces with prototype meth-
ods. Interfaces can use inheritance mechanisms to pass their methods on to other
interfaces. The interface methods are then implemented in classes.

An interface definition begins with the keyword INTERFACE <InterfaceName> and
ends with END_INTERFACE. Prototype methods (methods without program body)
and their interfaces are defined within this declaration.

It is permissible to derive an interface from another (base) interface. This is done
using the keyword EXTENDS (i.e. it extends the base interface). The methods inher-
ited from the base interface must not be changed in the derived interface. Only
additional methods can be added to a derived interface.

A class can implement one or multiple interfaces. This is programmed by typing
the keyword IMPLEMENTS and the name of the interface to be implemented after
the class name. If the class is to implement multiple interfaces, the interface names
must be separated by commas. The function, i.e. the program code, of the interface
methods is defined in the class in which the interface is implemented. These classes
can pass their functions on to other classes and override the methods as and when
required.

Interface variables are another useful feature of interfaces. The programmer can
use interface variables to handle the references of class instances (classes which
implement interfaces) and transfer them during runtime.

We have explained these principles in more detail in the following chapters.

3.5.2 Principles of interfaces

In the example shown in Figure 24, a base interface “A” with method “ma” has been
programmed. Interface A passes method “ma” on to interfaces A1 and A2 and these
are extended by methods mb and mc respectively.

Class B implements the interfaces A1 and A2 and now needs to define (provide the
program code for) the functions of methods ma, mb and mc.

Further subclasses can subsequently be derived from class B by means of the
usual mechanisms (see chapter 3.3.7 “Classes and inheritance”). The possibility of
implementing multiple interfaces in a single class increases the scope of potential
for inheritance via derivation of classes. Since no provision has been made (and
deliberately so) for implementing multiple inheritance with classes, interface
inheritance with multiple implementation in classes offers an appropriate means
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a) Interface inheritance INTERFACE A
(EXTENDS)

METHOD ma

AN

INTERFACE A1 EXTENDS A INTERFACE A2 EXTENDS A
METHOD (ma), mb METHOD (ma), mc

b) Class implementation / / \
) P INEEEMENTS Multi-implementation

(IMPLEMENTS)
CLASS B IMPLEMENTS A1, A2

(also partially

as ABSTRACT) METHOD (ma), (mb), (mc)

c) Class inheritance EXTENDS\ no multi-inheritance

By CLASS X EXTENDS B CLASS C
METHOD (ma), (mb), (mc), md METHOD mf
/ \ \ EXTENDS
CLASS X1 EXTENDS X CLASS C1 EXTENDS C
METHOD OVERRIDE mb METHOD (mf), mg

METHOD (ma), mb, (mc), (md)

ZEAN

CLASS X11 EXTENDS X1 CLASS X12 EXTENDS X1

METHOD (ma), mb, (mc), (md), mf METHOD (ma), (mb), (mc), (md), mg

Figure 24 Interfaces (source: IEC 61131-3 ED3)

of compensation. This means that even derived classes can implement additional
interfaces for expanding the scope of object functions. A derivation of derivedClass
EXTENDS baseClass IMPLEMENTS IF_additionall, IF_additional? (these interfaces
are not included in Figure 24) is permissible and very widely used.

3.5.2.1 Example of an interface declaration

INTERFACE
INTERFACE A
METHOD ma
VAR_INPUT
IN1 ma:BOOL;
END_VAR
VAR OUTPUT
OUT1_ma:BOOL;
END VAR
END_METHOD

END INTERFACE

INTERFACE Al EXTENDS A
METHOD mb
VAR INPUT
IN1_mb:INT;
END VAR
VAR_OUTPUT
OUT1 mb:INT;
END_VAR
END METHOD
END INTERFACE
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INTERFACE A2 EXTENDS A
METHOD mc
VAR INPUT
IN1 mc:REAL;
END VAR
VAR OUTPUT
OUT1_mc:BOOL;
END VAR
VAR IN OUT
INOUT1 mc:DWORD;
END VAR
END METHOD

END_ INTERFACE
PROGRAM Usage;

END INTERFACE

IMPLEMENTATION
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// Class implementation
CLASS B IMPLEMENTS Al, A2
VAR (*<vars>*); END_VAR
METHOD PUBLIC ma
VAR_INPUT
IN1 ma:BOOL:=FALSE;
END_VAR
VAR OUTPUT
OUT1_ma:BOOL;
END_ VAR
//<PROGRAM-Code FOR ma>

END_METHOD

METHOD PUBLIC mb
VAR INPUT
IN1 mb:INT:=0;
END_ VAR
VAR_OUTPUT
OUT1_mb:INT;
END_VAR
//<PROGRAM-Code FOR mb>

END METHOD

METHOD PUBLIC mc
VAR_INPUT
IN1 mc:REAL;
END_VAR
VAR OUTPUT
OUT1_mc:BOOL;
END_ VAR
VAR IN OUT
INOUT1_mc :DWORD;
END_VAR
//<PROGRAM-Code FOR mc>

END METHOD

METHOD md:VOID
VAR_INPUT
IN1 md:DINT:=0;
END VAR

END METHOD
END CLASS
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CLASS X EXTENDS B
METHOD PUBLIC OVERRIDE mb
VAR INPUT
IN1I_mb : INT := 0;
END_ VAR
VAR_OUTPUT
OUT1 mb : INT;
END_VAR
END METHOD

PROGRAM Usage
VAR
Inst B: B;
(*vars;*)
END VAR

// Call method ma
Inst B.ma()//(IN1 ma:=<VAR>, IN2 ma:=<VAR>..)

// Call method mb
Inst B.mb()// (IN1 mb:=<VAR>,..)

// Call method mc
Inst B.ma()//(IN1 mc:=<VAR>,..)

END PROGRAM
END_IMPLEMENTATION

Note: This example is only a condensed presentation designed to improve your under-
standing of class definition with interface. It is not an executable program.

3.5.3 Representation of interfaces in the PNV of SCOUT

The project navigator (PNV) is functionally expanded to display interfaces. Interfaces
are represented in the same way as classes, but with a different icon. The methods
defined in the interface are displayed underneath the interface in the PNV (Figure
25). Since an interface can be derived from a base interface, the PNV has a tree node
labeled “Basic types” (as it does for classes). The base interface is visible underneath
the node. The programmer can use the “Go to...” command in the context menu to
jump to the base interface.

An interface is created in exactly the same way as normal units (inserting an ST
source). The interface definition with the corresponding keywords is stored in the
source. When completed in the PNV, this definition will be displayed with the proto-
type methods it contains. After the code has been compiled, the interface definition
will also be available in other sources.

In SIMOTION, a unit represents a container for data and programs. This container
is divided into an interface section and an implementation section. The program-
mer defines the data that are to be “externally visible” in the interface section. In
the implementation section, the programmer creates programs, function blocks,
functions and classes. The interface section of the unit begins with INTERFACE and
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Figure 25 Interface representation in PNV

ends with END_INTERFACE. Within this interface section, the programmer can now
define one or more interfaces for OOP.

The interface is represented by a corresponding icon with an “I” for “Interface”. The
prototypes of methods with an “M” icon are visible beneath. The icon symbols used to
represent interface methods are different to those used to represent class methods.
This is because interface methods are always PUBLIC and ABSTRACT.

Note: Readers who have a working knowledge of SIMOTION are already familiar with
the keywords INTERFACE and END_INTERFACE from the interface section of a
unit. With the requirements for interfaces defined in IEC 61131-3 ED3, these
keywords have now unfortunately acquired a double meaning in SIMOTION
as these were previously used to identify the exported elements of a source.

Explanation: The IEC standard specifies these as the keywords for defining
an OOP interface. With version V4.5 of SIMOTION, it is thus now permissible
to program the keyword INTERFACE, followed by InterfaceName and ending
in END_INTERFACE, in the interface section of a unit (and, of course, in the
IMPLEMENTATION section of a unit as well) in order to define an OOP interface.
This OOP interface with name can thus be used for other programs (units).
This correlation is clearly illustrated in the example given in chapter 3.5.7.2.

Readers without any previous knowledge of SIMOTION can find further infor-
mation about units in the section “Introduction to SIMOTION”, chapter 8.7.1.
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3.5.4 Benefits of interfaces

While IEC 61131-3 ED3 has made no provision for implementing multiple inher-
itance in classes, the interface construct can be used instead. Interfaces can be
implemented multiple times in a class.

Methods are designed as prototypes in an interface. The interfaces required by these
methods are also programmed. A class that implements the interfaces now needs
to provide the program code for the functions of the prototype methods. Each class
that has implemented interfaces defines the methods with the specific functionality
required by each method. Thus, as illustrated in Figure 26, the methods c and d in
CLASS X and CLASS Y may well be programmed with completely different functions,
but they both possess exactly the same interface (signature). This rule is particularly
important because a call for a method from a class will only function if the interfaces
of the methods exactly correspond to the specifications in the interface. If this rule
is ignored, the compiler will issue an error message.

INTERFACE IF1 INTERFACE IF2
Interfaces
METHOD a, METHOD b METHOD ¢, METHOD d
5 5 3
. _  _  ————— - |
L 1
CLASS X IMPLEMENTS IF1, IF2 CLASS Y IMPLEMENTS IF2
al METHOD c, d
METHOD a, b, ¢, d METHOD g

METHOD f and T

derived
classes

CLASS X1 EXTENDS X

CLASS X2 EXTENDS X

CLASS Y1 EXTENDS Y

METHOD OVERRIDE b

METHOD OVERRIDE b

METHOD OVERRIDE ¢

METHOD x

METHOD y

METHOD z

Figure 26 Interfaces in classes

Thus, by defining interfaces and knowing how they have been defined, programmers
can develop program code independently although these other software components
that are vital to the overall functioning of the program are still missing.

If you decide to use this programming mechanism, you should give serious con-
sideration to the data, data models and functions before you generate any program
code. Without careful planning, you may find that you have to extend the interfaces
subsequently because you forgot something. This would mean that all the classes
that implement or use these interfaces would also have to be amended. No automatic
adjustment function is available.

The essential benefit of the interface is that the interface definition provides a neu-
tral platform for information exchange between different objects. The interface
definition constitutes a binding agreement (contract) between different software
modules. A programmer familiar with the interface can be confident that interface
method calls will work. All classes that implement interfaces must treat the interfaces
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in accordance with the interface definition and provide the program code for the
method functions.

So that objects can now use interface methods to communicate regardless of whether
or not the implementing class is known, the IEC standard has made provision for
specification of interface variables. Interface variables support the exchange of ref-
erences to classes between different objects. References may be transferred during
runtime, so allowing a variable call of the interface methods of the different objects.
This is an extremely convenient and elegant programming method.

We will illustrate use of the corresponding mechanisms in the following explana-
tions and examples.

3.5.5 Interfaces as a reference to classes

Areference is a variable that does not contain any value itself, but refers instead to a
memory area in the system in which the value can be found. General references are
typically used to refer to data (values). In addition to this general form of reference,
the IEC standard also defines interfaces and their use.

An interface specification may be used in two different ways.

1. For class declaration.
Implementation of the interface in a class declaration specifies the methods
that need to be programmed in the class.

2. As a type of variable.
Variables of the interface type represent references to instances of classes
that implement this interface. Interface variables must be assigned before
they are used. An interface specification may not be used as an IN_OUT
variable.

(Source: IEC 61131-3 ED3)

Thus, the interface is a special form (definition) of a reference to an implemented
function, i.e. it should be regarded as a collection of operations.

An interface constitutes the definition of a number of methods regardless of how
these methods have actually been implemented. If classes implement one or more
interfaces, it is the classes that provide the program code for the functions of the
interface methods. In this case, the program code for the interface methods may
vary widely from class to class. But none of the classes is allowed to change the
interfaces of the methods.

Since classes are the blueprints for objects, the functions of a class do not come alive
until objects (instances of a class) have been created. As a result, these interface
methods may be implemented in various ways at different objects. A variable of
this interface type is therefore used to ensure that these method variations can be
addressed independently in a uniform way or even without any knowledge of how
the object has been implemented. Using this type of interface variable, it is possible
to call all of the methods that are defined in the interface.

By specifying interface types, it is possible to ensure that an interface variable gives
either full access to a referenced function (the interface variable references a class
instance) or none at all (the interface variable contains NULL).
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Since interface variables ultimately represent object references, they can naturally
only be used for method calls in cases where the variable actually refers to a class
instance (object). This reference is normally acquired by the assignment operator

“,

Interface variables thus help the programmer to establish the required connections
between objects. Object references are exchanged by means of variables of this kind
even when the programmer does not know how the object is implemented.

To achieve even greater flexibility, object references can be transferred to inter-
face variables or between them with the “?=" operator. In this case, the type is not
tested when the program is compiled but during runtime. If type-safe conversion
is possible, the relevant interface variable contains a valid object reference; if not,
it contains NULL.

The following example illustrates the possible transfer options.

INTERFACE ITF1
METHOD ml END METHOD
END INTERFACE
INTERFACE ITF2
METHOD m2 END METHOD
END INTERFACE
CLASS A IMPLEMENTS ITF1
END CLASS
CLASS B IMPLEMENTS ITF2
R
END CLASS
CLASS C IMPLEMENTS ITF1, ITF2
END CLASS
FUNCTION func ifl : VOID
VAR INPUT i : ITF1l; END VAR
IF i <> NULL THEN
i.ml();
END IF;
END FUNCTION

FUNCTION func if2 : VOID

VAR _INPUT i : ITF2; END VAR
VAR tmp : ITF1; END VAR
IF i <> NULL THEN

i.m2();
END IF;

tmp ?= i; // try a dynamic type conversion to type ITF1
IF tmp <> NULL THEN
tmp.ml () ;
END IF;
END_FUNCTION

PROGRAM P

VAR
inst_a : A; // instance from CLASS A
inst_b : B; // instance from CLASS
inst_ ¢ : C; // instance from CLASS C
interfl: ITFl; // interfl has NULL
interf2: ITF2; // interf2 has NULL

END VAR

w
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interfl := inst _a; // interfl contains a valid reference to
// inst_a
func_ ifl (interfl); // within the function inst a.ml() is called
func_ifl(inst_a); // the same call as the a line above
interf2 := inst _b; // interf2 contains a valid reference to
// inst b
func_if2(interf2); // within the function inst b.m2 is called

// the call TO ml is NOT executed because tmp
// is NULL executing ?= Operator

interf2 := inst_c¢; // interf2 contains a valid reference to
// inst b
func_if2(interf2); // within the function inst c.m2 is called

// also inst c.ml is called; tmp contains
// the reference to inst_c executing
// ?= Operator

END_PROGRAM

Note: This exampleis only a condensed presentation for the purposes of illustration,
but it is not an executable program.

Two interfaces (ITF1 and ITF2) are defined in the example shown. Each interface
contains one method, i.e. m1() in ITF1 and m2() in ITF2.

Interface ITF1 is implemented in class A, ITF2 in class B and both interfaces in class
C. In a real program, these classes would of course contain the program code for
the relevant functions of the interface methods, But this code is not relevant to the
understanding of this example and has therefore been omitted.

The two functions func_if1 and func_if2 each have the option of accepting an inter-
face variable from an input variable i with the relevant interface type. The functions
use the query “ i<>NULL" to check whether i refers to a class implementation, i.e.
whether it contains a valid reference. If the reference is valid, the functions call the
methods of the interfaces.

Function func_if2 has the additional option of transferring the reference of i to a tmp
variable of type ITF1 (tmp ?=1i). If i contains a reference that matches type ITF1, the
reference is transferred by the “?=" operator. If the reference does not match, NULL
is entered in tmp. If the reference in tmp is valid, method m1() is called.

The instances of classes A, B and C are generated and the interface variables interf1
and interf2 also set up in program P.

In the program code sequence, the class instances are assigned to the relevant
variables interf1 and interf2. The subsequent call of the functions with transfer of
the interface variables results in various interface methods being called within the
functions.

When func_if1 is first called, interf1 contains the reference to the instance of class
A (inst_a). The function thus calls the method m1() because the reference is valid.

The second call takes place with the transfer of inst_a. Since class A has implemented
the interface ITF1, this call is functionally identical to the first call.
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func_if2 is called for the first time when interf2 is transferred. interf2 contains the
reference to class B. func_if2 thus calls the method m2() because class B has only
implemented ITF2.

The second call of func_if2 is implemented with the reference to class C in interf2. In
this case, func_if2 calls methods m1() and m2() because both interfaces are imple-
mented in class C.

This example demonstrates perfectly how interface variables with corresponding
check functions can be handled and the degree of programming flexibility offered
by this approach.

This mechanism of course works in exactly the same way in methods, but we have
used functions here instead of methods because the code example was simpler.

With this option for creating object references and interface variables, it is possi-
ble to specifically query (even during runtime) the types of interfaces possessed
by the object type. This allows the programmer to prevent non-existent methods
from being called. Newly developed object types implement existing interfaces and
can thus be integrated with ease into existing programs without necessitating any
further adaptations.

Thanks to this neutrality, it is possible to independently develop and test program
modules. Interfaces are a description of the interfaces shared by the program mod-
ules containing the program code of the methods to be implemented. This data
description can then be used, for example, to perform a test in a program area with
dummy methods and data supplied by reference transfer. When the formulated pro-
gram sections are created later on, the tested sections will function automatically. Of
course, this arrangement will work successfully only if the interfaces are not changed
retrospectively. But the compiler monitors interfaces carefully for any changes.

We will continue our explanation below by describing the use of an interface in the
valve class that you will be familiar with from a previous chapter.

3.5.6 Valve classes with interfaces

In order to further illustrate the advantage of using interfaces, we will use the
valve classes that we have already created. For this purpose, we need to expand
the functionality of class ValveControl43 beforehand. In its current form, the class
ValveControl43 has purely control functionality. As a general rule, control functions
of this kind are programmed with additional error diagnosis to allow the detection of
malfunctions. In its simplest form, this is a limit switch monitoring function capable
of detecting the following errors:

1. Limit switch error frontirear
(both limit switches are activated simultaneously)

2. Limit switch error rear
(the cylinder must move away from the rear limit switch within 0.5 s when
moving forwards)

3. Limit switch error front
(the cylinder must move away from the front limit switch within 0.5 s when
moving backwards)
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This functionality is implemented by an additional method “mLSMon” (Limit Switch
Monitoring) in the class ValveControl43 (Figure 27).

INTERFACE IErr_Rep
Interface
METHOD mErrorReport
Classes @ r———————— AN
r L_t=7 1
CLASS HMIReporting CLASS HMIReporting2
CLASS ValveControl43 IMPLEMENTS IErr_Rep IMPLEMENTS IErr_Rep
METHOD mExecute METHOD mErrorReport, mDeleteList METHOD mErrorReport, mDeleteList
METHOD mForw, mBackw /‘; /I\
METHOD mLSMon, \ I
mSetErrorReporter N N |
/\/N\\ Reference:HMI1 \ Reference:HMI2 |
\, = |

Objects . — -7
s

HMI1 HMI2

Sending of the error information

Sending of the error information

Figure 27 Overview of valve and HMI development

The relevant errors are detected by the method and need to be signaled. Errors of
this kind should normally be displayed on an HMI system in order to provide the
operator with information about the error locations. Since more than one valve is
normally installed in a machine, it is important that the operator can clearly identify
the affected valve. The error message therefore needs to contain various items of
information:

1. Component ID (component affected by the error)
2. Error number
3. Error text

To be able to signal error messages to an HMI system, it is generally necessary to
develop the fundamental program code for the signaling mechanism at the same
time as the actual error detection function. With the procedural programming
method, continuous coordination of these two programming activities is unavoid-
able.

But it would be an advantage if these two development processes (function devel-
opment and HMI development) could take place separately and the time and work
involved in coordinating them reduced to a minimum. It is precisely for scenarios
of this kind that the “interfaces” construct in object-oriented programming was
conceived. Different development teams cooperate and coordinate with one another
to define and specify interfaces. The individual teams can then start developing
software at their own pace and are not held up by waiting for deliveries of software
from other teams. Delays or idle times can be eliminated altogether or occur much
less frequently.
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3.5.7 Declaration of the valve interface

An interface “IErr_Rep (Error Reporting) is used to allow a valve application with
limit switch monitoring to signal errors to an HMI system (Figure 28). The interface
contains a prototype method named “mErrorReport”. Programmed in this method is
a structure for signaling errors to the HMI, a structure which comprises the elements
TimeStamp, KompID, ErrorNo and ErrorText. The method mErrorReport does not
include any program code.

ErrStr:STRUCT

TimeStamp:DT;

INTERFACE IErr_Rep

Interface stRING (2415
METHOD mErrorReport +WORD;
([INJErrMsg:ErrStr) rro TRING (361 ;
7N END_sTRUCT;
7R
4 \

// N

Classes

_—
User ‘\ - S——_
s ~ Implementer
\\/_—
/ \
{ \

CLASS ValveControl43

CLASS HMIReporting
IMPLEMENTS IErr_Rep

METHOD mExecute

METHOD mErrorReport, mDeleteList

METHOD mForw, mBackw

METHOD mLSMon,
mSetErrorReporter
([IN]JatErrReporter:IErr_Rep)

Figure 28 Interface for error reporting

The error reporting structure must be known in the class ValveControl43. The
error message can then be issued in the class ValveControl43 if the instance of
HMIReporting has been transferred via the method mSetErrorReport. The concept
used ensures that this method simply sends the corresponding error message
when a limit switch error occurs. What then happens with this error message is not
taken into consideration when the valve functions are programmed. The process-
ing and display of the error messages generated by valves are handled in a class
“HMIReporting” that has still to be programmed.

Because it is possible to use and define interfaces in this way, those responsible for
programming the software section containing the valve functionality do not need to
have any detailed knowledge about error processing in the HMI. Both these software
sections can be developed and tested individually.

We have used the following examples to demonstrate the extended program code
for the valves.

3.5.7.1 Example of ValveControl43 with limit switch monitoring

In order to illustrate the advantage of interfaces, we first need to add a limit switch
monitoring function to the class ValveControl43. This monitoring function generates
error messages to be displayed on an HMI system. Since we do not yet know how the
valve control will be linked to the HMI, we need to design the programs in such a
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way that we will not have to make any further changes to the valve control software
when the link to the HMI is later established.

CLASS ValveControl43

VAR
cboMode : BOOL ;
cboEndPos : BOOL;
cboStartPos :BOOL;
cboForward: BOOL;
cboBackward:BOOL;
cboOut Forward:BOOL;
cboOut_Backward:BOOL;
cbl6Error LS:WORD;
ctLSTimer:TON;
cboReset : BOOL;

END_VAR

METHOD PUBLIC mExecute // Method for cyclic call

VAR INPUT
Mode : BOOL;
EndPos : BOOL;
StartPos:BOOL;
Forward:BOOL;
Backward:BOOL;
Reset : BOOL;

END_VAR

VAR _OUTPUT
Out_Forward:BOOL;
Out_ Backward:BOOL;
Error_ LS:WORD;

END VAR

cboMode : =Mode ;
cboEndPos : =EndPos;
cboStartPos:=StartPos;
cboForward:=Forward;
cboBackward:=Backward;
cboReset : =Reset;

THIS.mForw(); // Internal call Forward
THIS.mBackw(); // Internal call Backward
THIS.mLSMon(); // Internal call LimitSwitchMonitoring

IF cbl6Error LS <> 0 THEN // on error stop movement
cboOut Forward:=FALSE;
cboOut_Backward:=FALSE;

END IF;

Out_Forward:=cboOut_Forward;

Out_Backward:=cboOut_Backward;

Error_ LS:=cblé6Error_LS;
END_METHOD

METHOD mForw // Method move forward
IF cboMode = FALSE THEN // Jog mode
IF cboForward AND NOT cboBackward THEN
cboOut Forward:=TRUE;
cboOut_Backward:=FALSE;

ELSE
cboOut_Forward:=FALSE;
END IF;
ELSE // Automatic mode
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IF (cboForward OR cboEndPos) AND NOT cboBackward THEN
cboOut_Forward:=TRUE;
cboOut Backward:=FALSE;
END IF;
END IF;
END_METHOD

METHOD mBackw // Method move backward
IF cboMode = FALSE THEN // Jog mode
IF cboBackward AND NOT cboForward THEN
cboOut Forward:=FALSE;
cboOut_Backward:=TRUE;
ELSE
cboOut_Backward:=FALSE;
END IF;
ELSE // Automatic mode
IF (cboBackward OR cboStartPos) AND NOT cboForward THEN
cboOut_Forward:=FALSE;
cboOut Backward:=TRUE;
END IF;
END IF;
END_METHOD

METHOD mLSMon // Method Limit Switch Monitoring
// Fault LS StartPos&EndPos
IF (cboStartPos AND cboEndPos) AND
NOT cblé6Error LS.15=TRUE THEN
cbl6Error LS:=16#8001;
// Fault StartPos
ELSIF (cboStartPos AND cboOut_ Forward) AND
NOT cbl6Error LS.15=TRUE THEN
ctLSTimer (pt:=T#500ms, IN:=TRUE) ;
IF (ctLSTimer.Q) = TRUE THEN
cbl6Error LS:=16#8002;
END_IF;
// Fault EndPos
ELSIF (cboEndPos AND cboOut Backward) AND
NOT cblé6Error LS.15=TRUE THEN
ctLSTimer (pt:=T#500ms, IN:=TRUE) ;

IF (ctLSTimer.Q) = TRUE THEN
cbl6Error LS:=16#8003;
END_IF;
END_IF;
// Reset

IF cboReset = TRUE THEN
cbléError LS:=0;
ctLSTimer (IN:=FALSE) ;

END IF;

END_METHOD
END CLASS

The method Limit Switch Monitoring (mLSMon) has been added to the class
ValveControl43. This extension has been programmed directly in the base class
and is not implemented through overriding by a derived class. This solution has
been chosen because all classes are to have this basic function.

The method mLSMon checks the limit switches StartPos and EndPos. If signals
StartPos and EndPos are set simultaneously, error 8001 will be issued. If the cylinder
is at the start position and begins to move towards EndPos, the cylinder must exit
from StartPos within 500 ms. If the cylinder fails to do so, error 8002 is output. The
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same check is performed at the end position. In this case as well, the cylinder must
exit from EndPos within 500 ms or else error message 8003 will be output. It would
be meaningful to integrate a few other checks but these have been omitted for the
sake of clarity.

The error messages now need to be propagated to an HMI system in some mean-
ingful way. To this end, it must be possible to transfer a time stamp, an error text
and a component ID with the error message. This information will be processed
later by the HMI, but it is not necessary to know at this point how the information
will be processed. All the class ValveControl43 needs to know is the definition of
the interface.

3.5.7.2 Example of ValveControl43 with error reporting

Unit HMIL_IF

INTERFACE
TYPE
ErrStr:STRUCT
TimeStamp:DT;
KompID:STRING[24] ;
ErrorNo:WORD;
ErrorText :STRING[36] ;
END STRUCT;
END_TYPE

INTERFACE IErr_ Rep

METHOD mErrorReport:VOID
VAR_INPUT
ErrMsg:ErrStr;
END_VAR
END_METHOD

END_INTERFACE
END INTERFACE

Note: The unit HMI_IF defines the interface for later implementation in HMIReporting.
The prototype methods with their interfaces are defined here. Only one method
(ErrorReport) is declared in this case.

Unit TestHMI

INTERFACE

USES HMI_IF;

CLASS HMIReporting; // only for test
END_INTERFACE

IMPLEMENTATION
// this class is a dummy for testing only, connection must be
// removed if real class HMIReporting exists
CLASS HMIReporting IMPLEMENTS IErr Rep
VAR
TestErrorList:ErrStr;
END_ VAR
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METHOD PUBLIC mErrorReport:VOID

VAR _INPUT
ErrMsg:ErrStr;
END VAR
TestErrorList:=ErrMsg;
END_METHOD
END CLASS

END_IMPLEMENTATION

A dummy class HMIReporting has been programmed in the unit TestHMI. This will
temporarily perform the functions of the real HMIReporting class that will be fin-
ished at a later time. The dummy class makes it possible to generate an HMI object
for testing the valve classes. Since this class has been implemented in its own unit,
it will be easier later on to switch over from TestHMI to the correct unit with HMI
by swapping the unit connection. As a result, it will be possible to avoid the need to
change other program sections.

Unit Valve_Class

INTERFACE

USES HMI_IF;

CLASS ValveControl43;
END INTERFACE

IMPLEMENTATION
CLASS ValveControl43
VAR PRIVATE
civValveErrorRep:IErr Rep;
cboLock : BOOL;
cboMode : BOOL;
cboEndPos : BOOL;
cboStartPos:BOOL;
cboForward:BOOL;
cboBackward: BOOL;
cboOut_ Forward:BOOL;
cboOut_Backward:BOOL;
cbl6Error LS:WORD;
csgID_No:STRING[24];
ctLSTimer:TON;
cdtSysTime:DT;
myRTC:RTC;
cboReset : BOOL;
csgF0000:STRING
csgF8001:STRING
csgF8002:STRING
csgF8003: STRING
END VAR

:="Limit switch error START-/END-POS";
: switch error START-POS v
:='Limit switch error END-POS ‘;

METHOD PUBLIC mSetErrorReporter // setter method
VAR _INPUT
atErrReporter:IErr Rep;
END_VAR
IF (atErrReporter=NULL) THEN
; // Dummy ErrorReporter or fault handling
ELSE
ciValveErrorRep:=atErrReporter;
END_IF;
END_METHOD

METHOD PUBLIC mExecute // Method for cyclic call
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VAR INPUT
ID_No:STRING[24];
Mode : BOOL;
EndPos : BOOL;
StartPos:BOOL;
Forward:BOOL;
Backward:BOOL;
Reset : BOOL;

END_ VAR

VAR_OUTPUT
Out Forward:BOOL;
Out_Backward:BOOL;
Error LS:WORD;

END VAR

VAR
myErrStr:gsErrStr;

END_ VAR

cboMode : =Mode ;
cboEndPos : =EndPos;
cboStartPos:=StartPos;
cboForward:=Forward;
cboBackward: =Backward;
cboReset : =Reset;

csgID No:=ID No;

THIS.mForw(); // Internal call Forward
THIS.mBackw(); // Internal call Backward
THIS.mLSMon (); // Internal call LimitSwitchMonitoring

IF cbl6Error LS <> 0 THEN // on error stop movement
cboOut_Forward:=FALSE;
cboOut_ Backward:=FALSE;

END_IF;

Out_Forward:=cboOut_Forward;
Out_ Backward:=cboOut_ Backward;
Error LS:=cbl6Error LS;

// Error Reporting

// no error

IF cbl6Error_LS=0 THEN
myErrStr.ErrorNo:=0;
myErrStr.ErrorText :=csgF0000;
cboLock:=FALSE;

ELSE

myRTC (read:=TRUE, cdt=>cdtSysTime) ;

IF cbléError LS=16#8001 THEN // first error
myErrStr.TimeStamp:=cdtSysTime;
myErrStr.KompID:=csgID _No;
myErrStr.ErrorNo:=cbl6Error LS;
myErrStr.ErrorText :=csgF8001;

END IF;

IF cblé6Error LS=16#8002 THEN // second error
myErrStr.TimeStamp:=cdtSysTime;
myErrStr.KompID:=csgID No;
myErrStr.ErrorNo:=cbl6Error LS;
myErrStr.ErrorText:=csgF8002;

END IF;

IF cbl6Error LS=16#8003 THEN // third error
myErrStr.TimeStamp:=cdtSysTime;
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myErrStr.KompID:=csgID_No;
myErrStr.ErrorNo:=cbl6Error_ LS;
myErrStr.ErrorText:=csgF8003;
END_IF;
// call of Method ErrorReport if an error occurs
IF (cboLock=FALSE AND cbléError_ LS.15=TRUE) THEN
civValveErrorRep.mErrorReport (ErrMsg:=myErrStr) ;
cboLock :=TRUE;
END_IF;
END_IF;
END METHOD

METHOD PRIVATE mForw // Method move forward
IF cboMode = FALSE THEN // Jog mode
IF cboForward AND NOT cboBackward THEN
cboOut_Forward:=TRUE;
cboOut_Backward:=FALSE;

ELSE
cboOut_Forward:=FALSE;
END_IF;
ELSE // Automatic mode

IF (cboForward OR cboEndPos) AND NOT cboBackward THEN
cboOut_Forward:=TRUE;
cboOut_Backward:=FALSE;
END IF;
END_IF;
END METHOD

METHOD PRIVATE mBackw // Method move backward
IF cboMode = FALSE THEN // Jog mode
IF cboBackward AND NOT cboForward THEN
cboOut_Forward:=FALSE;
cboOut_Backward:=TRUE;
ELSE
cboOut_Backward:=FALSE;
END_IF;
ELSE // Automatic mode
IF (cboBackward OR cboStartPos) AND NOT cboForward
THEN
cboOut_Forward:=FALSE;
cboOut_Backward:=TRUE;
END_IF;
END IF;
END_METHOD

METHOD PRIVATE mLSMon // Method Limit Switch Monitoring

// Fault LS StartPos&EndPos

IF (cboStartPos AND cboEndPos) AND NOT cblé6Error LS.15=TRUE
THEN
cbl6Error LS:=16#8001;

// Fault StartPos

ELSIF (cboStartPos AND cboOut_ Forward) AND NOT
cb16Error_LS.15=TRUE THEN
ctLSTimer (pt:=T#500ms, IN:=TRUE) ;

IF (ctLSTimer.Q) = TRUE THEN
cbl6Error LS:=16#8002;
END IF;

// Fault EndPos

ELSIF (cboEndPos AND cboOut_Backward) AND NOT
cbl6Error LS.15=TRUE THEN
ctLSTimer (pt:=T#500ms, IN:=TRUE) ;

111



3 Object-Oriented Programming

IF (ctLSTimer.Q) = TRUE THEN
cbl6Error LS:=16#8003;
END_IF;
END_IF;
// Reset

IF cboReset = TRUE THEN
cbl6Error LS:=0;
ctLSTimer (IN:=FALSE) ;

END IF;

END_METHOD
END CLASS
END_IMPLEMENTATION

The ErrorReporting method has also been integrated into the class ValveControl43.
Since the class HMIReporting does not yet exist, however, there is a class with the
same name that allows transmission of the error message to be tested. Transmission
of the error message is programmed in the method mExecute.

The following example illustrates the application of the class in the call environment
for two valves.

3.5.7.3 Example of ValveControl43 with test error reporting

Unit Valve_Program

INTERFACE
USES Valve_Class, TestHMI;
PROGRAM CallvalveControl 3;
END_INTERFACE

IMPLEMENTATION
PROGRAM CallvValveControl 3
VAR
HMI1:HMIReporting;
V1:ValveControl43;
V2:ValveControl43;
CPUStart :BOOL:=0;
EA Mode: BOOL;
ComForl: BOOL; // from here are these normally I/Os
ComFor2: BOOL;
ComBackl: BOOL;
ComBack2: BOOL;
EndPosl: BOOL;
EndPos2: BOOL;
StartPosl: BOOL;
StartPos2: BOOL;
in_Reset :BOOL;
Out_Forl: BOOL;
Out_For2: BOOL;
Out_Backl: BOOL;
Out_Back2: BOOL;
END VAR

// set reference for ErrorReporting

IF CPUStart = FALSE THEN
V1.SetErrorReporter (atErrReporter:=HMI1) ;
V2.SetErrorReporter (atErrReporter:=HMI1) ;
CPUStart :=TRUE;

END_IF;
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// first call ValveControl43 (V1)
V1.Execute (
ID No :=‘Ventil 1"
,Mode:=EA_ Mode
,EndPos:=EndPosl
,StartPos:=StartPosl
, Forward:=ComForl
,Backward:=ComBackl
,Reset:=in Reset
,Out_Forward =>Out_Forl
,Out_Backward =>0Out Backl) ;

// second call ValveControl43 (V2)
V2 .Execute (
ID No :=‘Ventil 2"
,Mode:=EA_ Mode
, EndPos : =EndPos2
,StartPos:=StartPos2
, Forward:=ComFor2
,Backward:=ComBack2
,Reset:=in Reset
,Out_Forward =>Out_For2
,Out_Backward =>0Out_ Back2) ;

END PROGRAM
END_IMPLEMENTATION

Note: Toensure that this example is executable, the program must be assigned to the
BackgroundTask in the execution system of the SIMOTION CPU. For instructions
on how to assign programs in the execution system, see chapter 8.9.13.

The call of 2 valves is illustrated in this application. The reference to HMIReport-
ing is transferred by means of the method mSetErrorReporter. Until the class
HMIReporting has been developed, a class of the same name will be used to perform
tests. This class contains only one structural element ErrMsg of the type gsErrStr in
which errors are entered. As a result, this class can only hold one error entry and
this must be taken into account during testing.

Once the final version of class HMIReporting has been developed, the test class
HMIReporting must be deleted from the program.

The following is an example program for the class HMIReporting.

3.5.7.4 Example of class HMIReporting

In the example above, any errors pertaining to the classes ValveControl43 are simply
entered in a test class. However, the valve application does not make any provision
for the actual processing of errors. This will now be done using the class HMIRe-
porting.

Unit HMI_Class
INTERFACE
USES HMI_IF;

CLASS HMIReporting;
END_INTERFACE
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IMPLEMENTATION

CLASS HMIReporting IMPLEMENTS IErr Rep
VAR CONSTANT
MAXNO :INT:=100;
EMPTYSTRUCT :gsErrStr:=
(tTimeStamp:=DT#0001-01-01-0:0:0

, sgKompID:=""
,b16ErrorNo:=16#0000,
sgErrorText:="'") ;
END VAR
VAR
caErrorList :ARRAY[0..MAXNO] OF gsErrStr;
ci32Index :DINT;
cbl6ErrorNo :WORD;
ci32MAXNO :DINT :=MAXNO;
END VAR

METHOD PUBLIC mErrorReport:VOID
VAR _INPUT
ErrMsg:gsErrStr;
END VAR

IF (ErrMsg.bl6ErrorNo<>0 AND caErrorList [ci32Index]<>ErrMsg)
THEN

cbl6ErrorNo:=ErrMsg.bl6ErrorNo;

IF ci32Index < MAXNO THEN
ci32Index:=ci32Index+1;
caErrorList [ci32Index] :=ErrMsg;

ELSE
ci32Index:=0;

END IF;

END IF;
END METHOD

METHOD PUBLIC DeleteList:VOID
VAR
tmpIndex:DINT;
END_ VAR

tmpIndex:=0;
FOR tmpIndex:=0 TO ci32MAXNO DO
caErrorList [tmpIndex] : =EMPTYSTRUCT;
END_FOR;
END_METHOD
END_CLASS

END IMPLEMENTATION

The method mErrorReport in this class enters the error in an error list (caErrorList)
which consists of an array of the structure gsErrStr. The method mDeleteList has

been implemented to delete the list. The class constant EMPTYSTRUCT is used for
deletion.

The following example now shows the application for two valves, including entry of
errors in the list followed by deletion of the entire list.
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3.5.7.5 Example of ValveControl43 with error reporting

INTERFACE
USES Valve_Class, HMI_Class;
PROGRAM CallValveControl 4;
END_INTERFACE
IMPLEMENTATION
PROGRAM CallValveControl 4
VAR
V1:ValveControl43;
V2:ValveControl43;
HMI1:HMIReporting;
CPUStart:BOOL; // for first run
myTrig:R_TRIG;
Flag:BOOL;
EA Mode: BOOL; // from here are these normally I/Os
ComForl: BOOL;
ComFor2: BOOL;
ComBackl: BOOL;
ComBack2: BOOL;
EndPosl: BOOL;
EndPos2: BOOL;
StartPosl: BOOL;
StartPos2: BOOL;
in Reset:BOOL;
Out_Forl: BOOL;
Out_ For2: BOOL;
Out_Backl: BOOL;
Out Back2: BOOL;
END VAR

IF CPUStart = FALSE THEN
V1.SetErrorReporter (atErrReporter:=HMI1) ;
V2.SetErrorReporter (atErrReporter:=HMI1) ;
CPUStart :=TRUE;

END_IF;

// first call ValveControl43 (V1)
V1.Execute (
ID No:=‘'Ventil 1°
,Mode :=EA Mode
,EndPos:=EndPosl
,StartPos:=StartPosl
,Forward:=ComForl
,Backward:=ComBackl
,Reset:=in Reset
,Out_Forward =>0ut_Forl
,0ut_Backward =>Out_Backl) ;

// second call ValveControl43 (V2)
V2.Execute (
ID No:=‘'Ventil 2"
,Mode :=EA_ Mode
, EndPos : =EndPos2
,StartPos:=StartPos2
, Forward:=ComFor2
,Backward:=ComBack2
,Reset:=in Reset
,Out_Forward =>0ut_For2
,0ut_Backward =>Out_Back2) ;
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myTrig (CLK:=in Reset,Q=>Flag); // Trigger for deleting list

IF Flag = TRUE THEN
HMI1.DeleteList () ;
END_IF;
END_PROGRAM
END_ IMPLEMENTATION

Note: To ensure that this example is executable, the program must be assigned to the
BackgroundTask in the execution system of the SIMOTION CPU. For instructions
on how to assign programs in the execution system, see chapter 8.9.13.

This example program illustrates use of the valves with the final version of the class
for HMIReporting. In this case, the only change made was to swap the connection to
the class TestHMI over to the class HMI_CLASS. With this minor amendment, it has
been easy to switch over from the test environment to the real environment. None
of the other program sections need to be altered.

The mechanisms demonstrated here also help programmers to implement or plan
software test environments for testing software modules. Provision can be made for
suitable test scenarios at the class planning stage. These can be prepared through the
implementation of test methods and Setter or Getter methods. Using preprocessor
statements, it is easy to remove the test environment code before the software is
delivered (see chapter 8.9.11). The use of methods means that the program code
remains easy to read.

3.5.8 Interface for neutralizing I/O components

Another purpose for which interfaces are ideally suited is to provide a neutral
platform for data exchange between various complex /O components. Complex
I/O devices with different characteristics are often deployed to perform specific
functions in plants. However, the application itself is always negatively affected if
I/0O components have the same scope of functions but a different data interface. In
such cases, the application needs to be adapted every time an I/O component of a
particular kind is used on one machine, but the next machine uses an I/O component
of a different kind.

To get a better idea of what this actually means, let’s take a look at a concrete exam-
ple. The range of interrelated technical issues that arise when camera systems are
connected to handling systems are ideal for this purpose. Let’s start with a few basics.

3.5.8.1 Connection of cameras to the control system

Camera systems connected to control systems are complex I/O components. Cameras
are deployed to perform the following tasks in machines or plants:

Monitoring

Cameras can be used as monitors when it is necessary to check internal
machine processes that are not visible from the outside. Where monitoring
is a manual process, information is transmitted to screens for the moni-
toring personnel. In this case, the camera does not influence the process
directly.
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If the monitoring process is automatic, the camera system must be capable
of detecting process anomalies and supplying relevant information to

the control system. The control system must then stabilize the process by
applying correction factors (open-loop or closed-loop control) or react in
order to prevent damage (shutdown).

Automatic camera-based monitoring solutions of this kind can be used, for
example, to check fill levels in liquid-filling applications or to monitor the
position of stackable parts.

Part identification

Production processes often need to be supplied with parts. As a general
rule, the parts need to be sorted and correctly positioned. It is often worth-
while to use robots or handling equipment to perform these tasks. Mechani-
cal sorting by vibratory feeders and appropriate chicanes is too inflexible
and time-consuming during production changes. The parts are supplied
randomly positioned in a random sequence on conveyor belts. The camera
system detects the position of each part and transmits this information to
the controller. The controller processes the data and alters the approach
positions of the robot or handling system so that it can pick up the part and
place it down again for further processing.

Camera systems are frequently used in combination with handling equipment to
identify parts in production machines. With its system function “Path interpola-
tion”, SIMOTION provides a tool for utilizing standardized kinematics for handling
systems. In this case, the handling system is responsible for fetching parts from
a pickup position and setting them down at the target position without causing
collisions.

This task can be extremely complex since the parts are not normally located at a fixed
pickup position, but are moving instead along a conveyor belt. This means that the
handling system must be synchronized with the part movement so that it can pick up
the part. After the part has been picked up, the handling system is desynchronized
and then moved to the setdown position. If the setdown position is fixed, the process
of setting down the part is simple. If the setdown position is also moving, however,
the handling equipment must be synchronized again.

The handling system thus has to perform the following part handling tasks:
Pick up
Sort (if parts are different)
Transport
Set down

The outstanding capabilities of the delta picker robot (Figure 29) makes it the system
of choice for many handling applications. Thanks to its delicate mechanical system,
this robot has very low moments of inertia, but is also designed for outstanding
stability, making it capable of very fast acceleration rates and velocities.

The diagram shows the kinematics of a delta picker robot, with pickup positions
(P1, P3) and setdown position (P2). The pickup position is not actually two positions,
but one programmed position P1 and a dynamic offset to position P3. Since the belt
is moving, the part can be picked up without any problems until it reaches position
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Figure 29 Delta picker with two belts

P3. Another pickup cycle for the part is not started again once it has moved past
position P3.

A camera is used to identify the parts on the belt. It must detect the position of the
parts and transfer this information to the SIMOTION system. Since the parts are
arranged randomly on the belt, the following data are required:

= Time stamp of the image recording

= Number of parts and the following information for each part
- X position
- Y position
- Angle of rotation
- Label (if available)

Using the time stamp of the image recording, the position for synchronizing the
robot can be calculated for each part. If a recorded image contains multiple parts,
the camera system supplies the position, angle of rotation and label (if available)
for each part. The area captured by the camera supplies overlapping image data. In
other words, the same part will appear in two consecutive images. This arrangement
ensures that each part is completely captured at least once. However, the images
must be subsequently analyzed by software to eliminate any duplication of parts.

Conveyor belt

The parts are placed in a random sequence and at various angles of rotation on the
conveyor belt. If the parts are placed too close to the edge of the belt, pickup by the
robot could become very problematic if the edge is not stable enough (e.g. parts
P3 and P7 in Figure 30). In this case, parts placed too close to the edge of the belt
must not be picked up.
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Figure 30 Conveyor belt with parts

The distance between the parts must also be detected. If the parts are positioned
too close to one another, it might also be very difficult for the robot to pick them
up. Analysis by software then also eliminates these parts from the pickup strategy.

The diagram shows how parts might be positioned on a conveyor belt. The camera
system starts recording images in response to a trigger signal. It evaluates the image
information and supplies the data in a TCP/IP telegram, for example, to the control
system. The data are then entered in an intermediate buffer. This kind of register is
required because of the delay between the moment the camera captures an image
and the moment the part is picked up by the robot. In our example, the camera is
triggered three times until the parts enter the pickup range of the robot.

If the camera system itself is capable of detecting parts that are too close to
one another or the belt edge and then eliminating them from the selection,
the data are transferred from the intermediate buffer to a product register.

If the camera system does not have this capability, the intermediate buffer
must be analyzed by software in the control system.

If a part has already been entered in the product register because it has
been captured in successive images, it must be deleted from the intermedi-
ate buffer. Parts that are positioned too close to one another or to the edge
of the belt are also deleted.

The parts remaining following the analysis are then entered in order of
priority at the end of the product register for pickup by the robot.

The data of the parts with the highest priority are passed to the picker so
that it picks them up; the data are then deleted.

If the camera transmits a new data telegram, these data are transferred to
the (now empty) intermediate buffer and subjected to analysis by software
if necessary.

The parts to be picked up by the robot are listed in order of descending priority in
the product register. The product register could be arranged as illustrated in Figure
31. This product register contains a a very broad range of information, including
the time stamp data of the image recording. On the basis of the time stamp, the
software can calculate the current position values to allow the robot to pick up the
part. The traversing time of the robot to the pickup position might also need to be
included in the calculation.
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Product register (sLPRhProductRegisterType)

Number of products in register
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Figure 31 Product register of SIMOTION handling

The Z position is relevant only if the camera is capable of detecting the height of the
part to be picked up. For parts that are identical in height, a 2D camera system (X
and Y) is generally sufficient. For parts with identical diameter, the angle of rotation
is not relevant.

The parts in the product register are sorted according to position (e.g. X position)
and are thus assigned a priority. The part in position “0” of the product register is
then the next product to be picked up by the robot.

Since the belt is moving, according to the set belt speed, the positions in the product
register must be converted in the interpolation cycle of the control system for all
parts.

This brief exploration of the technical complexities of connecting a camera to a
handling system clearly demonstrates the level of sophistication of the software
required to process and supply data. It is for systems of this kind in particular that
a highly modularized, carefully planned software design is needed. Without modu-
larization, software derivations need to be created and repeatedly adapted for each
application. The objective of effective software design is to ensure that no changes
need to be made to the picker robot application, even if camera systems of different
kinds are used.

Data telegram of the camera

Modern camera systems are extremely intelligent, sophisticated I/O components.
They generally communicate with controllers via existing bus systems, in other
words, the camera transfers the data in a telegram to the controller. The method by
which data are stored in the telegram is specified by the camera manufacturer or the
programmer of the camera software. Since camera systems can possess a very broad
scope of functions, there is no set standard governing data storage in telegrams. The
data structures supplied by camera systems can thus vary. It is always necessary to
adapt the camera data when camera systems of different types are used.
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Depending on the application, a distinction is made between cameras that can record
images in two dimensions (2D), two and a half dimensions (2%.D) or three dimen-
sions (3D). They are also distinguished according to whether they can read text (OCR)
or barcode/data matrix code. Considerable variations in the telegram structure are
possible depending on the capabilities of the camera. Moreover, it is often necessary
to define several telegrams for specific information. This always depends on the
scope of options of the camera software and the programming of the camera.

We are not going to discuss supplementary initialization routines and camera per-
formance settings at this point, but these also need to be programmed in the camera
software section.

If a standard were to be drawn up for the useful data telegram of cameras, it could
look something like the one illustrated in Figure 32. The telegram comprises a
header with a standardized structure and which receives its information from the
camera. The number of products is a crucial item of information. The length of the
useful data area can be calculated according to the number of products, i.e. the
useful data area is multiplied according to the number of products recorded by the
camera.

Telegram header

0 7

0 Telegram type (DINT)
1
2 User data
&
4 Product type (INT) 0 7
2 C ber (USIN 16 +(n-1) * 0 X coordinate H

| Cameranumber (USINT) | 16+ (n-1) * 1
7 Product count (USINT) 16+ gn-lg 2
8 Msgld (DINT) 16+ (n-1)* 3 EEAD
9 16 + (n-1) * 4 y coordinate H
ig 16 +(n-1)*5
12 Workioad (USINT) 1653 (=)~ ®
13 Details (USINT) H 16+ (n-1)*7 (REAL)
14 Details (USINT) H 16+ (n-1)*8 Rotation angle H
15 Details (USINT) H 16 +(n-1) * 9
16 Trigger counter / Telegram counter H 16 + (n-1) * 10
17 / Increments 16 + (n-1) * 11 (REAL)
18 16 + (n-1) * 12 Details H
19 (DINT) 16 + (n-1) * 13 (e. g. fit quality, product type)
20 Trigger time-stamp H 16 + (n-1) * 14
21 16 + (n-1) * 15 (DWORD)
22
23
24

User data

Figure 32 Proposal for a standard telegram for cameras

The useful data are entered below the header in the telegram. The number of prod-
ucts in byte 7 determines the telegram length. The telegram length can thus be
calculated as follows:

Telegram length = telegram header + product data
Telegram length = 24 bytes + number of products * n bytes
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The useful data shown above indicate that this camera is a 2D device. If it were
a camera capable of recording parts in 3 dimensions, the useful data would also
include the Z coordinate of the part.

This data exchange with the camera is normally defined by appropriate design kits
for the relevant camera. These kits can vary widely for each camera type and for
each camera manufacturer. It should be understood, therefore, that this descrip-
tion is merely an example designed to illustrate the potential structure of a camera
telegram. An example of how to program a data exchange efficiently can be found
in chapter 7.4.5.

To create a more independent software for the handling system, we are now going
to use object-oriented programming mechanisms and design an interface for con-
necting a camera.

3.5.8.2 Interface definition for a camera connection

In order to connect a camera, we are definitely going to need a suitable structure
and we will call it gsCameraData (Figure 33). This structure will contain all the
information that we need for the handling system. We are now going to define an
interface ICamera with methods mTrigger and mData. The method mTrigger can
be called in order to activate the camera to record new images. The method mData
will be used to obtain product information from the camera.

By defining the interface, we have also programmed the methods and their inter-
faces. How the data acquired by the camera are actually processed is not relevant
for our program.

By specifying methods in the interface, we are now able to call the interface methods
in our class DeltaPicker2D for the handling system. In other words, the class can

INTERFACE ICamera gsCameraData: STRUCT
. XCoordinate:REAL;
Interface METHOD angger YCoordinate :REAL;
METHOD mData RotatingAngle:REAL;
([OUT] gsCameraData DataSet) - TriggerTime:DT;
Z\ Product : DWORD;

END_STRUCT;

User —\//// - b = Implementer
'/
/

Classes

1
CLASS Cameral
IMPELEMENTS ICamera

METHOD mTrigger

CLASS DeltaPicker2D

METHOD mExecute
(... [IN] riCamera:ICamera...) METHOD mbData

METHOD mSorting

METHOD mPickerExec

Figure 33 Interface for camera
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activate the camera to record an image. Once the image has been recorded, we use
the method mData to transfer the data into the product register (which we described
above). To ensure that methods can be accessed, we need the reference to a camera
class that is transferred, for example, via an input variable at the method mExecute.
The programmer also needs to be aware that the task of taking images might be
transferred to another camera during runtime. If the programmer does not want
transfer of the task to a different camera during runtime, riCamera can be defined
as a class variable so that specification of a particular camera is forced when the
object is initialized (see chapter 7.3.1).

The methods from the interface must be implemented of course in a class for the
camera (Cameral). Only when the program code for these methods has actually been
written will it be possible to connect a camera to our handling system. The handling
software can nevertheless be tested in a test class. For this purpose, a camera class
for testing is created which the methods fill with a test program. For example, data
are supplied to a structure (gsCameraData) when the trigger method is called. These
data are then transferred to the handling system by the method mData. A simple
test program of this kind can be used to test the entire handling system even when
no real camera is connected to it. Once the real camera class actually exists, the
connection can be made fully functional simply by swapping over the reference.

A range of other methods for specific functions can be implemented in the class
for the handling system. A sorting routine (mSorting) can be added to ensure that
products are properly sorted in the register according to the time stamp of the image
recording and the relevant picking strategy.

We have decided not to include any example programs in this description because
the SIMOTION handling package comprises tens of thousands of program lines.
Another reason is that those reading this book will almost certainly not have access
to a camera component and will not therefore be able to test the programs. But to
give you the opportunity to try out the same principle in programs that can be tested,
we have developed another, easily testable example.

In view of the large size of the program, we could of course have omitted this chapter
altogether. However, it is a very useful indication of the scope and complexity of the
programs required for modern automation systems. These programs are extremely
difficult to manage if the software structure and design are not well organized or
planned.

3.5.9 Interface for neutral I/O connection (condensed example)

The connection of /0 components via neutral interfaces is an ideal solution for
complex peripheral devices, as described above in the camera connection example.

Most readers will probably not have the use of complex equipment of this kind in
order to test the principle. For this reason, we are going to demonstrate the same
principle using a much simpler example. We are again going to turn to the valve
application already used in previous chapters.

When programming software modules, it is absolutely essential to ensure that no
direct access to hardware resources is programmed in the module itself. If you do
not follow this rule, it will be more difficult to reuse the software because when you
port a program to a modified hardware variant, you will always need to adapt the
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program. In order for a module to function properly, however, it must of course be
linked to the real hardware, but this link is created outside the module. Moreover, it
is always advisable to set up this link at one dedicated point in the program. If this
mapping is programmed in different places, there is a risk that the programmer
will forget or overlook something.

Large modules are normally built from several smaller modules. An outer shell
often encapsulates internally integrated functional units (control modules). In such
instances, it is more important than ever to observe the above mentioned rule. Essen-
tial input signals are transferred through the individual layers by means of variables.
The signals for actuators must also be passed upwards again by the same principle.
This approach ensures that the modules can easily be reassembled because each
module can function autonomously. The module has been independently tested
and is simple to reuse.

Areset signal is often required, for example, to restore modules to their initial state
(Figure 34). This signal could be provided by a reset button at an input of a plant con-
trol system. The reset signal is not directly transmitted to the individual functional
units, however, but is transferred via corresponding variables (e.g. Reset_ Modull,
Reset_Modul2, etc.). Within the modules themselves, the signal is transferred by
Reset_Modulx to the resets of the control modules. It would not be expedient to
connect the Reset input directly to the control modules. The diagram shows just a
few modules, but if a plant were to include 100 axes or several hundred valves, it
would be necessary to modify the plant software in several hundred places.

Looking at it from this point of view, it becomes clear why software design is such
a crucial factor. Without well planned software and clear rules governing the pro-
gramming of modules, it is impossible to achieve a successful modular concept.

Modulel

— )

Control

Module :
Module3

—>

Reset

Control =C>

Module

i

Control
Module

—{

Module2

Figure 34 Principle of signal transfer in layers
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3.5.9.1 Interface definition for neutral /O connection

Now let’s get back to reality. We are going to use the interface IValvelO to create
a neutral I/O interface for our valve example in chapter 3.4.1.1. This interface
describes a function for transferring limit switch signals via a method. A second
method is used to transmit motion signals to the actual outputs for the valve. The
interface mechanism is neutrally defined and possesses only the requisite interfaces.
The connection is established in the classes in which the interface is implemented
(Figure 35).

INTERFACE IfValvelO

Interface METHOD mReadPos( [OUT] StartPos, EndPos)

METHOD mWriteOut([IN] Forward, Backward)

AL 4 impl
J mplementer
7 | L ‘_/___ -

User TN, -~ Sras

|
- |

-

-7 E—n
|
|
|

1
CLASS Valvelolmpll IMPLEMENTS IfValvelO

Classes I/ METHOD mReadPos( [OUT] StartPos, EndPos)

METHOD mWriteOut([IN] Forward, Backward)
CLASS ValveControl43

METHOD mExecute CLASS Valvelolmpl2 IMPLEMENTS IfValvelO

(.- [IN] ioAccess:IfValvelO...) METHOD mReadPos( [OUT] StartPos, EndPos)

METHOD mForw, mBackw METHOD mWriteOut([IN] Forward, Backward)

Figure 35 Neutral interface

This means that limit switch signals are no longer transferred to the class for the
valve and the outputs for controlling the valve are also no longer implemented in
the method mExecute(). Instead, the method mExecute now has an input parameter
at which an interface can be transferred that is implemented by a class that contains
access to the signals. This interface cannot be transferred of course until an object
with the relevant implementation actually exists. For this purpose, we need to create
two additional classes.

3.5.9.2 Implementation in classes

In order to connect the signals, let’s use classes Valvelolmpll and ValveloImpl2.
The I/O signals are connected in these classes, but not directly - they are linked by
means of intermediate variables. The intermediate variables in turn link the signals
using a global variable table at the beginning of the unit (Figure 36). No provision
is thus made within the class or the objects for direct access to the I/O components.

Allowing these classes direct access to /O components would mean that they could
no longer be programmed independently of the hardware.
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Program peripheral-interconnection

Mapping to peripherals
iboStartPoszyl1 AT %IX1.0
iboEndposzyll AT %IX1.1
qboOut Forwl AT %QX1.0
qboOut_Backl AT %QX1.1

Mapping to peripherals
iboStartPoszyl2 AT %IX2.0
iboEndposzyl2 AT %IX2.1
qboOut Forw2 AT %QX2.0
qboOut_Back2 AT %QX2.1

CLASS ValveControl43

CLASS Valvelolmpl2 IMPLEMENTS IfValvelO

CLASS Valvelolmpl2 IMPLEMENTS IfValvelO

METHOD mReadPos( [OUT] StartPos, EndPos)

METHOD mReadPos( [OUT] StartPos, EndPos)

METHOD mExecute
IN] ioA

METHOD mWriteOut([IN] Forward, Backward)

METHOD mWriteOut([IN] Forward, Backward)

(... [IN] ValvelO...

Z\
METHOD mForw, mBackw //
AN =
—~ Reference:l0_V1 / Reference:l0_V2

Backward := gboOut_Backl

Figure 36 Valve with neutral I/0 connection

Mapping table

StartPos := iboStartPoszyl2
EndPos := iboEndposzyl2
Forward := gboOut_Forw2

Backward := gboOut_Back2

3.5.9.3 Interface definition and mapping table program

INTERFACE

INTERFACE IfVvalveIO
METHOD mReadPos : VOID

VAR _OUTPUT
StartPos

BOOL;

EndPos : BOOL;

END VAR
END_METHOD

METHOD mWriteOut : VOID

VAR INPUT
Forward

BOOL;

Backward: BOOL;

END VAR
END_METHOD
END INTERFACE

VAR_GLOBAL

iboStartPoszyll AT %IX1.
iboEndPosZyll AT %IX1.

iboComForl
iboComBackl
gboOut_Forl
gboOut_Backl

iboStartPoszyl2 AT %IX2.
iboEndPosZyl2 AT %IX2.

iboComFor2

iboComBack2

gboOut_For2

gboOut_Back2
END VAR

0:BOOL;
1:BOOL;
AT %$IX1.2:BOOL;
AT %IX1.3:BOOL;
AT %QX1.0:BOOL;
AT %QX1.1:BOOL;
0:BOOL;
1:BOOL;
AT %$IX2.2:BOOL;
AT %IX2.3:BOOL;
AT %$QX2.0:BOOL;
AT %QX2.1:BOOL;

CLASS ValveControl43;

PROGRAM CallValveControl;

END_ INTERFACE

126




3.5 Interfaces

The interface IfValvelo has two prototype methods; one for the limit switches and
the other for the output signals to the valve. The interface definition is followed by
the table which maps intermediate variables onto the actual I/O components.

3.5.9.4 Program for implementation and use of classes

IMPLEMENTATION
CLASS ValveControl43
VAR
cboMode : BOOL;
cboEndPos : BOOL;
cboStartPos:BOOL;
cboForward: BOOL;
cboBackward: BOOL;
cboOut_Forward:BOOL;
cboOut Backward:BOOL;
END VAR

METHOD PUBLIC mExecute:VOID // Method for cyclic call
VAR INPUT
Mode : BOOL;
ioAccess : IfValveIO;
Forward:BOOL;
Backward:BOOL;
END_VAR
ioAccess.mReadPos (StartPos => cboStartPos,
EndPos=> cboEndPos ) ;
cboMode : =Mode ;
cboForward:=Forward;
cboBackward:=Backward;

THIS.mForw(); // Internal call Forward
THIS.mBackw(); // Internal call Backward
ioAccess.mWriteOut (Forward:=cboOut_ Forward,
Backward:=cboOut_Backward) ;

END_METHOD

METHOD mForw:VOID // Method move forward
IF cboMode = FALSE THEN // Jog mode
IF cboForward AND NOT cboBackward THEN
cboOut_Forward:=TRUE;
cboOut_Backward:=FALSE;

ELSE
cboOut_ Forward:=FALSE;
END_IF;
ELSE // Automatic mode

IF (cboForward OR cboEndPos) AND NOT cboBackward THEN
cboOut_ Forward:=TRUE;
cboOut_Backward:=FALSE;
END IF;
END IF;
END_METHOD

METHOD mBackw:VOID // Method move backward
IF cboMode = FALSE THEN // Jog mode

IF cboBackward AND NOT cboForward THEN
cboOut_Forward:=FALSE;
cboOut_Backward:=TRUE;

ELSE
cboOut_Backward:=FALSE;

END_IF;
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ELSE // Automatic mode
IF (cboBackward OR cboStartPos) AND NOT cboForward THEN
cboOut_Forward:=FALSE;
cboOut_Backward:=TRUE;
END IF;
END_IF;
END METHOD
END_CLASS

// Classes to implement I/O Mapping;
CLASS ValveIoImpll IMPLEMENTS IfValveIO
METHOD PUBLIC mReadPos : VOID
VAR OUTPUT
StartPos : BOOL;
EndPos : BOOL;
END_VAR
// here we can implement the real Input Mapping for the first instance
StartPos:=iboStartPosZyll;
EndPos:=iboEndPosZyll;
END_METHOD
METHOD PUBLIC mWriteOut : VOID
VAR_INPUT
Forward : BOOL;
Backward: BOOL;
END VAR
// here we can implement the real Output Mapping for the first instance
gboOut_Forl:=Forward;
gboOut_Backl:=Backward;
END METHOD
END_CLASS

CLASS ValveIoImpl2 IMPLEMENTS IfValveIO
METHOD PUBLIC mReadPos : VOID
VAR_OUTPUT
StartPos : BOOL;
EndPos : BOOL;
END VAR
// here we can implement the real Input Mapping for the second instance
StartPos:=iboStartPosZyl2;
EndPos:=1iboEndPosZyl2;
END METHOD
METHOD PUBLIC mWriteOut : VOID
VAR INPUT
Forward : BOOL;
Backward: BOOL;
END_VAR
// here we can implement the real Output Mapping for the second instance
gboOut_For2:=Forward;
gboOut_Back2:=Backward;
END_METHOD
END CLASS

PROGRAM CallValveControl

VAR
V1:ValveControl43;
V2:ValveControl43;
// instances for I/0 Mapping
IO_V1 : ValveloImpll;
IO V2 : ValveloImpl2;
iboEA Mode: BOOL;

END VAR
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!/
V1

!/
V2

first call ValveControl43 (V1)
.mExecute (
Mode : =iboEA Mode
,1oAccess := IO V1

,Forward:=1iboComForl
,Backward:=iboComBackl
)i

second call ValveControl43 (V2)
.mExecute (
Mode : =iboEA Mode
,1oAccess := IO V2
,Forward :=iboComFor2
,Backward :=iboComBack2
)i

END PROGRAM

INTERFACE

END_IMPLEMENTATION

3.5.9.5 Interface for fast/slow speed switchover

USES valve_ control;
INTERFACE IfValveIOFS EXTENDS IfValveIO
METHOD mReadFsSwitch : VOID
VAR_OUTPUT

FastSlow : BOOL;

END_ VAR

END_METHOD

METHOD mWriteSpeed : VOID
VAR INPUT

out_Slow : BOOL;

END VAR

END_|

METHOD

END INTERFACE

VAR_GLOBAL
iboFSSwitch AT %IX2.4:BOOL;
gboFs AT %QX2.2:BOOL;
END VAR
CLASS ValveControl43FS;

PROGRAM CallValveControlFS;

END_INTERFACE

The valve class (of the kind already used in a previous chapter) is implemented first
in this program, but this time we have left out the limit switch monitoring and error
reporting functions. The two classes for I/O implementation then follow and finally
their use in a program. It can be seen clearly that the call interface of the method
mExecute is now considerably simpler.

We now want to take a closer look at how we can use interfaces to integrate a fast/
slow speed switchover function. First of all, we will define an INTERFACE extension
of IfValvelO with which the additional sensor and the actuator can be controlled.
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3.5.9.6 Implementation of classes for fast/slow speed

We now need to implement our classes for the valve and provide implementation of
an interface to supply the additional I0s. To do this, we need to extend the existing
implementation of ValvelOImpl2 because we are intending to operate the second
valve instance with fast/slow speed switchover. Our extended valve class overrides
the method mExecute and adapts itself dynamically by means of the operator “?="
to the fast/slow speed switchover (see chapter 3.5.5 for “?=").

IMPLEMENTATION
CLASS ValveControl43FS EXTENDS ValveControl43
VAR
m_FastSlow:BOOL;
END_VAR
METHOD PUBLIC OVERRIDE mExecute:VOID // Method for cyclic call
VAR_INPUT
Mode : BOOL;
ioAccess : IfvalveIO;
Forward:BOOL;
Backward:BOOL;
END VAR
VAR
ioAccessFS : IfvalveIOFS;
END_ VAR

// switch Fast to Slow

ioAccessFS ?= i1oAccess;

IF (NULL <> ioAccessFS) THEN
ioAccessFS.mReadFsSwitch (FastSlow => m_FastSlow) ;
ioAccessFS.mWriteSpeed (Out_Slow := m_FastSlow) ;

END_IF;

SUPER.mExecute (
Mode : =Mode
,10Access:=10Access
,Forward:=Forward
,Backward:=Backward
) ;

END_METHOD
END_CLASS

CLASS ValveIoImpl2FS EXTENDS ValveIoImpl2 IMPLEMENTS IfValveIOFS
METHOD PUBLIC mReadFsSwitch : VOID
VAR_OUTPUT
FastSlow : BOOL;
END VAR
// implement the additional Input Mapping for the second instance
FastSlow:=1boFSSwitch;

END_METHOD

METHOD PUBLIC mWriteSpeed : VOID
VAR_INPUT

Out_Slow : BOOL;
END VAR
// implement the additional Output Mapping for the second instance

gboFS := Out_Slow;

END_METHOD

END_CLASS

PROGRAM CallValveControlFS
VAR
V1:ValveControl43;
V2:ValveControl43FS;
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// instances for I/0 Mapping
IO_V1 : ValveIoImpll;
IO_V2 : ValveIoImpl2FS;

iboEA Mode: BOOL;
END VAR

// first call ValveControl43 (V1)
V1.mExecute (
Mode : =iboEA Mode
,1oAccess := IO V1
,Forward:=1iboComForl
,Backward:=iboComBackl
)i

// second call ValveControl43FS (V2)

V2 .mExecute (
Mode : =iboEA Mode
,1oAccess := IO V2
,Forward:=1iboComFor2
,Backward:=iboComBack2
)i

END PROGRAM
END_IMPLEMENTATION

In the implementation of our program, we only need to use other instances in order
to operate the second instance of our valve from the previous example with fast/slow
speed switchover. V2 is created as an instance of the extended valve class. To ensure
that this is also supplied with the additional sensors, the relevant I/O implementation
must be set up as an instance of the extended class ValvelOImpl2FS. We only need
to make these changes in the program in order to perform the set task.

In our example, the extended interface IfValvelOFS is derived from IFValvelO. We
have decided that the I/O connection represents an extension of the I/O connection
of the valve. There is no technical justification for doing this, however. The program
would work just as well if we were to remove this derivation between the interfaces.

It is important to remember that we are using this example to demonstrate the
principle of neutralizing I/O components and a simple valve of this kind would
not normally be programmed in this way in practice. This construct makes a lot of
sense whenever the function of a class is clear, but the actual interface to the I/O
equipment is unknown. It is possible to finish programming the classes and then
adapt the I/O interface to the hardware of the particular application. This example
thus belongs to the second kind of class, i.e. an artificial structure for the use of
hardware resources (see chapter 2.3).

3.6 Further optimization of the valve class

3.6.1 Existing implementation of ValveControl

The way in which we implemented the class ValveControl43 above had a close
resemblance to procedural programming. The signals in the method Execute were
essentially interconnected on a level-controlled basis, i.e. the signals were processed
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continuously in the methods and the system responded if the signal level changed.
This method of programming is very widely used, but has various disadvantages:

The implemented program code is generally processed — it is not therefore
a time-optimized solution. When the number of calls is multiplied because
the plant contains a large number of valves, the program runtime can
become a significant issue.

It is often necessary to issue commands from different program areas. The
commands in automatic processes are called from sequences, for example.
Manual operation is implemented in a different program area. These vari-
ous commands need to be interconnected at the call interface of the method
Execute (Figure 37). The sections of program for the valve with all operating
modes are thus distributed among different programs and the construct
can become overcomplicated.

In controllers with a multi-tasking system, it is more difficult to achieve
asynchronous programming of functions from different tasks when the
class ValveControl43 is implemented in the way shown here.

V1
e +
! ValveControl43.Execute !
e +
EN--! ! -- ENO

EA Mode- - !Mode Out_ Forward!-- OutForl

EndPosl- - !EndPos Out_ Backward!-- OutFor2
StartPosl--!StartPos !
ComForl--!Forward !
ComBackl- - !Backward !
e +

Figure 37 Valve with signal interconnection

3.6.2 Design of a state machine

A more time-efficient version of the valve function can be achieved by programming
a state machine. This model defines the corresponding states for the valve-cylinder
combination. Changeover from one state to the next is initiated by conditions (tran-
sitions). The valve-cylinder combination can only be in one state at any given point
in time and it can change over to the next state only when changeover is initiated
by a specific event or condition (referred to as a transition). With this model, a
distinction is made between dynamic and static states. As aresult, the valve-cylinder
combination can be defined in full with a total of five states (Figure 38):

Stop

The system is in this state when none of the system elements is moving.
This is also the initial state of the system at switch on. In response to the
“Stop” command (ComStop), the system can also switch to the stop state
from the dynamic states Forw and Backw.
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Backw STOP Forw

e

EndPos

Figure 38 Valve state machine

StartPos

The system switches from the Backw state to the StartPos state when the
limit switch StartPos is reached. From this state it can switch to the Forw
state only when the ComForw command is issued.

EndPos
The state EndPos is the counterpart of StartPos. The system switches to this
state when the limit switch EndPos is reached.

Forw

The system always switches to the dynamic state Forw during a forwards
movement. It can exit from this state in response to ComStop or EndPos.
It switches over to this state when command ComForw is issued.

Backw
The system switches to this state during a backwards movement. It can exit
the state when StartPos is reached or the command ComStop is issued.

This state control mechanism only ever executes the program section containing the
code for the state itself or the sections containing the code for exit from the state.
No other parts of the program are executed. In other words, the program runtime is
minimized. Even if new states have to be added to the state machine, the increase in
the processing time is still lower than it would be with a level-controlled program.
This advantage can be highly relevant if the state machine is to be processed as part
of a large program. By reducing the cycle time by up to 10 to 20 % of the originally
required cycle time, it is possible to significantly raise the machine output (through-
put) without increasing the load on the machine.

This type of state machine doesn’t have anything directly to do with object-oriented
programming, but it is a type of programming that combines well with OOP. With
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OOP, methods are called to enable communication between objects. Thus, we could
implement corresponding methods for the commands ComForw, ComBackw and
ComStop and these would then transfer the commands to the state machine. It
would also be easy to integrate appropriate mechanisms in the methods to check
the admissibility of command transfers.

With a multi-tasking operating system like SIMOTION, the commands can simply be
called from other tasks, allowing the control to be implemented across several tasks
without any difficulties. To allow information about the status of the state machine
to be queried, we need to implement a method GetState(). The program issuing the
command can then query the current state of the machine beforehand so that the
commands it subsequently issues are successful.

In addition to the various advantages described above, however, we do not want
to conceal the fact that this model also has disadvantages. Since commands are
issued directly by calling methods, debugging is made more difficult, for example, if
commands are output concurrently by mistake. Because in our example, it is always
the command last issued prior to execution of the Execute method that has priority.

3.6.2.1 Example of ValveControl43ST - state machine using CASE

In this example, the class ValveControl has been converted to a state machine accord-
ing to chapter 3.4.1.1 “Example of a class for 4/3-way valves”.

INTERFACE
USES HMI_ Class;
TYPE
eValveStTYPE : (STOP

, FORWARD
, BACKWARD
, ENDPOS
, STARTPOS
,ERROR) ;

END TYPE

CLASS cValveControl43ST;

PROGRAM pCallValveControlé6;

PROGRAM pCallValveControl7;
END_INTERFACE

IMPLEMENTATION
CLASS CValveControl43ST
VAR CONSTANT
ERR_F0000 : STRING
ERR_F8001 : STRING
ERR_F8002 : STRING
ERR_F8003 : STRING
END VAR

:= ‘LIMIT switch error START-/END-POS"‘;
:= ‘LIMIT switch error START-POS Y
:= ‘LIMIT switch error END-POS Y

VAR OVERRIDE
// Reference of type Interface ErrorReport

crefivalveErrorRep : IErrRep := *;
END VAR
VAR
cboEndPos : BOOL;
cboStartPos : BOOL;
cboMoveForward : BOOL;
cboMoveBackward : BOOL;
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cbl6ErrorLS : WORD;
cFBLSTimer : TON;
cboReset : BOOL;
cboLock : BOOL;
cboComForward : BOOL;
cboComBackward : BOOL;
cboComStop : BOOL;
cdtSysTime : DT;
cFBRTC : RTC;
ceVC43State : eValveStType;
csgIdNo : STRING[24];
csErrStr : sErrStrType;
END VAR

METHOD PUBLIC mExecute // Method for cyclic call

VAR _INPUT
idNo : STRING[24];
endPos : BOOL;
startPos : BOOL;
reset : BOOL;

END VAR

VAR_OUTPUT
moveForward : BOOL;
moveBackward : BOOL;
errorLS : WORD;

END VAR

IF cbl6ErrorLS <> 0 THEN
THIS.mErrState (TRUE) ;

END IF;

// Error Reporting

// no error

IF cbléErrorLS = 0 THEN

csErrStr.bl6ErrorNo := 0;
csErrStr.sgErrorText := ERR F0000;
cboLock = FALSE;
CFBRTC (read := FALSE
,cdt  => cdtSysTime) ;
ELSE
cFBRTC (read := TRUE

,cdt  => cdtSysTime) ;
IF cbl6ErrorLS = 16#8001 THEN // first error

csErrStr.dtTimeStamp := cdtSysTime;
csErrStr.sgKompID := csglIdNo;
csErrStr.bl6ErrorNo := cbl6ErrorLS;
csErrStr.sgErrorText := ERR F8001;

ELSIF cbl6ErrorLS = 16#8002 THEN // second error
csErrStr.dtTimeStamp := cdtSysTime;
csErrStr.sgKompID := csgIdNo;
csErrStr.bl6ErrorNo := cbl6ErrorLS;
csErrStr.sgErrorText := ERR F8002;

ELSIF cbl6ErrorLS = 16#8003 THEN // third error
csErrStr.dtTimeStamp := cdtSysTime;
csErrStr.sgKompID := csglIdNo;
csErrStr.bl6ErrorNo := cbl6ErrorLS;
csErrStr.sgErrorText := ERR F8003;

END IF;

// call of Method ErrorReport if an error occurs
IF cbléErrorLS.15 AND NOT cboLock THEN

crefiValveErrorRep.mErrorReport (errMsg := csErrStr);
cboLock := TRUE;
END_IF;

END IF;
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// State machine for ValveControl
CASE ceVC43State OF

eValveStType#STOP:
IF cboComForward THEN
ceVC43State := eValveStType#FORWARD;
ELSIF cboComBackward THEN
ceVC43State := eValveStType#BACKWARD;
END IF;
cboMoveForward = FALSE;
cboMoveBackward = FALSE;
eValveStType#FORWARD:
IF cboComStop THEN
ceVC43State = eValveStType#STOP;
cboComForward = FALSE;
ELSIF cboEndPos THEN
ceVC43state = eValveStType#ENDPOS;
cboComForward = FALSE;
END IF;
cboMoveForward = TRUE;
cboMoveBackward = FALSE;
eValveStType#BACKWARD:
IF cboComStop THEN
ceVC43State := eValveStType#STOP;
cboComBackward = FALSE;
ELSIF cboStartPos THEN
ceVC43state = eValveStType#STARTPOS;
cboComBackward = FALSE;
END IF;
cboMoveForward = FALSE;
cboMoveBackward = TRUE;
eValveStType#ENDPOS:
IF cboComBackward THEN
ceVC43State := eValveStType#BACKWARD;
cboComForward = FALSE;
END_IF;
cboMoveForward = FALSE;
cboMoveBackward = FALSE;
eValveStType#STARTPOS:
IF cboComForward THEN
ceVC43state = eValveStType#FORWARD;
cboComBackward = FALSE;
END IF;
cboMoveForward = FALSE;
cboMoveBackward = FALSE;
eValveStType#ERROR:
IF cboReset THEN
ceVC43State := eValveStType#STOP;
END IF;
cboMoveForward = FALSE;
cboMoveBackward = FALSE;
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ELSE
ceVC43State := eValveStType#ERROR;
END CASE;
cboEndPos := endPos;
cboStartPos := startPos;
cboReset := reset;
csgIdNo := 1dNo;
THIS.mLSMon (); // Internal call LimitSwitchMonitoring
moveForward := cboMoveForward;
moveBackward = cboMoveBackward;
errorLS := cbl6ErrorLS;
END METHOD

METHOD mLSMon // Method Limit Switch Monitoring
// Fault LS StartPos&EndPos
IF (cboStartPos AND cboEndPos) AND (NOT cbléErrorLS.15) THEN
cbl6ErrorLS := 16#8001;
// Fault StartPos
ELSIF (cboStartPos AND cboMoveForward) AND
(NOT cbléErrorLS.15) THEN

cFBLSTimer (pt := T#500ms
,IN := TRUE) ;
IF (cFBLSTimer.Q) THEN
cbl6ErrorLS := 16#8002;
END_IF;

// Fault EndPos
ELSIF (cboEndPos AND cboMoveBackward) AND
(NOT cbl6ErrorLS.15 = TRUE) THEN

cFBLSTimer (pt := T#500ms
,IN := TRUE) ;
IF (cFBLSTimer.Q) THEN
cbl6ErrorLS := 16#8003;
END_IF;
ELSE
cFBLSTimer (IN := FALSE) ;
END IF;
// Reset
IF cboReset THEN
cbl6ErrorLS := 0;
cFBLSTimer (IN := FALSE) ;
END_IF;
END METHOD

METHOD PUBLIC mGetState // asking for actual state

VAR_OUTPUT
actState : eValveStType;
END VAR
actState := ceVC43State;
END_METHOD

METHOD PUBLIC mForward : eValveStType // Command Forward
VAR INPUT
condition : BOOL;
END VAR

IF NOT condition THEN // only output of actual state
mForward := ceVC43State;
ELSE // if bo condition=true method (command) is executed
IF (ceVC43State = eValveStType#STOP) OR
(cevC43State = eValveStType#STARTPOS) THEN
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END |

ceVC43state := eValveStType#FORWARD;
mForward := ceVC43State;
cboComForward := TRUE;
cboComStop := FALSE;
END IF;
END_IF;
METHOD

METHOD PUBLIC mBackward : eValveStType // Command Backward

END |

VAR_INPUT
condition : BOOL;
END_VAR

IF NOT condition THEN // only output of actual state
mBackward := ceVC43State;
ELSE // if bo condition=true method (command) is executed
IF (ceVC43State = eValveStType#STOP) OR
(cevC43State = eValveStType#ENDPOS) THEN

ceVC43state = eValveStType#Backward;
mBackward = ceVC43State;
cboComBackward := TRUE;
cboComStop := FALSE;
END IF;
END IF;
METHOD

METHOD PUBLIC mStop : eValveStType // Command Stop

END |

VAR_INPUT
condition : BOOL;
END_VAR

IF NOT condition THEN // only output of actual state

mStop := ceVC43State;
ELSE // if bo condition=true method (command) is executed
ceVC43state := eValveStType#STOP;
mStop := ceVC43State;
cboComStop := TRUE;
cboComForward := FALSE;
cboComBackward := FALSE;
END IF;
METHOD

METHOD mErrState // Internal Method

END |

VAR_INPUT
condition : BOOL;
END_VAR

IF condition THEN

ceVC43State := eValveStType#ERROR;
END_IF;
METHOD

END_CLASS

PROGRAM pCallValveControlé
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HMI1 : cHMIReporting;

Valvel : cValveControl43ST := (crefivalveErrorRep := HMI1) ;
sMyState : eValveStType := eValveStType#STOP;
boEndPos : BOOL;

boStartPos : BOOL;

boReset : BOOL;

boMoveForward : BOOL;
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boMoveBackward : BOOL;
bl6ErrorLS : WORD;
END VAR

Valvel.mGetState (actState => sMyState); // Actual State

IF (NOT boMoveForward) AND boMoveBackward AND

(sMyState = eValveStType#STOP OR

sMyState = eValveStType#ENDPOS) THEN

sMyState := Valvel.mBackward(TRUE); // Call of Method Backw
END IF;

IF boMoveForward AND (NOT boMoveBackward) AND
(sMyState = eValveStType#STOP OR
sMyState = eValveStType#STARTPOS) THEN

sMyState := Valvel.mForward(TRUE); // Call of Method Forw
END IF;
sMyState := Valvel.mStop (FALSE) ;

IF (NOT boMoveForward) AND (NOT boMoveBackward) AND
(sMyState = eValveStType#FORWARD OR
sMyState = eValveStType#BACKWARD) THEN

sMyState := Valvel.mStop(TRUE); // Call of Method Stop
END IF;
Valvel.mExecute (iDNo := ‘Valvel®
,endPos := boEndPos
,startPos := boStartPos
,reset := boReset
,moveForward => boMoveForward
,moveBackward => boMoveBackward
,errorLS => bl6ErrorLS

)i
END PROGRAM
END IMPLEMENTATION

Note: To ensure that this example is executable, the program must be assigned to the
BackgroundTask in the execution system of the SIMOTION CPU. For instructions
on how to assign programs in the execution system, see chapter 8.9.13.

The class ValveControl43ST in which the valve functions are defined has now been
converted to a state machine. The states are processed by means of a central case
branch. The states no longer change in response to signals, but to method calls.
The methods Forw, Backw and Stop have been created for this purpose. The system
may switch to another state only if this is admissible according to the state model.
A method GetState has been defined in the class to allow the current state of the
machine to be queried. The example has been further enhanced by the addition of a
means of querying the condition in the form of a signal “Condition” in the command
methods. When the method Forw, Backw or Stop is called with Condition=False,
the current status is supplied in the return value. The call with Condition=True
initiates switchover to another state. The methods do check, however, whether state
switchover is permissible. If not, the method is simply terminated.

The command methods can now be called from any task and therefore allow a higher
degree of programming flexibility. pCallValveControl6 shows examples of how com-
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mand methods are called. The options available for querying the current status of
the state machine are also shown.

The valve functions must be processed in cyclic operation using the method mEx-
ecute. In this version, only the limit switches and output signals need to be inter-
connected, but interconnection of the previous signals for motions is no longer
necessary.

This example of a state machine for the valve represents a very simple implementa-
tion. It has no command queue which can hold more than one command so that no
information functions relating to queuing commands have been implemented. Our
primary goal was to explain the principle of the state machine and thus make the
logical connection to the Technology Objects that are a feature of SIMOTION. The TOs
of SIMOTION work in principle like this valve state machine, but have a significantly
broader scope of functions (such as a command queue, for example). SIMOTION TOs
use a function call interface as a command interface instead of methods.

3.6.2.2 Example of ValveControl43ST - state machine with classes

Implementing a state machine using the Case mechanism is rather a classic pro-
gramming solution. While it is easier to read and understand, it also has the disad-
vantage that the program code needs to be altered every time new states are added
to the machine. A solution with which the addition of new states to the machine
would not affect the code for state transition would be better. The following example
shows this kind of solution.

INTERFACE
CLASS ValveControlST;
PROGRAM SMB;
END_INTERFACE
IMPLEMENTATION
CLASS cStDhiagr
TYPE PUBLIC
// the states

eStType : (Stop, Forw, Backw, StartPos, EndPos);
// the transitions
eTransType : (CmdStop, CmdComBackwd, CmdComFwd, CmdEndPos,
CmdStartPos) ;
END TYPE

TYPE PRIVATE
sTransEntryType : STRUCT

eAct : eStType;
eTrans : eTransType;
eNext : eStType;
END_STRUCT
END_TYPE

VAR CONSTANT PRIVATE
// The entries in this table have to be sorted in ascending order
// by the member eAct -> according to eStType! That means
// first all Stop, then all Forw, then all Backw and so on.
// Because the state diagram is execution time optimized
casStateTable : ARRAY [0..7] OF sTransEntryType

:= [(eAct := eStType#Stop, eTrans := eTransType#CmdComBackwd,
eNext := eStType#Backw),
(eAct := eStType#Stop, eTrans := eTransType#CmdComFwd,
eNext := eStType#Forw),
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(eAct := eStType#Forw, eTrans := eTransType#CmdEndPos,
eNext := eStType#EndPos),
(eAct := eStType#Forw, eTrans := eTransType#CmdStop,
eNext := eStType#Stop),
(eAct := eStType#Backw, eTrans := eTransTypef#CmdStartPos,
eNext := eStType#StartPos),
(eAct := eStType#Backw, eTrans := eTransType#CmdStop,
eNext := eStType#Stop),
(eAct := eStType#StartPos, eTrans := eTransType#CmdComFwd,
eNext := eStType#Forw),
(eAct := eStType#EndPos, eTrans := eTransType#CmdComBackwd,
eNext := eStType#Backw)];
END VAR
VAR PRIVATE
ceActState : eStType := eStType#Stop; // the actual state
cboInitialized : BOOL;

// to see if optimization table is initialized
cai32LookupTable : ARRAY [ENUM TO DINT (eStType#MIN) ..
ENUMiToiDINT(eStType#MAX)] OF DINT;
END_VAR

METHOD PRIVATE mDoInit

VAR
i : DINT := LOWER BOUND (casStateTable) ;
eLastState : eStType := eStType#MIN;

END_VAR

cai32LookupTable [ENUM TO DINT (eLastState)] := i;

WHILE (i <= UPPER_BOUND (casStateTable)) DO
IF (casStateTable[i] .eAct <> eLastState) THEN

eLastState := casStateTable[i] .eAct;
cai32LookupTable [ENUM TO DINT (eLastState)] := i;
END_IF;
i :=1 + 1;
END WHILE;
cboInitialized := TRUE;

END_METHOD

METHOD PUBLIC FINAL mDoCommand : eStType

VAR INPUT
cmd : eTransType;
END VAR
VAR
i : DINT:= LOWER BOUND (casStateTable) ;
END_ VAR
IF NOT cboInitialized THEN
mDoInit () ;
END IF;
i := cai32LookupTable [ENUM TO DINT (ceActState)];

WHILE (i <= UPPER _BOUND (casStateTable)) DO
IF (casStateTable[i] .eAct = ceActState AND
casStateTable[i] .eTrans = cmd) THEN
ceActState := casStateTablel[i] .eNext;
EXIT;
END_IF;
IF ceActState < casStateTable[i] .eAct THEN
EXIT;
END IF;
i :=1i + 1;
END WHILE;
mDoCommand := ceActState;
END METHOD
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METHOD PUBLIC FINAL mGetState
mGetState := ceActState;
END_METHOD
END_CLASS

CLASS cValveControlST
VAR PRIVATE
cMyState

END VAR

cStDhiagr;

METHOD PUBLIC mStopp
cMyState.mDoCommand (cStDiagr

END_METHOD

METHOD PUBLIC mForward
cMyState.mDoCommand (cStDiagr

END METHOD

METHOD PUBLIC mBackward
cMyState.mDoCommand (cStDiagr

END_METHOD

METHOD PUBLIC mExecute
VAR INPUT
endPos
startPos
END_VAR
VAR OUTPUT
moveForward
moveBackward
END_VAR
VAR
eTmpState
END VAR

BOOL;
BOOL;

BOOL;
BOOL;

cStDiagr.e

// make the transitions
IF endPos THEN

eTmpState :=
ELSIF startPos THEN
eTmpState :=
ELSE
eTmpState :=
END_IF;

eStType

.eTransType#CmdStop) ;

.eTransType#CmdComFwd) ;

.eTransType#CmdComBackwd) ;

StType;

cMyState.mDoCommand (cStDiagr.eTransType#CmdEndPos) ;
cMyState.mDoCommand (cStDiagr.eTransType#CmdStartPos) ;

cMyState.mGetState () ;

// do state dependend outputs;

moveForward
moveBackward

FALSE;
FALSE;

IF eTmpState

cStDiagr.eStType#Forw THEN

moveForward := TRUE;
ELSIF eTmpState = cStDiagr.eStType#Backw THEN
moveBackward := TRUE;
END_IF;
END_METHOD
END CLASS
PROGRAM pCallValveControl?7
VAR
Valvel cValveControlST;
boForward BOOL;
boBackward BOOL;
boEndPos BOOL;
boStartPos BOOL;
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boMoveForward : BOOL;
boMoveBackward : BOOL;
END VAR

IF boForward THEN
Valvel.mForward () ;
END IF;

IF boBackward THEN
Valvel .mBackward() ;
END_IF;

IF NOT boForward AND NOT boBackward THEN
Valvel.mStopp () ;

END IF;

Valvel.mExecute (endPos = boEndPos
,startPos = boStartPos
,moveForward => boMoveForward
,moveBackward => boMoveBackward

)i
END PROGRAM

END IMPLEMENTATION

The state machine is implemented on the basis of separate definition of states
(eStType), transitions between states (eTransType) and the transition table (casSta-
teTable). Implementation of the two methods doCommand and getState would be
sufficient to provide the actual functions of the state machine. This solution can be
used to implement state machines of any kind irrespective of the specifically defined
states and transitions.

The function dolnit is a special feature. After this function has been executed once,
significantly fewer entries in the transition table need to be evaluated in the method
doCommand in order to determine whether or not a transition must be made. This is
true only on condition that entries are sorted in ascending sequence in the transition
table casStateTable according to the current state (eAct) in the order in which the
states are specified in eStType.

3.7 Abstract class for different drives

In a similar way to interfaces, abstract classes allow the independent development
of different software sections and minimize the dependencies between them. We
have already briefly presented an example with different drive components in the
same plant in chapter “Abstract classes”. In this instance, the fact that we defined
the functions for switching drives on and off in an abstract class made it possible
to use drives neutrally irrespective of the drive type actually installed in the plant.
Various drive types including direct-on-line starting drives, motors with star-delta
starters, or speed-controlled drive systems might be installed in a plant (Figure 39).

All these drive types are switched on and off by different methods and these varia-
tions need to be reflected in the programming. The methods mOn() for switch on
and mOff() for switch off could now be defined in an abstract class together with
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Figure 39 Different drive types in one plant

their input and output parameters. To allow interrogation of the drive status, a
method mStatus() is implemented with the necessary information that should be the
same for all drive components. Once the various development teams have reached
agreement about interface requirements and then defined the interfaces, they can
begin their programming tasks and work independently of one another.

3.7.1 Functional differences between various drive solutions

The different software development teams must first of all come to an agreement
about the definition of interfaces and the data required. Each developer draws on
his or her expertise to assist in the definition of appropriate interfaces.

With direct-starting drives, the drive is switched on via an output that must be pro-
vided on the control system. This output must be wired to the relevant contactor K1
and set to switch on the drive. The output for the contactor is reset again in order
to switch off the drive.

Drives with star-delta starters are always deployed in cases where the starting current
would be too high if a drive were to be started directly on line. The motor is started
first via K1 and simultaneously with K2 in a star connection. Starting in a star con-
nection reduces the starting current by a factor of 3. A delay timer runs down and the
motor windings are then reconfigured to a delta connection by K2 dropping out and
K3 picking up simultaneously. Generally speaking, an interlock implemented via the
auxiliary contacts of contactors K2 and K3 ensures that K2 and K3 can never be “on”
at the same time (the consequence of that would be a short circuit). The program
code in the control system must ensure that the three outputs for the contactors are
controlled accordingly to switch on the drive. The state “switch on” is not reached
until the drive is running in a delta connection.

From the point of view of electronic circuitry requirements, speed-controlled drives
are significantly more complex than drives started by contactors. Frequency invert-
ers or servo converters are generally used for such applications. Programming the
switch on and switch off procedures for these drives is a more complicated process
than it is for contactor-controlled drives. So that the devices can function properly,
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the load voltage must always be connected via a suitable power contactor. A separate
load voltage connection is normally used in plants for this purpose. This connection
process is implemented separately and is not therefore included in the method
“Switch on” in the class definition. These drives are often connected to the controller
via bus systems and operation of the drive components is also controlled via the bus
system. SIMOTION is a motion controller and features standard functions designed
to control drive systems of this kind. The SIMOTION system uses configurable axis
objects that can perform this task. The example utilizes the Technology Objects
“speed-controlled axis” for this purpose. Further information about axis objects can
be found in the section “Introduction to SIMOTION” in chapter 8.9.6.

A method mStatus() will be used to query the status of the drives. This method
must be capable of delivering all the information about the different drives, but,
depending on the drive type, some of this information will not be available. None-
theless, the method must be universally applicable to all drive types. That is why
the programmers involved need to agree a structure that can be used by all drives.
It is always useful to document the information that can be supplied for each drive
type.

The information that can be supplied by individual drive types is as follows:

Direct-on-line starting drives

— Drive is off

— Drive is on

- Drive error (available only if motor starter protector is installed)

Drive with star-delta starter

— Drive is off

- Drive is on

- Drive is accelerating

- Drive error (available only if motor starter protector is installed)

Speed-controlled drive

- Drive is off

— Drive is on

- Drive is accelerating (positive speed change)

- Drive is decelerating (negative speed change)

- Setpoint speed reached

- Actual speed value

— Drive error

- Error number/error code
This information should be used to define a suitable structure that can be used by
all drives and in which they can deposit their data. Programmers normally agree on
a maximum structure that is only partially supplied with information by the more
simple drives. It is certainly reasonable to consider whether this status information
should be made available subsequently for display on an HMI system. If it does, it
can make sense to include the HMI data in the structure of the drive component.
The definition of an interface would also be suitable for this purpose.
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When considering whether information should be made available for other pur-
poses, the programmer may deem it necessary to prevent overriding of the method
mStatus(). It is for this purpose precisely that the keyword FINAL is provided, and
the programmer can use it to protect the method mStatus() (e.g. METHOD FINAL
mStatus()) from being overridden.

As regards the status of the drives, the programmers must agree that the information
obtained from the feedback above must be stored in a status word (Status:WORD). A
bitin the word is assigned to each individual status. Based on the maximum possible
feedback, the following is thus defined:

m Drive is off — status bit 0

m Drive is on - status bit 1

= Drive is accelerating (positive speed change) - status bit 2
= Drive is decelerating (negative speed change) - status bit 3
= Setpoint speed reached - status bit 4

= Drive error - status bit 15

m Actual speed value - separate word

m Error number/error code - separate word

3.7.2 Class model for connecting different drives

With all the information that we have now collected, we can develop a class model
with the abstract class CDrive and the derivations CDriveDirect, CDriveStarDelta and
CDriveSpeedControl (Figure 40).

The basic structure in the abstract class CDrive is defined by the methods mOnJ(),
mOff() and mStatus(). From this class it is possible to derive the three subclasses
for the different drive components and the relevant programmers can then develop
the program code for the derived classes. While this model prescribes a specific
structure, it leaves the programmers sufficient freedom to implement their program
code as they deem fit.

CLASS ABSTRACT CDrive
METHOD PUBLIC ABSTRACT mOn
Abstract
class METHOD PUBLIC ABSTRACT mOff
METHOD PUBLIC FINAL mStatus
_: | |
Classes = ! b 7
1 1 1
CLASS CbDriveDirect CLASS CDriveStarDelta CLASS CDriveSpeedControl
EXTENDS CDrive EXTENDS CDrive EXTENDS CDrive
METHOD OVERRIDE mOn METHOD OVERRIDE mOn METHOD OVERRIDE mOn
METHOD OVERRIDE mOff METHOD OVERRIDE mOff METHOD OVERRIDE mOff
METHOD mExecute METHOD METHOD mSetSpeedValue
METHOD mExecute

Figure 40 Class model CDrive

146



3.7 Abstract class for different drives

A method mExecute() is also assigned to each of the three classes. This allows con-
nection of the drives with a different interface, but also ensures that superfluous
interfaces are not programmed for any drive.

The implementation of the class model described here including the necessary
classes and the actual program code of the methods mOn(), mOff(), mStatus() and
mExecute() can be found in the program examples below.

3.7.2.1 Example of abstract class “CDrive”

The software designer supplies an abstract class “CDrive” for general use in each
of the classes for the drives. The methods mOn(), mOff() and mStatus() with their
interfaces are defined in this class. The methods mOn() and mOff() are defined as
abstract methods in the class “CDrive”. The persons charged with programming
the classes must write the appropriate program code for these two methods to suit
their drive component. The method mStatus() is universally applicable to all drives
and is fully programmed in the abstract class. It must be utilized, but not changed
by the class users. For this reason, this method is identified with the keyword FINAL
so that it cannot be overridden by other programmers.

// UNIT UDrive
INTERFACE

CLASS CDrive;
END_INTERFACE

IMPLEMENTATION
CLASS ABSTRACT CDrive
VAR
cboOff : BOOL; // Status-WORD BITO
cboOn : BOOL; // Status-WORD BIT1
cboRampup : BOOL; // Status-WORD BIT2
cboRampdown : BOOL; // Status-WORD BIT3

cboSpeed reached : BOOL; // Status-WORD BIT4
cr64Speed_actual : LREAL;

cr64Speed value : LREAL;
cboFault : BOOL; // Status-WORD BIT15
cbl6Errno : WORD;

END_VAR

METHOD PUBLIC ABSTRACT mOn : VOID
END METHOD

METHOD PUBLIC ABSTRACT mOff : VOID
END_METHOD

METHOD PUBLIC FINAL mStatus : WORD

VAR OUTPUT
ActualSpeed : LREAL;
Errno : WORD;
END VAR

IF cboOff = TRUE THEN

mStatus.0 := TRUE;
END_IF;
IF cboOn = TRUE THEN
mStatus.l := TRUE;
END_IF;
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IF cboRampup = TRUE THEN

mStatus.2 := TRUE;
mStatus.3 := FALSE;
mStatus.4 := FALSE;

END IF;

IF cboRampdown = TRUE THEN
mStatus.3 := TRUE;
mStatus.2 := FALSE;
mStatus.4 := FALSE;

END_IF;

IF cr64Speed actual = cré64Speed value THEN
mStatus.4 := TRUE;
mStatus.2 := FALSE;
mStatus.3 := FALSE;

END IF;

IF cboFault = TRUE THEN
mStatus.1l5 := TRUE;
Errno = cbl6éErrno;

ELSE
mStatus.1l5 := FALSE;
Errno := 0y

END_IF;

ActualSpeed := cré64Speed Value;

END_METHOD

END CLASS

END_IMPLEMENTATION

Variables for storing values have been created in the abstract class CDrive. All meth-
ods can access these variables which means that the data are not lost. If this option
is not utilized, the data required for processing must be transferred to the relevant
method but this involves too much work within a class.

3.7.2.2 Example of class for direct-on-line starting drives

The class for direct-on-line starting drives is now derived from the abstract class.
This is the simplest implementation of all classes. To ensure that the necessary input
and output signals for the relevant drive can be transferred, an additional method
mExecute() with the appropriate interface is defined for the class. The method
mExecute() is not defined in the abstract class CDrive because it would otherwise
be necessary to specify the interface for the inputs and outputs for all derived classes
and it would no longer be necessary to extend the method. The signature of methods
must not be changed when they are overridden.

// UNIT UDriveDirect
INTERFACE

USES UDrive;

CLASS CDriveDirect;
END_INTERFACE

IMPLEMENTATION
CLASS CDriveDirect EXTENDS CDrive

METHOD PUBLIC OVERRIDE mOn : VOID // Override method mOn
IF cboFault = TRUE THEN
cboOn := FALSE;
cboOff := TRUE;
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RETURN;
END IF;

IF cboOn = FALSE THEN

cboOn
cboOff
END IF;
END METHOD

TRUE;
= FALSE;

METHOD PUBLIC OVERRIDE mOff:VOID // Override method mOff

cboOn
cboOff
END_METHOD

METHOD PUBLIC mExecute

VAR INPUT

" MotProtSwitch

END VAR

VAR OUTPUT
Q Kx

END VAR

:= FALSE;
= TRUE;

VOID // New method mExecute

BOOL;

BOOL;

IF cboOn = TRUE THEN

Q Kx :=
END_IF;

IF cboOff =
Q Kx
END IF;

TRUE;

TRUE THEN
= FALSE;

IF MotProtSwitch = FALSE THEN

Q Kx

cboOn

cboOff

cboFault
ELSE

cboFault
END IF;

cboRampup
cboRampdown
cbl6Errno

END METHOD
END CLASS
END IMPLEMENTATION

= FALSE;
= FALSE;

TRUE;

= TRUE;

FALSE;

= FALSE;

FALSE;
0;

3.7.2.3 Example of class for drives with star-delta starters

We are now going to derive subclass CDriveStarDelta from class CDrive in the same
way as we derived subclass CDriveDirect. We will also implement a method named
mExecute in this class, but in an extended form for this kind of drive. We can do this
because mExecute() has not been defined in the abstract class CDrive.

// UNIT UDriveStarDelta
INTERFACE
USES UDrive;

CLASS CDriveStarDelta;

END_INTERFACE

IMPLEMENTATION

CLASS CDriveStarDelta EXTENDS CDrive
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VAR

METHOD PUBLIC OVERRIDE mOn:VOID //

cFBDSDTimer : TON;
END_VAR

IF cboFault = TRUE THEN
cboOn := FALSE;
cboOff := TRUE;

RETURN;
END_IF;

IF cboOn = FALSE
cboOn

THEN

TRUE;

cboOff := FALSE;

END_IF;

END_METHOD

METHOD PUBLIC

cboOn := FALSE;
cboOff := TRUE;

END METHOD

METHOD PUBLIC mExecute

VAR_INPUT

OVERRIDE mOff

MotProtSwitch : BOOL;

END VAR
VAR _OUTPUT
Q Kx : BOOL;
Q Ky : BOOL;
Q Kz : BOOL;
END_ VAR

IF (cboOn = TRUE
cboRampup :=
END IF;

// Contactor main K1
// Contactor star K2
// Contactor delta K3

AND cboRampup = FALSE) THEN

TRUE;

// start timer for switch to delta

cFBDSDTimer (PT

// switch star

IF (cboOn = TRUE
Q Kx := TRUE;

AND cFBDSDTimer.Q = FALSE)

Q Ky := TRUE;
END_IF;
IF MotProtSwitch = FALSE THEN
cboOn := FALSE;
cboOff := TRUE;
cboFault := TRUE;
ELSE
cboFault := FALSE;
END_IF;

// switch to delta if timer is expired

IF cFBDSDTimer.Q

= TRUE THEN

THEN
FALSE;

= FALSE;

FALSE;
FALSE;

Q Kx := TRUE;
Q Ky := FALSE;
Q Kz := TRUE;

END_IF;

// switch off

IF cboOff = TRUE
Q Kx 1=
Q_Ky
Q Kz 1=
cboRampup :=

END IF;

VOID // Override method

VOID // New method mExecute

:= T#900ms, IN := cboRampup) ;

THEN

Override method mOn

mOff
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// set non needed values
cboRampdown := FALSE;
cbl6Errno 0;
END_METHOD
END CLASS
END_IMPLEMENTATION

Important When implementing methods in classes, it is vital to remember that the

note! data of the method itself are stored in the SIMOTION CPU stack when
the method is called. This means that the variables at the interface
(VAR_INPUT, VAR_IN_OUT, VAR_OUTPUT, VAR) are transferred again
or initialized with each method call. When the variables are reinitial-
ized, they are effectively deleted and thus need to be set again in the
method. If a memory that retains its status over several calls is required
for a variable, a variable with memory must be set up in the class.
Variables that retain their value between two method calls cannot be
set up in a method.

3.7.2.4 Example of class for speed-controlled drives

The class for speed-controlled drives involves a slightly more complicated program
than the two previous classes. This is due to the very nature of this kind of drive. A
speed-controlled drive has a significantly broader range of functions than the other
two simpler drive types.

There are many different variants of speed-controlled drive. They all possess dif-
ferent characteristics and thus need to be treated differently with regard to pro-
gramming. The program should reflect the type of drive system used, its functional
capabilities and the method by which it is connected to the control system. It is the
drive manufacturer who determines the functional scope of a drive and the means
by which it must be coupled with a controller. All the relevant information can be
found in the documentation supplied by the drive system manufacturer.

A machine manufacturer will select the drives most suitable for the application in
question and will wish to keep the number of different variants used within man-
ageable limits. Because each variant requires different software and this software
will need to be maintained accordingly over the entire service life of the drive. It
makes economic sense to minimize maintenance requirements and this can best be
achieved by limiting the number of drive variants.

SIMOTION is a motion control system with integral motion control and drive func-
tions. For this reason, our example uses the functions for speed-controlled axes inte-
grated in SIMOTION in the class CDriveSpeedControl that we are going to create. To
help you understand the example program better, we are first going to explain some
of the features of SIMOTION speed-controlled axes. You can find further information
about handling the axes of the SIMOTION system from chapter 8.9.6 onwards.

Axis and drive functions are integrated in the SIMOTION Motion Control Sys-
tem. Using wizards in the engineering system, the user can create and configure
“Technology Objects” (TO) with specific properties (Figure 41). A Technology
Object “speed-controlled axis” represents, for example, a drive connected to the
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User program

Commands/ Actual value/status/
orders alarm analysis

TO “Speed axis”

Speed control Command value o A
processing Configuration

of the
Analyses Technology
Monitoring Object

Communication

Figure 41 SIMOTION Technology Objects

SIMOTION system. The object contains all the relevant data including the speci-
fied means of communication to the drive. The object also contains an integrated
closed-loop control system with additional monitoring functions. As well as issuing
commands to the object, the user can also interrogate the current processing activity
of the object via a function call interface.

For the purpose of controlling a speed-controlled axis, this kind of “driveAxis”
(speed-controlled axis) Technology Object is set up in the SIMOTION system. One
TO “driveAxis” must be defined for each drive installed in the machine. The user
assigns a unique name to each TO by which it can be identified. The engineering
system downloads the configured objects to the SIMOTION controller. Appropriate
programs make the functions of the Technology Objects available to the user. To
ensure that the class CDriveSpeedControl can make use of objects, the class first
needs to be made aware of the object’s existence. This is achieved by transferring
areference to the TO. Even in our example of a valve program, we used a reference
to transfer data to the HMI.

A variable ctoRefAxis:DRIVEAXIS is set up in the class CDriveSpeedAxis. The
reference is actually transferred at the INPUT variable “RefAxis” in the method
Execute(). It would also have been possible to implement the transfer in a separate
method, e.g. SetRefAxis(). We are likewise assuming that the speed-controlled axis
is continuously connected to our class. In order to change the axis during operation,
we would need to implement additional actions in the program, but we have decided
not to do this in the interest of keeping the example programs as simple as possible.

As a result, it is only necessary to call the method Execute() in order to make use
of a speed-controlled axis. The process of switching on the speed-controlled axis is

152



3.7 Abstract class for different drives

programmed in two steps in the method Execute(). The axis enable signal must first
be transmitted to the drive. This is done with function call _enableAxis(). Once the
speed-controlled axis is enabled, it can be started with a speed setpoint by issuing
the command _move() and passing suitable values to the parameters.

The user will wish to be able to input an appropriate drive speed for speed-controlled
axes. For this reason, we have implemented a method mSetSpeedValue() in the class
CDriveSpeedControl. By calling this method, the user can specify a speed setpoint
at the interface. A new speed setpoint can be passed to the drive at any time, but it
will not take effect until the axis is restarted.

The method Execute calls the function _stop() in order to stop the speed-controlled
axis. Once it has been stopped, it can be restarted with a new speed setpoint (if one
has been specified). As with the classes for the simpler drives, the speed-controlled
drive is started and stopped by the methods mOn() and mOff(). Only movement
with a positive speed has been programmed in this example.

// UNIT UDriveSpeedControl
INTERFACE

USEPACKAGE Cam;

USES UDrive;

CLASS CDriveSpeedControl;
END INTERFACE

IMPLEMENTATION
CLASS CDriveSpeedControl EXTENDS CDrive

VAR
ctoRefAxis : DRIVEAXIS; // Reference of TO
cCommandID : CommandIDType;
csRetCommandState : StructRetCommandState;
cboLock : BOOL;

END VAR

// Method for setting a new speed value
METHOD PUBLIC mSetSpeedValue:VOID

VAR INPUT
Speed_value : LREAL;
END VAR
cr64Speed _value := Speed value;
END METHOD

METHOD PUBLIC OVERRIDE mOn : VOID
IF cboFault = TRUE THEN

cboOn := FALSE;
cboOff := TRUE;
RETURN;

END IF;

IF cboOn = FALSE THEN

cboOn := TRUE;

cboOff := FALSE;
END IF;
END_METHOD

METHOD PUBLIC OVERRIDE mOff : VOID

cboOn := FALSE;
cboOff := TRUE;
END METHOD
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METHOD PUBLIC mExecute
VAR_INPUT
MotProtSwitch:BOOL;

VOID

RefAxis:DRIVEAXIS; //
END_ VAR
VAR OUTPUT

Q Kx BOOL; // Conta
END_ VAR

IF RefAxis TO#NIL THEN

RETURN;
END IF;
IF RefAxis <> ctoRefAxis THEN
ctoRefAxis := RefAxis;
END IF;
IF cboOn = TRUE THEN
Q Kx := TRUE;
IF RefAxis.control = INACTIVE THEN
_enableAxis (
axis = ctoRefAxis
,enableMode = ALL
,nextCommand := IMMEDIATELY
, commandId = _getCommandID ()
)
END IF;
END IF;
IF (RefAxis.control = ACTIVE AND
cboLock = FALSE AND
cboOn = TRUE)
THEN
cCommandId := _getCommandId() ;
_bufferAxisCommandId (axis := ctoRefAxis
,commandId := cCommandId) ;
cboLock := TRUE;
_move (
axis = ctoRefAxis
,direction = POSITIVE
,velocityType := DIRECT
,velocity = cr64Speed_value
, nextCommand = IMMEDIATELY
, commandId = cCommandId) ;
END IF;
IF MotProtSwitch = FALSE THEN
IF cboFault = FALSE THEN
_disableAxis(axis := ctoRefAxis
,disableMode := ALL) ;
END IF;
cboOn = FALSE;
cboOff = TRUE;
cboFault := TRUE;
ELSE
cboFault := FALSE;
END IF;
IF (cboOff = TRUE AND cboLock = TRUE)
THEN

csRetCommandState
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IF csRetCommandState.functionResult = 0 THEN
IF csRetCommandState.commandIdState = ACTIVE THEN
// RegisterdCommandId remove at TO
_removeBufferedAxisCommandId (

axis := ctoRefAxis
,commandId := cCommandId) ;
END IF;
END IF;
_stop(axis := ctoRefAxis
, stopMode := STOP_AND_ ABORT
,stopSpecification := ALL_AXIS MOTION
,mergeMode := IMMEDIATELY
, nextCommand := IMMEDIATELY
, commandId := _GetCommandId ()
,movingMode := CURRENT_MODE) ;
cboLock := FALSE;
END IF;

IF cré64Speed value = RefAxis.motionStateData.actualVelocity

THEN
cboSpeed reached := TRUE;
cboRampup := FALSE;
cboRampdown := FALSE;
ELSE
cboSpeed reached := FALSE;
END IF;

IF cré64Speed_actual < cré64Speed_value THEN
cboRampup := TRUE;
END IF;

IF cré64Speed_actual > cré64Speed_value THEN

cboRampdown := TRUE;
END_IF;
cr64Speed_actual := RefAxis.motionStateData.actualVelocity;
cbl6Errno := 0;
END_METHOD

END CLASS
END_IMPLEMENTATION

3.7.2.5 Example program for controlling drives of different types

Now we have developed all the classes we need for the different types of drive, we
can create and use objects based on the classes. To illustrate the use of classes, we
have created and used an object for each class in this example.

// UNIT UProgramCallDrives

INTERFACE
USEPACKAGE Cam;
USES UDriveDirect, UDriveStarDelta, UDriveSpeedControl;
PROGRAM pCallDriveObjects;

END_INTERFACE

IMPLEMENTATION
PROGRAM pCallDriveObjects
VAR
DD1 : CDriveDirect;
DSD1 : CDriveStarDelta;
DSC1 : CDriveSpeedControl;
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StatusDD1 : WORD;
StatusDSD1 : WORD;
StatusDSC1 : WORD;
DD1ActSpeed : LREAL;

DSD1ActSpeed : LREAL;
DSClActSpeed : LREAL;

DDl1Errno : WORD;
DSDl1Errno : WORD;
DSClErrno : WORD;
iboIN1 : BOOL; // from here these are normally I/Os
iboIN2 : BOOL;
iboIN3 : BOOL;
iboIN4 : BOOL;
1iboINS : BOOL;
iboING : BOOL;
1boIN7 : BOOL;
iboIN8 : BOOL;
iboMS1 : BOOL;
iboMS2 : BOOL;
iboMS3 : BOOL;
gboK1 : BOOL;
gboKx1 : BOOL;
gboKy1l : BOOL;
gboKz1l : BOOL;
gbok2 : BOOL;
END_VAR

// Switch on DriveDirect

IF iboIN1l = TRUE THEN
DD1.mOn () ;

END_IF;

// Switch off DriveDirect

IF iboIN2 = TRUE THEN

DD1.mOff () ;
END_IF;
// Call Execute of DriveDirect
DD1.mExecute (MotProtSwitch := iboMS1, Q Kx => gboKl) ;

// Switch on DriveStarDelta

IF iboIN3 = TRUE THEN
DSD1.mOn () ;

END IF;

// Switch off DriveStarDelta

IF iboIN4 = TRUE THEN

DSD1.mOff () ;
END_IF;
// Call Execute of DriveStarDelta
DSD1.mExecute (MotProtSwitch := iboMS2

,Q_Kx => gboKx1l
,Q_Ky => gboKyl
,Q Kz => gboKzl) ;

// Switch on DriveSpeedControl

IF iboIN5 = TRUE THEN
DSC1.mOn () ;

END IF;

// Switch off DriveSpeedControl

IF iboIN6 = TRUE THEN
DSC1.mOff () ;

END IF;

// Set different speed value

IF iboIN7 = TRUE THEN
DSC1.mSetSpeedvalue (200.0) ;
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ELSE

DSC1.mSetSpeedValue (100.0) ;
END_IF;
// Call Execute of DriveSpeedControl
DSC1.mExecute (MotProtSwitch := iboMS2

,RefAxis := SpeedAxis 1
,Q Kx => gboK2) ;

// Read status of all drives
IF iboIN8 = TRUE THEN
StatusDD1:=DD1.mStatus (ActualSpeed => DDlActSpeed
,Errno => DD1Errno) ;
StatusDSD1:=DSD1.mStatus (ActualSpeed=>DSD1ActSpeed
,Errno=>DSD1Errno) ;
StatusDSC1:=DSCl.mStatus (ActualSpeed => DSClActSpeed
,Errno=>DSC1Errno) ;
END IF;
END_PROGRAM
END IMPLEMENTATION

Note: Toensure that this example is executable, the program must be assigned to the
BackgroundTask in the execution system of the SIMOTION CPU. For instructions
on how to assign programs in the execution system, see chapter 8.9.13.

If the classes are programmed in different units, a link to the units of the classes
must be set up in the interface section of the unit. Keyword USES <UnitName> is
used to create this connection.

When the drive status is queried using the method Status, various values such as
ActualSpeed, for example, are output as “0” for the simpler drives. These drives
operate at the speed that corresponds to the number of pole pairs in the drive motor.
Since the object is not aware of this information, the output value “0” has been
programmed. This information is available as a variable for speed-controlled drives.
The program transfers this information to the variable cr64Speed_actual.

3.8 Abstract class versus interface

If we look at the definition of an abstract class and compare it to the definition of an
interface, we will find that both constructs are very similar. Both constructs contain
prototype methods for which the appropriate functions must be programmed in a
class.

Programmers therefore ask themselves with some justification: what is the differ-
ence between these constructs and, more importantly: which of them should I use
for my specific application?

To be able to answer this question more simply, the relevant properties are listed
in Table 4.

By defining prototypical methods, both constructs (abstract class and interface)
represent a declaration guaranteeing that the interfaces defined at the methods will
be used exactly as defined. A programmer can thus feel confident that the use (call)
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Table 4 Comparison between abstract class and interface

Abstract class | Interface

Abstract classes can contain abstract methods An interface may contain only prototype methods
as well as fully programmed methods, i.e. real (keyword ABSTRACT does not need to be speci-
methods. fied).

Abstract classes can possess defined properties An interface cannot possess any properties
(attributes). (attributes).

The properties of methods can be selected All methods in the interface are PUBLIC and can-
(PUBLIC, PRIVATE, PROTECTED). not be changed retrospectively.

An abstract class cannot be instantiated. Interface variables can be created.

The methods of an abstract class must be fully All the methods of an interface must be pro-
programmed when they are derived unless the grammed in the class in which the method is
derivation itself is also ABSTRACT. implemented, or identified as abstract.

A class can be derived from an (abstract) class. An interface can be derived from a base interface.
An (abstract) class can implement multiple _

interfaces.

of prototype methods will function reliably when the entire program is finished and
the individual program sections are joined together.

An experienced programmer once gave us an answer to the question above. I liked it
very much and think it could serve as a useful guide for use of these two constructs.
This is what he said:

“An abstract class constitutes a contract for use in the derivation chain, i.e. within
the class hierarchy, while the interfaces constitute a contract that is valid externally
between different program sections (see valve: example with interface). As a pro-
grammer, however, you must remember that this clear distinction does not always
existin every programming scenario and you might be able to use either construct
in a given situation. As so often in life, nothing is ever one hundred percent clear.”

From the information we have given you, you should find it easier to decide which
of these solutions is best suited for a specific task.

= Whenever a more generalized definition needs to exist between different
programs and the methods may/must be accessible to anyone, you should
use interfaces.

= An abstract class is the better option in cases where you need to define a
structure for a program area and/or methods must be concealed (i.e. must
not be PUBLIC).

If you find yourself in a situation where you cannot work out or predict the right
choice, you still have to make a decision as to which construct to use. Once you have
made a decision and start programming your application, you may discover later
on that you made the wrong choice. By this time, you will have generated a load of
program code and possibly created many derived classes. In such situations, you
might not be able to avoid refactoring, i.e. the process of converting interfaces to
abstract classes or vice versa. You will not always find it easy to make this decision
and you will need to weigh up the pros and cons of both options. But it should
comfort you to remember that it is significantly easier to refactor object-oriented
programs than procedural programs.
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Abstract classes can be combined very effectively with interfaces in object-oriented
software and thus provide a wonderful tool for planning and designing the software
structure. The option of being able to write all the program code for some methods
in abstract classes reduces the time and effort involved in writing program sections
that can be used by everyone in the same way. The methods are simply inherited
when real classes are derived. The specification of access rights to methods enhances
the security of programs.

Interfaces allow different program sections to be connected in a highly flexible
manner and make it possible for software development teams to work more inde-
pendently of one another.

3.9 OOP opens up the world of design patterns

By using the object-oriented programming method, programmers and in particular
software designers will discover new opportunities for “optimizing” the solutions
that they are trying to create. Since OOP has been long established as a method for
programming PCs, many developers have devised meaningful, pre-defined solu-
tions for a variety of approaches. The authors Erich Gamma, Richard Helm, Ralph
Johnson and John Vlissides have collected and published 23 such solutions in their
book Design Patterns. Elements of Reusable Object-Oriented Software. This work by
the so-called “Gang of Four” is a highly influential work in the field of software
engineering.

These design patterns* provide tried-and-tested templates for solving recurrent
design problems that are encountered by software architects and developers. Design
patterns describe solutions for a variety of repetitive software development tasks.

Design patterns are thus reusable templates for resolving problems in various
contexts. The descriptions are formulated neutrally, i.e. without reference to a
specific programming language, but are based on the mechanisms available with
object-oriented programming. In the interests of clarity, some templates contain
sample code for specific programming languages, But this sample code can easily
be converted to other languages. How a solution is actually implemented in the
software is of secondary importance. What matters with design patterns is that they
offer an identical potential solution irrespective of the language.

The use of design patterns is meaningful only if the software meets certain condi-
tions:

The problem to be solved must not be trivial in nature, i.e. it must not be a
problem that is simple to deal with.

The problem must recur frequently enough that it is worth taking the time
to learn the use of design patterns.

It must be a problem that can be solved by design patterns.

The purpose of design patterns is to solve specific problems. In other
words, use of a design pattern must ultimately result in executable, usable

4 “Software design pattern”. In: Wikipedia - The Free Encyclopedia. Revision level: December 21, 2015. 16:50
UTC. URL: https:/len.wikipedia.org/wiki/Software_design_pattern (viewed on: March 22, 2016, 17:25 UTC)
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program code. Design patterns do not address general software design
problems.

It must be possible to adapt the design pattern for the automation engineer-
ing solution. There is no point, for example, in basing a solution on design
patterns which necessitate object generation in the control system during
runtime.

As OOP becomes more widely established in the field of automation engineering,
programmers will have the opportunity to use design patterns, although their use
is not restricted to object-oriented programming. Patterns can be implemented in
any high-level language. The target language largely determines how convenient
the conversion process will be. Owing to the fact that the generation or destruction
of objects during runtime does not exist in the OOP implemented in SIMOTION,
patterns that are based on mechanisms of this kind (creation patterns) cannot be
transferred to SIMOTION.

If somebody else has already found an elegant solution to a problem, it makes com-
plete sense to simply adopt this solution to solve your own problem. It takes, of
course, a certain level of expertise to evaluate design patterns and their application.
Since many design patterns are based on OO mechanisms, it is important that pro-
grammers are familiar with the object-oriented programming tool kit so that they
can understand and transfer code examples.

After this short discussion about design patterns, we are going to close this chapter.
We just wanted to draw your attention to another useful mechanism for creating
reusable software. Anyone who wishes to delve deeper into the subject of design
patterns will find that a large number of books has been written about the topic.
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4 OOP Supports Modular Software
Concepts

One of the big advantages of object-oriented programming is that it allows pro-
grammers to create consistently modular software. Thanks to the “object concept”,
it is possible to implement fully encapsulated modules which can be influenced
externally only in the ways expressly permitted by the programmer. The software
developer implements a set of base objects as well as a series of more complex
objects. The complex objects obtain their functionality from the finished base
objects, in other words, they are aggregations of these base objects. Aggregating
different combinations of base objects makes it possible to program exactly the right
module for any task. The underlying software principles are always the same, and the
time and effort required to test newly developed modules can therefore be reduced.

The modules must be capable of functioning independently. It is thus vital that
their functional capability is tested so as to ensure that they can be used in differ-
ent settings (machines). This is done by integrating the modules into specific test
environments that are designed to simulate the typical conditions in the relevant
environment and deliver appropriate results. Object-oriented programming makes
this whole process easier by providing encapsulated modules capable of indepen-
dent functioning which can be tested in relatively simple test environments.

After development and testing, modules can be combined easily to implement all
the tasks required to operate a plant. As a consequence, software for machines can
be developed much more quickly.

So far, so good - it all sounds pretty straightforward. But if we look at the software
that we designed in the past and attempt to achieve this level of simplicity with these
designs, we are suddenly confronted with a myriad of different questions.

How does the software need to be designed so that it is easy to combine
different modules?

How is it possible to aggregate modules, i.e. pre-existing class objects,
without violating their independence?

How can different modules be combined without necessitating the addition
of further program code for the connection?

Is it possible to use engineering tools to automate the process of combining
existing modules?

These different interrelated issues — module design, interconnection of modules
or automated combination of modules - are not directly related to object-oriented
programming. But one of the major advantages of this programming method is
that it gives valuable help to programmers who want to achieve these goals. For
this reason, we will explain these issues in more detail in the following chapters.
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4.1 Assembling projects for real machines

A major challenge faced by any company is to maintain its own competitive position.
As a general rule, there are precisely two options for doing this:

1. If a company is building unique machines that are not produced by any
other manufacturer, it can regard itself as a technology leader and does
not have the immediate problem of market price pressure. This kind of
manufacturer can naturally only remain successful if there is a market
demand for the special machine functions they are offering. But the laws of
the market also dictate that the company cannot maintain this leadership
role for long. Their competitors will attempt to reproduce the functional
capabilities of the machine or even copy the entire machine. If the compa-
ny’s competitors manage to break its role as market leader, the machine
manufacturer will attach more importance to the second option. As a
general rule, machine manufacturers can maintain their market leadership
only through a process of sustained innovation.

2. If there are various machine manufacturers on the market offering compa-
rable machines, each of them will be subject to a certain price pressure. In
other words, they must each offer their machines at a competitive price in
order to be able to sell them at all. To do this, each manufacturer must keep
costs under control and will also attempt to minimize them.

These two scenarios admittedly represent the extreme ends of a range of possi-
bilities. Generally speaking, machine manufacturers and their machines will find
themselves somewhere in-between. But each will be working to achieve the position
described under 1. above. They will attempt to differentiate themselves from their
competitors by integrating innovative features into their products. They can also set
themselves apart by offering additional benefits such as, for example, special quality
products, excellent service, spare parts supply, etc. But machine manufacturers also
make continuous efforts to keep their own costs as low as possible. Thus, all machine
manufacturers aim to achieve the targets described under 1. and 2. above. Designing
innovative product features requires new developments and therefore costs money,
But these costs also need to be reduced or minimized at the same time.

That is why many companies analyze their processes. Developing software for a fully
operational machine is a time-consuming, complex and thus cost-intensive process.
The software component in machinery is steadily increasing and the cost of software
development is thus also rising as a proportion of overall costs. It is therefore a nat-
ural step to attempt to find cost savings in the software design budget. The quickest
possible way of achieving cost savings would of course be to fire some (or even all)
of the software developers. But any company that did this would deprive itself of
the means of innovating its products and would thus enjoy only short-term success.
After a brief interlude, it would disappear from the market altogether. Analyzing
software development processes is certainly worthwhile, however, and will generally
reveal various ways in which costs can be cut.

If a software design is modular in structure and the modules can be handled as inde-
pendent entities, they can be used multiple times for a single machine in a similar
way to mechanical components. Machine components are technically designed so
that they can be combined in different ways with other components, i.e. adapted
for specific purposes. This is exactly what we need to do with software modules as
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well. They need to be designed with interfaces that can be freely assembled and
freely combined. The software design itself thus makes an important contribution
to reducing the cost of software development.

4.1.1 Module design

Unsuitable software designs increase the labor and costs involved in compiling a
machine application because the work involved in adapting software to each indi-
vidual machine is considerable. Even duplicate machines are rarely one hundred
percent identical. As the number of machines increases, so too does the diversity of
software versions adapted to match the features of each individual unit. The time
and labor involved in maintaining the software steadily increase over its lifetime
and thus tie up an ever growing share of development capacity.

The only way to avoid these problems is to keep the number of software variants to
within manageable limits. To achieve this, the machine software must be modular
in structure and the software modules designed such that they can be reused as
often as necessary in their original form. At first glance, this objective might seem
to conflict with the stated desire to integrate innovative machine features because
this will obviously involve modification of the software. But it is precisely in this
respect that object-oriented programming is such a useful concept because it allows
us to retain fully functional software components while allowing us to adapt the
software using the inheritance mechanism (see also chapter 5.4.2 “Software needs to
be planned”). The module interfaces should be designed such that parts of modules
or even complete modules can be exchanged.

4.1.2 The role of the software developer

Software planning and design of a modular software concept are the essential pre-
requisites for compiling a fully functioning machine application easily and without
the need for complex programming. In an ideal situation, appropriate tools can even
be used to assemble the application automatically. Creating a machine application
automatically offers a number of different benefits that can lead to significant cost
savings.

If the automatic compilation tool has a front end designed to facilitate
operation, the application does not necessarily need to be compiled by a
software programmer. Appropriately trained personnel can carry out this
work independently and so ease the burden on the software development
department.

Automatic compilation of the machine application is easy to repeat and
always delivers the same results. Careless mistakes and operating errors
do not generally occur in the way they do with applications assembled
manually from different projects.

Compiling an application with an automatic tool takes very little time. Even
if the compilation work does need to be carried out by software develop-
ment personnel, the amount of time they need to spend on this important,
if rather dull, task is still significantly reduced. The most important task of a
programmer is to create high-quality, error-free and reusable software.

163



4 OOP Supports Modular Software Concepts

Good software developers are not cheap and they are sometimes headstrong. It is
also not true that these people can simply be replaced, even if this fallacy still seems
to be deeply entrenched in the minds of today’s management professionals.

A study carried out by Sackman, Erikson and Grant® in 1968 analyzed the produc-
tivity of software developers. The results revealed a large difference in productivity
(10:1) between the best and worst test persons. The fastest developers achieved the
shortest execution times with the least amount of program code. Another result
worthy of consideration was the fact that productivity levels were not necessarily
linked to professional experience.

In short, you could say that a good developer is worth more than ten poor ones.
Every possible measure should therefore be taken to ensure that good developers
are used as effectively as possible. Anything that gets in their way of doing their
actual job (such as invitations to attend unnecessary meetings or burdening them
with superfluous tasks) must be prevented at all costs.

If a good software developer is creating effective program code, then he or she will
also be capable of developing a useful software concept. He or she will construct
the programs in such a way that they contain only a few copied program sections or
none at all. A specific task will be performed by only one program module (rather
than by a number of similar modules). This approach makes the programs easier to
maintain and test (in this case, they are modular in structure anyway).

But let’s get back to our original point. Our main objective is to compile the software
for a machine in the most effective manner so that we can also cut costs. To achieve
this goal, our software must have a modular structure. This work is done by software
developers who are capable of designing and programming reusable software.

But demands on the mechanical engineering design may also arise from the software
development process. While mechanical engineering is significantly more advanced
than software development with respect to standardization, selection of the wrong
gear ratio, failure to install limit switches or use of overly cheap encoders can make
complicated software solutions necessary. When mechanical engineering changes
are easy to implement, the associated software programs will also be significantly
simpler. This approach can help to avoid, or at least minimize, future problems.
Only when the hardware and software in a machine are mutually coordinated can an
optimum outcome be achieved. Mechanical engineering and software development
personnel must therefore cooperate closely and so achieve their common objective.

4.1.3 Modularizing software

All software ultimately executes on a control system, i.e. it needs to be incorporated
into a runtime environment so that the control system can execute the programs.
Since the control systems available on the market behave differently with respect to
program execution, the controllers to be used need to be specifically selected. Even
if machine manufacturers would like a situation where they could easily replace the
control system but keep the same software, the fact that control systems operate in
different ways forces them to make a selection.

® http:/icartoon.iguw.tuwien.ac.at/fit/fit02/CPT_Motivation_Bsp_details.html
(Viewed on: March 22, 2016, 16:34 UTC)
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Moreover, the software also requires an interface to the I/O devices connected to
the control system (such as inputs and outputs or bus-connected components (e.g.
servo converters)). A software module therefore has an interface via which it can
be connected to the necessary I/O components. It is a capital offence to implement
software modules that have direct access to I/O components (e.g. inputs). The soft-
ware programming MUST be independent of the hardware. If the module needs to
be used more than once in the control system, the I/O mapping concept takes on a
vital role (see also chapters 3.5.9 and 6.1). This may very well have repercussions
as regards planning the control system I/O components and thus the design of the
control cabinet.

There is normally a section in the software that coordinates the execution of indi-
vidual modules. This software section generally needs to be adapted individually
for each machine. The extent to which it requires adaptation depends on its generic
design. If message exchange between software modules is appropriately modeled
and implemented, it can minimize the work involved in adapting the software. Since
the existing machine software may already be modularized to a certain degree,
thought has to be given to ways in which it can be integrated into an overall concept
without necessitating adaptation of the entire software application. This could be
done effectively by incorporating a neutralizing software layer into the existing
modules that allows all of them to communicate in the same way with higher-level
software components. The interfaces described above therefore represent the best
means of design to achieve this end. The individual modules can then be gradually
optimized and improved as separate modules. The standard ISA-88 offers an excel-
lent definition of suitable models” for structuring processes in a machine control
system (Figure 42).
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Figure 42 Hierarchy as defined by ISA-88-01

7 “ISA-88”. In: Wikipedia - The Free Encyclopedia. Revision level: January 9, 2016, 21:54 UTC.
URL: https://de.wikipedia.org/w/index.php?title=ISA-88&0ldid=150007795
(viewed on: March 22, 2016, 16:34 UTC)
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This standard defines a design philosophy for software, equipment and procedures.
The proposed models break manufacturing processes down into process stages
and then further down into individual functions. The standard defines “equipment
modules” (among others) that are fully functional as independent modules and
capable of reacting to and answering messages. Thus, an equipment module must
be capable of carrying out minor processing activities. Equipment modules are in
turn comprised of smaller functional units referred to as “control modules”. We
could regard a control module as being, for example, objects for the valve-cylinder
combination or drive objects (see previous chapter). Several control modules of
this kind can be combined in an equipment module to perform a specific function
within a machine. Other important functions such as error diagnosis software or an
operating mode manager could also take the form of an equipment module.

A “process cell” consists of machines or “units”. In Figure 42, the process cell com-
prises the units “packaging machine” and “stacking unit”. The packaging machine
contains various equipment modules such as box erector, filler and ejector. The
equipment module “ejector” is in turn comprised of various control modules.

This kind of modular design concept is also reflected in the software and can be
combined by simple mechanisms to create different machine variants. If the engi-
neering environment provided for a control system also offers suitable configuring
tools, the operation of combining modules can even be automated and so help to
make the process of creating plant software very efficient. There are some machine
manufacturers who use this method to automatically compile more than 80 percent
of their machine software. Depending on the amount invested, this level of automa-
tion could be increased up to 100 percent. As always, a cost/benefit analysis needs
to be carried out in order to determine the best approach.

4.1.3.1 Creating equipment modules

We have now reached the point at which enough theoretical considerations and
opinions have been presented. Let’s now take a look at how we can actually create
these kinds of reusable module. We are of course going to use the same examples
as those we worked through earlier in this book. In previous chapters, we created
classes for valve-cylinder combinations and drives. These are suitable for combining
as modules for use in a machine.

We want to highlight all the relevant principles here and, for this reason, we have
only developed the most important elements in the following example. For a real
machine application it would be necessary to program other elements such as, for
example, interruptions to the process or detailed error diagnosis in the case of
component failure. As we have already said, this example is provided to illustrate
the principle of modularization.

A conveyor belt with an ejector function for unfilled packages will be used as a
machine module in a plant. The machine module must ensure that only full packages
arrive at the next section of the machine. The packages are transported through
this section of the machine on a conveyor belt. A simple three-phase asynchronous
motor will be used to drive the conveyor belt. Each package is detected by a sensor as
it arrives. A second sensor determines whether the package is full or empty. Empty
packages are ejected to the side by a cylinder.
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Figure 43 Equipment module for conveyor belt with ejector

Since it is important that the software is reusable, we can also use an object of
the CDriveDirect class (chapter 3.7.2.2) as the conveyor belt drive. An object of the
ValveControl43ST class will perform the ejector functions (chapter 3.6.2.2).

Another important component is still missing. One characteristic of the equipment
module is that it is capable of receiving requests or commands and processing them
independently. In other words, we need to create a software module that represents
the equipment module and in which the two control modules “drive” and “ejector”
are integrated. The module also has the interface function to atleast one higher-level
module and must execute the internal sequence independently.

It must be possible to start the equipment module in automatic mode. The start
command is supplied by a higher-level instance and is not implemented as a hard-
ware button. The conveyor belt must start up automatically in response to the start
command. If the sensors detect an empty package, it must be ejected automatically.
When the machine is switched from automatic mode to manual mode, any action that
has already started (e.g. eject) will be completed and the conveyor belt then stopps.
If a package is not ejected, the conveyor belt will stop when the sensor “package
present” outputs a signal. This is to prevent intermediate positioning of packages
that could hinder the ejection process when the conveyor belt restarts.

In manual mode, the conveyor belt is started by means of a pushbutton and stops
again when this button is released. In this operating mode, the ejection cylinder can
also be moved forwards and backwards by means of pushbuttons. It must not be
possible to move the ejection cylinder by the pushbuttons if the package position is
ambiguous (intermediate position) irrespective of whether or not the belt is moving.

4.1.3.2 Software design of the equipment module

With the information available to us, we can now develop a software design for the
equipment module.

The task of managing the equipment module (EM) will be carried out by an object
which is defined in a new class “CEMPusher” (Figure 44). This management module
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Figure 44 Software design of the equipment module

contains a state machine, but also has the task of organizing changeover between
automatic and manual. All commands are transferred via the CEMPusher. It thus
acts as the interface to higher-level modules and also delivers the status information
required by these modules.

The objects for a valve and a direct-on-line starting drive are integrated as control
modules in the equipment module. Since these control modules are based on their
own classes, these classes have been swapped to a library (OOP-lib). These classes
are therefore easy to reuse in different programs and thus also in our equipment
module. We have made use of this option to integrate objects from these classes
directly into our management module (CEMPusher). As a result, the objects for valve
and drive are now integral components of the class CEMPusher. The higher-level
management module transfers all information to the lower-level control modules
and passes feedback upwards.

With this aggregation, however, it is important to note that a dependency exists
between the class CEMPusher and the classes CDriveDirect and ValveControl-
43STM. This fact must be taken into account when these two classes are modified
or extended. Changes to the interfaces of the methods of the classes CDriveDirect and
ValveControl43STM will necessitate a change to the class CEMPusher. But CEMPusher
will automatically inherit any compatible changes or debugs. It is precisely this
flexibility that is the main benefit of object-oriented programming. By deriving
subclasses from these classes, they can be modified or extended without impairing
the functionality that they currently possess.

The class CEMPusher is stored in its own unit “Equipment module” and utilizes the
OOP_lib. The actual use of the class CEMPusher is programmed in turn in the unit
UEMPusher, including generation of the object for the equipment module, definition
of the required references and setup of the connection to the relevant I/O devices.
Now that this structure is in place, the equipment module is ready for testing.

To ensure that the programs of the equipment module can be executed in a CPU,
the main program of the module must be integrated in the execution system of the
SIMOTION CPU. This is normally done by a program (e.g. pCallPusher1) that con-
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tains the required variable declarations and the calls for all other software modules.
Itis logical to map the I/Os at the variable declaration of this program. The unit can
now be reused by copying it with the program. It needs to be clarified once again
here that this copy of the PROGRAM pCallPusher1 merely serves to make another
object of the equipment module and the required I/O connection possible. The pro-
gram code is not copied because it is precisely this that OOP is designed to prevent.
In order to maintain the unique identity of each module, the program name (e.qg.
pCallPusher2) must be changed and the declarations adjusted accordingly in the
copies. The program thus assumes the function of a template (see chapter 4.1.3.4).

4.1.3.3 Example of the class “CEMPusher”

The class CEMPusher organizes every aspect of the equipment module’s behavior.
The required valve-cylinder combination and the drive are integrated. This class
also contains an error diagnostic function with reporting to a display system. The
objects integrated in the class also need a reference to this object in the form of the
interface to the HMI report. Interface variables are generally used for this purpose.
The current implementation is transferred to the interface variables in the class
during initialization of the class CEMPusher. The class CEMPusher transfers these
class references to its internal objects.

The management module CEMPusher uses a state machine CStateDiagramEM to
process sequences. The states required (Figure 45) for the equipment module are
defined in this machine.
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CMD_START
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Figure 45 States of the equipment module
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INTERFACE
USELIB OOP_lib;
CLASS CEMPusher;

END INTERFACE
IMPLEMENTATION
CLASS FINAL CStateDiagramEM
TYPE PUBLIC
// states equipmentmodule
eStateType : (IDLE
, STARTING
, RUNNING
, STOPPING
/JOG) ;

// transitions equipmentmodule
eTransitionType : (CMD_START
,CMD_STARTED // only for internal
// transition
,CMD_STOP
,CMD_STOPPED // only for internal
// transition
,CMD_JOG) ;
END_TYPE
TYPE PRIVATE
sTransitionEntryType : STRUCT

eActState : eStateType;

eTransition : eTransitionType;

eNextState : eStateType;
END_STRUCT;

END TYPE
VAR CONSTANT PRIVATE
// the entries in which table must be
// sorted by member act -> state_ type!
AS _STATE TABLE : ARRAY [0..6] OF sTransitionEntryType := [

(eActState := eStateType#IDLE,
eTransition := eTransitionType#CMD START,
eNextState := eStateType#STARTING),
(eActState := eStateType#IDLE,
eTransition := eTransitionType#CMD_ JOG,
eNextState := eStateType#JOG),
(eActState := eStateType#JOG,
eTransition := eTransitionType#CMD START,
eNextState := eStateType#STARTING),
(eActState := eStateType#JOG,
eTransition := eTransitionType#CMD_ STOP,
eNextState := eStateType#STOPPING),
(eActState := eStateType#STARTING,
eTransition := eTransitionType#CMD STARTED,
eNextState := eStateType#RUNNING),
(eActState := eStateType#RUNNING,
eTransition := eTransitionType#CMD_ STOP,
eNextState := eStateType#STOPPING),
(eActState := eStateType#STOPPING,
eTransition := eTransitionType#CMD STOPPED,
eNextState := eStateType#IDLE) 1 ;
END_VAR
VAR PRIVATE
ceActState : eStateType := eStateType#IDLE;
// actual state
cboInitialized : BOOL := FALSE; // to see if optimization

// table is initialized
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cai32LookupTable : ARRAY [ENUM TO DINT (eStateType#MIN) ..
ENUM_TO_DINT (eStateType#MAX)] OF DINT;
END_VAR

METHOD PRIVATE mDoInit

VAR
i : DINT := LOWER BOUND (AS_STATE TABLE) ;
elLastState : eStateType := eStateType#MIN;

END VAR

cai32LookupTable [ENUM_TO_ DINT (eLastState)] := i;

WHILE (i <= UPPER BOUND (AS_STATE TABLE)) DO
IF (AS_STATE TABLE[i] .eActState <> eLastState) THEN

eLastState := AS_STATE TABLE[i] .eActState;
cai32LookupTable [ENUM_TO_ DINT (eLastState)] := i;
END_IF;
i :=1i + 1;
END WHILE;
cboInitialized := TRUE;

END METHOD

METHOD PUBLIC FINAL mDoCommand : eStateType
VAR _INPUT
cmd : eTransitionType;
END VAR
VAR
i : DINT:= LOWER BOUND (AS_ STATE_ TABLE) ;
END VAR

IF NOT cboInitialized THEN

mDoInit () ;
END IF;
i := cai32LookupTable [ENUM TO DINT (ceActState)];

WHILE (i <= UPPER BOUND (AS_STATE TABLE)) DO
IF (AS_STATE_TABLE[i] .eActState = ceActState AND
AS STATE TABLE[i] .eTransition = cmd) THEN
ceActState := AS STATE TABLE[i] .eNextState;
EXIT;
END IF;
IF ceActState < AS STATE TABLE[i] .eActState THEN
EXIT;
END IF;
i :=1 + 1;
END WHILE;
mDoCommand := ceActState;
END_METHOD

METHOD PUBLIC FINAL mGetState : eStateType
mGetState := ceActState;
END_METHOD
END CLASS

CLASS CEMPusher
VAR PRIVATE OVERRIDE

cMyDriveDirect : CDriveDirect;
cMyValve43 : CValveControl43STM;
END VAR
VAR PRIVATE
cMyStateDiagramEM : CStateDiagramEM;
cboStartOld : BOOL;
cboModeOld : BOOL;
END VAR
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METHOD PUBLIC mSetErrorReporter // setter method

VAR_INPUT
errReporter : IErrReport; // Reference of Interface
END_VAR
cMyValve43.mSetErrorReporter (errReporter := errReporter) ;
cMyDriveDirect.mSetErrorReporter (errReporter :=
errReporter) ;
END_METHOD

METHOD PUBLIC mExecute

VAR INPUT
idNo : STRING[25];
mode : BOOL;
start : BOOL;
packetEmpty : BOOL;
packetExists : BOOL;
sensorEndPos : BOOL;
sensorStartPos : BOOL;
motProtSwitch : BOOL;

END_VAR

VAR OUTPUT
forward : BOOL;
backward : BOOL;
kx : BOOL;

END VAR

VAR
eActState : cStateDiagramEM.eStateType;
eVC43State : eValveStateType;

END_VAR

// make the transitions

eActState := cMyStateDiagramEM.mGetState() ;

IF start AND NOT cboStartOld AND NOT mode THEN
// rising edge start and mode to AUTOMATIC
eActState := cMyStateDiagramkEM.mDoCommand
(cStateDiagramEM.eTransitionType#CMD START) ;
ELSIF cboStartOld AND NOT start AND
(eActState <> cStateDiagramEM.eStateType#JOG) THEN
// falling edge start and actual state unequal JOG
eActState := cMyStateDiagramEM.mDoCommand
(cStateDiagramEM.eTransitionType#CMD STOP) ;
ELSIF start AND NOT cboStartOld AND mode THEN
// rising edge start and mode to JOG
eActState := cMyStateDiagramEM.mDoCommand
(cStateDiagramEM.eTransitionType#CMD JOG) ;
ELSIF cboModeOld AND NOT mode AND NOT start THEN

// falling edge mode and start = false transition from
JOG to STOPPING
eActState := cMyStateDiagramEM.mDoCommand

(cStateDiagramEM.eTransitionType#CMD STOP) ;
ELSIF cboModeOld AND NOT mode AND start THEN

// falling edge mode and start = true transition from
JOG to STARTING
eActState := cMyStateDiagramEM.mDoCommand

(cStateDiagramEM.eTransitionType#CMD START) ;
ELSIF eActState = cStateDiagramEM.eStateType#STARTING THEN
// automatic transition from STARTING to RUNNING
eActState := cMyStateDiagramEM.mDoCommand
(cStateDiagramEM.eTransitionType#CMD STARTED) ;
ELSIF eActState = cStateDiagramEM.eStateType#STOPPING THEN
// automatic transition from STOPPING to IDLE
eActState := cMyStateDiagramEM.mDoCommand
(cStateDiagramEM.eTransitionType#CMD STOPPED) ;
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END_IF;
// do state dependend outputs / method calls
cMyValve43.mGetState (actState => evVC43State);
CASE eActState OF
cStateDiagramEM.eStateType#STARTING:
cMyDriveDirect.mOn () ;

cStateDiagramEM.eStateType#RUNNING:
IF packetEmpty AND packetExists AND
((evC4a3State = eValveStateType#STARTPOS) OR
(evC43State = eValveStateType#STOP)) THEN

eVC43State := cMyValve43.mForward (TRUE) ;
ELSIF eVC43State = eValveStateType#ENDPOS THEN

eVC43State := cMyValve43.mBackward (TRUE) ;
END_IF;

cStateDiagramEM.eStateType#STOPPING:
eVC43State := cMyValve43.mBackward (TRUE) ;
cMyDriveDirect .mOff () ;

cStateDiagramEM.eStateType#JOG:
IF start THEN
cMyDriveDirect.mOn () ;
IF packetEmpty AND packetExists AND
((evC43State = eValveStateType#STARTPOS) OR
(evC43State = eValveStateType#STOP)) THEN

evC43State := cMyValve43.mForward (TRUE) ;
ELSIF (eVC43State = eValveStateType#ENDPOS) THEN
evVC43State := cMyValve43.mBackward (TRUE) ;
END IF;
ELSE
cMyDriveDirect .mOff () ;
evVC43State := cMyValve43.mStop (TRUE) ;
END IF;
ELSE
END CASE;
R e
// call execute-method of internal used classes
/= oo
cMyValve43 .mExecute (idNo := CONCAT ('Valve ‘,idNo)
,endPos := gensorEndPos
,startPos := sensorStartPos
, reset := FALSE
, forward => forward
,backward => backward) ;
cMyDriveDirect.mExecute (idNo := CONCAT ('Drive ‘,idNo)
,motProtSwitch := motProtSwitch
, QKx => kx);
cboStartOld := start;
cboModeOld = mode;
END METHOD
END CLASS

END IMPLEMENTATION

In the final section of the class CEMPusher it is clearly visible that the objects for
the valve and drive are integral components of this class. The methods mExecute()
are called here. The internal class variables cMyValve43 and cMyDriveDirect are
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instances of these objects. The class type “CValveControl43STM” of the variable
cMyValve43 is exactly the same as the type “ValveControl43ST” described in chapter
3.6.2.2. We have moved the aggregated classes to a library OOP_lib. The variables of
the aggregated classes are defined in the VAR section of the class CEMPusher and it
is therefore essential that they are specified with suitable references when the class
is initialized (see chapter 7.3.1).

The integral state machine functions according to the same principle as the one
described in chapter 3.6.2.2. We naturally needed to adapt the transition table and
the processing sequence to suit the characteristics of the equipment module.

4.1.3.4 Example of an equipment module call

We will describe the example program pCallPusher1 for calling the equipment
module in this section. The generation of the object cPusher1 and the object for
establishing a link to an error reporting display system (HMI1) are defined in the
variable declaration of the program. The information to be transferred to essential
I/O components is also specified here.

The /O signals are transferred to the object cPusherl in the call of the method
mExecute() of the object. The object identification is stored at the parameter idNo
of mExecute. This idNo is passed to the aggregated objects for the valve and drive
and linked to the idNo in these objects. When an error occurs, this information can
be displayed in HMI1 to clearly identify the error location. The string Valve_Pusher1
or Drive_Pusherl is then displayed in the HMI.

INTERFACE
USES Equipmentmodul ;
PROGRAM pCallPusherl;
END_INTERFACE

IMPLEMENTATION
PROGRAM pCallPusherl
VAR

HMI1 : CHmiReporting;

cPusherl : CEMPusher = (cMyDriveDirect = (CDrive :=
(criDriveErrorRep := HMI1 )),
cMyValve43 =
(crivalveErrorRep := HMI1 ));

gboModel : BOOL; // Jog or Automatic

gboStartl : BOOL; // Start

// Hardware INPUT

gboPacketEmptyl AT %$I1.0 : BOOL; // Sensor packet empty
gboPacketexistsl AT %I1.1 : BOOL; // Sensor packet exists
gboSensorEndPosl AT %I1.2 : BOOL; // Sensor end position
gboSensorStartPosl AT %I1.3 : BOOL; // Sensor start position
gboMotProtSwitchl AT %I1.4 : BOOL; // motor prot. switch
// Hardware OUTPUT
gboOutBackwardl AT %Q1.0 : BOOL; // output valve backward
gboOutForwardl AT %Q1.1 : BOOL; // output valve forward
gboOutKx1l AT %Q1.2 : BOOL; // output motor on
END_VAR
cPusherl.mExecute (idNo = ‘Pusher<ls>’
,start = gboStartl
,mode = gboModel
, packetEmpty = gboPacketEmptyl
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,packetExists = gboPacketexistsl

, sensorEndPos = gboSensorEndPosl

, sensorStartPos = gboSensorStartPosl
,motProtSwitch = gboMotProtSwitchl
, forward => gboOutForwardl
,backward => gboOutBackwardl
,kx => gboOutkx1) ;

END PROGRAM
END_IMPLEMENTATION

With this implementation we have finished the equipment module - it is now ready
for testing in a SIMOTION system. If necessary, we could also neutralize the HMI
link as programmed in instance HMI1 so that the module could be connected to
different HMI devices.

Note: To ensure that this example is executable, the program must be assigned to the
BackgroundTask in the execution system of the SIMOTION CPU. For instructions
on how to assign programs in the execution system, see chapter 8.9.13.

4.1.4 Preparations for multiple reuse

We have now prepared the program code for the example equipment module such
that we can use the module once in a CPU. But it can also be reused in different
CPUs. If the I/O connection changes, the user must manually adjust the connection
accordingly in the program pCallPusherl.

The module can also be reused multiple times in the same CPU. To do this, the unit
UEMPusher must be copied and inserted in the project as UEMPusher2. The program
name, variable names and object names must then be adjusted as well. In other
words, all information has to be adjusted in order to prevent duplication of names
within the CPU. The new program created in this way (let’s call it CallPusher2) must
be integrated in the execution system of the CPU in the same way as pCallPusher1
above. As mentioned above, this procedure should not be regarded in any way as a
“copy operation”; instead, the unit UEMPusher will be used as a template for multiple
reuse of modules. By copying and adapting the unit, new programs with different
I/O connections for the relevant equipment module will be created.

It would be very useful, however, if we could also carry out these adjustments auto-
matically in the engineering environment rather than doing it by hand. SIMOTION
has an external program for this purpose. This program is the project generator
“easyProject” that is supplied with the engineering system (see chapter 4.2). This
project generator is based on the scripting functions implemented in the engineer-
ing system. Project data can be manipulated and altered in many different ways
with these functions.

A program can be reused multiple times only in cases where it is possible to neu-
tralize the connection to essential I/O components in a suitable way. If, for example,
inputs and outputs are directly programmed in the program code, these will also be
present in every single copy made of the program. These places in the copies will
need to be adjusted later on. The project generator features a solution for working
around this problem. This involves attaching “labels” to names and variables. The
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project generator can swap the labels for the actual connection. This applies to all
uniquely identifiable elements such as object names, externally visible variables,
program names, etc.

4.1.4.1 Example of the neutralized equipment module

The program names, object names and variables are now neutralized in the example
below. To do this, we have used the labels <Unitname> and <ByteAddress>. The
project generator recognizes these labels and replaces them with the current data.
Duplication of names can be prevented in this way because all names are automati-
cally changed when the project is generated. For greater clarity, the labels have been
highlighted in red in the program text.

INTERFACE
USES Equipmentmodul ;
PROGRAM pCall<Unitnames;
END_INTERFACE

IMPLEMENTATION
PROGRAM pCall<Unitnames>
VAR

HMI1 : CHmiReporting;

c<Unitname> : CEMPusher := (cMyDriveDirect := (CDrive :=
(criDriveErrorRep := HMI1 )),
cMyValved43:=
(crivalveErrorRep := HMI1 ));

gboMode : BOOL; // Jog or Automatic

gboStart : BOOL; // Start

// Hardware INPUT

gbo<Unitname>PacketEmpty AT %I<ByteAddress>.0 : BOOL;
// Sensor packet empty

gbo<Unitname>PacketExists AT %$I<ByteAddress>.1 : BOOL;
// Sensor packet exists

gbo<Unitname>SensorEndPos AT %$I<ByteAddress>.2 : BOOL;
// Sensor end position

gbo<Unitname>SensorStartPos AT %I<ByteAddress>.3 : BOOL;
// Sensor start position

gbo<Unitname>MotProtSwitch AT %$I<ByteAddress>.4 : BOOL;
// motor prot. switch

// Hardware OUTPUT

gbo<Unitname>OutBackward AT %Q<ByteAddress>.0 : BOOL;
// output valve backward
gbo<Unitname>OutForward AT %Q<ByteAddress>.1 : BOOL;
// output valve forward
gbo<Unitname>0OutKx AT %Q<ByteAddress>.2 : BOOL;
// output motor on
END VAR
c<Unitname>.mExecute (idNo := ‘<Unitname>"
,start := gboStart
,mode := gboMode
,packetEmpty := gbo<Unitname>PacketEmpty
,packetExists := gbo<Unitnames>PacketExists
, sensorkEndPos := gbo<Unitname>SensorEndPos
,sensorStartPos :=
gbo<Unitname>SensorStartPos
,motProtSwitch :=

gbo<Unitname>MotProtSwitch
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, forward => gbo<Unitname>OutForward
,backward => gbo<Unitname>OutBackward
 kx => gbo<Unitname>Outkx) ;

END PROGRAM
END_IMPLEMENTATION

The numerical designations that previously existed at various variables have also
been removed. They are no longer needed because the swapping of labels has elim-
inated any risk of ambiguity and the variable name no longer needs to include a
number.

In the control files for the project generator, the labels are linked to input fields of the
user interface so that the user can supply them with current data. It is also possible of
course to integrate an automatic data assignment function in the project generator.

But our sole objective is to explain the principle and we have therefore chosen the
option which involves entering data via the user interface of the project generator.
A detailed explanation of how to work with the project generator is given below.

The project generator shouldn’t just be viewed in the context of object-oriented
programming, but rather as a convenient tool that supports the reuse of modular
software. Since it is precisely this modular approach that is supported by OOP, it is
natural that we have decided to explain how this tool can be deployed for the purpose
of reusing object-oriented programs.

4.2 SIMOTION easyProject project generator

The “SIMOTION easyProject” project generator is an external software application
designed to support the automatic compilation of projects. It is supplied free of
charge to users with every SCOUT engineering software package. This software uti-
lizes the scripting interface integrated in SCOUT. The project generator itself is con-
trolled by an integral XML descriptive interface with a large number of commands
and functions. The project generator can be customized to meet user requirements
via this XML front end.

The project generator provides you with an extensive library of preprogrammed
functions and equipment modules (Figure 46), which are easy to use in SIMOTION.

A major advantage of this tool, however, is the ease with which you can adapt it
and thus add your own modules. In other words, you can add your own equipment
modules to the project generator data. It is therefore a convenient tool for creating
your own reusable software.

Each SCOUT engineering software package delivered includes a directory named
“Utilities_Applications” which has an HTML interface. You can easily access and
browse the contents of the Utilities&Applications directory using any standard web
browser. Numerous tools, supplementary information, sample projects and doc-
umentation all make it easier to access the SIMOTION system. You start the web
browser by double clicking on “index.html” in directory “Utilities_Applications”.

A direct link to the project generator is displayed on the overview page of the direc-
tory Utilities&Applications. By following this link (Figure 47), you can reach the next
page “SIMOTION easyProject project generator”. Apart from extensive documenta-
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Figure 46 Functions of the easyProject project generator

tion, you will also find the project generator software on this page. You can unpack
this ZIP file to any drive on your computer.

After the software has been unpacked, the project generator is immediately ready
for use. It doesn’t need any installation routine, but the SCOUT engineering software
must have been installed on the computer beforehand. The unzipped main directory
contains the file “ProjectGenerator.exe”. Double-click on this file to start the project
generator.

Project Generator and corresponding documentation

Figure 47 “easyProject” project generator
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The same main directory also includes the instructions for use and operation of the
project generator in German and English (PDF format), but you can of course also
access this information via the web interface. A program for opening PDF files (e.g.
Acrobat Reader) must be installed on your computer.

When you start the project generator, the user interface opens and the generator
displays screens to guide you through the procedure. All the actions you take are
recorded in an XML file by the project generator. This file is stored in the TEMP
directory on your computer. The recorded file can be passed to the generator as
start information, in which case the project generator starts without a user interface
and automatically performs the steps in “silent” mode. You do not therefore need
to repeat any inputs provided that they are stored in this file.

Files that are added to the expandable project generator might not always work
correctly straight away. In this case, the user interface displays appropriate error
messages and indicates the error location. This interface does not appear in “silent”
mode, however, so that errors cannot be displayed. For this reason, the project gener-
ator stores any errors in log files as it processes the file data. Errors can be analyzed
easily (even retrospectively) using the information in these logs.

In addition to generating a new project, you can also add additional CPUs or modules
to existing projects. The project generator is easily capable of integrating axes and
drives into a project according to your instructions. The capabilities of this project
generator are so outstanding that the task of creating a project to develop an appli-
cation could hardly be any easier.

The project generator screen in which you can select a control system for the project
is shown in Figure 48. You can insert one or more CPUs into the project and freely

e = = e =
SIEMENS
[ Davice salaction
A b rveguined dinaces o thir prajecd. A dinace from fhe st has fo be selocded in ordor o

corfinua with 1he next step.

Select device categony Dienvices in project
= [l newFrojact = SIMOTION © SIMATIC Diaca e Dinaias typair [ Worrsion
[ newdsvice Diovico nma newdevics SIMOTION_C240 V45
newdevice
Device version
vas -
Dievice type
[smomion_czo -]

[SIMOTION_C240 | Delits devica
ek SIMOTION_C240FN
[SIMOTION_Da102DP
._ESJ—J |SIMOTION_D410-20P_PH
SIMOTION_D425-20F

[SIMOTION_DA28-2DP_FN
Esit | |SIMOTIGN D435 20F -| o

Figure 48 User interface of the project generator
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select the CPU name. Once you have inserted the CPUs, you can advance to the next
screen by selecting “Next”.

The project generator features as standard an extensive library containing useful
equipment modules (Figure 49). You can select these by checking the appropriate
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boxes so that they will be integrated in the project. Depending on which modules
you select, other screens will appear in which the module parameters can be set.

Once you have entered all the data for the selected equipment modules, the project
generator displays the generation screen (Figure 50). You can return to the control
system selection screen by selecting the button “Configure devices”. You can save
the data you have already entered for use in “silent mode” with the button “Save
configuration”. The last step is the actual generation process that is initiated with
the button “Generate”.

When the generation process is complete, the project generator outputs a message to
notify you that the project is available and asks you whether the SCOUT engineering
system should be opened with this project.

Now we have come to the end of our brief explanation about the project generator,
we will turn our attention to describing how you can add your own modules to it.

4.2.1 Adding your own modules to the project generator

As mentioned above, you can add your own equipment modules to the project gener-
ator. The associated procedure is described in the documentation. We will therefore
simply present an abbreviated summary of the process relevant to the equipment
module that we discussed in the previous chapter.

But we would still like to draw your attention to the web page www.siemens.com/
simotion where you will find a link to “SIMOTION Tutorials” that will give you access
to arange of different tutorials. One of these explains the functions of the SIMOTION
easyProject project generator.

The database of the project generator comprises a completely standard Windows
directory structure in which you will find all the data you need (Figure 51). These
data are organized according to various equipment families and devices as well
as the equipment modules available for them. Since various module options have
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Figure 52 Equipment module PusherX

been implemented for SIMOTION depending on the software version, the individual
modules have been divided up again according to the relevant version (V4.2, V4.3,
V4.4,...). After you have selected the appropriate CPU version, the project generator
displays the functions available for this version. Further information about use and
adaptation of equipment modules can be found in the folder “ FAQs” contained in
the folder of the relevant version under “EquipmentModules”.

The equipment modules available for version 4.5 are displayed in Figure 51. The
data for the equipment module are stored in the relevant folder. The folder name is
the same as the equipment module name on the project generator interface.

We have already inserted a folder for our new equipment module named PusherX
(Figure 52). Each equipment module has an XML file of the same name that contains
the user interface and control logic of the module for the project generator.

Other folders containing additional data are stored under the directory “Data”. In
our case, the directory “Libraries” contains the data of the library that we need
(OOP_lib). The program sources of the equipment module are stored in the directory
“Units”. The data required by the project generator are very easy to generate with
the SCOUT engineering environment. Data stored in the engineering system can be
exported in XML format using an integral export function. Data can be exported from
various levels of the engineering system. It is therefore possible to export individual
components such as program sources or libraries, as well as nested elements such
as CPUs with the programs stored under them, or even the entire project.

The import function can be used to reimport these data exports into new or existing
projects. This import mechanism makes it simple to reuse existing programs. The
project generator accesses this engineering functionality via the scripting interface
of the SCOUT system.

The generic of the project generator imports data from the lower-level folders as it
generates a project and uses them to compile the project. At the end of the genera-
tion process, the project is available to the user for further development or testing.

To make the equipment module convenient to handle as a multiple-use module, we
will need a user interface and various commands for generation of the module by
the project generator.

4.2.2 Creating a user interface for the project generator

As we have mentioned above, each equipment module has an XML control file with
the same name as the module. This control file contains the commands for display-
ing the user interface and the commands to the project generator.
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In chapter 4.1.4 and the following example, we explained the principle of neutralizp
ing the name, the variables and their connection to I/O devices. It is only when the
equipment module is generated that this information needs to be specified, but to
do this we need a means of entering it in the project generator.

When the equipment module is generated, you have to specify the name of the
module and the address of the connected I/O devices. The interface displays the two
input fields for this purpose (Figure 53). The values can be preset for greater clarity.

Tooltips are integrated to assist the parameterization process. We have shown the
inputs required for our equipment module in the simplest possible form so that the
control file content is easy to comprehend.

If the module is integrated multiple times in the same project, the name and I/O
address information must be entered again for each module in the project manager.
If you choose to integrate the module three times into the project, for example, the
generator will display the screen three times. A number in the top right-hand corner
of the screen will indicate the number of the module currently being parameterized.
The next parameterization process is always initiated by the button “Next”.

Once all the equipment modules have been parameterized, you progress to the
project generation screen. When you click on button “Generate”, the project gener-
ator generates the project and integrates the modules as parameterized. When the
generation operation is complete, you can open and compile the project. You can
then download it to the control system for testing.
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Figure 53 User interface of the equipment module
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To finish off our discussion about the equipment module, we will now demonstrate
how we created the user interface by explaining a few details about the XML descrip-
tion file for the equipment module.

4.2.3 XML description of the equipment module

Each equipment module has a description file of the same name containing XML
code. Our module is called PusherX and the name of its XML file is thus “PusherX.
XML”. The file consists of several sections and each of these performs different tasks.
We will restrict our explanation to the most important aspects, i.e. the XML descrip-
tions shown below are only incomplete extracts from the XML file. The complete file
is available to download. Further details about commands and parameters can be
found in the list manual of the project generator.

Section 1

The first section comprises the specifications that determine how the module will
be displayed in the selection list for all equipment modules.

<l-- ============================================================== -->
<!-- The following section describes how the Equipment Module will -->
<!-- be displayed in the Equipment Module selection dialog -->
<l-- =======ssssssssssssssssssssssssssssssssssSsssssssssssssssssss=s=s - -3
<!-- The XML element CommandList must be the root element of the -->
<!-- XML file. The attribute DisplayText specifies the text that -->
<!-- will be displayed in the selection of the Equipment Modules. -->

<CommandList Name="PusherX”
DisplayText="PusherX”
MaxNumberOfModules=""
Mode="UnitOnly”
IsPTemplNecessary="True”
ToolTip="This is a tooltip for PusherX.”
FlyerFile=""
ModulInfoFile=
“"SIMOTION\EquipmentModules\V4 5\PusherX\PusherXHelp.txt">

The parameter “Name” defines the name of the module. Parameter “DisplayText”
determines the descriptive text for the module in the list because there may well be
modules whose name is not a clear indication of their function. If the module is to
be integrated multiple times, the maximum number can be specified in parameter
“MaxNumberOfModules”. Where no number is specified (as in our example), the
module can be integrated an unlimited number of times.

Section 2

All control elements for the module are created in this section. The command “Com-
mand ID="1"" is the first command to be executed and instructs the project generator
to change the display.

All subsequent commands allow you to specify a wide variety of design features for
the user interface. Labels with texts can be added, for example. Text boxes for value
inputs or buttons for activating other functions can be inserted in the interface. The
options include radio buttons, check boxes, list boxes or combo boxes, to name but
a few. We have not used the latter in our example.
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<!-- The
<!-- inte
<l-- ====
<!-- The
<!-- The
<!-- Gene
<Command

PusherX” >

following section contains the description of the user -->
rface of the Equipment Module -->
————==———=—===—===—======—================================= -->
command with the ID 1 will be executed first -->
attribute Name specifies the function of the Project -->
rator that should be called -->
ID="1" Name="ChangeForm” Caption="SIMOTION easyProject

In order to identify the module to be integrated, we need to give it a name and
specify the I/O address. We do this using controls and their parameters. A control
begins with the keyword <Control, includes parameters and ends with </Control>.

<!-- The

<Control

</Control

<Control

</Control

XML element Control is used to add or remove controls -->

Action="add”

Type="TextBox"”

Name="TB Unit Name”

Text="Pusherl”

Location="220, 200"

Enabled="True”

Autosize="false”

Size="110, 25"

ToolTip="Enter the name of the Pusher.”>
>

Action="add”

Type="TextBox"

Name="TB_Byte_ Address”

Text="Address”

Location="220, 260"

Enabled="True”

Autosize="false”

Size="110, 25"

ToolTip="Enter the byte address of the I/0.”>
>

The parameter “Action” can assume two values, i.e. “add” and “remove”. This can be
set to add or remove elements. These two controls create two text boxes in which you
can enter the name and the byte address of the equipment module. The parameter
“Text” is provided so that the entries in the text boxes can be preset. You need to
enter appropriate text for these boxes. Parameters “Location” and “Size” determine
the position and size of the text box respectively.

<Control Action="add”

<Events>
<Clic

Type="Button”

Name="BT_Next”

Text="&amp; Next”

Location="650, 531"

Size="130, 30"

Enabled="true”

Visible="true”

ToolTip="Complete the configuration”s>

k code="If @TB_Byte Address@.Text ='‘' OR
@TB_Unit Name@.Text ='"
THEN
Return
End If
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@TB_Unit Name prefix@.Text = ‘pCall‘+@TB_Unit Name@.Text
MyApp . NextCommand (11)
REM Next Equipment Module
MyApp . NextCommand (1000) ” />
</Events>
</Control>

This program sequence creates a button labeled “Next” which, when actuated, calls
the embedded Visual VBScript.Net. This script processes the input data and replaces
the defined labels in the source data with the input data. The program continues
with NextCommand(11) in section 3. Once section 3 has been executed with all
commands, MyApp.NextCommand(1000) is called and the program branches to
<Command ID="1000".

Section 3

The third section of the XML file performs the actual import into the engineering
environment. The section is divided up by commands, each of which has its own
ID. NextCommand(11) was specified in the previous section, and so the program
continues at ID="11".

<l--=============================================================== -->
<!--= The following section contains the commands of the Project = -->
<!--= Generator, which are used to apply the configured inputs = -->
<l--=============================================================== -->
<!-- The attribute Name specifies the function of the Project -->
<!-- Generator that should be called -->
<!-- If a command has the attribute NCID, the command with the ID, -->
<!-- which is specified in NCID, will be called next. -->
<Command

ID="11"

Name="ImportUnit”

NCID="12">

<Parameter

Name="Equipmentmodul”
Path="SIMOTION\EquipmentModules\V4 5\PusherX\Data\Units\
Equipmentmodul .xml” Forcelmport="true”/>

</Command>
<Command
ID="12"
Name="ImportUnit”
NCID="13">
<Parameter
Name=" ref TB Unit Name.Text”

Path="SIMOTION\EquipmentModules\V4 5\PusherX\Data\Units\
UEMPusher.xml” ForceImport="true”/>
</Command>

ID11 now effects import of the unit “Equipment module” that is stored in the spec-
ified path. The parameter “NCID” defines the next step in the sequence. The next
unit is imported in step 12. All of the required units and libraries are imported into
the project by this method.

<Command

ID="15"
Name="SetProgram” NCID="16">
<Parameter
Name="_ ref TB Unit Name prefix.Text”
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Unit="_ref TB Unit Name.Text”
TargetTask="BackgroundTask”
Position="First”/>

</Command>

Other commands can be used to integrate imported programs into the execution
system of the SIMOTION CPU. The command “SetProgram” is used for this purpose.
“Name” identifies the program to be integrated, while “Unit” tells the generator
where the program is stored. The parameter “TargetTask” specifies the task and
“Position” determines the position in the task system at which the program must
be called. This can be important where interdependencies exist and programs need
to be executed in a specific sequence.

Once all commands in the XML file have been executed, the module configuration
is ended by the code sequence for calling the next equipment module. If there are
no further modules to parameterize, the project generator displays the screen for
generating the project.

<!-- The function ReadNextEquipmentModuleConfig will end the
configuration of the current Equipment Module. If any
other Equipment Modules were selected, the configuration
of the next Module would be started. -->

<Command ID="1000" Name="ReadNextEquipmentModuleConfig” />

</CommandList>

We will now bring our tour through the SIMOTION easyProject generator to an
end so that we can turn our attention back to object-oriented programming. There
are many different ways in which the data for automatic compilation of projects
can be manipulated. We would therefore advise you to carefully read through the
documentation supplied with the project generator so that you work with it more
effectively. Like all the other example programs, the example we have given here is
of course available for downloading by our readers.
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5 Guide to Designing and Developing
Software

We have made repeated reference to the design of software in previous chapters.
But what does this actually mean? To answer this question — in rudimentary terms
at least - we have assembled in this chapter various principles for the development
of easily readable and reusable software using object-oriented mechanisms.

Developing software is a complex process - a path strewn with many obstacles that
need to be overcome. We don’t unfortunately have a standardized procedure or, if
you like, a cooking recipe that shows us a simple way forward. Because intrinsic to
cooking recipes is their encapsulation of a process that is repeated exactly, i.e. they
don’t typically involve exploration of new paths. But developing software tends to
require the creation of something new.

Designing something completely new is a creative process that demands a certain
level of experience. As a general rule, a big task needs to be analyzed and broken
down into smaller subtasks. The results of the analysis can be used as a basis for
defining a structure for the software. The smaller subtasks obtained from breaking
down the main task can then be implemented as programmable units. Before we
can start developing any software, however, we need to have a clear picture in our
minds of what it is that we want to develop.

5.1 Establishing requirements

If we analyze the challenges of implementing a software project, we will often
encounter a common problem, i.e. that new requirements are specified for the proj-
ect when work on it is already underway. More minor demands are easy to manage
and resolve. But if the new requirement cannot be satisfied within the framework
of the existing design, the software will often need to be changed extensively. The
work involved can endanger the scheduled delivery deadline.

This scenario can be avoided only if the developer or software designer asks the right
questions about the requirements to be fulfilled by the solution. It is often helpful
if the developer/designer asks questions in the negative such as “which functions
is the solution not required to have or perform?”, for example. By adopting this
approach, everyone involved will gain a clear picture of the task. A single piece of
information received after a software design has been defined can render the whole
design unusable.

Working out requirements as accurately as possible and achieving clarity about the
proposed solution are thus essential if problems of this kind are to be avoided later.
As the developer, however, you will not receive any guidance from the end user as to
how the inner software mechanisms should work. End users can only describe their
expectations of the software and how they want it to behave in certain situations.
Based on this behavior in given situations, the experienced developer can reach
conclusions about which mechanisms will be required. The ultimate objective in
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defining requirements, therefore, is to determine the overall scope of functions
that a solution must have. This functional description should be as detailed and
accurate as possible so that it can be used as a basis for choosing the architecture and
structure of the software. Any issue that is not clarified or discussed will be open to
interpretation and become a source of dissatisfaction to the end user. Any software
design should be a source of delight and satisfaction to the end user!

5.1.1 Starting point - user interfaces

A very good way to start the process of establishing requirements would be a dis-
cussion about the interface required to operate the software, i.e. the user interface.
By talking through the control elements and displays required, it is very easy to
identify requirements, including those of functions accessed via the interface. When
user interface plans depicted by precise sketches are discussed, the user gives the
developers information about the relevant sequences when a control element is
actuated or a value entered. The user generally expresses how he or she expects the
system to react to specific actions.

5.1.2 Starting point - process operations

Automation technology for machine manufacturing applications is normally char-
acterized by its need to fulfill the requirements of a specific production process. In
other words, the machines are producing a product. As a result of this production
process, it is necessary to precisely define process steps within the machine and its
subcomponents. Machine designers normally have a clear idea as to how the process
must flow in order to manufacture a particular product.

It is exactly these definitions that are a valuable source of information for software
planners. Time-distance diagrams or flow diagrams provide an extremely detailed
description of the required process sequence. In many cases, however, this informa-
tion only describes the process without any interruptions. In order to find a complete
solution for the task, the developer needs more information. In discussions with the
people involved in the project, the software developer often has to ask how the soft-
ware should respond in the event of planned and unplanned process interruptions.
There are basically two ways in which a process is interrupted:

External events

Interruptions caused by intervention of the machine operator. These can
include, for example, “stop” instructions or opening of protective equip-
ment.

Internal events

Interruptions triggered by internal plant events such as, for example, error
messages issued by components (defects), feed parts that are incorrect or
missing, but also incorrect or errored data.

Unforeseeable events

These are events that cannot be controlled by the software. A sudden power
failure, for example, that completely shuts down the control system. Move-
ments are stopped without intervention by the control system. Another sce-
nario that belongs to this category is the movement of machine components
when the control system is shut down.
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Working out how a system will behave when the process is interrupted is a vital
task because the implementation of the relevant functions often takes up far more
development time than programming the functions for normal process operation.
The first two cases listed above are generally easier to manage because the software
remains operational in these instances and can initiate defined reactions.

The third category is the very hardest task for the developer. Because these events
require the software to perform an analysis to determine the precise position of the
machine when the system is powered up again. It can then identify possible points
of entry into the process flow.

Working out the precise position of machine elements is often a very complicated
task, Particularly if the machine is designed such that motions are mutually indepen-
dent and a high risk of collision exists. These dependencies can always be resolved
provided that the positions of individual actuators can be clearly identified. Costs
might have been streamlined to such an extent that the sensors required to do
this are missing, or incremental encoders are used as position sensors rather than
absolute encoders.

Cutting costs by eliminating sensors may make the cost of developing the software
very much more expensive. It is often this point in particular that is disregarded or
underestimated. To avoid or resolve problems of this kind, the software developer
has to make some demands of the mechanical engineer and these may well result
in the redesign of some machine elements. An early information exchange between
the different disciplines will make later changes to the machine design or software
unnecessary.

5.1.3 Starting point - mechanical engineering elements

The mechanical design department plans and implements the mechanical compo-
nents for a machine. The electrical engineering department uses this information
to determine electrical equipment requirements such as motors and their drives,
switching elements, valves, etc. The control cabinet design department is respon-
sible for planning the control cabinets and the cabling. Using all this information,
the software developer can identify those components that need to be controlled
by the software to be developed. This same information can be used to analyze the
elements of the system and the ways in which they interact.

An abstract needs to be made of the description of elements so that it contains only
the properties/functions that are relevant for the analysis. All unnecessary details
are eliminated. Each element must then be analyzed individually and the following
questions asked:

What does the element do?

What are the relevant operations?

Where does the element need to be moved to?

What are the different scenarios/movements that need to be realized?
Which process interruptions can potentially occur?

How will the element react to interruptions?

How does the element relate to/interact with other elements?
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What is the hierarchical position of the element?
How does the element relate to/interact with higher-level elements?

The results of these analyses can be transferred to an object-oriented design (OOD)
which represents an essential preliminary stage to the process of object-oriented
programming.

The software developer should specify the relevant requirements and conduct the
appropriate analyses at the earliest possible opportunity. In too many cases, this
planning phase is delayed because information is still missing. But waiting too long
can very quickly lead to deadline problems because the time it takes to develop
software is frequently underestimated.

There are only two possible ways that the software developer can resolve this prob-
lem:

1. To actively demand any missing information from the relevant persons is
the best way to gain fast access to the data required. To be firm but friendly
often helps.

2. If despite these efforts the information cannot be obtained in the short
term, the software should be planned in the most flexible possible way so
that it can be adapted later without necessitating any changes to the overall
software concept. It’s sometimes useful to have a plan B.

If neither of these solutions works out, then the software developer is confronted
with the problem of being unable to give a sufficiently accurate estimate of the
development time required. A rough estimate almost always results in failure to
adhere to the planned delivery deadline.

5.1.4 Existing solutions

The following procedure is normally applied to develop object-oriented software
solutions for existing plants. Plants of this kind are already controlled by a soft-
ware design that works and it is thus unnecessary to ask the customer to specify
requirements.

The existing software needs to be analyzed and processed in an implementation
plan. The more modular the structure of the existing software, the more easily it can
be converted to an object-oriented programming design. In all fairness, we need to
point out here that the more modular the existing solution, the fewer advantages
OOP has to offer. The developer is then faced with the dilemma that using OOP will
not be particularly profitable.

The greatest benefits are to be had when software components that are overcompli-
cated and difficult to manage are changed to OOP. It is exactly in such cases that the
need for change is most urgent. It will not be possible to resolve this more difficult
task, however, until the developer really understands the mechanisms involved. As
aresult, the procedure described below should be regarded as a learning path that
will enable the developer to find solutions to difficult problems.

The best software modules for conversion are those components that have a very
low dependency (ideally none at all) on other modules. “Dependency” in this context
means the internal dependency in the actual program and dependency on external
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data. This kind of module naturally works within, and is dependent on, an overall
context within the plant. But the module software must be programmed such that
there are no direct dependencies in the program code. If these dependencies are neu-
tralized by the use of appropriate input/output interfaces or transfer mechanisms,
the module can simply be replaced with another improved or newly programmed
module.

Another criterion for replacing the module is the frequency with which itis used. The
more often the module is used throughout the plant, the greater will be the benefit
of converting it. Software components that are used only once are not generally good
candidates for conversion to OOP. When the ultimate objective is to convert all the
software, modules of this kind would of course be included in the process. But itis
important to ask here whether a unique module would be a suitable starting point.

The greatest advantages are naturally to be gained by converting overcomplicated,
cumbersome modules. It is precisely software components of this kind that are just
calling out for improvement. They are difficult to upgrade and awkward to maintain.
But programmers need a certain degree of experience before they can use OOP
mechanisms to successfully improve modules of this kind. They need to gain this
experience by starting with simple cases.

Should the analysis of an existing plant reveal that its software does not include any
suitable software modules, either because the interdependencies between modules
are too great or the data structures are too complicated, the programmer will reach
the unavoidable conclusion that the software needs to be completely refactored.
Once this becomes clear, it is highly probable that refactoring of the software will
be a feasible option only if the plant itself is redesigned or modernized. Because
refactoring is more likely to succeed if the software developer can learn and gather
experience by studying aspects of the mechanical engineering design process.

5.2 Object-oriented design

Whether object-oriented programming can be used profitably or not depends
entirely on the correct design of the software. If you are an inexperienced OO pro-
grammer, you will find it particularly difficult at the beginning to define classes in
the right way. But you will overcome this problem relatively quickly, particularly
when it comes to defining the classes for a real application. To help you get over
this hurdle faster, we have given you various tips and explanations of a variety of
principles in this chapter.

5.2.1 Encapsulation

One of the fundamental principles of OOP is the fact that objects always have control
over their methods and properties. An object is thus intrinsically encapsulated.
Direct access to the object data must not be allowed and is normally prevented by
the programmer. Where the object properties need to be variable, the programmer
will provide appropriate PUBLIC methods that will subject values to suitable checks
before passing them to the protected data areas. It can thus be ensured that the
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values will always remain within a defined range and can only be changed at suitable
times. Interference with the inner mechanisms of the software is no longer possible.

Newcomers to the world of object-oriented programming sometimes violate this
principle because they are still clinging to the procedural mindset. They use the
access identifier PUBLIC to make the class data public and then program the class
according to the procedural principle. Because this is what they learned to do in
the past. While they might initially think that this is an easier solution, they are
merely paving the way for problems in the future. We want to expressly warn every-
body against taking this approach. The end result is merely a procedural program
wrapped up in a class structure. It has little to do with object-oriented programming.
The reason that programmers choose this option is because they have selected a
software module that is too large for conversion to OOP. When choosing modules
for conversion, start with the small ones.

5.2.2 Responsibility of a class

A class is the blueprint for objects. An object is thus the smallest software unit (mod-
ule) in a system. The programmer has the responsibility of defining the functions of
a class. This merely involves implementation of those functions that are essential to
the class so that it can fulfill its task (responsibility). The programmer could decide,
for example, to program a class for valves that covers all variants of valve installed
in the machine. Or, if you like, a universal valve class capable of controlling all types
of valve.

By pursuing this idea, however, the programmer can get into all sorts of trouble.
The functional behavior of valves varies according to the valve type, and the code
needs to be programmed in different ways to reflect these variations. In its final
programmed form, the class will present a variety of problems:

1. The program code for the universal class will be relatively extensive and
thus more difficult to read than a simple class.

2. Owing to their differences in behavior, individual valves will require
different program sections (methods). In other words, only the relevant
section of the program will be executed for each valve. All the other sections
are dead code.

3. The I/O interface of the method(s) is larger than required for the relevant
valve.

4. The class is significantly more difficult to test than a simple class.

5. Developing the class further is much more difficult and results in an even
greater quantity of dead program code.

To avoid these problems, the class definition should be as lean as possible. A class
should possess only one responsibility and thus really be a small unit. The software
will then remain manageable, easy to read and simple to continue developing.

Where different responsibilities exist, different classes must also be developed. Now
you might want to argue that commonalities do exist between these different types
of valve and that no one will want to copy these each time. To resolve this issue, you
need to analyze it and find a solution of the kind described below.
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5.2.3 Commonalities and differences between objects

When planning classes, it is absolutely essential to analyze the objects. The
object-oriented programming concept should help the programmer to develop a
specific piece of program code only once and then use it for various purposes. The
code exists only once and is not copied multiple times.

This can be done only by identifying the commonalities and differences between
objects of the same kind. This applies to functionalities as well as properties. This
identification process is essential to the successful design of classes. The process of
identifying commonalities and differences is relatively easy. The individual objects
are written in the column headers of a table. Functions and properties are listed in
the rows. The programmer analyzes each object to determine whether it possesses
each of the listed functions and properties. From the result of this evaluation it is
very easy to deduce which functions or properties are shared by all the objects.

Commonalities are all included in the base class. The base class is then defined
accordingly. In some cases there may not be enough commonalities to create a func-
tioning object. In this case, the base class is defined as an abstract class. Objects
cannot be derived from an abstract class, but it is possible to map the common basic
functionality (see abstract class CDrive) and program it just once.

Differences are dealt with by means of derivation, i.e. by deriving classes from the
base class. Methods and properties are added to the derived classes in order to
implement the actual differences between objects.

The method override mechanism can also be used to further adapt objects to dif-
ferent modes of behavior. However, if a large number of the methods in a base class
need to be overridden, something has either gone wrong with the class design of the
base class, or the base class is not a suitable match for the derived class. A potential
indication of the latter problem is when the base class method is not called or cannot
be called in a method override mechanism. In this case, the class design has to be
revised. It can also be useful to carry out a test implementation. The programmer
will then notice pretty quickly whether or not the derived class has been planned
correctly. When conducting the test implementation, however, the programmer
should be aware that it may need to be discarded again. But this insight will help the
programmer to make progress and prevent the need for extensive changes further
down the line.

If it becomes clear as development continues that functions are missing from the
base class, then these can simply be added. All classes derived from the base class
will then inherit the new basic functions.

5.2.4 Principle of replaceability with derived classes

This principle demands of the class programmer that comparable operations of a
derived class must behave in exactly the same way as the operations of the base class.
In other words, operations of a derived class with identical names to operations in
the base class must behave such that their behavior does not change in any way if
they are replaced by an object of the base class. This principle protects the users of
objects against any unpleasant surprises.

The possibility that this principle will be violated cannot be excluded owing to the
polymorphism associated with inheritance. This is often not immediately evident.
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The following example is provided to help you understand this better: We have
already explained the classes for the valve-cylinder combination in a previous chap-
ter. In this class, the cylinder moves towards “EndPos” in response to the command
“Forward” and towards “StartPos” in response to the command “Backward”. If we
now need to swap the directions of movement for technical reasons in a derived
class, this change would exactly exemplify how the principle of replaceability can be
violated. An object of a derived class cannot now be replaced by a base object. Com-
manding or coordinating program sections cannot cope with this change because, as
a general rule, these program sections do not know whether they are commanding
a base object or a derived object.

This example also illustrates that an interface is not solely defined by methods and
their signatures. The underlying semantics also form part of the interface although
they cannot be found directly in the declaration.

That this principle is also valid for various implementations of interfaces goes
without saying. It is especially here that different object implementations must be
mutually interchangeable.

5.2.5 Determining relationships

Objects in an environment do not stand alone but must interact with each other
within an overall context in order to represent a complete functional unit (normally a
machine). It is for this reason that provision for interaction between objects must be
made in object-oriented software. This involves the definition and design of suitable
interfaces that will allow interaction between objects.

The object-oriented programming concept uses the definition of interfaces as a
means of modelling interfaces and thus mapping the interaction between objects
of different types. By defining interfaces, the programmer can determine how an
object will exchange information with another object. To be able to define interfaces,
it is essential to determine the relationships that exist between different objects.
Analysis will reveal the relationships between objects and these relationships can
then be represented. By adding appropriate mechanisms to these relationships, it
is possible to define the interface and specify how it must be used.

We have shown the relationship between “valve” and “error reporting” in Figure
54. At this stage, the programmer is still working at an abstract level where the
representation still does not contain any details about the programming language
to be used later.

It should be mentioned here that the analysis must take into account data rela-
tionships as well as runtime relationships. UML diagrams are useful design tools
specially developed for this type of analysis.

The definition of an interface is limited in this case to the necessities of the objects
involved (classes). If an interface is implemented by a class, the interface addresses
only the requirements of the individual module and nothing else. If the object has
further relationships with other objects, the experienced designer will define addi-
tional interfaces with the requisite functionality. A class with multiple relationships
then implements the different interfaces. The option of implementing multiple
relationships between classes should be used very sparingly. In this case, the pro-
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Figure 54 Representation of classes and objects in UML

grammer should only do what is absolutely necessary and no more. The integration
of potential future relationships should be avoided at all costs.

Large interfaces must be split up or avoided altogether. The software module uses
interfaces that precisely specify the functions actually required, so helping to pre-
vent dependency on functions that are not needed. The definition of an all-singing,
all-dancing, all-rounder “mega interface” would directly contradict this principle.
By following this approach, we can keep the software lean and manageable.

When we adhere to this principle, we can also develop lightly coupled classes. If the
software needs to be refactored, the task is made significantly simpler. If the software
needs to be additionally expanded over its lifetime, it is extremely easy to define
new interfaces and implement them in the requisite derivation hierarchy. In other
words, the new interface is implemented in the class in which the new functions
are used. Pre-existing classes are not affected and do not change. These software
adaptation mechanisms can be used without any restriction and also optimize the
time and effort involved in updating the software. Optimum design is essential in
ensuring that software can be flexibly adapted. Precise analysis and definition of
interfaces are crucial to the success of a software design.
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5.2.6 SOLID principles

Object-oriented design is based on certain principles that were publicized and prop-
agated by, among others, Robert C. Martin, Bertrand Meyer and Barbara Liskov.
Robert C. Martin introduced the acronym SOLID to describe a group of principles.
Useful information about SOLID can also be found in Wikipedia.®

5.3 Reusable and easy-to-maintain software

Software designers should keep three important principles in mind - reusability,
ease of maintenance and ease of continued development - and apply these consis-
tently to the task of software development. Object-oriented programming is largely
defined by these three principles. In the interests of facilitating their application in
SIMOTION, we have summarized various aspects of their implementation in this
chapter.

5.3.1 How can software be made reusable?

“Reusability” simply means that the software is designed in such a way that it can be
used more than once (we know, we are stating the obvious!). This principle needs to
be taken into account in the software design process. Any attempt to render software
reusable when the design process is already complete will generally only succeed
to a limited extent, or not at all, because by then, too many dependencies on other
components will already exist.

For this reason, the software needs to be structured in small, easily manageable
modules that can be combined easily for new applications. Components must be so
modular in structure that no (concealed) internal dependencies on other modules
or specific hardware exist. Any essential connections are neutralized via interfaces
for this purpose and each interface is limited to the absolute minimum required
functionality.

Restricting the functional scope of interfaces to the absolute minimum can result
in two types of interface.

1. Interfaces for configuring
These interfaces are used to link software modules and/or to define initial
states. During configuring, for example, references are initialized with
appropriate values and then used to establish relationships between
objects for operational purposes. Their methods are generally called in
StartupTasks or a single time after the control system has powered up.

2. Operational interfaces
This type of interface is used by classes to allow interaction between objects
of different types. Their methods are called in normal operation when
objects need to exchange information. Depending on the task, methods
may be called cyclically or on an event-driven basis, i.e. they are called
repeatedly.

8 “SOLID (object-oriented design)” In: Wikipedia - The Free Encyclopedia.
(https:/len.wikipedia.org/wiki/SOLID_(object-oriented_design) (viewed on: March 22, 2016, 16:32 UTC)
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If the software developer decides to create these two categories of interface, a sep-
arate design must be developed for each, but the two designs must be mutually
coordinated.

The ability to combine different modules must be planned at the design stage and the
interface-based interactions between modules also need to be defined. The designer
should always exploit the option of using different interfaces for different tasks and
connections. In other words: different functions should never be programmed in
a single interface.

5.3.2 Libraries are helpful

At the software design and development stage, it is absolutely essential to give care-
ful thought to the option of storing software elements for general use in libraries.
To ensure that this policy can be sensibly applied, programmers must examine the
possibility of a system for generating libraries before they start programming. The
policy of moving programs to libraries will otherwise not work.

SIMOTION provides the option of moving general-use software components to
libraries. In fact, libraries are an integral component of a SIMOTION project. The
user can store various different libraries in the library folder of the project and
use the content of these libraries in programs. It is also possible to combine and
utilize functions between different libraries. For example, it is by all means possible
to combine a library of basic functions with libraries containing more complex or
specialized functions without the user of the libraries needing to know that they
have been combined.

Software components stored in libraries must not contain any hardware-specific
links because it is not until the component is used that the system can identify the
environment in which the software is running.

SIMOTION libraries can protect know-how. They do this because the creator of a
library can protect access to the source code of the programs by a login and pass-
word. The program code is encoded by the system and is therefore more secure
against unauthorized access. The user has a selection of different protection levels.
With the highest protection level, it is even possible to remove the source code of the
library. In other words, the library can be supplied without sources. When a library
is delivered in this state, it of course cannot be changed by the end user.

5.3.3 What is the best way to develop modules?

When the object-oriented design phase is essentially complete, the results of the
design process are put into practice, i.e. the programming phase begins. If we think
about the mechanisms already described in this book, we’ll remember that a soft-
ware module has one responsibility (e.g. to “control a valve-cylinder combination”).
All the essential functions that the module requires to fulfill this responsibility must
be implemented. The functional scope of the module not only includes the basic
functions (e.g. controlling the movements of the valve-cylinder combination), but
all the additional capabilities as well, such as changing data, detecting errors or
communication. We are now going to analyze various different aspects which can
be relevant to implementing functions in a class.
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Simpler objects can be depicted as a single class. Complex structures are aggre-
gations of further objects with a certain responsibility (e.g. integration of a state
machine into a class, see chapter 3.6.2.2). The objective is to ensure that a specific
piece of program code exists only once.

Objects of different types interact with one another by different interfaces imple-
mented in the classes. In this case, each interface depicts the functions specified in
the class that have been defined for a particular task. By querying the validity of
supported interfaces in the classes, it is even possible to adapt objects to different
environments during runtime without changing the software (see chapter 3.5.5).

When viewed from outside, each module has its own micro sequence and can be
forced to carry out actions in response to commands (command methods). Each
module supplies its own methods (Setter/Getter methods) for querying information
or changing properties. The connection to I/O devices where necessary is provided
in the form of a neutralized interface, but not actually implemented until an object
is generated.

The way in which the functions of classes themselves are programmed is determined
by the responsibility of the class. This responsibility requires the implementation
of methods for individual tasks. The overall responsibility of the class is reflected in
the total number of tasks. The task and the way in which the method is implemented
determine the context in which the method must be called. There are methods, for
example, that are called cyclically, while others are specifically called a single time in
order to perform one task. In the case of methods called cyclically, only one method
should be programmed for each cyclic execution level. An automation system can
have several cyclic execution levels. If it is necessary to implement methods for distri-
bution among various cyclic execution levels, one method must be programmed for
each execution level. What the programmer must not do, for example, is implement
one method for all cyclic execution levels or two different methods for one cyclic
execution level.

With interface methods that are called to allow interaction with other modules, the
required call context is not immediately evident from the prototype of the method.
This information must therefore be included in the interface definition. This helps
to avoid erroneous calls and the users of interface methods will find it easier to work
with them. Because it is not always possible to implement the methods defined in the
interface in such a way that a single call is enough. For example, if a hand shake has
been defined as the interaction mechanism, the method must be called repeatedly
until the interaction process is completely finished. In this instance, the interface
method call must be integrated into a cyclic context.

Some software modules have the responsibility of providing the functions for a
defined machine component. These modules are representatives, i.e. they represent
a subcomponent (e.g. control module), a more complex component (e.g. equipment
module), or even internal functions. Our valve class, the drive classes or the equip-
ment module all belong to these modules. These modules always contain a method
that needs to be called in a cyclic context. The main functions of the object are
programmed in this method that is called cyclically. It is the method that organizes
the module. We essentially call a method in the cyclic context in order to read inputs,
carry out processing in response to signal changes and produce a suitable reaction
that is subsequently written to the outputs. We owe this system to the automation
engineering processing model. If the /O components of the control system were
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mapped as event-driven devices, the model would have a stronger resemblance to a
PC program. In this case, we would only use methods that are called in response to
certain events. PC programs do not usually include methods that are called cyclically.

Commands or interactions, and get and set methods, are programmed in such a
way that they need not be called cyclically. They have a greater similarity with event-
driven methods and are only called when they are needed.

Another type of module has tasks that do not relate to components. These modules
or objects tend to be needed for the purpose of organizing the software internally.

These can be objects, for example, that integrate procedural program sections not
yet converted to OOP into a class (wrapper). Program sections of this kind behave
externally like objects, but are not modeled internally as object-oriented program
(potentially as an intermediate solution). The modeling of the wrappers depends
on the integrated code. They may require a cyclic context.

Classes that administer or collect pure data, for example, also belong to this cate-
gory. These need not be designed for a cyclic context. One example of this kind of
object is our class “HMIReporting” (Figure 54) which collects the errors of the valve
objects. Only one object of this class needs to be generated to perform this function.
A method for a cyclic call does not exist in this class. The method for entering an
error in the error list is only called when an error event has actually occurred.

Object-oriented design of software modules in an automation system is thus influ-
enced by two basic considerations:

The cyclic context is a principle typical of PLC engineering. The system
reads the signals from input peripherals and stores their states in an inter-
nal memory before they are processed in programs. As the programs pro-
cess the signals from the internal memory, they also store the processing
results in an internal memory for the outputs. The system then transfers
the data from the internal memory for outputs to the output peripherals.
Anyone who programs PLCs knows this context extremely well. PLC
programmers think in this context and develop their programs accordingly.
Programmers from the PC environment need to become familiar with this
principle. Methods developed in this context are designed to transfer essen-
tial I/O signals to an object and to pass the results of processing routines to
the outputs.

The event-controlled context is a principle typical of PC engineering.

PC programmers understand this behavior and design their programs
accordingly. In automation systems, however, there is no means by

which the control can selectively register individual events. Events in the
control system are identified by the analysis of states in the programs that
subsequently necessitate the call of a particular method (e.g. a command

to a specific object or transmission of information in the event of an error).
These analyses or tests are generally performed in cyclically called methods
of other objects.

In other words, both of these considerations need to be taken into account when
classes are designed. This will result in a class model that unites both principles
(cyclic and event-controlled) and makes optimum use of both of them. Cyclically
called methods collect the signals required for an object, receive commands, process
them and deduce from them the action that needs to be taken. This action is, on

200



5.4 Organizational and legal aspects

the one hand, the correct control of actuators and, on the other, the generation of
events. Each event calls the appropriate method, including methods of other objects.
Other objects can in turn call methods from the class in which they are defined. The
class therefore also provides important command methods, status query methods or
Setter methods (for changing data). These methods are called on an event-controlled
basis and must in some cases trigger appropriate reactions in the cyclic method.
All of these considerations form part of the process of optimum class design and,
if applied correctly, can result in extremely flexible, easily combinable solutions.

The object-oriented programming principle as it is applied in automation engineer-
ing is virtually indistinguishable from its application in Java or other programming
languages. There are naturally specific language differences, but while Java pro-
grams are used for PC applications, automation engineering programs must execute
on dedicated hardware. This hardware is not fully comparable to a PC. Automation
systems generally operate in a continually cyclic context and, in some instants, in
an equidistant (isochronous) context. This equidistance prohibits the generation
or destruction of objects during runtime, for example. In addition, tasks are also
executed in parallel. Since the runtime characteristics of automation systems are
so different to those of PCs, programmers with a PC background will have to get
to grips with this specific runtime behavior because it influences how methods are
programmed.

5.4 Organizational and legal aspects

Object-oriented programming opens up a multitude of possibilities for modulariz-
ing and structuring software in a more effective way. Software is easier to test and
maintain and thus prone to fewer errors. This can only be achieved, however, if the
software is carefully planned and if all the people working with the software are also
convinced of the benefits of OOP.

5.4.1 Transition to OOP must be planned

Using object-oriented programming mechanisms can be very beneficial in the
medium term. If we compare the advantages of OOP with its disadvantages, tran-
sition to this new programming style would appear logical and meaningful. Since
the programs created to date were necessarily based on the procedural method,
however, it is absolutely essential that the transition to new OOP mechanisms is
carefully planned.

Training existing programmers in the OOP programming technique in the hope
that they will create purely object-oriented programs that are easier to maintain
will not be enough.

We shouldn’t forget that these same programmers have until now been working
perfectly successfully to create and maintain software solutions (procedural or
modular) for automation engineering applications. These capable people are now
going to be confronted with a completely new way of thinking and working, and
will need to internalize and meaningfully deploy this new technique. In addition to
support and persuasion, they are also going to need time. If we ignore these issues,
they will simply give us object-oriented frames containing functions programmed
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by the procedural method. We will not enjoy the success we had expected and will
lose any of the promised advantages.

Moreover, if the object-oriented programs are “simply handed over” to commission-
ing and service personnel, they will probably not understand them. These personnel
are also still living in the old procedural world and are not yet familiar with the
OOP way of thinking. It is obvious what the consequences and conclusions will be:
“Object-oriented programming is no use!”

To prevent all this from happening, the following steps need to be considered and
then implemented:

It is vital that every single member of staff involved becomes familiar with
the object-oriented programming technique. Everyone affected, i.e. commis-
sioning and service personnel as well as programmers, must be included in
this process.

- It is essential that programmers learn the technique of object-oriented
software design and bring appropriate programs to application maturity.

- Commissioning and service personnel must understand the processes
associated with the use of OOP mechanisms. This group of people must
also know how to use the relevant program modules.

It is important to ensure that all those involved are persuaded of the advan-
tages of using OOP. If they are not persuaded, the enterprise will fail.

Programmers who have been regretting the absence of OOP and are waiting
for it to arrive will obviously not need to be persuaded. If programmers
with this mindset are available, they can be used to spread OOP knowledge
and skills.

Preparations for transition to OOP must be made by appropriately training
all the relevant personnel.

For a transition to object-oriented programming to be successful, a detailed
analysis will need to be performed on plants and/or on existing programs.
It will not make any sense to draw up an implementation plan until it is
known what proportion of the software is worth converting to OOP.

5.4.2 Software needs to be planned

Careful planning is an essential aspect of all projects and this is also true of software
planning. In fact, it is the key to a successful transition to OOP. Object-oriented
programming supports the software design process, but does not control it. The
software designer should always exploit these supportive aspects so as to facilitate
the subsequent coding and programming work. By doing so, moreover, part of the
documentation of the software and interrelationships within the software will be
generated automatically. This will pave the way for simpler software maintenance
and make it easier to continue developing the software when necessary.

5.4.2.1 Analysis of existing programs

Since programs have already been written for the plants and are functioning suc-
cessfully, they can be analyzed effectively. The purpose of analyzing the software
is to identify modules that are potential candidates for conversion to OOP, in other
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words, to detect program sections that can be formed into modules and identify
extremely lean interfaces between modules. It must be possible to transfer modules
from their procedural context into an object model and to encapsulate the module
data in such a way that they take on the essential properties of an object.

In other words, the newly created objects must fit into the existing software environ-
ment without impairing the functional quality of the overall plant. Analysis of the
data is therefore vitally important if proper functioning of the plant is to be main-
tained. If the data models previously used make encapsulation impossible, it is safe
to assume that the modules were incorrectly configured at the early planning stage.

Since object-oriented programming can be regarded as an extension to procedural
programming, both programming methods can coexist. It is not absolutely neces-
sary to replace existing, fully functional programs. What is important is to learn
how to use the object-oriented programming technique and to gain useful, relevant
experience. The transition to OOP will then be a smoothly conducted process and
so help to ensure its success.

Once suitable software modules for conversion to OOP have been identified, they
are used as a basis for planning classes and their hierarchies. The commonalities
for the base classes need to be worked out first at this stage. From the base classes,
subclasses are derived (derivation) for further specialization in the extended classes.

When planning classes, it is important to remember that a design error in the base
class will be propagated through the entire inheritance chain and, after it has been
corrected, may necessitate extensive reworking in the derived classes. For this rea-
son, it is extremely important to plan the base classes with great care.

5.4.2.2 Reuse of software

Better reuse of software is one of the often cited plus points of object-oriented pro-
gramming. When object-oriented principles are correctly applied, this advantage
has a very substantial influence. To exploit this opportunity to the greatest possible
extent, it is extremely important to analyze the software and structure it accordingly.
We have to emphasize at this point, however, that it is not absolutely necessary to
reuse all software. As with all things, the pros and cons must be weighed up to asses
whether reuse is worthwhile.

If the software for a plant is completely unique and does not contain any recurring
software sections, it can be assumed that it is not a candidate for reuse. The software
is used for precisely one particular application and is rendered in a deliverable state
for that purpose. New software will then be developed for a new application. The
original software will not be reused. This does not mean, however, that it would be
pointless to use object-oriented programming in this case. The better structuring
options and the encapsulation of software modules could also be extremely benefi-
cial for software that will not be reused (to make it easier to maintain, for example).

If machine elements of the same kind are installed in the plant and operated by
appropriate software modules, thought needs to be given as to how these modules
can be reused repeatedly in the plant environment. The concept of standardiza-
tion plays an important role here. Appropriately trained personnel are generally
appointed to standardize software modules. These people are responsible for imple-
menting and maintaining the standards. This task also includes the preparation of
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documentation describing the correct application and the provision of modules
according to defined procedures.

But caution! Do not be tempted to try and standardize everything! Because if you
do, you will also need to model every single exception and special feature in the
standard. You will end up with cumbersome standard software and generally lose the
flexibility of the software design. Standards are merely a collection of recurring com-
monalities. Object-oriented programming provides enough mechanisms by which
specializations (exceptions and differences) can be implemented in the software.

If an organization has taken the decision to standardize certain software compo-
nents, it is absolutely essential that those responsible for maintaining the standards
are involved at an early stage when any changes or upgrades to the plant are made.
The standardization might otherwise be ruined unintentionally.

Human nature can cause another problem when it comes to reusing software. We
are sometimes reluctant to take a fully functional solution over from somebody
else. There are several possible reasons for this reluctance. Either because we don’t
understand the implementation of the code (perhaps due to the fact that the function
is poorly documented or not documented at all), or because we simply think we can
do it better, or because we actually don’t understand it. Whatever the reason might
be, a culture needs to be established within the software development team that
makes the creation of reusable software possible.

Every organization has its own culture. The established culture rewards certain prac-
tices and punishes others (reward system?). This of course encourages employees
to behave in a certain way, i.e. to avoid undesirable practices and favor those that
are appreciated or rewarded.

For example, organizations still sometimes judge the performance of software devel-
opers by the number of code lines they write. This inevitably leads to the creation of
superfluous, often unreadable program code that is difficult to reuse.

For one customer, for example, the existing program code had to be analyzed in the
course of a debugging assignment. This analysis revealed that general data areas
(data blocks) in the control system had been configured to the maximum possible
size even though only the first 10 or 20 bytes in the programs were being used. Only
during discussions with the employees did the cause of the problem come to light:
they were being paid by kilobytes of code.

In such cases, it is extremely difficult to determine the locations in which data
are actually used because the people developing the programs will certainly not
feel inclined to document the fact that they have included superfluous code. Such
programs will also be more difficult to maintain in the field and it will be hard
to continue their development. Anyone who has ever had to get to grips with the
program code written by other people will know how difficult it is to read the inter-
relationships contained within the code without overlooking anything important.
The conclusion we can draw from the case described above is this: the organization
was definitely using the wrong reward system.

It also proves that the culture that is actually lived in any given organization is a
crucial issue if we are to obtain reusable programs from development projects. In

9 In this context, the term “reward system” does not refer exclusively to remuneration for work performed.
It also refers in a large part to all forms of behavior of employees/developers for which they are either praised
or reprimanded as they carry out their duties. (Source: The C++ Programming Language by Bjarne Stroustrup)
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this context, we can ask ourselves “which reward systems prevail in this development
environment?”, and draw useful conclusions from the answer. These will help us
to identify the steps that may be necessary to change the existing culture to one
where practices useful to our cause are rewarded. In other words, the prevailing
culture must reward or promote the development of reusable program code. This
is clearly a task for management. Regulations, rules or processes on their own will
not be enough. The developers should themselves strive to develop high-quality and
possibly reusable software, but they will only do so if this behavior is rewarded. With
the support of the management, therefore, a change in the behavior and practices
of the employees must be encouraged and achieved. This certainly won’t be easy
because management as well as employees will have to abandon what they are used
to and learn something new.

If the decision has been taken to use, or at least consider using, the object-oriented
programming method to develop software, it is important not to forget that those
programmers who have been the experienced, expert developers will suddenly find
themselves in the role of beginners again. It is vital to consider this aspect when
dealing with employees. A decision to transition to object-oriented programming is
not in itself a criticism of the programming methods used in the past, but expresses
a desire to exploit the potential of OOP in order to design better software. It could
be helpful to call on the support of suitable experts (possibly external specialists)
to reinforce this message.

5.4.3 Reuse and ownership of software

In order to derive benefits from creating reusable software, an organization has
to take into account many different aspects. These basic requirements need to be
established first so that “reuse” becomes economically beneficial.

Social aspects

Conditions need to be created within the software development department that
will encourage developers to write reusable software on their own initiative. Any
factors that hinder them from doing so (inappropriate reward systems and culture,
for example, or poor communication, problems in accepting code written by others)
must be eliminated.

Organizational aspects

The development department should be in a position to define its own organiza-
tional structure that promotes the development of reusable software. This structure
must naturally fit into the company overall. The form that this organization could
take depends on the size of the company and the number of developers. This restruc-
turing can in any case be made easier by the drawing up of rules (processes) and the
nomination of a person/team responsible for software standardization.

Legal aspects

Legal aspects relating to the software or procedures for software handling must be
clarified within the organization. Two basic issues need to be clarified:
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Under what conditions might the software developed within the organi-
zation be passed on to other parties, and what rights would be granted to
those parties?

If software is handed over to developers outside the organization, the legal
conditions for transferring the software must be checked. The software

in this case might have been supplied by other companies (sourced and
paid for) or might be software to which rights have been granted (supplied
libraries, universities, Internet).

The legal aspect of software is a subject that is often ignored. In certain circum-
stances, it could pose a real problem to creating reusable software. For this reason,
we are going to take a closer look at this subject. We want to make it absolutely
clear that this explanation is solely intended to focus attention more sharply on this
important aspect, but we are not going to make any legally binding statements. If
you have any further queries, please consult an authorized agency.

As an example, here are some informations on the German Copyright Act. The Copy-
right Act specifies that software (computer programs) is a copyrighted work (i.e. it
is treated in the same as a literary work). According to the Copyright Act, software
is only deemed worthy of protection if it is the author’s own intellectual creation.
In other words, a program must be unique or special in some particular way to be
deemed worthy of protection. Trivial programs developed scores of times are not
covered by the Copyright Act.

As a general rule, the author or right holder grants the user of the software certain
usage rights for proper use of the software. Any additional rights are not normally
granted. According to the Copyright Act, a criminal offence is committed if sections
of the software are extracted for other applications, for example, or if the software
is passed on to a third party.

If any programmers now imagine that they can influence what will happen to their
software, we have to say immediately that §69b of the Copyright Act is very specific
on this point.

(1) If a computer program is created by an employee in the execution of his/
her duties or on the instructions of his/her employer, then it is only the
employer who is entitled to exercise any economic rights over the com-
puter program unless otherwise agreed.

(2) Paragraph 1 applies accordingly to employment contracts.

5.4.3.1 Distribution of software

When software was initially developed for programmable logic controllers, the pro-
grams were still relatively simple. Since the software design was based on circuit
diagrams, the programs essentially comprised pure combinational logic. There was
very little complexity in the software and end customers were used to having free
access to the programs for their own service personnel. The programs were not
deemed to have any value at that time.

As advances were made in the field of control engineering, the programs became far
more complex, leading to a transition to high-level programming languages such as
Structured Text or SCL. Some machine manufacturers have been working for many
years to develop programs that might contain functions or algorithms that are really
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worthy of protection. Nevertheless, the tendency to attach low economic value to
software has persisted for a long time in this environment that is so influenced by
mechanical engineering. End customers are still demanding from their suppliers
the documented source data of the software so that it can be used by their servicing
personnel to safeguard production.

It is exactly this attitude that can sometimes lead to problems. End customers could
come to regard the machine manufacturer’s software as their own. Modifying the
software to supposedly “optimize production” is just a small step, but if it were to
happen, the programs would no longer correspond to the delivered state of the
software. If errors were to occur, the arguments as to who was responsible for the
problems would begin.

In some cases, third parties working for the end customer (programmers, engi-
neering companies) have access to the program source data. Because source data
is so easy to copy, the programs could end up being used for other purposes by
unauthorized parties (e.g. in the hands of the machine manufacturer’s competitors).

To avoid such problems, written specifications regarding the transfer of software
are extremely important for all involved.

5.4.3.2 Acquisition of software

The acquisition of software that has not been developed in-house is the second area
that can lead to problems. One of the most appealing aspects of reusing software is to
cut costs. After all, if it has already been developed, it doesn’t need to be programmed
again. That all sounds great provided that the software has been legally acquired
and the legal situation is clear.

Machine manufacturers sometimes engage third parties to develop software for
their machines. These might be engineering companies or external programmers
(support staff supplied by the control system manufacturer). These programmers
create parts of the machine application on the behalf of the machine manufacturer.
According to the Copyright Law, the creators of the software are also the authors
(unless an employment contract exists) and are entitled to decide how the programs
will be used.

It is absolutely essential for the machine manufacturer that use of the software
is regulated by appropriate agreements with third parties before the software is
developed. Problems that were avoidable at the outset may arise later if agreements
of this kind are not reached.

Another important matter for the machine manufacturer to consider is whether the
software integrated into the machinery is actually legal. Machine manufacturers
are responsible for verifying the source of the programs. If the software or parts
thereof are illegal copies, the machine manufacturer could be accused of copyright
infringement.

Software can be obtained from all sorts of sources (e.g. Internet) today. If software
from such sources is used by in-house developers, it is essential to clarify the terms
of use associated with it. Even if the software is in the public domain, it is not permis-
sible, generally speaking, to remove copyright notices and it may also be necessary
to acknowledge the author(s). The conditions specified by the author (which need to
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be actively sought in some cases) regulate requirements in detail. Failure to observe
these rules will soon end in a copyright infringement.

The creator is always the owner of the software and merely grants usage rights to
the user. It is only the creator who may decide what is done with the software.

As a general rule, machine manufacturers or even engineering companies who make
their living from software have long-established rules governing software usage.
In some cases, however, smaller companies might still be failing to take individual
aspects into account or might need to improve their procedures. We have therefore
summarized various points again below:

The distribution of software, including software that is delivered with
machinery, should be formulated in writing so that it conforms to the
Copyright Act.

Rules for the acquisition of third-party software for use by in-house devel-
opers should be defined and made compulsory for programmers.

Establishing a standardized procedure for checking the use of third-party
software is an effective means of preventing problems later on.

It is absolutely essential to observe the conditions for transferring software
when third-party software is acquired. These include the retention of
copyright notices or acknowledgement of authors.

Employment contracts with external programmers should be examined
carefully.

5.4.4 “Good software” and object-oriented design

If the employees are settled in a suitable working environment and the issues raised
above have been resolved or do not present any problems, then there shouldn’t
be any further obstacles to creating high-quality, reusable software, should there?

It would be possible to conclude, for example, that software should at least be “reus-
able” if it is going to be classed as “good”. Since not all software is reused, however,
the inverse conclusion, i.e. that software that is not reused is automatically poor
software, is also the wrong way of looking at the matter.

So we are faced with the question “what is it that characterizes good software?” or
“what are the characteristics that good software must possess?”. The only reason
we should try to answer this question is to let us judge our own software against
certain assessment criteria and find possible ways of improving it. It is not a question
of distinguishing between good and bad and therefore passing judgement on our
own programmers. These people have already demonstrated their capabilities by
writing programs for existing plants and keeping the machinery running with the
software they have created.

So, what are the essential characteristics of “good” software? Software quality
requirements were defined in standard ISO/IEC 9126 which has since been replaced
by ISO/IEC 25000. The software quality requirements defined in the standard apply
generally to all software and are thus also applicable to automation system software.

The first and most important characteristic of any software is that it must be func-
tional within a given framework. In other words, it simply has to work. While this
may sound trivial, if we examine it more closely, we will find that it is not that
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easy to achieve. Implementing fully functioning software is a complex process. To
ensure that it can function within a given framework, the framework needs to be
precisely defined. What is really important is that all necessary information flows
to the right place. In other words, all the functions, requirements, specifications or
implementation guidelines that have been agreed with the customer must be made
available in suitable form to all those involved in the process. They can be used to
define the framework for implementation.

Once the framework has been defined, the software can be structured and then
developed on this basis. If boundary conditions change while software development
isin progress, the completion date will naturally be delayed. This generally increases
the pressure on programmers because they need to deliver by the agreed deadline.
As a consequence, the software is handed over to the commissioning engineers in
an unfinished state. If software fails to function properly, it can cause a multitude
of problems at the commissioning stage and ultimately endanger the entire project.
This kind of scenario can be avoided only if the boundary conditions are precisely
specified and if any change to the conditions with ensuing delay is accepted by all
parties involved. The programmers are otherwise forced to make frequent correc-
tions until the software is rendered fully functional.

When the software has been delivered in a fully functional state, it can always be
analyzed and improved once it is operational. Because it will need to be maintained
over the entire service life of the plant. Maintenance in this context also includes
adaptations that may be required if the customer expresses a wish to increase pro-
duction capacity, improve error diagnostics to assist troubleshooting or expand the
spectrum of products manufactured with the machinery.

By assessing various criteria, therefore, it is possible to formulate the properties
software must possess if it is to be deemed “good”.

The software must be operational and must be reliably fit for the specified
operating conditions.

This point also reveals another important issue that is often not properly
heeded in the context of software development. Have the requirements of
the software been comprehensively formulated and specified? If program-
mers are going to implement requirements, they need to know first what
these requirements are.

The software structure must be as modular as possible and each individual
module must be capable of functioning autonomously.

This modularity will make it possible to create suitable environments for
testing the software. Software that has been tested during development
will cause fewer problems during commissioning. Software with a less
modular structure may function perfectly well, but the level of modularity
determines the amount of work and time required to maintain or expand
the software.

Control systems often impose restrictions (memory or runtime) with
respect to resource availability. The programmer therefore needs to make
sparing use of these resources and design resource-efficient software.

Saving a few milliseconds of runtime can boost the productivity of the plant
by 10% or more.
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The software and its scope of functions must be adequately documented.

This makes life easier when the software needs to be handed over to other
people for maintenance or continued development.

It must be easy for third parties to comprehend the software structure.
Well structured software is easier to maintain and easier to develop further.
It must be possible to restructure (refactor) the software over its lifetime.

Since software is adapted time and again over its lifetime, the programs
will need to be revised to make them easier to read and expand. But these
revisions must not change the behavior of the software, i.e. they must be
compatible with its original design.

Even if programmers are aware of software quality requirements, the software they
create will not automatically fulfill these requirements. So we need to answer the
question: how do we create the conditions in which developers can write good soft-
ware? The journey to this goal is certainly not an easy one. Software development
is a creative process and individual programmers must be allowed a certain degree
of freedom to try out different ideas. Only in this way can they expand and deepen
their understanding and knowledge of the underlying system. From this process
will emerge new ideas and innovative techniques.

Since individual programmers within the organization are assigned specific jobs and
the results of their work must at some point be combined to form a single plant, soft-
ware development must be regarded as a team task. Whenever teams have to work
together, it is vital that individual team members exchange information effectively.
Information should be exchanged continuously and not just during meetings or via
emails. The exchange of information, especially the informal flow of information
(e.g. during coffee breaks, at meeting tables), should not just be tolerated by the
management, but actively encouraged.

“Team thinking” should be nurtured. If a team is assigned a shared task and then
receives praise for its work as a team rather than as individuals, the team members
will feel emboldened to exchange information and cooperate more closely with one
another. The quality of the final result will improve. The methods and principles
defined by the “agile software development” concept have proven to be extremely
successful.

Now we have some sort of idea about what constitutes “good software”, we also
need to ask whether use of the object-oriented programming method is absolutely
essential to the creation of good software. We can give a clear answer to this one: No!
It is possible to write outstanding programs without using object-oriented program-
ming. If that’s the case then, why should we go to all the trouble of learning OOP?

It was exactly this question that PC programmers needed to answer when the
object-oriented mechanisms of C++ became available. As demands became more
exacting and programs more complex, a paradigm shift took place in programming.
In order to manage this increasingly complex software, developers needed to change
and learn new techniques and design methods.

The software for automation engineering applications is also becoming more com-
plex as users set ever higher standards and system performance is boosted to meet
these demands. Developing software costs a lot of money. Software expenditure
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is already determining the price of machinery, and will continue to do so in the
future. If new programming techniques that make it easier to optimize and maintain
software are now becoming established in the field of automation engineering, it
would just be silly not to use them. When it comes to automation applications, OOP
is still in its infancy. But it won’t even take another 20 years for this programming
method to become an indispensable part of control systems. Another factor to be
considered is that some automation systems in particular have a significantly longer
service life than PC software, for example.

The good news is that the transition to OOP can be planned calmly and implemented
at a moderate pace. If we don’t use the time available now to get ready, we will be
forced to make the transition under greater time pressure in future.

5.5 Software tests are a must!

We are not going to question whether or not it is worthwhile to carry out software
tests. Furthermore, a wealth of detailed information about this subject can be
accessed on the Internet. We are convinced that software testing is a must. Soft-
ware tests are not available free of charge and the costs incurred by them must
be included in the software development budget. The experts largely agree that
failure to perform software tests ultimately costs significantly more money than to
carry them out before the software is delivered. Companies who test software as a
quality assurance measure often spend as much money on these tests as they do
on development.

We therefore want to examine the subject of software testing in a little more detail
in this chapter, and give various tips and guidance as to how such tests can be
implemented more effectively. We do want to limit our focus to the essential issues,
however, because a comprehensive study would require a book in its own right.

Software tests are often the first item to be axed when there are deadline issues
or cost problems, but this decision often has far-reaching consequences. In many
cases, however, these consequences are not felt until much further down the line
and it may be difficult to see the connection between their negative effects and the
decision to abandon software testing.

Just like hardware, software undergoes a design process. But in the following
respects, it is not possible to make a direct comparison between software and
mechanical modules or assemblies:

Software is significantly more flexible and combinable than mechanical
components. The number of possible combinations and thus also the
susceptibility to errors is also higher.

It seems easy to modify software because the changes can simply be typed
in, sometimes with fatal consequences.

The task of the programmer is to predict the full potential scope of application of
the software and to program functions which reflect this potential. This assessment
also includes improper application of the software and the relevant system reactions
when the software is improperly used. Predicting future events is not an easy task
and it won't take long for a programmer to overlook certain scenarios.
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The need to assure the quality of the software by applying specific, measurable crite-
riais another issue. This quality assurance can naturally only be achieved by testing
the software with precisely defined scenarios. The more extensive and complicated
the software design, the more difficult it is to define test criteria. This problem can
only be overcome by designing a modular software structure so that the tests can
be split into different test procedures. As a result, there are normally four different
test scenarios:

Module test
Each module is tested in a test environment.

Integration test
The interaction between different modules is tested.

System test
All modules in a specific system are tested.

Acceptance test
The environment is tested by the customer.

There are also procedures for software tests that can be meaningfully combined
with particular test scenarios. For example, the module test will almost certainly be
conducted as a white-box-test because the module creator knows exactly how the
module functions internally. System testing is usually conducted using the black-
box-method. This procedure is designed primarily to test functionality without
peering into the internal workings of the software. An integration test would be
conducted by a mixture of methods. It is also important to test interruption and error
scenarios. It has to be said that these are the most difficult of all tests to perform.

Although we believe that software tests are absolutely essential, we wouldn’t wish
to deny that no testing regime, however thorough, can ever guarantee that software
is absolutely error-free. The multitude of ways in which software can be combined
would make this impossible. What is important is to decide on a sensible level of
testing with a manageable scope of tests that assure the highest possible degree of
reliability. It is ultimately the degree of test coverage achieved that determines the
degree of reliability of the software that is finally delivered to a customer. In our
opinion, the higher the degree of test coverage, the lower the probability that errors
will occur in the field.

On its own, software cannot normally endanger the safety of people. But if it is com-
bined with sensors and actuators of a particular kind, a software error can definitely
cause a hazardous state to develop. For this reason, it is important to consider legal
aspects and fulfill the obligations that are prescribed by law.

Manufacturers, operators and distributors of machinery are required to abide by
the relevant laws ' and directives'!. From these must be implied the obligation to
ensure that machinery and plant are safe. “Safe” in this context means that such
machinery must not endanger the safety of, and certainly not cause injury to, anyone
at all. This also includes foreseeable operating errors or machine/plant malfunctions.
As a result of this obligation, it is essential to conduct thorough testing. Failure to
perform tests is extremely risky and may even be negligent.

10 E.g. product liability laws

! E.g. Machinery Directive, Directive 2006/42/EC of the European Parliament and of the Council of May 17, 2006
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5.5.1 Module test

To be able to perform module tests at all, it is essential that the software has a
modular structure. Object-oriented programming offers many advantages in this
respect. OOP is based on an object-focused view and thus has a modular concept on
condition that the design criteria of OOP have been observed. Objects are indepen-
dent, encapsulated modules capable of functioning independently and generally
have just one responsibility. Since the properties and functions of a module (object)
are precisely defined, it is easy to work out which tests need to be performed.

This kind of test object is normally embedded in a program written in the same pro-
gramming language. The sequence of the program in which the test is embedded is
divided into individual test steps (e.g. controlled by CASE). Each step is programmed
so that the interfaces of the object are supplied with precisely defined data, the object
is called and the feedback from the object is analyzed after the program has run.
The object feedback is compared with expected reactions. If the result is as expected,
the object has successfully completed this step. If the result is negative, the test is
aborted and the program stops. In this instance, the error in the object program
must be identified and rectified. It might sometimes be necessary to interrupt and
adapt the test if the object functionality has been expanded. If all test steps have
been conducted with a positive result, the complete test can be deemed a success.

Since data are supplied in steps, troubleshooting in the event of an error is relatively
easy. Since the process is easily reproducible, the developer can simply repeat the
module test with the input data that caused the error. If the developer gains new
knowledge during testing or debugging (test expansions become necessary), new
case branches can simply be added to the test steps to provide new input data and
the associated expected feedback.

This test should also include a scenario in which incorrect data are input because
this is an error that occurs frequently in practice. The module must be capable of
dealing with this possibility and reacting accordingly. The expected reactions can
be analyzed and evaluated in the test steps.

If interactive links to other objects are also integrated in the test object, the relevant
objects must of course be provided in the test environment. “Mock objects” are
used for this purpose. These implement interfaces, for example, and simulate the
requisite methods with selective, but simplified reaction (see chapter 3.5.7.3). It
may well be necessary to selectively manipulate this reaction in the test procedure.

As a general rule, these kinds of module or unit tests are carried out at an early stage
of the development process. They are thus frequently devised and applied by the
person who developed the software. These tests naturally take a certain amount of
time and effort and tie up development resources, but they make it easier to verify
that software will function reliably as it is developed. Some developers are not par-
ticularly fond of carrying out these tests and don’t do so conscientiously enough at
times. A big advantage of the program-embedded test concept described above is,
on the one hand, that it automates the test process and, on the other, that the tests
integrated in the program can execute after any software modification without the
developer having to spend any time on this “dull” task.
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5.5.2 Integration test

The next stage of the test program is the integration test. Following successful com-
pletion of the module tests, the purpose of the integration test is to verify that mutual
dependencies or interactions between different modules have been programmed
correctly. This test procedure principally focuses on the interaction between modules
and on the data exchange via interfaces that permits them to interact.

To keep this test to within manageable proportions, only those modules that are
to interact with one another should be selected for testing. All others should be
excluded. As with the module test, this test environment also only includes inter-
acting modules and the program code in which they are embedded. In other words,
it is necessary to create program code around the modules that enables testing of
the module interactions in individual test steps.

Like the module test, the integration test is performed in steps with appropriate
inputs and subsequent evaluation of the results. It takes more time and work to
evaluate the results of this test than the result of a module test. This is because large
volumes of data may need to be exchanged when modules interact. Checking the
correctness of this data naturally involves more work.

The design of the relationships between modules plays an important role for the
integration test. If a class has several relationships to other classes, it will implement
various different interfaces. Each interface constitutes a relationship that needs to
be tested. In order to maintain a clear test structure, the tester should set up the test
environment in such a way that only one relationship at a time is tested. In other
words, only the class in which the interface is implemented and the other class
which is addressed via this interface should be included in each test. On successful
completion of the tests, the next test on the second interface can commence. This
process continues until all of the implemented interfaces have been successfully
tested.

It should now be clear why the design of the classes is such an important factor in
determining the scope of tests to be performed. But classes are not designed with
testing in mind, but in order to meet specific technical requirements. The amount
of work involved in testing classes will highlight their design features, however, and
it might be worthwhile considering whether a simpler solution with fewer relation-
ships would be a better option.

Like the module test, the integration test is closely related to the development pro-
cess. Because any errors detected during testing normally require changes to the
program code. The integration test is normally carried out by the developers them-
selves or by an integration test department attached to the development department.
An automated testing system can be very helpful.

5.5.3 System test

The next stage of the test program is the system test. As the name suggests, this
involves testing of the entire system. The system test is the continuation of the many
integration tests carried out in the previous phase. With mechanical engineering
applications, it is generally the test that is performed during initial commissioning
of amachine or plant. But it might also be a test plant that comprises part-functions
of a larger plant. At least some of the required sensors and actuators are often
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installed in the system test environment. For this reason, system testing has a higher
hazard potential because mechanical parts of a plant or plant section are actually
moved during testing. The risk of injury is high and suitable measures must there-
fore be taken to minimize this risk. The module and integration tests performed in
advance of system testing also help to mitigate this risk.

At the beginning of the commissioning process, the wiring connections of the hard-
ware components are normally inspected to check that they are correct. But the
most important job of all is to check that the emergency switching off circuits are
functioning reliably including the travel limits of the moving axes. Furthermore,
the possible axis motion must be restricted so that there is sufficient travel reserve
between the mechanical limit stop and the emergency travel limit. Since we are
assuming that these precautions are already well known and widely practiced, we
won’t go into any further detail. What we are interested in is testing the software.

The first step in the software test process is to check the software components that
are responsible for switching on and powering up the control system. These software
components also include the code for initializing the connections between different
components. By checking that the initialization data are correct, it is possible to
ensure that individual software components will interact properly later on.

Even at this early stage, it will be necessary to pay some attention to the user inter-
faces and the HMI for displaying information. This will ensure that testing will be
supported by useful feedback information and displays during the subsequent
commissioning process. The HMI is also included in the modularization and inde-
pendence strategy. Loose coupling is provided by a defined interface to the HMI. The
modules store their data in this interface. No data will be transferred to the interface
until the modules become active and the tester will not then be overwhelmed by
error messages.

In exactly the same way as with the integration test, the system tester focuses on
commissioning a single subcomponent. This approach is made easier if the software
is modularized. The tester is then in a position to function-test individual software
modules step by step. After a component has been successfully tested, the test is
extended to include a further module and testing then continues. Thanks to the
integration test conducted beforehand, the interaction between mutually depen-
dent modules has already been tested and should not present any problems during
system testing.

Special attention must be paid to those modules that are responsible for issuing
enable signals and, above all, for shutting down the drives. If these are fully func-
tional, commissioning and optimization of the drives can commence. It may well
make sense at this stage to uncouple the motors from the mechanical system for
safety reasons. This naturally applies only to motors that cause mechanical compo-
nents to move. It is not therefore necessary, for example, to uncouple fans. Drives
are commissioned and optimized individually. Once they are functioning correctly,
the software components responsible for controlling the movements of the drives
are tested.

Once all individual component tests have been completed, the operational sequence
as a whole can be tested. Increased caution is required at this stage because there
is initially a risk of collision between mechanical components due to errors. Once
the whole operational sequence has been successfully tested, the plant response to
interruption events must be checked. The scenarios to be tested are, on the one hand,
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normal interruptions to the process flow as a result of the need to carry out visual
inspections in the process area, for example. On the other hand, they also include
the plant reaction to emergency trips or power failures and subsequent restart of
the process. It is important to remember to test specific operating errors and the
plant’s response to simulated defects of individual subcomponents. In such cases,
the plant must never react in such a way that it poses a hazard to people.

The system test data are documented in appropriate test data records in which the
results of individual tests and any other noteworthy events are recorded. These data
records provide the necessary proof that the machine is safe. These test results can
also help to improve the software if they flow back into the development process.

The system test is ultimately a preparatory step for acceptance testing. In other
words, the system test is a means of determining whether the plant meets the cus-
tomer’s requirements.

5.5.4 Acceptance test

The acceptance test is not the most important test, but it is the most significant of
all. Because it is the acceptance test that confirms that the customer’s requirements
have been fulfilled. In many cases, only a preliminary acceptance test is carried out.
This is generally followed by a trial production period during which the customer
has the opportunity to study the performance of the plant in more detail. Only after
the agreed trial production period is successfully completed does final acceptance
take place.

The acceptance process must be prepared with great care if it is to be successful. The
tests conducted in advance of acceptance are essential to its success. The customer
normally demands accurate verification that his or her requirements have been
implemented. This can be done only if a detailed record of the individual require-
ments has been drawn up. Both parties — customer and supplier - must agree with
the way that the requirements are formulated. Without documents and records of
this kind, it will be possible for either party to “reinterpret” the requirements and
the acceptance process will not run smoothly.

Generally speaking, the acceptance test should be a mere formality. By this stage,
all modules in the plant and their integration in the system should be completely
finished and fully functional. Anyone who delays settling outstanding issues until
the completion stage at the end customer’s premises is taking a great risk. This
also means that certain problems have either not been recognized or have been
suppressed at some much earlier time. Systematic testing ensures that difficulties of
this kind are promptly revealed so that appropriate solutions can be found. Proper
testing is therefore an absolute must.
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6 Additional Topics Relating to
Software Structuring

In addition to the core topics relating to object-oriented programming that we have
already discussed, IEC 61131-3 ED3 has also introduced other new constructs that are
useful mechanisms for facilitating the modularization and structuring of software.
According to the description in IEC, these are:

Directly represented variables, partially specified with “*”
(referred to below as I/O references)

Namespaces
References (referred to below as general references)

These are not yet implemented in SIMOTION Version V4.5. We will discuss these
constructs in relation to SIMOTION in the following chapters so that the overall
concept becomes clearer. Our readers will thus be able to make preparations for the
introduction of the planned functions.

6.1 /O references

If a developer wishes to write function blocks or classes for a general application and
it is necessary to link these to I/O components, then the input and output variables
must be transferred in the call interface (VAR_INPUT, VAR_OUTPUT or VAR_IN_OUT).

This is what we have also done in earlier examples in this book. It is obvious that this
approach will lead to really extensive call interfaces (see chapter 3.3.1) or interface
definitions (see chapter 3.5.9). Direct I/O access at a code point within the modules
cannot be implemented as a library-capable solution. It was precisely this type of pro-
gramming that we condemned in previous chapters about modularization because
itwould mean abandoning the strategy of making modules completely independent
of hardware variants.

The links to I/0 components are established via the address list in SIMOTION. The
I/Os defined in the hardware configuration are linked to freely definable variable
names in this editor. In other words, the user can interconnect each variable with
a hardware address.

To make the use of I/Os possible in modules without losing the independence
between modules and hardware, we can deploy the construct “partially specified,
directly represented variables” defined in the IEC standard. It allows us to declare
internal variables neutrally (without an address) in the declaration of function
blocks and classes with input and/or output variables, and to use them in the pro-
gram code. They no longer need to be transferred with VAR_INPUT, VAR_OUTPUT
or VAR_IN_OUT. It is only when the instance is defined that it becomes necessary to
combine the neutral variables with the actual I/O addresses. Since the instance of
the function block or class is initialized with the actual I/Os, the program reads or
writes the I/Os directly (without intermediate parameter transfer).
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6.1.1 Declaration

SIMOTION uses the asterisk operator “*” to declare I/O references in the variable
declaration of the FB or class (as formulated in IEC). In this way it is possible to
express an I/0 variable generally and link it later on.

The variables are specified in the VAR declaration blocks of FUNCTION_BLOCK or
CLASS. Only simple data types or arrays of simple data types may be entered in these
blocks (the same applies to the SIMOTION address list). It is not permissible to spec-
ify them in VAR_INPUT, VAR _IN_OUT and VAR_OUTPUT for FUNCTION_BLOCK. To
ensure that the I/O references can be assigned from an external source, the relevant
variable declaration block must either be declared PUBLIC, or at least released for
initialization (OVERRIDE see also 8.3.1).

// UNIT fb_def;
INTERFACE

FUNCTION BLOCK fb_iocopy;
END_INTERFACE

IMPLEMENTATION
FUNCTION_ BLOCK fb_iocopy
VAR PUBLIC
invar AT %$I* : INT; // declaration input variable
END_VAR
VAR PRIVATE OVERRIDE
outvar AT %Q* : INT; // declaration output variable
END_ VAR
outvar := invar; // example how to use them

END_FUNCTION_BLOCK
END_IMPLEMENTATION

Variables declared in this way can be used in methods or in the function block body.
The typical restrictions for I/O variables (INPUT cannot be written) apply. Using this
syntax, it is now possible to program function blocks or classes independently of
I/O addresses.

6.1.2 Linking references to I/0 variables

IEC 61131-3 ED3 makes provision for VAR_CONFIG blocks for connecting incom-
pletely specified I/O variables to the actual I/O variables. The actual I/Os are linked to
the instance-specific inputs in these blocks. This IEC requirement has been resolved
in a different way in SIMOTION. The same result has been achieved without needing
to implement VAR_CONFIG in SIMOTION.

The link to existing I/Os is programmed in the location in which the programmer
would normally declare a global instance. This is generally done in the VAR_GLOBAL
block in the interface section, or in the implementation section of an ST unit, or in
the VAR declaration block of a PROGRAM. It is here at the latest that the link to the
actual I/O entries from the address list must be established. It is of course possible
to link local instances declared in classes or function blocks to I/O variables. In
this case, however, the same I/O link then initially applies for all instances of the
relevant class types. The programmer needs to take this behavior into account when
aggregating modules in higher-level modules. We therefore recommend that the
initialization of I/O references should always be programmed at the highest level so
that neutrality can be maintained.
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The I/O variables declared in the address list (cf. chapter 8.9.5) are linked to the I/O
references of the classes and function blocks using the syntax of the instance-specific
initialization mechanism defined in IEC. It is therefore possible to initialize any
nested instances. This is also demonstrated by the initialization of gFbNested in the
following example in which FB fb_iocopy (programmed beforehand) is aggregated
in function block fb-nested.

INTERFACE
USES fb_def;
VAR_GLOBAL
gFbCopyl : fb iocopy := (invar := InputVarWo,
outvar := OutputVarWo) ;
END_VAR
END_INTERFACE
IMPLEMENTATION
FUNCTION_BLOCK fb_nested
VAR OVERRIDE
locInstl : fb_iocopy;
locInst2 : fb iocopy;
i : INT;
END_VAR
locInstl(); // call of the first instance
locInst2(); // call of the second instance
i := locInstl.invar; // the access of public I/O-references

// outside of the fb is possible
END_FUNCTION_ BLOCK

VAR GLOBAL
gFbCopy2 : fb _iocopy := ( invar := InputVarWz,
outvar := OutputVarW2) ;
gFbNested : fb nested := (locInstl:= (invar := InputVarW4,
outvar := OutputVarW4),
locInst2:= (invar := InputVarWe,
outvar := OutputVarWe) );
gFbCopy3 : fb _iocopy := ( invar := InputVarWs,
outvar := OutputVarWs) ;
END_ VAR
PROGRAM P1
VAR
progFbInst : fb iocopy := (invar := InputVarWwilo,
outvar := OutputVarWlo) ;
END_VAR

// program body

END_PROGRAM
END IMPLEMENTATION

The actual I/O variables — InputVarW0 to InputVarW10 and OutputVarWo to Out-
putVarW10 - were declared in this case in the address list of the SIMOTION device.

In order to visualize access to the I/O variables, the FB instance calls would also need
to be programmed, but these were omitted from the example to keep it simple.

Where I/O references are declared in the form described above, it is essential to link
them to I/O variables. This rule can become a particular burden when it comes to
implementing modular machine concepts in which certain sensors or actuators are
installed only as optional equipment. It is precisely for this kind of application that
SIMOTION has made provision for declaring I/0 references that have no compulsory
link to an I/O variable.
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FUNCTION BLOCK fb_ ioref

VAR PUBLIC
invar_opt AT $%$I* : INT := NULL; // optional connectable input var
outvar AT %Q* : INT; // declaration output var

END_ VAR

IF invar opt <> NULL THEN // check that I/O-var is wvalid
outvar := invar_opt; // example for access

END_IF;

END FUNCTION BLOCK

By initializing the I/O reference with NULL, it is identified as a reference “without
compulsory link” when it is declared. By programming a comparison with NULL
in the program code, it is possible to determine during runtime whether an I/O
reference is linked to an 1/0 variable. This extension has made it possible to program
a class or a function block with “optional link” I/O variables.

6.2 Namespaces

By offering a means of linking data type declarations and constants to classes and
function blocks, SIMOTION already has a mechanism for declaring these types of
definition outside the global namespace. If it is necessary, however, to go further
and group various classes and function blocks (for the provision of libraries, for
example), additional constructs are needed.

The user-defined namespace as defined by IEC 61131-3 is an example of this type of
construct. The following elements can be defined for SIMOTION in a user-defined
namespace:

m User-defined data types (via keyword TYPE)
= Functions, function blocks and classes

= Interfaces

® Global constants and variables

m Other user-defined namespaces

Namespaces can be nested. A nested namespace can be defined in various different
ways, as illustrated by the example below.

// UNIT ns_defs;
INTERFACE
NAMESPACE nsl // a simple namespace
FUNCTION fiinc;
FUNCTION INTERNAL f_add;
END NAMESPACE
NAMESPACE ns2.ns21 // a namespace declared by full qualified name
FUNCTION fiinc;
END_NAMESPACE
NAMESPACE ns3
NAMESPACE ns31 // a nested namespace declaration
VAR GLOBAL
g i : INT;
END_VAR
END_NAMESPACE
END NAMESPACE
END_INTERFACE
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IMPLEMENTATION

NAMESPACE nsl
FUNCTION INTERNAL f add : INT

VAR_INPUT

inl, in2 : INT;
END_VAR
f add := inl+in2;

END_FUNCTION
FUNCTION £ inc : INT

VAR _INPUT
in : INT;
END_ VAR
f inc := £ add(in, 1); // call without namespace name

END_FUNCTION

END NAMESPACE

NAMESPACE ns2.ns2l
FUNCTION £ inc : REAL

VAR _INPUT

in : REAL;
END_VAR
f inc := in +1;

END_FUNCTION
END NAMESPACE
PROGRAM prog

VAR
i : INT;
r : REAL;
END_ VAR
// example of a function call with namespace prefix
i :=nsl.f inc(i);
r := ns2.ns21.f inc(r);
// access to a global variable with namespace prefix
ns3.ns3l.g i := i;
// compile error , f add is INTERNAL in nsl
// 1 :=mnsl.f add(i,1);

END_PROGRAM

END IMPLEMENTATION

The keyword INTERNAL can be used to identify elements of a namespace that may
be used only within the namespace itself. The function f_add in namespace ns1 is an
example of this kind of element. It can be called in namespace ns1, but it cannot be
called from outside, for example, from the implementation of the program prog. The
following language elements can be identified as INTERNAL within a NAMESPACE:

TYPE (acts on all user-defined data types of the TYPE block)

VAR_GLOBAL, VAR_GLOBAL CONSTANT (acts on all variables within the
declaration block)

INTERFACE
FUNCTION, FUNCTION_BLOCK and CLASS
METHOD

VAR, VAR CONSTANT within CLASS and FUNCTION_BLOCK (acts on all
variables within the declaration block)

NAMESPACE (the keyword INTERNAL can only be used if the NAMESPACE is
subordinate to a global NAMESPACE)

The same namespaces can be specified multiple times within a single source and as
cross-source namespaces, allowing further functions to be added. Let’s take a look

221



6 Additional Topics Relating to Software Structuring

at the following example in which a function block is added in namespace nsl1. In
this case as well, the function f add from source ns_defs can be used because the
newly created function block belongs to the same namespace.

INTERFACE
USES ns_defs;
NAMESPACE nsl // extend the content of nsl with fb test
FUNCTION BLOCK fb test;
END_NAMESPACE
END INTERFACE
IMPLEMENTATION
NAMESPACE nsl
FUNCTION BLOCK fb_test
VAR INPUT
inl, in2 : INT;
END VAR
VAR_OUTPUT
out : INT;
END_VAR
out := f add(inl, in2); // call of INTERNAL function possible
END_FUNCTION BLOCK
END NAMESPACE
END_IMPLEMENTATION

Namespaces can be used to combine functionally interrelated elements. They thus
offer a range of different structuring options, particularly when it comes to creat-
ing libraries. Namespaces can also be used to implement machine modules in the
application.

While namespaces are very useful for structuring the software, one of their main
advantages is that they also help to prevent name collisions in the global scope.
This is a particularly helpful feature when software needs to be extended because it
prevents collisions between identifiers which can lead to errors.

6.3 General references

Virtually every programming language has mechanisms that allow the programmer
to implement references to any data in the computer’s memory without creating a
copy of it. These mechanisms are known as a “pointer” or “reference”. In the con-
trol programming concept defined according to IEC 61131, use of references was
restricted to the transfer of parameters to POUs (program organization units) using
VAR_IN_OUT until the 3rd Edition was approved. No special language constructs
were required. The current edition also includes references of a general kind. These
can be applied type-safely to any data element. By contrast with pointers which
typically allow arithmetic operations (“pointer arithmetic”) and conversion opera-
tions (“pointer casts”), type-safe references ensure that program behaviors are well
defined. This is a very important feature, particularly with respect to control systems
in which runtime errors must always be prevented. The restriction laid down by the
IEC that references must not point to temporary data elements further reduces the
risk that they will be used incorrectly. It is therefore possible to completely eliminate
those runtime errors caused by problems that are difficult to pinpoint.

222



6.3 General references

All of these aspects have been taken into account in the implementation of the ref-
erences for SIMOTION. It has been ensured that references can only ever point to
a valid storage space of the correct data type, or that they are assigned the value
NULL. This characteristic is guaranteed by the creation system.

6.3.1 Declaration and initialization

A reference is a variable that does not have a value itself, but is implemented as
the physical address of where a variable is stored in memory. When defining the
reference, the programmer specifies the data type of the referenced variable. The
keyword REF_TO is used to define a reference.

INTERFACE
TYPE
S1 : STRUCT
X : INT;
y : REAL;
END STRUCT;
refIntType : REF_TO INT; // type-declaration reference to INT
END TYPE
VAR_GLOBAL
gRefIntl : REF _TO INT; // variable, reference to INT
gRefInt2 : refIntType; // like above but by type-declaration
gRefS1 : REF TO S1; // variable, reference to S1
END_ VAR
END INTERFACE

As the above example illustrates, references can be declared both as user-defined
data types and as variables. References can also be used within structures or as an
ARRAY. It is not permissible to declare reference variables in RETAIN declarations.

References can point type-safely to the following elements in SIMOTION:
m Variables of standard data types (BOOL, BYTE, INT, ...)
m Variables of user-defined data types (enums, structures, arrays)
= Instances of classes or function blocks

If areference variable is created, the system initializes it with the value “NULL". This
means that while the reference itself exists, it does not yet point to any valid storage
location (it is thus assigned the invalid address NULL). It is of course possible to
program a reference variable to point to a valid variable of the correct data type at
the same time the reference variable is defined. The standard function REF() is used
to create a reference.

VAR_GLOBAL

gVarInt : INT;

gRefInt : REF_TO INT := REF(gVarInt);
END_ VAR

Variable gRefInt in the above example points (according to its declaration) to vari-
able gVarInt. During program runtime, the current reference may be changed by
reassignment to another reference of type INT or by assignment to another variable
altogether.
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It is possible to initialize reference variables with a value other than “NULL” for
global variables and all the static variables of POUs. Temporary variables and ele-
ments in TYPE declarations may only be initialized with the value “NULL”.

6.3.2 Working with references

Working with references in the user program involves various tasks which can be
roughly broken down into the following categories:

m Creation of the reference to an existing variable using the standard function
REF()

m Access to the content of the reference using the caret-symbol “A” (also
referred to as “dereferencing”)

= Standard operations on references such as assignment and comparison
m Special operations with references of classes such as the dynamic cast “?="

As we mentioned briefly in the previous section, a reference is created with the
standard function REF(). REF() may be programmed anywhere in the code for the
purpose of initialization or implementation. It is permissible to specify all the static
variables of POUs or global variables as arguments for the function REF().

Once we have created a reference with which a pointer can be transported to a data
element (so obviating the need to copy the data), we just need to figure out how to
access the data. The IEC has defined the caret operator “A” for this purpose.

PROGRAM MyReference

VAR

A, B : INT;

result : INT;

refl : REF_TO INT;
END_ VAR

A:=5; // A contains the value 5
B:=10; // B contains the value 10

result := A + B; // result has value 15
refI = REF(A); // refl points to A

refI1”® = 3; // A contains the value 3
result := A + B; // result has value 13
result := refI” + B; // result has value 13 too
refl = REF(B) ; // refl points now to B
result := refI”™ + B; // result has value 20

END_PROGRAM

To ensure that a reference is used safely, the validity of its assigned address needs
to be checked by comparison with the value “NULL”". It is always advisable to do this
prior to dereferencing in cases where references are deployed as transfer param-
eters, or when no measures have been implemented in the program to guarantee
that a reference will have a valid initialization or assignment value. Comparing
addresses is a simple mechanism for determining whether two different references
point to the same variable.

PROGRAM RefCheck

VAR
A, B : INT := 5;
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refl : REF_TO INT := NULL;
ref2 : REF_TO INT := REF(B);
bTest : BOOL;

END_VAR

// initialization of refl
IF refl = NULL THEN

refl := REF(A);
END_IF;
bTest := refl = ref2; // bTest FALSE; refl points to A, ref2 to B
bTest := refl™ = ref2”; // bTest TRUE; values of A and B are the same
refl := REF(B);
bTest := refl = ref2; // bTest TRUE; refl and ref2 points to B
refl := NULL;
bTest := refl = ref2; // bTest FALSE; refl is NULL, ref2 points to B

IF refl <> NULL THEN
refl”:= 10; // never executed; test with NULL
// prevents the execution fault
END_IF;
END PROGRAM

Like other variables, references may also be assigned to one another. In this case,
the data reference is copied. In other words, the stored address is copied rather than
the data stored at the address. References can normally only be assigned to one
another if they point to the same data type. No provision is made for implicit type
conversions of the kind used for numerical standard data types, with one exception.
Class references are subject to additional rules relating to implicit type conversion
that have arisen as a result of inheritance between classes (these rules are also
generally referred to as polymorphism). It is thus possible to assign a reference that
points to a derived class to a reference that points to a base class. This rule applies
in the same way for transfer to VAR_IN_OUT variables of type CLASS and can also be
used in version 4.5 even before the introduction of general references. This again
illustrates that references are formed implicitly when variables are transferred with
VAR_IN_OUT

CLASS clBase (* ... *) END_CLASS
CLASS clDerived EXTENDS clBase (* ... *) END CLASS
FUNCTION_BLOCK fbRef
VAR _IN OUT
cl_io : clBase;
END VAR

(* ... %)

END FUNCTION_ BLOCK

PROGRAM classRef
VAR
cl 1 : clBase;
cl_2 : clDerived;
fb_1 : fbRef;

ref base : REF_TO clBase;
ref derived : REF TO clDerived;
END_VAR

// polymorphy with VAR IN OUT
fb 1(cl_io := cl_ 1);
fb 1(cl io := cl_2);
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// correct type of the CLASS-reference

ref base := REF(cl_1);

ref derived := REF(cl_2);

// polymorphy with CLASS-references
ref base := REF(cl_2);

ref base := ref derived;

END PROGRAM

References can be used as transfer parameters and as VAR_OUTPUT at functions,
function blocks and methods. It is thus possible, for example, to supply references to
instance data externally and then to change them. The following example illustrates
how a reference to a private class instance can be accessed by an OUTPUT variable
and can therefore be changed outside the FB implementation.

CLASS clBase

VAR PUBLIC v_pub : INT; END VAR
END_CLASS
CLASS clDerived EXTENDS clBase (* ... *)
END_CLASS

FUNCTION BLOCK fbRef

VAR_INPUT cl_in : REF_TO clBase; END VAR
VAR OUTPUT cl out : REF TO clBase; END VAR
VAR cl inst : clDerived; END_ VAR
IF Cl_in <> NULL THEN
cl in®.v pub := 3; // access by Input-reference
END IF;
cl out := REF(cl inst);

END_FUNCTION_BLOCK

PROGRAM classRef

VAR cl 1 : clBase;

cl 2 : clDerived;

fb 1 : fbRef; END VAR
VAR_TEMP ref _base: REF_TO clBase; END VAR
// polymorphy with REF TO in VAR INPUT
fb_1(cl_in := REF(cl_1));
fb 1(cl_in := REF(cl_2));
// access to a private fb-member by Output-Reference
ref _base := fb_1.cl_out;
IF (NULL <> fb 1.cl_out) THEN

fb 1.cl out™.v_pub := 2;

END_IF;

END PROGRAM

Apart from the assignment of class references using the classic assignment operator
(:=), there is another interesting operation that can be performed with class refer-
ences. This is the dynamic type conversion, or the “dynamic cast” using the operator
“?=" according to the IEC. The programmer can use this operation to attempt to
obtain a reference to a derived class from a valid reference of the base class. If the
class instance behind the reference is actually of the correct type, the operation will
create a valid reference in the target variable, otherwise the cast will return NULL.
The behavior described here is similar to the dynamic type conversion behavior
between interfaces (chapter 7.2.7). In this case as well, the type information stored in
the SIMOTION Runtime system about a class instance is used to determine whether a
specific interface is implemented in the class. In exactly the same way, it is possible
to determine the type of a class instance during runtime and of course use this
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information to work out which base classes the class instance was derived from.
It is even possible to identify the implementation of the class associated with an
interface during runtime.

CLASS clBase (* ... *) END_CLASS
CLASS clDerived EXTENDS clBase (* ... *) END CLASS

PROGRAM tryRef

VAR
cl_ 1 : clBase;
cl 2 : clDerived;
ref_base : REF _TO clBase;
ref derived : REF TO clDerived;
END VAR
ref base := REF(cl_2);
ref derived := REF(cl_2);

// assignment attempt
ref_derived ?= ref base;
IF (ref derived <> NULL) THEN
; // access to cl derived possible wihout execution fault
END_IF;
END PROGRAM

References constitute a powerful tool for efficient programming and can also assist
with the structuring of the software. When working with class references in particu-
lar, the programmer will discover a huge scope of options (similar to those provided
by interfaces) for separating software components. To provide a comprehensive
overview of all the applications of references, we would need to show a very large
number of examples but have decided not to do this here. In this chapter, we have
discussed the fundamental aspects of references to give our readers an approximate
picture of their potential applications.
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7 Description of the Extended Functionality
in SIMOTION

In this chapter we are going to explain how the object-oriented programming mech-
anisms implemented in SIMOTION have been extended beyond the scope defined
in IEC 61131-3 ED3. This chapter documents to some extent the ways in which the
implementation of OOP in SIMOTION has been modified and extended by compar-
ison with the IEC standard.

The SIMOTION extensions are designed to make programming significantly easier.
Nonetheless, OOP can be used in SIMOTION exactly as prescribed by the IEC stan-
dard. In this case, the SIMOTION extensions cannot be used.

The source text examples in the following sections merely serve to describe the
syntactic options and we have therefore kept them brief. The associated functional
explanations and application examples can be found in the first chapters of this
book.

7.1 General extensions to the programming model

According to IEC 61131-3 ED3, there are two methods of implementing OOP. One
possible option is to add OOP mechanisms to function blocks. The other option is to
introduce classes as an addition or alternative to function blocks. SIMOTION decided
to use object-oriented features (derivations, implementation of interfaces, method
override mechanisms, etc.) only in conjunction with classes. A line has thus been
deliberately drawn between object-oriented features and general extensions of the
procedural programming technique.

But even in relation to the classic programming method, the scope for software
structuring has been expanded. For this purpose, SIMOTION-specific features such
as the declaration of local constants and data types in function blocks have been
developed further.

The following new constructs for function blocks have been added:

m The programmer can use the access identifier PUBLIC for constants,
user-defined data types and static variables that are declared in the FB
context.

m The static data of function block instances can be initialized on an
instance-specific basis.

m Private static data can be released for initialization via OVERRIDE.
= Methods can be structured more finely using methods.

We have given a more detailed description of these constructs in the following sec-
tion because they are identically implemented for function blocks and classes.
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It is not admissible to implement derivations or override mechanisms for function
blocks, nor is it permissible for function blocks to implement interfaces. This will
ensure that an FB can be used and treated in the same way it has been in the past.
SIMOTION treats all calls as static calls, regardless of whether these are implemented
by specification of the instance or are programmed in other methods of the function
block.

By utilizing these features, it will be possible to structure software more effectively
by binding data types and constants to function blocks on the one hand, and by
distributing the code among methods on the other. There is no need to rethink
anything with respect to definition and use. A positive side effect of this approach
is that these features are available for all SIMOTION-RT versions with SCOUT V4.5.

7.2 Classes in SIMOTION

It was necessary to expand the runtime system of the SIMOTION controller in certain
respects to allow implementation of object-oriented programming with classes. For
this reason, it will only be possible to use classes on controllers with kernel version
V4.5.

SIMOTION supports the following constructs for use with classes:

Declaration of constants, user-defined data types and static variables with
access identifier (PRIVATE, PROTECTED, PUBLIC)

Definition and use of methods.

Classes may be derived from other classes.

Implementation of interfaces in classes.

Definition of methods or classes, including ABSTRACT methods and classes.

Provision of runtime type information to support type conversions during
runtime (operator “?=").

Instance-specific initialization of the static data of class instances.
Enabling of non-PUBLIC static data for initialization by OVERRIDE.

It is only when classes are implemented and used that the programmer needs to
rethink the approach according to object-oriented principles. The programmer must
anticipate (or take deliberate measures to prevent) that method overrides will take
effect, or that overrides might expand or modify the program code that he or she
has implemented.

7.2.1 Constants and user-defined data types in classes

One of the additional features of SIMOTION that is not defined in the IEC standard is
that it allows the definition of constants and user-defined data types with a specified
access identifier within classes. It is thus possible to define the required data types
in the class or class methods directly in the scope of the class. They are linked to the
namespace of the class. It is thus that only locally required data types and constant
values do not need to be declared globally or in special namespaces. If they are
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assigned the access identifier PUBLIC, then they can be accessed via the class name.
In this instance, the class name acts like a namespace identifier. This feature is also
available for function blocks.

CLASS cl_typedef
VAR CONSTANT PUBLIC
end_array : DINT := 3;
END VAR
TYPE PUBLIC
t_array : ARRAY [0..end_array] OF INT;
END TYPE
VAR // usage of local type defined in the own class
v_array : t_array;
END VAR
END_CLASS
CLASS cl_other
VAR // usage of type t_array defined in class cl_ typedef
v_test : cl_typedef.t_ array;
END VAR
METHOD m : VOID
VAR
idx : DINT;
END VAR
FOR idx := 0 TO cl_typedef.end array DO
; // iterate through the elements
END_FOR;
END_METHOD
END CLASS

7.2.2 Naming of variables in classes and methods

With regard to variable names within methods (VAR_INPUT, VAR_OUTPUT etc.), the
IEC standard stipulates that these must not coincide with the names of the static
variables of the class.

This rule is very inconvenient, particularly with respect to the extension of base
classes or the implementation of interfaces to classes that are also derived from
other classes. When the programmer chooses names, therefore, he or she not only
has to guarantee that the non-PRIVATE instance data and methods have unique
names, but must also take into account all method arguments as well. This kind of
rule will quickly lead to error scenarios during compilation that are unmanageable
and difficult to understand.

SIMOTION has decided to implement a different strategy. Each method in SIMOTION
has its own scope that is subordinate to the scope of the CLASS or the INTERFACE.
This rule is also commonly applied in other programming languages. The names of
variables within methods (each variable in the method must naturally have a unique
name) are selected independently of the names assigned to the static instance data
of the class and the derived subclasses.

In order to gain access to the instance data of the class in cases where the same name
has been assigned more than once, the instance data can be clearly identified for
reading or writing by the fact that the data name is preceded by the class name. This
rule applies in the same manner to the methods of function blocks. It is not possible
to access the variables of the class with THIS (as it is in C++ for example). According
to the IEC definition, THIS is reserved exclusively for method calls.
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CLASS cl_names
VAR
v_test : INT;
END_ VAR
METHOD PUBLIC m
VAR_OUTPUT
v_test : LREAL;
END_ VAR
v_test := LREAL#1.0; // access to OUTPUT-variable
cl names.v_test INT#2; // access to CLASS-variable
END METHOD
END_CLASS

7.2.3 Method calls

The standard provides three options for method calls:
= External method call using the instance name,
® Internal method call using THIS,
® Internal method call using SUPER.

The IEC standard stipulates that the internal method call using THIS must be
implemented with dynamic binding. Unlike existing object-oriented programming
languages, there is no option in the IEC standard for programming static calls of
methods defined in the class independently of existing overrides.

SIMOTION offers two options for doing the latter (see also chapter 3.3.6). One variant
allows methods implemented in the class to be called only via their method name
(without a preceding THIS or SUPER). The other variant allows any implementation
of abase class method to be called by specifying the class name first. In this instance,
the compiler selects (in a similar way to a SUPER call) the effective method to call in
the specified class implementation during compilation.

CLASS cl_base
METHOD m_b ; END_METHOD
METHOD m_x ; END METHOD
END_CLASS

CLASS cl_derived EXTENDS cl_base
METHOD OVERRIDE m b ; END METHOD
METHOD PUBLIC m_testDerived

THIS.m b () ; // call of implementation of cl derived
// or of cl upper (depends on the instance)
SUPER.m_b () ; // call of implementation of cl base
m _b(); // call of implementation of cl_derived
SUPER.m_x() ; // call of implementation of cl base
END_METHOD
END CLASS

CLASS cl upper EXTENDS cl derived
METHOD OVERRIDE m_b ; END_ METHOD
METHOD OVERRIDE m _x ; END METHOD
METHOD PUBLIC m_testUpper

SUPER.m_b () ; // call of implementation of cl derived

m _b(); // call of implementation of von cl_ upper
cl derived.m b(); // call of implementation of von cl derived
cl base.m _b(); // call of implementation of von cl base
SUPER.m_x() ; // call of implementation of von cl base

m x(); // call of implementation of cl_upper
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cl derived.m x(); // call of implementation of cl base
cl _base.m_x(); // call of implementation of cl base
END METHOD
END_CLASS

PROGRAM prog

VAR
v_clderived : cl _derived;
v_clupper : cl upper;
END_VAR
v_clderived.m_testDerived(); // method call via instance

v_clupper.m_testDerived() ;
END PROGRAM

The SIMOTION compiler generates dynamic calls for methods only when necessary.
It is therefore only calls using interfaces, calls using THIS and calls to class instances
transferred via VAR_IN_OUT that are generated dynamically today. Calls to class
references are also generated dynamically.

7.2.4 FINAL for methods and classes

Methods or even entire classes can be declared as FINAL in order to protect the
methods against being overridden or prevent the derivation of subclasses from the
classes. Preventing the overriding of methods or the derivation of subclasses should
be done for functional reasons.

This also has a positive side effect: The SIMOTION compiler can use this information
to determine which method calls actually need to be generated dynamically. For this
reason, a FINAL declaration can also help to improve runtime performance at those
points where dynamic calls would normally need to be executed.

7.2.5 Declaration of abstract classes and methods

If a method is identified as ABSTRACT in a class, SIMOTION automatically transfers
this characteristic to the class. It is not necessary to identify the class as ABSTRACT
as well. This also applies to all derived subclasses provided that not all the abstract
methods have a valid implementation. Furthermore, a class can also be declared
directly as ABSTRACT even if all the methods it contains have an implementation.
A class identification of this kind is not automatically transferred to the subclasses
derived from it.

// abstract CLASS because method is abstract
CLASS cl_Not_Instantiable 1

METHOD ABSTRACT m_abstract

END_METHOD
END_CLASS

// abstract derived CLASS, method of base class is still abstract
CLASS cl_Not_Instantiable_ Ext EXTENDS cl_Not_Instantiable_ 1
END_CLASS

// abstract CLASS by declaration
CLASS ABSTRACT cl_Not_Instantiable_2
METHOD m_impl
; // code of the method
END_METHOD
END_CLASS
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// CLASS is instantiable
CLASS cl_Instantiable EXTENDS cl Not Instantiable 2
END CLASS

7.2.6 Interface implementation and class derivations

If a class implements an interface using the keyword IMPLEMENTS, then SIMOTION
requires that all methods of the interface must either be implemented or at least
identified as ABSTRACT in the class. A combination of derivation and INTERFACE
implementation is supported. A method that is already implemented in a base class
can also be bound to an INTERFACE only in a subclass derived from the base class.
This can only be done, of course, if the method signatures (i.e. all method arguments
with name and data type) are the same.

INTERFACE IArith // interface-definition with 3 methods

METHOD m_add : INT
VAR_INPUT inl, in2 : INT; END_VAR
END METHOD

METHOD m_sub : INT
VAR _INPUT inl, in2 : INT; END VAR
END_METHOD
METHOD m mul : INT
VAR_INPUT inl, in2 : INT; END_VAR
END_METHOD
END_INTERFACE

CLASS cl_add // CLASS implements add
METHOD PUBLIC m_add : INT
VAR_INPUT inl, in2 : INT; END_VAR
m_add := inl + in2;
END_METHOD
END CLASS

CLASS cl_addsub EXTENDS cl add IMPLEMENTS IArith
// use the base-class implementation to execute add-operation

METHOD PUBLIC OVERRIDE m_add : INT
VAR_INPUT inl, in2 : INT; END_VAR
m_add := cl_add.m _add(inl, in2);

END_METHOD

// sub is implemented here

METHOD PUBLIC m_sub : INT
VAR INPUT inl, in2 : INT; END VAR
m_sub := inl - in2;

END METHOD

// mul is not implemented

METHOD PUBLIC ABSTRACT m mul : INT
VAR_INPUT inl, in2 : INT; END_VAR

END METHOD

END CLASS

CLASS cl_arith EXTENDS cl_addsub
// first implementation of mul in derived class
METHOD PUBLIC OVERRIDE m mul : INT
VAR INPUT inl, in2 : INT; END VAR
m mul := inl * in2;
END METHOD
END CLASS
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A class cannot implement two interfaces both containing a method having the same
name but different signatures.

INTERFACE IArithReal
METHOD mﬁdiv : REAL
VAR_INPUT inl, in2 : REAL; END_VAR
END METHOD
METHOD m mul : REAL // method with different signature to IArith
VAR INPUT inl, in2 : REAL; END VAR
END_METHOD
END INTERFACE
// declaration is not possible; m mul has different signature
// in IArith and IArithReal
CLASS cl_arith all EXTENDS cl_arith IMPLEMENTS IArithReal
END CLASS

7.2.7 Type conversions for classes and interfaces

Implicit type conversions are defined for classes and interfaces as they are for
the standard data types and the Technology Objects. The implicit type conversion
options are based on the derivation hierarchy and the IMPLEMENTS specifications.

Implicit type conversions are possible for class instances when they are transferred
to VAR _IN_OUT variables. An implicit type conversion is possible for interface vari-
ables if the interfaces are derived from one another. Another means of implementing
implicit type conversion is to assign class instances to interface variables.

INTERFACE iface base (* ... *)
END_INTERFACE

INTERFACE iface_derived EXTENDS iface_base (* ... %)
END_INTERFACE

CLASS cl _base IMPLEMENTS iface base (* ... *)

END_CLASS

CLASS cl_derived EXTENDS cl_base IMPLEMENTS iface_derived (* ... *)
END_CLASS

FUNCTION f_ifbase : VOID
VAR_INPUT in : iface_base; END_VAR ; (* ... *)
END_FUNCTION

FUNCTION f clbase : VOID
VAR_IN_OUT io : cl_base; END_VAR ; (* ... *)
END_FUNCTION

CLASS cl implicit cast_instances

VAR
v_clbase : cl_base;
v_clderived : cl_derived;
v_ifbase : iface base;
v_ifderived : iface_derived;
END VAR

METHOD m_test
// Implicit casts between INTERFACES

v_ifbase := v_ifderived;

f ifbase( in := v_ifderived );

// Implicit casts between classes and INTERFACES
v_ifbase := v_clbase;

v_ifbase := v_clderived;
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f ifbase( in := v_clbase )i
f ifbase( in := v_clderived );
// Implicit cast classes using VAR IN OUT
f clbase( io := v_clderived );
END METHOD
END_CLASS

THIS can be used in method implementations as a reference to the class instance in
which the method is defined. A reference to the class in which the method is defined
can thus be passed to other functions and methods.

CLASS cl _implicit cast this EXTENDS cl derived
VAR
v_ifbase : iface base;
END VAR
METHOD m_test
// Implicit casts using THIS

v_ifbase := THIS;
f ifbase( in := THIS );
f clbase( io := THIS );
END_METHOD
END_CLASS

In addition to implicit type conversions, SIMOTION also supports type conversions
between interfaces based on type information stored in the runtime system of the
controller and supplied by the operator “?>=". In this case, the compiler does not check
whether this kind of conversion can be meaningfully executed. Instead, a check is
performed during runtime to determine whether this is possible. More detailed
information about its application can be found in chapter 3.5.5.

INTERFACE ifacel (* ... %)
END_INTERFACE

INTERFACE iface2 (* ... *)
END INTERFACE

CLASS cl_base (* ... *)
END_CLASS

CLASS cl_try assign
VAR
v_test : iface2;
END_VAR
METHOD m_test
VAR INPUT
vi_ifacel : ifacel;
END_VAR
VAR _IN OUT
vio _cl : cl_base;
END VAR
// usage of the Assignment attempt operator
v_test ?= vi_ifacel;
v_test ?= vio_cl;
v_test ?= THIS;
END_METHOD
END CLASS

The scope of associated potential will increase significantly again when general
references become available. Conversion options between class references and from
interfaces to class references will then be added.
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7.3 Instantiation of classes and function blocks

7.3.1 User-defined initialization of instances

If class instances are set up, the static variables of the class can be initialized specif-
ically. In this case, the IEC standard currently stipulates that only PUBLIC variables
may be initialized. In order to offer more flexibility in this respect, SIMOTION has
decided that a variable declaration block that is PROTECTED or even PRIVATE may
be released for initialization by an OVERRIDE. This allows setting values to be input
irrespective of the level of protection of the instance data. This feature can also be
used with function blocks.

CLASS cl_data
VAR PRIVATE OVERRIDE
v_priv : INT := 5;
END_VAR
END_CLASS

// redefinition of initial values of the base class

CLASS cl_derived EXTENDS cl_data := (v_priv:= 10)
VAR PUBLIC
v_pub : INT := 1;
END_VAR
END CLASS

PROGRAM prog
VAR // definition of initial-values in instance declaration

v_cldatal : cl_data;
// v_cldatal.v priv = 5
v_cldata2 : cl_data = (v_priv := 15);

// v_cldata2.v priv = 5

v_clderivedl : cl_derived;
// v_clderivedl.cl derived.
v_clderived2 : cl_derived
// v_clderivedl.cl derived.
v_clderived3 : cl_derived

priv = 10; v_clderivedl.v pub = 1
(v_pub:= 2);

priv = 10; v_clderivedl.v _pub = 2
(v_pub:= 3, cl _data:=
(v_priv:=20));

p

// v_clderivedl.cl derived.v _priv = 20; v_clderivedl.v_pub = 3

END VAR
i

END_PROGRAM

The instance-specific initialization mechanism defined in the IEC standard should
be regarded as a substitute for the constructors that are normally provided in other
programming languages. This mechanism can be used to initialize variables with
a standard data type as well as interface variables contained in the instance data
and variables containing references to Technology Objects. For variables of this
type, measures can be taken in SIMOTION to ensure that initialization is performed
compulsorily when the instance is created. The “*” operator is used to identify the
specified value. All instance data identified in this way for global variables and vari-
ables within programs are monitored during compilation to ensure that they are
initialized. Initialization of the static instance data of function blocks can also be
forced in this way.

INTERFACE iface
(x ... %)

END_INTERFACE
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CLASS cl_ifimpl IMPLEMENTS iface
(x ... %)
END CLASS

CLASS cl_init
VAR PRIVATE OVERRIDE

v_iface : iface 1=k,
v_toref : ANYOBJECT := *;
END VAR
END CLASS

CLASS cl_embed
VAR PRIVATE OVERRIDE
v_clpriv : cl_init; // we do not need an initial value here
END VAR
END_CLASS

PROGRAM prog

VAR
v_ifImpl : cl_ifimpl;
// we need an initial value in a PROGRAM
v_clembed : cl embed := ( v_clpriv:= ( v_iface := v_ifImpl,
v_toref := Achse 1 ));
END_VAR
END_PROGRAM
VAR_GLOBAL
vg ifImpl : cl ifimpl;
// we need an initial value on global instances
vg clembed : cl embed := ( v_clpriv := ( v_iface := vg ifImpl,
v_toref := Achse 1 )) i
END_VAR

If we look at the specification of the initialization values in the previous example,
we will notice that the specified values are much more difficult to read because
they are typed on separate “parenthesis levels”. To remedy this problem, SIMOTION
allows the programmer to write the value specifications for structured elements in
a similarly compact form to the code section. The initialization value can thus be
specified in an alternative form as shown below.

VAR_GLOBAL
// alternative syntax to initialize structured elements
vg _clembed : cl _embed := ( v_clpriv.v_iface := vg ifImpl,
v_clpriv.v_toref := Achse_1);
END_VAR

This method of specifying initialization values is not restricted solely to class and
function block instances. Even structures can be initialized in this way. Since the
extension is limited to the multi-stage selection of the structure component, it is fully
compatible with the IEC method of specifying initialization values, and mixtures of
both methods can be used.

7.3.2 Initialization of interface variables

In SIMOTION, interface variables can always be initialized first with the default value
NULL. It is moreover possible to initialize static variables in classes and function
blocks, and INPUT variables with class instances. In this case, the instances must
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either be globally accessible or belong to the instance data of the class in which they
are defined or of the function block.

INTERFACE iface (* ... *)
END INTERFACE

CLASS ¢l impl IMPLEMENTS iface (* ... *)
END_CLASS
VAR_GLOBAL
vg cl : cl impl;
END_ VAR

CLASS cl_iface_init

VAR
v_loc : cl _impl;
v_ifl : iface := vg cl; // Init with global instance
v_if2 : iface := v_loc; // Init with local instance of own class
END VAR
METHOD m_test
VAR INPUT
// global instance as a default argument of a method
vin ifacel : iface := vg cl;
// local instance as a default argument of a method
vin iface2 : iface := v_loc;
END_VAR
END_METHOD
END CLASS

7.3.3 Creating class and function block instances

The IEC standard makes provision for including function blocks and classes in
structures. But it prohibits, for example, the creation of function blocks and classes
in VAR_TEMP declaration subsections. In some instances, it is not possible to copy
structures with the instances they contain. If a system function block reserves
resources in the runtime environment, for example, some means of creating the
copy needs to be found. This ultimately makes it necessary to introduce constructors,
copy constructors and assignment operators that would need to be programmed
by the user.

So as to define practicable rules for the user, SIMOTION does not make provision for
the use of function block and class instances in user-defined data types (structures
and array definitions). This rule has been devised to ensure that user-defined data
types can be freely used as normal. It also prevents the copying of class and function
block instances. The rule that classes may not be used in structures does not impose
any limitations on the user. A good solution in this case is to use a class without
methods and containing variables that are all declared PUBLIC as a quasi substitute.

Class and function block instances can be set up in other classes, function blocks
and programs only as static or array variables. They can also be instantiated as
global variables.

It should be noted that these rules will not apply to references to classes and function
blocks. Like interface variables, these can also be used as elements of user-defined
data types.
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7.3.4 RETAIN data in classes and function blocks

The RETAIN property can also be assigned to static instance data in classes, func-
tion blocks and programs. The values of these variables are automatically stored in
non-volatile memory and read back during restart. Declaration of such variables as
PUBLIC is not supported. If they need to be accessed from an external source, they
can always be reached by implementation of appropriate methods. It is important
to note that the storage space for this kind of data is limited on a control system.
Large volumes of this kind of data should not therefore be stored.

CLASS cl_retain var
VAR
v_loc : INT;
END_VAR
VAR RETAIN
v_retain : INT;
END VAR
END CLASS

If a class or a function block has a RETAIN component, instances of it cannot be
created in the RETAIN sections of other classes or globally as RETAIN. It is also
impossible to use elements that do not contain any restorable component in RETAIN
sections. To give an example, this would apply to structures that contain nothing
but interface variables.

7.3.5 Arrays of variable length

SIMOTION users have for a number of years been able to use arrays with an index
range that is unknown when the program is compiled. The associated language
construct has now been adopted in the 3rd edition of the IEC standard and is now
also available as a standards-compatible feature. SIMOTION supports variable-length
arrays within VAR IN_OUT for functions, function blocks and methods and at
VAR_INPUT of functions and methods. It has been decided not to support vari-
able-length arrays at VAR_OUTPUT because it cannot be ensured that OUTPUT vari-
ables will be supplied correctly when they are called. Since there are no differences
in behavior vis-a-vis VAR_IN_OUT, this does not restrict the user in any way.

FUNCTION f copyarray : INT

VAR_INPUT

v_in : ARRAY [*] OF INT;
END_ VAR
VAR_IN_OUT

v_out : ARRAY [*] OF INT;
END_VAR
VAR_TEMP

idx1, idx2 : DINT;
END_ VAR
idx1l := LOWER_BOUND(arr := v_in);
idx2 := LOWER_BOUND (arr := v_out);
WHILE ( idxl <= UPPER BOUND (arr := v_in) AND

idx2 <= UPPER_BOUND (arr := v_out) ) DO

v_out [idx2] v_in[idx1];

idx1l := idx1l + 1;

idx2 := idx2 + 1;

f _copyarray := f_copyarray + 1;
END WHILE;

END_FUNCTION
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7.4 Tips for creating compatible and efficient software

7.4.1 Methods and function calls

Methods and functions can be called by various different methods. It is possible,
on the one hand, to supply only values to all the INPUT and IN_OUT variables in
the order in which they are declared in the call. On the other hand, the relevant
parameter name assigned to the value can also be specified in the call. Using this
form of call means that OUTPUT parameters can also be read and that parameters
to which defaults are assigned in the declaration can be omitted from the call.

After the explanation we have given above, we recommend the second form of call.
Apart from the additional options for assigning OUTPUT parameters and using
default values, there are, however, other reasons for recommending this form of call.

= Erroneous assignments in calls are prevented because there is a clear
assignment between the argument and value.

®m Additional arguments with default value can be added to functions and
methods without requiring the adjustment of all call points.

= If the meaning of a parameter is changed, all call points can be easily found
simply by changing the parameter name at the same time. The compiler
helps during the search by issuing an error message at the relevant points
of use.

7.4.2 Use of enum values and constants

The elements of an enumeration type are specified in its declaration. Elements of
an enumeration type do not need to be unique as compared to other types. In other
words, the same element identifier may be defined in various different enumeration
types. An element of an enumeration can be accessed simply by using the identi-
fier of the enumeration value. Alternatively, an enumeration element can also be
accessed using the associated data type name followed by “#” and the name of the
element (<enumtype name>#<enumvalue_name>). While this notation is slightly
longer, it does ensure that unintentional compilation errors caused by identifier
ambiguity can be avoided if the enumeration type is later expanded. This can occur,
for example, if a newly added variable or data type hides the identifier of the enumer-
ation value. We can demonstrate how this works if we remove the marked comments
in the following example.

VAR _GLOBAL
// on : BOOL; // removal of the comment will cause an
// error in METHOD m
END_VAR

CLASS cl_enum
TYPE
state : ( on, off );
END TYPE
VAR
vl_state : state;
// on : BOOL; // removal of the comment will also cause an
// error in METHOD m
END_VAR
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METHOD m
vl state := on; // not recommended notation
vl state := state#on; // recommended notation to access enums
END_METHOD
END CLASS

The data type with which an expression is calculated is specified on the basis of
the data types of the variables and constants involved. In this case, it is normally
not possible to uniquely assign value specifications to a data type. If the compiler
determines the data type for performing the calculation on the basis of the specified
value, the calculation may produce unexpected results. This situation can be avoided
by specifying the data type and the value together. This is done by typing the data
type name first followed by “#”.

FUNCTION f : LREAL

f := 1/4; // SINT operation; result is 0

f := LREAL#1/LREAL#4; // LREAL operation; result is 0.25
END_FUNCTION

If the data type for performing the calculation is defined by a constant which cannot
be uniquely assigned to a data type, the SIMOTION compiler issues an alarm to warn
that the calculation might produce the wrong result.

7.4.3 Use of predefined namespaces

The SIMOTION controller has a structured data model (see chapter 8.7.2). This data
model allows identifiers with the same name to coexist on different structuring
levels (scopes). These scopes are mapped by namespaces in the programming model.
Most of them can be addressed directly using predefined identifiers. The variables
in the relevant namespace can thus be addressed and used selectively in the pro-
gram. When scope identifiers are used to access variables, compilation errors or
any kind of unexpected behavior do not occur when identifiers with the same name
are added to other levels. Because an identifier that is not preceded by a namespace
can be resolved differently after program changes and the following compilation,
an undesirable variable access could occur.

Table 5 shows an overview of existing scopes. Starting from the current scope, the
compiler searches through these for the specified identifier. If one of the predefined
scope identifiers is used, only the symbols available in the relevant scope (variable
identifiers, user-defined data types, POUs, etc.) will be found. The predefined scope
identifiers are defined in the unit-global scope and cannot be overwritten there.

Table 5 Predefined namespaces (scopes)

Structuring level (ascending) | Scope identifier (namespace)

Method scope -

POU scope Public elements can be accessed from external
(class, function block, ...) sources using the POU name.

Unit-global scope -
(unit variables, global data types and POUs in
the source and imported via USES, USELIB or
USEPACKAGE)
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Structuring level (ascending) Scope identifier (namespace)

Device-variable scope _device — all device variables

(system, 1/0, global device variables) _device._image _ direct I/O access
_device._quality - status 1/0 access

Device scope _to

(Technology Objects of the device)

Project scope _project

(Technology Objects with unique names across

device and project)

This table indicates the sequence in which identifiers defined in different scopes are
found during compilation. If the programmer wants to ensure that quite specific
variables are used, this can be done quite simply by inserting the relevant scope
identifier in front of the variable.

All device variables can be specifically addressed, for example, by programming the
namespace “_device”. “ to” can be programmed to specifically address the Tech-
nology Objects of the device. If namespaces are used to program device variables
and TOs, the user program in which they are used does not need to be reworked
if the unit-global scope is extended in a way that results in ambiguous identifiers.
The right variable will always be addressed. This is an especially useful feature if
different editions of supplied libraries are integrated into the system.

Furthermore, the execution levels of existing tasks can be exclusively accessed using
the scope identifier “_task”. The scope “_alarm” can be used in the same way to access
messages defined in the project. These two scope identifiers are also defined in the
unit-global scope and cannot be overwritten there.

7.4.4 Declaration of data types, variables and methods

There are various ways of working with arrays. It is possible to input variables
directly as an array. Alternatively, an array can also be declared as a user-defined
data type and this definition then used to declare the relevant variables. To ensure
that the dimension of the array can be changed centrally, it is advisable to at least use
a symbolically declared constant to specify the dimension. An even better solution,
however, is to declare a type definition and use this. The only case in which a type
definition cannot be used is when arrays need to be handled by function blocks or
classes.

If arrays contain a very large number of elements, care should be taken when defin-
ing functions and methods that these do not need to be copied unnecessarily during
runtime. A good solution is to transfer these to function and method interfaces using
VAR_IN_OUT. When values are transferred to functions and methods in SIMOTION,
the following generally applies:

= VAR INPUT
Copy the values during the call

= VAR OUTPUT
Copy the values after the call when the output value is assigned

= VAR IN_OUT
Transfer the value implicitly as a reference
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With large volumes of data, it is thus convenient to transfer them using VAR_IN_OUT.
Variables of a simple data type, or structures that do not contain extensive array ele-
ments, should only be transferred as a reference if this is functionally essential. The
programmer can significantly influence the program runtime if he or she adheres
to these principles and designs the interfaces appropriately.

Methods can be defined in an interface, implemented in classes and overridden. It
can then be ensured that methods with the same name also have the same method
signature. This means that the return value and all elements in VAR_INPUT,
VAR_OUTPUT and VAR_IN_OUT for these methods are identical and need to be
declared in the same sequence. It can thus be ensured that all these methods have
the same call interface.

Itis also possible to specify a default value in the method declaration for variables in
VAR_INPUT. These variables can be omitted from a call on the basis of this default.
Since these values do not belong to the method signature, they can always be defined
differently in a method override mechanism. But caution! The user of the meth-
ods needs to be absolutely clear about which default assignment is applicable for
each call. It is advisable to select identical default assignments across all method
declarations or to dispense altogether with default values in methods that can be
overridden.

INTERFACE iface
METHOD m_int
VAR _INPUT in : INT := 1; END VAR
END_METHOD
END INTERFACE

CLASS cl base IMPLEMENTS iface
METHOD PUBLIC m_int
VAR _INPUT in : INT := 3; END VAR

i
END_METHOD
END CLASS

CLASS cl_derived EXTENDS cl_base
METHOD PUBLIC FINAL OVERRIDE mﬁint
VAR_INPUT in : INT := 5; END_VAR
END_METHOD
METHOD m_check
VAR
v_if : iface;
END VAR
v_if := THIS;
v_if.m_int(); // call of cl derived.m int( in :
SUPER.m_int(); // call of cl base.m int( in :
THIS.m_ int () ; // call of cl derived.m int( in :
END METHOD
END CLASS

o on
U w

7.4.5 Preparing structured data for transmission

It is often necessary to transfer data from the control system to another controller
or other systems (chapter 3.5.8). SIMOTION also has a range of useful features for
doing this in addition to its actual communication functionality. We are going to
explain the potential offered by these features in more detail using a slightly more
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complicated example. Our task is to send either a data block or a command after a
header with a predefined format.

CLASS cl_sendData
TYPE PUBLIC

s_data : STRUCT // public struct to define the data-content
v_sl AT %BO : DINT; // use explicite offsets
v_s2 AT %B4 : INT;
v_s3 AT %B8 : LREAL;

END_STRUCT

s _cmd : STRUCT // public struct to define a command
v_cmd AT %BO : INT;
v_subcmd AT %$B2 : INT;

END_STRUCT

END TYPE

TYPE PRIVATE
e version : (ver 1l:= 1, ver 2:= 2); // version type
e content : (empty:= 0, data := 1, cmd:= 3); // content type
s_header : STRUCT // definition of communication-header

v_ver AT %BO: e_version;
v_cnt AT %B4: e_content;

END_STRUCT

s_sendBuf : STRUCT OVERLAP // use a union to cast to byte-array
head AT %BO : s_header; // header at the begin

data AT %B8 : s_data; // data or command after the head
cmd AT %$B8 : s_cmd;
buf AT %BO : ARRAY [0.. _sizeof (s_header) +
MAX (_sizeof (s_data), _sizeof(s_cmd))-1] OF BYTE;
END_STRUCT
END_TYPE
VAR CONSTANT PRIVATE // constants for the supported header types
c_headdata vl : s_header := (v_ver := e version#ver 1,
v_cnt := eicontent#data);
c_headcmd vl : s_header := (v_ver := e version#ver 1,
v_cnt := e content#cmd) ;
END_VAR
VAR
conID : DINT; // the id of the connection;
END VAR
METHOD PUBLIC FINAL sendData : DINT // data-transfer
VAR INPUT data : s _data; END_VAR
VAR sndbuf : s_sendBuf; END VAR
sndbuf.head := TO_BIG ENDIAN (c_headdata_vl) ;
sndbuf.data := TO BIG ENDIAN (data) ;
sendData := _tcpSend( connectionId := conID
,nextCommand := EnumTcpNextCommandMode#IMMEDIATELY
,dataLength := DINT TO UDINT(_sizeof (s_header)+
_sizeOf (s_data))
,data = sndbuf.buf) ;
END_METHOD
METHOD PUBLIC FINAL sendCmd : DINT // command-transfer
VAR_INPUT  cmd : s_cmd; END_VAR
VAR sndbuf : s_sendBuf; END VAR
sndbuf.head := TO BIG ENDIAN (c_headcmd vl) ;
sndbuf.cmd := TO_BIG ENDIAN (cmd) ;
sendCmd := _tcpSend( connectionId := conID
,nextCommand := EnumTcpNextCommandMode#IMMEDIATELY
,dataLength = DINT TO UDINT(_sizeof (s_header)+_ sizeOf (s_cmd))
,data := sndbuf.buf) ;
END_METHOD
END_CLASS
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When defining the structure of the data to be transferred, the user can also specify
the memory layout. The offsets of the elements in question are explicitly defined in
the relevant definitions of s_data, s_cmd and s_header. The definition of s_sendBuf
makes it possible to pass the data as a byte-array to the communication functions.
The keyword OVERLAP is included in the declaration of this structure to permit
an overlap in the memory between the elements contained in the structure. This
solution permits a data block or command block to be programmed after the header,
while the element buf allows access to the entire contents in the form of a byte-array.
The size of the array is calculated according to the sizes of the structure elements
involved. Here we can see that SIMOTION also allows an expression that can be
calculated during compilation to be used at all those points where constants are
required.

The constant values for version and content are explicitly specified in the ENUM
definitions e_version and e_content. Constants can naturally be used instead of an
enum.

These definitions help to determine the data structure as well as certain values for
the communication services. They are now used in the two functions sendData and
sendCmd in order to assemble the transfer buffer efficiently. For this purpose, the
header required in each case and the data or command are copied to a temporary
element of type s_sendBuf in the endian required by the communication service.
The actual communication function is transferred to this data area as a byte-array by
means of the member buf. Using this system, the transfer buffer can be assembled
with a minimum number of copy operations.
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8 Introduction to SIMOTION

In the chapter above we discussed the object-oriented programming mechanisms
recently added to SIMOTION. Users who already know the SIMOTION system will
not have any difficulties in using the example programs. They will be familiar with
the SCOUT engineering environment that is supplied with SIMOTION and will have
enough knowledge of SIMOTION to be able to test the programs.

Users who are not yet acquainted with SIMOTION will get to know this system as
well as SCOUT in this section. To help new users get to grips with object-oriented
programming later on, we would advise them to study this introduction first.

The demand for ever more flexible and sophisticated production machines means
that the control systems themselves need to satisfy ever more challenging require-
ments.

SIMOTION is a motion control system developed by STEMENS. It has been on the
market now since 2002 and used in many different kinds of machine. It is mainly
used for applications in which motion control plays a central role. The SIMOTION
system has been designed primarily to meet current and future motion control
requirements.

But what is so special about SIMOTION? Before we can answer this question, we need
to take a brief look at the development history of control systems. We discussed this
subject in some detail in chapter 1.

8.1 Classic development of control systems

The possibility of using control systems in mechanical engineering applications first
became a reality in the mid-1970s with the advent of programmable logic control-
lers (PLC). Thanks to this technology, it became possible to program the required
functionality using programming devices that had in many cases been specially
developed for the relevant PLC. As a general rule, the controllers were equipped with
connections for digital I/O components via which they were connected to the machine
sensors or actuators. A program running cyclically in the controller combined the
signals and controlled the actuators (motor contactors or valves, for example).

Further advances in the technology such as bus system integration or analog signal
processing ensured that PLCs became more widely accepted. The integration of bus
systems later allowed visualization components (Human Machine Interface HMI) to
be directly connected as well, thus providing a means of operating and diagnosing
the machinery. Special function modules (e.g. motion control or technology mod-
ules) with their own program code were later developed to perform specific tasks.
While these needed their own drivers, they could be integrated into the control
systems via appropriate interfaces or buses. Figure 55 shows the interaction between
components.

As it became possible to integrate additional special modules, the programmable
logic controllers became even more flexible in their application. As a result of this
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Figure 55 Interaction between PLC, technology modules and motion control

development, the tasks of the PLC programs have significantly changed over the
intervening years. In addition to the actual control task, an ever growing number
of data management functions were added to the program.

The increasing numbers of additional functions integrated in the programmable
logic controller had an impact on the program and the programmer. Since it is
now possible to connect specialized modules and visualization equipment to the
controller, it is inevitably true that a significant proportion of the control software
to be written by the programmer is dedicated to module control and management
tasks. The more extensive the functional scope of the special modules, the more
complicated the control software.

Visualization systems can be used to operate machinery, but they also provide valu-
able troubleshooting support to the service engineer when the process is interrupted
by an error. Error diagnostics and the associated data management functions are an
integral component of the modern PLC program.

The connection of actuators (frequency converters or servo controllers, for example)
to the programmable logic controller via bus systems is now state of the art. New
mechanisms for accessing data stored in the drive components are being added
continually in order to allow dynamic adaptation of the actuators to changes in the
process environments in the machine (e.g. new products). This functionality must
also be reflected in the PLC program that manages, reads out or changes the drive
data or diagnoses the drives themselves.

8.2 New control concepts required

The trend in favor of isolating machine movements so that they are performed by
controlled drive axes that are coupled to controllers via buses provided the impetus
for developing a new control system. The design concept was to allow functions
such as PLC programming, axes with motion control and technological functions
(temperature control, for example) to be implemented in a homogeneous system
with standardized programming procedures. Since the system would need to be
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deployable in a wide variety of machines, it would need to be a high-performance,
scalable system.

SIMOTION was developed to satisfy these demands. To save the user the trouble of
programming the synchronization between different processes that might have dif-
ferent time responses, all of the disciplines (PLC, motion and technology) have been
combined in a single system (Figure 56). The components work in a shared execution
system and can be operated in different tasks depending on their requirements.
As a result, all components and processes are fully synchronized at all times. The
possibility of connecting drives via a bus system makes the system highly scalable
- from just a few individual axes to large quantity structures with more than one
hundred axes.

I/O components and visualization equipment are also connected to SIMOTION via bus
systems. In this case, the communication link may be isochronous (for the drives)
or asynchronous (for the I/O devices).

8.3 Technology Objects in SIMOTION

In order to increase the flexibility of the SIMOTION system, technological components
such as axes, encoders, measuring inputs, output cams, but also other functions
such as synchronous operation connections, are represented by Technology Objects
(TO). These objects and their data form a configurable unit. These data include
all the information required for the object including the coupling mechanisms.
An axis thus knows, for example, how it must communicate with the connected
drive component. The requisite communication process is thus a property of the
axis and the user need not program anything extra with respect to communication
(Figure 57). This is a standard feature of the SIMOTION system that helps to reduce
programming requirements.

Each object is a software representative of some feature of the machine’s hard-
ware. Objects can be addressed via a function call interface in the program code.
The programmer can therefore issue commands to the object such as “travel from
A to B at velocity F”. Couplings between axes can be activated or deactivated via
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commands. Once parameterized, output cams and measuring inputs perform their
function independently when the axis reaches the defined positions. The number of
Technology Objects that can be used in SIMOTION is not limited by the capacity of
the system. But each object occupies (depending on the type and version selected)
corresponding memory and computing time in a CPU. As a result, the CPU used
does impose certain limits according to the amount of available memory and the
performance of the hardware used.

SIMOTION is available in various different hardware platforms with varying degrees
of performance and scalability. The degree of integration of the runtime kernel and
the possibility of coupling TOs across SIMOTION platforms makes it extremely easy
to distribute functionality. If a hardware constraint is encountered, the user can
simply choose a higher-performance CPU or distribute the TOs among different
CPUs. Existing Technology Objects can easily be relocated to another CPU in the
engineering system.

The engineering system features wizards that guide the user through the process
of creating Technology Objects. TOs are not programmed, but simply configured.

With this Technology-Object-based model, it is extremely easy to flexibly adapt and
scale the functions required within a machine.

8.4 Three hardware platforms

SIMOTION features a standardized scope of functions in three different hardware
platforms (Figure 58). All platforms have the same basic functionality and the same
basic interfaces. The only differences between the platforms relate to their perfor-
mance and the associated expansion options.
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Figure 58 The 3 hardware platforms of SIMOTION

Drive-based variant SIMOTION D

SIMOTION D is a hardware platform that combines SIMOTION and drive functions
in a single module. Since the open-loop control and closed-loop drive control func-
tions are integrated in a single hardware unit, the drive power units can be directly
connected to the control system so that the overall design is extremely compact. The
system can be extremely finely scaled starting with the D410-2 single-axis controller
up to the high-performance multi-axis system D455-2 with up to 128 axes. The user
can use Profibus and Profinet to couple /0 components or other equipment to the
SIMOTION system.

Controller-based variant SIMOTION C

The user can directly connect analog axes (hydraulic axes, for example) to the
SIMOTION C without the need for any additional hardware. The encoder interfaces
required are an integral part of the system. I/O modules from the SIMATIC product
range can be directly connected. The system can be expanded or coupled to further
equipment by means of Profibus or ProfiNet (depending on variant).
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8.6 Handling kinematics in SIMOTION

PC-based variant SIMOTION P

A user who needs an industrial PC that is an open system will prefer SIMOTION P.
The SIMOTION kernel runs on a Windows operating system and can therefore be
expanded by additional software components. A Profibus or Profinet board is avail-
able for coupling the system to other components or I/O devices.

8.5 Connecting drives and I/O devices to SIMOTION

A control system requires a machine to have actuators (such as drives or cylinders)
in order to convert motion commands into movements, and sensors or control keys
that are connected to the control system.

This connection is provided by appropriate 1/0 devices such as input or output mod-
ules. These are linked in turn to the SIMOTION controller via bus systems (Figure
59). All SIMOTION hardware platforms offer the PROFIBUS or PROFINET bus systems
for coupling I/O components and/or drives.

Industrial Ethernet
Control level / HMI

PROFINET/PROFIBUS

W T e

Predecessor module Module 1 Module n Successor module

IL = synchronous

Figure 59 SIMOTION with drives and I/O devices

8.6 Handling kinematics in SIMOTION

A large number of functions are integrated in the SIMOTION system. The upper
end of the functional range is rounded off by the standard kinematics for handling
equipment. Figure 60 shows the kinematics supported by SIMOTION.

These kinematics are directly integrated in the SIMOTION system. Like axes or
technological functions, kinematics are implemented in the form of Technology
Objects. The user inserts a TO path object and sets its parameters in dialog boxes
specifically provided for the object. The path object utilizes the axis objects already
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Figure 60 Kinematics supported by SIMOTION

programmed in the system to control the motion. The path object can calculate the
kinematic transformations itself. This makes it easy to program the motions in a
Cartesian coordinate system.

8.7 SIMOTION’s programming model

The three SIMOTION hardware variants are easily exchangeable. This exchange-
ability defines a fundamental characteristic of the runtime system. Each SIMOTION
variant must basically offer the same scope of functions. In other words, none of
the hardware variants limits the number of Technology Objects or sets any defined
programming limits. All SIMOTION systems have the same command set and the
same data model. Only if all SIMOTION devices share this property is the user able
to transfer programs between hardware variants.

The hardware variants naturally differ in terms of their performance and memory
capacity. A given hardware variant may only be able to compute a specific number
of axes per clock cycle or hold a certain size of program in its memory.

If the number of programs exceeds the storage capacity of one hardware variant,
another variant with more memory and higher performance can be used instead. If
the highest-performance hardware is already installed, the quantity structure will
need to be distributed among several SIMOTION systems. The fact that functions
are implemented on the basis of Technology Objects in SIMOTION is also helpful in
such cases. TOs can be assigned to the relevant hardware and thus reused without
any problems. The simplicity with which user programs can be distributed among
several SIMOTION CPUs depends very heavily on the programming method used. A
modular software concept that has been thought through and carefully programmed
in advance significantly reduces the work involved in distributing user programs.

The modular design of the user software therefore plays an important role when
software changes need to be made. It is therefore important that the programmer
is familiar with the programming model implemented in SIMOTION.
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8.7.1 The units of SIMOTION

The user generally programs functions in blocks. SIMOTION provides the following
blocks for the user:

Function blocks
Functions
Programs

Classes (as of V4.5)

IEC 61131-3 refers to these blocks as “Program Organization Units” (POU). This
type of block is an enclosed unit with the properties (variables) and programmed
behavior (function) specified by the user.

These blocks are not handled as individual elements in SIMOTION, however, but
organized in a “unit”. A unit therefore functions as a container in which the user pro-
grams blocks (comparable to the usual PC programming practice of storing source
texts). Several blocks (programs, functions or function blocks) can be stored in one
unit. The user can use a unit to group individual blocks according to logical criteria
and to form collections of interrelated functions.

Nevertheless, we still need to explain the specific advantages of this kind of model-
ing. The units in SIMOTION are two-part containers comprising an interface section
and an implementation section. A C or C++ programmer would recognize a compa-
rable sectionalization between header and source text files.

The programmer stores the blocks (POUs) that he or she has programmed in the
implementation section. In the interface section, the user can specify the functions
(blocks) and properties that must be available outside the unit. The user can there-
fore adopt this units approach to implement modular software concepts without
needing to apply object-oriented programming mechanisms.

If the data (blocks or variables) of a specific unit need to be used in other units, it is
possible to establish connections between units by means of the keyword “Uses” (Fig-
ure 61). If a unit has no connections, its variables and functions cannot be accessed.

It would be possible, for example, to program various machine modules in units. In
this case the connected units can “see” only the data that the programmer has made
available in the interface section of the unit. In Figure 61, the public data of unit A
are visible in unit B. Unit C can also see the data of unit B, but also the data of unit A
via the connection in unit B. If the programmer does not want the data of unit A to
be visible in unit C, however, he or she must store the Uses connection in unit B in
the implementation section. If this is done, the data of unit A are still visible in unit
B, but not in unit C. In this case, the calculation in unit C “Diff:=Speed_A-Speed_B”
would no longer function because Speed_A is no longer visible. But the programmer
can easily solve the program by making public a new variable (Speed_of A)in B and
using this in the formula.

It is thus possible to achieve software modularization with data encapsulation (infor-
mation hiding). The Autocomplete mechanism of the editor knows the connections
and displays only the relevant variables (data). Variables with the same name may
be stored in different units provided that the units are not connected. If the pro-
grammer accidentally programs elements with conflicting names, the compiler will
output a warning or error message during program compilation.
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= @@@

Machine-module A

Example in structured text:

$ 6
S

Machine-module B

@@@ S

Machine-module C

END_INTERFACE

END_INTERFACE

Unit A UnitB UnitC
INTERFACE _ INTERFACE —_ INTERFACE
" T[=- USES A; "J==-Uses B;
VAR_GLOBAL - VAR_GLOBAL b-— VAR_GLOBAL
Speed_A:Real; Speed_B:Real; Diff:Real;
END_VAR END_VAR END_VAR

END_INTERFACE

IMPLEMENTATION IMPLEMENTATION IMPLEMENTATION
VAR_GLOBAL VAR_GLOBAL VAR_GLOBAL
Diameter:Real; Torque:Real; Diameter:Real;
END_VAR END_VAR END_VAR

PROGRAM Program3;

Diff := Speed_A-Speed_B;
END_PROGRAM
END_IMPLEMENTATION

END_IMPLEMENTATION END_IMPLEMENTATION

Figure 61 Programs and data are organized in units

With this means of modularizing the software at unit level, the user has a certain
degree of control over the access to variables. This mechanism does not work for
global elements (such as function blocks) because the instance data for globally
accessible function blocks are also set up as global data. More effective encapsula-
tion that is also applicable to global data can only be achieved by object-oriented
programming or FBs with methods.

Note about interface

It is essential for readers not to confuse the interface section of a unit with the
interface used in object-oriented programming. A unit in SIMOTION is basically
divided into the interface section and the implementation section.

SIMOTION uses the interface section of a unit that begins (as it does with OOP inter-
faces) with INTERFACE and ends with END_INTERFACE to identify the data types,
variables, constants and POUs that a unit makes visible for use outside the unit. The
programmer can now define one or more interfaces for OOP within this section that
will also be available for use in other units. But an OOP interface can also be defined
in the implementation section of a unit. This OOP interface can be implemented in
classes and used as a variable only within this unit.

8.7.2 The variable model in SIMOTION

A SIMOTION controller provides the user with a variety of ranges of variables for
use in his or her application (Figure 62). All variables belong to one device and can
be declared in appropriate editors by the user.
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System variables

These variables are assigned to a Technology Object (TO) ‘

| TeChnO|09y ObjeCts | (e.g. the actual position of an axis).

=)

| SIMOTION device | These variables are assigned to the SIMOTION device ‘

(e.g. the actual system time).

Global user variables

q These variables label an in/output area
| 1/0 variables | (e.g. startpos PI0.1). ‘
| Global device variables | - | These variables can be used all over the complete device. ‘

Local user variables

| | These variables can only be used in the program, where ‘

| Program variables they are declared.

These variables can only be used within the function (FC),
where they are declared.

N

| FC variables |

Figure 62 Variable model of SIMOTION

System variables

The first range of variables are the system variables. As the name suggests, these are
variables that the system makes available to the user. The programmer can therefore
use them, but not generate them.

System variables are in turn divided into two ranges. The system variables of the
device are set up automatically when a device is configured. The second range of
variables are those that belong to a Technology Object (TO).

System variables of the SIMOTION device

Each SIMOTION controller has system variables that can have different features
depending on the device. In this range, for example, the system makes variables
such as the system time, the current time values of individual tasks or information
about the system fans available to the user for analysis.

The system variables of the device are visible in the detail view of SCOUT when the
device is selected in the project navigator (see chapter 8.9.1).

System variables of TOs

The system variables of a TO are set up when the user configures a Technology Object
(TO) in SCOUT. Different types of TOs with varying functionality are available in
SIMOTION. As a consequence, each TO has its own specific data. These data naturally
vary between the different types of TO.
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The following Technology Objects can be set up in a SIMOTION device:
Drive axis
Positioning axis
Following axis or synchronous axis
Path axis
Following object
Path object
External encoder
Measuring input
Output cam, cam track
Cam
Temperature controller
Addition object
Formula object
Fixed gear
Sensor
Controller object

The procedure for creating Technology Objects is described, for example, in chapter
8.9.6 “Creating axes” or the relevant SIMOTION documentation.

Global user variables

Global user variables are valid in all of the units within a SIMOTION device. In other
words, they can be used anywhere within programs. Since they are user variables,
they must of course be defined by the user. Global user variables are divided into
two ranges. I/O variables and global device variables belong to the first range thatis
assigned to the SIMOTION device. Each variable must have a unique name within this
range. Global variables declared in the units belong to the second range. Since these
ranges are managed hierarchically, variable names may sometimes be duplicated.
If this happens, the compiler issues an alarm to indicate that the identifier is hiding
another variable. Unless an additional name is inserted in front, therefore, only the
locally defined variable with the same name can be accessed in the program.

I/O variables

These are all variables that refer to input or output devices. The SCOUT engineer-
ing system supplies the user with an address list for defining input and output
variables, i.e. a table editor in which the variables can be defined. Variable names
in the address list are normally assigned to an input or output. Before this can be
done, the relevant I/O devices must first be connected to the SIMOTION system. [/O
component connections are engineered in the hardware configuration. Chapter 8.9.4
explains how the hardware configuring system is operated.
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Global device variables

Like I/O variables, global device variables belong to the device. The user can define
these variables in a table editor (similar to the address list). The table editor is
opened using the menu option “Global device variables” in the SCOUT project nav-
igator. The variables defined in “Global device variables” can be used anywhere
within the device.

Unit variables

These variables belong to a unit. A unit is a program container in which the user can
set up programs for programming. The unit consists of two sections — the interface
section and the implementation section. If the user defines variables in the interface
section, they will also be visible outside the unit and may therefore also be used in
other units (see chapter 8.7.1).

Local user variables

Local user variables refer to the programs, function blocks, classes with their
methods, and functions within a unit. Local user variables are thus valid within the
declared range. In the same way as global user variables, local variables are also
defined by the user. If the user accidentally or deliberately assigns a name to a local
variable that has already been assigned to an existing global variable, the compiler
issues an alarm to notify the user that the local variable is hiding a global identifier.
This means that the global identifier with the same name cannot be accessed in this
program section.

Program variables

These variables can be declared for a specific program, but they are only valid within
this program.

FC variables

The variables of a function are valid only within the function. If values need to be
transferred to a function, the user needs to do this by means of VAR_INPUT variables.
Results can be returned with variables in the VAR_OUT range or via a variable imple-
mented in the function itself. It must be noted that all the variables of a function are
temporarily stored in the stack and reinitialized every time they are called. In other
words, these variables are temporary.

FB variables

FB variables belong to and are used within a function block. Since an instance needs
to be created in order to call a function block, the FB variables are contained in this
instance. The variables are thus initialized only at certain times.

Class variables

Classes will be available as of SIMOTION software version V4.5. The variables of a
class belong to the class and can be assigned various access identifiers so that they
can be used for different purposes. As with function blocks, an instance (object) of
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a class must be created before it can be used. Use and initialization of classes has
been described in detail in previous chapters.

8.7.3 Libraries in SIMOTION

Using libraries in a project presents a wonderful means of providing reusable soft-
ware. Various libraries can be stored under the “Libraries” folder in a SIMOTION
project (Figure 63).

| Project |

Library container
in SCOUT -

TOs

Program

~ Unit_A

o] ,
’/

— (R -

!

Import into project II I

I:I Know-how protection

<~-->» Function call

Figure 63 Libraries in the SIMOTION project

Library functions can be used multiple times in each device in the project. Function
blocks that can be used over and over again can thus be stored in a library. The pro-
gram code need only exist once in the project. To use library contents in the device
programs, the user simply has to set up a link to the library (USELIB <Library Name>)
in order to gain access to the blocks and variables in the library. When the device is
compiled, the associated library elements are automatically added to the device data.

Full or partial know-how protection can be applied to libraries, allowing the func-
tions to be used, but not opened. Creators of libraries can use this mechanism to
safeguard their know-how. The programmer can of course apply know-how protec-
tion to the normal units of a device as well.
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8.8 The SIMOTION SCOUT engineering system

The SIMOTION system is planned, configured and programmed by means of the
SCOUT engineering system. All editors and tools required to configure machinery
are integrated into this engineering environment.

SCOUT is an option package for SIMATIC STEP 7 and requires STEP 7 as its basic
operating software. SCOUT TIA is the engineering environment combined with the
TIA Portal. SCOUT TIA is supplied as standard with the SCOUT package.

The SIMOTION SCOUT stand-alone software package is available for users who only
want to configure the SIMOTION system. SCOUT stand-alone comes with all the
necessary STEP 7 components to permit configuring of SIMOTION with the required
I/O components. The STEP 7 basic package is not required.

The user can also choose WinCC Flexible as additional software for configuring
machine control operator panels. The configuring process for HMI systems is then
directly integrated into the SCOUT engineering software.

SCOUT provides you with a complete engineering environment including all the
editors and tools that you might need to configure a plant (Figure 64).

This environment is designed to help you configure SIMOTION systems with all
necessary components such as I/O devices and drives including HMI within a shared
data management environment. You program the systems in the editors integrated
in SCOUT. But commissioning and troubleshooting are also directly supported by
appropriate diagnostic tools.

The descriptions below focus on the essential points so that readers will have all the
information they need in order to try out the example programs.

Machine Engineering SIMOTION SCOUT
tasks

HMI
Development

Central

I
SIMOTION ca

Parametrization
Programming
Commissioning,
diagnosis

Communication

Configuration
-
Drive !
Commissioning
Shared

data management

Figure 64 SCOUT engineering system
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8.9 Components of SCOUT

SCOUT is a complete configuring environment for SIMOTION which is structured
according to a workbench principle (Figure 65). In other words, its structure is based
on Windows Explorer.
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Figure 65 SCOUT workbench

You can see the project navigator (PNV) in the left-hand window. When you open an
existing project, the SIMOTION devices with their subordinate components are listed
in a tree structure in the PNV. When you double-click on an entry in the tree, the
editor for the relevant component opens on the right-hand side, i.e. in the working
area.

The detail view is displayed at the bottom of the workbench. This view provides you
with additional information. When you select an entry in the PNV, SCOUT displays,
for example, the variables belonging to the component you have selected (if the
object has public variables).

Further tabs might also appear in the detail view. The tab “Compile/check output”
appears automatically with the compilation results when compilation is in progress.

Various table editors such as the address list, global device variables, watch tables,
alarms or the module online status are also shown in the detail view. As a general
rule, this view displays all the tools that are required in parallel to the working area
for programming purposes.
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8.9.1 The SCOUT project navigator

The project navigator (PNV) (Figure 66) is central to the operation of the SCOUT
engineering system. You can insert SIMOTION devices in the PNV. When you insert
a SIMOTION device, SCOUT automatically enters other main folders underneath
the device.

Project navigator

= & ValveControl -
# | Insert SIMOTION device
% Insert single drive unit
=8| (240 [C240]
_fi] EXECUTION SYSTEM
.= ADDRESS LIST
£ GLOBAL DEVICE VARIABLES
EHIT AXES
% Insert axis
-] EXTERNAL ENCODERS
&1 0] PATH OBJECTS
w0 CAMS
- @m0 TECHNOLOGY
=0 PROGRAMS
! 3_] Insert 5T source file
% Insert MCC unit
% Insert LAD/FBD unit
. % Insert DCC chert
®-B Class_VaheControld3
®-[A Class_ValveControlFs
m-B HMI_Class
=B HMLIF
2]
=
2]

m

By TestHMI

- B Valve_Class

-B Valve_Program
| @B Valve_Program_final
@ SCRIPTS

Project [ Cormmand librany

Figure 66 Project navigator

You can insert and configure or program elements belonging to a SIMOTION device
in the main folders listed underneath that device. These main folders may or may
not contain information (elements), but you cannot delete them. You can expand
a folder by clicking on the plus symbol in the tree. When the main folder is open,
you will find that it contains entries under which other elements can be inserted.

When you double-click on the Insert command, the appropriate insert dialog will
open. The insert dialogs will request you to enter data for the element to be inserted.
SCOUT proposes a standardized name for the element. You can change this name,
butif you don’t change it, you must at least accept the proposed name. The element
is inserted in the main folder when you double-click on OK. The insert function is
explained in detail in the following chapters.

261



8 Introduction to SIMOTION

8.9.2 Creating a new project

This is how you create a new project
You start a new configuration in SIMOTION SCOUT by creating a new project.

1. Select menu items Project > New.
The dialog New Project appears.

2. Enter the project name, e.g. Sample_1, under Name.

3. Under Storage Location (path), enter the path in which you want the project
to be stored. The default path is already set.

4. Confirm the new project with OK.
The dialog box closes.

Default path
The default path for projects is:
C:\Program Files (x86)\Siemens\Step7\s7proj

Project name and project directory name

The name of a SIMOTION SCOUT project can contain a maximum of 24 characters.
The project appears under the full name in the dialogs.

When initially saving the project, SIMOTION SCOUT creates the directory name
from the first 8 characters of the project name. SIMOTION SCOUT uses a numerical
counter “ 1”7, “ 2”7, ... to resolve conflicting names resulting from the abbreviation
of the 8 characters.

The counter replaces the last characters of the directory name.

Note: It is useful to select project names in such a way that they can be uniquely
distinguished by their first 8 characters. The project name and the directory
name derived from it thus uniquely identify the same project.

Example (Figure 67)

The project Sample_1 has been set up in the project tree (PNV) in SIMOTION SCOUT.
The project folder “Sample_1" is visible in the project navigator.

Further folders (LIBRARIES, SINAMICS LIBRARIES and MONITORING) have been
automatically set up beneath. The entries “Insert SIMOTION device” and “Insert
single drive unit” are also displayed automatically.

Insert a SIMOTION device

You can insert a new SIMOTION device in the project by double-clicking on this
entry. Various devices from the SIMOTION C, D and P product ranges are available
for selection. The procedure for inserting a SIMOTION device is demonstrated in
the next section.
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Figure 67 Result of creating a new project

Insert a single drive unit

With this entry you can insert stand-alone drives (e.g. SINAMICS S120) in the project
navigator. Single drive units are those drives that will be installed in the plant (e.g.
fans or roller conveyors), but are not connected to a SIMOTION axis. You commission
them, however, using the wizards in the working area of the workbench in exactly
the same way as drives with axes.

8.9.3 Creating a new device

This is how you create a SIMOTION device (e.g. D435-2) in the project

Double-click on Insert SIMOTION device in the project navigator. The Insert
SIMOTION device dialog will appear (Figure 68).

1. The SIMOTION D platform is the default setting in the Device list box. If you
want to choose a device of another platform, you can change the setting in
the “Device” list box.

2. Select the SIMOTION device D435-2 DP/PN from the “Device version” list
and choose the firmware version V4.5 of the device used under “SIMOTION
version”.

3. If you check the box “Open HW Config”, the hardware configuring window
“HW Config” will open when you have finished setting up the new device. In
this case, uncheck the box.

4. Confirm the new project with OK. The “Insert SIMOTION device” dialog
is closed. SIMOTION SCOUT takes you to the next step. Configure the
PROFINET interface.
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Insert SIMOTION device
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Figure 68 Inserting a device

Note: The configured device version must match the firmware version on the memory
card of the SIMOTION device. You will otherwise receive an error message when

you go online with the device.

Configure the PROFINET interface

If the SIMOTION device has a PROFINET IO interface, the dialog “Properties - Ether-
net interface PNxIO” is displayed. This dialog can be used to integrate the SIMOTION
device into an existing PROFINET IO subnet. If no subnet is known, you can create

it here.

PROFINET is not used in the sample project (Figure 69). Click on “Cancel”. The dialog
box closes. SIMOTION SCOUT takes you to the next step “Set up PG/PC communi-

cation”.

Interface selection dialog

SIMOTION SCOUT opens the dialog “Interface selection” (Figure 70). You configure
the network communication between the PG/PC and the SIMOTION device in this

dialog.
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Figure 69 Properties — Ethernet interface PNxIO

The list box “Interface selection for PG/PC connection” in the upper half of the dialog
provides a selection list of SIMOTION device interfaces. Listed here are all the inter-
faces that the SIMOTION device possesses. We will select the interface with X127.

O-Link DUB-E100 L 1Fa 7
D-Link DUB-E 100 USE 2 0 Fast EmemmMapterTl
Intel(R) 82579LM Gigabit Network Connection TCPII
Intal{R) 825791 M Gigabit Natwark Connection TCPII
Intel{F) Cenrino(R) Advanced-N 6205, TCPIF.1 |
Intel{iF) Centrino(R) Advancad-M 6205 TCPIP Auto, l
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Vivtware Virtual Ethemet Adapler for Vivinet], TCPIP|
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“idware Yitual Ethemet Adapter for YMnet8. TCPIF _
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Figure 70 Setting up PG/PC communication

265



8 Introduction to SIMOTION

The list box underneath “Interface parameterizations in the PG/PC” lists the inter-
faces of the PG/PC. The upper field functions as a filter so that only the interfaces with
suitable transmission protocol are available for selection. The contents of the selec-
tion list depend on the computer hardware and installation. It will therefore vary
depending on the computer. The interface of the PG or PC via which the SIMOTION
device will be connected must be selected here.

A SIMOTION device is generally connected via an Ethernet interface. The PC on
which the SCOUT engineering software is installed often has an Ethernet interface
to connect it to the company network. This interface can of course also be connected
to the SIMOTION device, but it cannot be used to access the company network at
the same time. More than one Ethernet interface is required to connect the PC to
SIMOTION and the company network. The simplest solution is an Ethernet adapter
with USB. The interface with the company network can then be retained and the
SIMOTION device connected at the same time via the USB adapter.

1. Select the Ethernet interface “Ethernet PNIE (X127)” for the SIMOTION
D435-2.

2. Then select the prepared Ethernet interface of the PG/PC.
Confirm this configuration with OK.

3. The dialog “Interface selection” then closes.

8.9.4 Hardware configuration

If you checked the box “HW Config” at the “Insert SIMOTION device” stage (Figure
71), the hardware configuration for the device you have inserted will be displayed
when you click on the OK button.

You can configure and parameterize the required bus systems (PROFIBUS and
PROFINET) in the HW Config screen. You can select any additional /O component
requirements (such as input and output modules) from a catalog for connection to
the bus systems.

HW Config provides a large number of different configuration options. Instructions
for operating the HW Config can be found in the documentation “SCOUT.pdf” for
SIMOTION devices or in the online help of HW Config itself.

Inputs for the examples

It is not necessary to change the data in HW Config in order to test the example
programs. If you checked the box “Open HW Config” at the “Insert SIMOTION device”
stage, the interface described below will open.

The HW Config consists of a three-pane window (Figure 72):
The hardware catalog is visible on the right.

The working window has two panes:

- In the upper half, you can see the rack or station frame with the CPU
already inserted automatically in slot 2 (example for D435-2). Insert the
objects from the hardware catalog here and process them.

- In the lower half, you can see detailed information about the selected
objects.
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Figure 71 Insert SIMOTION device with “Open HW Config”
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Figure 72 HW Config with the SIMOTION device
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Inputs required for the examples

If the window shown in the screenshot above is open, you can close it with the “Close”
button or select menu items Station->Exit.

If a real plant were being configured here, it would of course be necessary to add
the necessary I/O modules and possibly other drive components.

Note: The variant of SCOUT described here is linked to STEP 7 V5.5 and displays the
hardware configuration of this STEP 7 version. You can also use the SCOUT TIA
variant. Version 4.5 of the SCOUT TIA is linked to the TIA Portal V14 and the
hardware (including SIMOTION hardware) is therefore configured with the TIA
Portal.

8.9.5 The SIMOTION address list

You specify your I/O component requirements in the hardware configuration.
After defining the I/Os in this way, you can assign an identifier to them for use in
SIMOTION. You configure the assignment between hardware and symbolic identifier
in the address list in the project.

When you double-click on the entry “Address list” in the project navigator, the
address list opens in the lower part of the SCOUT engineering interface (Figure 73).
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Figure 73 Address list

You assign a symbolic name in the column headed “Name”. You enter the reference
to the actual hardware address in the column headed “I/O address”. The engineering
system performs a plausibility check on your inputs and displays feedback infor-
mation immediately.

If you have not yet connected any I/Os, you can use the process image to perform
tests. The process image is an internal CPU memory in which specific I/O areas are
stored (e.g. byte address 0-64). This internal memory can be used to perform tests
even if no I/Os are connected. Further information about the address list can be
found in the online help and in the documentation.
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8.9.6 Creating axes

Once the SIMOTION device has been inserted and the HW Config interface closed
(if it was open), you are now in SCOUT. Figure 74 is a screenshot of the interface.

Now select the entry “Insert axis” under “Axes” in the tree in order to create a Tech-
nology Object for an axis. The SCOUT axis wizard is launched when you double-click
this entry (Figure 75).

Inputs for the examples
m Enter the axis name for the object in the open window.

= Select the axis name “SpeedAxis_1” so that you will be able to use the axis
later in the example programs.

= Check only the box marked “Speed control” as the technology.
= Confirm your inputs with OK and the next input window will appear.

Brief description of the technology

You can specify the type of axis by checking the boxes under “Which technology
do you want to use?”. Your selections will determine the characteristics of the axis.
After you have entered this data, the axis will be set up with the data required for
the Technology Object.

Speed control

Once a drive axis has been created, it is controlled by means of a speed setpoint
which it accepts via the integral speed controller.

Motion control is performed using a speed specification without position control.

Ofe| s 2 '-PIHI_I_[_I _!_I g T R (P 1) || friathen =] % |

) Insert SIMOTION device -
) Insert single deive it
5 0435 [0435-2 0P/PN]

& () PATH ORKCTS

0 Cams

) TECHNOLOGY

| a ) PROGRAMS

I Hﬂmsnwmmwmnw

= Symbol browser | &= Address kst
Press FL to open Help drigilry.

Figure 74 SCOUT with inserted D435-2 device
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Figure 75 Creating a drive axis

This axis technology corresponds to the minimum axis functionality available in
SIMOTION.

The drive axis is referred to by the data type “driveAxis” in reference lists and the
program code.

Positioning

SCOUT sets up a position axis when you select “Positioning”. A complete position
controller is implemented in an axis of this kind and it can thus be commanded to
approach a position at a specific velocity. The position axis is capable of indepen-
dent positioning. This selection represents the next extended level of an axis and
it therefore inherits all the properties of the drive axis. A position axis is thus also
capable of processing speed setpoints.

Motions are position-controlled.

The position axis is referred to by the data type “posAxis” in reference lists and the
program code.

Synchronous operation

The synchronous axis encompasses an even larger scope of axis functions. It can be
interconnected with other axes or master values in order to create axis groupings
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with coupling methods of different types. A synchronous axis is also capable of
positioning or operating according to a speed setpoint.

The synchronous axis creates a grouping of the following axis and synchronous
object. Functions such as master value coupling, synchronization and desynchro-
nization of the synchronous operation, gearing and camming are provided via the
synchronous object. The synchronous object can be interconnected with different
master values.

Information about synchronous axis applications can be found in the Technology
Objects Synchronous Operation, Cam manual.

The following axis is referred to by the data type “followingAxis” and the synchro-
nous object by “followingObjectType” in reference lists and program code.

Path interpolation

A path axis is the highest selectable level of an axis and inherits all the properties
of the synchronous axis.

The path axis type can be interconnected with a path object.

The path object can be used to calculate and traverse a linear, circular or polynomial
path in the 2D/3D coordinate system for at least two path axes and up to three path
axes. A synchronous axis can be traversed in parallel.

A description of how to combine a path axis with a path object can be found in the
Technology Object Path Interpolation manual.

The path axis is referred to by the data type “_pathAxis” and the path object by the
data type “_pathObjectType” in reference lists and the program code.

After you have confirmed the axis name input and the technology selection with OK,
the wizard displays the next input window “Axis configuration” (Figure 76).

The axis type is specified in the axis configuration window. 3 different types are
available for selection:

Electrical
Hydraulic

Virtual

Inputs for the examples

The example programs do not require a real axis. Please therefore select the button
“Virtual” and then “Next”.

Electrical

An electrical axis is connected to an electric drive. Various methods can be used
to connect it to the drive. As a general rule, drives are linked to the SIMOTION
controller via a bus system. Before this coupling can be parameterized, a suitable
drive component must be configured at a SIMOTION bus system in HW Config. If
you have selected “Electrical”, the next window displays a list of the drives that can
be connected. The next window appears when you click on “Next”. SIMOTION also
supports coupling on the basis of an analog setpoint, but this option is rarely used
today. A suitable I/O device must be configured in HW Config beforehand so that
SIMOTION can transfer analog setpoints.
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Figure 76 Axis configuration — axis type

Hydraulic

Hydraulic axes operate with control valves and analog setpoints. When you select
this option, a different input window with additional selections is displayed. The

following valve types are possible:
= Q valve (pressure valve)

m P+Q valve

The following closed-loop controls are possible for hydraulic axes depending on

the selected valve type:
= Standard:

Hydraulic axis without force control or pressure control (Q valve only)

m Standard with pressure control:
Hydraulic axis with pressure control

= Standard with force control:
Hydraulic axis with force control

As with analog drives, a suitable analog module must be set up and parameterized
in HW Config before the hydraulic axis option can be used.
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Virtual

Virtual axes do not have a real actuator (drive or valve) but are axes calculated by
the system. The behavior of virtual axes is “ideal” and they are therefore often used
as a master value for coupled axes. Virtual axes are useful for testing programs and
program sections in development and test environments. This does not of course
apply to program sections that are required to process a reaction to axis or drive
errors.

Inputs for the examples

After you have entered all the data for a virtual axis, SCOUT displays a summary of
your settings. If these are OK, click on the button “Finish” (Figure 77). You have now
finished creating the axis and the wizard will close.

Cancel Help

Figure 77 Axis configuration — summary

Subsequent changes to settings

The axis type can be changed subsequently. The configuration window opens in
the working area when you double-click on the axis name in the project navigator.
You can call the axis configuration window by clicking on the “Change” button in
this window.
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If you have selected an electrical axis with drive, the drive will also need to be param-
eterized. The procedure for setting up a drive in SIMOTION is described in brief in
the following chapter.

8.9.7 Creating drives

If you have selected the option “Electrical” as the axis type, the wizard displays the
drive assignment window when you select “Next” (Figure 78).

If a SIMOTION D435-2 device has been inserted and you have entered no other
inputs or parameter settings in HW Config, the axis wizard does not display a drive
for selection.

Define assignment later

When this option is selected, you can exit from the wizard and assign the drive later.
A programmer involved with the mechanical engineering design will often do this
if no information is yet available about the drive to be installed.

Create a drive

A SIMOTION D (drive-based) has the hardware properties of an integrated drive.
With this SIMOTION module, therefore, it is possible to create a drive without adding
any parameter settings to HW Config.

Change actuator Spﬁtdkx_l:_l .EM_ .‘!ss.lt__;mﬂull - - . B a SN -
‘”‘!;‘i"\';""“_ |EAssig partner [IN/OUT] |Assig
iy Z Al = Al =]
% Define assignment |ater
2 mmnes
3| MERSINAMICS Integrated [ Create dmve

* [ Create digital encoder
[

---------- Molor bype Slandard motor

< Back | Firush ] Cancel Help |

Figure 78 Assigning a drive to the axis
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To do this, click on the button “Create drive” next to the entry “SINAMICS_Inte-

grated”. SCOUT opens a second wizard in which the drive can be configured.

You can configure the entire drive train in this drive wizard. The wizard will guide

you through various configuration screens that consist of the following steps:
m Configure the infeed
= Insert adrive
= Define the controller structure
m Select a power unit
= Select an enable signal
m Select the motor
= Motor with or without holding brake
m Select an encoder
m Configure the data exchange with the drive

® Summary

After you have worked through the drive wizard, the axis wizard for the axis param-

eter settings will appear again (Figure 79).
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e
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Figure 79 Axis wizard for assigning a drive
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Now connect the actuator to the axis. If you have selected a positioning, synchronous
or path interpolation axis, you will also have to connect the encoder after you have
connected the actuator. This configuration step does not need to be performed for
the drive axis and the completion screen is displayed when you click on “Next”. After
you have completed these tasks, SCOUT will automatically configure all the relevant
data during the next compilation operation. The drive and motor must of course
already be physically present in the hardware before the program is compiled. You
can find further information in the SIMOTION documentation.

8.9.8 Creating path objects

Like all other Technology Objects, the path object is created in SCOUT. You will
find an entry “Insert path object” in the folder “PATH OBJECTS” underneath the
SIMOTION device (Figure 80).

InsertPathosiect . SRS ety 8 W 0 B B 8V e
| E Mame; m
General |DbjEctnddre!!

Aasthor
WVersion:

]

Emsting Fath obpoct
Comment
I
|
0K | Cancal Help
S |

Figure 80 Inserting a path object

Enter the name of the path object by overwriting the default name. The path object
is created when you click on the button “OK”. SCOUT inserts the path object in the
project navigator (PNV) with a variety of subelements (Figure 81).

Figure 82 shows the configuration screen in which you specify the required kine-
matics. The drop-down list shows the kinematics that are supported by SIMOTION.
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Figure 81 Path object in the PNV

- » Interconnections

Avariety of further configuration screens enable you to assign additional parameters

to the path object. These include

m Geometry specifications
m Offsets and rotations

m Initial position definitions

m Specification of units for calculating the kinematics

You can select additional support (such as limits or defaults) for handling kinemat-
ics, or functions such as calibration or path control panel for aiding commissioning
in the PNV. Certain commissioning functions are available to the user only if an
online connection has been set up to the SIMOTION system (e.g. path control panel).
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8.9.9 Language editors in SCOUT

SCOUT provides you with editors for various programming languages (Figure 83).
Every programming language has its strengths and should be used wherever it can
be of most benefit.

The right programming language for each task

« Textual high level language acc. to IEC-61131

Structured * The “all-rounder”: suitable for all tasks
Text * Debug-functions for online-test and diagnostics
(ST)
Ladder « Graphical programming language acc. to IEC-61131,
Diagram, particularly for cyclic tasks (e.g. logical functions)
Function « Switching between LAD and FDB possible at any time
Block Diagram « View of program status for testing and diagnostics
(LAD, FDB)

« Graphical programming language (flow-chart diagram),
Motion particularly for sequential tasks (e.g. MC)
Control « Comfortable structuring by creation of modules
Chart (MCC) « Easy diagnostics through graphical monitoring and

single-step operation

« Graphical interconnection of information flow,
Drive particularly for continuous tasks (e.g. loop-control)
Control « Libraries of function blocks, freely connectable
Chart (DCC) - Diagnostics with tracing/monitoring of signals

Figure 83 Programming languages in SCOUT

Structured Text (ST)

The high-level language Structured Text is very similar to PASCAL. ST is one of the
languages that is supported and standardized by IEC 61131-3. The programmer
can use this language to program all the tasks that need to be implemented in
SIMOTION. The editor provides all the necessary programming functions such as
indent, outdent, folding, automatic completion and formatting. Diagnostic options
such as “program status” and “breakpoints” are available for testing programs.

Ladder diagram, function block diagram (LAD, FBD)

LAD and FBD are graphical programming languages that are ideal for programming
combinational logic. They are thus the perfect languages for expressing logic com-
binations. It is extremely easy to diagnose programs using the “Program status”
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function. But breakpoints can also be used in these languages for troubleshooting
purposes.

Motion Control Chart (MCC)

The graphical programming language MCC is represented in a flowchart format and
has been designed to help first-time users get to grips with programming motion
functions (motion control - MC). Programs are executed according to the defined
program flow. Predefined command boxes are inserted in the program at the points
chosen by the programmer. A double-click on the command box opens a window in
which further parameters can be assigned to the command. Users find it extremely
easy to program motion commands, even if they are complex, with MCC. The ,Mon-
itor“ function is activated in order to track program execution. If monitoring is
selected, the editor highlights the currently active command box in yellow. Other
functions such as program status, single-step tracking or breakpoints allow the user
to perform in-depth analysis on a program. MCC is optimized for creating motion
programs for MotionTasks.

Drive Control Chart (DCC)

DCC has been designed for special applications and is not a standard feature of the
engineering system. It is available as an option package for SCOUT and is ideal for
programming control tasks. An “interconnection editor” can be additionally installed
to set up graphical interconnections between signal flows. It is possible to analyze
programs assisted by the status display and signal status tracking over time. The DCC
option package comes with an extensive standard library that contains predefined
functions such as logic operations, mathematical functions as well as more complex
elements such as diameter calculator, PID controller or winder.

8.9.10 Support for programming languages

All the programming languages included in the basic system contain various test
aids for analyzing programs. These include, for example, the status display in pro-
grams, the setting of breakpoints or the monitoring function in MCC. Automatic
completion of commands or variables also help the programmer to work faster.

Cross-project software checks can be carried out using the convenient comparison
function implemented in SCOUT (Figure 84). The programmer can use this tool
to compare projects or to transfer program sections from existing projects to new
projects.

The comparison shows a detailed summary of differences using a color coding sys-
tem. Sections of program can be copied from the comparison project over to the
reference project (currently open project) with a single click. This user-friendly
comparison function is also available online from the SIMOTION CPU provided that
the source data were also stored on the CPU.
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« Comparison of command boxes
« Differences are color coded

« Additional details are obtained by double-clicking
the colored command box

« Comparison of networks
« Differences within the networks are color coded
« Missing networks can be clearly identified

« Comparing juxtaposition of identical code components
« Differences are color coded
« Missing code sequences can be clearly identified

Figure 84 Comparison function in SCOUT

8.9.11 Inserting program sources (units)

Before you can input a program in SCOUT, you first need to insert a program source
(unit) in the project navigator.

To do this, open the folder “Programs” in the PNV (Figure 85). You will find four
insert dialogs underneath “Programs”. Each of these dialogs refers to a particular
programming language and allows you to insert a source (unit) in the relevant
language. In other words, each of the source containers in SIMOTION contains only
one language. Programs written in a different language can, of course, be called
from any program.

Insert ST source file

Select the entry “Insert ST source file” in order to insert a new source for the lan-
guage ST (Structured Text).

When you double-click on the entry, a dialog box opens in which you can parame-
terize the ST source (Figure 86).

The dialog contains various tabs for setting the properties of the source. The over-
arching property is the name of the source. Enter a name of your choice in this box.
We have used the name “ST_Examples” in our example.
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Figure 85 Inserting program units

General tab

You can enter information relating to the source such as author, version or com-
ments in this tab. The engineering system will provide you with property details
such as code size, “last modified on” time and date, storage location and the SCOUT
version with which the source was created.

Compiler tab

The Compiler tab defines the options that are admissible in this source. The settings
can be applied globally to all sources, or set separately to a value different from the
global setting for each individual source. You must check the “Permit object-oriented
programming” box in this screen. You must also check “Permit program status” so
that you can monitor programs with the “Program status” function. Other details
about the settings can be found in the online help or the documentation.

Additional settings tab

The active compiler options are stored as a string in the “Additional settings” tab. You
can also implement preprocessor statements at the source. Preprocessor statements
are a mechanism for defining conditional translations and text substitutions for spe-
cific variants of the environment. Further details can be found in the documentation.
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Figure 86 Inserting an ST source file (unit)

8.9.12 Entering programs

Once you have specified the properties of the program source and closed the dialog
with “OK”, the program editor will normally open automatically (Figure 87). You
can now write the program in this editor.

As we have already mentioned several times, a source (unit) is a two-part container
for programs (IMPLEMENTATION) and for providing public access to data (INTER-
FACE). An OOP interface ITF1 has been defined in the INTERFACE section in this
source. This is available to all programs that are connected to this unit “ST_Exam-
ples”. In the implementation section of the unit, we have programmed the class CL01
that in turn implements the interface ITF1.

If we want to use the class, we need to create an object (instance of the class). To do
this, we create a program in which we define this instance (Figure 88).

We enter the PROGRAM AppO1 for class CLO1. We define the instance of class CLO1 as
avariable in this program and also create Inp01 and Outp01 as BOOL variables. Then
we call method mM1 in the program. We need to make this public so that the program
can be assigned in the execution system. We declare the program as public in the
interface section of the unit simply by entering “PROGRAM App01;” in the interface.
The next chapter explains how the program is assigned to the execution system.

If the class is to be used again outside the unit, it can also be declared as public with
the entry “CLASS CL01;” in the interface section.
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INTERFACE ITF1

METHOD miMl : BOOL
VAR_INBUT
Invarl : BOOL;
END_VAR
END_METHOD
END_INTERFACE
END_INTERFRCE

IMPLEMENTRTION
CLASS CLO1l IMPLEMENTS ITF1
VAR

END_VAR

[ METHCD PUBLIC mMl : BOOL
VAR_INFUT

Invarl : BOOL;
END_VAR
mMl:=Invarl;
END_METHOD
END_CLASS

END_IMPLEMENTATION

cbléClassvar:INT:=123;

Figure 87 ST programming editor

N 1 INTEREFACE
2 INTERFACE ITFL
3 METHOD mM1 : BOOL
. H VAR_INPUT
w3 Invarl : BOOL;
6 END_VAR
7 END_METHOD
B END_INTERFACE
)
10 _
11
1z END_INTERFACE
13
14 IMPLEMENTRTION
15 CLASS CLOl IMPLEMENTS ITEL
16 VAR
17 chléClassvar: INT:=123;
18 END_VAR
i H METHOD PUBLIC mM1 : BOOL
20 [ VAR_INFUT
21 Invarl : BOOL;
el END_VAR
23 mMl:=Invarl;
24 = END_METHOD
25 END_CLRSS
26
27 [ PROGRAM App0l
28 B VER
29 myCcLOl : CLOl;
30 Inp0l : BOOL:
31 Cutpdl @ BOOL;
32 END_VAR
33
34 Qutpll = myCLOl.mM1{Invacrl := Inp0l};
35
6 END_PROGRAM
37
38 ~END_IMPLEMENTATION
2a_
<l

Figure 88 Program for execution system
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8.9.13 Assigning programs to the execution system

Programs can be executed in the SIMOTION system only if they have been assigned
to the execution system. The SIMOTION execution system has several execution
levels. Some of these are defined by the system, while others can be influenced by
user settings. A detailed description of the execution system can be found in the
online help and the documentation.

You can go to the execution system screen by double-clicking on the entry “Execution
system” in the project navigator (PNV). The window shown in Figure 89 appears. The
different tasks are represented by symbols in this screen. The startup and shutdown
tasks are in the center of the screen. The cyclic and parallel tasks are arranged to the
right. All of the tasks can be selected in the tree view. Programs that are assigned to
a task are also visible in the tree view.

@] D435 - EXECUTION SYSTEM o ]
StamupTosk Operabanbevels
= OperationLevels UM -
# MotionTasks s'g Lﬂﬂl m MotanTasks |
BackgroundTask L]
ServoSynchronowsTasks_fast
IPOSynchronousTasks_fast F==1
SRR T Ak E BackgroundTagk |
ServaSynchronousTask TR
+ SynchronousTask
IPOsynehrenousTask O ——
TCPNM_Tasks @ TimeckarmuplTasks
= SychronousTask_?
IPOsynehronousTask_ 2 SymchronousTasks
TCInput_Tasks 1
TCInput_Tasks 2 [ —
Sl nw..‘ @) SystamissamupTasks
TCTasks 2 stop Shitciown T sk
| UserlrlerupiTasks
= SysteminterruptTasks
TimeFaultTack
TimeFaultBackgroundTask
TechnolagicalFaultTask Close | Halp |
PeripheralFaultTask
ExecutionFaultTask
TimerintermupiTasks
UserlntesruptTasks
ShutdownTask
Select tasks.

Figure 89 The execution system of SIMOTION

The Help button displayed in the dialog will take you directly to the relevant page
in the online help. You will also find a detailed description of the SIMOTION task
system there.

The “BackgroundTask” is a frequently used execution level. The BackgroundTask is
executed cyclically by the system and is used to assign programs that always need
to be processed, but are not time-critical. This task is ideally suited for testing the
sample programs.

When you click on the button “BackgroundTask”, the setting screen for this task will
open (Figure 90).

It is extremely easy to assign a program to a task. Programs that can be assigned
are listed on the left-hand side with <source name>.<program name>, followed by
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] D435 - EXECUTION SYSTEM®

StartupTask
= OperationLevels
B MotionTasks
= Background Task
ST _Examples App0l
ServoSynchronousTasks_last
IPOSynchronous Tasks_fast
= ServobynchronousTasks

BackgroundTask

Program assignment | Task configuration |

Programs (numbor of spplications)

Programs used:

[ET_Examplas Appdl (1)

ST_Examplos Appil

ServoSynchronousTask
B SynchronousTask
IPOsynchroncusTask =
TCPWM_Tasks = |
= SynchronousTask_2
IPOsynchronousTask_2 I
TCinput_Tasks.1 |:J
TCInput_Tasks 2
TCTasks_1
TCTasks_2
- SysteminternuptTasks |
TimeFauliTask
TimeFaultBackgroundTask
TechnalogicalFaultTask
PeripheralFauliTask
ExecutionFaultTask
TimerlnteruptTasks
UserlnterruptTasks

Figure 90 BackgroundTask: assigning programs

anumber in parentheses. The number indicates the number of times the program
has already been assigned to tasks. It is permissible to assign a program to more
than one task. The programmer must however take task assignments into account.

The programmer can program function blocks, functions, programs and, as of V4.5,
classes or interfaces. Only programs may be assigned to a task in the SIMOTION
system. Programs are displayed in the left-hand list only if they have already been
declared public in the unit. By selecting the program App0O1 and clicking on the
button “arrows to the right”, you can assign App01 to the BackgroundTask.

8.9.14 Integrated test functions

At least one SIMOTION CPU is required to test programs. The test programs can be
downloaded to this CPU. They are processed on this CPU.

A wide range of mechanisms for supporting tests have been integrated. These
include, for example:

®m Program status
(requires activation via compiler switch)

m Variable status
(in the symbol browser and in the source text)

® Breakpoints
Extensive range of trace functions

m User-friendly watch tables
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These functions are available only if an online connection is established between
the engineering computer and the SIMOTION CPU. A detailed description of how
to set up online connections can be found in the documentation or the online help.
We would therefore advise our readers to study the documentation relating to com-
munication or the online help.

8.9.15 Testing with “program status”

The most common means of testing programs is to use the “Program status” func-
tion. An online connection must be set up between the engineering computer and
the SIMOTION CPU before this function can be used. The “Program status” func-
tion is essentially a mechanism that records the values of variables in real time as
the program sequence selected by the user is executed. In other words, the values
recorded indicate the exact processing sequence of the program in the CPU. These
values are transferred to the engineering computer, processed there and displayed
in SCOUT in coordination with the program sequence. “Program status” is suited
primarily to testing programs that are called cyclically.

Figure 91 shows the status displays of the SCOUT engineering system. When “Pro-
gram status” is active, the program editor window is split and the current status
values of the variables are displayed in the right-hand window pane. The values

Figure 91 Status displays in SCOUT
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are assigned to the relevant program line. The function also displays correct values
stored temporarily in the CPU stack even if these no longer exist after a function
or method has been executed. The values are recorded in real time as the selected
program sequence is executed. The gray bar in the left-hand window shows the
progress of the active recording.

Various information (compilation results, watch tables or variables, for example)
is displayed at the bottom of the SCOUT screen. In this part of the screen, you can
display the variables of the element selected in the PNV. To do this, you select the
program source in the PNV and click on the tab “Symbol browser”. If the tab “Symbol
browser” does not display any content after you have selected the program source,
itis an indication that the selected source does not contain any global variables. You
can select the element “Execution system” in the PNV as an alternative. In this case,
the symbol browser displays the variables for all the programs that are integrated in
the execution system. These data in the symbol browser are transferred acyclically
from the CPU and displayed.

Setting up the “Program status” function

You must set up the “Program status” function before you can activate it. We want to
explain this process using a specific test example. We will use the COUNTER classes
from chapters 3.3.6 and 3.3.7 for this purpose.

A reminder: We developed there a class named COUNTER with methods UP() and
DOWN(). We then extended these by deriving class COUNTER_5STEP from class
COUNTER. These two classes were used in the program CallCounter_ST2 and we
implemented count up and count down functions for each class. The core feature of
these classes is that the only working program is the UP method of the base class.

We now want to monitor this method as it works and will do this using the “Program
status” test mechanism. To utilize the “Program status” function, we first need to
activate the compiler options “Enable Program status” at the program source (Figure
92). You can find this setting by selecting the source in the PNV, clicking on the
right mouse button and selecting “Properties” in the context menu. The switches
are displayed for selection/deselection in the “Compiler” tab.

Permit program status

Peimit language extensions

Only create program instance data once
Permitlanguage extensions [ECE1131 3rd Edition

1R TSI<IA 180 ]
I E B Y

Pemmit object-oriented programming

Figure 92 Enable Program status

This same procedure must naturally be carried out for every program source to be
monitored. If the base classes and the derived class are stored in different program
sources, the option must be set for both sources.
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57

o8 x IF LockingZ = TRUE THEN Locking? = FALSE

55 Countout2:=C2 _DOWN(); // decrement CountOut2 = 290

0] I END_IF;

61 IH 1F CountoutZ <= 0 THEN CountoQut2 = 355

g2 Loecking2 := FALSE; Locking2 = ?FALSE

&3 UpValreached2 := FALSE; UpValreached? = ?FALSE
&4 I END IF;

65

Figure 93 Program status display

We then open the program source which contains the program CallCounter_ST2.
In the source we navigate to the point at which counting down in increments of 5 is
programmed. In our example, the relevant program code is stored in line 59 (Figure
93). We position the cursor exactly on this line in the editor and then click.

The rest of the procedure is relatively simple. You can activate the “Program status”
function using keyboard shortcut “CTRL+F7” or the button “Program status” in the
toolbar @J

After you have activated the function, the window is split into panes and values are
displayed automatically. We can now observe the effect of call C2.DOWN() in line
59. It should be noted, however, that we can only observe the effect of the methods
here, but not the method itself.

Setting the call path/task selection

The same procedure as described above is also used to monitor methods. To do this,
you navigate to the source in which the class Counter with the method UP() is pro-
grammed. After placing the cursor in the editor, you can activate “Program status”
again with “CTRL+F7”. When you do this, however, you will notice that the function
is not activated, but the dialog “Call path/task selection” is displayed instead.

SCOUT always displays this dialog if the program sequence to be monitored can be
called from several positions. You use this dialog to tell SCOUT which data to use for
monitoring. The simplest option to select is “all call positions as of this call level”.

If you do this, the system will record the data with all possible call positions. When
you select this option, the system will supply a value display with various different
data. Our method UP() of the class COUNTER is called by a total of four different
positions, i.e. by the functions that count up and down in increments of one and
those that count up and down in increments of five.

But we only want to observe how the method UP() counts down in increments of
five. Before we do this, let’s take another look at the entire functional interaction
between the two classes. It is clearly illustrated in Figure 21.

The diagram shows that when the method DOWN() of the class COUNTER_5STEP is
called, the inherited method DOWN() of the base class is called. This in turn uses
THIS to call the method UP() of the class COUNTER_5STEP. UP() of the base class
COUNTER is called with SUPER in this method.

We have presented this call chain again in Figure 94 which also shows the program
line numbers.
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| ig —|—| Countout? :=C2.DOWN () ; 7/ decrement |

Static call

[<o ] DOWN := THIS.UP'-JEC); // Internal method zall

Dynamic call

|'_9 | UP:=&TEER. UP {TNC: =INC=5, QU=>QU) ;

Static call

24 £f Upper limit detection

25 TR U <= MAY_UH] - THO THREWN

Ze CV = 2V + INZ; // Count up of current wvalus
27 o - PALZE;

28 EL#E

22 QU :— TRUE; 44 upper limit reazhed

au END_IF;

31 UP := CV; // Result of method

Figure 94 Method call chain

cotpn con o) S L TR
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U
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0
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Cancel Helo |

Figure 95 Setting the call path/task selection
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You now need to use the dialog “Call path/task selection” to pass this information to
the engineering system, but in the reverse sequence (Figure 95).

The dialog “Call path/task selection” offers you a variety of different setting options.

Calling task

In this box you must select the calling execution level for the program to be moni-
tored. It is of course possible to call a program in different tasks.

Current code position

The point in the program to be monitored is displayed in this box. You have already
selected this point by positioning the cursor in the editor.

Is called from

In this box you select the relevant call points as illustrated in Figure 95, starting at
the bottom. All the points you can possibly select are displayed when you expand
the list box. In this example, we will choose program line 19.

When you have finished this selection, the next list box is activated and again dis-
plays the possible call points. Since the next call is dynamic, you must also check
the box “Dynamic calls ...”. The list box will otherwise only show the static calls that
you can select. We will choose program line 40.

The last setting in our example is program line 59 that shows us the call of COUNTER_
5STEP with the method DOWN().

When you click on the button “OK”, the dialog closes and you return to the status dis-
play. The status is then displayed as it is appears in the screenshot in chapter 8.9.15.

With a little practice, you will be able to enter these settings very quickly. When you
have learned how to precisely specify the data you want to display, you will find that
the “Program status” function is an extremely useful tool. Since “Program status” is
not a suitable test mechanism in all situations, we will demonstrate its limits below.

The limits of “Program status”

As we have already mentioned, “Program status” is an ideal tool for testing pro-
grams that are executed cyclically. It is also designed to permit several status tasks
to be processed simultaneously (depending on settings). “Program status” is thus
a valuable tool for programmers.

When this test tool is used in a variety of scenarios, however, its underlying principle
imposes a few limits on its capabilities. We want to demonstrate these here so that
our readers will know when “Program status” can be used expediently as shown in
Figure 96.

In order to use “Program status”, you need to set up the task. We have described how
this is done in the previous chapter. Once the task has been set up, SCOUT requests
the CPU to record the selected code range. The engineering system then waits until
the code in the selected range has been executed once in the CPU. Once the data
are available, SCOUT uploads these from the CPU and then processes and displays
them. The cycle is then repeated. The “Program status” function is terminated if
the online connection between the engineering computer and CPU is interrupted
or deactivated.
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Request record
from CPU

Code range has
been executed once?

No

Yes
v
No
Upload data
from CPU
Yes
v
Display .
received data Terminate task
v

End

Figure 96 Operating principle of “Program status”

From the workflow illustrated above, it is clear that “Program status” requires the
engineering system and the SIMOTION CPU to interact. The systems are naturally
designed to do just this. But the way in which programs are programmed and used
has an impact on the capabilities of this test tool. For this reason, we want to present
specific scenarios and their consequences here. In the following cases, it is impossi-
ble to display status information even if “Program status” has been set up correctly.

If you set up a task for “Program status”, the engineering system waits until
the selected code range is executed in the CPU. But if the selected program
sequence never executes in the CPU, no data will be displayed in the right-
hand window pane.
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This could happen if the CPU could either not execute, or exit from, the
program sequence because it was preceded by a statement (such as IF).

The selected program sequence is contained in a program, function block,
function or method that is not currently called.

The program sequence has been executed once or even multiple times, but
the task was only set up after it was executed for the last time.

The program is assigned to a task, but to a task that is not currently active
(e.g. InterruptTask or MotionTask).

The CPU has branched to STOP owing to an error.

Using “Program status” in combination with breakpoints does not generally
work. If one or more breakpoints are set in the range that also corresponds
to the selected program sequence, the CPU will stop at the breakpoint. The
status task thus waits for the complete program sequence to run, but this
cannot complete execution because the CPU has stopped at the breakpoint.

If the status task cannot be completed, the engineering system does not
receive any data nor display any values.

The data for the status might also have been delivered and displayed just
prior to activation of the breakpoint. In this case, the displayed values do
not correspond to the values that are actual when the CPU stops at the
breakpoint.

If breakpoints are located at a different point in the program that is not
within the selected status display range, the approach to a breakpoint might
prevent execution of the program sequence. No values are displayed in this
case either.

It is clear from the description above that users of the “Program status” tool must
have a certain level of knowledge about the system behavior and the program struc-
ture and sequences. Only programmers with this knowledge can fully exploit the

potential of these valuable test functions. Further information about the behavior of

the “Program status” tool can be found in the SCOUT online help. We would in par-
ticular like to draw your attention to the various operating modes of the SIMOTION
system for testing. Selection of the appropriate operating mode influences the
behavior and the information displayed by “Program status”.
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Note about using the example programs

Note about using the example programs

The example programs contained in this book have been developed to explain
certain issues and they should be understood as such. The minimum engineering
environment required for use of the examples is SIMOTION SCOUT V4.5.

The reader is granted the non-exclusive, non-transferable right to use the software
free of charge; this includes the right to modify the software, to reproduce it in
modified or non-modified form and to link it to the reader’s own software.

The software has not been tested with the normal system test by Siemens AG. We
do not assume any liability - irrespective of the legal grounds - especially for faults
in the software or associated documentation or damage on account of consulting
unless the same is to be attributed to us, for example, for willful damage, gross
negligence, damage to life, body or health, taking over of a procurement guarantee,
willful concealment of defects or violation of important contractual liability. This
does not entail a change in the burden of proof to the disadvantage of the customer.

German law applies. The courts Erlangen shall have exclusive jurisdiction.
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The page numbers specified in the index refer to places in the text in which the
relevant term is defined or described for the first time, or to places in which it has
special relevance in examples. The index would have become overcomplicated if

we had listed all the pages on which the relevant terms appear.
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