
[1]

www.it-ebooks.info

http://www.it-ebooks.info/

Learning RSLogix 5000
Programming

Become proficient in building PLC solutions in
Integrated Architecture from the ground up using
RSLogix 5000

Austin Scott

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Learning RSLogix 5000 Programming

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2015

Production reference: 1260815

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-603-9

www.packtpub.com

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Credits

Author
Austin Scott

Reviewers
Tumesh

Yogesh Balajee

Sherif E. Nasr

Commissioning Editor
Usha Iyer

Acquisition Editors
Richard Brookes-Bland

Reshma Raman

Content Development Editor
Riddhi Tuljapurkar

Technical Editors
Novina Kewalramani

Chinmay S. Puranik

Copy Editor
Swati Priya

Project Coordinator
Kinjal Bari

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Disha Haria

Jason Monteiro

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Austin Scott founded Synergist SCADA in 2006, a successful company that
provides vendor-neutral SCADA architecture and development. Synergist has also
developed a suite of engineering tools, including Citect Power Tools and Active
Network Security. In July 2013, Synergist was acquired by Cimation as the catalyst
for its growing Canadian operations and ongoing product development.

With more than a decade of industrial automation and software development
experience, Austin has worked on large-scale, high-profile projects across North
America and around the globe, incorporating most major SCADA platforms. His
professional focus includes developing and refining custom software solutions
to enhance the productivity of SCADA developers and improve the integration
between the SCADA data and corporate applications. He is also skilled in cyber
security, especially the detection of unauthorized access to SCADA networks and the
forensic analysis of SCADA breaches. In 2013, he wrote Instant PLC Programming with
RSLogix 5000 by Packt Publishing.

I wish to dedicate this book to Arya, whose arrival helped me
prioritize what is most important in life. Also, I would like to
thank my friend, Crame Velasquez, who helped me with many
of the complex illustrations used in the first chapter of this book,
ControlLogix and CompactLogix Overview and Firmware. Furthermore,
I would like to thank Packt and its incredible team for giving me the
opportunity to publish this book. Thank you, Riddhi Tuljapurkar,
Melita Lobo, and Richard Brookes-Bland for your seemingly infinite
support and patience.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Tumesh has a BTech degree in instrumentation with many years of industrial
experience. He likes to explore and develop new technologies in the field of
instrumentation, and is a pioneer in the usage of new technologies and ideas.

I dedicate this work to my family.

Yogesh Balajee is a senior controls engineer. He currently manages automation
optimization for two manufacturing facilities in USA. He recently completed a $50
million plant expansion project, serving as the site lead for automation and controls.
He specializes in PLCs, MES, and ERP and has a vision for "Industry 4.0", which he
strives to achieve. He also has a master's degree in electrical engineering with a focus
on robotics and intelligent systems.

I would like to dedicate this work to my wife and father for their
strong support and also to my loving mother, who watches over me.

www.it-ebooks.info

http://www.it-ebooks.info/

Sherif E. Nasr has been working as an assistant professor at the Department of
Engineering Mathematics in the Fayoum University's Faculty of Engineering since
May 2010. He graduated from the Department of Power and Electric Machinery in
the Cairo University's Faculty of Engineering in July 1996.

Besides his academic career activities, his interests lie in industrial control and field
instruments in various industrial sectors.

He has supervised many projects at power plants, as well as oil and gas and food
and beverage industries.

I would like to thank my kids and wife, who usually help me achieve
my targets on time or even earlier.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[i]

Table of Contents
Preface	 vii
Chapter 1: ControlLogix and CompactLogix
Overview and Firmware	 1

A brief history of Rockwell Automation	 1
Integrated Architecture	 2
ControlLogix controllers	 4
Logix operating cycle	 5
ControlLogix series 6 controllers	 6
ControlLogix series 7 controllers	 6
Selecting a ControlLogix controller	 8
GuardLogix safety controllers	 9
Extreme environment controllers	 9
CompactLogix controllers	 10
CompactLogix 5370 controllers	 13
Selecting a CompactLogix controller	 15
ControlLogix software and firmware	 16
Product Selection Toolbox	 17

Rockwell Automation Product Catalog for iPad	 18
Summary	 18

Chapter 2: Industrial Network Communications	 19
Key terms in industrial communications	 20
Network communication technologies	 22

Primary network technologies	 23
DeviceNet	 23
ControlNet	 23
EtherNet/IP	 24

Legacy network technologies	 25
Data Highway Plus	 26
Universal Remote I/O	 26

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Serial Real-time Communications System	 26
SynchLink	 26
DH-485 and DF1	 27

A comparison of network communications	 27
EtherNet/IP Capacity Tool	 28

Using EtherNet/IP Capacity Tool	 29
RSLinx	 34
RSLinx communication using ControlLogix and a USB connection	 36
The Rockwell Automation Integrated Architecture
Builder mobile app	 39
Summary	 40

Chapter 3: Configuring Logix Modules	 41
Module terminology	 42
Module types	 43

Analog modules	 43
Digital modules	 43
Communication modules	 43
Controller modules	 44
Specialty modules	 44
Logix terminal blocks	 44

Configuring a ControlLogix module	 44
Logix module – Catalog Numbers	 47

Special features of a module	 48
Addressing module I/O data	 49
Exploring module addresses	 51
Buffering module I/O data	 52

Configuring remote racks with RSNetWorx	 53
Summary	 54

Chapter 4: SoftLogix	 55
SoftLogix system overview	 55

SoftLogix controllers	 56
Components of a SoftLogix solution	 57

SoftLogix 5800 versus RSLogix Emulate 5000	 58
Working with SoftLogix	 58

SoftLogix 5800 Chassis Monitor	 59
Configuring the RSLinx virtual-backplane driver	 63
Creating a Logix Designer SoftLogix project	 64

Configuring the 1789-SIM module in the Logix Designer project	 68
Simulating values using the 1789-SIM module	 70

Summary	 71

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Chapter 5: Writing Ladder Logic	 73
Ladder logic overview	 73

IEC 61131-3	 74
Understanding programming logic	 74
AND logic in ladder	 75
OR logic in ladder	 76
NOT logic in ladder	 76

How to write ladder logic	 77
Buffering I/O data	 77
Defining tags	 78
Buffering base tags	 79
Buffering using program parameters	 93

Summary	 94
Chapter 6: Writing Function Block	 95

Language compilation overview in Logix	 96
The function block overview	 97
Understanding FBD	 98

Function block versus ladder logic	 98
The function block sheets	 99
The function block elements	 100
Function block wiring	 101

Function block logic	 102
The AND logic function block	 102
The OR logic function block	 103
The NOT logic function block	 103

Writing a function block program	 104
Online monitoring and editing	 108
The FBD properties	 115
Adding and naming sheets to a routine	 116
Adding a textbox to a function block routine	 117
Hiding and showing function block pins	 117
Assigning a constant value to a function block	 118

Summary	 118
Chapter 7: Writing Structured Text	 119

An introduction to structured text programming	 119
Typical usage of structured text	 120
The structured text editor	 120

Writing structured routines	 122
Simple routine	 122
Structured text syntax	 126

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

Operators	 126
Assignment operator	 126
Non-retentive assignment operator	 127
Retentive versus non-retentive assignment operators	 127
Buffering structured text I/O module values	 128
Relational operators	 128
Logical operators	 129
Arithmetic operators	 129

Expressions	 130
Instructions	 131

Arithmetic instructions	 131
ORSI instruction	 132

Constructs	 133
The IF THEN construct	 133
The CASE OF construct	 134
The FOR DO construct	 134

Summary	 135
Chapter 8: Building Sequential Function Charts	 137

Introducing sequential function charts	 137
Typical usage of SFCs	 138
The SFC editor	 138
Defining the SFC steps	 138
Defining the SFC actions	 139
Defining the SFC transitions and branches	 141
Defining the SFC stop element	 142
A backwash SFC routine	 142

Summary	 154
Chapter 9: Using Tasks and Programs for Project Organization	 155

Introducing project organization in Logix	 155
Organizational units in Logix	 156
Controller tasks	 157
Controller programs	 157
Controller routines	 158

Controller task types	 158
Continuous tasks	 159
Periodic tasks	 159
Event tasks	 159
Best practices of Logix task usage	 160
Creating a task	 160
Inhibiting programs and tasks	 166
Setting task priorities	 166

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[v]

Tuning a Logix controller	 166
System overhead time slice	 167
Setting the system overhead time slice	 168
Monitoring task execution time and overlap	 169
Task watchdog time	 171
Logix5000 Task Monitor tool	 172

Summary	 173
Chapter 10: Faults and Troubleshooting in Logix	 175

General troubleshooting and support for Logix	 176
An introduction to troubleshooting faults	 177
Faults	 178

Clearing a fault	 180
Fault handling and recovery	 184

Get System Value and Set System Value	 185
User-defined data types	 186
Trapping a fault	 186

Rockwell troubleshooting application for iPad and iPhone	 189
Summary	 190

Appendix: Rockwell Automation Literature Library Resource	 191
Index	 195

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[vii]

Preface
In 1997, Rockwell Automation launched their current generation control platform,
Logix. It represented decades of automation technical advancement for robust,
large-scale solutions. When it launched, it included the ControlLogix 5550 controllers
(Bulletin 1756), ControlLogix I/O modules, and RSLogix 5000 programming
software platform. In 2001, CompactLogix Controller (Bulletin 1769) was added
to the Logix family to support intermediate-sized automation solutions under the
same development platform. The RSLogix 5000 programming software (in version
21 and higher, is now referred to as Logix Designer within the Studio 5000 software
package) provided a unified IEC61131-3 control platform, featuring user-friendly
interfaces and workflows. Ultimately, the Logix platform reduced programming
complexity, eased troubleshooting, and increased plant reliability.

RSLogix 5000 provides intuitive access to real-time information, easy to follow
run-time logic animations, and a comprehensive suite of online change capabilities.
Rockwell is the automation market leader in North America. Moreover, due to
Rockwell Automation's continued success and the glacial speed at which most plants
switch platforms, it will be the market leader for the foreseeable future. Outside North
America, it is widely considered to be the fourth largest automation manufacturer
(after Siemens, ABB, and Schneider). Its total global installation base is well over
2 million programmable controllers. Needless to say, as an automation professional,
learning the Logix platform suite is an excellent investment of your time.

Rockwell Automation has provided a wealth of knowledge in their web-based
Literature Library resources, which is the ultimate source of all the Logix platform
knowledge. Rockwell has created a web of over 10,000 documents that is often
difficult to navigate for beginners. Learning RSLogix 5000 Programming is in no way
a replacement for this resource (this book would need to be 100,000 pages longer),
but provides newcomers with a solid foundation in the Logix platform features and
Rockwell Automation terminology. By the end of this book, the reader will have
a clear understanding of the capabilities of the Logix platform and how to quickly
navigate through the Rockwell Automation Literature Library resources.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[viii]

Learning RSLogix 5000 Programming provides a gentle introduction to RSLogix 5000
and the Logix platform. If you understand the basics of PLC programming or have
experience with programming other PLC platforms, this book will provide you
with the knowledge to become proficient at implementing Logix solutions from
the ground up.

What this book covers
Chapter 1, ControlLogix and CompactLogix Overview and Firmware, introduces the
ControlLogix and CompactLogix platforms by exploring the evolution of the Allen
Bradley controllers. It provides details of the Rockwell Automation Integrated
Architecture and then discusses the important role that firmware plays in the
Logix5000 platform.

Chapter 2, Industrial Network Communications, details the various communication
technologies available for the Logix platform. The focus of this book is on the
current state of Rockwell Automation's ControlLogix and CompactLogix controllers,
however, this chapter discusses some legacy communications protocols, which you
may still find running in the field today.

Chapter 3, Configuring Logix Modules, looks at the available modules for the Logix
platform, how to configure them, and their usage in a Logix project. It also includes
methods for identifying module features by their Logix Module Catalog numbers
and the address tree that a typical I/O module creates.

Chapter 4, SoftLogix, introduces the Rockwell Automation SoftLogix 5800 Controller
and Virtual Chassis. It guides you through the setup of the SoftLogix chassis monitor
and configuration of your SoftLogix controller within Logix. Finally, this chapter
investigates the techniques for simulating I/O using the 1784 SIM module.

Chapter 5, Writing Ladder Logic, looks at the history of ladder logic and the
development of the IEC standard programming languages. Then, it lets you jump
into ladder logic programming by creating a simple pump control program. It
demonstrates how to buffer inputs and outputs in our ladder logic code and discusses
the importance of this process. Finally, it explores the buffering capabilities of the new
Program Parameter features in Studio 5000 Logix Designer.

Chapter 6, Writing Function Block, explores the merits of function block programming
by building a small sample application. It also provides instructions for modifying
the function block properties and performing online edits.

Chapter 7, Writing Structured Text, explores the strengths and weaknesses of
structured text programming by exploring the typical uses of this language
and demonstrates several sample applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[ix]

Chapter 8, Building Sequential Function Charts, implements a sequential function chart
routine and breaks down the steps, actions, transitions and branches that are used to
construct it. Finally, it lets you work with the online editing capabilities of sequential
function chart routines.

Chapter 9, Using Tasks and Programs for Project Organization, looks at the ways to
structure a Logix project using the basic organization units—tasks, programs, and
routines. It also looks at the ways in which task scheduling and prioritization can be
used to balance the processing time of a controller.

Chapter 10, Faults and Troubleshooting in Logix, teaches you how to identify and
troubleshoot faults in a Logix controller. It details a list of fault codes that provide
insights into the problems encountered by the platform. It introduces the process of
fault recovery, which allows a program to resume its execution after encountering a
specific fault type. Finally, it brings you the convenient troubleshooting applications
available for your iPhone and iPad.

Appendix, Rockwell Automation Literature Library Resource, gives you topic-specific
documentation links.

Safety warning – loss of control/view
The designer of any control scheme must consider the potential failure modes of
control paths and, for certain critical control functions, provide a means to achieve a
safe state during and after a path failure. The examples of critical control functions
are emergency and over-travel stop that may include the following capabilities:

•	 Separate or redundant control paths must be provided for critical
control functions.

•	 System control paths may include communication links. Consideration must
be given to the implications of unanticipated transmission delays or failures
of the link.

•	 Each implementation of a control system must be individually and
thoroughly tested for proper operation before being placed into service.

•	 Failure to follow these instructions can result in death, serious injury, or
equipment damage.

This book is not comprehensive for any systems using the given architecture.
It does not absolve users of their duty to uphold the safety requirements for the
equipment used in their systems or compliance with both national or international
safety laws and regulations.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[x]

What you need for this book
In order to complete the exercises in this book, you will need RSLogix 5000 version
17+ or Studio 5000 Logix Designer version 20+. You will also need a Rockwell
ControlLogix Programmable Automation controller or a software controller
such as Emulate 5000 / SoftLogix 5800.

Who this book is for
The purpose of this book is to explore the hardware, software, and programming
of the Logix platform so that electricians, instrumentation techs, automation
professionals, and students who are familiar with automation, get up to speed with
a minimal investment of time. I intentionally focus on the essential requirements for
selecting, configuring, and programming a modern Logix application in order to get
the reader working with the platform as quickly as possible. Once the reader has a
solid foundation in Rockwell Automation Integrated Architecture, they will be able to
further their knowledge on any topic using the online Literature Library.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"This module can be configured to record or latch the time at which a state is
changed from ON to OFF, OFF to ON, or both."

A block of code is set as follows:

(***** Alarm Totalizer *****)
if (OSRI_01.OutputBit AND NOT FC1001_FLT_ALM.Disabled) then
 Total_Alarm_Count := Total_Alarm_Count + 1;
end_if;

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "First,
in the Controller Organizer pane, select and double-click on the Controller Tags
option to open the Controller Tags panel."

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[xi]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

www.it-ebooks.info

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Preface

[xii]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.it-ebooks.info

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

[1]

ControlLogix
and CompactLogix

Overview and Firmware
In this chapter, we will introduce the ControlLogix and CompactLogix platforms by
exploring the evolution of the Allen-Bradley controllers. We will provide details of
the Rockwell Automation Integrated Architecture and then finally, we will discuss
the important role that firmware plays in the Logix5000 platform. Due to 15 to 20
years of industrial controller life span, it is common to encounter older versions of
hardware and firmware, and critical to be familiar with legacy systems.

A brief history of Rockwell Automation
This book begins with some background history on the Rockwell Automation
ecosystem. It is important to understand the legacy systems provided by Rockwell
Automation because some of them can still be found operating in the field today.
Also, it is important to understand the overall Rockwell Automation offering and
terminology, and how the platforms we focus on in the book fit into the real world.

www.it-ebooks.info

http://www.it-ebooks.info/

ControlLogix and CompactLogix Overview and Firmware

[2]

Allen-Bradley was founded in 1904 by brothers, Harry (19 years old) and
Lynde Bradley (26 years old), with seed money from Dr. Stanton Allen. As a
teenager, Lynde Bradley developed the prototype for what would later become
Allen-Bradley's first commercial product. The primary focus of Allen-Bradley was
motor controllers for several decades until they received an unusual challenge
from General Motors (GM) in 1968. Each time GM wanted to introduce a new car,
they needed to spend two or three months rewiring all their relays to support the
production process changes. The request was to build a system to replace their
hard-wired relay logic with something more dynamic—Standard Machine
Controller. Modicon ultimately won the GM contract with their highly robust
Modicon 084 Controller. As a result, Allen-Bradley acquired a company called
Information Instruments Inc and produced their first functional controller—
Programmable Matrix Controller (PMC) in 1971. Shortly after the release of PMC,
Allen-Bradley released a more feature-rich product known as Programmable
Logic Controller 1 (PLC-1). Since the introduction of the first Allen-Bradley (later,
Rockwell Automation) PLC-1, we have seen several platforms released, including
PLC-2 (1978), PLC-3 (1981), PLC-5 (1986), SLC 500 (1991), MicroLogix (1994),
ControlLogix (1997), and finally, CompactLogix (2006). In 1985, Allen-Bradley was
acquired by Rockwell International and was later spun off as a part of Rockwell
Automation. In the field today, the Allen-Bradley name and logo can still be seen on
many of the Rockwell Automation's products. The focus of this book will be on the
modern ControlLogix and CompactLogix controllers and Studio 5000 Automation
Engineering and Design Environment, which I will refer to as the Logix family.

Integrated Architecture
Like many other vendors, Rockwell Automation has recently rebranded and
reorganized their offering. The ControlLogix family is a part of Rockwell
Automation's larger solution offering called Integrated Architecture. It is a relatively
new term in the world of Rockwell Automation, but the concept has been in place for
quite some time. It represents a convergence of the control and information systems
within an industrial operations environment. This convergence is in line with the
industry trend we have witnessed over the past decade and has increased the ties
between Operational Technology (OT) and traditional Information Technology
(IT). We have seen a continuous increase in demand for operational information
to be provided to the corporate information system in real time in order to fulfill
the maintenance needs, environmental reporting, accounting, and other corporate
requirements. At the same time, we have seen OT move from proprietary protocols
and data access technology to traditional IT technologies such as TCP/IP and
Ethernet. The promise of Integrated Architecture is the ability to easily implement
plant-wide optimization, reduce technical project risk, increase machine performance,
and improve long-term reliability.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[3]

The five core technologies of Integrated Architecture Programmable Automation
Controller (PAC) product line include the following platforms:

•	 ControlLogix
•	 CompactLogix
•	 GuardLogix
•	 DriveLogix
•	 SoftLogix

Integrated
Architecture

Logix

Studio 5000

Logix
Controllers

Kinetix

Stratix

View

PowerFlex

Logix
Designer

View Designer

ControlLogix

CompactLogix

SoftLogix

DriveLogix

GaurdLogix

Rockwell Automation Integrated Architecture overview

The preceding diagram outlines the Integrated Architecture structure and shows
where ControlLogix fits into the mix. The FlexLogix (bulletin 1794) controllers were
also part of the Logix PAC family and was used to communicate with PLC-5 and
SLC 500 Flex I/O blocks. However, FlexLogix has now been retired from the lineup,
so it will not be covered in this book.

The product, formally known as RSLogix 5000 (used for programming the
ControlLogix and CompactLogix controllers), is now included within the automation
engineering and design software suite called Studio 5000 and is now referred to as
Logix Designer. For the remainder of this book, we will be using the terms—Logix
Designer, RSLogix, and Logix—interchangeably to refer to the Logix controller
family programming environment.

www.it-ebooks.info

http://www.it-ebooks.info/

ControlLogix and CompactLogix Overview and Firmware

[4]

ControlLogix controllers
ControlLogix controller was first launched in 1997 as a replacement for
Allen-Bradley's previous large-scale control platform, PLC-5. The ControlLogix
platform includes a bulletin 1756 ControlLogix 5550 controller, bulletin 1756
ControlLogix I/O modules, and the RSLogix 5000 programming software platform
(now referred to as Studio 5000 Logix Designer). ControlLogix represented a
significant technological step forward that included a 32-bit ARM-6 RISC-core
microprocessor and an ABrisc Boolean processor combined with a bus interface on
the same silicon chip. At launch, the series 5 ControlLogix (also referred to as L5 and
ControlLogix 5550) controllers were able to execute the code three times faster than
PLC-5. The following diagram is an illustration of the original Logix L5 controller:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[5]

The L5 controller is considered to be a PAC rather than a traditional PLC due to its
modern design, power, and capabilities beyond a traditional PLC (such as motion
control, advanced networking, batching, and sequential control). The ControlLogix
platform is built on the ControlBus backplane, which performs like a mini-network
and allows devices to be Removed or Inserted Under Power (RIUP).

Warning: Removing modules while under power can
create an arc and have disastrous consequences in
explosive environments.

L5 has since been retired from the lineup, so we will focus on the newer L6 and
L7 controllers in this book. Throughout this book, we will be referring to the
ControlLogix controllers as PACs, which are the modern day equivalent of PLCs.

Logix operating cycle
The entire Logix family of controllers (ControlLogix and CompactLogix) has
diverged from traditional synchronous PLC scan architecture in favor of a
more efficient asynchronous operation. Like most modern computer systems,
asynchronous operation allows the Logix controller to handle multiple tasks at
the same time by slicing the processing time between each tasks. The continuous
updating of information in an asynchronous processor creates some programming
challenges, which we will address throughout the book. The following diagram
illustrates the difference between the synchronous and asynchronous operation:

Read Inputs

Execute LogicWrite Outputs

Communications,
Status, Watchdog

Traditional
Synchronous

PLC Scan

Logix
Asynchronous

Operation

Logic

Tasks
Execution

Communications
Inputs

200 ms RPI

Outputs

20 ms RPI

www.it-ebooks.info

http://www.it-ebooks.info/

ControlLogix and CompactLogix Overview and Firmware

[6]

ControlLogix series 6 controllers
In 2002, the bulletin 1756 ControlLogix L6 (Logix556x) processor was released with
a more powerful processor and more memory, and the CompactFlash nonvolatile
memory card was added to the entire lineup.

Even though the ControlLogix platform is approaching its 20th birthday,
it is still in the early stages of its product life cycle. For example,
Allen-Bradley's 1747 series SLC500 family, which was introduced in
1989, is still available for sale today. Although no longer actively being
developed, SLC500 represents a product life in excess of 25 years.

ControlLogix represents a common control engine with a common development
environment and tight integration between the programming software, controller,
and I/O modules. This close integration greatly reduces automation engineering
development time and cost.

ControlLogix series 7 controllers
In 2010, Rockwell Automation launched the series 7 (also referred to as L7 and
ControlLogix 5570) controllers, which featured the following enhancements over
the series 6 (L6) controllers:

•	 The performance capability doubled due to a more powerful dual core CPU.
•	 The adoption of modern SDRAM memory.
•	 The replacement of the 9-pin serial port with a USB 2.0 port (programs

transfer 200 times faster over USB 2.0 than serial).
•	 The replacement of the CompactFlash memory card with a Secure Digital

(SD) memory card.
•	 The replacement of the lithium battery with the capacitor-based Energy

Storage Module (ESM). The ESM provides power to the controller during a
power loss event to allow it to copy the contents of its memory from volatile
memory to the onboard nonvolatile memory. The ESM eliminates the issue
with L6 series controllers that would lose the program after a few weeks
without power once the battery was completely drained.

•	 The ability to store program comments and tag descriptions on the controller
(firmware v21 and higher).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[7]

•	 The addition of the onboard four character display.

ControlLogix L73 controller

www.it-ebooks.info

http://www.it-ebooks.info/

ControlLogix and CompactLogix Overview and Firmware

[8]

Selecting a ControlLogix controller
When selecting a ControlLogix controller, it is important to consider the
following points:

•	 Supported Logix Designer software versions
•	 Processing the requirements of your current application and future expansion
•	 Memory requirements of your current application and future expansion

The ControlLogix series 6 and series 7 controllers and their software version
compatibilities are shown in the following table:

ControlLogix controllers Logix Designer software (RSLogix 5000)
Controller Memory Minimum version Maximum version
Series 6 (L6)
1756-L61 2 MB v12 v20
1756-L62 4 MB v12 v20
1756-L63 8 MB v10 v20
1756-L64 16 MB v16 v20
1756-L65 32 MB v17 v20
Series 7 (L7)
1756-L71 2 MB v18
1756-L72 4 MB v19
1756-L73 8 MB v18
1756-L74 16 MB v19
1756-L75 32 MB v20

It is important to note that the L6 controllers are not supported in Version 21 and
higher of Studio 5000 Logix Designer.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

GuardLogix safety controllers
With the launch of the (bulletin 1756) GuardLogix controller in 2005, the
ControlLogix platform supported both standard and safety system control in
the same chassis. The GuardLogix controller system is designed for use in safety
applications, including SIL 3 (IEC 61508) and the ISO standard for Safety of
Machinery (ISO 13849-1 General Principles for Design and PLe/Cat.4). GuardLogix
safety controllers represent an essential piece of a fail-safe (de-energize to trip)
solution. Fail-safe refers to a solution that when a fault is detected, all of its outputs
are set to zero. And, in the event of a faulty input or input module, it automatically
sets any input values associated with them to zero. Both the L6 and L7 controllers
are available in the GuardLogix form factor. Physically, the GuardLogix controllers
feature a red faceplate and are usually installed in pairs—primary and safety partner
controller. The GuardLogix controllers are only supported in Version 18 and higher
of RSLogix 5000 and Studio 5000 Logix Designer.

Extreme environment controllers
The Rockwell Automation's extreme environment controllers (bulletin
1756 ControlLogix-XT) share the same features and programming interfaces
as the standard ControlLogix controllers, but are certified to operate in extreme
conditions. The ControlLogix-XT modules are darker gray in color than the
ControlLogix modules and are spaced in every other slot to provide an improved
ventilation/isolation. In addition, the ControlLogix-XT modules are treated with a
conformal coating that improves the product's resistance to corrosive environments.
The ControlLogix-XT controllers and modules are rated for temperatures
ranging from -20°C to 70°C (-4°F to 158°F) and have the following environmental
certifications—cULus, Class 1, Div 2, C-Tick, CE, ATEX Zone 2, SIL 2, IEC 61131-2,
ANSI-ISA-S71.04-1985, Class G1, G2, and G3. The L6 and L7 standard controllers and
GuardLogix controllers are all available in Extreme Environment (XT) form factors.

www.it-ebooks.info

http://www.it-ebooks.info/

ControlLogix and CompactLogix Overview and Firmware

[10]

CompactLogix controllers
In 2006, Rockwell Automation first shipped the (bulletin 1768) L43 CompactLogix
controllers targeted at cost effective, small- to medium-size automation solutions.
At the time of launch, CompactLogix controller was planned as the long-term
replacement for the SLC 500 controller family. The CompactLogix control platform
is designed with an emphasis on the controller software. As the CompactLogix
hardware evolves with an improved performance and additional features, the
logic will easily migrate to new hardware and firmware versions. Unlike the SLC
500 platform, the CompactLogix controllers can be programmed using the same
RSLogix 5000 (Logix Designer) software suite that is used with ControlLogix. In
2006, CompactLogix L43 with integrated motion support was added to the family. It
features a CompactFlash memory card, Ethernet port, Serial RS-232 port, 1769 / 1768
modules, and a power supply module. The following is an illustration of the L43
CompactLogix controller:

CompactLogix controller-bulletin 1768—L43 and L45

Modules on L43 can only be placed to the right of the power supply.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

In 2008, Rockwell Automation released the low-cost CompactLogix L23 controllers
(bulletin 1769) with embedded I/O. The L23 controller features a serial RS-232 port,
Ethernet port (only on the E models), embedded I/O, and an embedded power
supply. The following is an illustration of an L23 controller:

CompactLogix controller-bulletin 1769 L23x Packaged controllers with embedded I/O

www.it-ebooks.info

http://www.it-ebooks.info/

ControlLogix and CompactLogix Overview and Firmware

[12]

Also in 2008, Rockwell Automation released the (bulletin 1769) CompactLogix L3x
modular controllers. The 1769 CompactLogix modules do not have a chassis like the
ControlLogix modules. The 1769 CompactLogix modules can be connected together
using a DIN rail or can be screwed in directly to a panel. CompactLogix L3x features
a CompactFlash memory card, serial RS-232, ControlNet or Ethernet port, and a
power supply module. The following diagram is an illustration of the CompactLogix
L3x controller:

CompactLogix Controller-Bulletin 1769-L3x Modular controllers

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

The L3x modules can be placed to the left or the right of
the power supply.

In 2009, Compact GuardLogix, an SIL3 certified controller, with the L43S and L45S
CPU supporting integrated safety, was added to the Logix family.

CompactLogix 5370 controllers
In 2012, Rockwell Automation released the (bulletin 1769) CompactLogix 5370
L1, L2, and L3 controllers, which provided a low-cost Ethernet/IP-enabled,
high-performance controller in a 40 percent smaller form factor than ControlLogix.
The CompactLogix 5370 series controller provides many of the same enhancements
that the ControlLogix series 7 provided over the ControlLogix series 6 controllers,
including the following properties:

•	 Twice the performance capability due to a more powerful dual core CPU
•	 Adoption of modern SDRAM memory
•	 Replacement of the 9-pin serial port with a USB 2.0 port (programs transfer

200 times faster over USB 2.0 than serial)
•	 Replacement of the CompactFlash memory card with an SD memory card
•	 Added the ESM and removed the need for a lithium battery
•	 Made use of the existing CompactLogix 1769 I/O modules
•	 Integrated motion control over Ethernet
•	 Ability to store program comments and tag descriptions on the controller

(firmware v21 and higher)

www.it-ebooks.info

http://www.it-ebooks.info/

ControlLogix and CompactLogix Overview and Firmware

[14]

The following table provides illustrations of the CompactLogix 5370 controllers and
their distinguishing features:

CompactLogix Controller—bulletin 1769 5370—L1 Features

CompactLogix 5370 L1 Controller

SD memory card
2 X Ethernet ports
USB 2.0 port
Embedded point I/O
modules
Expandable with 6 or 8
point I/O modules
Embedded power supply
Integrated motion control

CompactLogix Controller—bulletin 1769 5370—L2 Features

CompactLogix 5370 L2 Controller

SD memory card
2 X Ethernet ports
USB 2.0 port
Embedded 1769 I/O
modules
Expandable with 4 x 1769
I/O modules
Embedded power supply
Integrated motion control

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

CompactLogix Controller—bulletin 1769 5370—L3 Features

CompactLogix 5370 L3 Controller

SD memory card

2 X Ethernet ports

USB 2.0 port
8 to 30 1769 I/O modules
Power supply module

Selecting a CompactLogix controller
There are many factors to consider when selecting a CompactLogix controller due to
their module nature and wide range of form factors which are available:

•	 Supported Logix Designer software versions
•	 Cabinet size restrictions
•	 CompactLogix form factors or I/O module scalability
•	 Processing the requirements of your current application and future expansion
•	 Memory requirements of your current application and future expansion

The CompactLogix controllers and their software version compatibilities are shown
in the following table:

CompactLogix controllers Logix Designer software (RSLogix 5000)
Controller Memory Minimum version Maximum version

Bulletin 1768
1768-L43 2 MB v16 v20
1768-L45 3 MB v16 v20

Bulletin 1769 L23x Packaged controllers with embedded I/O
1769-L23 512 KB v16 v20

Bulletin 1769-L3x Modular controllers
1769-L3x 1.5 MB v16 v20

www.it-ebooks.info

http://www.it-ebooks.info/

ControlLogix and CompactLogix Overview and Firmware

[16]

CompactLogix controllers Logix Designer software (RSLogix 5000)
Controller Memory Minimum version Maximum version

Bulletin 1769 5370
5370 1769-L16 384 KB v20
5370 1769-L18 512 KB v20
5370 1769-L24 750 KB v20
5370 1769-L27 1 MB v20
5370 1769-L30 1 MB v20
5370 1769-L33 2 MB v20
5370 1769-L36 3 MB v20

It is also important to consider that some of the CompactLogix 5730 controllers
are slated as direct replacements for some of the older CompactLogix controllers
(although the older controllers are still available for purchase):

•	 5370 1769-L24 replaces 1769-L23
•	 5370 1769-L3x replaces 1769-L3x

ControlLogix software and firmware
Due to the long life span of most industrial PACs, it is common to encounter
controllers still running legacy firmware. Controller firmware versions and
RSLogix 5000 and Logix Designer versions go hand in hand. If you are working
on the ControlLogix or CompactLogix controller that is running firmware version
13.03, you should be using RSLogix 5000 Version 13.03 to program it. As updating
firmware can introduce process downtime, it is important to understand and work
with the capabilities of older firmware and software versions:

Version Year Notes
1 1997 Cross reference support, RSLinx Version 2.0 support, L5x
2 1998 Trending, position and time camming, 1794 FLEX I/O, RSWho
3,4 1998 Internal builds, not released to the public
5 1998 SERCOS, quick view pane, function block diagrams, FLEX EX
6 1999 FlexLogix and SoftLogix support
7 2000 Windows 2000 support, CompactLogix support, Ethernet/IP support
8 2001 ControlLogix redundancy, DH485, nonvolatile memory L55
9 2001 SERCOS Drive support with 1756-M08SE module
10 2002 ControlLogix 5563 controller support

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

Version Year Notes
11 2002 SFC, ST, FBD online edits SoftLogix 5800, point I/O support
12 2003 RSLogix Emulate 5000, event task, CompactLogix support, compare
13 2004 SFC online editing, ST online editing, LD import/export
14 2004 GM only build
15 2005 S88, add 1756 I/O modules during runtime, user-defined data type

(UDT)
16 2007 User-defined add-on instructions (AOI), ControlLogix 1756-L64
17 2008 Windows Vista, free to download demo, advanced process control
18 2010 1756-L73, 1756-L75 controller, CIP motion, CIP SYNC, CompactLogix

safety
19 2010 Windows 7 support, 1756-L72, 1756-L74, integrated motion Ethernet/

IP
20 2012 1756-L71, support 200 to 10,000 I/O points, GuardLogix
Studio 5000—Logix Designer
21 2013 Logix Designer, alarm log, comments and descriptions stored in PAC
22 2014 Internal build, not released to the public
23 2014 Controller firmware updates and fixes
24 2014 Windows 8 support, logical organizer view, program parameter,

merge improved
25 2015 Internal build, not released to the public
26 2015 Windows 8.1 support, license-based source protection

Product Selection Toolbox
Rockwell Automation provides a software suite called Product Selection Toolbox,
which is designed to help you select and design Integrated Architecture solutions.
This software suite provides helpful tools for evaluating the size of your application,
generating drawings, and even estimating the cost of your application. This product
is available for free to approved partners and customers.

www.it-ebooks.info

http://www.it-ebooks.info/

ControlLogix and CompactLogix Overview and Firmware

[18]

Rockwell Automation Product Catalog for
iPad
Rockwell Automation has created an iPad-based product selection tool. Rockwell
Automation Product Catalog is a portable version of Product Selection Toolbox that
allows you to select and configure thousands of products from Rockwell Automation
and their industry partners. Product Catalog will even help you find the nearest
distributor to your location. It is available for free in the App Store.

Summary
In this chapter, we learned about the controllers available within Rockwell
Automation's Integrated Architecture. We also explored the history of Rockwell
Automation and evolution of the industry-leading Logix platform. We now have
an idea of the controller solutions available within Integrated Architecture, and are
capable of making basic solution architecture decisions. In the appendix of this book,
you can find links to Rockwell Automation Literature Library where you can dive
deeper into the topics covered in this chapter.

In the next chapter, we will introduce the various networking and communication
options available for the Rockwell Automation Logix controllers.

www.it-ebooks.info

http://www.it-ebooks.info/

[19]

Industrial Network
Communications

In this chapter, we will discuss the various communication technologies available
for the Logix platform. The focus of this book is the current state of Rockwell
Automation's ControlLogix and CompactLogix controllers; however, we will
touch on some legacy communication protocols, which you may still find running
in the field today. Communications allows us to interface with controllers, racks,
and devices on our network. Establishing communications is an important step
that enables us to connect with a device and transfer configuration changes
and programs. After completing this chapter, you will be familiar with all the
Rockwell Automation communication technologies that are actively used in the
field today. This chapter will cover the following key areas of industrial network
communications in the Logix platform:

•	 Key terms in industrial communications
•	 Primary network technologies used today
•	 Legacy network technologies you may encounter in the field
•	 EtherNet/IP Capacity Tool
•	 RSLinx
•	 Rockwell Automation Integrated Architecture Builder mobile app

www.it-ebooks.info

http://www.it-ebooks.info/

Industrial Network Communications

[20]

Key terms in industrial communications
Communications enables the exchange of data between devices on an industrial
control network. Without communications, controllers are unable to see the values
coming from field devices, and operators are unable to see the values coming from
controllers. Here are some of the key terms we will use while talking about industrial
networking and communications:

•	 Media: Communication requires wires, cables, or fiber optic connections
between devices. The connection used for communication is called the media,
which differ from one another by properties such as the maximum distance
for each connection and maximum data transmission speed.

•	 Node: Each device on the network is called a node.
•	 Node Address: Each node will typically have a unique identifier called a

node address.
•	 Network: When multiple devices are connected together under a common

device address space, we call this a network.
•	 Topology: The physical structure of the network is called the topology.
•	 Bridge: This device creates a connection between two separate networks.
•	 Router: This device can forward data between two or more networks.
•	 Hub: This device can channel data between multiple nodes within a

single network.
•	 Switch: This device can channel data from one node to another. Unlike a

hub, a switch will intelligently route only the data destined for a device and
is not prone to data loss due to network packet collisions.

•	 Segment: This device divides a localized section of the network with bridges,
routers, or switches.

•	 Protocol: The language used to communicate data between each node across
a network is called a protocol.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[21]

The following diagram illustrates each of the preceding industrial networking terms:

CompactLogix L23E

Level 1 Network
Level 2 Network
Firewall

Stratix
Ethernet
Switch

Stratix
Ethernet
Switch

Stratix
Ethernet
Switch

5370 CompactLogix
L1 Controller

5370 CompactLogix
L3 Controller

PanelView Plus
HMI

PanelView Plus
HMI

In networks like ControlNet, which use coax cable as a media, you will find the
following terminology:

•	 Tap: This device is small and T-shaped, and connects a Trunk line cable
(the top of the T) to a Drop line cable (the bottom of the T).

•	 Terminating resistor: This device is a 75 Ohm resistor that can be
connected to a trunk-line connection that absorbs energy and prevents
electrical signal reflection.

•	 Trunk line: This device is the main cable that connects to the taps and drop
line cables. A trunk line will have a terminating resistor at either side and one
or more drop lines attached to it.

www.it-ebooks.info

http://www.it-ebooks.info/

Industrial Network Communications

[22]

•	 Drop line: This device is a cable connection from a tap that connects down
to a node.

•	 Repeater: This device is a two-port device, which connects two trunk lines
together and boosts the signal. It is helpful for connecting segments across
longer distances or boosting the signal for a long network segment.

The following diagram illustrates a typical coaxial cable network:

TR

TR

ControlNet Coax Media Cable System

Link

Network
Link (1 segment)

Trunk Cable with
BNC/TNC Connectors

TR TR TR

TR

R N

T

N

TT

N N

T

N

T

T

N N

T

N

T T

TT

B

T

Trunk Line
Drop Line

SegmentSegment

Now that we have covered some of the basic terms, let's look at the various
communication solutions used by Rockwell Automation.

Network communication technologies
Communications play a vital role in most industrial automation solutions,
and Rockwell Automation's Integrated Architecture offers a variety of options.
I have classified these options as primary network technologies (those that are
actively used in modern implementations of a Logix system) and legacy network
technologies (those that have been used frequently in the past but are not being
installed in the new Logix control systems).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[23]

Primary network technologies
Today, Logix relies on the following three primary technologies for network
communication:

•	 DeviceNet
•	 ControlNet
•	 EtherNet/IP

Let's discuss each of them in detail.

DeviceNet
DeviceNet is designed specifically to communicate with and provide power to the
lowest-level field devices. It can communicate with intelligent devices that support
a DeviceNet module such as sensors, VFDs, valves, motors, and distributed I/O
blocks. DeviceNet is convenient as it provides both signal and power to the device.
However, it's not designed for handling high volumes of network traffic. The
DeviceNet networks must be configured using Rockwell Automation's RSNetworx
for DeviceNet. In this book, we will be primarily focusing on EtherNet/IP
networking, but more DeviceNet resources are available in the appendix.

ControlNet
ControlNet is a deterministic network technology that acts as the I/O communication
backbone for a control system. Deterministic data collection guarantees that new data
will arrive within a predefined interval. It enables the interconnection of multiple
DeviceNet networks and shares data with other controllers. It is capable of full
network redundancy, so if a redundant ControlNet network is configured and one
cable is broken, the network can continue operating normally.

Connections over ControlNet are configured as scheduled or unscheduled.
The ControlNet Network Update Time (NUT) is the millisecond interval for
collecting updated data in a ControlNet network. ControlNet is a highly repeatable
deterministic communications method, albeit slow (locked at 5 Mbits/s) but
deterministic nonetheless. Deterministic networks are ideal for processes such as
motion control that require continuous synchronized data and cannot tolerate any
data update delays. The ControlLogix backplane ControlBus is nearly identical to
the ControlNet networking.

www.it-ebooks.info

http://www.it-ebooks.info/

Industrial Network Communications

[24]

It is based on an open standard for industrial network protocols known as fieldbus
and is based in the same fieldbus IEC 61158 communication standard as Foundation
Fieldbus, PROFIBUS, and Interbus. The fieldbus architecture provides the skeleton
that ControlNet is based upon. However, due to fundamental implementation
differences, it is not able to directly communicate with any other fieldbus protocols.
On top of the fieldbus architecture, at the protocol application layer, ControlNet
uses the Common Industrial Protocol (CIP) to provide its functionality. ControlNet
can upload and download programs, perform I/O forcing and online editing, and
communicate with the remote I/O racks.

ControlNet uses Quad Shield RG6 Coaxial Cable as a networking media, which
requires it to use network taps for each drop, and terminating resistors at the end
of each segment. In this book, we will be primarily focusing on the EtherNet/IP
networking, but more ControlNet resources are available in the appendix.

EtherNet/IP
EtherNet/IP is the most widely used communications technology in the
Integrated Architecture ecosystem today because of its speed, scalability, and
ease of integration with enterprise-level network hardware. EtherNet/IP will be
the primary communication method used in the examples found in this book. It
combines the IEEE 802 standard Ethernet technology stack with the object-based CIP.
Basing the communications on Ethernet allows ease of integration with the existing
enterprise IT networks. And, the CIP application layer protocol allows the Logix
controllers to communicate control, safety, synchronization, motion, configuration,
and diagnostic information with devices from hundreds of different vendors. CIP
enables EtherNet/IP to upload a program, download a program, force I/O values,
monitor code, perform online edits, and connect to the remote I/O racks.

In the legacy I/O systems, the PLC would poll (request data at a set interval) digital
input modules for new data. The CIP protocol on EtherNet/IP digital input modules
can perform the following tasks:

•	 Return data on Change of State (COS)
•	 Return data at a Request Packet Interval (RPI) scheduled in milliseconds

One notable difference with EtherNet/IP is that this method of data collection is
nondeterministic. Deterministic in the context of communications means the delays
in delivering a packet of data across a network are known in advance and are not
subject to change. Nondeterministic data collection does not guarantee that the
new data will arrive within the RPI. IEEE 802 standard Ethernet is fundamentally
nondeterministic as it is not scheduled within a set time window. However, the
speed of EtherNet/IP with a modern full duplex switch almost negates this fact.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[25]

EtherNet/IP uses User Datagram Protocol (UDP) to communicate the basic I/O and
non-critical information on the network. UDP does not perform any error checking
or handshaking mechanisms, so the delivery of information is not guaranteed, and
the data is susceptible to any network-related data loss. UDP is ideally suited for
real-time information as it trades off speed for guaranteed data delivery. In real-time
systems, dropped packets are preferable to waiting for delayed packets. It is far better
to get the next most recent value than circling back for a packet that is already stale.
Using UDP, EtherNet/IP is capable of collecting data by polling, cyclic, and
change-of-state monitoring. EtherNet/IP makes use of UDP port number 2222.

Transmission Control Protocol (TCP) is used by EtherNet/IP for critical data such
as writing set points, parameters, and recipes, and uploading and downloading
programs. TCP has a built-in error checking and three-way handshake mechanism
that insures that no packets are lost during the data transfer. TCP sacrifices data
transfer speed for guaranteed delivery of information. EtherNet/IP makes use of
TCP port number 44818.

Stratix is a line of industrial networking and security solutions from Rockwell
Automation that has been engineered specifically for EtherNet/IP (and is based on
the ubiquitous Cisco hardware platform). However, because EtherNet/IP is based
on the IEEE 802.x standards, it is possible to use normal network switchgear with
EtherNet/IP. Rockwell Automation recommends that you use robust industrial
grade networking equipment with the Logix controllers. Furthermore, Stratix
switches seamlessly integrate into the Logix platform and can easily provide health
and status information as the native Logix tags.

Legacy network technologies
There are a few other communication technologies you may also encounter in
a Rockwell Automation solution. Some are legacy networks, while others are
solution-specific technologies:

•	 Data Highway Plus
•	 Universal Remote I/O
•	 Serial Real-time Communications System
•	 DF1
•	 DH-485

www.it-ebooks.info

http://www.it-ebooks.info/

Industrial Network Communications

[26]

Data Highway Plus
Data Highway Plus (DH+) was used by the older controllers (such as PLC-2, PLC-3,
PLC-5, and SLC 500) for networking. It was developed as a proprietary protocol in
the late 70s by Allen-Bradley. There are Logix communication modules available
that can connect to the DH+ networks and can save customers from having to rip
and replace their older DH+ networks. DH+ supported remote programming and
messaging over the network. Specifically, it allowed uploading and downloading
programs, forcing values, monitoring, and online edits. It is common to encounter
the DH+ networks still in the field today, but it is obsolete, so we will not cover it in
detail in this book.

Universal Remote I/O
Universal Remote I/O (RIO) was also used by older controllers (such as PLC-2,
PLC-3, PLC-5, and SLC 500) to communicate to the remote I/O chasses. There
are Logix communication modules available that can connect to RIO and save the
cost of replacing the RIO networks. Using a remote rack allows you to place the
I/O modules closer to the actual devices with which they are communicating. The
RIO rack was connected back to the main controller using a two-wire Belden 9463
cable, also known as blue hose cable. Although it is common to encounter the RIO
networks in the field today, it is also obsolete, so we will not cover it in detail.

Serial Real-time Communications System
Serial Real-time Communications System (SERCOS) or IEC 61491 is a
communication technology created for the real-time motion control. It provides
high-speed serial communication over an electrical noise-immune fiber-optic
cable, and is commonly used in the manufacturing industry. It was developed
by an international consortium of companies called Interest Group SERCOS,
which included Siemens, ABB, AEG, AMK, Robert Bosch, and Indramat. Logix
communication modules are available that can communicate with the SERCOS
devices for motion control. However, we do not touch on motion control in the
book, so we will not explore this communication technology in detail.

SynchLink
SynchLink is a fiber-optic communication technology for communicating with the
PowerFlex700S products. It is a streamlined protocol, focused on high-speed drive
and motion control. It does not transmit diagnostic information and should be used
in conjunction with a standard control network such as ControlNet or EtherNet/IP.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[27]

DH-485 and DF1
The DH-485 and DF1 networks are legacy serial technologies that provided
communication for the PLC-5, SLC 500 and MicroLogix controllers, and Human
Machine Interface (HMI) terminals and computers. There are third party
communication modules available from ProSoft that allow DH-485 and DF1 to
communicate with the Logix devices. Although it is common to encounter DH-485
and DF1 in the field today, they have both been retired and will not be covered in
this book.

A comparison of network communications
The following table compares the media, maximum distances, maximum nodes,
maximum speeds, and topologies of these communication technologies:

Protocol Media Distance Nodes Speed Topology
EtherNet/
IP

Ethernet
CAN/CIP
over IP

100 M/328 ft Many 100
Mbits/s (1
Gbits/s)

Star, linear, and
ring

ControlNet Quad Shield
RG-6 Coaxial
Cable, CIP

1000 M/3280 ft 99 5 Mbits/s Star, trunk line,
drop line, tree,
and ring

DeviceNet 4 wire – 2
signal, 2
power, and
CIP

100 M/328 ft to
380 M/1246 ft

64 125 Kbits/s
to 500
Kbits/s

Trunk line,
drop line, and
star

DH+ Twinaxial
cable, peer-
to-peer, and
token based

Trunk line: 3050
M/10000 ft and
drop line: 30
M/100 ft

64 57.6
Kbits/s
half duplex

Daisy chain,
trunk line, and
drop line

RIO Twinaxial
cable and
scanner based

Trunk line: 3050
M/10000 ft and
drop line: 30
M/100 ft

32 230.4
Kbits/s

Trunk line and
drop line

SERCOS Fiber-optic
serial based

250 M/820 ft 254 16 Mbits/s Ring

SynchLink Fiber-optic 250 M/820 ft 257 10 Mbps Star, daisy
chain, and ring

DF1 RS-485 serial 1219 M/4000 ft 255 19.2
Kbits/s

Trunk line and
drop line

DH-485 RS-485 serial 1219 M/4000 ft 32 19.2
Kbits/s

Trunk line and
drop line

www.it-ebooks.info

http://www.it-ebooks.info/

Industrial Network Communications

[28]

Listed in the preceding table are the properties of each Rockwell Automation
communication technology. However, there are fiber-optic converters for most
communications technologies that can extend their max distances.

DeviceNet and ControlNet were developed by Rockwell Automation and are
based on the CIP and maintained by ODVA (formally, Open DeviceNet Vendors
Association). EtherNet/IP (note the capitalized N, and that the IP, in this case,
stands for Industrial Protocol) was developed by ODVA in 2001 and adopted by
Rockwell Automation.

EtherNet/IP Capacity Tool
Rockwell Automation has provided a tool called EtherNet/IP Capacity Tool that
has been designed to help you calculate the resources required to support a control
network. The tool takes a conservative approach to estimating the requirements of
your network usage based on a few data points you provide it.

The EtherNet/IP Capacity Tool is used to measure the networking capacity of a
single Scanner Processor. A Scanner Processor is either an EtherNet/IP module,
such as the ControlLogix ENBT, or a Logix controller with a built-in EtherNet/IP
port, such as the CompactLogix L32E. If a Scanner Processor is at maximum capacity,
in most cases, an additional EtherNet/IP module or controller can be added to the
control solution. A separate EtherNet/IP Capacity Tool report can be created for
each Scanner Processor network.

When you calculate your capacity, the tool provides you with the available CIP
connections, TCP connections, I/O packets per second (PPS), and HMI PPS. The
EtherNet/IP Capacity Tool is designed to highlight potential design issues early
in the network architecture process.

CIP connections are the real-time implicit (scheduled at a set RPI) UDP data
connections. You have a limited number of CIP connections, which varies
according to the Scanner Processor you select.

TCP connections are explicit (unscheduled request, response) data communications.

Here are a few common scenarios that use a CIP connection:

•	 Each I/O rack added to the network for reporting the optimized digital
values will use a CIP connection

•	 Each analog I/O module added to a rack consumes an entire CIP connection
•	 Each produced tag and each consumed tag processed from another Logix

controller consumes an entire CIP connection

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[29]

Here are a few common scenarios that use the TCP connections:

•	 Each I/O rack uses a TCP connection (used for writing set points or setting
digital values)

•	 Each controller uses a TCP connection (used for uploading and downloading
programs)

•	 Each HMI uses a TCP connection (the HMI MSG statements between the
Logix controllers)

I/O PPS is the volume of data moving through the network. There is a maximum
amount of PPS that any particular Scanner Processor is capable of handling. The PPS
value is proportional to the CIP and TCP connections, and EtherNet/IP Capacity
Tool creates a conservative estimate of the traffic.

EtherNet/IP Capacity Tool is an easy way to learn the topology of industrial
Ethernet network and experiment with the various network devices and understand
the available communication modules. In the following exercise, we will demonstrate
how to use EtherNet/IP Capacity Tool.

Using EtherNet/IP Capacity Tool
You will need to have a copy of the freely available Rockwell Automation
EtherNet/IP Capacity Tool in order to complete the following exercise.

The EtherNet/IP Capacity Tool is on the annual release of Rockwell
Automation toolkit. It can also be found in Integrated Architecture
tools on the Rockwell website as a free download for approved
customers and system integrators.

www.it-ebooks.info

http://www.it-ebooks.info/

Industrial Network Communications

[30]

Let's begin with opening EtherNet/IP Capacity Tool and performing these steps:

1.	 Select the Scanner Processor for this exercise. In the center of the window
you will see a group box with the label, Scanner Processor. Click on
the drop-down box in the Scanner Processor group box and select the
ControlLogix EtherNet/IP module's ControlLogix ENBT from the list:

2.	 Now, we will add some node group devices to our network and compute the
network usage they add. Find the box that contains the Node Group 2 label
to the left of Scanner Processor. Next, we will add a ControlLogix I/O rack
by selecting the 1756 I/O Rack from the Node Group 2 drop-down list.

3.	 Set the number of the ControlLogix I/O racks on our network by selecting 3
in the No. Racks numeric field.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[31]

4.	 Click on the checkbox labeled Analog/Specialty Modules to indicate we
have analog modules on our I/O rack. Add analog modules for each I/O
rack by setting the No. of Analog Modules value in the first column to 2,
as shown in the following screenshot:

5.	 Now, let's hit the Compute button to see our current EtherNet/IP usage in
the center of the screen.

6.	 Next, we will add a CompactLogix controller that we will communicate with
using produced and consumed tags. The produced and consumed tags are a
method of passing values from one controller to another, every RPI.

The produced and consumed tags allow a Logix controller to
pass information back and forth. The produced tags are tags
within a Logix program that are broadcast on a network for other
controllers to receive. The consumed tags are tags within a Logix
program received from other controllers.

www.it-ebooks.info

http://www.it-ebooks.info/

Industrial Network Communications

[32]

7.	 In the Node Group 1 box, select CompactLogix ENBT V1. Next, set the
number of produced tags to 16. Set the number of the consumed tag to
16 (32 is the maximum number of produced tags and consumed tags
for our Scanner Processor):

8.	 Our control system needs a window into the process so that the operator can
control and monitor it. Next, we will add our FactoryTalk HMI.

9.	 In Node Group 3, select FactoryTalk HMI from the drop-down list to add an
HMI to our network.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[33]

10.	 Set the No. Std Tags field to 1000 and the No. CIP Cxns field to 5:

11.	 Next, we will hit the Compute button to see how many network resources
we have left.

12.	 Now, we increase the size of our network to exceed the capacity of our
Scanner Processor and view the results.

13.	 In our Node Group 2 where we have set up our 1756 I/O rack, change the
Update Rate(msec) field to 2 and then hit the Compute button.

14.	 You will notice that the network connections have turned red and our I/O
PPS now exceed the limit for our Scanner Processor. As you can now see,
adjusting the Update Rate(msec) field greatly impacts the PPS:

www.it-ebooks.info

http://www.it-ebooks.info/

Industrial Network Communications

[34]

15.	 Finally, let's change the Update Rate(msec) field back to 80 msec but update
the No. Racks field for 1756 I/O Rack to 25.

16.	 As you can see from the results, increasing the number of racks increased the
CIP connections, TCP connections, and the I/O PPS values:

RSLinx
RSLinx is a communication server application in the Rockwell Automation product
line. There are two types of RSLinx today:

•	 RSLinx Classic
•	 RSLinx Enterprise

RSLinx Enterprise is typically packaged with FactoryTalk HMI software.
RSLinx Enterprise is an HMI communications gateway that also provides
the following properties:

•	 Diagnostics
•	 Security
•	 Auditability
•	 Redundancy

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[35]

For more information on RSLinx Enterprise, refer to the links in the appendix.

RSLinx Classic is typically packaged with RSLogix 5000 and Studio 5000 and is a
communication gateway that also provides the following properties:

•	 Batch sequencing
•	 Firmware updates
•	 Uploading and downloading programs to controllers

In this chapter, we will be working with RSLinx Classic to create the communications
gateway between our computer and our controller. Before we start to work with
RSLinx Classic, we will define some key terms regarding controller communications:

•	 Upload: This term is used to copy a program from the controller to
the computer.

•	 Download: This term is used to copy a program from the computer to
the controller.

•	 Equal: This term is used when the computer and the controller both have
the same program loaded. When a program is equal, you will be able to go
online and view the program's current values and make changes online.

•	 Online: This term is used while working on a program that is currently
residing on the controller.

•	 Offline: This term is used while working on a program that is currently
residing on the computer.

There are many, many combinations of the communication methods and the
Logix controllers that can be configured using RSLinx Classic, and most of the
combinations follow a similar setup procedure. In the next exercise, we will establish
communications between RSLinx Classic and a ControlLogix L7X controller using a
USB connection.

www.it-ebooks.info

http://www.it-ebooks.info/

Industrial Network Communications

[36]

RSLinx communication using
ControlLogix and a USB connection
In this exercise, we will be connecting to an L7x controller using RSLinx and the USB
2.0 connection on the front of the controller. Setting up communication to a device on
the Logix platform requires three separate tools:

•	 RSLinx: This tool is used to configure the driver. The driver is a piece of
software that allows you to communicate with hardware such as a controller.

•	 RSWho: This tool is a component of RSLinx and is used to specify the driver
and the path to the device.

•	 RSLogix 5000 / Logix Designer: This tool communicates to the device using
the path and the specified driver.

You will need to have a version of RSLogix 5000 / Studio 5000 installed that supports
the L7x platform (Version 18.11 and higher). If you are using an older ControlLogix
or a CompactLogix, review the following exercise and then navigate to RSLinx Help
| Quick Start to find the detailed procedures for your controller:

1.	 Before opening RSLinx, the first step is to connect your computer to your
powered on ControlLogix controller using a standard USB 2.0 cable. The
first time the Logix controller is connected to your computer, you will be
prompted by a Windows Found New Hardware setup. On older versions of
Windows, the first step of the wizard will ask whether you want to connect
to Windows update to search for the driver. If the driver was installed
automatically with RSLinx, select No, not at this time. Then, follow the
wizard to complete the installation of the USB CIP Device. The device setup
form will vary depending on your version of Windows. The following
screenshot shows the Device Setup popup that appears in Windows 8.1:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[37]

2.	 Next, open RSLinx and configure the driver to connect to the L7X controller.
Open the Configure Drivers window by navigating to Communications
| Configure Drivers. If everything is installed correctly with your USB
connection, you should see a driver named AB_VBP-1 with the status
column displaying Running:

www.it-ebooks.info

http://www.it-ebooks.info/

Industrial Network Communications

[38]

3.	 Next, let's open RSWho in RSLinx to verify that we can map a path to the
device using the USB driver. Close the Configure Drivers window to return
to RSLinx and open RSWho by selecting Communications | RSWho. You
should be able to expand the USB tab on the left panel by clicking on the +
symbol and selecting your controller:

4.	 Now that we have established the driver and communication's path to our
controller, we will be able to select it using RSLogix 5000 or Logix Designer
and start uploading or downloading programs. We can also use RSLinx
Classic as an OLE for Process Control (OPC) communications gateway by
configuring the OPC topics. More information on RSLinx can be found in the
appendix or in Rockwell Automation Literature Library.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[39]

The Rockwell Automation Integrated
Architecture Builder mobile app
The Rockwell Automation Integrated Architecture Builder (IAB) mobile app
provides an iPad-based tool for creating industrial control network designs. The
IAB app allows you to architect a simple Logix network using all of Rockwell
Automation's major hardware platforms and EtherNet/IP. Using the IAB app, you
can drag and drop your Logix solution together, analyze the EtherNet/IP performance
data, generate a bill of materials, and send it to the nearest distributor/sales office. In
addition, you can export your IAB app network to the IAB desktop application version
for system validation. The IAB app is available for free in the Apple App Store and
appears to be a replacement for the Rockwell Automation Small System Sketcher.
The following screenshot is of the IAB app running on an iPad:

www.it-ebooks.info

http://www.it-ebooks.info/

Industrial Network Communications

[40]

Summary
In this chapter, we learned about the communication technologies that are available
in the Logix controller family. We investigated the strengths and limitations of each
communication method and took a deep dive into EtherNet/IP and EtherNet/IP
Capacity Tool. We explored RSLinx and its place within Integrated Architecture as
the communications gateway. We also established communication to a ControlLogix
L7x using the USB cable. Finally, we introduced the easy to use IAB mobile app for
designing your Logix networks.

In the next chapter, we will introduce the modules that are available in the Logix
platform and demonstrate their configuration with the RSLogix 5000 / Logix Designer.

www.it-ebooks.info

http://www.it-ebooks.info/

[41]

Configuring Logix Modules
In this chapter, we will look at the available modules for the Logix platform, how to
configure them, and their usage in a Logix project. We will also include methods for
identifying module features by their Logix module Catalog Numbers, and introduce
the address tree that a typical I/O module creates. After completing this chapter,
you will be able to select and add I/O modules to your projects, modify the module
configurations, and reference their real-time values using the recommended best
practices. This chapter will cover the following aspects of the Logix modules:

•	 Module terminology
•	 Analog modules
•	 Digital modules
•	 Specialty modules
•	 Logix terminal blocks
•	 Configuring a ControlLogix module
•	 Logix module Catalog Numbers
•	 Module special features
•	 Addressing the module I/O data
•	 Buffering the module I/O data

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring Logix Modules

[42]

Module terminology
Let's begin by taking a look at some of the common Logix module properties:

•	 Voltage: This attribute is the difference in electrical potential between two
points, measured in voltage A/C (VAC) or D/C (VDC). When visualizing
voltage, I prefer the age-old Super Soaker (water gun) analogy in which voltage
is the pressure (the number of times you have pumped the Super Soaker).

•	 Current: This attribute is the flow of electrical charge measured in amps (A)
and milliamps (mA). In the Super Soaker analogy, it is the diameter of the
water gun's nozzle.

•	 Signal: This attribute is the modulation in voltage or current, which relays
the operational state of a device. A signal is representative of values such as
pressure, temperature, and flow.

•	 Input: This module is wired to detect the values being sent from the field to
the controller. Input values are used to determine, for example, whether a
motor is running and the speed of a motor's rotation.

•	 Output: This module is wired to detect values being sent from the controller
out to the field. Output values are used to, for example, start a motor and tell
a motor how fast it should run.

•	 Rack: This attribute is a chassis that contains the controller modules,
and typically, range in the size from 4 to 17 module slots. ControlLogix
also supports multiple racks that can be connected to each other using
communications technologies such as EtherNet/IP or ControlNet. Most
CompactLogix controllers mount along a DIN rail and do not use a rack.

•	 Slot: This attribute refers to a module's position in a rack. The number of
slots will vary by rack size and the Logix controller you are using.

•	 Module: This attribute is a modular card that mounts in a slot of a
rack or along a DIN rail. This module is used to handle a wide variety of
automation tasks and is available from a number of vendors. In this book, we
will focus on the most common modules, which simply process the input or
output signals.

•	 Channel: This attribute is the individual input or output circuit on a module
that links with one signal connection with the field.

•	 Address: This attribute is the complete path from a Logix controller to a
module channel, property, or configuration value.

•	 Adapter: This attribute is the communication module that mounts in a slot
on a rack, which enables a controller to communicate with a remote rack over
EtherNet/IP or ControlNet. The adapter name is the root of the path to any
address for modules located in remote racks.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[43]

Module types
In general, modules are classified as analog, digital, communication, controller,
and specialty. They differ by the number of channels, the ranges of input and output
they are capable of handling, and by the special features that are optionally available.
In this section, we will explore the base module types and explain the possible
feature sets.

Analog modules
The analog modules process the input and output of signals that vary by current
and voltage and translate to real-world values such as pressure, temperature, and
flow. The analog modules vary by the number channels (4 to 16), the operating
temperature range, the maximum isolation voltage they can handle, the range of
current (0 mA to 21 mA), and the range of voltage (+/- 25 VDC). There are even
combination analog modules that house both input and output channels. Each
analog channel usually requires three wires in order to complete an analog circuit
correctly. The way in which the channel is wired changes depending on whether
you are using voltage or current, so be sure to review the wiring diagrams for your
module at Rockwell Automation Literature Library available online.

Digital modules
Digital modules process the input and output of signals that vary by current and
voltage and translate to either ON or OFF values. Digital modules will vary by the
number of channels (8 to 32), the operating temperature range, the maximum
isolation voltage they can handle, and a range of voltage (0 VDC to 146 VDC,
10 to 265 VAC) supported.

Communication modules
There is a wide range of communication modules available that enable the
remote rack communications, device communications, and motion control.
There are communication modules by Rockwell and third-party vendors that allow
the Logix controllers to communicate using the network technologies we talked
about in the preceding chapter and many other non-Rockwell Automation protocols.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring Logix Modules

[44]

Controller modules
We covered the controller modules in Chapter 1, ControlLogix and CompactLogix
Overview and Firmware, in detail. It is important to remember that ControlLogix can
support multiple controller modules in a single rack (note that CompactLogix does
not support multiple controllers on a single DIN rail).

Specialty modules
The specialty modules enable your automation project to perform the following
specialized tasks:

•	 High-speed counting
•	 Flow meter measurement
•	 Limit switch monitoring
•	 Hydraulics control

Logix terminal blocks
In the Logix family, most modules do not come with built-in screw terminals, and
Removable Terminal Blocks (RTBs) or bulletin 1492, that is, Interface Module
(IFM) must be purchased separately. You should carefully review your wiring
requirements for your module using the online Rockwell Automation Literature
Library resource (relevant links can be found in the appendix of this book).

Configuring a ControlLogix module
In this exercise, we will learn to add a ControlLogix module to a Logix project and
look at a typical module configuration by performing these steps:

1.	 First, we will need to open RSLogix 5000 / Studio 5000 Logix Designer.
Create a new project, and select a ControlLogix controller (in my case, I
selected 1756-L73 on Slot #0). This process varies between versions of the
Logix, so I will not show these steps in detail.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[45]

2.	 Next, we will add the module by right-clicking on the Controller Organizer
pane's IO Configuration tree, and selecting New Module…, as shown in the
following screenshot:

3.	 Now, we can select the module we wish to configure. For our example, it
will be a digital input module, 1756-IB16D 16 Point 10V-30V DC Diagnostic
Input. The Select Module Type window varies from version to version of
Logix, but regardless of the software, it is relatively easy to locate our module.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring Logix Modules

[46]

4.	 Next, we will configure the module by providing these inputs:
°° Name: R01_S01
°° Slot: 1
°° Description: DI Module

5.	 Next, we can configure the module properties and adjust the setup of the
module. Each module in Logix has unique properties and configuration
requirements, so it is imperative that you refer to the Rockwell Automation
Literature Library document for any module you are configuring. Once you
have reviewed the module properties, click on the OK button, as shown in
this screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[47]

6.	 Finally, our ControlLogix digital input module has been configured, and you
can see it in the Controller Organizer pane in our rack:

Logix module – Catalog Numbers
The modules in Integrated Architecture are referred to by their Rockwell Automation
Catalog Numbers. Catalog Numbers are made up of four parts, as illustrated by the
following diagram:

Bulletin

Type Special Features

1756 - IB 16 D
Channels

The preceding diagram breaks apart the Catalog Numbers for a ControlLogix digital
input module with 16 channels and built-in diagnostics.

The bulletin number is a four-digit identifier for the Logix controller family.
ControlLogix will begin with the 1756 bulletin number, the SoftLogix modules
begin with the 1789 bulletin number, and CompactLogix will begin with the
1769 or 1768 bulletin numbers.

The module type is the second part of the Rockwell Automation module Catalog
Numbers. Types that begin with I are input cards and types that begin with O are
output cards. Let's take a look at a few sample types for commonly used modules.
Digital input types are usually IQ or IG for VDC and IA or IM for VAC. Analog input
types are typically IF, IR, or IT. Digital output types are generally OB for VDC or OA
for VAC. Analog output types are typically OF.

Channels are the third part of Catalog Numbers. The channels represent the number
of field signals that can be wired to and processed by the module.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring Logix Modules

[48]

The last field of Catalog Numbers indicates the special features of the module. The
special features indicate any unique capabilities of the module. In the next section,
we will take a look at a few special features from commonly used modules and their
letter designations.

Special features of a module
Special features of a module provide additional support to the Logix modules and
optional features as follows:

•	 HART: This feature allows the modules to read the transmitter status and
health information or adjust the configuration and calibration of equipment
through a Logix controller.

•	 Diagnostic information: This feature provides diagnostic information for
each channel on the module. The following diagnostic information values
are available in Logix:

°° Field Power Loss detection: When the field power to the module is
lost, it can cause values to be misrepresented. The Field Power Loss
detection will generate a point-level fault to the controller.

°° Open Wire detection: This feature is used to verify that the field
wiring is connected correctly by measuring the minimum leakage
current. A leakage resistor must be connected across the contacts of
the device in order to provide the minimum leakage current.

°° No Load detection: This feature is a diagnostic feature of a module
that detects a break in the field wiring by comparing it to a specified
minimum load current (3 mA or 10 mA, depending on the module).

°° Output State verification: This module confirms with the controller
that it received a command and whether the field-side device
connected to the module has executed the command.

•	 Electronic fusing: This feature is the internal electronic fusing that prevents
over-current through the module.

•	 Individually isolated channels: This feature is the per point isolation where
each channel can be wired with its own individual power source.

•	 Per point timestamping: This module can be configured to record or latch
the time at which a state is changed from ON to OFF, OFF to ON, or both.

•	 FIFO mode operation: This feature stores 160 timestamps, event sequence
numbers, status, and input point numbers on the module for recording
high-speed events (for example, shutdowns).

•	 Ultra fast on/off times: This feature is capable of switching within 15 uS.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[49]

The examples of the Logix module Catalog Numbers are as follows:

•	 1756-IA32: ControlLogix Digital 74-132 VAC Input 32 Pts (36P)
•	 1756-IA8D: ControlLogix Digital 79-132 VAC Diagnostic Input 8 Pts (20 Pin)
•	 1756-IF16H: ControlLogix Analog Input—16 Point HART
•	 1769-IF8: CompactLogix 8 Channel Analog Current/Voltage Input Module
•	 1769-IQ16F: CompactLogix 16 Point High-speed 24VDC Input Module

Addressing module I/O data
Individual channels on a module can be referenced in your Logix Designer / RSLogix
5000 program using its address. An address gives the controller directions to where it
can find a particular piece of information about a channel on a module.

Location Slot Type Member Property

Bit

Optional

The first field of an address specifies the location of the channel (and is followed by
a colon). The location can either be local to the controller or on a remote rack, which
connects through a network adapter or bridge module. So this field can either be one
of the following bridges:

•	 LOCAL: This module is on the same rack or DIN rail as the controller
•	 Adapter name: This module is the name you have configured for the

network adapter or bridge module, which connects to the remote rack
where the module is located

The second field of an address is the slot number of the I/O module in its rack or
DIN rail (and is followed by a colon). The address slot numbering starts at zero. And
in the case of CompactLogix (where power supplies can be placed in the middle of
the DIN rail), power supplies do not count as a slot position.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring Logix Modules

[50]

The third field of an address is a single letter that represents the type of data. There
are the following four types that are specified in an address:

•	 I: input
•	 O: output
•	 C: configuration
•	 S: status

The fourth field of an address specifies the member data of the I/O module. Different
modules will store data of different types. For a digital module, a data member
usually stores the input or output bit values. For an analog module, a channel
member (CH#) usually stores the data for a channel.

The fifth field can be either a property or a bit of the member. A property provides
specific data related to a member. A bit will provide a specific point on a digital I/O
module. The bit range will depend on the size of the I/O module and like the slot
position, it also starts at zero (0 to 31 for a 32-point module).

The examples of the Logix module addresses are as follows:

Logix module addresses Description
MyRack_3:11:O.Ch4Data Channel 4 of the analog output module on slot 11 of

the adapter, My Rack.
Local:3:I.Data.24 Channel 24 of the digital input module on slot 3 in

the local rack.
Local:3:I.Fault.24 Fault status for channel 24 of the digital input

module on slot 3 in the local rack.
Local:3:C.DiagCOSDisable Configuration Boolean value for disabling the COS

diagnostic information for the digital input module
on slot 3 in the local rack.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[51]

Exploring module addresses
In this exercise, we will explore the I/O module addresses for the digital module we
added earlier in the chapter. Perform the following steps:

1.	 First, in the Controller Organizer pane, select and double-click on the
Controller Tags option to open the Controller Tags panel, as shown
in the following screenshot:

2.	 You will notice that because we added a diagnostic module, there are two
address trees associated with the local slot 1. There is one address tree for the
diagnostic configuration type data and another address for the input type
data, Local:1:C and Local:1:I.

3.	 After expanding the type address space, we can see the member data
contained within the configuration and input types.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring Logix Modules

[52]

4.	 Under the configuration member addresses, we can view and adjust the
configuration values for all the diagnostic features of our I/O module (recall
D at the end of the Logix module Catalog Number of the I/O module we
selected—1756-IB16D). We can see the configuration member data for
COS, Open Wire, Fault Latching, and Filtering. You can easily modify the
configuration of these features by double-clicking on the Value field and
entering a new value.

5.	 Under the input member address tree, we see the real-time values from our
input module. In addition to the normal digital input values, our input module
is armed with diagnostic information such as channel faults, channel open wire
detection, and channel change of state timestamping. These addresses can be
referenced in our program code (ladder logic, function block, structured text,
sequential flow diagrams) and evaluated directly in our logic.

It is recommended as the best practice to buffer the module I/O data before
evaluating it in logic. In the next section, we will introduce the concept of module
I/O data buffering.

Buffering module I/O data
In Chapter 1, ControlLogix and CompactLogix Overview and Firmware, we briefly
looked at the Logix operating cycle and the differences between asynchronous
and synchronous execution. In the olden days of PLC5s and SLC500s, before we
had access to high-performance asynchronous controllers such as those of the
ControlLogix, SoftLogix, and CompactLogix families, program execution was
synchronous and very predictable. In an asynchronous controller, there are many
activities that appear to be happening at the same time. The input and output values
can change in the middle of a program scan and put the program in an unpredictable
state. Today, there is a rule in most automation companies that require programmers
to write code that buffers the I/O data to base tags that will not change during a
program execution. We will look at the buffering examples later in the book, and also
explore a new alternative to buffering I/O available in Logix Designer Version 24
using the program parameters.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[53]

Configuring remote racks with
RSNetWorx
RSNetWorx is a standalone application that is used to configure the Logix network
topologies and export them to an EDS file, which we can import into our Logix
application. Without an EDS file, we are unable to set up remote racks in an
application. Remote racks are an advanced topic in the Logix platform, and we will
not cover it in detail in this book. For more details on RSNetWorx, see our link to
the Rockwell Automaton Literature Library document in the Getting Results with
RSNetWorx section in the appendix of this book.

RSNetWorx is on the annual release of the Rockwell Automation
toolkit. It can also be found on the Rockwell website as a free
download for approved customers and system integrators. There
are three versions of the product, one for each Logix network type
(EtherNet/IP, ControlNet, and DeviceNet).

RSNetWorx for EtherNet/IP

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring Logix Modules

[54]

Summary
In this chapter, we learned about the types of modules that are available in the Logix
controller family. We introduced the basic module terminology that is commonly
used in the industry and the procedure for adding modules to our project, and
demonstrated the methods for addressing the module values.

In the next chapter, we will introduce the Rockwell Automation SoftLogix platform,
which is a PC-based automation controller we can use for simulation, testing,
or control.

www.it-ebooks.info

http://www.it-ebooks.info/

[55]

SoftLogix
In this chapter, we will introduce the Rockwell Automation SoftLogix 5800 controller
and virtual chassis. We will step through the setup of SoftLogix Chassis Monitor
and the configuration of our SoftLogix controller within Logix. Finally, we will
investigate the techniques for simulating I/O using the 1784-SIM module. This
chapter will cover the following elements of the SoftLogix platform:

•	 SoftLogix controllers
•	 Components of a SoftLogix solution
•	 SoftLogix 5800 versus RSLogix Emulate 5000
•	 SoftLogix 5800 Chassis Monitor
•	 Configuring RSLinx virtual-backplane driver
•	 Creating a Logix Designer SoftLogix project
•	 Simulating I/O with 1784-SIM modules

SoftLogix system overview
The SoftLogix 5800 controllers (SoftLogix) enable you to create a PC-based Logix
controller rack. Using the SoftLogix application, you can create a virtual rack that
houses your virtual controllers and virtual communication modules. SoftLogix
is another component of Rockwell Automation's Integrated Architecture and
can interface with the other Logix controllers, communication modules, and I/O
modules. By taking advantage of the computing power of modern PCs, the SoftLogix
controllers are capable of processing larger volumes of data and at a higher speed
than even the most powerful Logix controller.

www.it-ebooks.info

http://www.it-ebooks.info/

SoftLogix

[56]

Furthermore, the SoftLogix controllers support the 1784-SIM (I/O simulator)
modules, which emulate the real-world I/O modules for debugging, operator
training, acceptance testing, and simulation. Studio 5000 allows you to build the
custom C++-based DLLs, called external routines, which can be executed by the
SoftLogix external routines, allowing you to take control over all the aspects of the
Windows-based PC and perform resource-intensive program execution. In the next
section, we will review the three SoftLogix processors that are available today.

SoftLogix controllers
There are three bulletin 1789 SoftLogix controllers: 1789-L10, 1789-L30, and
1789-L60, and they are all fully integrated into the Logix platform. The SoftLogix
controllers can be incorporated into any Logix control system solution. The SoftLogix
controllers are capable of running the logic programs designed for the standalone
Logix controllers on a Windows-based PC. When running a SoftLogix controller
on a PC, up to 32 configurable tasks can be run simultaneously. Communication
modules can be added to PCs using the PCI cards available from Rockwell
Automation. The following table details the three SoftLogix controllers and their
distinguishing features:

Bulletin 1789 SoftLogix controller
Controller Memory Rack size 1784-SIM PCI cards Third party

support
1789-L10 2 MB 3 slots 1 N/A No
1789-L30 64 MB 5 slots 5 5 Yes
1789-L60 64 MB 16 slots 16 16 Yes

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[57]

Components of a SoftLogix solution
In this section, we will explore the software and hardware components that
interact with SoftLogix. The following diagram displays a typical SoftLogix
solution architecture:

The assets in the preceding diagram are explained as follows:

•	 SoftLogix Chassis Monitor: This application is the virtual software-based
rack that runs on the PC. It allows you to manage the virtual rack modules,
monitor the status of the controllers and modules (just like a physical rack),
and configure your virtual controllers.

•	 SoftLogix controller: This application is a virtual controller process
running on a Windows-based PC. The virtual controller runs the RSLogix
5000 / Logix Designer programs such as ladder logic and Function Block
Diagrams (FBD), which would usually run on a physical controller. It is
also capable of running the C++-based external routines.

•	 RSLinx: As discussed earlier in the book, RSLinx is a communications
gateway, which allows PCs to communicate with the Logix controllers.

•	 IOLinx: This application is an API that allows the SoftLogix controllers to
read the I/O data from a physical I/O module.

www.it-ebooks.info

http://www.it-ebooks.info/

SoftLogix

[58]

SoftLogix 5800 versus RSLogix Emulate 5000
Although we do not cover Emulate 5000 in detail in this book, it is important
to understand the differences between SoftLogix 5800 and Emulate 5000.
These products provide a PC-based virtual rack and controller.

Note that you cannot install SoftLogix on a PC that already
has RSLogix Emulate 5000 installed on it. In order to install
SoftLogix, you must first uninstall RSLogix Emulate 5000.

RSLogix Emulate 5000 is a virtual Logix controller and rack, designed to allow you to
debug your Logix program code using features such as breakpoints and tracepoints.
Using Emulate 5000, you can create a virtual test rack using similar modules to a
physical rack and even test your project with an HMI. Unlike SoftLogix, Emulate
5000 is not capable of controlling real I/O. Also, the communication modules are
not supported by Emulate 5000. A typical RSLogix Emulate 5000 solution consists
of modules being configured in a virtual Logix rack to mimic the end solution. The
logic is downloaded and monitored using Logix Designer / RSLogix 5000 in order to
troubleshoot it. The following table outlines the most significant differences between
these two products:

SoftLogix 5800 RSLogix Emulate 5000
Full-featured PC-based Logix controller Emulated controller for Logix debugging
Full network module support No networking modules supported
Normal Logix controller features Advanced debugging features

For simulation and testing, one can easily use either SoftLogix or Emulate 5000.
However, if you are looking for advanced debugging/logging features, Emulate
5000 would be a better option. The user interface and configuration of SoftLogix and
Emulate 5000 are so similar that you can complete the SoftLogix exercises in this
chapter using Emulate 5000.

Working with SoftLogix
In the following exercises, we will perform the following tasks:

•	 Setting up our SoftLogix 5800 virtual rack and controller
•	 Configuring our RSLinx driver and establishing communications to our

SoftLogix controller

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[59]

•	 Building a new Logix Designer / RSLogix 5000 project that connects to the
SoftLogix controller

•	 Simulating I/O with the 1784-SIM modules

SoftLogix 5800 Chassis Monitor
In this exercise, we will configure a SoftLogix controller in the SoftLogix
Chassis Monitor.

SoftLogix 5800 is included in the annual release of the Rockwell
Automation toolkit. It can also be found on the Rockwell
website for approved customers and system integrators. The
SoftLogix controllers need to be licensed in order to run, and
Rockwell Activation Manager will also need to be installed.

To configure a SoftLogix controller, perform the following steps:

1.	 Start up the SoftLogix 5800 Chassis Monitor software.
2.	 Open the drop-down menu option by navigating to Slot | Create Module….
3.	 The Select Module dialog box appears and allows us to add the

communication modules, 1789-SIM I/O simulation modules, and the
SoftLogix 5800 controller modules to the slot we specify. Select 1789-L60
SoftLogix5860 Controller, and 1 for the Slot number field using the numeric
selector. Then, click on the OK button, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

SoftLogix

[60]

4.	 The General dialog box appears. Next, we will configure the SoftLogix
controller we added to slot 1 in our virtual chassis. The General dialog
box allows us to specify the following options:

°° Startup Mode: This option allows you to select the SoftLogix run
mode state when the controller first starts up (equivalent to the key
position on a physical controller). The options are Remote Program
or Last Controller State.

°° Memory Size (KB): This option is the amount of memory (RAM) the
controller is allowed to use on the PC.

°° Periodic Save Interval: This option stores all the current tag values
in the SoftLogix controller to the PC's hard disk drive. This value
runs at a higher processor priority than other tasks on your PC and
can impact the performance of other processes. Having a modern
multicore processor helps to reduce this risk.

5.	 We are going to keep the default options in the General dialog box, so click
on the Next > button, as shown in the following screenshot:

6.	 Now, the NT System dialog box appears and provides us with the
following options:

°° Continuous Task Dwell Time (ms): This option is the breathing
room you offer to the PC to handle the other tasks running on
the system. It is essential to provide the CPU with a slice of time
to handle Windows-related system tasks; otherwise, you may
find your CPU pegged at 100 percent utilization and your
PC system unresponsive.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[61]

°° CPU Affinity: This option is the CPU core used for the
SoftLogix controller.

°° Channel 0 Serial Port: This option is the COM port used for serial
communication by the SoftLogix controller.

7.	 We are going to keep the default options in the General dialog box, so click
on the Finish button, as shown in the following screenshot:

8.	 Adding a 1789-SIM I/O module will allow us to simulate input values and
monitor output values. We can add the 1789-SIM module using the same
process we used to add the SoftLogix controller module. Open the drop-
down menu option by navigating to Slot | Create Module….

9.	 In the Select Module dialog box, select 1789-SIM 32 Point Input/Output
Simulator in the Module Type field, select 2 in the Slot field, set the Label
option to Simulated Points, and click on the OK button.

www.it-ebooks.info

http://www.it-ebooks.info/

SoftLogix

[62]

10.	 Now that we have a 1789-SIM module added to our virtual backplane, we
can toggle inputs and monitor the outputs. You can toggle the digital points
by right-clicking on the 1789-SIM module and selecting Properties.

11.	 You can toggle the digital input values by selecting the I/O Data tab and
toggling the input boxes. You can also see the output values by clicking
on the module on the virtual chassis to open the module door.

We have now completed the configuration of our SoftLogix controller, Chassis
Monitor. Next, we will set up our RSLinx driver to allow Logix Designer / RSLogix
5000 to communicate with the SoftLogix controller.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[63]

Configuring the RSLinx virtual-backplane
driver
The RSLinx virtual-backplane driver is the communication gateway used by Logix
Designer / RSLogix 5000 to program and monitor the SoftLogix controllers. Follow
these steps:

1.	 Run RSLinx Classic.
2.	 Navigate to Communications | Configure Drivers.
3.	 In the Configure Drivers window, click on the Available Driver Types

drop-down menu and select Virtual Backplane (SoftLogix58xx, USB).
Then, click on the Add New… button, as shown in the following screenshot:

4.	 A Windows dialog box will appear with the title Add New RSLinx Driver.
Enter the title, VirtualBackplane_1.

www.it-ebooks.info

http://www.it-ebooks.info/

SoftLogix

[64]

5.	 Next, the Configure Virtual Backplane dialog box will allow us to select the
slot number where the RSLinx module will reside. By default, the module
will be positioned in slot 0. Only in Logix Designer Version 2.1 and higher,
we are allowed to select a slot position other than 0. Our virtual backplane
drive is now configured and running, and we can close the dialog box by
clicking on the Close button.

Now that we have our virtual backplane configured, we can start to develop
programs and download them to our SoftLogix controller.

Creating a Logix Designer SoftLogix project
In order to download programs and run your SoftLogix controller, you will need to
create and configure a new Logix project by performing the following steps:

1.	 First, open Logix Designer / RSLogix 5000 and create a new project by
selecting New Project from the Studio 5000 splash screen in Studio 5000
or opening the drop-down menu option on navigating to File | New… in
RSLogix5000.

In Studio 5000 Logix Designer, there is another New Project
wizard step, but in RSLogix 5000, there is only a single dialog
box for creating a new project.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[65]

2.	 In the New Project dialog box, navigate to SoftLogix™ 5800 Controller
| 1789-L60 SoftLogix™ 5800 Controller and set the Name field to
NewSoftLogixProject. In Logix Designer, click on the Next button.

3.	 Set the Chassis field to 1789-A17 17-Slot SoftLogix Virtual Chassis and the
Slot field to 1. Set the Security Authority field to No Protection.

In later versions of Logix, you can specify a value in the Security
Authority field, which must be present on a FactoryTalk Network
Directory in order to go online with a controller. Projects that are
secured with a specific security authority cannot be recovered if
that security authority is lost.

www.it-ebooks.info

http://www.it-ebooks.info/

SoftLogix

[66]

4.	 Specify a useful project description. Then, in Logix Designer, click on the
Finish button or in RSLogix 5000, click on OK.

5.	 In the Control Organizer pane, we can see our SoftLogix controller listed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[67]

6.	 Next, right-click on our newly added SoftLogix controller and select the
Properties menu option.

7.	 The Controller Properties window will allow us to configure the controller
to suit the needs of our application.

We have now configured our SoftLogix controller and can add modules and begin
downloading programs to it.

www.it-ebooks.info

http://www.it-ebooks.info/

SoftLogix

[68]

Configuring the 1789-SIM module in the Logix
Designer project
In order to use our 1789-SIM module within our program, we will need to load and
configure the module in our Logix Designer project:

1.	 Open Logix Designer / RSLogix 5000 and open the project we previously
added our SoftLogix controller to.

2.	 In Logix, right-click on the I/O Configuration folder and select New Module.

3.	 The Select Module Type dialog box will appear. Use the dialog box to find
the 1789-MODULE Generic 1789 Module module (under Other in Logix
Designer), and then click on the Create button.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[69]

4.	 The New Module dialog box will appear and allow us to configure the
1789-SIM module's general properties.

5.	 The Assembly Instance field values represent the configuration modes
for the 1789-SIM module. The Status Input and Status Output values are
disabled when the Comm Format field that does not support the status
information is selected. I have only ever seen two different configuration
modes here, which are detailed in the following table:

Assembly instance Read/write Listen only
Input 1 1
Output 2 3
Configuration 4 4
Status input 5 5
Status output 6 6

As you can see from the table, the Assembly Instance values will always stay
the same, except in the case of a Listen Only mode, where the Output field
value changes to 3.
The Size property for each Assembly Instance field value is used to specify
the number of channels for Input, Output, Status Input, and Status Output.
The Configuration field size is always 400 regardless of the value entered in
the Size property. Set the properties of the 1789-SIM module, as shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

SoftLogix

[70]

6.	 The preceding configuration will create the following input, output, and
configuration controller tags:

7.	 Had we selected a Comm Format field with Status, we would also
have Input Status and Output Status controller tags appear in the
Controller Tag list.

8.	 Click on the OK button.
9.	 The Module Properties window will appear and allow us to modify the

module connection configuration.
10.	 Set the Requested Packet Interval (RPI) value for the 1789-SIM module to

50.0 ms and click on the OK button.

Setting an RPI value to less than 50 ms can cause the 1789-SIM
module to fail.

11.	 Now, we can connect and download our program to the SoftLogix controller
just like a regular physical controller. Open Who Active by navigating to
Communications | Who Active, and then navigate to our newly created
SoftLogix controller and click on the Download button.

12.	 Finally, ensure that you are online with your SoftLogix controller, and in the
next exercise, we can start to simulate some values.

Simulating values using the 1789-SIM module
Now that we have configured our virtual chassis, RSLinx, our controller, the
1789-SIM module, and downloaded our program, we can start to simulate input
and monitor output values by performing these steps:

1.	 Open SoftLogix Chassis Monitor, right-click on the 1789-SIM module, and
select Properties.

2.	 Click on the Module Properties tab, which is labeled as I/O Data.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[71]

3.	 The I/O Data tab will allow us to toggle digital inputs by clicking on them
and monitor digital outputs.

When you toggle a digital input and return to your online program in RSLogix / Logix
Designer, you will see the corresponding value has changed in the Controller Tags
monitor.

Summary
In this chapter, we introduced the virtual controller options in the Rockwell
Integrated Architecture platform, including SoftLogix 5800 and Emulate 5000.
We learned how to configure our SoftLogix controller's virtual chassis and RSLinx
application, and how to create a new project based on the SoftLogix platform.
Finally, we learned the power of the 1789-SIM I/O cards and their use with the
SoftLogix controller.

In the next chapter, we will introduce the ladder logic programming and its use with
the Logix family of physical and virtual controllers.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[73]

Writing Ladder Logic
In this chapter, we will look at the history of ladder logic and the development of
the IEC standard programming languages. Then, we will jump into the ladder logic
programming by creating a simple pump control program. We will demonstrate how
to buffer inputs and outputs in our ladder logic code and discuss the importance of
this process. Finally, we will explore the new program parameter features in Logix
Designer Version 24 and how that can be used to buffer values and greatly reduce
the amount of ladder logic required for a program.

Ladder logic overview
Ladder logic was originally a written method for capturing the wiring of relay
circuits also known as relay logic. The name ladder logic can be attributed to the
diagrams resembling a ladder. Two vertical lines (often known as L1 and L2)
represent the voltage of the circuit, and the horizontal lines and symbols represent
the devices (buttons, motors, and breakers) connected to the circuit. Each horizontal
line in the circuit is known as a rung. Once microprocessors enabled programmable
logic in control systems, ladder logic evolved into a programming language rather
than an engineering diagram. The following diagram is an example of a single relay
logic rung:

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Ladder Logic

[74]

Today, ladder logic is still the most popular industrial automation programming
language.

IEC 61131-3
Ladder logic is one the five IEC 61131-3 Compliant languages available in Logix.
IEC 61131-3 defines a common set real-time automation programming language
structure, which is shared across multiple vendor's software products:

•	 Naming conventions
•	 Data types
•	 Task structure, scheduling, and execution control
•	 Execution flow control
•	 Program execution
•	 Triggers
•	 Scheduling

IEC, which was first published in December 1993, enables you to transit between
programming platforms designed by different vendors. Furthermore, it improves the
safety and reliability of automation applications by making them easily understood
by a wider audience.

Understanding programming logic
Each rung of ladder logic is an equation solved by the PAC as True (1) or False (0),
also known as energized (1) or de-energized (0). Ladders are executed one rung at
a time from top to bottom, and each rung executes one instruction (also known as
an element in Logix) at a time from left to right. The following diagram details the
anatomy and terminology of a simple ladder logic program:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[75]

AND logic in ladder
When the ladder logic instructions are positioned side by side, known as the AND
logic, both instructions need to evaluate as true, in order for the output to energize.
The following diagram illustrates a simple example of the AND logic:

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Ladder Logic

[76]

OR logic in ladder
When the ladder logic instructions are stacked on top of each other, known as the
OR logic, either of the instructions can evaluate as true in order to energize the
output. The following diagram demonstrates the OR logic in a ladder logic rung:

NOT logic in ladder
The ladder logic contact instructions, by default, are considered to be normally open
and when closed, they evaluate as true. There is another form of ladder logic contact
instruction that is normally closed, and can be identified by the diagonal line that
passes through it. The normally closed contacts evaluate as true when their value is
actually false and are considered to be the NOT logic in ladder logic. The following
diagram shows an example of the NOT logic:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[77]

How to write ladder logic
In this section, we will create a ladder logic program using Studio 5000's Logix Designer
(previously known as RSLogix 5000). Typically, a control system will read inputs from
sensors, and equipment use the inputs in logic routines and then write to outputs. This
activates the equipment in order to manipulate a process. To provide an example that
aligns with a typical control system, we will need to ensure that our project contains
both a digital input module and a digital output module. In order to complete the
following exercise, you will need to load the project created in Chapter 3, Configuring
Logix Modules, or simply create a new project and add a controller and a 16 channel
digital input module to it (1756-IB16D 16 points 10V-30V DC diagnostic input). Then,
add a digital output module (1756-OB16D 16 points 19.2V-30V DC diagnostic output
module) by following the process we detailed in Chapter 3, Configuring Logix Modules.

Buffering I/O data
One important issue we must address prior to starting the development of our
program is the buffering of module I/O data. In Chapter 1, ControlLogix and
CompactLogix Overview and Firmware, we briefly looked at the Logix operating cycle
and the differences between asynchronous and synchronous execution. In modern
asynchronous operating cycles, there are many activities happening at the same time.
The input and output values can change in the middle of a program scan and put the
program in an unpredictable state. Imagine a program starting a pump in one line of
code, and then closing a valve directly in front of that pump in the next line of code
because it detected a change in process conditions. In order to address this issue,
we use a technique called buffering, and depending on the version of Logix you are
developing on, there are a few different methods of achieving this. Buffering is a
technique where the program code does not directly access the real input or output
tags on the modules during the execution of a program. Instead, the input and
output module tags are copied at the beginning of a program's scan to a set of base
tags that will not change the state during the program's execution. Think of buffering
as taking a snapshot of the process conditions and making decisions on those static
values rather than the live values that are fluctuating every millisecond. The two
widely accepted methods of buffering are as follows:

•	 Buffering to base tags
•	 Program parameter buffering (only available in Logix Version 24 and higher)

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Ladder Logic

[78]

Do not underestimate the importance of buffering a program's I/O.
I worked on an expansion project for a process control system where
the original programmers had failed to implement buffering. Once
a month, the process would land in a strange state that the program
could not recover from. The operators had attributed these problem to
"Gremlins" for years until I identified and corrected the issue.

Defining tags
In Logix, a tag allows you to allocate and reference data stored in the controller.
When working with legacy PLCs, a programmer would often use registers to store
data and reference them using their addresses in memory. Modern PACs, such as
the Logix family, use name-based tags to store and manipulate data. Tags can be a
simple, single element, or an array, or structure. There are four types of tags in Logix:

•	 Base: These tags are the default variable tag type in Logix. Base tags allow
you to specify a unique name-based tag to store and manipulate data in
your program.

•	 Alias: These tags allow you to assign your own unique name to a module
channel, existing tag, or structure tag member. When you create an alias tag,
you will also select what the alias tag is an alias for. They are most frequently
assigned to module channels in order to improve code readability and ease
of maintenance. For example, if you consistently refer to a digital input
module's channel as an alias tag and the channel wiring changes to a new
location, you can easily update your code by only changing the configuration
of your single alias tag.

•	 Produced: This tag allows you to pass a tag's value to a remote Logix
controller at a predictable (real-time) frequency. A produced tag is always
paired with a consumed tag on the controller that reads the tag's value.

•	 Consumed: This tag allows you to receive a tag's value from a remote Logix
controller at a predictable (real-time) frequency. A consumed tag is paired
with produced tag on the controller that is sending the tag value.

Each tag that is created in Logix is also assigned with a scope. The scope defines the
area within our Logix project that the tag can be accessed from. The scope can be
configured as either of the following levels:

•	 Controller level: This level is globally accessible across all the routines.
•	 Program Level: This level is accessible only within a single program. The

program scope is selected during the tag configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[79]

It is important to note that the tag scope cannot be easily changed once it is
configured. So, care should be taken prior to selecting the tag's scope level.

Buffering base tags
As we will learn in Chapter 9, Using Tasks and Programs for Project Organization, Logic
can be organized into manageable pieces and executed based on different intervals
and conditions. The practice of buffering base tags takes advantage of Logix's ability
to organize code into routines. The default ladder logic routine that is created in
every new Logix project is called MainRoutine. In the following exercise, we will be
editing the MainRoutine ladder logic program and adding these three routines that
will be called by it:

•	 One for reading the input values
•	 One for executing logic
•	 One for writing the output values

Open the Logix project we created earlier in this chapter with the digital input and
output modules and follow these steps:

1.	 Using the Control Organizer pane, open the MainProgram folder, which can
be found by navigating to Tasks | MainTask:

2.	 Right-click on MainProgram and select the New Routine… option.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Ladder Logic

[80]

3.	 In the New Routine window that appears, set the following field values:
°° Name: BufferInputs
°° Description: Buffer input values prior to executing logic

against them.

°° Type: Ladder Diagram
°° In Program or Phase: MainProgram
°° Assignment: <None>

4.	 Create two more new routines. Use the following configurations for the
first one:

°° Name: PumpControl
°° Description: Pump control routine.
°° Type: Ladder Diagram
°° In Program or Phase: MainProgram
°° Assignment: <None>

5.	 Use the following configurations for the second one:
°° Name: BufferOutputs
°° Description: Buffer write output values after executing

logic.

°° Type: Ladder Diagram
°° In Program or Phase: MainProgram
°° Assignment: <None>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[81]

6.	 Now, let's start some ladder logic programming! Open up the
BufferInputs routine.

7.	 Ladder logic programs are primarily created through drag and drop
(although if you prefer good old coding, you can always right-click
on a rung and select Edit Code to type in the logic).

8.	 Now, let's configure a contact from our digital input module to write a value
(buffer it) to our coil base tag value.

9.	 First, we will add a ladder rung for buffering a digital input module channel
for a start pump button signal to a base tag.

10.	 Above our ladder logic routine, you will find the ladder logic element
groups and elements. These can be dragged and dropped into our ladder
logic routines. Under the Bit element group, you will see our contact
element (known as Examine On in Logix) and our coil element (known as
Output Energize in Logix). Drag the Examine On element to the left of our
BufferInputs ladder rung 0, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Ladder Logic

[82]

11.	 Now, we can assign the Examine On value to a channel of our digital input
module. Double-click on the question mark above the Examine On element
and select or type Local:1:I.Data.0 in the module and channel, as shown in
the following screenshot:

A common practice for handling the module inputs and outputs in a
Logix program is to assign them to aliases and reference only the aliases
throughout your program. This allows you to change the location of the
module value easily in the future if required. However, as long as we
only reference our module inputs and outputs in our buffering routines,
we might not clutter up our tag list with module alias tags.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[83]

12.	 Next, we will add the contact, known as Output Energize in Logix, to rung
0. Find the Output Energize element in the Bit element group and drag and
drop it into our rung.

13.	 Now, we will assign the value of our input module channel 0 to a base
variable using the Output Energize element. Right-click on the question
mark above the Output Energize element and select New Tag…, as shown
in the following screenshot:

It is possible to interlace Examine On (input contacts) and Output
Energize (coils) across a ladder logic rung. The Output Energize
elements will evaluate as the value that is being written to it in the
logic. However, mixing coils and contacts in the middle of a rung
can create ladder logic that is difficult to follow.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Ladder Logic

[84]

14.	 The New Tag window will appear and allow you to set the following
parameters for a newly created tag:

°° Name: StartPump
°° Description: Start Pump Command Button
°° Data Type: BOOL
°° Scope: MainProgram
°° External Access: Read/Write
°° Style: Decimal

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[85]

15.	 Next, we will be adding another rung to our BufferInput routine in order
to buffer a High Pressure digital input module channel signal to a base tag.
Right-click on the ladder logic rungs and select Add Rung, as shown in the
following screenshot:

16.	 Drag an Examine On element into our newly added rung 1, and set the value
to Local:1:I.Data.1.

17.	 Drag an Output Energize element into rung 1, and create a new base tag
with the following parameters:

°° Name: HighPressure
°° Description: High Pressure
°° Data Type: BOOL
°° Scope: MainProgram
°° External Access: Read/Write
°° Style: Decimal

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Ladder Logic

[86]

18.	 We will add one more ladder logic rung for Maintenance Manual Override
Pump Start. Add a new ladder rung (rung 2) and add Local:1:I.Data.2 as the
Examine On element. Then, add the Output Energize element and base tag
with the following parameters:

°° Name: PumpStartManualOverride
°° Description: Maintenance Manual Override Pump Start
°° Data Type: BOOL
°° Scope: MainProgram
°° External Access: Read/Write
°° Style: Decimal

19.	 Now that we have buffered the digital inputs for our simple ladder logic
program, we will now buffer the outputs. Our output will be Run Pump
Permissive from our program. The pump will only run if the Start button
is being clicked on and the High Pressure value is not present. Open the
BufferOutputs ladder logic routine we created earlier and drag an Output
Energize element into rung 0. Now, set the Local:2:O.Data.0 output tag value
to channel 0 of our digital output module.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[87]

20.	 Next, we will add our Examine On element and create a new base tag with
the following parameters:

°° Name: RunPump
°° Description: Run Pump Permissive
°° Data Type: BOOL
°° Scope: MainProgram
°° External Access: Read/Write
°° Style: Decimal

21.	 We have now buffered our module inputs and module outputs in order
to ensure they do not change in the middle of a program's execution and
potentially put our process into an undesired state. We will use the AND
and NOT logic to control our pump using our buffered base tags. Open the
PumpControl routine we created.

22.	 Drag an Examine On element (contact) into ladder rung 0 in the
PumpControl routine and assign the element to our StartPump base tag.

23.	 Drag an Examine Off element (looks similar to the Examine On element
with a line through it) into ladder rung 0. You will notice that the Examine
Off element appears beside the Examine On element, creating an AND
logical expression. Assign the Examine Off element to the HighPressure
base tag we created in our buffering routine. The High Pressure Examine
Off element will protect our process from being over pressurized by shutting
down the pump if the pressure is too high.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Ladder Logic

[88]

24.	 We will complete our ladder logic rung by adding the Output Energize element
to ladder rung 0 and assigning it to our buffered output base tag, RunPump.

The HighPressure Examine Off element uses a NOT logic expression, which is
illustrated by the slash across the element symbol. This element will evaluate as true
when the HighPressure digital input reads false. With the two elements side by side,
our ladder logic rung now utilizes the AND logic expression. Both StartPump and
HighPressure must evaluate as true in order to energize the RunPump output coil.
We created the following logic expression in our rung:

IF StartPump = True AND HighPressure = False THEN RunPump

When creating logic expressions, the truth tables can be a helpful tool to understand
all the possible input combinations and their outputs. The following truth table
shows all the input and output combinations of our ladder logic rung:

StartPump HighPressure RunPump
False (0) False (0) False (0)
True (1) False (0) True (1)
False (0) True (1) False (0)
True (1) True (1) False (0)

We still need to add our Maintenance Manual Override Start element for our pump
control logic. This feature will allow the operator to run the pump regardless of the
process conditions. In order to implement this feature, we will add a branch to our
ladder logic rung, which evaluates as an OR logic expression by performing the
following steps:

1.	 The branch element is the second element in all of the element groups. Drag
the branch element on to rung 0.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[89]

It is possible to nest multiple branch elements to create a
very complex OR logic expression.

2.	 In order for the OR logic expression to override all our other module inputs,
we will need to drag and drop the StartPump and HighPressure elements to
the top line of the branch element.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Ladder Logic

[90]

3.	 Adding Maintenance Manual Override Pump Start is now just a matter
of dragging an Examine On element into the bottom of the branch. Then,
associate the element with the PumpStartManualOverride base tag.

We have updated our rung to override the Start Pump and High Pressure inputs
with Maintenance Manual Override Pump Start and created the following logic
expression:

IF (StartPump = True AND HighPressure = False)
OR
PumpStartManualOverride = True
THEN RunPump

The following truth table shows all the input and output combinations of our
updated ladder logic rung:

StartPump HighPressure PumpStartManualOverride RunPump
False (0) False (0) False (0) False (0)
True (1) False (0) False (0) True (1)
False (0) True (1) False (0) False (0)
False (0) False (0) True (1) True (1)
True (1) True (1) False (0) False (0)
False (0) True (1) True (1) True (1)
True (1) False (0) True (1) True (1)
True (1) True (1) True (1) True (1)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[91]

Currently, our routine will not be executed in the program on our Logix controller
because MainProgram (which contains our ladder logic routines) is configured to run
the MainRoutine program. In order for our routines to execute, we must reference
them in the MainRoutine program. The Jump To Subroutine ladder logic element
will allow us to execute the routines we created from the MainRoutine program:

1.	 Open the MainRoutine program and find the JSR element in Program
Control element group and drag it into rung 0.

2.	 Now, we can associate the JSR element with our BufferInputs routine by
setting the Routine Name parameter to BufferInputs.

3.	 We will need to remove the Input Par and Return Par parameters from the
JSR element by right-clicking on the JSR routine and selecting Remove
Instruction Parameter on both the Input Par and Return Par parameters.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Ladder Logic

[92]

4.	 In order to add the JSR elements for our other routines, we will need
to add two more ladder rungs and add the JSR elements with the
following parameters:

°° JSR Rung 1: PumpControl
°° JSR Rung 2: BufferOutputs

We completed our first ladder logic program. Ladder logic can be easily created
by dragging and dropping elements into a rung. There are far too many elements
available in Logix to cover in this book, but you can discover them yourself by
dragging them into a rung and right-clicking on them and selecting Instruction
Help. In addition to it, Rockwell Automation has a number of resources on ladder
logic programming in their Literature Library Resources (see the appendix of this
book for some useful links).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[93]

Buffering using program parameters
A program parameter is a powerful new feature in Logix that allows the association
of dynamic values to tags and programs as parameters. The importance of program
parameters is clear by the way they permeate the user interface in newer versions
of Logix Designer (Version 24 and higher). Program parameters are extremely
powerful, but the key benefit to us for using them is that they are automatically
buffered. This means we could have effectively created the same result in one ladder
logic rung rather than the eight we created in the previous section. There are the
following four types of program parameters:

•	 Input: This program parameter is automatically buffered and passed into a
program on each scan cycle.

•	 Output: This program parameter is automatically updated at the end of a
program (as a result of executing that program) on each scan cycle, similar to
the way we buffered our output module value in the previous section.

•	 InOut: This program parameter is updated at the start and the end of the
program scan. It is also important to note that unlike the Input and Output
parameters, the InOut parameter is passed as a pointer in memory. A pointer
shares a piece of memory with other processes rather than creating a copy of
it. This means that it is possible for an InOut parameter to change its value
in the middle of a program scan. This makes InOut program parameters
unsuitable for buffering when used on their own.

•	 Public: This program parameter behaves like a normal controller tag and
can be connected to Input, Output, and InOut parameters. Similar to the
InOut parameter, Public parameters are updated globally as their values
are changed. This makes program parameters unsuitable for buffering
when used on their own. Primarily, Public program parameters are used for
passing large data structures between programs on a controller.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Ladder Logic

[94]

In Logix Designer Version 24 and higher, a program parameter can be associated
with a local tag using Parameters and Local Tags in the Control Organizer pane
(formally called program tags). The module input channel can be associated with a
base tag within your program scope using the Parameter Connections option. Add
the module input value as a parameter connection.

The preceding screenshot demonstrates how we will associate the input module
channel with our StartPump base tag using the parameter connection value.

Summary
In this chapter, we explored the genesis of ladder logic programming and the IEC
programming language standards. We learned how to create ladder logic by dragging
and dropping elements into a ladder rung in a routine. We also learned the importance
of buffering inputs and outputs and some techniques for accomplishing this.

In the next chapter, we will introduce another IEC language called Function Block
Programing and its use with the Logix family.

www.it-ebooks.info

http://www.it-ebooks.info/

[95]

Writing Function Block
In this chapter, we will explore the merits of function block programming by
building a small sample application. We will also provide instructions for modifying
the function block properties and performing online edits. The following function
block topics will be covered in detail in this chapter:

•	 Function block versus ladder logic
•	 Function block sheets
•	 Function block elements
•	 Function block wiring
•	 Function block logic
•	 Online monitoring and editing function blocks
•	 Function block textboxes
•	 Assigning constant values

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Function Block

[96]

Language compilation overview in Logix
Logix Designer, like most IEC 61131-3 compliant applications, will take any program
you create in any IEC-compatible language, convert it to instruction list (IL)—a
low-level language that resembles Assembly), and compile it down to bytecode
(the binary language used internally by the controller) in order for the controller
to execute it. The following diagram illustrates the way various languages are all
compiled down into the same bytecode language:

Language compilation to bytecode in Logix

Ultimately, the controller is not aware of which language you created your program
in (Ladder Logic, Function Block, or Sequential Function Chart); it always ends
up as the same Bytecode language that is executed on the controller. Within Logix
Designer, you can create the exact same program using ladder logic that you would
create using function block diagram (FBD), and it would (in theory) translate
down to the same Structured Text (ST) commands and compile down to the same
Bytecode for the controller. It is important to understand the direct relationship
between ladder logic, function block, and other IEC languages.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[97]

The function block overview
The FBD programming language, which I refer to as function block, is a graphical
flow diagram language where program instructions appear as blocks (function
blocks). Each function block has inputs and outputs that can be wired to other
function blocks to create a visual representation of data flow. In the same way
that ladder logic is based on the Relay Logic Engineering drawings, FBDs are also
derived from engineering discipline standards. Before being used as a programming
language, FBDs were used in system / software engineering to describe the
interrelationships between electronic systems. The following FBD is from NASA's
Space Shuttle program and describes the electronic system relationships inside an
IBM AP-101S general purpose computer.

Off

On

PNL-06

Watchdog
timer

Oscillator
CPU

control
logic

Main
memory

Memory
control
logic

Power
supply

GPC
power

Bus
control
element

1

Bus
control
element

24

IOP
control
logic

Discrete
input

register

Discrete
output
register

Discrete
lines

Discrete
lines

Data
bus

Data
bus

Voter

Multiplexer
interface

adapter 24

Multiplexer
interface
adapter 1

Bus terminal
units

� GPCs
� Crew station controls
� Mass memories
� Back-up flight controllers

� GPCs
� Crew station displays
� Caution & warning

Built-in
test

equipment
status

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Function Block

[98]

Within Logix, it is important to note that editing FBDs is not supported by all editions
of the Logix programming software. Only Professional Edition, Full Edition, and Lite
Edition allow you to write programs using FBD; however, all the editions will allow
you to upload and download the existing FBD programs. It is important to understand
the version and edition of Logix you are using and the capabilities that have been
enabled. Refer to the links in the appendix of this book or Rockwell Automation
Literature Library for more information on the editions of Logix that are available.

Understanding FBD
In this section, we will explore the basic elements of an FBD within the Logix platform.

Function block versus ladder logic
As mentioned earlier, both FBD and ladder logic eventually will compile down to
the same controller bytecode language. The available functions and development
interface in these two programming languages are vastly different, and it is
important to highlight these differences. Ladder logic, as you will recall from the
preceding chapter, is executed from the top of the ladder to the bottom and from
the left-hand side of the rung to the right-hand side. Function block also executes
from left to right, so if you want a particular function block to execute prior to other,
position it more to the left than the other blocks on the page. The inputs and outputs
also help Logix to determine the order of execution for the function blocks on a sheet.

The following table lists some of the notable differences between ladder logic and
function block:

Ladder logic Function block
This language is executed top to bottom and
left to right.

This language's execution order is
determined by the input and output
connections and the horizontal position on
the sheet (left to right).

In this language, the input values can change
during execution, so buffering the input data
is recommended.

Here, input values are read only once at
the start of the execution, so buffering the
input values is not required.

This language uses normally open or
normally closed contacts.

This doesn't use normally open or
normally closed contacts.

This language is organized by ladders, which
execute in a sequential order.

This language is organized by sheets. All
the sheets execute at the same time.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[99]

Ladder logic Function block
This language is a low-level language. Ladder
elements have very basic functionality and
consume fewer processor cycles. It produces
more code to maintain.

This language is a high-level language.
Function block elements have very
powerful functionality and consume more
processor cycles. This language produces
less code to maintain with more powerful
functions.

This language uses the controller and
program-scoped tags.

This language uses the controller and
program-scoped tags.

Ultimately, when choosing weather to use ladder logic or function block to write
a routine, it comes down to selecting the right tool for the job. Some problems
are better suited for the powerful features of function block and others problems
would benefit from the low-level control provided by ladder logic. When selecting a
language to solve a problem, you should try to select a language that will allow you
to strike the balance between:

•	 Ease of development
•	 Ease of maintenance
•	 Efficient use of processor cycles

The function block sheets
Within a routine, FBDs are created in an area called a sheet, and the sizes of the
sheets directly correspond to standard metric or English printer page sizes (we use
ledger / 11 x 17 inch in our following example). This allows the sheets to be easily
printed, presented, and even signed like a typical engineering drawing. It is helpful
to think of each sheet as a drawing for a single device.

You can adjust the size of a sheet by right-clicking on an empty
area of the function block routine and selecting Properties.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Function Block

[100]

You can connect multiple sheets together using the input wire connectors and output
wire connectors; we will discuss connectors in more detail later in the chapter. Each
sheet has Sheet Number and Sheet Name to identify it. A routine can contain an
unlimited number of sheets, but it is important to understand that all the sheets are
executed at the same time (not one sheet at a time). Here is a diagram displaying two
sheets, each containing a function block wired together using the input and output
wire connectors:

The function block elements
There are the following six elements used within an FBD:

•	 Input reference (IREF): These elements are the input tag values that are read
into a function block routine before it executes.

•	 Output references (OREF): These elements are the output tag values that are
written to once the function block routine completes its execution.

•	 Input wire connectors (ICON): This element receives data from another
function block that is on a different sheet within the same routine or far apart
on the same sheet.

•	 Output wire connectors (OCON): This element sends data to another
function block that is on a different sheet within the same routine or
far apart on the same sheet. A single output connector can be wired
to multiple input connectors.

•	 Function block (FB): This element executes an operation based on the values
of its input pins and then provides results to its output pins.

•	 Textbox: This element is used to provide the code comments to the function
block routines.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[101]

The following function block routine identifies these six elements and how they
are connected:

Function block wiring
Within a single sheet, the function blocks are wired together in a similar fashion to
an electronic circuit board. Wires are used to connect input tags to function blocks,
function blocks to function blocks, and function blocks to output tags. Pins are used
to connect wires to the function block elements. The following diagram demonstrates
the use of wires and pins in a simple function block routine:

Function block wiring

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Function Block

[102]

Note that there is a visible difference between the analog wires (solid lines),
digital wires (dashed lines), analog pins (no dot in the center), and digital pins
(dot in the center).

Function block logic
Where ladder logic uses the element position on a rung to create logic expressions,
function block logic expressions are handled by dedicated function block elements.
In the next sections, we will explore some of the logical function block elements that
are available and see how they are used.

The AND logic function block
Within a function block routine, you can evaluate an AND logical expression using
the BAND function block. This block will evaluate an AND logical expression using
all the input references passed into and provide the solution to its output reference
pin. The following diagram shows the same, simple AND logical expression in
function block:

When the StartPump and StartPumpManualOverride input references are both
true, the RunPump output reference will energize. Note that the input reference
values to the right on the input reference pins indicate the current value of the
references. Also, the output reference pin on the BAND function block displays the
current value of the AND expression. Although we are only displaying four digital
input references in this diagram, you can add up to eight digital input references to a
BAND block.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[103]

The OR logic function block
The BOR function block will accept and evaluate an OR logical expression against its
input reference pins and provide output to its output reference pin.

The OR logic function block

The NOT logic function block
The BNOT function block will invert the value of the input reference provided.
Passing a 1 value into the input reference pin will result in a 0 value in the output
reference pin and passing 0 into the input reference pin will result in a 1 in the
output reference pin. The following diagram illustrates a simple example of a BNOT
function block:

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Function Block

[104]

Writing a function block program
Now that we have covered the basic elements and logic functionality of FBDs, let's
start to build our first function block routine. The following exercise will create a
simple digital alarm routine using the Alarm Digital (ALMD) function block.
Follow these steps:

1.	 Open the Controller Organizer pane and expand the tree by navigating
to Tasks | Main Tasks | Main Program and right-clicking and selecting
New Routine:

2.	 Configure a new functional block diagram routine by setting the
following values:

°° Name: DIGITAL_ALARMS
°° Description: Digital Alarms
°° Type: Function Block Diagrams

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[105]

3.	 In order for our newly created routine to be executed with each scan of the
PLC, we will need to add a reference to it in the MainRoutine program,
which is executed with each scan of MainTask. Double-click on our
MainRoutine program to display the MainRoutine ladder logic.

4.	 In the preceding chapter, we added JSR for our ladder logic diagram. We
can simply copy and paste this ladder rung and change the value to point at
our routine DIGITAL_ALARMS. Right-click on the left-hand side of the first
ladder rung (where 0 is displayed) and select Copy (or press Ctrl + C).

5.	 Right-click below the first rung and select Paste (or press Ctrl + V).
6.	 Now double-click on the Routine Name parameter of the JSR element and

select our newly added DIGITAL_ALARMS routine.

7.	 Now, we will return to our DIGITAL_ALARMS FBD by double-clicking on
it in the Controller Organizer pane.

8.	 Next, we are going to add our digital alarm FBD, which we will use to
manage our valve alarm fault. Select the Alarms element group just above
the function block diagram sheet and click on ALMD.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Function Block

[106]

9.	 We need to connect the ALMD block to our valve fault alarm using an input
reference, so let's add one to our FBD. The input reference element looks
like an arrow (with a square corner), which is pointing to the right. It can be
found at the top-left part of the element group selector above the FBD. Click
on the input reference object icon to add it to the diagram.

10.	 Right-click on the question mark inside the input reference and select
New Tag.

11.	 The New Tag window will appear and allow you to set the following
parameters for a newly created tag:

°° Name: FC1001_FLT
°° Description: FLOW CONTROL VALVE 1001 POSITION FAULT
°° Data Type: BOOL
°° Scope: MainProgram
°° External Access: Read/Write
°° Style: Decimal

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[107]

12.	 Now, our input reference is pointing to our fault base tag, FC1001_FLT:

13.	 Now, we will need to reposition our blocks so that they fit properly on our
FBD sheet. Click and drag the ALMD object a few inches to the right.

14.	 Now, we will connect the FC1001_FLT input reference to the ALMD block.
Click and drag the point of the input reference (you will see the mouse
pointer change to a connector mouse icon) and release the mouse button over
the input digital pin.

15.	 The ALMD function block we added was automatically created as a base
type object in our program-scoped tag list (program tags). We will now
change the name of the ALMD object to follow our existing tag naming
convention. Right-click on the top title of the ALMD object and select the
Edit ALMD_01 element.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Function Block

[108]

16.	 Change the Name field of the element properties to FC1001_FLT_ALM and
click on OK. The scope of our FBD base tag was set to the MainProgram
scope automatically when we added it to our routine.

Online monitoring and editing
After completing a routine in any language, the next step in development is to
thoroughly test it. Logix Designer incorporates powerful monitoring and debugging
features, which can be used to test our routine. Perform the following steps:

1.	 First, we need to ensure that the communication path to our controller
(physical or virtual) has been established. Open Who Active by navigating to
Communications | Who Active or by clicking on the Who Active icon.

2.	 The Who Active window allows us to browse to the controller, which
will run our program. Expand the RSLinx Driver tree and navigate to
your virtual or physical controller. The following screenshot shows the
selection of Virtual RSLogix 5000 Emulator in the tree:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[109]

If you are having difficulties in finding your controller in the
tree or the tree is empty, you may want to refer to the RSLinx
section in Chapter 2, Industrial Network Communications.

3.	 After selecting a valid controller, the buttons on the right-hand side
(as explained in the following list) will become enabled:

°° Go Online: This button will try to connect to the controller and start
monitoring the execution of whichever program is currently running
on it.

°° Upload: This button will upload the program currently running on
the controller to your local computer.

°° Download: This button will download the current program you have
open in Logix Designer to the controller.

°° Update Firmware: This button will allow you to upgrade the
firmware on your controller.

°° Set Project Path: This button will update the path stored in your
project file, which will automatically set this as the communication
path the next time you open your project.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Function Block

[110]

4.	 Click on the Go Online button. The Connected To Go Online window
appears, providing the current status information of the controller and
the options to Download, Select File…, or Cancel.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[111]

5.	 Click on the Download button. A Download window containing a safety
message appears.

Downloading a program to a controller can cause a process
to lose its state or trip. Always take proper safety measures to
ensure that you will not put people or the facility at risk prior to
working on operating equipment.

6.	 Click on the Download button on this window to copy your program into
the controller memory.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Function Block

[112]

7.	 Once the Download process is complete, you may see a dialog box asking if
you want to put the controller back into remote run. Click on Yes:

8.	 You will want to ensure that your controller is in Run Mode so that you can
see live changes in your program. Now, we can start to monitor our tags and
test our routines. Logix Designer should now show that we are in the Rem
Run mode.

9.	 Now, return to our function block routine called DIGITAL_ALARMS.
10.	 Let's activate our digital alarm and observe the changes within our function

block outputs. Right-click on the FC1001_FLT input reference and select
Monitor "FC1001_FLT".

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[113]

11.	 The Monitor Tags panel now appears in the foreground and provides us
with a list of all the tags in the MainProgram scope. We can manually set the
value of the FC1001_FLT tag to trigger our digital alarm function block. Enter
1 into the Value column of the FC1001_FLT tag and press Enter.

12.	 Alternatively, from the DIGITAL_ALARMS routine you can open the
Watch panel by navigating to View | Watch. The Watch panel will appear
directly under your FBD sheet and display a monitoring list of all the tags in
the current routine.

13.	 Return to the DIGITAL_ALARMS routine by navigating to Window |
MainProgram – DIGITAL_ALARMS.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Function Block

[114]

14.	 Now, we can see that the InAlarm output pin on FC1001_FLT_ALM
has a value of 1, indicating that the digital alarm function block is now
in alarm. If you right-click on the digital alarm function block and select
Properties…, you can see all the current Parameter values. These values can
be referenced throughout your program in the various languages and also
by the HMI/SCADA system that is providing the graphical user interface for
your program.

Function blocks provide a high-level functionality and are relatively easy to
configure and maintain. Function blocks especially work well with the Rockwell's
FactoryTalk HMI program. FactoryTalk provides graphical faceplates, which align
with the functionality of the Logix function blocks. Faceplates make it easy to
provide a feature-rich control system user interface for operators.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[115]

The FBD properties
Double-clicking on an FBD block will open its properties. Each FBD block contains a
unique set of properties and a detailed help documentation is provided (by pressing
the F1 key). Many of these properties allow you to more tightly integrate your PLC
controller with your HMI computer. Using FBD can allow you to configure many
properties, such as alarm names, in the PLC rather than in the HMI. Many SCADA
system vendors are moving to a more DCS style, single database configuration.
Rockwell Automation's PlantPAx automation system takes this type of DCS
functionality to the next level, but that is a subject for a separate book perhaps.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Function Block

[116]

Adding and naming sheets to a routine
You can add sheets to your FBD by clicking on the New Sheet icon above your
FBD routine.

You can also provide a helpful name for each sheet by editing the Sheet text field.

The Sheet size and Orientation fields can also be modified (using standard English
and Metric page sizes) by right-clicking on the white space of a function block
routine and selecting Properties.

The layout flexibility and sheet organization that function block routines provide
make them more suitable for printing than ladder logic.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[117]

Adding a textbox to a function block routine
Textboxes can be added to a function block routine to provide a floating box of
documentation. Adding documentation to a function block routine can improve the
readability of the code and make it easier to maintain in the future. Just keep in mind
that the textbox documentation will also need to be maintained and updated as the
routine evolves over time, so keep the documentation clear and concise.

A textbox can be added to a function block routine by dragging the textbox icon from
the language element toolbar into the target routine.

You can double-click on the textbox and enter your code notes and press Ctrl + Enter
when finished. The textbox can be attached to a function block element by clicking
on the pin symbol on the textbox, and then clicking on the function block element
you want to attach it to. Once the textbox is linked with a function block, it will move
with the function block when it is moved around the sheet.

Hiding and showing function block pins
Function blocks often have some of their input or output pins hidden from view.
You can view the available pins of a function block by clicking on the function block
properties box or right-clicking on the function block and selecting Properties. The
available input and output pins are listed under the Parameters tab. You can control
the visibility by checking or unchecking the checkboxes under the Vis column.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Function Block

[118]

Assigning a constant value to a function
block
Rather than assigning a tag to an input reference of a function block, you can assign
a hard coded value. You can specify a constant value by double-clicking on the input
reference element and entering the desired value.

Summary
In this chapter, we explored the FBD origins in systems engineering and introduced
the basic concepts of IEC FBD programming. We learned how to create FBDs by
dragging and dropping elements into a sheet in a routine. We also learned how to
wire input and output references to function block pins and identify digital and
analog connections and monitor their values online.

In the next chapter, we will introduce another IEC language called Structured Text
Programming and its use in the Logix family.

www.it-ebooks.info

http://www.it-ebooks.info/

[119]

Writing Structured Text
In this chapter, we will explore the strengths and weaknesses of structured text
programming by exploring the typical uses for this language and building several
small sample applications. This chapter will cover the following structured text topics:

•	 Writing structured text routines
•	 Structured text operators
•	 Structured text expressions
•	 Structured text instructions
•	 Structured text constructs

An introduction to structured text
programming
Structured text (ST) is another IEC 61131-3 language, which can be used in
your Logix applications. As the name implies, structured text is a text-based
programming language with a syntax that resembles Pascal (on which it was
based) or Visual Basic for Applications (VBA). Like other IEC-based languages,
it can share IEC common elements and reference tags and objects created in other
languages with your Logix program.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Structured Text

[120]

Typical usage of structured text
Structured text is extremely robust and capable of matching the functionality of
any other IEC-based language. However, you will find that structured text is used
sparely in most automation projects. I have seen automation projects built entirely
in the structured text code and they do work fine. But, the practice of developing
entirely in structured text is frowned upon by most automation professionals. Often,
you will see this from an engineer who is freshly out of school and is accustomed
to modern programming text-based programming languages. Since its inception
in 1968, ladder logic has been, and continues to be, the primary automation
programming language. Selecting an IEC language for your routine is about
selecting the right tool for the job. Ladder logic is a powerful language for simple
sequential process control problems; it is easy to write and easy for other automation
professionals to understand. Function block provides a high-level object-based
language, which can create powerful routines with minimal effort that are easy to
maintain. Structured text is a relatively low-level language that excels at complex
algorithms, complex decisions (logical statements), and text manipulation.

The structured text editor
The structured text editor appears in the Routine window of Logix Designer and is
the development environment for writing structured text code. The structured text
editor window allows you to type in structured text code or drag and drop code
elements from the structured text element toolbar.

The structured text editor window

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[121]

The structured text editor features a toolbar which allows you to perform the
following tasks:

•	 Toggle the code view between original, pending edits, and test edits while
making online changes to your structured text code

•	 Increase and decrease the indent of a selected piece of structured text code (it
can also be accomplished using the hotkeys, Tab to increase and Shift + Tab to
decrease the indent)

•	 Comment and uncomment out a selected piece of structured text code
•	 Show and hide the whitespace and tab characters

The structured text editor toolbar

The code area of the structured text editor provides context-sensitive code coloring to
improve the readability of code. Color is used to signify that a word is recognized by
the structured text editor and helps to ensure that the syntax is valid at a glance. The
code colors can be adjusted by navigating to Tools | Options….

Context-sensitive code coloring

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Structured Text

[122]

The structured text editor also provides a syntax checker function as you edit. Any
words that are unrecognized are indicated by a red wavy underscore line beneath
the unrecognized word. Any syntax that is unrecognized or unverified is marked
with a green wavy underscore line beneath the unverified word.

The structured text editor word and syntax checker functionality

The structured text editor also provides you with context-sensitive help for the
functions in your routine. If you want to learn more about a specific function in your
routine, select it and press F1. The Help documentation will open and automatically
browse to the specific chapter of the function you have selected.

Writing structured routines
To get started with structure text, let's write a simple routine and break down
the components.

Simple routine
We have taken a brief look at the structured text editor, and now we will write a
simple structured text routine to introduce some of the syntax and conventions. Our
first structured text routine will provide an alarm count totalizer. The first version of
this we create will have a few small errors, which we will correct as we learn more
about structured text. Perform the following steps:

1.	 Open the Controller Organizer pane and navigate to Tasks | Main Tasks
| Main Program. Right-click on Main Program and select New Routine, as
shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[123]

2.	 Configure a new structured text routine by setting the following values:
°° Name: AlarmTotalizer
°° Description: Digital Alarms
°° Type: Structured Text

3.	 In the structured text editor, enter the following code:
(***** Alarm Totalizer *****)
if (FC1001_FLT_ALM.InAlarm AND NOT FC1001_FLT_ALM.Disabled
) then
 Total_Alarm_Count := Total_Alarm_Count + 1;
end_if;

4.	 Next, we will ensure that we have not made any syntax errors in our code
by verifying the routine. Navigate to Logic | Verify | Routine, as shown in
this screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Structured Text

[124]

5.	 Verifying routine will determine if there are any errors or warnings in our
code. An error is any problem in your routine that will prevent it from
running on the controller. A warning is an issue that will still allow the
routine to run on the controller. If you made any syntax errors, you will
see them listed in the Errors panel at the bottom pane of the screen. If you
entered the structured text correctly, you should see two errors, as shown in
the following screenshot:

6.	 The errors identified by the Verify option for Routine are due to a tag we
referenced in our structured text that has not been declared. You can see
that the structured text editor also highlights this for us using the red wavy
underscore. To resolve this error, you can simply right-click on the Total_
Alarm_Count tag and select New Tag "Total_Alarm_Count"…:

7.	 Use the New Tag form to create a new Total_Alarm_Count tag of the DINT
type by setting the following values:

°° Name: Total_Alarm_Count
°° Description: Total Alarm Count of Process
°° Data Type: DINT
°° Scope: MainProgram
°° External Access: Read/Write
°° Style: Decimal

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[125]

8.	 After adding the tag, we can run our Verify option for Routine again, and
we will see that our routine is now error-free:

9.	 Finally, we cannot forget to add the AlarmTotalizer routine to MainRoutine;
otherwise, it will never get executed. We can simply copy and paste one
of the ladder rungs in MainRoutine and change the value to point at our
routine, AlarmTotalizer.

10.	 Right-click on the left-hand side of the first ladder rung (where the 0 value is
displayed) and select Copy (or press Ctrl + C).

11.	 Right-click below the first rung and select Paste (or press Ctrl + V).
12.	 Now, double-click on the Routine Name parameter of the JSR element and

select our newly added AlarmTotalizer routine.

Now that we have created a simple structured text routine, let's use it to break down
some of the components of structured text.

Our simple structured text routine begins with a (***** Alarm Totalizer
*****) comment. Comments are ignored by the compiler and are used to provide
documentation within your structured text.

The second line of our structured text routine is a construct, which is a conditional
statement used to trigger other code statements. In our code, we use an if construct
to determine whether our logical expression is true, and if so, we increase our total
alarm count:

if (FC1001_FLT_ALM.InAlarm AND NOT FC1001_FLT_ALM.Disabled) then

Within the conditional statement is the AND (&) logical operator, which will be used
to evaluate the condition—if the fault tag's condition is InAlarm and the fault tag is
not disabled.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Structured Text

[126]

The third line increments out the total alarm count by one:

Total_Alarm_Count := Total_Alarm_Count + 1;

The assignment operator (:=) is used to assign the new value of the alarm count to
the old value of the alarm count plus one.

Finally, we close out the IF construct we added in the second line with the
END_IF statement:

END_IF;

The END_IF statement tells our program where to stop executing the code related to
our original IF statement.

If you had to run and test our program, you would immediately see an issue with
our alarm totalizer counter. Once the digital alarm is triggered, the Total_Alarm_
Count value will continuously increase with each scan cycle. Certainly, this was not
the intent of our alarm counter routine. Later in this chapter, we will investigate
instructions and develop a solution to the bug in our routine.

Structured text syntax
Structured text is not case-sensitive, so uppercase and lowercase letters are
considered the same character by the compiler. There are best practices for using
uppercase and lowercase letters, which we will demonstrate in our routines. Also,
the structured text compiler ignores whitespace, which is any space or tab character.
This allows you to space out your code in order to make it easier to read.

Operators
Now that you have seen some structured text in action, let's take a look at the
available operators in structured text.

Assignment operator
The assignment operator will change a value stored in a tag. An assignment
operation is comprised of three parts: the tag, operator (:=), expression, and a
semicolon at the end. The tag will maintain the assigned value until it is changed by
another assignment value. Even after a power cycle, the value will be retained. In
this respect, the non-retentive assignment operator is similar to an output latch in
ladder logic.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[127]

The following code snippet provides some simple assignment operator examples:

// Assignment Operator Examples
tag := expression;

PumpSpeed := 100;
ValvePosition := OpenPosition;
FourValue := 2 + 2;

Non-retentive assignment operator
The non-retentive assignment operator will change a value stored in a tag. A
non-retentive assignment operation is comprised of three parts: the tag, operator
([:=]), expression, and a semicolon at the end. The tag will maintain the assigned
value until it is changed by another assignment value. Non-retentive assignment
operations differ from an assignment operation in that its value will be reset after
a power cycle of the controller or when the controller is switched back to the run
mode. In this respect, the non-retentive assignment operator is similar to Output
Energize in ladder logic.

The following code snippet provides some simple assignment operator examples:

// Non-retentive Assignment Operator Examples
tag [:=] expression;

PumpSpeed [:=] 100;
ValvePosition [:=] OpenPosition;
FourValue [:=] 2 + 2;

Retentive versus non-retentive assignment
operators
When developing an industrial automation program, it is important to consider
how the program will recover from a sudden loss of power or when the controller is
switched to the run mode. After a power cycle or change to the run mode, you may
want some values to reset to zero and other to maintain their last known value. For
example, you may not want the speed and run condition of a variable frequency
drive (VFD) to assume the last known value after a process comes back online. After
a power failure or a process upset, you may want to manually start-up your VFD
from your HMI. A veteran automation professional will always consider the values
that should be retentive (or latched) and the values that should be non-retentive (or
energized) in their program.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Structured Text

[128]

Buffering structured text I/O module values
Just like ladder logic, the structured text I/O module values should be buffered at
the beginning of a routine or prior to executing a routine in order to prevent the
values from changing mid-execution and putting the process into a state you could
not have predicted.

The following code is an example of the ladder logic buffering routine we wrote
earlier in structured text and using the non-retentive assignment operator:

(*
I/O Buffering in Structured Text
Input Buffering
*)
StartPump [:=] Local:2:I.Data[0].0;
HighPressure [:=] Local:2:I.Data[0].1;
PumpStartManualOverride [:=] Local:2:I.Data[0].2;
(*
I/O Buffering in Structured Text
Output Buffering
*)
Local:3:O.Data[0].0 [:=] RunPump;

Relational operators
Relational operators compare two values and provide a BOOL (Boolean—true or
false) value in return. The following table lists the available relational operators in
structured text:

Relational type Operator
Equal =

Less than <

Greater than >

Less than or equal to <=

Greater than or equal to >=

Not equal <>

Relational operators are typically used in a construct like the IF statement we used in
our simple example:

(* Relational Operator Example *)
if (TankLevel >= 100 AND MotorRunStatus = 0) then
 StartMotor [:=] 1;
end_if;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[129]

Logical operators
We looked at the logical operators for the ladder logic and function block
programming languages in this book already. Structured text has the same
capabilities for the logical statements as the other IEC languages:

Logical type Operator
And &, AND
Or OR

Not NOT

Exclusive or XOR

Logical operators are typically used in a construct like the IF statement we used in
our simple example:

(* Logical OR Operator Example *)
if (Tank1Level >= 100 OR Tank2Level >= 100) then
 StartMotor [:=] 1;
end_if;
(* Logical AND Operator Example *)
if (TankLevel >= 100 AND MotorRunStatus = 0) then
 StartMotor [:=] 1;
end_if;
(* Logical NOT Operator Example *)
if (NOT MotorRunPermissive) then
 StartMotor [:=] 0;
end_if;

Arithmetic operators
Arithmetic operators are used in calculations, which is the real strength of structured
text when compared to other IEC languages. The following table lists the available
arithmetic operators:

Calculation type Operator
Add +

Subtract/negate -

Multiple *

Exponent **

Divide /

Modulus (division remainder) MOD

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Structured Text

[130]

Logical operators are typically used in an expression, which we will detail in the
next section.

Expressions
Expressions are a combination of values, constants, tags, operators, and functions
that are interpreted according to the particular rules of precedence and produce a
value. Expressions in Logix will either evaluate to a number (numerical expression)
or to a true or false state (BOOL expression). Parenthesis "()" can be used to control
the order of operation, just like they would in any mathematical equation. The
following table lists the order of operation in Logix:

Operation Order
Parenthesis "()" 1
Instructions "function(…)" 2
** 3
negate (-) 4
NOT 5
*, /, MOD 6
+ and - 7
<, <=, >, and >= 8
= and <> 9
& and AND 10
XOR 11
OR 12

Here is an example that uses these operators:

(* Expression Example *)
if ((Tank1Level + Tank2Level) * 10 >= 1000) then
 StopMotor [:=] 1;
end_if;
(* Numeric Algorithm Example *)
TankVolume = 3.14*(TankRadius**)*TankLength

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[131]

Instructions
Instructions are the built-in functions, which will make up the building blocks of
most structured text routines. Logix Designer provides a rich set of instructions to
utilize within a structured text. All the available structured text instructions are listed
in the element groups above the structured text editor and can be dragged into your
routine. Alternatively, you can right-click in the structured text editor and select Add
ST Element… (or press Alt + Ins), and then select Add Structured Text Element
from the pop-up window that appears.

The instructions in structured text are equivalent to the ladder element instructions
in the ladder logic and function block element instructions in the function block
diagrams. However, each language executes the IEC instructions slightly differently.
The execution of the function block instructions is triggered using the EnableIn pin.
Structured text instructions execute as if EnableIn is always energized. Ladder logic
element instructions use energized rungs to trigger the execution of an instruction,
while structured text will execute each time they are scanned, unless you put a
conditional construct around it (such as an IF statement).

Arithmetic instructions
There are many sets of instructions available in structured text in the element groups.
One of the most important instruction sets for structured text are the arithmetic
instructions. The arithmetic instructions will aid with any complex calculations you
are embedding into your structured text routine.

Calculation type Instruction syntax
Absolute value ABS(numeric expression)

Arc Cosine ACOS(numeric expression)

Arc Sine ASIN(numeric expression)

Arc Tangent ATAN(numeric expression)

Cosine COS(numeric expression)

Radian to Degrees DEG(numeric expression)

Natural Log LN(numeric expression)

Log base 10 LOG(numeric expression)

Degrees to radians RAD(numeric expression)

Sine SIN(numeric expression)

Square root SQRT(numeric expression)

Tangent TAN(numeric expression)

Truncate TRUNC(numeric expression)

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Structured Text

[132]

Here is an example that uses these instructions:

(* Arithmetic Instructions Example *)
DriveSpeed [:=] ABS((FrequencyValue + Offset)/2);
PolygonArea [:=] 0.5*SideCount*SIN(360/SideCount)*Length**;

ORSI instruction
In the simple structured text sample we created in the previous exercise, we
encountered an issue where our alarm's total count was continuing to increase with
each scan cycle while the the digital alarm was active. In order to adjust our code
to count only new alarms as we had intended, we will need to only count a new
alarm on a change of alarm state from off to on. This is known as detecting the rising
edge of the signal. We can accomplish this in structured text using the One Shot
Rising with Input (OSRI) instruction. In the following exercise, we will add the
ORSI instruction to the routine we started earlier in the chapter to resolve our alarm
counting issue by performing these steps:

1.	 Open up the structured text routine, we created earlier, called Alarm
Totalizer, as shown in the following screenshot:

2.	 Add the following structured text code after the comment and change the IF
construct value:
(***** Alarm Totalizer *****)
OSRI_01.InputBit := FC1001_FLT_ALM.InAlarm;
OSRI(OSRI_01);
if (OSRI_01.OutputBit AND NOT FC1001_FLT_ALM.Disabled) then
 Total_Alarm_Count := Total_Alarm_Count + 1;
end_if;

3.	 Now, highlight the OSRI instruction in the structured text editor and
press F1 to take a closer look at the way it is used within structured text.
In the Help documentation, we can see that the OSRI instruction has
passed an FBD_ONESHOT data type. So, we will need to add our missing
data type value, ORSI_01, to our program tags by right-clicking on the
missing tag and selecting New Tag "OSRIP_01"….

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[133]

4.	 We will need to add the OSRI_01 tag as an FBD_ONESHOT data type in order
to support the .InputBit and .OutputBit properties and pass them into the
OSRI instruction.

5.	 Use the New Tag form to create a new OSRI_01 FBD_ONESHOT tag by setting
the following values:

°° Name: OSRI_01
°° Description: One Shot for Catching Rising Edge of Digital

Alarm

°° Type: Base
°° Data Type: FBD_ONESHOT
°° Scope: MainProgram
°° External Access: Read/Write

6.	 Now if we compile, download, and test our routine, we will see that the
digital alarm is now incrementing correctly only once per new alarm.

Constructs
Constructs control the flow of our structured text routine and allow us to create
decision statements, state machines, and loops.

The IF THEN construct
We are already familiar with the IF THEN construct from our simple structured text
exercise in this chapter. An IF construct will only execute the structured text between
the IF and END_IF loops when its expression evaluates as True (or 1).

The IF statements can be nested using the ELSEIF statement, and the ELSE statement
can be added to execute when all other statements do not.

(* IF THEN ELSEIF ELSE Example *)
if (TankLevel >= 50) then
 Pump1Permissive [:=] 1;
elseif (TankLevel >= 100) then

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Structured Text

[134]

 Pump1Permissive [:=] 1;
Pump2Permissive [:=] 1;
else
 Pump1Permissive [:=] 0;
Pump2Permissive [:=] 0;
end_if

The CASE OF construct
A CASE statement can be used to execute statements based on a numeric value:

(* CASE Example *)
case sequence_number of
 1: StartPump [:=] 1;
 OpenValve [:=] 1;
 2: StartBlower [:=] 1;
 3,4: StartMixer [:=] 1;
 4..10: StartAuger [:=] 1;
else
 StartPump [:=] 0;
end_case;

The FOR DO construct
The FOR DO construct will loop a specific number of times before continuing to
execute the routine. Loops are quite useful when working with arrays of values:

FOR count := initial_value
TO final_value
{ BY increment If you don't specify an increment, the loop
 increments by 1. - Optional }
DO

Here's an example:

For LoopCount := 1 TO 10 By 1
 ALARMS[LoopCount] = 0;
DO

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register
to have the files e-mailed directly to you.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[135]

Summary
In this chapter, we introduced structured text and the best uses for it within an
automation program. We created a simple structured text routine and learned about
the powerful syntax of structured text code.

In the next chapter, we will introduce the final Logix IEC language called sequential
function chart programming.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[137]

Building Sequential
Function Charts

In this chapter, we will implement a sequential function chart routine and break
down the steps, actions, transitions, and branches that are used to construct it.
We will also work with the online editing capabilities of sequential function
chart routines.

Introducing sequential function charts
Sequential Function Charts (SFC) is another IEC 61131-3 language, which allows
you to visually program using a flow chart construct. The IEC SFC language is based
on the GRAFCET language, which was the original industrial automation flow chart
programming language. In some regions and within some companies, you will find
that the terms SFC and GRAFCET are used interchangeably. Like other IEC-based
languages, it can share IEC common elements and reference tags and objects created
in other languages with your Logix program. SFC is a powerful high-level language
similar to function block. Often, you can create the equivalent functionality of 40
ladder logic rungs in a few SFC steps. An SFC routine (again, like function block)
will typically have more computational overhead than the same routine developed
using low-level languages such as ladder logic or structured text. SFC routines are
very easy to debug and maintain because of their compact visual design. SFC has its
strengths and weakness like the other IEC languages. An automation professional
will select the right language to meet the particular challenges of the process they are
faced with. It is not uncommon for an automation professional to realize that they
have selected the wrong language for a particular task and rewrite the routine in a
different IEC language.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Sequential Function Charts

[138]

Typical usage of SFCs
As the name would imply, SFC is well-suited for sequential step processes. You
will also find that SFC is popular within batch processes as it closely aligns with
the step-by-step requirements of batching. It is particularly useful when paired
with other IEC languages. Within SFC routines, you will use structured text for any
logical expressions, assignments, or other constructs. By using the structured text
function, JSR (or similar functions), you can reference ladder logic, function block,
structured text, or even other SFC routines. SFC can be used as a high-level program
flow controller (business logic) and the detailed step logic can be created in separate
routines. Structuring a program in this way will make it easy to follow, troubleshoot,
and modify in the future.

The SFC editor
The SFC editor appears in the routine window of Logix Designer and is the
development environment for writing the SFC routines. Within an SFC routine, the
SFC elements are created in an area called a sheet, and the sizes of the sheets directly
correspond to the standard metric or English printer page sizes (similar to the
function block diagram sheets). This allows the sheets to be easily printed, presented,
and even signed like a typical engineering drawing. It is helpful to think of each
sheet as a drawing for a single device. Unlike the function block diagram sheets, you
cannot divide your SFC into multiple named sheets. However, the SFC routine is
not limited in size like a function block routine. You can expand the size of the SFC
routine to be up to 175 x 175 cross reference grid blocks. An SFC routine can span
multiple sheets horizontally and vertically. The specified sheet size makes it easier
to organize the way the SFC routine appears when printed. You can see the sheet
size divisions are solid grey lines on your SFC routine. The sequential function chart
editor window allows you to add the SFC elements from the SFC element group,
drag them around the sheet, and connect the flow of the SFC elements using wires.

Defining the SFC steps
Steps are the main building blocks for the SFC routines. A step is associated with
the logic to be executed at a specific point in your process. A step is represented by
a rectangle shape in the SFC routine with a pin at the top and bottom. Steps can be
referenced just like the function block elements and contain a number of properties
as follows:

•	 .T: This property is the timing of how long the step has been active
•	 .PRE: This property is the preset amount of time to run a step for

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[139]

•	 .DN: This property is the Boolean flag that triggers high, once the timer
reaches the preset amount of time

•	 .X: This is a bit that is ON the entire time that the step is executing.

There are also a number of alarm properties that can be configured and triggered
if a step runs too long or not long enough. The complete list of step properties can
be found in the Help documentation by selecting a step element and pressing F1
on the keyboard.

All SFC routines must have an initial step defined in order to run. The initial step is
indicated with a double line around its rectangle shape. You can specify which step
you would like to make the initial step by right-clicking on it and checking Initial
Step. The following screenshot shows two step elements; on the left-hand side is the
initial step and on the right-hand side is a normal step:

Defining the SFC actions
Actions are associated with a step and contain the structure text code used to
perform functions such as starting a pump. You can associate multiple actions
with a single step. There are two types of actions:

•	 Non-Boolean: These actions allow you to execute the structured text code or
reference other routines using the JSR function.

•	 Boolean: These actions set a Bool tag value to true when it is on. This action
will require other logic to monitor this tag value in order to execute.

The following diagram shows a non-Boolean action on the left-hand side and a
Boolean action on the right:

www.it-ebooks.info

http://www.it-ebooks.info/

Building Sequential Function Charts

[140]

Each action element and its properties can be referenced and monitored. The action
elements have the following properties:

•	 .A: This property means that the Boolean property is ON when the action
is active

•	 .T: This property is the timing of how long the action has been active
•	 .PRE: This property is the preset amount of time to run an action for
•	 .Count: This property is the number of times the action has become active

There are also a number of other properties that can be monitored on actions.
The complete list of action properties can be found in the Help documentation
by selecting an action element and pressing F1 on the keyboard.

Actions also use qualifiers to determine when it should start and stop. By default, all
actions are set to non-stored qualifiers, which means it will execute when the step is
associated with its execution. The following qualifiers are available for actions:

Symbol Name Description
N Non-stored This qualifier starts when the step is activated and

stops when the step it is deactivated.
P1 Pulse (rising edge) This qualifier starts when the step is activated and

executes only once.
L Time limited This qualifier starts when the step is activated and

stops when the timer runs out or when the step is
deactivated.

S Stored This qualifier starts when the step is activated
and stays active until a reset action property is
triggered.

SL Stored and time limited This qualifier starts when the step is activated
and stays active until a reset action property is
triggered or stops when the timer runs out. It does
not deactivate when the step is deactivated.

D Time delayed This qualifier starts the action for a predefined
amount of time after the step is active and while
the step is still active. It stops when the step is
deactivated.

DS Delayed and stored This qualifier starts the action for a predefined
amount of time after the step is active and while
the step is still active. It stays active until an action
reset property is triggered.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[141]

Symbol Name Description
SD Stored and time

delayed
This qualifier starts when a specific amount of time
has passed after the step is activated, even if the
step is later deactivated the action will still execute.
It stays active until an action reset property is
triggered.

P Pulse This qualifier executes the action once when
the step is activated and again when the step is
deactivated.

P0 Pulse (falling edge) This qualifier starts when the step is deactivated
and executes only once.

R Reset This qualifier resets (turns off) an action and can be
used to reset some of the other action qualifiers.

Defining the SFC transitions and branches
Transitions are used to bind steps to other steps and specify a structured text logical
condition (which could also include a jump to subroutine function) that must be true
in order to proceed. A branch is a wire that connects to multiple transitions or steps.
Branches and transitions work together to control the flow of an SFC sequence. There
are three types of transitions/branches:

•	 Sequence transition: This transition provides a logical expression between
each step.

•	 Selection branch transition: This transition provides a logical expression that
will direct the step flow to one of many steps (similar to an OR expression).
Additional steps can be added to a selection branch by right-clicking on it
and selecting Extend Branch.

•	 Simultaneous branch step: This transition executes two or more steps at the
same time (similar to an AND expression). Additional steps can be added to
a simultaneous branch by right-clicking on it and selecting Extend Branch.

The following diagram illustrates the visual style of each transition and branch type:

Non-Boolean and Boolean actions in SFC

www.it-ebooks.info

http://www.it-ebooks.info/

Building Sequential Function Charts

[142]

Defining the SFC stop element
The SFC stop element will stop the execution of an entire SFC routine or of a
particular branch of an SFC routine and wait for a restart to be triggered. The
following diagram demonstrates the use of a stop element in an SFC routine:

Stop element attached to a transition

A backwash SFC routine
In this section, we will demonstrate the usage of a sequential function chart by
building a backwash process using a step-by-step guide. The backwash process will
be run to flush out the filters used in our process once they become too dirty. Follow
these steps:

1.	 First, we will need to declare our new routine. Right-click on the
MainProgram scope in the Controller Organizer pane and select
New Routine.

2.	 In the New Routine form that appears, enter or select the following values:
°° Name: BACKWASH
°° Description: Backwash Sequence
°° Type: Sequential Function Chart

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[143]

3.	 Then, click on OK.

4.	 In order for our newly created routine to be executed with each scan of the
controller, we will need to add a reference to it in the MainRoutine program,
which is executed with each scan of MainTask.

5.	 Double-click on our MainRoutine program to display the MainRoutine
ladder logic.

6.	 Now, we can simply copy and paste one of the JSR ladder rungs that we
created earlier and change the value to point at our BACKWASH SFC routine.

7.	 Right-click on the left-hand side of the last ladder rung (where the rung
number is displayed) and select Copy (or press Ctrl + C). Right-click below
the last rung and select Paste (or press Ctrl + V).

8.	 Now, double-click on the Routine Name parameter of the JSR element and
select our newly added BACKWASH routine.

9.	 Now, we will return to our BACKWASH SFC by double-clicking on it in the
Controller Organizer pane.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Sequential Function Charts

[144]

10.	 As we have learned, the base unit of any SFC routine is a step. Certainly,
we are planning to have more than one step in our routine, so it will be
prudent to add a transition as well. We can add our first SFC step and
transition at the same time by clicking on the Step + Transition icon
in the SFC element group.

11.	 You will see Step_000 and Tran_000 appear in the SFC editor window.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[145]

12.	 Add an action to Step_000 we created. Right-click on Step_000 and select
Add Action (or alternatively, you can select the Action element from the
SFC element group toolbar above our routine).

13.	 Now, we will add the initialization values for our SFC routine using the
structured text syntax. Double-click on the box with the ? symbol at the
bottom of Action_000 and enter the following structured text:
BACKWASH_START_PB:=0;
BACKWASH_FLT:=0;

14.	 An icon with a red X symbol will appear on the side of Action_000 to
indicate that there is an error with the structured text we have added. The
error is due to the BACKWASH_START and BACKWASH_FLT tags not yet being
declared in our routine. We can easily add these tags by right-clicking on the
BACKWASH_START_PB tag in the Action_000 box and selecting the New Tag
"BACKWASH_START_PB" option.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Sequential Function Charts

[146]

15.	 The New Tag form will appear, which will allow us to create our new tag
as follows:

°° Name: BACKWASH_START_PB
°° Description: START BACKWASH PUSH BUTTON
°° Type: BOOL
°° Scope: MainProgram

16.	 Repeat the same process for the second new tag by right-clicking on the
BACKWASH_FLT tag, and on the New Tag form, enter the following properties:

°° Name: BACKWASH_FLT
°° Description: BACKWASH SEQUENCE FAULT
°° Type: BOOL
°° Scope: MainProgram

17.	 Next, we will add the transition conditional value, which will start our
backwash sequence. Double-click on the Tran_000 question mark and
enter the following structured text logical statement (which is equivalent
to BACKWASH_START_PB=1):
BACKWASH_START_PB

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[147]

18.	 The next piece of development work will be to add our backwash sequence
steps. Select the Tran_000 transition box, and then click on the Step element
icon in the SFC element group above our SFC routine. The Step_001 step box
will be added and automatically connected to Tran_000 (because we selected
the transition before adding our new step).

19.	 Next, we can add an action to Step_001, which will represent our
backwash process.

At this stage, we can easily add a structured text JSR function to call a
separate ladder logic, function block, structured text, or even another
SFC routine. By combining SFC and the JSR function, we could control
the flow of our program from SFC. This technique is very helpful when
developing and debugging complex batching or sequencing programs.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Sequential Function Charts

[148]

20.	 Right-click on Step_001 and select Add Action.

21.	 Now, we will add our action element's structured text code by double-clicking
on the ? symbol in Action_001 and entering the following structured text code:
FC1001_SP:=100;

22.	 We will also need to add the new FC1001_SP tag by right-clicking on it and
selecting the New Tag option.

23.	 Configure the new tag with the following properties:
°° Name: FC1001_SP
°° Description: FLOW CONTROLLER 1001 SETPOINT
°° Type: DINT
°° Scope: MainProgram

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[149]

24.	 Let's add a delay to our Step_001 box in order to give our backwash
time to complete. Right-click on Step_001 and select the Step Properties
menu option. In the Step Properties form, set the Preset field to 30000ms
(30 seconds) and click on OK.

25.	 Next, we will add a selection branch diverge in order to reset our sequence
or trigger a fault if there is a problem. Select Step_001, and then click on the
selection branch diverge element icon () just above our sequence chart.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Sequential Function Charts

[150]

A selection branch diverge executes one sequence or another depending on
a logical condition (OR), while simultaneous branch diverge will execute two
sequences in parallel (AND).

26.	 Our sequence will automatically reset and await another backwash if the flow
controller valve position (FC1001_PV) has been 100 percent opened. Select
Tran_001 and click on the ? icon to set the logical statement, which will execute
this selection branch. Type the following structured text logical statement:
FC1001_PV=100

We will also need to add the FC1001_PV tag to our program by right-clicking
on it and selecting New Tag.

27.	 In the New Tag window, enter the following field values:
°° Name: FC1001_PV
°° Description: FLOW CONTROLLER 1001 VALVE POSITION VALUE
°° Type: DINT
°° Scope: MainProgram

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[151]

28.	 We will want our sequence to reset after it has completed the backwash, so
we will connect a wire from our transition, Tran_001, to the top SFC element
in our sequence, Step_000. Click on the connector box under Trans_001 and
drag it to the connector box on top of Step_000.

29.	 If our valve fails to open, we will want to raise a fault before resetting
our sequence. Select Tran_002, click on the question mark, and enter the
following structured text logical statement:
FC1001_PV<>100

30.	 In order to raise a fault, we will need to add a step. Select Tran_002 and click
on the Step element icon.

31.	 Add an action to our newly created step, Step_002, by right-clicking on it and
selecting Add Action.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Sequential Function Charts

[152]

32.	 Double click on the ? icon of our newly added action and add the following
structured text code:
BACKWASH_FLT:=1;
BACKWASH_START_PB:=0;

The fault bit will prevent the backwash sequence from running again until
the problem is investigated and the fault bit is reset.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[153]

33.	 Finally, in order to make our sequence easy to understand, let's add a textbox
comment. Click on the Text Box element in the SFC element group toolbar to
add it to the sequence diagram and drag it to the right of the sequence. Enter
the following comment:
Backwash fault triggered if valve FC1001 fails to open.O

34.	 The complete SFC routine should be verified to ensure that there are
no errors or warnings. From the drop-down menu, navigate to Logic |
Verify | Routine.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Sequential Function Charts

[154]

In the Errors panel, you should see the following output:

Verifying Routine: MainProgram – BACKWASH…
Complete – 0 error(s), 0 warning(s)

If you do encounter errors, double-click on the error message to be taken to the exact
location of the problem.

In the last exercise, we left the default names for our steps, actions, and transitions.
It is easy to rename the SFC elements to make the sequence easier to read and
maintain. You can double-click on the existing name of a step, action, or transition
and type a new name to rename it.

Summary
In this chapter, we explored sequential function charts and their typical usages
within an automation project. We looked at the few core elements that make up
an SFC and created a simple backwash process routine.

In the next chapter, we will identify ways to organize and control the scan frequency
of a routine using tasks and programs.

www.it-ebooks.info

http://www.it-ebooks.info/

[155]

Using Tasks and Programs
for Project Organization

In this chapter, we will see how to structure a Logix project using the basic
organization units (which we have discussed throughout this book)—tasks,
programs, and routines. We will also look at the way in which task scheduling
and prioritization can be used to balance the processing time of a controller.

This chapter will cover the following topics in detail:

•	 Logix organizational units
•	 Controller task types
•	 Creating tasks
•	 Inhibiting programs and tasks
•	 Tuning a Logix controller

Introducing project organization in Logix
As we have already seen, a Logix project is organized into tasks, programs, and
routines. When a new project is created, Logix automatically adds one of each basic
organizational unit to the project:

•	 Task
•	 Program
•	 Routine

www.it-ebooks.info

http://www.it-ebooks.info/

Using Tasks and Programs for Project Organization

[156]

We have seen these units many times in our controller organizer:

Tasks, programs, and routines in the controller organizer

These units also allow us to select how often and at what priority programs and
routines are run. Project organization also allows us to control and optimize the way
our projects run in order to reduce the processing load on a controller. In the next
section, we will take a look at each organizational unit in more detail.

Organizational units in Logix
As stated in the previous section, the organizational units in Logix are tasks,
programs, and routines. The following diagram illustrates the one-to-many
relationships within a Logix project organization:

One-to-many relationships between projects, tasks, programs, and routines

As the preceding diagram illustrates, Logix Designer is only capable of opening
a single project at a time. A project can contain multiple tasks. A task can contain
multiple programs, and programs can contain multiple routines.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[157]

Controller tasks
A task is the most foundational and powerful organizational unit in the Logix
platform. When we create a new project in Logix, we are provided with a single
task that runs all of our logic. Also, up to this point, we have only used this default
single task to develop our application. It is possible to add multiple tasks to your
project that can schedule and prioritize programs. However, it should be noted
that there is a small controller performance hit, which is switching between tasks
(about 1 ms). That said, it is wise to limit the number of tasks in your program to
less than a handful. We will talk about different task types and a typical project task
configuration in the next section.

Controller programs
Controller programs are associated with tasks or can also be assigned to controller
events (such as a controller startup or fault). Programs are a collection of related
routines and tags executed by a task. Multiple programs can be scheduled to run
within a task and their order in which they execute can be adjusted. Tags can be
declared within a program and their scope is limited to a single program. This allows
you to use the same tag names across multiple programs. Programs can also be
inhibited, moved between tasks, and monitored for performance (execution time).
The following screenshot shows the New Program dialog in Studio 5000 Logix
Designer and the configuration options that are available:

www.it-ebooks.info

http://www.it-ebooks.info/

Using Tasks and Programs for Project Organization

[158]

Programs can be scheduled to execute in a variety of ways within a project,
as follows:

•	 Equipment phases
•	 Unscheduled programs
•	 Controller fault handler programs
•	 Power-up handler programs

Controller routines
Routines contain the code that is executed by the controller. A program can contain
multiple routines of mixed IEC languages. Each program is assigned a main routine
to be executed. Only the routines that are called by the main routine are executed
within a program.

Controller task types
Tasks are the most configurable organization unit and are at the trunk of a Logix
project. They provide a means of optimizing the execution of our project. It is
important to remember that the Logix controllers are only capable of running one
task at a time. However, tasks can interrupt the execution of other tasks if they are
triggered and have a higher priority value. Tasks that are interrupted will start again
where they left off in the execution of their code.

It is important to keep in mind that other tasks can change the data your
routine's code is executing on. Care should be taken to buffer tags in
order to avoid the code from entering a state that was not accounted for.
Buffering has been covered in detail in Chapter 5, Writing Ladder Logic.

There are three types of tasks in Studio 5000 Logix Designer (RsLogix 5000):

•	 Continuous
•	 Periodic
•	 Event

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[159]

Continuous tasks
Continuous tasks will execute as quickly as they can and will always be running
on the controller when other tasks are not. After a continuous task has completed
the execution, it will immediately start running again. Only one continuous task is
allowed to be declared per project. The main task, which is added by default when
you create a new project, is automatically set up as a continuous task. A continuous
task is typically used as the program flow controller in a project. Using a continuous
task is not mandatory, but only one can be used in a project.

Periodic tasks
Periodic tasks will run at an interval you can specify in milliseconds (with a default
value of 10 ms). Periodic tasks are typically used in projects for values that must be
updated at a specific interval.

Event tasks
Event tasks will run when a condition triggers it. The condition that triggers an event
task can be as follows:

•	 A change of a digital input
•	 A new sample of analog data
•	 Motion operations such as axis watch and axis registration
•	 A consumed tag
•	 An event instruction
•	 Microsoft Windows events (SoftLogix only)

The capabilities of your controller may limit the event triggers
that are available for your project.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Tasks and Programs for Project Organization

[160]

Best practices of Logix task usage
During runtime, there is a small performance hit on the Logix controller when
switching between tasks. One should avoid using tasks to organize a project's
structure and rely more on programs and tasks to create a logical structure that
resembles the process being automated. When many tasks are running on a
controller, you increase the risk that some tasks will not have time to complete
their program execution before they are triggered again and reset. Often, we hear
of programmers who are new to the Logix platform that create dozens of tasks in a
project (for example, one per process cell). An experienced automation professional
will limit the use of tasks to less than a handful (certainly, there are exceptions). A
typical Logix application will have one continuous task to handle the main program
execution, and perhaps one or two event tasks to handle special cases.

Creating a task
In the following exercise, we will create a simple task by performing these steps:

1.	 In the Controller Organizer pane, right-click on the Tasks icon, and then
click on New Task….

2.	 In our project, there is no need to check for our non-critical alarms by the
default periodic task time of every 10 ms. We will create a new periodic task
for processing alarms every 250 ms and give it a low priority in order to
reduce the load on our processor.

3.	 In the New Task form that appears, enter the following values:
°° Name: AlarmTask
°° Description: Task for calculating alarm conditions
°° Type: Periodic
°° Period: 250.000 ms
°° Priority: 11
°° Watch Dog: 500.000 ms

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[161]

4.	 Next, we will add our program, which will contain our alarm function and
handle the alarm processing for our project. Right-click on our newly created
AlarmTask, and click on the New Program… option.

5.	 In the New Program form that appears, enter the following values:
°° Name: MainAlarmProgram
°° Description: Program for processing Alarms

www.it-ebooks.info

http://www.it-ebooks.info/

Using Tasks and Programs for Project Organization

[162]

6.	 Now, we can move the DIGITAL_ALARM routine that we created in
Chapter 6, Writing Function Block, to our newly created Alarm program.
Expand the MainTask and MainProgram scope in the Controller Organizer
pane's Tasks scope, and drag and drop the DIGITAL_ALARM routine from
MainProgram to MainAlarmProgram.

7.	 We will now set the DIGITAL_ALARM routine to be the main routine of
MainAlarmProgram.

8.	 Right-click on MainAlarmProgram and select Properties (or press Alt + Enter).
In the Program Properties form that appears, select the Configuration tab, and
under the Assign Routines header, select DIGITAL_ALARM from the main
drop-down box.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[163]

9.	 You will notice that after assigning the DIGITAL_ALARM routine as
the main routine for MainAlarmProgram, the DIGITAL_ALARM icon
changes to display a small 1 icon, which indicates that it is the main routine
for the program.

10.	 Next, we will check to see whether we have introduced any errors in our
controller with our latest changes. From the drop-down menu at the top of
RSLogix 5000, navigate to Logic | Verify | Controller:

11.	 You will notice that the Errors pane has appeared and the following errors
are listed:
Error: Sheet 1, B1, ALMD, FC1001_FLT_ALM: Tag doesn't
 reference valid object or target.
Error: Rung 1, JSR, Operand 0: Invalid reference to unknown
 routine.

12.	 Clicking on the first error message will take you directly to the DIGITAL_
ALARMS FBD and highlight the FC1001_FLT_ALM ALMD element.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Tasks and Programs for Project Organization

[164]

13.	 The red X mark on the FBD element indicates that there is a problem
with the block's configuration. The error has occurred because the original
FC1001_FLT_ALM element was created with a scope of MainProgram
and it cannot be accessed from the MainAlarmProgram. The FBD tags are
automatically created with the scope of the current program you are working
under when they are added to a routine. In order to declare an FBD at the
controller scope (global scope) level, you will need to create it manually
using the New Tag form.

14.	 In order to fix this problem, we will need to create the ALMD tag again at a
more global scope level. Right-click on the FC1001_FLT_ALM tag and select
the New "FC1001_FLT_ALM" menu option (or press Ctrl + W).

15.	 The New Tag form will appear; ensure that the Scope field is set to
FirstController and click on OK.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[165]

16.	 Next, we should remove the duplicate FC1001_FLT_ALM tag that exists in
the MainProgram scope. Under the MainTask and MainProgram folders
in the Controller Organizer pane, right-click on the Program Tags icon and
select Edit Tags.

17.	 The Edit Tags table will appear now. Select the FC1001_FLT_ALM tag,
right-click on the box to the left of the name, and select the Delete menu
option (or press the Delete key).

18.	 We have now fixed the first error message, now let's resolve the second.
Clicking on the second error message in the Errors pane will take you
directly to the JSR reference within our MainProgram scope's MainRoutine
to the DIGITAL_ALARM routine. The error is being displayed because the
DIGITAL_ALARM routine is no longer in the MainProgram scope. Delete
this ladder logic rung by right-clicking on it and selecting Delete (or by
pressing the Delete key with the rung selected).

19.	 Finally, we will verify the program once more to ensure that we no longer
have any problems. From the drop-down menu at the top of RSLogix 5000,
navigate to Logic | Verify | Controller. The project should now be error-free.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Tasks and Programs for Project Organization

[166]

Inhibiting programs and tasks
One advantage of dividing your project into tasks and programs is that you can
inhibit them individually if needed and prevent them from executing. To inhibit
a task or program, right-click on it and open its properties. The Inhibit Program
option is in the Configuration tab of the Program Properties window.

Setting task priorities
Task priorities allow for control over the order in which a task will run on a
controller. A Logix controller is only capable of running a single task a time. When
multiple tasks happen to occur at the same time, a task's priority setting will allow
the controller to select which task it should run first. Within the Logix controllers,
there are 15 priority levels (except for SoftLogix, which only has three).

The task's Priority option is in the Configuration tab of the Task Properties window.

Tuning a Logix controller
Logix provides methods for monitoring and tuning the performance of the
projects running on a controller. In the next sections, we will explore some
of the available options.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[167]

System overhead time slice
The system overhead time slice is a controller setting that allows the specification of
the percentage of time dedicated to the ongoing background tasks. These on-going
background tasks are also known as unscheduled communications and will always
require a percentage of the controller's processing power.

Logix unscheduled communications include the following features:

•	 Programming and device monitoring communication with Logix
Designer / RSLogix

•	 Service communication
•	 Communication with the HMI devices
•	 Controller to controller communication
•	 Synchronize redundant controllers
•	 I/O connections health monitoring and connection re-establishment

The system overhead time slice only has an impact when a continuous task is
configured in a project. When no continuous task is present, the background tasks
will take up any extra controller cycles that are available (effectively 100 percent).

A balance must be found between the overhead time slice and the task execution time.
When the overhead time slice is set too low, you may encounter the following issues:

•	 HMIs take a long time to reestablish communications with the controller.
With only a short amount of time dedicated to background tasks, it can
take the HMI and controller a long time to build the list of tags and
initialize communications.

•	 HMI values are not being updated regularly or stale values are
being displayed.

•	 HMI appears slow to respond to commands and may take longer to switch
between page views.

•	 Logix takes a long time to download or upload a project from a controller.
•	 Logix takes a long time to connect to the controller or has difficulty connecting.

When the overhead time slice percentage set too high, you may encounter a different
set of problems:

•	 Programs are not able to complete their execution before they are scheduled
to run again (known as overlap)

•	 Controller CPU utilization is very high

www.it-ebooks.info

http://www.it-ebooks.info/

Using Tasks and Programs for Project Organization

[168]

Finding the overhead time slice can be a challenge, particularly on complex programs
with resource-constrained controllers. Fortunately, there are tools and techniques
provided by Rockwell Automation that provide insights striking the balance.

Setting the system overhead time slice
In the following exercise, we will configure the overhead time slice on the controller
of our project by following these steps:

1.	 In the Controller Organizer panel, scroll down to the I/O Configuration
folder and expand Backplane we have configured. Right-click on the
controller you have configured and select Properties.

2.	 In the Controller Properties dialog box, click on the Advanced tab.
3.	 In the System Overhead Time Slice box, raise the overhead time slice to

30%, and then click on OK.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[169]

There is also a radio button in the During unused System Overhead Time Slice
group box that allows us to select Run Continuous Task (default) or Reserve for
System Tasks.

When the Run Continuous Task radio button is selected, the controller immediately
returns to executing the continuous task after all the unscheduled communications
are completed (normal behavior).

When the Reserve for System Task radio button is selected, the controller will
always allocate 1 ms to unscheduled communications before returning to the
continuous task. This setting is useful for simulating a communication load on the
controller (for testing purposes only).

Monitoring task execution time and overlap
An overlap is when a task is unable to complete the execution of its programs and
routines before it is scheduled to run again. Overlaps cause the execution of code
to stop and start again from the beginning of the task. They should not occur on a
running system and should always be investigated and resolved when reported.
In the following exercise, we will learn how to monitor the task execution time and
check for the overlap errors by performing these steps:

1.	 Go online with your program by navigating to Communications |
Go Online. If prompted, download your project to the controller.

2.	 Put the controller in the run mode by navigating to Communications |
Run Mode.

3.	 Right-click on the MainTask scope in the Controller Organizer pane, open
Properties, and select the Monitor tab.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Tasks and Programs for Project Organization

[170]

4.	 When Logix is online with the controller, you will see live Scan Times (time
required to execute the task), Interval Times, and Task Overlap Count
information. If the Task Overlap Count value is ever greater than zero, you
should investigate the cause and work to optimize the execution of your project.

5.	 Right-click on the MainProgram scope in the Controller Organizer pane,
open Properties, and select the Monitor tab. Here, you will see the Max
and Last scan time fields (time required to execute MainProgram).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[171]

Task watchdog time
Tasks also allow you to specify a watchdog time, which will trigger a major fault if
the task runs for too long. The default watchdog time for a task is 500 ms and the
watchdog time includes interruptions by other higher priority tasks. Depending on
how your project's fault handler is configured, the watchdog time may cause your
controller to stop executing, so use this feature with caution.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Tasks and Programs for Project Organization

[172]

Logix5000 Task Monitor tool
The Logix5000 Task Monitor tool shows the current load of the Logix CPU. It
provides insights in the current tasks that are running on the controller, active
connections, and memory usage. This tool can be downloaded from the Rockwell
Automation website or found on the Rockwell Automation distribution CD or hard
disk drive. This tool can provide insights into the way your controller's CPU is being
used. You can tune your Logix application by optimizing code, adjusting the task
configurations, and modifying the overhead time slice percentage.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[173]

Summary
In this chapter, we further investigated the project organizational units we have been
using throughout this book. We detailed the way a Logix controller executes tasks
and how the CPU divides its time based on priority. We introduced the overhead
time slice and emphasized its importance when optimizing a Logix application.
Finally, we investigated methods within the Logix platform to monitor and
troubleshoot performance issues.

In the next chapter, we will dig deeper into troubleshooting controller issues
and faults.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[175]

Faults and
Troubleshooting

in Logix
In this chapter, we learn how to identify and troubleshoot faults in a Logix controller.
We will also detail a list of fault codes that provide insight into the problems
encountered by the platform. We will introduce the process of fault recovery, which
allows a program to resume the execution after encountering a specific fault type.
We will then look at the convenient troubleshooting applications available for your
iPhone and iPad. The following topics will be covered in this chapter:

•	 Logix troubleshooting and support
•	 Clearing faults
•	 Fault handling and recovery
•	 Trapping a fault
•	 Rockwell troubleshooting applications

www.it-ebooks.info

http://www.it-ebooks.info/

Faults and Troubleshooting in Logix

[176]

General troubleshooting and support for
Logix
Automation problems have an odd way of occurring at the most inconvenient time,
such as on Christmas Eve or your partner's birthday. Regardless of the timing, there
is always a requirement to quickly resolve problems as they often translate to lost
production time and lost revenue for the company that owns the process. Here are a
few best practices for troubleshooting in the Logix platform:

•	 Get familiar with Rockwell Automation knowledgebase. The issue you
have encountered has most likely been encountered by someone else too.
The Knowledgebase is a great first line of defense for solving a problem. If
you don't have an account set up, you should create one before you need
it at http://www.rockwellautomation.com/services/online-phone/
techconnect.page.

•	 Verify that you have an active Rockwell Automation support contract
and keep your Rockwell Automation technical support information and
authorization number handy. Rockwell Automation provides world class
support, so make sure you understand how to access it before you need
it. It also provides a handy wallet size cut out of your technical support
information and it is a good idea to carry it around with you as you never
know when you are going to get a call from your work asking for help.

•	 Get to know your local Rockwell Automation sales representative; they can
also help you to quickly escalate support cases if required. Buy them coffee
or lunch (or let them buy you coffee/lunch) and foster a relationship. They
want to help and see you succeed.

•	 Get involved with the Rockwell Automation community. Sign up for their
terrific (and free) TechConnect Education Webinars, Genius Webinars,
and attend local lunch and learns or conferences. There is no substitute for
in-depth knowledge of the Logix platform when troubleshooting problems.

www.it-ebooks.info

http://www.rockwellautomation.com/services/online-phone/techconnect.page
http://www.rockwellautomation.com/services/online-phone/techconnect.page
http://www.it-ebooks.info/

Chapter 10

[177]

An introduction to troubleshooting faults
A fault is an error state in your controller that will prevent it from executing normally.
It must be resolved in order for the controller to resume its normal execution. There are
many reasons that would cause an automation process to stop. There are a few ways of
confirming that a controller fault is the cause of a process upset:

•	 An operator may notice a controller fault is being indicated from an
HMI display

•	 The fault light is lit on your controller or a fault code is being listed on the
scrolling status display on the controller

•	 We can also see that fault indicated when going online with our controller
from RSLogix5000 / Logix Designer

A major fault as seen from the Controller Properties window

www.it-ebooks.info

http://www.it-ebooks.info/

Faults and Troubleshooting in Logix

[178]

Troubleshooting faults in Logix is the process of locating and resolving problems
encountered during the execution of a project on a controller. Access to piping and
instrumentation diagram (P&ID) drawings, cause and effect diagrams, wiring
drawings, and junction box drawings certainly will help the cause. However, there is
no substitute for the working knowledge of a control system. Troubleshooting is an
analytical process of elimination to narrow down and permanently fix the problem.
Faults are a mechanism used in the Logix controllers (and by other PLC/PAC
vendors) to stop the execution of process when a problem is detected. Capturing and
handling faults is the first step when determining the root cause of a serious control
system problem. In the next few sections, we will investigate faults and how to
handle them in a project.

Faults
Within Logix, there are four categories of faults:

•	 Major: This fault is a fault in which the Logix controller will stop executing
routines. An I/O module will allow you to configure the program to enter
either a fault mode or program mode when a major fault occurs. Also, the
I/O module outputs are set to their configured value for the faulted mode.
There are 77 different types of major faults listed in the Rockwell Automation
Literature Library document, "Logix5000 Controllers, Major, Minor, and I/O
Faults", for example, when the controller detects a problem with the chassis,
a major fault will be triggered.

•	 Minor: This fault will trigger a bit to go high in the MinorFaultBits
system status class object, but the controller will continue to run without
interruption. There are 31 different types of minor faults listed in the same
document, for example, low battery or energy storage status. When a
problem is detected with the L6 battery or the L7 Energy Storage Module
(ESM) MinorFaultBits, bit 10 will be high. Also, the battery light on the front
panel of the L6 controller will be lit when this bit is high.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[179]

•	 I/O: This fault is due to a problem with an I/O module, which, by default,
will not cause the Logix controller to stop executing routines. However, on
the individual I/O module properties, in the Connection tab, the controller
can be configured to trigger a major fault on connection failure. The following
screenshot displays the I/O module's properties with the major fault on the
I/O connection failure option checked and an active I/O fault code:

There are 95 different types of I/O faults listed in the above-mentioned
document.

•	 User-defined major: This fault is a custom fault that can be triggered based
on any automation condition using a JSR instruction to the fault handler
routine (more on that later) and by passing a numeric parameter of 990 to
999 (the reserved range for the user-defined fault codes). A user-defined
major fault is handled by the controller just like any other major fault:
stopping the execution of routines and putting the output I/O modules
to their fault values.
There are 10 different types of user-defined faults available in the same
document, such as type 4 code 990 and type 4 code 999.

www.it-ebooks.info

http://www.it-ebooks.info/

Faults and Troubleshooting in Logix

[180]

Clearing a fault
Once a controller encounters a major fault, not much can be done with it until the
fault has been cleared. You will be unable to download an updated program to
your controller until you clear all the major faults. In the following exercise, we will
trigger a major fault, and then learn how to view and manually clear it. We will
trigger a programmatic major fault (type 4) by referencing a value outside of an
array's configured range. We will need to add two more tags to our project in order
to trigger the major fault—an array and array position tag. Perform these steps:

1.	 Create an array tag by right-clicking on the program tags in the Controller
Organizer pane and select New Tag (or press Ctrl + W), and then create an
array called SmallArray with the following properties:

°° Name: SmallArray
°° Description: A Small Array Used to Trigger a Programmatic

Major Fault (Type 4)

°° Data Type: DINT[10]
°° Scope: MainProgram
°° External Access: Read/Write
°° Style: Decimal

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[181]

2.	 Next, create a DINT tag with the following parameters:
°° Name: SmallArrayPos
°° Description: The Position to Update in the Small Array to

Trigger a Major Fault.

°° Data Type: DINT
°° Scope: MainProgram
°° External Access: Read/Write
°° Style: Decimal

3.	 Next, we will add a ladder rung to the MainRoutine program, which we
can use to trigger the major fault. Open the MainRoutine program from the
Controller Organizer pane and add a new rung to the end of the routine by
right-clicking on the last rung (End) and selecting Add Ladder Element… (or
by pressing Alt + Insert).

www.it-ebooks.info

http://www.it-ebooks.info/

Faults and Troubleshooting in Logix

[182]

4.	 On the newly created routine, add an MOV instruction by navigating to the
Move/Logical element group and clicking on the MOV element.

5.	 Next, set the Source measure of the MOV instruction to a literal value
of 1, and then set the Dest value of the MOV instruction to the newly
created SmallArray and SmallArrayPos as the array position value,
SmallArray[SmallArrayPos].

6.	 The MOV instruction will allow us to overflow the array and trigger an
array subscript to large major fault. Download the updated project to the
controller, and go online. Open the program tags for the main program and
update the value of SmallArrayPos to 11.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[183]

7.	 Overflowing the array triggers a major fault in the controller. The controller
status now displays as Faulted.

8.	 The major fault can be viewed by navigating to Next Communications | Go
To Faults. Click on the Clear Majors button to clear the fault.

9.	 In order to clear the fault condition and continue the normal operation of the
controller, we will adjust the SmallArrayPos value back down to 1.

10.	 Finally, start changing the controller back to run mode by navigating to
Communications | Run Mode.

www.it-ebooks.info

http://www.it-ebooks.info/

Faults and Troubleshooting in Logix

[184]

Fault handling and recovery
Minor faults should be reported to the process operator either by updating a bit
for the HMI or by illuminating a light on a panel faceplate. Major faults, however,
should be trapped and automatically recovered, when possible. Some major faults
cannot be recovered and this further divides major faults into two categories:

•	 Major recoverable faults
•	 Major unrecoverable faults

Logix allows the user to create a fault routine, which can trap a fault and attempt to
recover and continue running the process when possible. When a Logix controller
encounters a major fault, it will execute the program assigned to the controller
fault handler.

It is a recommended best practice to at least log all faults that
occur in the controller before programmatically clearing them. As
discussed earlier, faults play an important role in troubleshooting
problems with a process and should never be ignored.

If the fault is still present after the controller fault handler has been executed, the
controller will stop running. Fault routines can be declared at a program scope or at
the controller scope (for capturing faults during tag assignment, startup prescan, and
SFC postscan).

It is important to note that when a major fault occurs during the
execution of a logic instruction, like in the preceding exercise, the
controller does not actually execute that instruction. The controller
will simply move down to the next instruction in the routine.

Fault routines can also be executed using a JSR instruction with a parameter of 990 to
999 (the reserved range for the user-defined fault codes).

In the next section, we will introduce the instructions used to check and reset the
major and minor fault information from the controller system values.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[185]

Get System Value and Set System Value
Legacy Rockwell PLCs (PLC5 and SLC500) had a dedicated status file (S2), which
was continuously updated by the controller with system values. The ControlLogix
platform has removed the dedicated status file in order to reduce the controller
processing load. In place of the dedicated status file, ControlLogix has provided two
self-serve instructions that allow for direct control over the system value access that
are neatly organized into class objects. The Get System Value (GSV) instruction
will retrieve a system value status from the controller that can update a specified
destination tag with that value. The Set System Value (SSV) instruction will update
a controller system value status from a specified source tag.

GSV and SSV instructions

The GSV and SSV instructions can be accessed from ladder logic and structured text
and are not directly available in function block. Typically, you will see these values
scheduled periodically (for example, with a TON instruction) so as not to burden
the controller's processor. The GSV and SSV instructions play an important role in
retrieving fault information and resetting the fault before causing the controller to stop:

•	 The FaultLog class name and MinorFaultBits attribute name system value
can be used to check for any minor faults present in the controller

Timer (TON) instruction executing a GSV to collect MinorFaultBits

•	 The MajorFaultRecord system value attribute can be used to check for the
presence of major fault and collect its details

www.it-ebooks.info

http://www.it-ebooks.info/

Faults and Troubleshooting in Logix

[186]

User-defined data types
User-defined data types are an object-based construct that allows you to create
custom structures containing a number of different data types. User-defined
data types are used to organize data into objects that align with the properties of
physical-world equipment. In the case of fault trapping, we will be using a UDT to
capture the details of a major fault.

Trapping a fault
In the following exercise, we will trap a major fault and clear it before the controller
stops with these steps:

1.	 In order to trap a major fault, we must create a user-defined data type to
store the fault information.

2.	 In the Data Type window that appears, creates the following FAULTRECORD
user-defined data type:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[187]

3.	 We will need to add an instance of our newly created FAULTRECORD
user-defined data type to our project at the MainProgram scope level.

www.it-ebooks.info

http://www.it-ebooks.info/

Faults and Troubleshooting in Logix

[188]

4.	 Next, we will need to create a fault handler routine to trap the array overflow
major fault in the scope of the MainProgram scope. Under the MainProgram
scope, create a new ladder logic routine with the name, Fault_Routine, and
set the Assignment value to Fault:

5.	 Add the following ladder logic instructions to check for our fault type and
fault code, and clear the major fault and the condition causing it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[189]

6.	 Download and run the project on your controller. You will find that when
you try to trigger a major fault using the SmallArrayPos value, as we did in
the previous exercise, the SmallArrayPos value will be reset to zero and the
controller will no longer trigger a major fault.

Rockwell troubleshooting application for
iPad and iPhone
Rockwell Automation provides a handy app for your Apple iPad or iPhone that
offers troubleshooting guidance and support. The app will allow you to look
up for information on the fault codes and will step you through the process of
troubleshooting the issue to resolution. The app includes a ton of embedded
resources, which can be extremely valuable when troubleshooting an issue at a
remote site, such as https://itunes.apple.com/us/app/rockwell-automation-
controllogix/id662157429?mt=8.

The Rockwell Automation troubleshooting app for the Apple iPhone and iPad

www.it-ebooks.info

https://itunes.apple.com/us/app/rockwell-automation-controllogix/id662157429?mt=8
https://itunes.apple.com/us/app/rockwell-automation-controllogix/id662157429?mt=8
http://www.it-ebooks.info/

Faults and Troubleshooting in Logix

[190]

Summary
In this chapter, we provided recommendations for improving your troubleshooting
capabilities in the Logix platform. We also learned how to identify and troubleshoot
the various types of faults that can occur on a Logix controller. We used ladder logic
to trigger a major fault, and then we learned how to trap the major fault and prevent
the controller from stopping when it occurs. Finally, we highlighted a helpful app
provided by Rockwell Automation for troubleshooting the Logix issues while in the
field from your iPhone or iPad.

www.it-ebooks.info

http://www.it-ebooks.info/

[191]

Rockwell Automation
Literature Library Resource

Some useful links for learning Rockwell Automation are mentioned as follows:

•	 1756 ControlLogix Controllers (Technical Data):
http://literature.rockwellautomation.com/idc/groups/literature/
documents/td/1756-td001_-en-p.pdf

•	 Logix 5000 Controllers IEC 61131-3 Compliance:
http://literature.rockwellautomation.com/idc/groups/literature/
documents/pm/1756-pm018_-en-p.pdf

•	 Safety Accelerator Toolkit (Quick Start) to learn basic procedures for
developing safety applications:
http://literature.rockwellautomation.com/idc/groups/literature/
documents/qs/iasimp-qs005_-en-p.pdf

•	 GuardLogix Controllers (User Manual) to learn how to configure, program,
and operate a GuardLogix controller:
http://literature.rockwellautomation.com/idc/groups/literature/
documents/um/1756-um020_-en-p.pdf

•	 GuardLogix Controller Systems to learn more about safety system details for
a GuardLogix controller:
http://literature.rockwellautomation.com/idc/groups/literature/
documents/rm/1756-rm093_-en-p.pdf

www.it-ebooks.info

http://literature.rockwellautomation.com/idc/groups/literature/documents/td/1756-td001_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/td/1756-td001_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm018_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm018_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/qs/iasimp-qs005_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/qs/iasimp-qs005_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/um/1756-um020_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/um/1756-um020_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm093_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm093_-en-p.pdf
http://www.it-ebooks.info/

Rockwell Automation Literature Library Resource

[192]

•	 GuardLogix Safety Application Instruction Set to learn more about safety
application instructions:
http://literature.rockwellautomation.com/idc/groups/literature/
documents/rm/1756-rm095_-en-p.pdf

•	 ControlLogix-XT Extreme Environment System – ControlLogix-XT and Flex
I/O-XT products:
http://ab.rockwellautomation.com/Programmable-Controllers/
ControlLogix-Extreme-Environment-Controllers

•	 CompactLogix System (Selection Guide)
http://literature.rockwellautomation.com/idc/groups/literature/
documents/sg/1769-sg001_-en-p.pdf

•	 RSLinx Classic (Getting Results Guide):
http://literature.rockwellautomation.com/idc/groups/literature/
documents/gr/linx-gr001_-en-e.pdf

•	 RSLinx Enterprise (Getting Results Guide):
http://literature.rockwellautomation.com/idc/groups/literature/
documents/gr/lnxent-gr001_-en-e.pdf

•	 Technical Capabilities of the DF1 Half-Duplex Protocol to learn the
DF1 networks:
http://literature.rockwellautomation.com/idc/groups/literature/
documents/wp/1761-wp003_-en-e.pdf

•	 ControlNet Network Configuration:
http://literature.rockwellautomation.com/idc/groups/literature/
documents/um/cnet-um001_-en-p.pdf

•	 ControlNet Coax Media Planning and Installation Guide to learn the
ControlNet networking components:
http://literature.rockwellautomation.com/idc/groups/literature/
documents/in/cnet-in002_-en-p.pdf

•	 DeviceNet Network Configuration:
http://literature.rockwellautomation.com/idc/groups/literature/
documents/um/dnet-um004_-en-p.pdf

•	 RSNetworkx (Getting Results Guide):
http://literature.rockwellautomation.com/idc/groups/literature/
documents/gr/dnet-gr001_-en-e.pdf

www.it-ebooks.info

http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm095_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm095_-en-p.pdf
http://ab.rockwellautomation.com/Programmable-Controllers/ControlLogix-Extreme-Environment-Controllers
http://ab.rockwellautomation.com/Programmable-Controllers/ControlLogix-Extreme-Environment-Controllers
http://literature.rockwellautomation.com/idc/groups/literature/documents/sg/1769-sg001_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/sg/1769-sg001_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/gr/linx-gr001_-en-e.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/gr/linx-gr001_-en-e.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/gr/lnxent-gr001_-en-e.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/gr/lnxent-gr001_-en-e.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/wp/1761-wp003_-en-e.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/wp/1761-wp003_-en-e.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/um/cnet-um001_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/um/cnet-um001_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/in/cnet-in002_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/in/cnet-in002_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/um/dnet-um004_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/um/dnet-um004_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/gr/dnet-gr001_-en-e.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/gr/dnet-gr001_-en-e.pdf
http://www.it-ebooks.info/

Appendix

[193]

•	 Ethernet Design Considerations to learn about the EtherNet/IP networks:
http://literature.rockwellautomation.com/idc/groups/literature/
documents/rm/enet-rm002_-en-p.pdf

•	 EtherNet/IP (Media Planning and Installation Manual):
http://www.odva.org/Portals/0/Library/Publications_Numbered/
PUB00148R0_EtherNetIP_Media_Planning_and_Installation_Manual.
pdf

•	 1756 ControlLogix I/O Specifications (Technical Data):
http://literature.rockwellautomation.com/idc/groups/literature/
documents/td/1756-td002_-en-e.pdf

•	 1756 ControlLogix HART Analog I/O Modules:
http://literature.rockwellautomation.com/idc/groups/literature/
documents/um/1756-um533_-en-p.pdf

•	 ControlLogix Digital I/O Modules:
http://literature.rockwellautomation.com/idc/groups/literature/
documents/um/1756-um058_-en-p.pdf

•	 Logix5000 Controllers I/O and Tag Data:
http://literature.rockwellautomation.com/idc/groups/literature/
documents/pm/1756-pm004_-en-p.pdf

•	 Logix5000 Controllers Program Parameters:
http://literature.rockwellautomation.com/idc/groups/literature/
documents/pm/1756-pm021_-en-p.pdf

•	 RSNetWorx for EtherNet/IP (Getting Results Guide):
https://www.rockwellautomation.com/resources/misc/html/global-
assets/rockwellsoftware/get/ENET-GR001A-EN-P.pdf

•	 SoftLogix 5800 System:
http://literature.rockwellautomation.com/idc/groups/literature/
documents/um/1789-um002_-en-p.pdf

•	 Logix5000 Controllers Program Parameters:
http://literature.rockwellautomation.com/idc/groups/literature/
documents/pm/1756-pm021_-en-p.pdf

www.it-ebooks.info

http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/enet-rm002_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/enet-rm002_-en-p.pdf
http://www.odva.org/Portals/0/Library/Publications_Numbered/PUB00148R0_EtherNetIP_Media_Planning_and_Installation_Manual.pdf
http://www.odva.org/Portals/0/Library/Publications_Numbered/PUB00148R0_EtherNetIP_Media_Planning_and_Installation_Manual.pdf
http://www.odva.org/Portals/0/Library/Publications_Numbered/PUB00148R0_EtherNetIP_Media_Planning_and_Installation_Manual.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/td/1756-td002_-en-e.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/td/1756-td002_-en-e.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/um/1756-um533_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/um/1756-um533_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/um/1756-um058_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/um/1756-um058_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm004_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm004_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm021_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm021_-en-p.pdf
https://www.rockwellautomation.com/resources/misc/html/global-assets/rockwellsoftware/get/ENET-GR001A-EN-P.pdf
https://www.rockwellautomation.com/resources/misc/html/global-assets/rockwellsoftware/get/ENET-GR001A-EN-P.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/um/1789-um002_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/um/1789-um002_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm021_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm021_-en-p.pdf
http://www.it-ebooks.info/

Rockwell Automation Literature Library Resource

[194]

•	 Logix5000 Programing Software Edition Comparison:
http://www.ab.com/en/epub/
catalogs/12762/2181376/2416247/360807/1837528/RSLogix-5000-
Programming-Software.html

•	 Logix5000 Controllers Tasks, Programs, and Routines:
http://literature.rockwellautomation.com/idc/groups/literature/
documents/pm/1756-pm005_-en-p.pdf

•	 Logix5000 Controllers Major, Minor, and I/O Faults:
http://literature.rockwellautomation.com/idc/groups/literature/
documents/pm/1756-pm014_-en-p.pdf

www.it-ebooks.info

http://www.ab.com/en/epub/catalogs/12762/2181376/2416247/360807/1837528/RSLogix-5000-Programming-Software.html
http://www.ab.com/en/epub/catalogs/12762/2181376/2416247/360807/1837528/RSLogix-5000-Programming-Software.html
http://www.ab.com/en/epub/catalogs/12762/2181376/2416247/360807/1837528/RSLogix-5000-Programming-Software.html
http://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm005_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm005_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm014_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm014_-en-p.pdf
http://www.it-ebooks.info/

[195]

Index
Symbols
1789-SIM module

configuring, in Logix Designer
SoftLogix project 68-70

used, for simulating values 70, 71

A
add-on instructions (AOI) 17
Alarm Digital (ALMD) function block 104
analog modules 43
AND logic in ladder 75
AND logic function block 102
arithmetic instructions 131, 132
arithmetic operators 129
assignment operator 126, 127

B
backwash SFC routine 142-154
BAND function block 102
BNOT function block 103
BOR function block 103

C
CASE OF construct 134
Catalog Numbers 41, 47
Common Industrial Protocol (CIP)

about 24
connection 28

communication modules 43
CompactLogix controllers

5370 controllers 13, 14
about 10-13

firmware 16, 17
selecting 15, 16
software 16, 17

constructs
about 133
CASE OF construct 134
FOR DO construct 134
IF THEN construct 133

continuous tasks 159
controller communications

Download 35
Equal 35
Offline 35
Online 35
Upload 35

controller modules 44
controller task types

about 158
continuous tasks 159
event tasks 159
Logix task usage, best practices 160
periodic tasks 159
programs, inhibiting 166
task, creating 160-165
task priorities, setting 166
tasks, inhibiting 166

ControlLogix 5570. See
ControlLogix series 7 controllers

ControlLogix controllers
about 4, 5
controlling 8

ControlLogix module
configuring 44-46

ControlLogix series 6 controllers 6
ControlLogix series 7 controllers 6

www.it-ebooks.info

http://www.it-ebooks.info/

[196]

ControlLogix-XT 9
ControlNet network

about 23
Drop line 22
Repeater 22
Tap 21
Terminating resistor 21
Trunk line 21

ControlNet Network
Update Time (NUT) 23

D
Data Highway Plus (DH+) 26
DeviceNet 23
DF1 network 27
DH-485 network 27
digital alarm routine

constant value, assigning to
function block 118

creating 104-108
editing 108-114
function block pins, displaying 117
function block pins, hiding 117
monitoring 108-114
sheets, adding 116
sheets, naming 116
textbox, adding 117

digital modules 43

E
Energy Storage Module (ESM) 6
EtherNet/IP Capacity Tool

about 24, 28
using 29-33

event tasks 159
expressions 130
external routines 56
Extreme environment controllers 9

F
faults

clearing 180-183
handling 184
recovery 184
trapping 186-189

troubleshooting 177, 178
faults, categories

about 178
I/O 179
major 178
minor 178
user-defined major 179

FBD
about 96
exploring 98
function block, versus ladder logic 98, 99
properties, setting 115
sheets 99, 100

FBD, elements
about 100
Function block (FB) 100
Input reference (IREF) 100
Input wire connectors (ICON) 100
Output references (OREF) 100
Output wire connectors (OCON) 100
Textbox 100

fieldbus 24
FlexLogix 3
FOR DO construct 134
function block

about 96
constant value, assigning 118
overview 97, 98
programming 94
versus ladder logic 98, 99
wiring 101, 102

function block diagram. See FBD
function block logic

about 102
AND logic function block 102
NOT logic function block 103
OR logic function block 103

function block pins
displaying 117
hiding 117

G
General Motors (GM) 2
Get System Value (GSV) 185
GuardLogix

safety controllers 9

www.it-ebooks.info

http://www.it-ebooks.info/

[197]

I
IF THEN construct 133
industrial network communications

about 20
Bridge 20
Hub 20
Media 20
Network 20
Node 20
Node Address 20
Protocol 20
Router 20
Segment 20
Switch 20
Topology 20

Information Technology (IT) 2
instruction list (IL) 96
instructions

about 131
arithmetic instructions 131, 132
One Shot Rising with Input (OSRI)

instruction 132, 133
Integrated Architecture 2
Interface Module (IFM) 44
IOLinx 57
I/O packets per second (PPS) 28

L
L7. See ControlLogix series 7 controllers
ladder logic. See also relay logic
ladder logic

about 73, 74, 96
AND logic 75
IEC 61131-3 74
NOT logic 76
OR logic 76
programming logic 74
versus function block 98, 99

ladder logic, writing
about 77
base tags, buffering 79-92
module I/O data, buffering 77
program parameters, used for

buffering 93, 94
tags, defining 78, 79

language compilation
function block 97, 98
overview 96

legacy network technologies
about 25
Data Highway Plus (DH+) 26
DH-485 and DF1 27
Serial Real-time Communications

System (SERCOS) 26
SynchLink 26
Universal Remote I/O (RIO) 26

logical operators 129
Logix5000 Task Monitor tool 172
Logix controller, tuning

about 166
Logix5000 Task Monitor tool 172
overlap, executing 169, 170
system overhead time slice 167
system overhead time slice, setting 168, 169
task execution time, executing 169, 170
task watchdog time 171

Logix Designer 3, 36
Logix Designer SoftLogix project

1789-SIM module, configuring 68-70
1789-SIM module, used for

simulating values 70, 71
creating 64-67

Logix module. See modules
Logix operating cycle 5
Logix task usage

best practices 160
Logix terminal blocks 44

M
module I/O data

buffering 77
modules

addresses, exploring 51, 52
analog modules 43
communication modules 43
controller modules 44
digital modules 43
features 48
in Integrated Architecture 47
I/O data, addressing 49, 50
I/O data, buffering 52

www.it-ebooks.info

http://www.it-ebooks.info/

[198]

Logix terminal blocks 44
properties 42
specialty modules 44
types 43

modules, properties
Adapter 42
Address 42
Channel 42
Current 42
Input 42
Module 42
Output 42
Rack 42
Signal 42
Slot 42
Voltage 42

N
network communication technologies

about 22
comparing 27, 28
legacy network technologies 25
primary network technologies 23

non-retentive assignment operator
about 127
versus retentive assignment operator 127

NOT logic in ladder 76
NOT logic function block 103

O
ODVA (Open DeviceNet Vendors

Association) 28
One Shot Rising with Input (OSRI)

instruction 132, 133
Operational Technology (OT) 2
operators

about 126
arithmetic operators 129
assignment operator 126, 127
logical operators 129
non-retentive assignment operator 127
relational operators 128
structured text I/O module

values, buffering 128
OR logic in ladder 76
OR logic function block 103

P
periodic tasks 159
piping and instrumentation

diagram (P&ID) drawings 178
primary network technologies

about 23
ControlNet 23, 24
DeviceNet 23
EtherNet/IP 24, 25

Product Selection Toolbox
about 17
Rockwell Automation Product Catalog,

for iPad 18
Programmable Automation

Controller (PAC) 3
Programmable Logic Controller 1 (PLC-1) 2
Programmable Matrix Controller (PMC) 2
program parameters

about 93
InOut 93
input 93
output 93
public 93

project organization, in Logix
about 155, 156
controller programs 157
controller routines 158
controller tasks 157
organizational units 156

Q
Quad Shield RG6 Coaxial Cable 24

R
relational operators 128
remote racks

configuring, with RSNetWorx 53
Removable Terminal Blocks (RTBs) 44
Removed or Inserted Under Power (RIUP) 5
retentive assignment operator

versus non-retentive assignment
operator 127

Rockwell
troubleshooting application, for iPad 189
troubleshooting application, for iPhone 189

www.it-ebooks.info

http://www.it-ebooks.info/

[199]

Rockwell Automation
about 1, 2
resources, URL 191-194
URL 176

Rockwell Automation Integrated
Architecture Builder (IAB) 39

Rockwell Automation Small System
Sketcher 39

RSLinx
about 34, 35, 57
ControlLogix used 36-38
virtual-backplane driver, configuring 63, 64

RSLogix 5000 3, 36
RSLogix Emulate 5000

versus SoftLogix 5800 58
RSNetWorx

remote racks, configuring with 53
RSWho 36
rung 73

S
Scanner Processor 28
Secure Digital (SD) memory card 6
sequential function charts (SFC)

about 96, 137
actions, defining 139-141
backwash SFC routine 142-154
boolean action 139
branches, defining 141
editor 138
non-boolean action 139
selection branch transition 141
sequence transition 141
simultaneous branch step 141
steps, defining 138, 139
stop element, defining 142
transitions, defining 141
usage 138

Serial Real-time Communications
System (SERCOS) 26

Set System Value (SSV) 185
sheets 99, 100
SoftLogix

about 55, 56
components 57
configuring, in SoftLogix 5800 Chassis

Monitor 59-62

controllers 56
Logix Designer SoftLogix project,

creating 64-67
RSLinx virtual-backplane driver, configur-

ing 63, 64
solution, components 57
working with 58, 59

SoftLogix 5800
versus RSLogix Emulate 5000 58

SoftLogix 5800 Chassis Monitor 59-62
SoftLogix controller 57
Standard Machine Controller 2
Stratix 25
structured routines

structured text syntax 126
writing 122-126

structured text editor
about 120
code area 121
syntax checker function 122
toolbar, using 121

structured text I/O module values
buffering 128

structured text (ST)
about 96, 119
constructs 133
expressions 130
instructions 131
operators 126
usage 120

SynchLink 26

T
tags

alias 78
base 78
consumed 78
controller level 78
defining 78
produced 78
program level 78

task
creating 160-165
priorities, setting 166
watchdog time 171

www.it-ebooks.info

http://www.it-ebooks.info/

[200]

TCP Transmission Control Protocol (TCP)
about 25
connection 29

troubleshooting
about 176
faults 177, 178

U
Universal Remote I/O (RIO) 26
User Datagram Protocol (UDP) 25
user-defined data type (UDT) 17, 186

V
variable frequency drive (VFD) 127
Visual Basic for Applications (VBA) 119

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Learning RSLogix 5000
Programming

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

Instant PLC Programming with
RSLogix 5000
ISBN: 978-1-84969-844-3 Paperback: 68 pages

Learn how to create PLC programs using
RSLogix 5000 and the industry's best practices
using simple, hands-on recipes

1.	 Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results.

2.	 Create Ladder Logic (LL), Functional Block
Diagrams (FBD), Structured Text (ST), and
Sequential Function Chart (SFC) routines.

3.	 Explore object-orientated features
such as user-defined types and routine
generation techniques.

Mastering vRealize Operations
Manager
ISBN: 978-1-78439-254-3 Paperback: 272 pages

Analyze and optimize your IT environment by
gaining a practical understanding of vROps 6.0

1.	 Get complete control of capacity management
in your virtual environment.

2.	 Display the most appropriate performance
metrics and assemble your own dashboard.

3.	 Analyze and process data from different
sources into a single repository, allowing you to
understand every layer of your environment.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Mastering Mobile Test Automation
ISBN: 978-1-78217-542-1 Paperback: 274 pages

Master the full range of mobile automation and
testing techniques to develop customized mobile
automation solutions

1.	 Design and develop top-notch, efficient, and
scalable mobile automation frameworks.

2.	 Develop automation solutions quickly and
effectively using real, emulated devices and
mobile-specific tools.

3.	 A comprehensive and resourceful guide to
automate mobile applications through user
agents, emulators, and simulators.

Chef Infrastructure Automation
Cookbook
Second Edition
ISBN: 978-1-78528-794-7 Paperback: 278 pages

Over 80 recipes to automate your cloud and server
infrastructure with Chef and its associated toolset

1.	 Automate error-prone and tedious manual
tasks and manage your servers on-site or
in the cloud.

2.	 Equip yourself with the Chef development kit,
and learn how to create simple Chef cookbooks
and various other artifacts for managing
systems with Chef when live.

3.	 Packed with working code and easy-to-follow,
step-by-step instructions to configure, deploy,
and scale your applications.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: ControlLogix
and CompactLogix
Overview and Firmware
	A brief history of Rockwell Automation
	Integrated Architecture
	ControlLogix controllers
	Logix operating cycle
	ControlLogix series 6 controllers
	ControlLogix series 7 controllers
	Selecting a ControlLogix controller
	GuardLogix safety controllers
	Extreme environment controllers
	CompactLogix controllers
	CompactLogix 5370 controllers
	Selecting a CompactLogix controller
	ControlLogix software and firmware
	Product Selection Toolbox
	Rockwell Automation Product Catalog for iPad

	Summary

	Chapter 2: Industrial Network Communications
	Key terms in industrial communications
	Network communication technologies
	Primary network technologies
	DeviceNet
	ControlNet
	EtherNet/IP

	Legacy network technologies
	Data Highway Plus
	Universal Remote I/O
	Serial Real-time Communications System
	SynchLink
	DH-485 and DF1

	A comparison of network communications

	EtherNet/IP Capacity Tool
	Using EtherNet/IP Capacity Tool

	RSLinx
	RSLinx communication using ControlLogix and a USB connection
	The Rockwell Automation Integrated Architecture Builder mobile app
	Summary

	Chapter 3: Configuring Logix Modules
	Module terminology
	Module types
	Analog modules
	Digital modules
	Communication modules
	Controller modules
	Specialty modules
	Logix terminal blocks

	Configuring a ControlLogix module
	Logix module – Catalog Numbers
	Special features of a module
	Addressing module I/O data
	Exploring module addresses
	Buffering module I/O data

	Configuring remote racks with RSNetWorx
	Summary

	Chapter 4: SoftLogix
	SoftLogix system overview
	SoftLogix controllers

	Components of a SoftLogix solution
	SoftLogix 5800 versus RSLogix Emulate 5000

	Working with SoftLogix
	SoftLogix 5800 Chassis Monitor
	Configuring the RSLinx virtual-backplane driver
	Creating a Logix Designer SoftLogix project
	Configuring the 1789-SIM module in the Logix Designer project
	Simulating values using the 1789-SIM module

	Summary

	Chapter 5: Writing Ladder Logic
	Ladder logic overview
	IEC 61131-3
	Understanding programming logic
	AND logic in ladder
	OR logic in ladder
	NOT logic in ladder

	How to write ladder logic
	Buffering I/O data
	Defining tags
	Buffering base tags
	Buffering using program parameters

	Summary

	Chapter 6: Writing Function Block
	Language compilation overview in Logix
	The function block overview
	Understanding FBD
	Function block versus ladder logic
	The function block sheets
	The function block elements
	Function block wiring

	Function block logic
	The AND logic function block
	The OR logic function block
	The NOT logic function block

	Writing a function block program
	Online monitoring and editing
	The FBD properties
	Adding and naming sheets to a routine
	Adding a textbox to a function block routine
	Hiding and showing function block pins
	Assigning a constant value to a function block

	Summary

	Chapter 7: Writing Structured Text
	An introduction to structured text programming
	Typical usage of structured text
	The structured text editor

	Writing structured routines
	Simple routine
	Structured text syntax
	Operators
	Assignment operator
	Non-retentive assignment operator
	Retentive versus non-retentive assignment operators
	Buffering structured text I/O module values
	Relational operators
	Logical operators
	Arithmetic operators

	Expressions
	Instructions
	Arithmetic instructions
	ORSI instruction

	Constructs
	The IF THEN construct
	The CASE OF construct
	The FOR DO construct

	Summary

	Chapter 8: Building Sequential
Function Charts
	Introducing sequential function charts
	Typical usage of SFCs
	The SFC editor
	Defining the SFC steps
	Defining the SFC actions
	Defining the SFC transitions and branches
	Defining the SFC stop element
	A backwash SFC routine

	Summary

	Chapter 9: Using Tasks and Programs for Project Organization
	Introducing project organization in Logix
	Organizational units in Logix
	Controller tasks
	Controller programs
	Controller routines

	Controller task types
	Continuous tasks
	Periodic tasks
	Event tasks
	Best practices of Logix task usage
	Creating a task
	Inhibiting programs and tasks
	Setting task priorities

	Tuning a Logix controller
	System overhead time slice
	Setting the system overhead time slice
	Monitoring task execution time and overlap
	Task watchdog time
	Logix5000 Task Monitor tool

	Summary

	Chapter 10: Faults and
Troubleshooting
in Logix
	General troubleshooting and support for Logix
	An introduction to troubleshooting faults
	Faults
	Clearing a fault
	Fault handling and recovery

	Get System Value and Set System Value
	User-defined data types
	Trapping a fault

	Rockwell troubleshooting application for iPad and iPhone
	Summary

	Appendix: Rockwell Automation Literature Library Resource
	Index

